Computational Electromagnetics Laboratory

Finite Element Models for Eddy Current Effects in Windings: Application to Superconductive Rutherford Cable

Herbert De Gersem^{1←2}, Thomas Weiland¹

¹Technische Universität Darmstadt (Germany), Computational Electromagnetics Laboratory ²Katholieke Universiteit Leuven (Belgium) Dep. ESAT, Div. ELECTA

MACSI-NET-13 & 2: "Electromagnetics in Telecommunication" Workshop "Coupled problems / model reduction" 2-3 May 2003, Zürich, Switzerland

- 1. Introduction: field-circuit coupling
- 2. Voltage/current-driven branches
- 3. Circuit description
 - + consistency check
 - + partial loop/cutset transformations
 - + topological changes
- 4. Field-circuit coupling
 - + examples
- 5. Algebraic system properties
 - + selection of iterative solution techniques
- 6. Superconductive Rutherford cable
 - + adjacency eddy currents
 - + cross-over eddy currents
- 7. Conclusions

Introduction

field-circuit coupling

FE/FIT model

- geometrical details
- ferromagnetic saturation (non-linear!!)
- (motional) eddy currents

circuit

- external sources/loads, (e.g. power electronic equipment)
- parts outside the FE model (e.g. end windings/rings)
- representing (linear) parts for which an equivalent circuit suffices (e.g. homopolar shaft flux)

Quasistatic formulation

Solid (massive) conductor

Technische Universität Darmstadt, Computational Electromagnetics Laboratory

Herbert De Gersem

"voltage-driven" conductor

no circuit equation if voltage drop is known no fill-in in the FE matrix part if the voltage drop is an independent degree of freedom

- magnetic equation $\nabla \times (\nabla \times \mathbf{A}) + \sigma \frac{\partial \mathbf{A}}{\partial t} = \frac{\sigma}{\ell_z} \Delta V_{sol}$
- total current $I_{sol} = \int \mathbf{J} d\Omega$

$$I_{sol} = \int_{\substack{\Omega_{sol} \\ G_{sol} \\ I_{source}}} \frac{\sigma}{\ell_z} d\Omega \Delta V_{sol} - \int_{\substack{\Omega_{sol} \\ \Omega_{sol} \\ I_{eddy}}} \sigma \frac{\partial A}{\partial t} d\Omega$$

equivalent scheme

Stranded (filamentary) conductor

"current-driven" conductor

no circuit equation if current is known no fill-in in the FE matrix part if the current is an independent degree of freedom

- magnetic equation $\nabla \times (\nabla \times \mathbf{A}) = \frac{N_{str}}{\Delta_{str}} I_{str}$
- total voltage

$$\Delta V_{str} = \frac{N_{str} \ell_z}{\Delta_{str}} \int_{\Omega_{str}} (-\nabla V) d\Omega$$

$$\Delta V_{str} = \underbrace{R_{str} I_{str}}_{\Delta V_{res}} + \underbrace{\frac{N_{str} \ell_z}{\Delta_{str}}}_{\Delta V_{ind}} \int_{\Omega_{str}} \frac{\partial \mathbf{A}}{\partial t} d\Omega$$

equivalent scheme

Coupling requirements

$\begin{bmatrix} K & B^T \\ B & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$	(compacted) modified nodal analysis	(compacted) loop analysis	hybrid analysis
<i>unknowns</i> keep the FE matrix part unchanged	nodal voltages (+a few currents)	loop currents (+a few voltages)	twig voltages link currents
 sparsity preconditioners (multigrid) possible benefits thanks to structured grids (FIT)) no (yes) S	no (yes)	yes
 preserve symmetry Krylov subspace solvers for symmetric systems (CG, MINRES, QMR) 	or <mark>yes</mark>	yes	yes
 storage preserve positive definitenes solvers (CG) preconditioners (IC) 	ss yes (no)	yes (no)	no [yes]

Circuit description (2)

2. Determine fundamental cutsets and fundamental loops

..... fundamental cutset

The orientation of the fundamental cutset/loop is determined by the orientation of the corresponding twig/link

A fundamental cutset is formed by 1 twig and the unique set of links completing the set of branches which would upon removal result in two disconnected circuit parts. A fundamental loop consists of 1 link and the unique path through the tree closing the loop.

Property: priority(twig) \geq priority(branch), \forall branch \in fundamental cutset Property: priority(link) \leq priority(branch), \forall branch \in fundamental loop

Circuit description (3)

3. Construct the fundamental cutset and fundamental loop matrices

fundamental cutset matrix

$$D = \begin{bmatrix} 1 & & & 1 & 1 \\ & 1 & & -1 & \\ & & 1 & 1 & 1 \end{bmatrix}$$

fundamental loop matrix

$$B = \begin{bmatrix} -1 & 1 & -1 & | & 1 \\ -1 & & -1 & | & & 1 \end{bmatrix}$$

remark:
$$B_{\text{ln,tw}} = -D_{\text{tw,ln}}^{\text{T}}$$

Circuit description (4)

