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Outline of the Presentation

The presentation will discuss

Frequency domain variational statement;

Arbitrary order H(curl) conforming discretisation;

Application to 2D scattering problems;

The need for a reduced–order model;

Reduced order model formulation;

Construction of certainty bounds;

Numerical examples.
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Frequency Domain Formulation

Maxwells equations in the frequency domain reduce to

curl
1

µ
curl E − ω2

(
ε− i

σ

ω

)
E = 0

div (iωε+ σ)E = 0

with typical tangential boundary conditions

n×E = 0 on ΓPEC

n× curlE = 0 on ΓPMC
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Frequency Domain Formulation

Define

H(curl Ω) = {v ∈ (L2(Ω))3; curlv ∈ (L2(Ω))3}
H0(curl Ω) = {v ∈H(curl Ω),n ∧ v = 0 on ΓPEC}

(Kikuchi): Find E ∈H0(curl; Ω), p ∈ H1
0 (Ω) such that

�
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µ
curl
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, curl

�
�

Ω

− ω2
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ε− i
σ

ω

�

(

�

+∇p), � �

Ω
= 0 ∀ � ∈ �

0(curl; Ω)

ω2

� �

ε− i
σ

ω

� �

,∇q

�

Ω
= 0 ∀q ∈ H1

0 (Ω)

where H1
0 = {p ∈ H1, p = 0 on ΓPEC}
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Frequency Domain Formulation

For certain simulations with, ω > 0 constant, the Lagrange multiplier
p ≡ 0. Therefore use simplified variational statement: Find
E ∈H0(curl; Ω) such that

�
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curl
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, curl

�
�

Ω

− ω2

� �

ε− i
σ

ω

� �

,

� �

Ω
= 0 ∀ � ∈ �

0(curl; Ω)

Discrete variational form: find EH ∈ XH ⊂H0(curl; Ω) such that

�
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curl
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H ,
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Construction of Ainsworth & Coyle’s Edge Element Approximation

The edge degrees of freedom are chosen to be the weighted
moments of the tangential component of the field on edge γ

E →
∫

γ

ωkE · dr k = 0, 1, · · · , p

When the edge is parameterized by s ∈ (−1,+1) then ωk is chosen
to be the kth degree Legendre polynomial Lk.

The interior degrees of freedom have no compatibility condition on
the interface. These are chosen to complete the polynomial space.

Ainsworth, Coyle Hierarchic hp-edge element families for Maxwell’s equations in hybrid

quadrilateral/triangular meshes. Comp. Meth. Appl. Mech. Eng. 2001;190:6709–6733.
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2D Electromagnetic Scattering Problems

E = Ei +Es Γ = ΓPEC + ΓPMC + ΓFAR Ω = Ωd + Ωf + Ωp

� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �
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Ledger et al. Arbitrary order edge elements for electromagnetic scattering simulations using hybrid

meshes and a PML, Int.J Num. Meth. Eng. 2002;55:339–358.
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Formulation for Scattering Problems

Find Es
H in XD

H

A(Es
H ,WH) = `(WH) ∀WH ∈ XH

where

A(Es
H ,WH) =

(
1

µ
curl Es

H , curl WH

)

Ω

− ω2
((
ε− i

σ

ω

)
Es
H ,WH

)
Ω

`(WH) =
(
n× curl Ei,WH

)
ΓPMC

−A(Ei,WH)

XD
H ⊂

�

D(curl) = { � ∈ �

(curl), � × � = − � × �i on ΓPEC and � × � = 0 on ΓFAR}
XH ⊂

�

0(curl) = { � ∈ �

(curl), � × � = 0 on ΓPEC and � × � = 0 on ΓFAR}

Seminar for Applied Mathematics P.D. Ledger – p.8/23



Output of Interest: RCS

The far field pattern (RCS) is a measure of the scattered wave in the
far field. Its distribution is given by

σ(Es
H ;φ) = LO(Es

H ;φ)LO(Es
H ;φ)

where

LO(Es
H ;φ) =

∫

Γc

(n×EH · V − n ∧ curl Es
H · Y ) dΓ

and

{V ,Y } = {−[0, 0, 1]T ,
1

iω
[sinφ,− cosφ, 0]T} exp {iω(x′ cosφ+ y′ sinφ)}
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Why Use a Reduced Order Model?

