

Characterization of On-Chip Inductors

Overview

- basic physics
- loss mechanisms
 - eddy currents in substrate / effect of ground shield
 - ohmic loss, skin and proximity effects in metal conductors
- optimization criteria
 - quality factor Q(f), f(Q_{max}), self-resonant frequency f_{sr},
- simulation examples with Ansoft HFSS (FEM-tool)

Maxwell equations for time harmonic fields

Fields: $E = -j\omega A - \nabla \phi$

 $\mathsf{B} = \nabla \times \mathsf{A}$

Assumptions:

- · linear and isotropic metal and substrate conductors
- Coulomb gauge $\nabla \cdot A = 0$

$$\nabla^2 A = \mu \left[j\omega\sigma A - \omega^2 \varepsilon A + (\sigma + j\omega\varepsilon)\nabla\Phi - J \right]$$

term #: (1) (2) (3) (4)

- (1) magnetically induced eddy currents in metal and substrate conductors
- (2) dynamic radiation current (can be neglected here)
- (3) electrically induced conductive and displacement currents
- (4) impressed current in the metal conductors

losses by currents (induced) in metal coil (I)

- (trivial) ohmic loss
- skin effect (inhomogenous current density due to magnetic field of single conductors, increases resistance)

Skin effect in rectangular conductor

from www.stanford.edu/~narya

May 3rd 2003 Page 3

losses by currents (induced) in metal coil (II)

• proximity effect: similar to skin effect, but due to field from adjacent conductors)

losses by currents induced in substrate

Fig. 2. Schematic representation of electrically and magnetically induced currents.

from Niknejad & Meyer, IEEE Trans. MTT 2001

magn. ind. currents : image currents, reduce inductance, cause ohmic losselectr. ind. currents: through capacitive coupling to coil, also cause loss, and reduce self-resonance frequency (where Q = 0)

CL TD SIM

From: Seong-Mo Yim, Tong Chen, Kenneth K.O., Bipolar/BiCMOS Circuits & Techn. Meeting, 2000

Prof. Dr. R. Liebmann May 3rd 2003 Page 7 CL TD SIM Characterization of on-chip inductors

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

spiral inductor circuit models

Port1 C

 $Y_{11} + Y_{12}$

from Bunch, IEEE Microwave magazine June 2002

general spiral inductor lumped circuit model, transformer models magnetically induced substrate eddy currents

> CL TD SIM Characterization of on-chip inductors

Port 2

 $Y_{22} + Y_{12}$

 π -equivalent circuit for two-port network

-Y12

For inductors used differentially (i.e. not one side grounded), S-parameters transformed to Y, then inductance L is defined as

L = Im ç ----- ÷

æ1/Y₁₂ö

è 2pf ø

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

Optimization criteria

Quality factor Q(f)

measures ratio of maximum stored energy to energy loss during one cycle

for low frequencies

 $\textbf{Q} \; \mu \; w \; \textbf{L}$ / \textbf{R}_{coil}

at self-resonant frequency f_{sr} : Q = 0, $(w_{sr})^2 \mu$ C / L

for differentially used inductors:

 $Q = \frac{Im(1/Y_{12})}{Re(1/Y_{12})}$

CL TD SIM Characterization of on-chip inductors

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

effect of doping (substrate resistance) on Q(f)

from www.stanford.edu/~narya

Lower doping: increases substrate resistance, reduces eddy currents and loss

Prof. Dr. R. Liebmann May 3rd 2003 Page 10

Infineon

CL TD SIM Characterization of on-chip inductors

Simulation with Ansoft / HFSS (I)

Remark:

Ansoft / HFSS is a full 3D FEM Maxwell eq. solver

Internal report from R. Strasser, IFX (CL TD SIM)

Influence of substrate resistivity

Simulation with Ansoft / HFSS (II)

Internal report from R. Strasser, IFX (CL TD SIM)

Comparison simulation / experiment

Prof. Dr. R. Liebmann May 3rd 2003 Page 12

Simulation with Ansoft / HFSS (III)

Internal report from R. Strasser, IFX (CL TD SIM)

Current density at 2 GHz shows strong proximity effect

Prof. Dr. R. Liebmann May 3rd 2003 Page 13 CL TD SIM Characterization of on-chip inductors

Simulation with Ansoft / HFSS (IV)

Internal report from R. Strasser, IFX (CL TD SIM)

Relation between magnetic field and current density at 8 GHz. Current crowding at cental hole (left) is strongest.

some difficulties:

- FEM solver needs considerable CPU time due to extremely small aspect ratio of typical on-chip inductors: width some 300 μm, metal thickness 1 to 3 μm (large mesh necessary)
- simulation accuracy at high frequencies for high resistance substrates not yet satisfactory (not well understood), there also deembedding of the measured devices is difficult.

big advantage (!):

 simulation of on-chip inductors saves lots of time and money in development, good enough for optimization; only small final corrections are necessary

Prof. Dr. R. Liebmann May 3rd 2003 Page 15

ntineon

CL TD SIM Characterization of on-chip inductors