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0.1 General Information

0.1.1 Goals

The focus of this course is neither

on the rigorous numerical analysis of partial differenatial equations (as covered in 401-3651-

00V: Numerical methods for elliptic and parabolic partial differential equations)

nor

on providing mere recipes for applying methods or even software packages.
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Flavor of this course

This course combines emphasis on algorithms with their sound mathematical motivation and deriva-

tion, rigorous, but not too formal.

It aims to impart an “intuitive understanding” of numerical methods, their properties, potential, and

limitations.

The main skills to be acquired in this course are the following.

✦ Ability to implement advanced numerical methods for the solution of partial differential equations in

C++ efficiently (, based on numerical libraries, of course)

✦ Ability to modify and adapt numerical algorithms guided by awareness of their mathematical founda-

tions

✦ Ability to select and assess numerical methods in light of the predictions of theory

✦ Ability to identify features of a PDE (= partial differential equation) based model that are relevant for

the selection and performance of a numerical algorithm

✦ Ability to understand research publications on theoretical and practical aspects of numerical methods

for partial differential equations.

0.1.2 Teaching Style and Model

This course will depart from the usual academic teaching arrangement centering around classes taught

by a lecturer addressing an audience in a lecture hall.

A flipped-classroom course

This course will follow the flipped-classroom paradigm:

Learning by self-study guided by

instruction videos

tablet notes
lecture notes

interactive

Q&A sessions

homework

tutorial classes

All the course materials will be published online through the course Moodle Page and will also be available

in the course online repository. All notes jotted down by the lecturer during the creation of videos or during

the Q&A sessions will be made available as PDF.

0.1.2.1 Course Videos

In the flipped-classroom teaching model regular lectures will partly be replaced with pre-recorded videos.

These videos are not commercial-grade clips, but resemble video recordings from a standard classroom

setting; they convey the development of the material on a tablet accompanied by the lecturer’s voice.

Fig. 1

The videos will be published through

1. the course Moodle page: click the “Course Videos” tile, and you will

find links to the appropriate videos.

2. as .mp4-files on PolyBox (password required) and in the

online course repository.

0. Introduction, 0.1. General Information 10
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Every video comes with a PDF containing the tablet notes taken during the creation of the video. However,

the PDF may have been corrected, updated, or supplemented later.

The course videos in MP4-format can also be accessed through a password-protected Polybox folder and

then played locally, using software like VLC.

!
Video tutorials for some of the homework problems are available. However, they may be

outdated and they will not be updated in the future, because according to poll data from

2019 only a small fraction of the students watched them. Instead effort will be put into

creating comprehensive master solutions.

§0.1.2.2 (“Pause” and “fast forward”) Videos have two big advantages:

Fig. 2

You can stop a video at any time, whenever

• you need more time to think,

• you want to look up related information,

• you want to work for yourself.

Make use of this possibility!

The video portal also allows you to play the videos at 1.5× speed . This can be useful, if the current topic

is very clear to you. You can also skip entire parts using the scroll bar. The same functionality (fast playing

and skipping) is offered by most video players, for instance the VLC media player. y

§0.1.2.3 (Review questions) Most lecture units (corresponding to a video) are accompanied with a list of

review questions. You should try to answer them off the top of your head without consulting any written

material shortly after you have finished studying the unit .

If you are utterly clueless about how to approach a review question, you probably need to resume studying

some of the unit’s topics. y

§0.1.2.4 (List of available tutorial videos) This is the list of available video tutorials as of May 21, 2024:

!

Necessary corrections and updates of the lecture document will sometimes lead to changes

in the numbering of paragraphs and formulas, which, of course, cannot be applied to the

recorded videos.

However, these changes will be taken into account into the tablet notes supplied for every

video.

1.
Video tutorial for Chapter 0: Welcome and Introduction: (25 minutes) Download link,

tablet notes

2.
Video tutorial for Section 1.2.1: Elastic Membranes: (44 minutes) Download link,

tablet notes

➣ Quizz 1.2.1.30

3.
Video tutorial for Section 1.2.2: Electrostatic Fields: (13 minutes) Download link,

tablet notes

➣ Quizz 1.2.2.17

4.
Video tutorial for Section 1.2.3: Quadratic Minimization Problems: (48 minutes)

Download link, tablet notes

➣ Quizz 1.2.3.49

0. Introduction, 0.1. General Information 11
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5.
Video tutorial for Section 1.3: Sobolev Spaces: (47 minutes) Download link,

tablet notes

➣ Quizz 1.3.4.29

6.
Video tutorial for Section 1.4: Linear Variational Problems: (47 minutes) Download link,

tablet notes

➣ Quizz 1.4.3.8

7.
Video tutorial for Section 1.5: Equilibrium Models: Boundary Value Problems: (50

minutes) Download link, tablet notes

➣ Quizz 1.5.3.19

8.
Video tutorial for Section 1.6: Diffusion Models: Stationary Heat Conduction: (12 min-

utes) Download link, tablet notes

➣ Quizz 1.6.0.10

9.
Video tutorial for Section 1.7: Boundary Conditions: (16 minutes) Download link,

tablet notes

➣ Quizz 1.7.0.12

10.
Video tutorial for Section 1.8: Second-Order Elliptic Variational Problems: (32 minutes)

Download link, tablet notes

➣ Quizz 1.8.0.32

11.
Video tutorial for Section 1.9: Essential and Natural Boundary Conditions: (36 minutes)

Download link, tablet notes

➣ Quizz 1.9.0.13

12.
Video tutorial for Section 2.2: Principles of Galerkin Discretization: (47 minutes)

Download link, tablet notes

➣ Quizz 2.2.3.10

13.
Video tutorial for Section 2.3: Case Study: Linear FEM for Two-Point Boundary Value

Problems: (49 minutes) Download link, tablet notes

➣ Quizz 2.3.3.17

14.
Video tutorial for Section 2.4: Case Study: Triangular Linear FEM in Two Dimensions

(I): (53 minutes) Download link, tablet notes

15.
Video tutorial for Section 2.4: Case Study: Triangular Linear FEM in Two Dimensions

(II): (61 minutes) Download link, tablet notes

➣ Quizz 2.4.6.13

16.
Video tutorial for Section 2.5: Building Blocks of General Finite Element Methods: (39

minutes) Download link, tablet notes

➣ Quizz 2.5.3.9
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https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_1.3.SobolevSpaces.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_1.3.SobolevSpaces.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_1.4.LinearVariationalProblems.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_1.4.LinearVariationalProblems.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_1.5.EquilibriumModelsBVPs.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_1.5.EquilibriumModelsBVPs.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_1.6.DiffusionModels.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_1.6.DiffusionModels.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_1.7.BoundaryConditions.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_1.7.BoundaryConditions.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_1.8.SecondOrderEllipticBVPs.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_1.8.SecondOrderEllipticBVPs.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_1.9.EssentialAndNaturalBoundaryConditions.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_1.9.EssentialAndNaturalBoundaryConditions.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_2.2.GalerkinDiscretization.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_2.2.GalerkinDiscretization.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_2.3.LinearFiniteElements1D.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_2.3.LinearFiniteElements1D.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_2.4.TriangularLinearFEMin2D.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_2.4.TriangularLinearFEMin2D.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_2.4.II.TriangularLinearFEMin2D.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_2.4.II.TriangularLinearFEMin2D.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_2.5.BuildingBlocksFEM.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_2.5.BuildingBlocksFEM.pdf
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17.
Video tutorial for Section 2.6: Lagrangian Finite Element Methods: (43 minutes)

Download link, tablet notes

➣ Quizz 2.6.2.13

18.
Video tutorial for Section 2.7.2: Mesh Information and Mesh Data Structures: (39

minutes) Download link, tablet notes

➣ Quizz 2.7.2.24

19.
Video tutorial for Section 2.7.4: Assembly Algorithms: (46 minutes) Download link,

tablet notes

➣ Quizz 2.7.4.51

20.
Video tutorial for Section 2.7.5: Local Computations: (48 minutes) Download link,

tablet notes

➣ Quizz 2.7.5.43

21.
Video tutorial for Section 2.7.6: Treatment of Essential Boundary Conditions: (38 min-

utes) Download link, tablet notes

➣ Quizz 2.7.6.21

22.
Video tutorial for Section 2.8: Parametric Finite Element Methods (I): (45 minutes)

Download link, tablet notes

23.
Video tutorial for Section 2.8: Parametric Finite Element Methods (II): (56 minutes)

Download link, tablet notes

➣ Quizz 2.8.4.8

24.
Video tutorial for Section 3.1: Abstract Galerkin Error Estimates: (38 minutes)

Download link, tablet notes

➣ Quizz 3.3.5.29

25.
Video tutorial for Section 3.2: Empirical (Asymptotic) Convergence of FEM: (53 min-

utes) Download link, tablet notes

➣ Quizz 3.2.3.14

26.
Video tutorial for Section 3.3: A Priori (Asymptotic) Finite Element Error Estimates (I):

(21 minutes) Download link, tablet notes

➣ Quizz 3.3.5.29

27.
Video tutorial for Section 3.3: A Priori (Asymptotic) Finite Element Error Estimates (II):

(35 minutes) Download link, tablet notes

➣ Quizz 3.3.5.29

28.
Video tutorial for Section 3.3: A Priori (Asymptotic) Finite Element Error Estimates (III):

(35 minutes) Download link, tablet notes

➣ Quizz 3.3.5.29
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https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_2.6.LagrangianFiniteElementMethods.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_2.6.LagrangianFiniteElementMethods.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_2.7.2.MeshInformationDataStructures.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_2.7.2.MeshInformationDataStructures.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_2.7.4.AssemblyAlgorithms.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_2.7.4.AssemblyAlgorithms.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_2.7.5.LocalComputations.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_2.7.5.LocalComputations.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_2.7.6.TreatmentEssentialBoundaryConditions.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_2.7.6.TreatmentEssentialBoundaryConditions.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_2.8.ParametricFiniteElementMethods_I.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_2.8.ParametricFiniteElementMethods_I.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_2.8_ParametricFiniteElementMethods_II.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_2.8_ParametricFiniteElementMethods_II.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_3.1.AbstractGalerkinErrorEstimates.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_3.1.AbstractGalerkinErrorEstimates.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_3.2.EmpiricalConvergenceOfFEM.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_3.2.EmpiricalConvergenceOfFEM.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_3.3.APrioriAsymptoticFEErrorEstimates_I.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_3.3.APrioriAsymptoticFEErrorEstimates_I.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_3.3.APrioriAsymptoticFEErrorEstimates_II.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_3.3.APrioriAsymptoticFEErrorEstimates_II.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_3.3.APrioriAsymptoticFEErrorEstimates_III.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_3.3.APrioriAsymptoticFEErrorEstimates_III.pdf
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29.
Video tutorial for Section 3.4: Elliptic Regularity Theory: (21 minutes) Download link,

tablet notes

➣ Quizz 3.4.0.13

30.
Video tutorial for Section 3.5: Variational Crimes: (30 minutes) Download link,

tablet notes

➣ Quizz 3.5.2.2

31.
Video tutorial for Section 3.6.1: Linear Output Functionals: (28 minutes) Download link,

tablet notes

➣ Quizz 3.6.1.13

32.
Video tutorial for Section 3.6.2: Case Study: Computation of Boundary Fluxes with

FEM: (18 minutes) Download link, tablet notes

➣ Quizz 3.6.2.13

33.
Video tutorial for Section 3.6.3: Lagrangian FEM: L2-Estimates: (21 minutes)

Download link, tablet notes

34.
Video tutorial for Section 3.7: Discrete Maximum Principle: (39 minutes)

Download link, tablet notes

35.
Video tutorial for Section 3.8: Validation and Debugging of Finite Element Codes: (26

minutes) Download link, tablet notes

36.
Video tutorial for Section 6.1: Initial-Value Problems (IVPs) for Ordinary Differential

Equations (ODEs): (63 minutes) Download link, tablet notes

37.
Video tutorial for Section 6.2: Introduction: Polygonal Approximation Methods: (32

minutes) Download link, tablet notes

38.
Video tutorial for Section 6.3: General Single-Step Methods: (31 minutes)

Download link, tablet notes

39.
Video tutorial for Section 6.3.2: (Asymptotic) Convergence of Single-Step Methods: (39

minutes) Download link, tablet notes

40.
Video tutorial for Section 6.4: Explicit Runge-Kutta Single-Step Methods (RKSSMs):

(46 minutes) Download link, tablet notes

41.
Video tutorial for Section 6.5: Adaptive Stepsize Control: (56 minutes) Download link,

tablet notes

42.
Video tutorial for Section 7.1:Model Problem Analysis: (68 minutes) Download link,

tablet notes

43.
Video tutorial for Section 7.2: Stiff Initial-Value Problems: (39 minutes) Download link,

tablet notes
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https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_3.4.EllipticRegularityTheory.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_3.4.EllipticRegularityTheory.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_3.5.VariationalCrimes.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_3.5.VariationalCrimes.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_3.6.1.LinearOutputFunctionals.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_3.6.1.LinearOutputFunctionals.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_3.6.2.ComputationBoundaryFlux.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_3.6.2.ComputationBoundaryFlux.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_3.6.3.L2Estimates.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_3.6.3.L2Estimates.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_3.7.DiscreteMaximumPrinciple.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_3.7.DiscreteMaximumPrinciple.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_3.8.ValidationDebuggingFEM.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_3.8.ValidationDebuggingFEM.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_6.1.IVPsForODEs.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_6.1.IVPsForODEs.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_6.2.PolygonalApproximationMethods.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_6.2.PolygonalApproximationMethods.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_6.3.GeneralSSMs.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_6.3.GeneralSSMs.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_6.3.2.ConvergenceSSMs.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_6.3.2.ConvergenceSSMs.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_6.4.ExplicitRungeKuttaSSMs.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_6.4.ExplicitRungeKuttaSSMs.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_6.5.AdaptiveStepsizeControl.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_6.5.AdaptiveStepsizeControl.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_7.1.StiffIVPs.ModelProblemAnalysis.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_7.1.StiffIVPs.ModelProblemAnalysis.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_7.2.StiffIVPs.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_7.2.StiffIVPs.pdf
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44.
Video tutorial for Section 7.3: Implicit Runge-Kutta Single-Step Methods: (78 minutes)