4. Partition the fundamental incidence matrices

twigs at which the voltage is known (voltage sources)
twigs at which an unknown voltage is assigned (" <i>free twigs</i> ")
eliminated twigs (" <i>eliminated twigs</i> ") (not in this example)
eliminated links (" <i>eliminated links</i> ") (not in this example)
links at which an unknown current is assigned ("free links")
links at which the current is known (current sources)

Circuit description (5)

5. Write impedance/admittance matrices and voltage/current vectors

- 1. admittance matrix for the free twigs $Y_{\text{two}} = \begin{bmatrix} 1/1 \\ 1/3 \end{bmatrix}$
- 2. impedance matrix for the free links

$$Z_{\text{lno}} = [4]$$

- 3. voltage vector for the voltage sources $v_{twv} = [10]$
- 4. current vector for the current sources $i_{lni} = [2]$

6. Write system of equations

intuitive approach:

- 1. write the Kirchhoff current law for each fundamental cutset associated with a free twig
- 2. write the Kirchhoff voltage law for each fundamental loop associated with a free link

$$\begin{bmatrix} 1 & 0 & | & -1 \\ 0 & 0.333 & 1 \\ -1 & 1 & | & -4 \end{bmatrix} \begin{bmatrix} v_b \\ v_c \\ \vdots_d \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -10 \end{bmatrix}$$

$$\begin{bmatrix} Y_{\text{two}} & D_{\text{two,lno}} \\ -B_{\text{lno,two}} & -Z_{\text{lno}} \end{bmatrix} \begin{bmatrix} v_{\text{two}} \\ i_{\text{lno}} \end{bmatrix} = \begin{bmatrix} -D_{\text{two,lni}} i_{\text{lni}} \\ B_{\text{lno,twv}} v_{\text{twv}} \end{bmatrix}$$

remark: symmetric because $B_{\text{lno,two}} = -D_{\text{two,lno}}^{\text{T}}$

Circuit description (7)

7. Solve system of equations & propagate the circuit solution

Particularities

1. Distinct circuit parts

2. Dangling nodes

a branch to a dangling node always a twig associated fundamental cutset only contains the twig

3. Self-loops

a self-loop is always a link the associated fundamental loop only contains the link

Consistency check (1)

1. Fundamental loop consisting of voltage sources

Problem: a voltage source is necessarily selected as link

Treatment: check the Kirchhoff voltage law in the associated fundamental loop

e.g. v0-v1+v2 = 0 ??

if valid

omit the voltage source link if not valid

the circuit has no solution

Consistency check (2)

2. Fundamental cutset consisting of current sources

Problem: a current source is necessarily selected as twig

Treatment: check the Kirchhoff current law in the associated fundamental cutset e.g. i0 + i1 - i2 = 0 ?? if valid replace the current source twig by a short-circuit connection if not valid the circuit has no solution

Partial transformation (1)

1. Stranded conductor being selected as twig

istr i2

Problem: a stranded conductor (current-driven branch) is necessarily selected as twig

```
Property: priority(twig) ≥ priority(branch),
∀branch ∈ associated fundamental cutset
```

Treatment: apply the Kirchhoff current law in the associated fundamental cutset to express the stranded-conductor current in terms of link currents e.g. istr = i1 + i2

~ small and independent Schur complements

Partial transformation (2)

2. Solid conductor being selected as link

Problem: a solid conductor (voltage-driven branch) is necessarily selected as link

Property: priority(link) \leq priority(branch), \forall branch \in associated fundamental loop

Treatment: apply the Kirchhoff voltage law in the associated fundamental loop to express the solid-conductor voltage in terms of twig voltage e.g. vsol = v1 + v2

~ small and independent Schur complements

Topological changes (1)

1. Switching elements closes (switch, diode, thyristor,...)

Topological changes (2)

1. Switching element opens (switch, diode, thyristor,...)

Problem: the priority of a branch decreases during (transient) simulation

$$\begin{bmatrix} G_1 & 1 \\ 1 & -R_2 \end{bmatrix} \begin{bmatrix} v_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 0 \\ U \end{bmatrix}$$

Treatment: consider associated fundamental cutset and possibly change link/twigmode with the branch with the highest priority

 $\begin{bmatrix} G_1 & 0 \\ 0 & G_2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Field-circuit coupling (3)

cutset equation

Coupled system matrix

symmetric/indefinite

#positive-eigenvalues = #FE/FIT-dofs + #cutset-equations

#negative-eigenvalues = #loop-equations

2

4

6

8

10

12

FE/FIT part

Laboratory

Electromagnetics

Computational

Fechnische Universität Darmstadt,

Gersem

Herbert De

- linearities

Circuit part

- changes due to nonlinearities & switching

Coupling blocks

- dense

Algebraic solution (2)

	solver	preconditioner
$\begin{bmatrix} K & B^T \\ B & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$	MINRES QMR MINRES/QMR	SSOR SSOR BJac (AMG,LU)
Schur complement 1 $\left(K - B^T C^{-1} B\right) x = f - B^T C^{-1} g$	CG(LU)	? SSOR/AMG ? DD
Schur complement 2 $\left(C - BK^{-1}B^T\right)y = g - BK^{-1}f$	LU(AMGCG)	? LU ? DD

