ETH Zürich

Parameterised Electromagnetic Scattering
 Solutions for a Range of Incident Wave Directions

P.D. Ledger, J. Peraire ${ }^{\dagger}$, K. Morgan*
MASCI Net Workshop Zürich May 2003

${ }^{\dagger}$ Aeronautics and Astronautics M.I.T.

* Civil and Computational Engineering, Swansea

Outline of the Presentation

The presentation will discuss

- Frequency domain variational statement;
- Arbitrary order \boldsymbol{H} (curl) conforming discretisation;
- Application to 2D scattering problems;
- The need for a reduced-order model;
- Reduced order model formulation;
- Construction of certainty bounds;
- Numerical examples.

Frequency Domain Formulation

Maxwells equations in the frequency domain reduce to

$$
\begin{gathered}
\operatorname{curl} \frac{1}{\mu} \operatorname{curl} \boldsymbol{E}-\omega^{2}\left(\epsilon-\mathrm{i} \frac{\sigma}{\omega}\right) \boldsymbol{E}=\mathbf{0} \\
\operatorname{div}(\mathrm{i} \omega \epsilon+\sigma) \boldsymbol{E}=0
\end{gathered}
$$

with typical tangential boundary conditions

$$
\begin{aligned}
n \times \boldsymbol{E} & =\mathbf{0} & & \text { on } \Gamma_{P E C} \\
\boldsymbol{n} \times \operatorname{curl} \boldsymbol{E} & =\mathbf{0} & & \text { on } \Gamma_{P M C}
\end{aligned}
$$

Frequency Domain Formulation

Define

$$
\begin{array}{r}
\boldsymbol{H}(\operatorname{curl} \Omega)=\left\{\boldsymbol{v} \in\left(L_{2}(\Omega)\right)^{\mathbf{3}} ; \operatorname{curl} \boldsymbol{v} \in\left(L_{2}(\Omega)\right)^{3}\right\} \\
\boldsymbol{H}_{0}(\operatorname{curl} \Omega)=\left\{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{curl} \Omega), \boldsymbol{n} \wedge \boldsymbol{v}=\mathbf{0} \text { on } \Gamma_{P E C}\right\}
\end{array}
$$

(Kikuchi): Find $\boldsymbol{E} \in \boldsymbol{H}_{0}($ curl; $\Omega), p \in H_{0}^{1}(\Omega)$ such that

$$
\begin{aligned}
\left(\frac{1}{\mu} \operatorname{curl} \boldsymbol{E}, \operatorname{curl} \boldsymbol{W}\right)_{\Omega}-\omega^{2}\left(\left(\epsilon-\mathrm{i} \frac{\sigma}{\omega}\right)(\boldsymbol{E}+\nabla p), \boldsymbol{W}\right)_{\Omega} & =0 & \forall \boldsymbol{W} \in \boldsymbol{H}_{0}(\mathrm{curl} ; \Omega) \\
\omega^{2}\left(\left(\epsilon-\mathrm{i} \frac{\sigma}{\omega}\right) \boldsymbol{E}, \nabla q\right)_{\Omega} & =0 & \forall q \in H_{0}^{1}(\Omega)
\end{aligned}
$$

where $H_{0}^{1}=\left\{p \in H^{1}, p=0\right.$ on $\left.\Gamma_{P E C}\right\}$

Frequency Domain Formulation

For certain simulations with, $\omega>0$ constant, the Lagrange multiplier $p \equiv 0$. Therefore use simplified variational statement: Find $\mathbf{E} \in \boldsymbol{H}_{0}(\mathrm{curl} ; \Omega)$ such that

$$
\left(\frac{1}{\mu} \operatorname{curl} E, \text { curl } W\right)_{\Omega}-\omega^{2}\left(\left(\epsilon-\mathrm{i} \frac{\sigma}{\omega}\right) \boldsymbol{E}, \boldsymbol{W}\right)_{\Omega}=0 \quad \forall \boldsymbol{W} \in \boldsymbol{H}_{0}(\text { curl; } \Omega)
$$