Download link, tablet notes

45.
Video tutorial for Section 7.4: Semi-Implicit Runge-Kutta Methods: (23 minutes)

Download link, tablet notes

46.
Video tutorial for Section 7.5: Splitting Methods: (34 minutes) Download link,

tablet notes

47.
Video tutorial for Section 9.2.1: Heat Equation: (18 minutes) Download link,

tablet notes

➣ Quizz 9.2.1.14

48.
Video tutorial for Section 9.2.2: Heat Equation: Spatial Variational Formulation: (15

minutes) Download link, tablet notes

➣ Quizz 9.2.2.10

49.
Video tutorial for Section 9.2.3: Stability of Parabolic Evolution Problems: (20 minutes)

Download link, tablet notes

➣ Quizz 9.2.3.13

50.
Video tutorial for Section 9.2.4: Spatial Semi-Discretization: Method of Lines: (13

minutes) Download link, tablet notes

➣ Quizz 9.2.4.7

51.
Video tutorial for Section 9.2.5: Ordinary Differential Equations: (20 minutes)

Download link, tablet notes

➣ Quizz 9.2.5.15

52.
Video tutorial for Section 9.2.6: Single-Step Methods for Numerical Integration: (48

minutes) Download link, tablet notes

➣ Quizz 9.2.6.31

53.
Video tutorial for Section 9.2.7: Timestepping for Method-of-Lines ODE: (57 minutes)

Download link, tablet notes

➣ Quizz 9.2.7.52

54.
Video tutorial for Section 9.2.8: Fully Discrete Method of Lines: Convergence: (35

minutes) Download link, tablet notes

➣ Quizz 9.2.8.14

55.
Video tutorial for Section 9.3.1: Models for Vibrating Membranes: (24 minutes)

Download link, tablet notes

➣ Quizz 9.3.1.20

56.
Video tutorial for Section 9.3.2: Wave Propagation: (33 minutes) Download link,

tablet notes

0. Introduction, 0.1. General Information 15

https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_7.3.ImplicitRKSSMs.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_7.3.ImplicitRKSSMs.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_7.4.SemiImplicitRKSSMs.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_7.4.SemiImplicitRKSSMs.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_7.5.SplittingMethods.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_7.5.SplittingMethods.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_9.2.1.HeatEquation.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_9.2.1.HeatEquation.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_9.2.2.HeatEquation_SpatialVariationalFormulation.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_9.2.2.HeatEquation_SpatialVariationalFormulation.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_9.2.3.StabilityParabolicEvolutions.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_9.2.3.StabilityParabolicEvolutions.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_9.2.4.MethodOfLines.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_9.2.4.MethodOfLines.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_9.2.5.OrdinaryDifferentialEquations.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_9.2.5.OrdinaryDifferentialEquations.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_9.2.6.SingleStepMethods.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_9.2.6.SingleStepMethods.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_9.2.7.TimesteppingForMethodOfLines.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_9.2.7.TimesteppingForMethodOfLines.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_9.2.8.MethodOfLinesConvergence.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_9.2.8.MethodOfLinesConvergence.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_9.3.1.ModelsVibratingMembranes.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_9.3.1.ModelsVibratingMembranes.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_9.3.2.WavePropagation.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_9.3.2.WavePropagation.pdf
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➣ Quizz 9.3.2.17

57.
Video tutorial for Section 9.3.3: Method of Lines for Wave Propagation: (13 minutes)

Download link, tablet notes

➣ Quizz 9.3.3.9

58.
Video tutorial for Section 9.3.4: Timestepping for Semi-Discrete Wave Equations: (43

minutes) Download link, tablet notes

➣ Quizz 9.3.4.21

59.
Video tutorial for Section 9.3.5: The Courant-Friedrichs-Levy (CFL) Condition: (46

minutes) Download link, tablet notes

➣ Quizz 9.3.5.15

60. Video tutorial for 10.1.1: Modeling Fluid Flow: (7 minutes) Download link, tablet notes

61.
Video tutorial for Section 10.1.2: Heat Convection and Diffusion: (6 minutes)

Download link, tablet notes

62.
Video tutorial for Section 10.1.3: Incompressible Fluids: (10 minutes) Download link,

tablet notes

63.
Video tutorial for Section 10.1.4: Time-Dependent (Transient) Heat Flow in a Fluid: (5

minutes) Download link, tablet notes

64.
Video tutorial for Section 10.2.1: Singular Perturbation: (15 minutes) Download link,

tablet notes

65. Video tutorial for Section 10.2.2: Upwinding: (14 minutes) Download link, tablet notes

66.
Video tutorial for Section 10.2.2.1: Upwind Quadrature: (17 minutes) Download link,

tablet notes

67.
Video tutorial for Section 10.2.2.2: Streamline Diffusion: (19 minutes) Download link,

tablet notes

68.
Video tutorial for Section 10.3.1: Convection-Diffusion IBVPs: Method of Lines : (13

minutes) Download link, tablet notes

69.
Video tutorial for Section 10.3.2: Transport Equation: (8 minutes) Download link,

tablet notes

70.
Video tutorial for Section 10.3.3: Lagrangian Split-Step Method: (23 minutes)

Download link, tablet notes

71.
Video tutorial for Section 10.3.4: Semi-Lagrangian Method: (18 minutes)

Download link, tablet notes
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https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_9.3.3.MethodOfLinesWavePropagation.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_9.3.3.MethodOfLinesWavePropagation.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_9.3.4.TimesteppingSemiDiscreteWaveEquation.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_9.3.4.TimesteppingSemiDiscreteWaveEquation.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_9.3.5.CFLCondition.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_9.3.5.CFLCondition.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_10.1.1.ModelingFluidFlow.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_10.1.1.ModelingFluidFlow.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_10.1.2.HeatConvectionAndDiffusion.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_10.1.2.HeatConvectionAndDiffusion.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_10.1.3.IncompressibleFluids.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_10.1.3.IncompressibleFluids.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_10.1.4.TransientHeatFlowinFluid.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_10.1.4.TransientHeatFlowinFluid.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_10.2.1.SingularPerturbation.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_10.2.1.SingularPerturbation.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_10.2.2.Upwinding.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_10.2.2.Upwinding.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_10.2.2.1.UpwindQuadrature.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_10.2.2.1.UpwindQuadrature.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_10.2.2.2.StreamlineDiffusion.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_10.2.2.2.StreamlineDiffusion.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_10.3.1.CDIBVPMethodOfLines.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_10.3.1.CDIBVPMethodOfLines.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_10.3.2.TransportEquation.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_10.3.2.TransportEquation.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_10.3.3.LagrangianSplitStepMethod.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_10.3.3.LagrangianSplitStepMethod.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_10.3.4.SemiLagrangianMethod.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_10.3.4.SemiLagrangianMethod.pdf
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72.
Video tutorial for Section 11.1: Conservation Laws: Examples: (50 minutes)

Download link, tablet notes

➣ Quizz 11.1.3.7

73.
Video tutorial for Section 11.2.1: Scalar Conservation Laws in 1D: Integral and Differ-

ential Form: (18 minutes) Download link, tablet notes

➣ Quizz 11.2.1.9

74.
Video tutorial for Section 11.2.2: Scalar Conservation Laws in 1D: Characteristics: (33

minutes) Download link, tablet notes

➣ Quizz 11.2.2.11

75.

Video tutorial for Section 11.2.3, Section 11.2.5: Scalar Conservation Laws in 1D: Weak

Solutions, Jump Conditions, and the Riemann Problem: (54 minutes) Download link,

tablet notes

➣ Quizz 11.2.5.11

76.
Video tutorial for Section 11.2.6, Section 11.2.7: Scalar Conservation Laws in 1D: En-

tropy Conditions and Properties of Solutions: (26 minutes) Download link, tablet notes

➣ Quizz 11.2.7.6

77.
Video tutorial for Section 11.3.1, Section 11.3.3: FV: Spatially Semi-Discrete Conserva-

tion Form: (58 minutes) Download link, tablet notes

➣ Quizz 11.3.3.8

78.
Video tutorial for Section 11.3.4: Numerical Flux Functions: (52 minutes)

Download link, tablet notes

➣ Quizz 11.3.4.37

79.
Video tutorial for Section 11.3.5: Monotone Schemes: (28 minutes) Download link,

tablet notes

➣ Quizz 11.3.5.14

80.
Video tutorial for Section 11.4.1, Section 11.4.2: Timestepping: Fully Discrete Evolu-

tions and CFL-Condition: (49 minutes) Download link, tablet notes

➣ Quizz 11.4.2.13

81.
Video tutorial for Section 11.4.3: Timestepping: Linear Stability Analysis: (36 minutes)

Download link, tablet notes

➣ Quizz 11.4.3.25

82.
Video tutorial for Section 11.4.4: Convergence of Fully Discrete FV Method: (29 min-

utes) Download link, tablet notes

➣ Quizz 11.4.4.12

83.
Video tutorial for Section 11.5: Higher-Order Conservative Finite-Volume Schemes: (61

minutes) Download link, tablet notes

➣ Quizz 11.5.3.5
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https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_11.1.ConservationLawsExamples.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_11.1.ConservationLawsExamples.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_11.2.1.ScalarCLAW1DFormulations.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_11.2.1.ScalarCLAW1DFormulations.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_11.2.2.ScalarCLAW1DChracteristics.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_11.2.2.ScalarCLAW1DChracteristics.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_11.2.3-5.ScalarClAWTheory.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_11.2.3-5.ScalarClAWTheory.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_11.2.6-7.ScalarClAWEntropySolutions.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_11.2.6-7.ScalarClAWEntropySolutions.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_11.3.1-11.3.3.ConservativeFiniteVolumes.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_11.3.1-11.3.3.ConservativeFiniteVolumes.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_11.3.4.NumericalFluxFunctions.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_11.3.4.NumericalFluxFunctions.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_11.3.5.MonotoneSchemes.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_11.3.5.MonotoneSchemes.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_11.4.1-11.4.2.TimesteppingFVM.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_11.4.1-11.4.2.TimesteppingFVM.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_11.4.3.LinearStabilityAnalysis.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_11.4.3.LinearStabilityAnalysis.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_11.4.4.ConvergenceFullyDiscreteFV.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_11.4.4.ConvergenceFullyDiscreteFV.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_11.5.HigerOrderConservativeFVM.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_11.5.HigerOrderConservativeFVM.pdf
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84.
Video tutorial for Section 11.6.1: Linear Systems of Conservation Laws: (20 minutes)

Download link, tablet notes

➣ Quizz 11.6.1.33

85.
Video tutorial for Section 11.6.2: 1D Non-Linear Systems of Conservation Laws: (25

minutes) Download link, tablet notes

➣ Quizz 11.6.2.34

86.
Video tutorial for Section 11.6.3: Finite Volume Methods (FVMs) for Systems of Con-

servation Laws: (35 minutes) Download link, tablet notes

➣ Quizz 11.6.3.50

87.
Video tutorial for Section 12.1: Modeling the Flow of a Viscous Fluid: (15 minutes)

Download link, tablet notes

➣ Quizz 12.1.0.19

88.
Video tutorial for Section 12.2.1: The Stokes Equations: Constrained variational formu-

lation: (10 minutes) Download link, tablet notes

➣ Quizz 12.2.1.17

89.
Video tutorial for Section 12.2.2: The Stokes Equations: Saddle Point Problem Formu-

lation: (30 minutes) Download link, tablet notes

➣ Quizz 12.2.2.45

90.
Video tutorial for Section 12.2.3: Stokes System of Partial Differential Equations: (10

minutes) Download link, tablet notes

➣ Quizz 12.2.3.7

91.
Video tutorial for Section 12.3.1: Pressure Instability: (40 minutes) Download link,

tablet notes

➣ Quizz 12.3.1.8

92.
Video tutorial for Section 12.3.2: Stable Galerkin Discretization of Stokes Saddle Point

Problem: (30 minutes) Download link, tablet notes

➣ Quizz 12.3.2.18

93.
Video tutorial for Section 12.3.3: Convergence of Stable FEM for Stokes: (30 minutes)

Download link, tablet notes

➣ Quizz 12.3.3.24

94.
Video tutorial for Section 12.3.4: The Taylor-Hood Finite Element Method: (15 minutes)

Download link, tablet notes

➣ Quizz 12.3.4.6

95.
Video tutorial for Section 12.3.5: The Non-Conforming Crouzeix-Raviart FEM: (40 min-

utes) Download link, tablet notes

➣ Quizz 12.3.5.30
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https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_11.6.1.LinearSystemsOfConservationLaws.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_11.6.1.LinearSystemsOfConservationLaws.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_11.6.2.NonLinearSystemsOfConservationLaws.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_11.6.2.NonLinearSystemsOfConservationLaws.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_11.6.3.FVMsForSystemsOfConservationLaws.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_11.6.3.FVMsForSystemsOfConservationLaws.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_12.1.ViscousFluidFlow.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_12.1.ViscousFluidFlow.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_12.2.1.StokesConstrainedVariationalFormulation.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_12.2.1.StokesConstrainedVariationalFormulation.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_12.2.2.SaddlePointProblemFormulation.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_12.2.2.SaddlePointProblemFormulation.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_12.2.3.StokesSystemOfPDEs.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_12.2.3.StokesSystemOfPDEs.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_12.3.1.StokesPressureInastability.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_12.3.1.StokesPressureInastability.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_12.3.2.StableGalDiscStokes.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_12.3.2.StableGalDiscStokes.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_12.3.3.StabFEMStokesCvg.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_12.3.3.StabFEMStokesCvg.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_12.3.4.TaylorHoodFEMStokes.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_12.3.4.TaylorHoodFEMStokes.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_12.3.5.CrouzeixRaviartFEMStokes.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_12.3.5.CrouzeixRaviartFEMStokes.pdf
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y

0.1.2.2 Following the Course

Weekly study assignments

• For every week there is a list of course units and associated videos published on the course

Discuna Page.

• The corresponding contents must be studied in that same week.

§0.1.2.6 (How to organize your learning)

☛ Develop a routine: Plan fixed slots, with a total duration of four hours, for studying for the course

material in your weekly calendar. This does not include homework.

☛ Choose a stable setting, where you can really concentrate (quiet area, headphones, coffee, etc.)

☛ Take breaks, when concentration is declining, usually after 20 to 45 minutes, but avoid online dis-

tractions during breaks.

y

!
You must not procrastinate!

Do not put off studying for this course. Dependencies between the topics will make it very

hard to catch up.

§0.1.2.7 (“Personalized learning”) The flipped classroom model allows students to pursue their preferred

ways of studying. The following approaches can be tried.

• Traditional: You watch the assigned videos similar to attending a conventional classroom lecture.

Afterwards digest the material based on the tablet notes and/or the lecture document. Finally, answer

the review questions and look up more information in the lecture document.

• Reading-centered: You work through the unit reading the tablet notes, and, sometimes, related

sections of the lecture document. You occasionally watch parts of the videos, in case some consid-

erations and arguments have not become clear to you already.

Fig. 3

Collaborative studying is encouraged:

• You may watch course videos together with

classmates.

• You may meet to discuss course units.

• You may solve homework problems in a group

assigning different parts to different members.

☛ Explaining to others is a great way to deepen

understanding.

☛ It is easy to sustain motivation in a peer study

group.

y

§0.1.2.8 (Weekly Q&A sessions) The lecturer will offer a two-hour so-called Q&A session every week,

except for the weeks in which term exams will be held. These Q&A sessions will be devoted to

• discussing and answering questions asked by the participants of the course,
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• offering additional explanations for some parts of the course.

It is highly desirable that questions are submitted at least a few hours before the start of the Q&A session

so that the lecturer has the opportunity to structure his or her answer. Submission of questions should be

done through dedicated DISCUNA chat channels. A separate channel has been set up for each week in

which a regular Q&A session will take place. y

0.1.2.3 Learning Model

This course will take

hard work – perseverance – patience

For most students understanding the course contents will advance in three stages:

➊ You understand the first 30% when watching videos and studying the course material

➋ You understand the next 30% when trying to solve the homework problems

➌ You understand the further 30% when preparing for the main exam

➍ You might understand the missing 10% when applying the methods in projects, resarch, or on the

job.

