ETH Zürich

Parameterised Electromagnetic Scattering Solutions for a Range of Incident Wave Directions

P.D. Ledger, J. Peraire[†], K. Morgan^{*}

MASCI Net Workshop Zürich May 2003

[†]Aeronautics and Astronautics M.I.T. *Civil and Computational Engineering, Swansea

The presentation will discuss

- Frequency domain variational statement;
- Arbitrary order *H*(curl) conforming discretisation;
- Application to 2D scattering problems;
- The need for a reduced—order model;
- Reduced order model formulation;
- Construction of certainty bounds;
- Numerical examples.

Maxwells equations in the frequency domain reduce to

$$\operatorname{curl} \frac{1}{\mu} \operatorname{curl} \boldsymbol{E} - \omega^2 \left(\epsilon - \mathrm{i} \frac{\sigma}{\omega} \right) \boldsymbol{E} = \boldsymbol{0}$$

 $\operatorname{div}\left(\mathrm{i}\omega\epsilon+\sigma\right)\boldsymbol{E}=0$

with typical tangential boundary conditions

 $egin{array}{rcl} n imes E &=& 0 & ext{on } \Gamma_{PEC} \ n imes ext{curl } E &=& 0 & ext{on } \Gamma_{PMC} \end{array}$

Define

$$\boldsymbol{H}(\operatorname{curl}\Omega) = \{\boldsymbol{v} \in (L_2(\Omega))^3; \operatorname{curl} \boldsymbol{v} \in (L_2(\Omega))^3\}$$
$$\boldsymbol{H}_0(\operatorname{curl}\Omega) = \{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{curl}\Omega), \boldsymbol{n} \wedge \boldsymbol{v} = \boldsymbol{0} \text{ on } \Gamma_{PEC}\}$$

(Kikuchi): Find $E \in H_0(\text{curl}; \Omega)$, $p \in H_0^1(\Omega)$ such that

$$\left(\frac{1}{\mu}\operatorname{curl} \boldsymbol{E}, \operatorname{curl} \boldsymbol{W}\right)_{\Omega} - \omega^2 \left(\left(\epsilon - \mathrm{i}\frac{\sigma}{\omega}\right)(\boldsymbol{E} + \nabla p), \boldsymbol{W}\right)_{\Omega} = 0 \quad \forall \boldsymbol{W} \in \boldsymbol{H}_0(\operatorname{curl}; \Omega)$$
$$\omega^2 \left(\left(\epsilon - \mathrm{i}\frac{\sigma}{\omega}\right)\boldsymbol{E}, \nabla q\right)_{\Omega} = 0 \quad \forall q \in H_0^1(\Omega)$$

where $H_0^1 = \{ p \in H^1, p = 0 \text{ on } \Gamma_{PEC} \}$

For certain simulations with, $\omega > 0$ constant, the Lagrange multiplier $p \equiv 0$. Therefore use simplified variational statement: Find $\mathbf{E} \in \mathbf{H}_0(\text{curl}; \Omega)$ such that

$$\left(\frac{1}{\mu}\operatorname{curl} \boldsymbol{E},\operatorname{curl} \boldsymbol{W}\right)_{\Omega} - \omega^2 \left(\left(\epsilon - \mathrm{i}\frac{\sigma}{\omega}\right)\boldsymbol{E},\boldsymbol{W}\right)_{\Omega} = 0 \quad \forall \boldsymbol{W} \in \boldsymbol{H}_0(\operatorname{curl};\Omega)$$

Discrete variational form: find $E_H \in X_H \subset H_0(\text{curl}; \Omega)$ such that

$$\left(\frac{1}{\mu}\mathsf{curl}\,\boldsymbol{E}_{H},\mathsf{curl}\,\boldsymbol{W}_{H}\right)_{\Omega}-\omega^{2}\left(\left(\epsilon-\mathrm{i}\frac{\sigma}{\omega}\right)\boldsymbol{E}_{H},\boldsymbol{W}_{H}\right)_{\Omega}=0\qquad\forall\boldsymbol{W}_{H}\in X_{H}$$

The edge degrees of freedom are chosen to be the weighted moments of the tangential component of the field on edge γ

$$oldsymbol{E}
ightarrow \int_{\gamma} \omega_k oldsymbol{E} \cdot \mathrm{d}oldsymbol{r} \qquad k = 0, 1, \cdots, p$$

When the edge is parameterized by $s \in (-1, +1)$ then ω_k is chosen to be the k^{th} degree Legendre polynomial L_k .

The interior degrees of freedom have no compatibility condition on the interface. These are chosen to complete the polynomial space.

Ainsworth, Coyle Hierarchic *hp*-edge element families for Maxwell's equations in hybrid quadrilateral/triangular meshes. Comp. Meth. Appl. Mech. Eng. 2001;190:6709–6733.