Discrete variational form: find $E_{H} \in X_{H} \subset \boldsymbol{H}_{0}($ curl $; \Omega)$ such that

$$
\left(\frac{1}{\mu} \operatorname{curl} E_{H}, \operatorname{curl} W_{H}\right)_{\Omega}-\omega^{2}\left(\left(\epsilon-\mathrm{i} \frac{\sigma}{\omega}\right) E_{H}, W_{H}\right)_{\Omega}=0 \quad \forall \boldsymbol{W}_{H} \in X_{H}
$$

Construction of Ainsworth \& Coyle's Edge Element Approximation

The edge degrees of freedom are chosen to be the weighted moments of the tangential component of the field on edge γ

$$
\boldsymbol{E} \rightarrow \int_{\gamma} \omega_{k} \boldsymbol{E} \cdot \mathrm{~d} \boldsymbol{r} \quad k=0,1, \cdots, p
$$

When the edge is parameterized by $s \in(-1,+1)$ then ω_{k} is chosen to be the $k^{t h}$ degree Legendre polynomial L_{k}.

The interior degrees of freedom have no compatibility condition on the interface. These are chosen to complete the polynomial space.

Ainsworth, Coyle Hierarchic $h p$-edge element families for Maxwell's equations in hybrid quadrilateral/triangular meshes. Comp. Meth. Appl. Mech. Eng. 2001;190:6709-6733.

2D Electromagnetic Scattering Problems

$$
\boldsymbol{E}=\boldsymbol{E}^{i}+\boldsymbol{E}^{s} \quad \Gamma=\Gamma_{P E C}+\Gamma_{P M C}+\Gamma_{F A R} \quad \Omega=\Omega_{d}+\Omega_{f}+\Omega_{p}
$$

Ledger et al. Arbitrary order edge elements for electromagnetic scattering simulations using hybrid meshes and a PML, Int.J Num. Meth. Eng. 2002;55:339-358.

Formulation for Scattering Problems

Find \boldsymbol{E}_{H}^{s} in X_{H}^{D}

$$
\mathcal{A}\left(\boldsymbol{E}_{H}^{s}, \boldsymbol{W}_{H}\right)=\ell\left(\boldsymbol{W}_{H}\right) \quad \forall \boldsymbol{W}_{H} \in X_{H}
$$

where

$$
\begin{aligned}
\mathcal{A}\left(\boldsymbol{E}_{H}^{s}, \boldsymbol{W}_{H}\right) & =\left(\frac{1}{\mu} \text { curl } \boldsymbol{E}_{H}^{s}, \operatorname{curl} \boldsymbol{W}_{H}\right)_{\Omega}-\omega^{2}\left(\left(\epsilon-\mathrm{i} \frac{\sigma}{\omega}\right) \boldsymbol{E}_{H}^{s}, \boldsymbol{W}_{H}\right)_{\Omega} \\
\ell\left(\boldsymbol{W}_{H}\right) & =\left(\boldsymbol{n} \times \operatorname{curl} \boldsymbol{E}^{i}, \boldsymbol{W}_{H}\right)_{\Gamma_{P M C}}-\mathcal{A}\left(\boldsymbol{E}^{i}, \boldsymbol{W}_{H}\right) \\
X_{H}^{D} \subset \boldsymbol{H}_{D}(\text { curl }) & =\left\{\boldsymbol{v} \in \boldsymbol{H}(\text { curl) }), \boldsymbol{n} \times \boldsymbol{v}=-\boldsymbol{n} \times \boldsymbol{E}^{i} \text { on } \Gamma_{P E C} \text { and } \boldsymbol{n} \times \boldsymbol{v}=\mathbf{0} \text { on } \Gamma_{F A R}\right\} \\
X_{H} \subset \boldsymbol{H}_{0}(\text { curl }) & =\left\{\boldsymbol{v} \in \boldsymbol{H}(\text { curl) }) \boldsymbol{n} \times \boldsymbol{v}=\mathbf{0} \text { on } \Gamma_{P E C} \text { and } \boldsymbol{n} \times \boldsymbol{v}=\mathbf{0} \text { on } \Gamma_{F A R}\right\}
\end{aligned}
$$