§0.1.2.9 (Expected workload) For this course you can earn 10 ECTS credits. Though a very loose

relationship, this roughly indicates a total workload of 300 hours:

300 hours = 200 hours︸ ︷︷ ︸
during term

+ 100 hours︸ ︷︷ ︸
exam preparation

.

This indicates that you should brace for an

average workload ≈ 12− 15 hours per week.

I recommend a rather even split between

• watching videos and/or studying the course material: ≈ 4-5 hours/week,

• and solving homework problems: ≈ 5-7 hours/week.

• attending Q&A sessions and tutorials ≈ 3 hours/week.

All these are averages and the workload may vary between different weeks. y

0.1.3 Homework assignments

Every week a number of homework problems will be selected from the

NumPDE Homework Problem Collection. The selection will be published on the course Moodle

page and the problems should be worked right after they have been submitted. Most of the homework

problems will involve both implementation and theoretical parts. Please note that the problem collection is

being extended throughout the semester. Thus, make sure that you obtain the most current version every

week.

We expect the average student to take 5-8 hours to solve the homework problems, not taking into

account time spent on debugging codes for programming assignments.

The problems come with with plenty of hints. A master solution will also be made available, but it is foolish

to read the master solution parallel to working on a problem sheet, because trying to find the solution on

one’s own is essential for developing problem solving skills, though it may occasionally be frustrating.
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Some or all of the problems of an assignment sheet will be discussed in

the tutorial classes at least one week after the problems have been assigned.

Your tutors are happy to examine your solutions and give you feedback : You may either hand them

your solution papers during the tutorial session (put your name on every sheet and clearly mark the

problems you want to be inspected) or upload a scan/photo through the Moodle interface for the course.

On Moodle, go to "Homework", scroll down, and upload your files under the homework assignment for

the appropriate week. You are encouraged to hand in incomplete and wrong solutions, so that you can

receive valuable feedback even on incomplete or failed attempts.

§0.1.3.1 (Reporting errors in homework problems) Similarly to the lecture document, also the home-

work problems will occassionally be affected by small errors. In addition, we have to admit that some

solutions are incomplete, too short, confusing, or even wrong. In this case the participants of the course

are requested to

Please report flaws and shortcomings in homework problems through dedicated fora on the course

Moodle page.

Please specify the exact number of the affected sub-problem and provide a short description.

0.1.4 Information on Examinations

§0.1.4.1 (Examinations during the teaching period) From the ETH course directory for 401-0674-00L

(Numerical Methods for Partial Differential Equations)

A 30-minute mid-term exam and a 30-minute end term exam (non-mandatory ) will be held

during the teaching period on dates specified in the beginning of the semester. The grades

of these interim examinations will be taken into account through a bonus of up to 30% for the

final grade. The dates for the term exams will be communicated in the beginning of the course.

That final grade is computed according to the formula

G := 0.25 · ⌈4 ·max{Gs, 0.85Gs + 0.15gm, 0.85Gs + 0.15ge, 0.7Gs + 0.15gm + 0.15ge}⌉ , (0.1.4.2)

Gs=̂ grade in main exam, gm=̂ mid-term grade, ge=̂ end-term grade,

where ⌈x⌉ designates the smallest integer ≥ x. Both will be closed book examinations on paper. The

dates of the exams will be communicated in the beginning of the term and published on the course web-

page. y

§0.1.4.3 (Main examination during exam session)

✦ Three-hour written examination involving coding problems to be done at the computer. The date of

the exam will be set and communicated by the ETH exam office, and will also be published on the

course webpage.

✦ The coding part of the exam has to be done in Linux environment.

✦ Subjects of examination:

• All topics that have been addressed in a video listed on the course Moodle page or in any

assigned homework problem

The lecture document contains much more material than covered in class. All these extra topics are

not relevant for the exam.
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✦ The lecture document (as PDF), the LEHRFEM++ documentation (HTML), the documentation of

EIGEN (HTML), and the online C++ REFERENCE PAGES (HTML) will be available during the exami-

nation. The corresponding final version of the lecture document will be made available at least two

weeks before the exam.

✦ No other materials may be used during the exam.

✦ The homework problem collection cannot be accessed during the exam.

✦ The exam questions will be asked in English.

✦ In case you come to the conclusion that you have too little time to prepare for the main exam a few

weeks before the exam, contemplate withdrawing in order not to squander an attempt.

y

§0.1.4.4 (Repeating the main exam)

• Bonus points earned in term exams in last year’s course can be taken into account for this course’s

main exam.

• If you want to take this option, please declare this intention by email to the course organizers before

the mid-term exam. Otherwise, your bonus will be based on the results of this year’s term exams.

y

0.2 Coding Projects

Many homework assignment will involve a substantial implementation component:

• The programming language used in this course is C++ in its modern version, currently C++20. C++

programming skills will be taken for granted. For comprehensive information on all aspects of C++

please refer to the C++ reference pages.

• Most codes for this course rely on the EIGEN C++ linear algebra template library,

which comes copious documentation. This library is also used in the course Numer-

ical Methods for CSE and [NCSE] gives a brief introduction.

• A special C++ finite element library has been developed for this course: LEHRFEM++, which has

also been endowed with a detailed documentation.

• The coding projects accompanying the course will be done in the framework of a cmake-based build

system.

You are supposed to develop and run codes on your own computer or a machine in an ETH computer lab.

Development and testing of homework codes is done under the Linux operating system using the GNU or

LLVM/CLANG C++ compilers. Thus, it is advisable to work on a Linux (virtual) machine in order to ensure

smooth compilation. However, with suitable adjustments the codes can also be compiled and run on Mac

OS X and Microsoft Windows.
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0.2.1 Requests

The lecturers very much welcome and, putting it even more strongly, rather depend on feedback and

suggestions of the students taking the course for continuous improvement of the course contents and

presentation. Therefore all participants are strongly encouraged to get involved actively and contribute in

the following ways:

§0.2.1.1 (Reporting errors) As the documents for this course will always be in a state of flux, they will

inevitably and invariably be afflicted with small errors, mainly typos and omissions.

For error reporting we use the DISCUNA online collaboration platform that

runs in any browser.

DISCUNA allows to attach various types of annotations to shared PDF documents, see instruction video.

Please report errors in the lecture material through the DISCUNA NumPDE Community for the cur-

rent semester to which various course-related documents have already been uploaded.

In the beginning of the teaching period you receive a join link of the form

https://app.discuna.com/<JOIN CODE>. Open the link in a web browser and it will take

you to the DISCUNA community page.

To report an error,

1. open the current NumPDE DISCUNA community web page in your browser and navigate to the right

sub-folder of the Error Reporting folder,

2. select the corresponding PDF document (chapter of the lecture document of homework problem) in

the left sidebar,

3. press the prominent white-on-blue +-button in the right sidebar,

4. click on the displayed PDF where the error is located,

5. then in the pop-up window choose the “Error” category,

6. and add a title and,

7. if the title does not tell everything, a short description.

In case you cannot or do not want to link an error to a particular point in the PDF, you may just click on the

title page of the respective chapter. Then, please precisely specify the concerned section and the number

of the paragraph, remark, equation etc. Do not give page numbers as they may change with updates to

the documents.

Note that chapter PDFs and homework problem files will gradually be added to the DISCUNA NumPDE

community. Hence, the final chapters will not be accessible in the beginning of the course. y

§0.2.1.2 (Pointing out technical problems) The DISCUNA NumPDE Community is equipped with a chat

channel “Technical Problems”. In case you encounter a problem affecting the videos, the course web

pages, or the PDF documents supplied online, say, severely distorted or missing audio tracks or a faulty

link, instantly post a comment to this channel with a short description of the problem. You can do this after

clicking on the channel name in the left sidebar in the community y

§0.2.1.3 (Providing comments and suggestions) The chat channel “General Comments” of the

DISCUNA NumPDE Community is meant for letting the lecturer know about weaknesses of the contents,
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structure, and presentation of the course and how they can be remedied. Your statements should be

constructive and address specific parts or aspects of the course.

Regularly, students attending the course remark that they have found online resources like instruction

videos that they think present some of the course material in a much clearer and better structured way. It

is important that you tell the lecturer about those online resources so that he can include pointers to them

and get inspiration. Use the “General Comments” channel also for this purpose. State clearly, which part

of the course you are referring to, and briefly explain why the online resource is superior or a valuable

supplement. y

0.3 Prerequisites for this Course

0.3.1 Tools from Linear Algebra

Mastery of basic concepts of linear algebra as they are taught in a first-semester introductory course is

assumed.

Supplementary literature. All linear algebra techniques needed for this course are covered in

the textbook [K. NIPP AND D. STOFFER, Lineare Algebra, vdf Hochschulverlag, Zürich, 5 ed., 2002.

(German)]

These basic concepts include vector spaces, in particular Rn and Cn, n ∈ N, subspaces, affine spaces,

linear independence, bases, matrices and vectors, and linear systems of equations. Since “affine spaces”

are not in the limelight in linear algebra, let us recall their definition:

Definition 0.3.1.1. Affine (sub)space

Given a vector space V, a subspace V0 ⊂ V, and some v̂ ∈ V, we call the set

V̂ := v̂ + V0 := {v = v̂ + v0 : v0 ∈ V0} ⊂ V

an affine (sub)space (of V).

Let us also recall, what you should know about bases:

Definition 0.3.1.2. Basis of a finite dimensional vector space

Let V be a real vector space. A finite subset {b1, . . . , bN} ⊂ V, N ∈ N, is a basis of V, if for every

v ∈ V there are unique coefficients µℓ ∈ R, ℓ ∈ {1, . . . , N}, such that v = ∑
N
ℓ=1 µℓb

ℓ. Then N
agrees with the dimension of V.

0.3.1.1 Basic Notations

We employ the notations for matrices and vectors from [NCSE]. By default, all vectors in Rn or Cn

are regarded as column vectors. We write a, b, . . . for “small vectors” ∈ Rn, which often contain the

coordinates of points. “Large” vectors of basis expansion coefficients ∈ RN, N ∈ N, are designated by

~µ,~η, . . .. Vector components are usually singled out as follows, with indices invariably starting from 1:

~µ = [µ1 µ2 µ3 · · · µN ]
⊤ ∈ RN (~µ)j := µj , j = 1, . . . , N .
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Special vectors are the zero vector 0 ∈ Rn, the “large” unit vectors~ǫk ∈ Rn, k ∈ {1, . . . , n}, defined by

(
~ǫk
)

j
= δjk :=

{
1 , if j = k ,

0 , if j 6= k
(Kronecker symbol),

and the column vector 1 with entries all = 1.

Bold capital letters like A, B, . . . are reserved for matrices ∈ Rn,m or ∈ Cn,m.. We use A⊤ to denote the

transposed matrix, and A−1 for the inverse of a regular square matrix. For a matrix A ∈ Rn,m we write

• (A)i,j for the entry in row i and column j, 1 ≤ i ≤ n, 1 ≤ j ≤ m

A =
[
(A)i,j

]
i=1...,n
j=1,...,m

(i =̂ row index, j =̂ row index) ,

• (A):,j ∈ Rm for its j-th column (a column vector, of course), 1 ≤ j ≤ m,

• (A)i,: for its i-th row (to be read as row vector, of course), 1 ≤ i ≤ n.

Note that vectors of any kind are simply matrices with a single column or row. Sporadically, we also use

the “dot product notation”:

~µ·~η := ~µ⊤~η ∈ R , ~µ,~η ∈ RN .

The field R may be replaced with C, but then complex conjugation has to inserted in the right places.

0.3.1.2 Linear and Bilinear Forms

In linear algebra we learned about linear mappings between vector spaces. A special case is that of the

image space being R.

Definition 0.3.1.3. Linear forms

Given a vector space V over R, a linear form/linear functional (LF) ℓ is a mapping ℓ : V 7→ R that

satisfies

ℓ(αu + βv) = αℓ(u) + βℓ(v) ∀u, v ∈ V , ∀α, β ∈ R .

Linear algebra also examines multi-linear forms, mappings from V ×V × · · ·V 7→ R, which are linear in

each argument. We will not need this notion in full generality, but such mappings taking two arguments

will play a central role.

Definition 0.3.1.4. (Bi-)linear forms

Given an R-vector space V, a A bilinear form (BLF) a on V is a mapping a : V×V 7→ R, for which

a(α1v1 + β1u1, α2v2 + β2u2) =

α1α2 a(v1, v2) + α1β2 a(v1, u2) + β1α2 a(u1, v2) + β1β2 a(u1, u2)

for all ui, vi ∈ V, αi, βi ∈ R, i = 1, 2.

✎ notation: For bilinear forms we write a(·, ·), b(·, ·), etc; note the special font.
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EXAMPLE 0.3.1.5 (Linear forms on Rn) For a fixed column vector~α ∈ Rn, n ∈ N, the mapping

Rn → R , ~ξ 7→ ~α⊤~ξ , (0.3.1.6)

is a linear form on Rn. The converse is also true: every linear form ℓ on Rn can be written in the form

(0.3.1.6) with some vector ~α ∈ Rn. It components are given by letting ℓ act on the Cartesian coordinate

vectors: (~α)j = ℓ(~ǫj), j = 1, . . . , n y

EXAMPLE 0.3.1.7 (Bilinear forms on Rn) For any square matrix A ∈ Rn,n, n ∈ N, the mapping

Rn ×Rn → R , (~ξ,~η) 7→~ξ
⊤

A~η , (0.3.1.8)

represents a bilinear form on Rn. In fact, for every bilinear form a on Rn we can find a square matrix

A ∈ Rn,n such that a(~ξ,~η) =~ξ
⊤

A~η. The entries of A can be computed by plugging unit vectors into a

a(~ξ,~η) =~ξ
⊤

A~η ⇔ (A)i,j = a(~ǫj,~ǫi) , i, j ∈ {1, . . . , n} ,

where~ǫk = (δℓ,k)
n
ℓ=1 ∈ Rn stands for the k-th Cartesian coordinate vector in Rn. y

Every n-dimensional real vector space V can be identified with Rn through considering a particular basis.

Thus, from the previous two examples we learn that, with respect to a chosen basis, every linear form on

V can be represented by a column vector and every bilinar form on V allows the description by a square

matrix.

Remark 0.3.1.9 (Linear forms from bilinear forms) Let a be a bilinear form on Rn. Let us fix a vector
~ξ ∈ Rn. Then the mapping

Rn → R , ~η 7→ a(ξ,~η) ,

is a linear form on Rn. This is immediate from Def. 0.3.1.3 and Def. 0.3.1.4. y

0.3.1.3 Norms and Inner Products

You should know the following concept generalizing the length of a vector, see also [NCSE].