2D Electromagnetic Scattering Problems

$E = E^{i} + E^{s}$ $\Gamma = \Gamma_{PEC} + \Gamma_{PMC} + \Gamma_{FAR}$ $\Omega = \Omega_{d} + \Omega_{f} + \Omega_{p}$

Ledger et al. Arbitrary order edge elements for electromagnetic scattering simulations using hybrid meshes and a PML, Int.J Num. Meth. Eng. 2002;55:339–358.

Find \boldsymbol{E}_{H}^{s} in X_{H}^{D}

$$\mathcal{A}(\boldsymbol{E}_{H}^{s}, \boldsymbol{W}_{H}) = \ell(\boldsymbol{W}_{H}) \qquad \forall \boldsymbol{W}_{H} \in X_{H}$$

where

$$\mathcal{A}(\boldsymbol{E}_{H}^{s}, \boldsymbol{W}_{H}) = \left(\frac{1}{\mu} \operatorname{curl} \boldsymbol{E}_{H}^{s}, \operatorname{curl} \boldsymbol{W}_{H}\right)_{\Omega} - \omega^{2} \left(\left(\epsilon - \mathrm{i}\frac{\sigma}{\omega}\right) \boldsymbol{E}_{H}^{s}, \boldsymbol{W}_{H}\right)_{\Omega}$$
$$\ell(\boldsymbol{W}_{H}) = \left(\boldsymbol{n} \times \operatorname{curl} \boldsymbol{E}^{i}, \boldsymbol{W}_{H}\right)_{\Gamma_{PMC}} - \mathcal{A}(\boldsymbol{E}^{i}, \boldsymbol{W}_{H})$$

 $X_{H}^{D} \subset \boldsymbol{H}_{D}(\operatorname{curl}) = \{ \boldsymbol{v} \in \boldsymbol{H}(\operatorname{curl}), \ \boldsymbol{n} \times \boldsymbol{v} = -\boldsymbol{n} \times \boldsymbol{E}^{i} \text{ on } \Gamma_{PEC} \text{ and } \boldsymbol{n} \times \boldsymbol{v} = \boldsymbol{0} \text{ on } \Gamma_{FAR} \}$ $X_{H} \subset \boldsymbol{H}_{0}(\operatorname{curl}) = \{ \boldsymbol{v} \in \boldsymbol{H}(\operatorname{curl}), \ \boldsymbol{n} \times \boldsymbol{v} = \boldsymbol{0} \text{ on } \Gamma_{PEC} \text{ and } \boldsymbol{n} \times \boldsymbol{v} = \boldsymbol{0} \text{ on } \Gamma_{FAR} \}$

The far field pattern (RCS) is a measure of the scattered wave in the far field. Its distribution is given by

$$\sigma(\boldsymbol{E}_{H}^{s};\phi) = \mathcal{L}^{\mathcal{O}}(\boldsymbol{E}_{H}^{s};\phi)\overline{\mathcal{L}^{\mathcal{O}}(\boldsymbol{E}_{H}^{s};\phi)}$$

where

$$\mathcal{L}^{\mathcal{O}}(\boldsymbol{E}_{H}^{s};\phi) = \int_{\Gamma_{c}} \left(\boldsymbol{n} imes \boldsymbol{E}_{H} \cdot \boldsymbol{V} - \boldsymbol{n} \wedge \operatorname{\mathsf{curl}} \boldsymbol{E}_{H}^{s} \cdot \boldsymbol{Y}
ight) \mathrm{d}\Gamma$$

and

$$\{\boldsymbol{V},\boldsymbol{Y}\} = \{-[0,0,1]^T, \frac{1}{\mathrm{i}\omega}[\sin\phi, -\cos\phi, 0]^T\} \exp\{\mathrm{i}\omega(x'\cos\phi + y'\sin\phi)\}$$

An engineer designing components may wish to make small modifications to a design and investigate the change in an "output". Variables may include:

- Changes in geometry;
- Changes in frequency;
- Changes in material parameters;
- Changes in incidence direction.

Each change requires a new computation, and for many changes this may be too expensive.

Off—line stage

- N_{θ} Complete scattering solutions for incidences $\theta_1, \cdots, \theta_{N_{\theta}}$
- N_{ϕ} Complete adjoint solutions for viewing angles $\phi_1, \cdots, \phi_{N_{\phi}}$
- On–line stage
 - For a new incident angle θ the scattering width is rapidly predicted.
 - Confidence bounds ensure reliability in output prediction.

 N_{θ} and N_{ϕ} are prescribed by the user. We currently use equally spaced angles in both cases.

Find
$$E_H^s(\theta_i) \in X_H^D$$
, $i = 1, 2, \cdots, N_{\theta}$
 $\mathcal{A}(E_H^s(\theta_i), W) = \ell(W; \theta)$ $\forall W \in X_H$
Find $\Psi_H(\phi_i) \in X_H$, $i = 1, 2, \cdots, N_{\phi}$
 $\mathcal{A}(W, \Psi_H(\phi_i)) = -\mathcal{L}^{\mathcal{O}}(W; \phi)$ $\forall W \in X_H$

The solutions $E_H^s(\theta_i)$, $i = 1, 2, \dots, N_{\theta}$ and $\Psi_H(\phi_i)$, $i = 1, 2, \dots, N_{\phi}$ are stored and reused in the on-line stage.