Output of Interest: RCS

The far field pattern (RCS) is a measure of the scattered wave in the far field. Its distribution is given by

$$
\sigma\left(\boldsymbol{E}_{H}^{s} ; \phi\right)=\mathcal{L}^{\mathcal{O}}\left(\boldsymbol{E}_{H}^{s} ; \phi\right) \overline{\mathcal{L}^{\mathcal{O}}\left(\boldsymbol{E}_{H}^{s} ; \phi\right)}
$$

where

$$
\mathcal{L}^{\mathcal{O}}\left(\boldsymbol{E}_{H}^{s} ; \phi\right)=\int_{\Gamma_{c}}\left(\boldsymbol{n} \times \boldsymbol{E}_{H} \cdot \boldsymbol{V}-\boldsymbol{n} \wedge \operatorname{curl} \boldsymbol{E}_{H}^{s} \cdot \boldsymbol{Y}\right) \mathrm{d} \Gamma
$$

and
$\{\boldsymbol{V}, \boldsymbol{Y}\}=\left\{-[0,0,1]^{T}, \frac{1}{\mathrm{i} \omega}[\sin \phi,-\cos \phi, 0]^{T}\right\} \exp \left\{\mathrm{i} \omega\left(x^{\prime} \cos \phi+y^{\prime} \sin \phi\right)\right\}$

Why Use a Reduced Order Model?

An engineer designing components may wish to make small modifications to a design and investigate the change in an "output". Variables may include:

- Changes in geometry;
- Changes in frequency;
- Changes in material parameters;
- Changes in incidence direction.

Each change requires a new computation, and for many changes this may be too expensive.

Reduced Order Model Description

- Off-line stage
- N_{θ} Complete scattering solutions for incidences $\theta_{1}, \cdots, \theta_{N_{\theta}}$
$\square N_{\phi}$ Complete adjoint solutions for viewing angles $\phi_{1}, \cdots, \phi_{N_{\phi}}$
- On-line stage
- For a new incident angle θ the scattering width is rapidly predicted.
- Confidence bounds ensure reliability in output prediction.

Detailed Off-Line Description

N_{θ} and N_{ϕ} are prescribed by the user. We currently use equally spaced angles in both cases.

- Find $\boldsymbol{E}_{H}^{s}\left(\theta_{i}\right) \in X_{H}^{D}, i=1,2, \cdots, N_{\theta}$

$$
\mathcal{A}\left(\boldsymbol{E}_{H}^{s}\left(\theta_{i}\right), \boldsymbol{W}\right)=\ell(\boldsymbol{W} ; \theta) \quad \forall \boldsymbol{W} \in X_{H}
$$

- Find $\Psi_{H}\left(\phi_{i}\right) \in X_{H}, i=1,2, \cdots, N_{\phi}$

$$
\mathcal{A}\left(\boldsymbol{W}, \boldsymbol{\Psi}_{H}\left(\phi_{i}\right)\right)=-\mathcal{L}^{\mathcal{O}}(\boldsymbol{W} ; \phi) \quad \forall \boldsymbol{W} \in X_{H}
$$

The solutions $\boldsymbol{E}_{H}^{s}\left(\theta_{i}\right), i=1,2, \cdots, N_{\theta}$ and $\Psi_{H}\left(\phi_{i}\right), i=1,2, \cdots, N_{\phi}$ are stored and reused in the on-line stage.

Detailed On-Line Description

- Define

$$
W_{N_{\theta}}^{\mathrm{pr}}=\operatorname{span}\left\{\boldsymbol{E}_{H}^{s}\left(\theta_{i}\right) ; i=1, \cdots, N_{\theta}\right\} \quad W_{N_{\phi}}^{\mathrm{du}}=\operatorname{span}\left\{\boldsymbol{\Psi}_{H}\left(\phi_{i}\right) ; i=1, \cdots, N_{\phi}\right\}
$$