& Domenico Lahaye: Algebraic multigrid for field-circuit coupled systems

Algebraic solution (3)

Algebraic multigrid for field-circuit coupled systems (Dr. Domenico Lahaye, CRS4, Cagliari, Italy)

fine grid system:

$$\begin{bmatrix} K & B^{T} \\ B & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix} \qquad \text{prolongation:} \quad P_{H \to h} \\ \text{restriction:} \quad R_{h \to H} = P_{H \to h}^{T} \\ \text{restriction:} \quad R_{h \to H} = P_{H \to h}^{T} \\ \begin{bmatrix} P_{H \to h} \\ I \end{bmatrix} \begin{bmatrix} K_{H} & B_{H}^{T} \\ B_{H} & C \end{bmatrix} \begin{bmatrix} P_{H \to h} \\ I \end{bmatrix} \begin{bmatrix} x_{H} \\ y_{H} \end{bmatrix} = \begin{bmatrix} P_{H \to h}^{T} \\ I \end{bmatrix} \begin{bmatrix} f \\ g \end{bmatrix}$$

smoother: block-Jacobi with

- 1. Gauss-Seidel for the FE/FIT unknowns
- 2. no smoothing or an exact solution for the circuit unknowns

Algebraic solution (4)

Performance of an indefinite and definite preconditioner

Algebraic solution (5)

Preconditioning of the Schur-complement system

Algebraic solution (6)

Iteration counts and computation times of the iterative system solution for 1 time step of a transient simulation.

iteration	steps	computation time (s)
MINRES	1997	59.80
QMR } without precondition	ing 1330	40.23
GMRES	1031	159.71
$\int SSOR MINRES $ non-symmetric ϵ	→ 476	11.03
SSORQMR symmetric solve	ar 320	7.41
SSORGMRES	312	38.13
JAC(SSOR,LU)GMRES DIOCK	325	53.91
JAC(AMG,LU)QMR J preconditioning 2		5.23
CG*	2376	30.06
SSORCG* Schur complemen	<i>t</i> 1105	17.32
AMGCG* J	199	9.28

& Domenico Lahaye: Algebraic multigrid for field-circuit coupled systems

Examples (1)

Time-harmonic simulation of a three-phase induction machine

Examples (2)

More general conductor systems ?

Foil windings

Foil conductor model

Foil winding transformer

Superconductive magnets (1)

Superconductive magnets (2)

Rutherford Cable (1)

Rutherford Cable (2)

Magnetic flux density

Adjacency eddy current (1)

1. additional discretisation for unknown electric field $E_{z,a}$:

$$E_{z}(x, y) = \sum_{q} E_{z,q} M_{q}(x, y)$$

2. adjacency eddy current density :

due to perpendicular magnetic field

$$J_{\text{pa},z}(r,\theta) = \sigma_{\text{pa}} E_{z,q} - \sigma_{\text{pa}} \frac{\partial A_z}{\partial t}$$

3. netto current through $\Omega_q = 0$

Adjacency eddy current (2)

additional load term for magnetic FE model

additional constraint

 $-Z_{\rm pa}^{\rm T} \frac{Cu}{\partial t} + G_{\rm pa} e_{\rm pa} = 0$ $g_{\rm pa} = M_{\rm pa} \frac{\partial u}{\partial t} - Z_{\rm pa} e_{\rm pa}$ $\begin{array}{c} -\Sigma_{\text{pa}} & \overline{\partial t} & \nabla_{\text{pa}} & \overline{\partial t} \\ & &$ $\begin{vmatrix} M_{\text{pa}} & 0 \\ Z_{\text{pa}}^{\text{T}} & 0 \end{vmatrix} \frac{\partial}{\partial t} \begin{bmatrix} u \\ e_{\text{pa}} \end{bmatrix} + \begin{vmatrix} K & Z_{\text{pa}} \\ 0 & G_{\text{pa}} \end{vmatrix} \begin{bmatrix} u \\ e_{\text{pa}} \end{bmatrix} = \begin{bmatrix} f \\ 0 \end{bmatrix}$ $M_{\text{pa},ij} = \int \sigma_{\text{pa}} N_i(x, y) N_j(x, y) \, \mathrm{d}\Omega$ Ω $Z_{\text{pa},iq} = \int \sigma_{\text{pa}} N_i(x, y) M_q(x, y) \,\mathrm{d}\Omega$ $G_{\text{pa},pq} = \int \sigma_{\text{pa}} M_p(x, y) M_q(x, y) \,\mathrm{d}\Omega$

Adjacency eddy current (3)

θ

shape functions $M_q(x, y)$ related (but not necessarily equal) to the zones of current redistribution

 $M_q(x,y)$

due to parallel magnetic field

Adjacency eddy current

Cross-over eddy current (1)

Cross-over eddy current

- hybrid method for circuit analysis
 convenient field-circuit modelling
- solution of the coupled algebraic systems of equations
- specialised conductor models
 - complicated eddy current phenomena
- applications to
 - electrical machine
 - foil winding transformer
 - superconductive magnets, Rutherford cable