An engineer designing components may wish to make small
modifications to a design and investigate the change in an “output”.
Variables may include:

Changes in geometry;

Changes in frequency;

Changes in material parameters;

Changes in incidence direction.

Each change requires a new computation, and for many changes this

may be too expensive.
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Reduced Order Model Description

Off–line stage

Nθ Complete scattering solutions for incidences θ1, · · · , θNθ
Nφ Complete adjoint solutions for viewing angles
φ1, · · · , φNφ

On–line stage

For a new incident angle θ the scattering width is rapidly
predicted.

Confidence bounds ensure reliability in output prediction.
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Detailed Off-Line Description

Nθ and Nφ are prescribed by the user. We currently use equally
spaced angles in both cases.

Find Es
H(θi) ∈ XD

H , i = 1, 2, · · · , Nθ

A(Es
H(θi),W ) = ` (W ; θ) ∀W ∈ XH

Find ΨH(φi) ∈ XH , i = 1, 2, · · · , Nφ

A(W ,ΨH(φi)) = −LO(W ;φ) ∀W ∈ XH

The solutions Es
H(θi), i = 1, 2, · · · , Nθ and ΨH(φi), i = 1, 2, · · · , Nφ

are stored and reused in the on–line stage.
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Detailed On-Line Description

Define

W
pr
Nθ

= span{ �s
H(θi); i = 1, · · · , Nθ} Wdu

Nφ
= span{ΨH(φi); i = 1, · · · , Nφ}

For a new θ, find Es
Nθ

(θ) ∈Wpr
Nθ
⊂ XD

H

A(Es
Nθ
,W ) = ` (W ) ∀W ∈Wpr

Nθ

For each φ, find, ΨNφ(φ) ∈ Wdu
Nφ
⊂ XH and sN (θ, φ) ∈ �

A(W ,ΨNφ) = −LO(W ) ∀W ∈Wdu
Nφ

sN = LO(Es
Nθ

)−
[
`
(
ΨNφ

)
−A(Es

Nθ
,ΨNφ)

]
σN = sNsN
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Scattering Examples

1λ

PMC

2 λ

θ
PEC

x

y

x

y

θ

For each case

Nθ and Nφ are specified and off–line solutions created;

The RCS for a range of new θ values is computed.
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Scattering by 2λ PMC Cylinder θ = 0, 10, 20, 40
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Scattering by 2λ PEC NACA θ = 0, 10, 20, 40
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Construction of Certainty Bounds 1

Consider the following residuals

RE(W ) = `(W )−A(ENθ ,W );

RΨ(W ) = LO(W )−A(W ,ΨNφ).

whose discretised equivalents RE and RΨ can be evaluated. It can
be shown that certainty bounds on the reduced–order model output
can be constructed using

|sH − sN | ≤
‖RΨ‖ · ‖RE‖

minµi
∆σ = (|sH − sN |2)
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Construction of Certainty Bounds 2

where

‖ RΨ ‖ denotes the Euclidean norm of RΨ;

µi denote the singular values of the matrix A ( discretised A);

Ledger et. al. Parmaterised electromagnetic scattering solutions for a range of incident wave angles,

Comp. Meth. Appl. Mech. Eng. submitted 2003
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Certainty Bounds for 2λ PMC Cylinder θ = 0, 10, 20, 40
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Certainty Bounds for 2λ PEC NACA θ = 0, 10, 20, 40
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Convergence of the Bounds

The magnitude of the bound gap is reduced by either

Increasing Nθ;

Increasing Nφ;

Best computational efficiency obtained by simultaneously increasing
both.

The convergence of the bounds with increasing Nθ and Nφ is expo-

nential in nature
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Convergence of Max-Bound gap for 2λ PMC Cylinder

0.001

0.01

0.1

1

10

100

1000

10000

12 14 16 18 20 22 24

M
ax

 R
el

at
iv

e 
B

ou
nd

N_theta=N_phi

theta=10
theta=20
theta=40

theta=120

Seminar for Applied Mathematics P.D. Ledger – p.22/23



Conclusions

This presentation has shown

Higher order edge element approach to 2D–EM scattering
problems;

Reduced–order model which enables computational efficient
calculation of scattering width for new incidence directions;

Construction of confidence bounds which ensure reliability in
the predictions.

Extensions are possible to other parameters.

http://www.sam.math.ethz.ch/∼ledger
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