Definition 0.3.1.10. Norm (on a vector space) → [NCSE]

A norm ‖·‖V on an R-vector space V is a mapping ‖·‖V : V 7→ R+
0 , such that

(definiteness) ‖v‖V = 0 ⇐⇒ v = 0 ∀v ∈ V (N1)

(homogeneity) ‖λv‖V = |λ|‖v‖V ∀λ ∈ R, ∀v ∈ V , (N2)

(triangle inequality) ‖w + v‖V ≤ ‖w‖V + ‖v‖V ∀w, v ∈ V . (N3)

If the mapping V → R+
0 still satisfies (N2) and (N3), but fails on (N1), then it is called a semi-norm.

§0.3.1.11 (Norms on Rn) The most important norms on the vector space Rn are the

maximum norm:

∥∥∥~ξ
∥∥∥

∞
:= max

{∣∣∣∣
(
~ξ
)

j

∣∣∣∣, j = 1, . . . , n

}
, (0.3.1.12)

Euclidean norm:

∥∥∥~ξ
∥∥∥

2
:=

(
∑

n

j=1

∣∣∣∣
(
~ξ
)

j

∣∣∣∣
2
) 1

2

, (0.3.1.13)
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1-norm:

∥∥∥~ξ
∥∥∥

1
:= ∑

n

j=1

∣∣∣∣
(
~ξ
)

j

∣∣∣∣ . (0.3.1.14)

The Euclidean norm is sometimes called 2-norm. Frequently, for small vectors, we drop the subscript 2

from the notation for the Euclidean norm. y

We will mainly be concerned with norms spawned by inner products, which are defined next.

Definition 0.3.1.15. Symmetric bilinear form

A bilinear form (→ Def. 0.3.1.4) a on a vector space V is symmetric, if and only if

a(u, v) = a(v, u) ∀u, v ∈ V .

Important classes of bilinear forms “have signs”:

Definition 0.3.1.16. Positive (semi-)definite bilinear form

A bilinear form a : V ×V → R on a real vector space V is called

positive semi-definite :⇔ a(v, v) ≥ 0 ∀v ∈ V ,

positive definite :⇔ a(v, v) > 0 ∀v ∈ V \ {0} .

The one-to-one relationship of square matrices and bilinear forms on Rn provides the notion of being

positive definite for matrices.

Definition 0.3.1.17. Positive definite matrix

A square matrix A ∈ Rn,n is positive definite, if

~η⊤A~η > 0 for all ~η ∈ Rn \ {0} .

We abbreviate the property of a bilinear form or square matrix to be symmetric and positive definite at the

same time as s.p.d..

Definition 0.3.1.18. Inner product

A symmetric positive definite (s.p.d.) bilinear form on a real vector space V is also called an inner

product or scalar product on V.

Inner products allow the following famous elementary estimate.

Theorem 0.3.1.19. Cauchy-Schwarz inequality

If a is a symmetric positive semi-definite bilinear form on the real vector space V, then

|a(u, v)| ≤ a(u, u)
1
2 a(v, v)

1
2 . (0.3.1.20)

Proof. Since a is symmetric and positive semi-definite,

0 ≤ a(u + τv, u + τv) = a(u, u) + 2τa(u, v) + τ2a(v, v) ∀u, v ∈ V, ∀τ ∈ R .

➊ If a(v, v) = 0, the above inequality can only hold for all τ, if a(u, v) = 0 as well.
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➋ If a(v, v) 6= 0, then set τ = − a(u,v)
a(v,v)

, which implies

0 ≤ a(u, u)− a(u, v)2

a(v, v)
⇒ a(u, v)2 ≤ a(u, u)a(v, v) ,

and finished the proof.
✷

Theorem 0.3.1.21. Norms from inner products

If a is an inner product (= symmetric positive definite bilinear form, Def. 0.3.1.18) on the real vector

space V, then

‖·‖
a

: V → R , ‖v‖
a

:= a(v, v)
1
2 , (0.3.1.22)

defines a norm (→ Def. 0.3.1.10) on V.

Note that using ‖·‖
a

the Cauchy-Schwarz inequality can be rewritten as:

|a(u, v)| ≤ ‖u‖
a
‖v‖

a
∀u, v ∈ V . (0.3.1.23)

Proof. (of Thm. 0.3.1.21)

➊ The property (N1) is implied by the positive definite property of a.

➋ Homogeneity (N2) follows from the linearity of a in both arguments.

➌ The triangle inequality is a consequence of linearity, symmetry, and the Cauchy-Schwarz inequality

(0.3.1.23):

‖u + v‖2
a
= a(u + v, u + v)

symmetry
= a(u, u) + 2a(u, v) + a(v, v)

(0.3.1.23)

≤ ‖u‖2
a
+ 2‖u‖

a
‖v‖

a
+ ‖v‖2

a
.

Then apply the binomial formula on the right.
✷

As we have seen in Ex. 0.3.1.7, on Rn square matrices and bilinear forms are in a one-to-one relationship.

Thus properties of bilinear forms induce corresponding properties of matrices:

Definition 0.3.1.24. Symmetric positive definite matrices

A matrix A ∈ Rn,n is symmetric positive definite (s.p.d.), if

A⊤ = A and ~ξ
⊤

A~ξ > 0 ∀~ξ ∈ Rn \ {0} .

0.3.1.4 Diagonalization of Matrices

Diagonalization is a central concern in linear algebra. It amounts to finding a basis of Rn such that

A ∈ Rn,n becomes diagonal with respect to this basis.

AS = SD , D ∈ Rn,n diagonal , S ∈ Rn,n regular/invertible. (0.3.1.25)

In general real matrices cannot be diagonalized according to (0.3.1.25), but often they can be diagonalized

in C. There is one important class of matrices for which diagonalization in R is always possible:
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Theorem 0.3.1.26. Real diagonalization of symmetric matrices

For every symmetric matrix A ∈ Rn,n, that is, A⊤ = A, we can find a diagonal matrix D ∈ Rn,n

and an orthogonal matrix Q ∈ Rn,n such that

Q⊤AQ = D . (0.3.1.27)

This result can be extended to more general inner products: If A = A⊤ ∈ Rn,n and B ∈ Rn.n is s.p.d.

(→ Def. 0.3.1.17), then we can find a regular matrix S ∈ Rn,n such that

AS = BSD , D diagonal , S⊤BS = I . (0.3.1.28)

Review question(s) 0.3.1.29 (Tools from linear algebra)

(Q0.3.1.29.A) [Bilinear forms] Let V be a real vector space and b : V ×V → R a bilinear form on V.

Which statements about b are true?

A) b(x, y) = b(y, x) ∀x, y ∈ V,

True False

B) b(αx, αy) = α2b(x, y) ∀x, y ∈ V , ∀α ∈ R,

True False

C) b(x + y, x− y) = b(x, x)− y, y ∀x, y ∈ V

True False

D) b(x + αy, z) = x, z + αb(y, z) ∀x, y, z ∈ V , ∀α ∈ R,

True False

E) b(
n

∑
i=1

xi,
n

∑
i=1

yi) =
n

∑
i=1

b(xi, yi) ∀xi, yi ∈ V , n ∈ N,

True False

(Q0.3.1.29.B) [Symmetric positive-definite matrices] The matrix A ∈ Rm,n, m, n ∈ N, is known to be

symmetric, positive-definite (s.p.d.). Which of the following conclusions can be drawn?

A) m = n,

True False

B) A = A⊤,

True False

C) (A)i,j ≥ 0 ∀i ∈ {1, . . . , m}, j ∈ {1, . . . , n},

True False

D) x⊤Ax ≥ 0 ∀x ∈ Rn,

True False
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E) (A)i,i > 0 ∀i ∈ {1, . . . , m},

True False

△

0.3.2 Tools from Real Analysis

The reader is expected to be familiar with basic concepts like continuity, differentiability, monotonicity, and

curvature of functions R 7→ R. Of course, she or he should also be able to differentiate and integrate

functions in one dimension symbolically.

Supplementary literature. Most facts from real analysis needed for this course can be found in

M. STRUWE, Analysis für Informatiker. Lecture notes, ETH Zürich, 2009. Link

For the sake of brevity we will often resort to Landau symbols (“O”-notation): If f , g are two R-valued

functions defined in a neighborhood of 0, then

f (ǫ) = O(g(ǫ)) for ǫ→ 0 :⇐⇒ ∃C > 0 : | f (ǫ)| ≤ C|g(ǫ)| ∀ǫ : |ǫ| < ǫ0 , (0.3.2.1)

for some ǫ0 > 0. Similarly, if f , g are defined for large arguments, then

f (x) = O(g(x)) for x→ ∞ :⇐⇒ ∃C > 0 : | f (x)| ≤ C|g(x)| ∀x > x0 ,

for a x0 ∈ R. A similar notation f (n) = O(g(n)) is used for functions defined on N/Z. For vector valued

functions the modulus | · | has to be replaced with a suitable norm ‖·‖.

0.3.2.1 Calculus in 1D

From your introductory analysis course or even secondary school you should remember the notions of

continuity for differentiability functions R 7→ R. You should know how to compute higher derivatives for

many elementary functions and how to apply the chain rule and the product rule.

✎ Notation: In 1D we write f ′, f ′′, and f (k) for the first, second, and k-th derivative, k ∈ N0, of a function

f : I ⊂ R → R.

Important is the 1D Taylor formula with integral remainder term that can be proved by repeated integration

by parts:

Theorem 0.3.2.2. Taylor’s theorem

If f :]a, b[→ R, a < b, is k + 1-times continuously differentiable and x ∈]a, b[, then

f (x + h) = f (x) + f ′(x)h + 1
2 f ′′(x)h2 + · · ·+ 1

k!
f (k)(x)hk + R(x; h) , (0.3.2.3a)

with integral remainder term

R(x; h) =

x+h∫

x

f (k+1)(ξ)

k!
(x− ξ)k dξ , (0.3.2.3b)

for all h: x + h ∈]a, b[.
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The Taylor theorem can also be written with the remainder term in Lagrange form:

f (x + h) = f (x) + f ′(x)h + 1
2 f ′′(x)h2 + · · ·+ 1

k!
f (k)(x)hk + R(x; h) ,

R(x; h) =
f (k+1)(ζ)

(k + 1)!
hk+1 for some ζ = ζ(x; h) ∈ [min{x, x + h}, max{x, x + h}] .

(0.3.2.4)

When we are solely interested in the decay of the remainder term as h→ 0, we often write

f (x + h) = f (x) + f ′(x)h + 1
2 f ′′(x)h2 + · · ·+ 1

k!
f (k)(x)hk + O(hk+1) for h→ 0 . (0.3.2.5)

0.3.2.2 Differentiation in Multiple Dimensions

§0.3.2.6 (Derivatives) Let V, W be normed vector spaces, f : D ⊂ V →W differentiable on the open

subset D. Then the derivative of f is a mapping

D f : D → L(V, W) := {linear mappings V 7→W} . (0.3.2.7)

The derivative provides a local affine linear approximation of f :

f (v) ≈ f (v0) + D f (v0)(v− v0) . (0.3.2.8)

Also L(V, W) is a normed vector space. Thus we can make sense of the derivative of D f , D2 f , as a

mapping

D2 f : D → {linear mappings V ×V 7→W} . (0.3.2.9)

This can be iterated until we reach the k-th derivative

Dk f : D→ {linear mappings V × · · · ×V︸ ︷︷ ︸
k times

7→W} . (0.3.2.10)

y

§0.3.2.11 (Partial derivatives [STRLN09]) In (0.4.1.3) we already used the concept of partial deriva-

tives. The partial derivative of a function f : Ω ⊂ Rd → R of d independent variables x1, . . . , xd

( f = f (x1, . . . , xd)) in an interior point x = [x1, . . . , xd] ∈ Ω with respect to xj, j = 1, . . . , d, is defined

as

∂ f

∂xj
(x) := lim

h→0

f (x1, . . . , xj−1, xj + h, xj+1, . . . , xd)− f (x1, . . . , xj−1, xj, xj+1, . . . , xd)

h
, (0.3.2.12)

if the limit exists. In other words, the partial derivative with respect to xj is obtained by differentiating the

function xj 7→ f (x1, . . . , xj−1, xj, xj+1, . . . , xd) as a function R 7→ R, regarding all the other independent

variables as mere parameters. Higher-order partial derivatives are simply defined by nesting the above

definition, for instance

∂2 f

∂xi∂xj
(x) :=

∂

∂xj

(
∂ f

∂xi

)
(x) 1 ≤ i, j ≤ d . (0.3.2.13)

A fundamental result about higher order partial derivatives is that their order does not matter in general:

Theorem 0.3.2.14. Partial derivatives commute

If all second partial derivatives of f : Ω ⊂ Rd → Rn are continuous functions on the open domain

Ω, then

∂2 f

∂xi∂xj
(x) =

∂2 f

∂xj∂xi
(x) , 1 ≤ i, j ≤ d , x ∈ Ω .
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The assertion of the theorem generalizes to all higher-order partial derivatives:

∂jui

∂xk1
. . . ∂xkj

(x) , kℓ ∈ {1, . . . , d} ,kℓ ∈ {1, . . . , j} ,

is invariant with respect to permutations of k1, . . . , k j, if u is at least j-times continuously differentiable. y

§0.3.2.15 (The Jacobian) For a differentiable function u : D ⊂ Rn → Rd its derivative Du(x) has matrix

representation, the so-called Jacobian:

Du(x) ↔ Du(x) =

[
∂ui

∂xj
(x)

]n

i,j=1

=




∂u1
∂x1

(x) ∂u1
∂x2

(x) · · · · · · ∂u1
∂xn

(x)
∂u2
∂x1

(x) ∂u2
∂xn

(x)
...

...
∂un
∂x1

(x) ∂un
∂x2

(x) · · · · · · ∂un
∂xn

(x)



∈ Rn,n . (0.3.2.16)

y

§0.3.2.17 (The Hessian) A matrix reprsentation can also be given for the second derivative of a real-valued

function u : D ⊂ Rd → R. It is known as Hessian

Hu(x) = D2u(x) =
[

∂2u
∂xi∂xj

(x)
]d

i,j=1
∈ Rd,d . (0.3.2.18)

y

§0.3.2.19 (Differential operators) Differential operators are special linear combinations of partial deriva-

tives. As such they spawn linear operators on spaces of differentiable functions defined on a domain

Ω ⊂ Rd.

Important first-order differential operators are

• the gradient , defined for differentiable scalar functions u : Ω→ R, is the column vector

grad u(x) :=




∂u

∂x1
...

∂u

∂xd



∈ Rd , x ∈ Ω ,

see Suppl. 1.2.1.21 for more details.

• the divergence, defined for differentiable vector fields u : Ω→ Rd, is the scalar function

div u(x) :=
∂u1

∂x1
(x) + · · ·+ ∂ud

∂xd
(x) ∈ R , x ∈ Ω ,

refer to Suppl. 1.5.2.3.