Detailed On-Line Description

Define

$$W_{N_{\theta}}^{\mathsf{pr}} = \mathsf{span}\{\mathbf{E}_{H}^{s}(\theta_{i}); i = 1, \cdots, N_{\theta}\} \qquad W_{N_{\phi}}^{\mathsf{du}} = \mathsf{span}\{\mathbf{\Psi}_{H}(\phi_{i}); i = 1, \cdots, N_{\phi}\}$$

For a new θ , find $\boldsymbol{E}_{N_{\theta}}^{s}(\theta) \in W_{N_{\theta}}^{\mathsf{pr}} \subset X_{H}^{D}$ $\mathcal{A}(\boldsymbol{E}_{N_{\theta}}^{s}, \boldsymbol{W}) = \ell(\boldsymbol{W}) \qquad \forall \boldsymbol{W} \in \underline{W}_{N_{\theta}}^{\mathsf{pr}}$

For each ϕ , find, $\Psi_{N_{\phi}}(\phi) \in W_{N_{\phi}}^{\mathsf{du}} \subset X_{H}$ and $s_{N}(\theta, \phi) \in \mathbb{C}$

$$\mathcal{A}(\boldsymbol{W}, \boldsymbol{\Psi}_{N_{\phi}}) = -\mathcal{L}^{\mathcal{O}}(\boldsymbol{W}) \qquad \forall \boldsymbol{W} \in W_{N_{\phi}}^{\mathsf{du}}$$
$$s_{N} = \mathcal{L}^{\mathcal{O}}(\boldsymbol{E}_{N_{\theta}}^{s}) - \left[\ell\left(\boldsymbol{\Psi}_{N_{\phi}}\right) - \mathcal{A}(\boldsymbol{E}_{N_{\theta}}^{s}, \boldsymbol{\Psi}_{N_{\phi}})\right] \qquad \sigma_{N} = s_{N}\overline{s_{N}}$$

Scattering Examples

For each case

N_θ and N_φ are specified and off–line solutions created;
 The RCS for a range of new θ values is computed.

Scattering by 2λ PMC Cylinder $\theta = 0, 10, 20, 40$

Scattering by 2λ PEC NACA $\theta = 0, 10, 20, 40$

Consider the following residuals

$$\blacksquare R_E(\boldsymbol{W}) = \ell(\boldsymbol{W}) - \mathcal{A}(\boldsymbol{E}_{N_{\theta}}, \boldsymbol{W});$$

$$\blacksquare R_{\Psi}(\boldsymbol{W}) = \mathcal{L}^{\mathcal{O}}(\boldsymbol{W}) - \mathcal{A}(\boldsymbol{W}, \boldsymbol{\Psi}_{N_{\phi}}).$$

whose discretised equivalents \mathbf{R}^{E} and \mathbf{R}^{Ψ} can be evaluated. It can be shown that certainty bounds on the reduced–order model output can be constructed using

$$|s_H - s_N| \le \frac{\|\boldsymbol{R}^{\Psi}\| \cdot \|\boldsymbol{R}^{E}\|}{\min \mu_i} \qquad \Delta \sigma = (|s_H - s_N|^2)$$

where

I $\| \mathbf{R}^{\Psi} \|$ denotes the Euclidean norm of \mathbf{R}^{Ψ} ;

 \blacksquare μ_i denote the singular values of the matrix A (discretised \mathcal{A});

Ledger et. al. Parmaterised electromagnetic scattering solutions for a range of incident wave angles, Comp. Meth. Appl. Mech. Eng. submitted 2003

Certainty Bounds for 2λ **PMC Cylinder** $\theta = 0, 10, 20, 40$

Seminar for Applied Mathematics

P.D. Ledger -p.19/23

Certainty Bounds for 2λ **PEC NACA** $\theta = 0, 10, 20, 40$

The magnitude of the bound gap is reduced by either

- Increasing N_{θ} ;
- Increasing N_{ϕ} ;

Best computational efficiency obtained by simultaneously increasing both.

The convergence of the bounds with increasing N_{θ} and N_{ϕ} is exponential in nature

Convergence of Max-Bound gap for 2λ **PMC Cylinder**

Seminar for Applied Mathematics

P.D. Ledger -p.22/23

Conclusions

This presentation has shown

- Higher order edge element approach to 2D–EM scattering problems;
- Reduced—order model which enables computational efficient calculation of scattering width for new incidence directions;
- Construction of confidence bounds which ensure reliability in the predictions.
- Extensions are possible to other parameters.

http://www.sam.math.ethz.ch/~ledger