\square For a new θ, find $\boldsymbol{E}_{N_{\theta}}^{s}(\theta) \in W_{N_{\theta}}^{\mathrm{pr}} \subset X_{H}^{D}$

$$
\mathcal{A}\left(\boldsymbol{E}_{N_{\theta}}^{s}, \boldsymbol{W}\right)=\ell(\boldsymbol{W}) \quad \forall \boldsymbol{W} \in W_{N_{\theta}}^{\mathrm{pr}}
$$

- For each ϕ, find, $\mathbf{\Psi}_{N_{\phi}}(\phi) \in W_{N_{\phi}}^{\mathrm{du}} \subset X_{H}$ and $s_{N}(\theta, \phi) \in \mathbb{C}$

$$
\begin{gathered}
\mathcal{A}\left(\boldsymbol{W}, \mathbf{\Psi}_{N_{\phi}}\right)=-\mathcal{L}^{\mathcal{O}}(\boldsymbol{W}) \quad \forall \boldsymbol{W} \in W_{N_{\phi}}^{\mathrm{du}} \\
s_{N}=\mathcal{L}^{\mathcal{O}}\left(\boldsymbol{E}_{N_{\theta}}^{s}\right)-\left[\ell\left(\mathbf{\Psi}_{N_{\phi}}\right)-\mathcal{A}\left(\boldsymbol{E}_{N_{\theta}}^{s}, \mathbf{\Psi}_{N_{\phi}}\right)\right] \quad \sigma_{N}=s_{N} \overline{s_{N}}
\end{gathered}
$$

Scattering Examples

For each case

- N_{θ} and N_{ϕ} are specified and off-line solutions created;
- The RCS for a range of new θ values is computed.

Scattering by 2λ PMC Cylinder $\theta=0,10,20,40$

Scattering by 2λ PEC NACA $\theta=0,10,20,40$

Construction of Certainty Bounds 1

Consider the following residuals

$$
\begin{aligned}
& R_{E}(\boldsymbol{W})=\ell(\boldsymbol{W})-\mathcal{A}\left(\boldsymbol{E}_{N_{\theta}}, \boldsymbol{W}\right) \\
& R_{\Psi}(\boldsymbol{W})=\mathcal{L}^{\mathcal{O}}(\boldsymbol{W})-\mathcal{A}\left(\boldsymbol{W}, \boldsymbol{\Psi}_{N_{\phi}}\right)
\end{aligned}
$$

whose discretised equivalents \boldsymbol{R}^{E} and \boldsymbol{R}^{Ψ} can be evaluated. It can be shown that certainty bounds on the reduced-order model output can be constructed using

$$
\left|s_{H}-s_{N}\right| \leq \frac{\left\|\boldsymbol{R}^{\Psi}\right\| \cdot\left\|\boldsymbol{R}^{E}\right\|}{\min \mu_{i}} \quad \Delta \sigma=\left(\left|s_{H}-s_{N}\right|^{2}\right)
$$

Construction of Certainty Bounds 2

where
■ \| $\boldsymbol{R}^{\Psi} \|$ denotes the Euclidean norm of \boldsymbol{R}^{Ψ};
$\square \mu_{i}$ denote the singular values of the matrix $\mathbf{A}(\operatorname{discretised} \mathcal{A}) ;$
Ledger et. al. Parmaterised electromagnetic scattering solutions for a range of incident wave angles, Comp. Meth. Appl. Mech. Eng. submitted 2003

Certainty Bounds for 2λ PMC Cylinder $\theta=0,10,20,40$

Certainty Bounds for 2λ PEC NACA $\theta=0,10,20,40$

Convergence of the Bounds

The magnitude of the bound gap is reduced by either
\square Increasing N_{θ};
■ Increasing N_{ϕ};
Best computational efficiency obtained by simultaneously increasing both.

The convergence of the bounds with increasing N_{θ} and N_{ϕ} is exponential in nature

Convergence of Max-Bound gap for 2λ PMC Cylinder

Conclusions

This presentation has shown

- Higher order edge element approach to 2D-EM scattering problems;
- Reduced-order model which enables computational efficient calculation of scattering width for new incidence directions;
- Construction of confidence bounds which ensure reliability in the predictions.

Extensions are possible to other parameters.
http://www.sam.math.ethz.ch/~ledger