• the rotation, defined for d = 3 and differentiable vector fields u = [u1, u2, u3]
⊤ : Ω → R3, is the

column vector

curl u(x) :=




∂u3

∂x2
− ∂u2

∂x3
∂u1

∂x3
− ∂u3

∂x1
∂u2

∂x1
− ∂u1

∂x2



∈ R3 , x ∈ Ω .
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These operators have distinct properties that account for their prominent occurrence in many mathematical

models. For instance, from Thm. 0.3.2.14 we conclude by straightforward computations

curl ◦ grad = 0 , div ◦ curl = 0 . (0.3.2.20)

A key second-order differential operator is the Laplacian, defined for a twice differentiable scalar function

u : Ω→ R as

∆u(x) := div grad u(x) =
∂2u

∂x1
2
(x) + · · ·+ ∂2u

∂xd
2
(x) , x ∈ Ω .

y

0.3.2.3 Spaces of Continuously Differentiable Functions

Throughout we will need vector spaces of functions with particular properties, mainly concerning their

smoothness. For the sake of concise presentation we have to introduce certain compact notations.

Given a set (domain) Ω ⊂ Rd, d ∈ N, we introduce the space of real-valued continuous functions on Ω

C0(Ω) := {v : Ω→ R: v is continuous} .

If Ω is a closed set we say that the functions in C0(Ω) are “continuous up to the boundary”. For an open

set Ω the space C0(Ω) can even contain unbounded functions!

If I ⊂ R is an (open or closed) interval we write

Ck(I) :=

{
v : I → R: v(j) :=

djv

dxj
exists and is continuous for all j ∈ {1, . . . , k}

}
,

for the space of k-times, k ∈ N0, continuously differentiable functions on I. This definition can be ex-

tended to d-variate functions on Ω ⊂ Rd:

Ck(Ω) :=

{
v : Ω→ R:

∂|α|v
∂α1 x1 · · · ∂αd xd

exists and is continuous for all α ∈ Nd
0, |α| ≤ k

}
.

We can even set k← ∞ and obtain the space C∞(Ω) of infinitely many times differentiable functions,

also dubbed smooth functions.

§0.3.2.21 (Piecewise continuously differentiable functions) We will also need spaces of functions that

are smooth locally:

Definition 0.3.2.22. Piecewise continuously differentiable functions

For a closed domain Ω ⊂ Rd, d ∈ N, we define

Ck
pw(Ω) := {v ∈ Ck−1(Ω): v|Ωj

∈ Ck(Ωj), j = 1, . . . , m} ,

where {Ωj}m
j=1

, m ∈ N, is a partition of Ω in the sense that Ωk ∩Ωi = ∅, if i 6= k, and

Ω = Ω1 ∪ · · · ∪Ωm.

Let us take a closer look at such functions in one dimension, where Ω is an interval [a, b]. In this case

functions in Ck
pw([a, b]) are globally Ck−1 and piecewise k-times continuously differentiable functions on

[a, b] ⊂ R: For each v ∈ Ck
pw([a, b]) there is a finite partition {a = τ0 < τ1 < · · · < τm = b} such that
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v |]τi−1,τi[
can be extended to a function ∈ Ck([τi−1, τi]). C0

pw([a, b]) =̂ piecewise continuous functions

with only a finite number of discontinuities.

u ∈ C1
pw([0, 1])

Fig. 4 τ1 τ2 τ3 · · ·0 1

v ∈ C0
pw([0, 1])

Fig. 5

τ1 τ2 τ3 · · ·0 1

The following result is an immediate consequence of the definition

Corollary 0.3.2.23. Derivative of piecewise smooth functions

For k ∈ N differentiation of piecewise continuously differentiable functions on the interval [a, b],
a < b, yields other piecewise continuously differentiable functions:

u ∈ Ck
pw([a, b]) ⇒ du

dx
∈ Ck−1

pw ([a, b]) .

It also goes without saying that functions in C0
pw(Ω) can be integrated over Ω and that

f ∈ C0
pw(Ω):

∫

Ω
f (x)dx =

m

∑
j=1

∫

Ωj

f (x)dx .

y

§0.3.2.24 (Functions with zero restriction to the boundary) For closed Ω ⊂ Rd, functions vanishing

on the boundary of Ω represent special subspaces of Ck
pw(Ω) for any k:

Ck
pw,0(Ω) :=

{
v ∈ Ck

pw(Ω): v|∂Ω = 0
}

.

Here, by v|∂Ω we mean the restriction of the function v to the boundary ∂Ω. y

0.3.2.4 Norms on Function Spaces

To investigate errors for solutions produced by numerical methods we need rigorous ways to measure

the distance of functions. The right tools are norms on vector spaces of functions, which are special

incarnations of the concept of “norm” introduced in Def. 0.3.1.10.

Here, we recall important norms on function spaces, cf. [NCSE], [NCSE], [NCSE]:

Definition 0.3.2.25. Supremum norm

The supremum norm of an (essentially) bounded function u : Ω 7→ Rn is defined as

‖u‖∞

(
= ‖u‖L∞(Ω)

)
:= sup

x∈Ω

‖u(x)‖ , u ∈ (L∞(Ω))n . (0.3.2.26)

✦ L∞(Ω) denotes the vector space of essentially bounded functions. It is the instance for p = ∞ of

an Lp-space.

✦ The notation ‖·‖∞ hints at the relationship between the supremum norm of functions and the maxi-

mum norm for vectors in Rn as defined in (0.3.1.12).
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✦ For n = 1 the Euclidean vector norm in the definition reduces to the modulus |u(x)|.
✦ The norm ‖u− v‖L∞(Ω) measures the maximal distance of point values of the functions u and v.

Many important norms on function spaces are based on integration, thus capturing non-local, large-scale

properties.

Definition 0.3.2.27. Mean square norm/L2-norm, see Def. 1.3.2.3

For a function u ∈ (C0
pw(Ω))n the mean square norm/L2-norm is given by

‖u‖0

(
= ‖u‖L2(Ω)

)
:=

(∫

Ω
‖u(x)‖2 dx

)1/2

, u ∈ (L2(Ω))n .

✦ L2(Ω) designates the vector space of square integrable functions, a special specimen of an Lp-

space (for p = 2) and a Hilbert space. We are going to revisit this notion in more detail later in this

course in Rem. 1.3.3.9.

✦ The “0” in the notation ‖·‖0 refers to the absence of derivatives in the definition of the norm.

✦ Obviously, the L2-norm is weaker than the supremum norm:

‖v‖L2([a,b]) ≤
√
|b− a|‖v‖L∞([a,b]) ∀v ∈ C0

pw([a, b]) .

In fact, we can find functions with arbitrarily small L2(Ω)-norm that have huge values in some points.

This will turn out to be a very important insight is will be discussed in Ex. 1.3.2.5.

✦ Parlance: ‖u− v‖L2(Ω) is called the mean square distance in engineering sciences.

0.3.2.5 Multi-Dimensional Integration

The integral of a continuous function u : Ω→ R on a “reasonably smooth” domain Ω ⊂ Rd can be un-

derstood in the sense of Riemann summation.

For d = 2 fill Ω with tiny axes-parallel squares Qℓ

ℓ = 1, . . . , n, see figure, and write xℓ for their centers

and define

In :=
n

∑
ℓ=1

f (xℓ)|Qℓ| , (0.3.2.28)

where |Qℓ| is the volume of the small square Qℓ.

Then define the integral as the limit

∫

Ω
f (x)dx := lim

n→∞
In .

Fig. 6

Fig. 7

ΩΩ̂

Φ

Let the two domains Ω̂ and Ω be con-

nected by a continuously differentiable mapping

Φ : D ⊂ Rd → Rd:

Φ ∈ (C1(Ω̂))d , Ω = Φ(Ω̂) .

0. Introduction, 0.3. Prerequisites for this Course 35

http://en.wikipedia.org/wiki/Hilbert_space


NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

Remember two facts:

✦ Locally, the function Φ can be well approximated by affine-linear map given through its linearization:

for x ∈ Ω0 (→ § 0.3.2.6)

Φ(x + h) ≈ Φ(x) +DΦ(x)h for small h ∈ Rd , (0.3.2.29)

where DΦ(x) ∈ Rd,d is Jacobian of Φ in x (→ § 0.3.2.15).

✦ An affine-linear map L : Rd 7→ Rd, x 7→ Tx + t, T ∈ Rd,d, t ∈ Rd involves a change of volume

controlled by the determinant of its matrix:

Vol(L(V)) = |det T| Vol(V) ∀ “volumes” V ⊂ Rd . (0.3.2.30)

Now, put the pieces together; the definition of the integral by Riemann summation, the possibility of a local

affine-linear approximation of Φ, and the change of volume of tiny hypercubes when they are transported

by Φ. This reasoning eventually leads to the following result:

Theorem 0.3.2.31. Transformation formula for integrals

Given two domains Ω̂, Ω ⊂ Rd and a continuously differentiable mapping Φ : Ω̂→ Ω, then

∫

Ω
f (x)dx =

∫

Ω̂
f (Φ(x̂)) |detDΦ(x̂)|dx̂ (0.3.2.32)

for any integrable function f : Ω→ R.

§0.3.2.33 (Surface integrals) An embedded Ck-surface Σ in Rd is a subset that, locally, is the image of

a “parameter domain” Ω̂ ⊂ Rd−1:

∀x ∈ Σ: ∃neighborhood U(x) ⊂ Rd, Ω̂ ⊂ Rd−1: Σ ∩U(x) = Φ(Ω̂) with Φ ∈ Ck(Rd−1, Rd) .

Let us assume that the surface Σ can be parameterized by a single function Φ : Ω̂ ⊂ Rd−1 → Rd:

Σ = Φ(Ω̂). Then the surface integral of a function ϕ : Σ→ R is defined as

∫

Σ
ϕ(x)dS(x) :=

∫

Ω̂
ϕ(Φ(x̂))

√
det
(
DΦ(x̂)⊤DΦ(x̂)

)
dx̂ , (0.3.2.34)

where DΦ(x̂) ∈ Rd,d−1 is the Jacobian of Φ, see (0.3.2.16). y

Review question(s) 0.3.2.35 (Tools from real analysis)

(Q0.3.2.35.A) [An important differential operator] Let Ω ⊂ Rd a d-dimensional domain and consider

a smooth function u : Ω→ R, u = u(x), x = [x1, . . . , xd]
⊤

. What is ∆u?

A) A differential operator called the Laplacian,

True False

B) the so-called Dirac operator,

True False

C) ∆u =
d

∑
i=1

(
∂u

∂xi

)2

,

True False
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D) ∆u =
d

∑
i=1

∂2u

∂x2
i

,

True False

E) ∆u = div grad u,

True False

F) ∆u = grad div u

True False

(Q0.3.2.35.B) [Gauss theorem, see Thm. 1.5.2.4] Which of the following mathematical statements are

known as or equivalent to the so-called Gauss theorem/divergence theorem? Here u : Ω→ Rd is a

vector field defined on Ω ⊂ Rd, f : Ω→ R a real-valued function, and n : ∂Ω→ Rd stands for the

exterior unit normal vector field.

A) div curl u = 0

True False

B) div( f u) = (grad f )⊤ u + f div u,

True False

C)

∫

Ω
div u(x)dx =

∫

∂Ω
u(x)⊤n(x)dS,

True False

D)

∫

Ω

∂ f

∂xi
(x)dx =

∫

∂Ω
f (x)(n(x))i dS.

True False

(Q0.3.2.35.C) [A gradient] What is the gradient of the Euclidean norm function x ∈ Rd 7→ ‖x‖2?

A) grad{x 7→ ‖x‖2} = 2‖x‖2 for all x ∈ Rd ?

True False

B) grad{x 7→ ‖x‖2} = x for all x ∈ Rd ?

True False

C) grad{x 7→ ‖x‖2} =
x

‖x‖2

for all x ∈ Rd \ {0} ?

True False

D) grad{x 7→ ‖x‖2} = ‖x‖2x for all x ∈ Rd ?

True False

△
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0.3.3 Required Elementary Numerical Methods

This course builds upon the ETH lecture 401-0663-00L Numerical Methods for CSE, see [NCSE]. In

particular, the following topics from computational mathematics provide fundamental tools for this course

• Techniques for handling sparse matrices and sparse linear systems, see [NCSE].

• Numerical quadrature, concepts and methods as introduced in [NCSE].

• Numerical method for solving initial value problems for ordinary differential equations (numerical

integration), in particular stiff initial value problems as discussed in [NCSE].

Lecture notes for the course “Numerical Methods for CSE are available” for download here.

0.4 Mathematical Modelling with Partial Differential Equations

§0.4.0.1 (Continuum models) Partial differential equations (PDEs) are at the core of most mathematical

models arising from a continuum approach, where the configuration or state of a system is described by

means of a function on a (multi-dimensional) domain Ω ⊂ Rd, d ≥ 1. In fact, in one dimension, for d = 1,

the models will involve ordinary differential equations (ODEs) rather than partial differential equations. Yet,

in many cases the dimension d can be regarded as a parameter for a family of models and the case d = 1
is not really special and shares many traits with models for the genuinely multi-dimensional setting d > 1.

Therefore, the title of the course is a slight misnomer; a more appropriate title would be

Numerical Methods for Continuum Models with Local Interactions

but this sounds a bit clumsy, doesn’t it? y

Next, notations used for stating partial differential equations will be explained. Then a few examples of

mathematical models based on PDEs will be presented in a cursory way, in order to convey their diversity

and wide scope.

0.4.1 PDEs: Basic Notions

§0.4.1.1 (Formal notion of a partial differential equation (PDE))

A partial differential equation for an unknown function u = [u1, . . . , un]
⊤ : Ω ⊂ Rd → Rn, d, n ∈ N,

depending on the independent variables x1, . . . , xd (u = u(x1, . . . , xd)) has the form

F(u,Du,D2u, . . . ,Dmu) = 0 , (0.4.1.2)

where F is a general function and Dju denotes a tensor of dimension n× d× · · · × d with ndj entries

defined as (→ § 0.3.2.11)

(
Dju(x)

)
i,k1,...,kj

:=
∂jui

∂xk1
. . . ∂xkj

(x) , kℓ ∈ {1, . . . , d} ,ℓ ∈ {1, . . . , j} . (0.4.1.3)

✎ notation: we write x1, . . . , xd for the independent “spatial” variables, x = [x1, . . . , xd]
⊤ ∈ Rd

Note that for j = 1 the derivative Du boills down to the classical Jacobian of u as already defined in

§ 0.3.2.15

Du(x) =

[
∂ui

∂xj
(x)

]n

i,j=1

=




∂u1
∂x1

(x) ∂u1
∂x2

(x) · · · · · · ∂u1
∂xn

(x)
∂u2
∂x1

(x) ∂u2
∂xn

(x)
...

...
∂un
∂x1

(x) ∂un
∂x2

(x) · · · · · · ∂un
∂xn

(x)




. (0.3.2.16)
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For j = 1 and n = 1 the matrix D2u agrees with the Hessian Hu of the scalar valued function u = u1:

Hu(x) = D2u(x) =
[

∂2u
∂xi∂xj

(x)
]d

i,j=1
∈ Rd,d . (0.3.2.18)

Note that Dju may not be well defined in some x ∈ Ω in case u is not “sufficiently smooth” (j-times

differentiable). y

0.4.2 Electromagnetics: Eddy Current Problem

A model for the behavior of low-frequency electromagnetic fields with harmonic dependence on time:

Fig. 8 1

Eddy current model [ALV10]

curl E = −ıωµ(x)H in Ω ,

curl H = σ(x)E + js in Ω ,

E× n = 0 on ∂Ω .

(0.4.2.1)

ω > 0 =̂ angular frequency

σ = σ(x) ≥ 0 =̂ conductivity

µ = µ(x) > 0 =̂ magnetic permeability

E : Ω 7→ C3 =̂ electric field

H : Ω 7→ C3 =̂ magnetic field

(Known: σ, µ, unknowns: E, H: complex fields!)

✁ induction heating simulation: surface electric field

(boundary element simulation [HIO04])

Remark 0.4.2.2 (Truncation of unbounded domain) Generically, the electromagnetic equations are

posed on the unbounded domain Ω = R3 and have to be supplemented by the decay conditions

E(x)→ 0 uniformly for ‖x‖ → ∞ . (0.4.2.3)

In practice, (0.4.2.3) is often approximated by switching to a bounded domain Ω ⊂ R3 and imposing

vanishing tangential components of the electric field E on the boundary ∂Ω, as it is done in (0.4.2.1). y

Remark 0.4.2.4 (Degenerate elliptic boundary value problem) The eddy current equations in frequency

domain (0.4.2.1) belong to the class of degenerate second-order elliptic boundary value problems. They

are called degenerate, because E is not uniquely determined where σ ≡ 0. To see this recall (0.3.2.20):

In regions where σ ≡ 0 we can add any gradient to E and it will still be a solution of (0.4.2.1). y
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0.4.3 Viscous Fluid Flow

Fig. 9

(Stationary, incompressible) Navier-Stokes equa-

tions:

−ν∆u + Du · u + grad p = f in Ω ,
div u = 0 in Ω ,

u = 0 on ∂Ω .

(0.4.3.1)

ν =̂ dynamic viscosity

f : Ω 7→ R3 =̂ given external force field

u : Ω 7→ R3 =̂ velocity field (unknown)

p : Ω 7→ R =̂ pressure (unknown)

If the convective term Du · u is omitted we obtain the

Stokes-equations, see Chapter 12

✁ Lid driven cavity flow, pressure distribution (finite

element simulation with FEATFLOW)

The Navier-Stokes equations (0.4.3.1) describe the motion of viscuous (“sticky”) fluid under external

forces. The boundary conditions mean that the fluid sticks to the wall of the container Ω (no-slip bound-

ary conditions). The equations (0.4.3.1) provide the fundamental model in computational fluid dynamics

(CFD).

0.4.4 Micromagnetics

Micromagnetics deals with the evolution of the time-dependent magnetization m = m(x, t), of a ferro-

magnetic material under the influence of an external magnetic field. The main quasi-stationary model are

the Landau-Livshits-Gilbert equations here given in scaled (non-dimensional) form, see[PRO01]:

∂m

∂t
−m× dE(m, ψ(m))

dm
− αm× (m× dE(m, ψ(m))

dm
) = 0 in Ω× [0, T] ,

−∆ψ + div m = 0 in R3 × [0, T] .

|ψ(x)| = O(|x|−1) for |x| → ∞ ,

m(·, 0) = m0(·) in Ω .

(0.4.4.1)

with scaled Gibbs free energy

E(m, ψ) = 1
2

∫

Ω

η| grad m|2 + Q(1− (d ·m)2)− 2H0 ·m dx + 1
2

∫

R3

| grad ψ|2 dx .

The fields and coefficients occurring in the model are

m : Ω× [0, T] 7→ S2 =̂ magnetization (direction field, ‖m‖ = 1, if ‖m0‖ = 1);

(the unknown of the model)

ψ : R3 → R =̂ magnetic scalar potential

α > 0 =̂ damping parameter

Q > 0, d ∈ R3 =̂ strength/direction of material anisotropy

m0 =̂ initial magnetization
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The equations (0.4.4.1) describe a parabolic gradient flow system for the Gibbs free energy on the manifold

of director fields, that is, vector fields with modulus 1.

Flipping of magnetization, computed by means of a finite element simulation [COR03], more details about

finite element method (FEM) are given in Chapter 2.

We observe the formation of vortices, which finally disappear at the upper left and the lower right corners.

In the final state, the elementary magnets tend to point in the same direction.

0.4.5 Reaction-Diffusion: Phase Separation

The Cahn-Hillard equation is a PDE of mathematical physics which describes the process of phase sep-

aration, by which the two components of a binary fluid spontaneously separate and form domains pure in

each component. u is the concentration of one phase of the fluid, with u = ±1 indicating domains. Here

we give a boundary value evolution problem for the Cahn-Hillard equation in scaled (non-dimensional)

form:

du

dt
− α∆(u3 − u− γ∆u) = 0 in Ω×]0, T[ ,

u(·, 0) = u0 in Ω .
grad(u3 − u− γ∆u) · n = 0 on ∂Ω ,

1
Γs

∂u

∂t
+ grad u · n + σ∆u = 0 on ∂Ω .

(0.4.5.1)

u = u(x, t) =̂ time-dependent concentration (unknown)

α > 0 =̂ known diffusion coefficient

γ > 0 =̂ known diffusion length

The equations (0.4.5.1) describe a gradient flow system with “mass conservation” for the chemical poten-

tial.

Evolution snapshots (finite difference discretization, [KEM00]):

Fig. 10
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0.4.6 Activator-Inhibitor Models: Fur Patterns

Fig. 11

✁ Cats come equipped with an elaborate PDE solver

in order to generate fur patterns that are perfectly

adapted to their environment.

Fur patterns of various feline species can be ob-

tained as solutions of non-linear parabolic evolu-

tion problems known as activator-inhibitor reaction-

diffusion models for the concentrations u = u(x, t),
v = v(x, t) of signaling compounds [SAW03]:

∂u

∂t
− ∆u = γ f (u, v) ,

∂v

∂t
− ∆v = γg(u, v)

in Ω ,

with functions

f (u, .v) := a− u− h(u, v) ,

g(u, v) := α(b− v)− h(u, v) ,

h(u, v) :=
uv

1 + u + Ku2
,

where γ, α, a, b, K are parameters controlling the de-

tails of the pattern formation process. Initial con-

ditions and boundary conditions have been omitted

above.

0.4.7 Quantitative Finance: Black-Scholes Equation

The task of option pricing for European options leads to the Black-Scholes equation on Rd
+ [ACP05]:

∂u

∂t
+ 1

2

d

∑
i,j=1

qij xixj
∂2u

∂xi∂xj
+ r

d

∑
i=1

xi
∂u

∂xi
− ru = 0 in Rd

+ × [0, T] ,

+ “exact boundary values” imposed on ∂Rd
+ ,

u(T, ·) = g(·) in Ω .

(0.4.7.1)

✦ d ∈ N = no. of underlying stocks, x = (x1, . . . , xd)
T, xi ↔ price of stock #i

✦ Unknown u = u(x, t) =̂ option price at time t given stock prices xi:

u(t, x) = E(exp(−r(t− T))g(ST)|St = x) ,

with payoff function g : Rd
+ 7→ R.

✦ Coefficientsr > 0 = interest rate,
(
qij

)d

i,j=1
= s.p.d. covariance matrix

This is a high-dimensional degenerate parabolic initial-boundary value problem. The Stock price fluctua-

tions are modelled by means of a Wiener process (log-normal distribution) Si(t) = exp(rt + Xi
t) .Here

we give numerical simulations in d = 2 with linear finite elements on tensor product mesh (MATLAB

computations, C. Winter, SAM, ETH Zürich):
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Fig. 12
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Fig. 13
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The payoff functions used in the computations are

call option: g(S1, S2) := max{S1 + S2 − K, 0} , with strike price K ,

better-of-two option: g(S1, S2) := max{S1, S2} .

More details ➮ course “Computational Methods for Quantitative Finance” (Ch. Schwab)

0.4.8 Quantum Mechanics: Electronic Schrödinger Equation

The following equations formulate an elliptic eigenvalue problem obtained from the Born-Oppenheimer

approxmation of the Schrödinger equation, the fundamental governing equation for quantum phenomena.

Its solutions describe the cloud of electrons around for a molecule at different excited states.

(
−1

2
∆ +

N

∑
i=1

P

∑
j=1

Zj

|xi − r j|
+

N

∑
i=1

N

∑
j>i

1

|xi − xj|

)
u = λu , (0.4.8.1)

+ exponential decay of u for |x| → ∞ .

✦ N = number of electrons

✦ P = number of nuclei (with charges Zj ∈ N and positions r j ∈ R3)

✦ Unknown: u = u(x1, . . . , xN) 6= 0, xi ∈ R3 ! ➥ probability density |u|2

✦ Unknown: eigenvalue λ = state energy

High-dimensional elliptic eigenvalue problem on R3N !

Numerical simulation: states (N, P = 1) computed with spectral sparse grid Galerkin method [GRH05]:
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Fig. 14

Symmetric ground state

Fig. 15

Anti-symmetric ground state

0.4.9 Rarefied Gas Dynamics: Boltzmann Equation

The state of a rarefied gas occupying the bounded region of space Ω ⊂ R3 can be described by a density

function f = f (x, v, t), which is a function of space (x), of velocity (v), and time (t). Its meaning is the

following: the integral

∫

Bx

∫

Bv

f (x, v, t)dvdx , Bx ⊂ Ω , Bv ⊂ R3 ,

yields the number of gas molecules located inside Bx and travelling with a velocity in Bv at time t. The

evolution of the density function is governed by the Boltzmann equation

∂ f

∂t
+ v · gradx f = Q( f , f ) in Ω×R3 , (0.4.9.1)

supplemented with the inflow boundary conditions

u(x, v, t) = g(x, v, t) for x ∈ ∂Ω , v · n(x) < 0 , (0.4.9.2)

where g are given boundary data. The collision operator is given by

Q( f , g)(x, v, t) :=
∫

R3

∫

S2

B(‖v− v∗‖, cos θ)(h′∗ f ′ − h∗ f )dσdv∗ , (0.4.9.3)

f := f (x, v, t) , h∗ := h(x, v∗, t) , f ′ := f (x, v′, t) , h′∗ := h(x, v′∗, t) ,

v′ := 1
2(v + v∗ + ‖v− v∗‖) , v′∗ := 1

2(v + v∗ − ‖v− v∗‖σ) .

The function B : R ×R → R is the so-called collision kernel, and S2 stands for the unit sphere. The

angle θ is enclosed by the two velocities v and v′.

Note: The problem (0.4.9.1) is moderately high-dimensional, since it is posed on a seven-dimensional

unbounded domain Ω×R×R.
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Fig. 16

Mach-3 CFD benchmark prob-

lem. Inflow on left boundary,

specular reflective wall, out-

flow boundary conditions on

the right. Computation with

least squares finite elements in

space and spectral polynomial

approximation in velocity, see

[GHP15].

0.4.10 Wave Propagation: Helmholtz equation

Time-harmonic acoustic waves are described by the spatio-temporal behavior of sound pressure o =
p(x, t). In linear media without sources it satisfies the homogeneous Helmholtz equation

∆p + k2n(x)p = 0 in Ω , (0.4.10.1)

where k > 0 is the wave number (inversely proportional to the frequency), and n = n(x) is a dimension-

less spatially varying refractive index of the medium.

Often the Helmholtz equation is posed on unbounded domain, for instance Ω = R3. In this case we need

a radiation condition at ∞:

lim
‖x‖→∞

‖x‖
(

∂ps

∂r
(x)− ıkps(x)

)
= 0 uniformly , (0.4.10.2)

where ps := p − pinc is the scattered field, the difference of the pressure field p and another pressure

field pinc that belongs to an incident exciting acoustic wave.

Fig. 17
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Left: incident wave; middle: scattered field, right: total pressure p (real parts). Computation with method

of particular solutions, using the software MPSPACK, see [BAB10].

Review question(s) 0.4.10.3.

(Q0.4.10.3.A) The following is a PDE for a vector field u : Ω→ R2:

grad div u = [ f1, f2, f3]
⊤ , fi : Ω→ R . (0.4.10.4)

Write this PDE in detail for the components of u.

(Q0.4.10.3.B) Compute the Hessian according to (0.3.2.18) for the function u(x1, x2) = exp(x2
1 + x2

2).

(Q0.4.10.3.C) Compute the rotation curl u and the divergence div u for the vector field u(x) = − x

‖x‖2 ,

x ∈ R3 \ {0}.
Hint: Write u in components and compute partial derivatives.
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(Q0.4.10.3.D) Compute the Laplacian of the function u(x1, x2) = sin(x1) cos(x2). What do you ob-

serve?

(Q0.4.10.3.E) If f ∈ C1(R), what is the gradient of x 7→ f (‖x‖).
△
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Chapter 1

Second-Order Scalar Elliptic Boundary Value

Problems

1.1 Preface

Supplement 1.1.0.1 (“Boundary value problem”) The term “boundary value problems” occurring in the

title of this chapter alludes to the classical (“strong”) form of writing down most PDE-based mathematical

models for stationary, that is, time-independent phenomena. We have seen this strong form in the exam-

ples of Section 0.4. In this classical form the differential equation posed on a so-called spatial domain

Ω ⊂ Rd is supplemented by equations that the restriction of the solution to the boundary ∂Ω of Ω has to

satisfy:

Boundary value problem (BVP)

Given a partial differential operator L, a domain Ω ⊂ Rd, a boundary differential operator B,

boundary data g, and a source term f , seek a function u : Ω 7→ Rn such that

L(u) = f in Ω ,

B(u) = g on part of (or all) boundary ∂Ω .
(1.1.0.2)

Eventually, we will also state the mathematical models in the form (1.1.0.2), but this will not be our starting

point.

Terminology: A boundary value problem is called scalar :⇔ n = 1.

(In this case the unknown is a real valued function)
y

Supplement 1.1.0.3 (“Elliptic”) The attribute “elliptic” in the title of the chapter stems from a traditional

classification: Mathematical theory of PDEs [PIR06] distinguishes three main classes of boundary value

problems (BVPs) for partial differential equations (PDE):

• Elliptic BVPs (➣ “equilibrium problems”, solutions are minimizers of an “energy”.)

• Parabolic initial boundary value problems (IBVPs) (➣ evolution towards equilibrium, see Sec-

tion 9.2)

• Hyperbolic IBVPs, among them wave propagation problems and conservation laws (➣ trans-

port/propagation, see Chapter 11)

The rigorous mathematical definition of “elliptic” is complicated and often fails to reveal fundamental prop-

erties of, e.g., solutions that are intuitively clear against the backdrop of the physics modelled by a certain

47
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PDE. So we skip any further discussion of “elliptic” and focus on concrete models.
y

§1.1.0.4 (Outline) In the spirit of this course the first section of this chapter presents physical models

whose configuration space is an infinite-dimensional function space and for which the relevant solution

state fulfills an equilibrium condition, which gives rise to linear variational equations.

Subsequently, Section 1.3 ventures into the realm of Sobolev spaces, which provide the framework for

rigorous mathematical investigation of variational equations. However, we will approach Sobolev spaces

as “spaces of physically meaningful solutions” or “spaces of solutions with finite energy”. From this per-

spective dealing with Sobolev spaces will be reduced to dealing with their norms.

In Section 1.6, we change tack and consider a physical phenomenon (heat conduction) where modelling

naturally leads to partial differential equations. On this occasion, we embark on a general discussion of

boundary conditions in Section 1.7. Then the fundamental class of second-order elliptic boundary value

problems is introduced.

In Section 1.7 in the context of stationary heat conduction we introduce the whole range of standard

boundary conditions for 2nd-order elliptic boundary value problems. The discussion of various variational

formulations will be resumed in Section 1.9.
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Supplementary literature. An excellent mathematical introduction to partial differential equa-

tions is Evans’ book [EVA98]. Chapter 2 gives a very good idea about fundamental properties of

various simple PDEs. Chapters 6 and 7 fit the scope of this chapter, but go way beyond it in terms

of mathematical depth.
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1.2 Equilibrium Models: Examples

In this section we examine mathematical models for two different physical systems, one from mechanics

the other from electromagnetics. Both are stationary, that is, they do not change with time, and both are

governed by a minimal-energy principle. These characteristics are central for the notion of “elliptic” as

adopted in this course, see also Suppl. 1.1.0.3.

1.2.1 Elastic Membranes

Video tutorial for Section 1.2.1: Elastic Membranes: (44 minutes) Download link, tablet notes

We consider a simple mechanical system in a “one-dimensional” and “two-dimensional” version. In one

dimension it boils down to a pinned rubber band/elastic string deformed by vertical loading, that is, under

the influence of a force field acting in a particular transversal direction. Think of gravity. The force will

effect a deformation of the rubber band.

Fig. 18

Gravity

Rubber band

Fig. 19

An example for the two-dimensional case is the

taut skin of a drum clamped in a rigid frame. ✄

Again, if a vertical force is exerted on the drum

membrane, it will change its shape.

Fig. 20

Our eventual goal is the computation of the shape of the rubber band or membrane, assuming that infor-

mation about the forces, relevant properties of the materials, and the geometric situation is available. It

goes without saying, that a suitable mathematical model will be instrumental.

1.2.1.1 Configuration Spaces

The first decision to be made when developing a mathematical model is what objects to use to describe

state of the system under consideration.
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Notion 1.2.1.1. Configuration space

The configuration space of a mathematical model is a set, each of whose elements completely

describe all relevant aspects of a state of the modeled physical system.

EXAMPLE 1.2.1.2 (Low-dimesional configuration spaces) Many macroscopic “lumped” models merely

use a few real numbers to describe the state of the system:

Fig. 21

α1

α2

Fig. 22

~~ L

R1

R2

C1

C2

R3R4

R5

➀ ➁ ➂

➃ ➄ ➅

U

Double pendulum: state described by two angles,

configuration space [0, 2π[×[0, 2π[.

Electrical circuit [NCSE]: state described by branch

currrents and nodal potentials, configuration space

Rn+m.y

§1.2.1.3 (Configuration space for elastic string) Remember that we have assumed “vertical” forcing,

that is, all forces acting on the elastic string are parallel. In this case the following assumption is very

natural:

Assumption 1.2.1.4. Warp-free/loop-free

shape of string

Each force line intersects the elastic string at

most once.

Impossible shape: warped string ✄
Fig. 23 vertical force

This makes it possible to choose a Cartesian coordinate system with its x2-axis parallel to the force

direction.

Fig. 24

force

x1

a b

[ a
ua ]

[
b

ub

]

u(x1)

x2
Then the shape of the elastic string can be described

by the graph of a real-valued function

u : [a, b]→ R ,

over the domain [a, b], a < b, which is a finite interval

in 1D:

string =
{[ x1

x2

]
∈ R2: x2 = u(x1), a ≤ x1 ≤ b

}
.

The value u(x1) is the displacement of the string from the abscissa. Hence, it must have the units of

length: [u] = 1m.

Further evident properties of u:

✦ Of course, the function u must be continuous, because the string must not have gaps.

✦ The positions of the pins fix u(a) and u(b) and give boundary conditions (BDC)

u(a) = ua , u(b) = ub for given ua, ub ∈ R . (1.2.1.5)
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Basic configuration space for elastic string model

The configuration space for the elastic string model under vertical loading is the infinite-dimensional

affine function space

V̂S := {u : [a, b]→ R · 1m, u continuous, u(a) = ua, u(b) = ub} . (1.2.1.7)

Recall Def. 0.3.1.1: In the concrete case of V̂S the “hold-all” space V is C0([a, b]), the subspace V0 is

C0
0([a, b]) and v̂ is any function ∈ V satisfying the pining conditions (1.2.1.5). y

§1.2.1.8 (Configuration space for membrane under vertical loading) Remember that all loading forces

are parallel. We assume that each force line intersects the frame on which the membrane in mounted at

most once. Then the membrane will not attain a warped shape, folding back over itself.

Assumption 1.2.1.9. Non-warped shape of 2D membrane

Each force line intersects the membrane at most once.

Shape of membrane

m
Graph of u : Ω 7→ R

“membrane” on spatial domain Ω =]0, 1[2 ✄

(– – – =̂ rigid frame with known geometry)

Physical units: [u] = 1m

Fig. 25
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✎ Notation: x, p, y, . . . =̂ small vectors, coordinate vectors of points (→ Section 0.3.1.1)

The function value u(x) gives the displacement of the membrane over the point x in the x1/x2-plane.

Thus, again, u(x) must have units of length: [u(x)] = 1m.

Also the shape of the frame can be described by a function g defined on the boundary of the domain,

frame =
{[ x1

x2
x3

]
∈ R3: x :=

[ x1
x2

]
∈ ∂Ω, x3 = g(x)

}
.

✎ Notation: ∂Ω =̂ boundary of domain Ω ⊂ Rd, e.g., in 1D ∂]a, b[= {a, b}
As in § 1.2.1.3 natural properties of u and g are:

✦ Both u : Ω→ R and g : ∂Ω→ R are continuous, since neither the membrane may be ripped nor

the frame be broken.

✦ As the membrane is firmly attached to the frame, u and g agree on ∂Ω, which gives the boundary

conditions

u(x) = g(x) for all x ∈ ∂Ω ⇔ u|∂Ω = g on ∂Ω . (1.2.1.10)
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Configuration space for membrane model

Under vertical loading the configuration space for membrane shapes is the infinite-dimensional

affine function space

V̂M =
{

u : Ω→ R · 1m continuous, u|∂Ω = g
}

(1.2.1.12)

y

Connecting to Def. 0.3.1.1 of an affine (sub-)space, we have as “hold-all” space V = C0(Ω), as subspace

V0 = C0
0(Ω), and v̂ ∈ V has to satisfy (1.2.1.10).

Remark 1.2.1.13 (Continuity up to the boundary) The reader may have noticed that we put a bar on

top of Ω in (1.2.1.12). It indicates that we consider u on the closure of the domain: Ω := Ω ∪ ∂Ω.

To understand, why this is important, observe that x → 1
x is a continuous function on ]0, 1[, but not on

[0, 1], and that ]0, 1[ = [0, 1]. Defining a continuous function on the closure of a domain implies continuity

up to the boundary and rules out blow-up |u(x)| → ∞ as x→ ∂Ω. y

§1.2.1.14 (Spatial domains) As explained in § 1.2.1.8 the configuration space for the membrane is a

space of functions defined on a spatial domain Ω. In one dimension this was a connected interval [a, b]
and there is not much more to say about it, but in higher dimensions, the boundaries of domains can have

special properties, which may affect the well-posedness of boundary value problems and features of their

solutions.

For the remainder of this course we make the fol-

lowing general assumptions on spatial domains Ω ⊂
Rd: ✎ d = 1, 2, 3 =̂ “dimension” of domain

✦ Ω is bounded

diam(Ω) := sup{‖x− y‖: x, y ∈ Ω} < ∞ ,

✦ Ω is connected : any two points in Ω can be

connected by a continuous curve ⊂ Ω,

✦ Ω has piecewise smooth boundary ∂Ω. ✄

(“curvilinear polygon/polyhedron”)

For d = 2 we can distinguish corners (•) and edges

(—) of the boundary ∂Ω.
Fig. 26

Ω

We point out that this class of domains is what can usually be represented in computer codes.

1.2.1.2 Equilibrium Conditions

Of course, for prescribed boundary conditions and given loading elastic strings and membranes will attain

a unique particular shape corresponding to one element of the configuration space. A key aspect of the

mathematical model must be to specify a selection criterion for that element.

§1.2.1.15 (Force density) We need a way to incorporate the loading force into the mathematical model.

We do by another scalar-valued function f : Ω→ R, where Ω =]a, b[ in the case of the 1D elastic string

model.

The function f is a (vertical) force density, and

• in 1D has units of force per length: [ f (x)] = N
m ,
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• in 2D has units of force per area: [ f (x)] = N
m2 .

For instance in 2D, if D ⊂ Ω denotes a sub-domain, then
∫

D f (x)dx gives the total force acting on the

part of the membrane over D.

Note that the force density f need not be continuous but only integrable. Hence, piecewise continuity is

sufficient, f ∈ C0
pw(Ω), see Def. 0.3.2.22. y

Nature is economical and prefers “optimal” states, which gives us the desired selection criterion:

Equilibrium condition for stationary mechanical systems

The elastric string/membrane attain that shape that achieves a minimal potential energy.

§1.2.1.17 (Potential energies of elastic string/membrane) The above selection criterion will only be

useful, if we find concrete formulas for the potential energies. We postpone their derivation to Sec-

tion 5.1.3.

1D: For an elastic string under vertical loading by f ∈ C0
pw(]a, b[) whose shape is given by u ∈ V̂S (→

(1.2.1.7)) the total potential energy is

JS(u) :=

b∫

a

1
2 σ(x)

∣∣∣∣
du

dx
(x)

∣∣∣∣
2

− f (x)u(x)dx . (1.2.1.18)

elastic energy potential energy in force field

Here, the stiffness σ = σ(x) potentially dependent on the position x, [σ(x)] = 1N. This ensures

that J has units of energy: [J(u)] = 1J.

2D: For a clamped membrane loaded with a force density f and with displacement u ∈ V̂M (→
(1.2.1.12)) we find for the total potential energy

JM(u) :=
∫

Ω

1
2 σ(x)‖grad u(x)‖2 − f (x)u(x)dx , (1.2.1.19)

elastic energy potential energy in force field

Here, the stiffness coefficient σ = σ(x) has units [σ(x)] = N
m , which leads to [JM(u)] = 1J.

To see the close relationship between (1.2.1.18) and (1.2.1.19), note that by the definition of the gradient

σ(x)‖grad u(x)‖2 = σ(x1, x2)

∣∣∣∣
∂u

∂x1
(x1, x2)

∣∣∣∣
2

+ σ(x1, x2)

∣∣∣∣
∂u

∂x2
(x1, x2)

∣∣∣∣
2

, x =
[ x1

x2

]
.

Physics teaches us that the stiffness should be uniformly positive (UP):

∃σ0 > 0: σ(x) ≥ σ0 ∀x ∈ Ω . (1.2.1.20)

The stiffness is an example for a macroscopic material coefficient.

Note that apart from (1.2.1.20) the main property we expect from σ is that it is integrable. Therefore,

the stiffness may only be piecewise continuous: σ ∈ C0
pw(Ω) is enough and we may read (1.2.1.20) as

holding “almost everywhere”. y
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Supplement 1.2.1.21 (The gradient, see also § 0.3.2.19) A central concept in calculus: recall the

definition of the gradient of a function F : Ω ⊂ Rd 7→ R,F(x) = F(x1, . . . , xd), see [STRLN09],

[NCSE]:

grad F(x) :=




∂F

∂x1
...

∂F

∂xd



∈ Rd , x ∈ Ω .

Note: the gradient at x is a column vector of first partial derivatives,

read grad F(x) as (grad F)(x); grad F is a vector-valued function Ω 7→ Rd.

Also in use (but not in this course) is the “∇-notation”: ∇F(x) := grad F(x).

Obviously, as a straightforward consequence of the mean value theorem, a vanishing gradient means that

the function has be constant:

F ∈ C1(Ω) and grad F(x) = 0 ∀x ∈ Ω ⇒ ∃c ∈ R: F(x) = c ∀x ∈ Ω . (1.2.1.22)

y

Now we can quantitatively characterize the equilibrium shape based on the qualitative equilibrium condi-

tion:

Equilibrium shape

The equilibrium shape for an elastic string (S) or elastic membrane (M) under vertical loading is

u = argmin
v∈V̂∗

J∗(v) , ∗ = S, M , (1.2.1.24)

with configuration spaces V̂S/V̂M from (1.2.1.7)/(1.2.1.12) and total potential energy functionals

JS/JM defined in (1.2.1.18)/(1.2.1.19).

Remark 1.2.1.25 (Non-dimensional equations) By fixing reference values for the basic physical units

occurring in a model (“scaling”), one can switch to a non-dimensional form of the model equations.

In the case of the elastic string model the basic units are

• unit of length 1m,

• unit of force 1N.

Thus, non-dimensional equations arise from fixing a reference length ℓ0 and a reference force f0.

Below, following a (bad) habit of mathematicians, physical units will routinely be dropped, which tacitly

assumes a priori scaling.

Note: Scaling is convenient, but is actually not required for numerical simulation and SI units can be kept

for all quantities, owing to the fact that proper implementations of numerical methods should be

scale-invariant. The code should always produce the same result regardless of chosen physical

units (, if potential under-/overflow of floating point numbers is neglected [NCSE]).
y
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1.2.1.3 Smoothness of Displacements

The alert reader will have detected some amount of sloppiness in the statement of (1.2.1.24): The dis-

placement functions u ∈ C0(Ω) have to be differentiated (partially) in order to evaluate the potential en-

ergies. Thus, these may not be defined for functions that are merely continuous. Are we forced to restrict

the configuration spaces to subspaces of C1(Ω)?

EXAMPLE 1.2.1.26 (Point loading of elastic string) We pull at an elastic string at a single point, that is

we use the concentrated force density f (x) = δ(x− xp), where δ is the delta distribution and xp ∈]a, b[.

Fig. 27 f

x1

a b

[ a
ua ]

[
b

ub

]

x2

xp

point force f (x) = δ(x− xp), a < xp < b
Fig. 28

Point loading engenders a solution with a kink! These solutions are physically meaningful and must not

be excluded by too stringent smoothness requirements for displacements u. y

At second glance we realize that kinks of u do not pose a problem for the computation of the potential

energies JS(u) and JM(u), because the (partial) derivatives of u need not be continuous, they merely

have to be integrable which is compatible with a few discontinuities. We can admit displacements that fail

to be differentiable at isolated points, a class of functions that we introduced as piecewise continuously

differentiable in Def. 0.3.2.22.

Definition 0.3.2.22. Piecewise continuously differentiable functions

For a closed domain Ω ⊂ Rd, d ∈ N, we define

Ck
pw(Ω) := {v ∈ Ck−1(Ω): v|Ωj

∈ Ck(Ωj), j = 1, . . . , m} ,

where {Ωj}m
j=1

, m ∈ N, is a partition of Ω in the sense that Ωk ∩Ωi = ∅, if i 6= k, and

Ω = Ω1 ∪ · · · ∪Ωm.

u ∈ C1
pw([0, 1])

Fig. 29 τ1 τ2 τ3 · · ·0 1

✁ A piecewise differentiable function

u ∈ C1
pw([0, 1]).

Its derivative will have disontinuities, but will still be

integrable.

Therfore, such a function is a valid displacement in

the elastic string model and JS(u) can be evaluated

without difficulties.
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A function u ∈ C1
pw(Ω), where Ω is the unit disk:

Ω := {x ∈ R2 : ‖x‖ < 1} .

This function is an eligible displacement for a mem-

brane mounted on a flat circular frame, because

JM(u) can be computed by piecewise integration

of the squared norm of the discontinuous gradient

grad u.

Fig. 30

These considerations yield the following upgraded definition of the configuration spaces, see § 0.3.2.21,

Def. 0.3.2.22, for notations.

Energy-compatible configuration spaces

For vertical loading the following configuration spaces for displacements u take into account pre-

scribed boundary conditions and allow the computation of potential energies

1D (elastic string): V̂S :=
{

u ∈ C1
pw([a, b]), u(a) = ua, u(b) = ub

}
, (1.2.1.28)

2D (membrane): V̂M :=
{

u ∈ C1
pw(Ω), u|∂Ω = g

}
. (1.2.1.29)

Review question(s) 1.2.1.30 (Elastic membranes)

(Q1.2.1.30.A)

Fig. 31

A flexible thin beam is mounted on a wall perpendic-

ularly. What is a suitable configuration space for it, if

the lateral extension (thickness) of the beam can be

ignored?

(Q1.2.1.30.B) What is a suitable configuration space for an elastic balloon filled with pressurized gas?

(Q1.2.1.30.C) The total potential energy of an elastic membrane under small “vertical” displacement over

a base plane Ω ⊂ R2 is given by the formula

JM(u) :=
∫

Ω

1
2 σ(x)‖grad u(x)‖2 − f (x)u(x)dx . (1.2.1.19)
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What is the meaning of the quantities σ, u, and f and what are their physical units?

(Q1.2.1.30.D) Describe the physical principle that allows us to determined the equilibrium shape of a

static mechanical system. Is that equilibrium shape always unique?

(Q1.2.1.30.E) Compute the elastic energy of an elastic string whose shape is given by the graph of a

displacement function u : [0m, 1m]→ R · 1m for

1. u(x) := x(1m− x)m−1,

2. u(x) := 1m · sin(x · 1m−1),

3. u(x) :=

{
x for 0m ≤ x ≤ 0.4m ,
2
3m− 2

3 x for 0.4m < x ≤ 1m .

The stiffness is σ(x) = 0.5N. Note that the pure elastic energy does not depend on an external force

field.

(Q1.2.1.30.F) Assume a non-dimensional graph model for an elastic string, whose shape is described by

a function u : [0, 1]→ R and whose stiffness is constant σ ≡ 1. We know that u(x) = αx(1− x) with

a parameter α ∈ R. For which parameter value does the total potential energy

JS(u) :=

1∫

0

1
2 σ(x)

∣∣∣∣
du

dx
(x)

∣∣∣∣
2

− f (x)u(x)dx . (1.2.1.18)

attain a minimum, if f ≡ 1.

(Q1.2.1.30.G) In a non-dimensional model, the shape of a membrane over the base plane Ω ⊂ R2 is

described by the displacement function u : Ω→ R. We consider the two situations

1. Ω = [0, 1]2, u(x) = sin(πx1) sin(πx2),

2. Ω = {x ∈ R2 : ‖x‖ ≤ 1}, u(x) = 1− ‖x‖2
.

The stiffness of the membrane is constant σ ≡ 1. Compute the elastic energies of the membranes.

(Q1.2.1.30.H) We consider a non-dimensional model for an elastic string with uniform stiffness σ ≡ 1 and

displacement u : [0, 1]→ R. Find a displacement function u ∈ C0([0, 1]) for which the elastic energy

JS(u) :=
∫ 1

0

1
2 σ(x)

∣∣∣∣
du

dx
(x)

∣∣∣∣
2

dx

of the string becomes ∞.

Hint. Look for a suitable “
√

-shaped” function.

△

1.2.2 Electrostatic Fields

Video tutorial for Section 1.2.2: Electrostatic Fields: (13 minutes) Download link, tablet notes

In this section we see another important example of a mathematical model

✦ whose configuration space is a space of functions on a spatial domain Ω ⊂ Rd, d = 2, 3,

✦ and governed by a minimal potential energy principle as equilibrium condition.
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Concretely, we study field models arising from electrostatics.

A typical arrangement for an electrostatic setup is

sketched beside ✄

✦ chunk of metal in conducting box

✦ prescribed voltage drop metal—box
✄

We seek the electric field E : Ω 7→ Rd in Ω ⊂ Rd,

d = 2, 3.

(Ω =̂ blue region ✄)

Fig. 32 U0

Ω

Γ1

Γ0

metal

§1.2.2.1 (Scalar potential representation) In electrostatics computations do not need to tackle the elec-

tric field E directly, thanks to a fundamental constraint on E.

Fig. 33

From Maxwell’s equations in a stationary setting,

where all fields are constant in time:

E = − grad u , (1.2.2.2)

for a scalar function u : Ω 7→ R called the electric

(scalar) potential, with physical units [u(x)] = 1V.

✁ Electric potential in technical device

y

§1.2.2.3 (Boundary conditions for electrostatic potential) In order to characterize the configuration

space for electrostatic field problems completely, we have to identify proper boundary conditions for the

scalar potential u. To do so, we have to appeal to physics.

Recall that in electrostatics surfaces of conducting bodies are equipotential surfaces

Fig. 34 U0

Ω

Γ1

Γ0

u = 0

u = U0

Thus in the situation of Fig. 32 the electric potential

must statisfy the following boundary conditions

u = 0 on Γ0 ,

u = U0 on Γ1 .
(1.2.2.4)

which implies the preliminary configuration space

V̂E =
{

u ∈ C0(Ω) , u satisfies (1.2.2.4)

}
.

This choice may be problematic: What is the mean-

ing of grad u. We are going to address this shortly.

In the remainder of this section we write u = U to designate the boundary conditions (1.2.2.4).
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§1.2.2.5 (Electrostatic field energy) Electromagnetic field theory gives us an expression for the energy

content of the electric field:

Electromagnetic field energy: (electrostatic setting with scalar potential u)

JE(u) =
1
2

∫

Ω
(ǫ(x) grad u(x)) · grad u(x)dx , (1.2.2.6)

where ǫ : Ω 7→ R3,3 is the dielectric tensor, ǫ(x) is symmetric, with units [ǫ] = A s
V m .

Note that in terms of partial derivatives and matrix components ǫ(x) =
[
ǫij

]3
i,j=1

we have

(ǫ(x) grad u(x)) · grad u(x) =
3

∑
i=1

3

∑
j=1

ǫij(x)
∂u

∂xi
(x)

∂u

∂xj
(x) .

§1.2.2.7 (Dielectric tensor) The dielectric tensor ǫ = ǫ(x) is a matrix-valued function describing the

macroscopic electric properties of the material at x. We list a few properties of ǫ:

• The dielectric tensor need not be continuous, σ ∈ (C0
pw(Ω))3,3 is enough and, actually, very com-

mon when different materials abut at sharp interfaces.

• Symmetry of the dielectic tensor, a matrix valued function on the spatial domain, can always be

assumed: if ǫ(x) was not symmetric, then replacing it with 1
2(ǫ(x)T + ǫ(x)) will yield exactly the

same field energy.

• A fundamental property of the dielectric tensor (for “normal” materials) is uniform positivity:

∃0 < ǫ− ≤ ǫ+ < ∞: ǫ−‖z‖2 ≤ (ǫ(x)z) · z ≤ ǫ+‖z‖2 ∀z ∈ R3, ∀x ∈ Ω . (1.2.2.8)

If this was not satisfied, negative field energies could result.

Terminology: (1.2.2.8) :⇔ ǫ is bounded and uniformly positive definite (UPD)

y

The positivity property of ǫ is so fundamental and shared by many other material coefficient functions that

it has been given a special name, cf. Def. 0.3.1.16.

Definition 1.2.2.9. Uniformly positive (definite) tensor field

An matrix-valued function A : Ω 7→ Rn,n, n ∈ N, is called uniformly positive definite, if

∃α− > 0: (A(x)z) · z ≥ α−‖z‖2 ∀ z ∈ Rn (1.2.2.10)

for almost all x ∈ Ω, that is, only with the exception of a set of volume zero.

y

Remark 1.2.2.11. If A(x) is symmetric, then we have the equivalence, cf. [NCSE],

(1.2.2.10) ⇔ A(x) s.p.d. (→ [NCSE]) and λmin(A(x)) ≥ α− ,

where λmin stands for the smallest eigenvalue of a matrix. y

Now it has become much clearer what smoothness we have to impose on scalar potentials. Like in

Section 1.2.1 we have to shrink the configuration space and restrict it to scalar potentials u for which the

electrostatic field energy JE(u) can be computed. Again this leads to a space of continuous and piecewise

continuously differentiable functions.
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Configuration space for electrostatic field problems

As configuration space for scalar potentials we use the affine space

V̂E :=
{

u ∈ C1
pw(Ω) , u satisfies (1.2.2.4)

}
. (1.2.2.13)

Using the notations of Def. 0.3.1.1, in this case we have V = C1
pw(Ω), V0 = C1

pw,0(Ω).

§1.2.2.14 (Electrostatic equilibrium condition) Electromagnetic field theory in the form of Maxwell’s

equation provides a criterion for selecting a unique electric scalar potential from the configuration space

V̂E. Again, energy minimization is the fundamental principle.

Equilibrium condition for electrostatics

Electrostatic field problem solved by potential u∗ ∈ V̂E, for which the field energy JE(u) becomes

minimal:

u∗ = argmin
u∈V̂E

JE(u) . (1.2.2.16)

y

Review question(s) 1.2.2.17 (Electrostatic fields)

(Q1.2.2.17.A) Explain, why surfaces of conducting bodies are equipotential surfaces in electrostatics.

(Q1.2.2.17.B) What are the physical units for the electric scalar potential u, the electric field E, the dielec-

tric tensor ǫ, and the electromagnetic field energy

JE(u) =
1
2

∫

Ω
(ǫ(x) grad u(x)) · grad u(x)dx ? (1.2.2.6)

(Q1.2.2.17.C) [Floating potentials] What is a suitable configuration space for describing electrostatics

in the following situation:

Fig. 35

Ω

Γ1

Γ0

metal

✁ A metallic (conducting) body is located inside a

(grounded) metal box, but it is not connected to

any wire, which means that its scalar potential is

not known a priori.

This situation is often referred to as floating poten-

tial.

(Q1.2.2.17.D) What does it mean that a 3 × 3-matrix-valued function M : Ω→ R3,3, Ω ⊂ Rd, is uni-

formly positive definite?

(Q1.2.2.17.E) The matrix-valued function x 7→ α(x)I3, x ∈ R3, I3 the 3× 3 identity matrix, is uniformly

positive definite. What does this imply for the function α : R3 → R?

(Q1.2.2.17.F) Compute the electric field belonging to the electric scalar potential u : Ω→ R,

u(x) = 1− ‖x‖2
, Ω := {x ∈ R3 : ‖x‖ ≤ 1}.
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(Q1.2.2.17.G) Given a domain Ω ⊂ R2 a tensor field A : Ω→ R2 is defined as

A(x) =

[
1 α(x)

α(x) 1

]
with α ∈ C0(Ω) .

Find a necessary and sufficient condition for α so that A is uniformly positive definite.

△

1.2.3 Quadratic Minimization Problems

Video tutorial for Section 1.2.3: Quadratic Minimization Problems: (48 minutes)

Download link, tablet notes

Recall the minimization problems arising from the equilibrium conditions:

Section 1.2.1.2

[1D, string]
u∗ = argmin

u∈C1
pw([a,b])

u(a)=ua u(b)=ub

b∫

a

1
2 σ(x)

∣∣∣∣
du

dx
(x)

∣∣∣∣
2

− f (x)u(x)dx

︸ ︷︷ ︸
=JS(u), see (1.2.1.18)

(1.2.3.1a)

Section 1.2.1.2

[2D membrane]
u∗ = argmin

u∈C1
pw(Ω)

u=g on ∂Ω

∫

Ω

1
2 σ(x)‖grad u(x)‖2 − f (x)u(x)dx

︸ ︷︷ ︸
=:JM(u), see (1.2.1.19)

, (1.2.3.1b)

Section 1.2.2

[2D, 3D electrostatics]
u∗ = argmin

u∈C1
pw(Ω)

u=U on ∂Ω

∫

Ω

1
2(ǫ(x) grad u(x)) · grad u(x)dx

︸ ︷︷ ︸
=:JE(u), see (1.2.2.6)

. (1.2.3.1c)

Obviously, these minimization problems are rather similar. In this section we will discuss their structure

and preliminary results about existence and uniqueness of solutions.

1.2.3.1 Definition

From linear algebra and Section 0.3.1.2 we need the following concepts:

Definition 0.3.1.3. Linear forms

Given a vector space V over R, a linear form/linear functional (LF) ℓ is a mapping ℓ : V 7→ R that

satisfies

ℓ(αu + βv) = αℓ(u) + βℓ(v) ∀u, v ∈ V , ∀α, β ∈ R .

Definition 0.3.1.4. (Bi-)linear forms

Given an R-vector space V, a A bilinear form (BLF) a on V is a mapping a : V×V 7→ R, for which

a(α1v1 + β1u1, α2v2 + β2u2) =

α1α2 a(v1, v2) + α1β2 a(v1, u2) + β1α2 a(u1, v2) + β1β2 a(u1, u2)

for all ui, vi ∈ V, αi, βi ∈ R, i = 1, 2.
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Bilinear forms and linear forms are key building blocks for the energy functionals JS, JM, and JE from

(1.2.3.1). They all match the following type of functional:

Definition 1.2.3.2. Quadratic functional

A quadratic functional on a real vector space V0 is a mapping J : V0 7→ R of the form

J(u) := 1
2a(u, u)− ℓ(u) + c , u ∈ V0 , (1.2.3.3)

where a : V0 × V0 7→ R is a symmetric bilinear form (→ Def. 0.3.1.4), ℓ : V0 7→ R a linear form,

and c ∈ R.

Recall from Def. 0.3.1.15 that a bilinear form a : V0 ×V0 7→ R is symmetric, if

a(u, v) = a(v, u) ∀u, v ∈ V0 . (1.2.3.4)

EXAMPLE 1.2.3.5 (Quadratic functionals on RN) As we have already seen in Ex. 0.3.1.5, if V0 = RN

(finite-dimensional case), then a quadratic functional has the general representation

J(~η) = 1
2~η
⊤A~η−~β

⊤
~η+ c , A = A⊤ ∈ RN,N , ~β ∈ RN , c ∈ R . (1.2.3.6)

Reminder: quadratic functionals of this forms occur in derivation of steepest descent and conjugate gradi-

ent methods for linear systems of equations, see [NCSE].

We will continue the discussion of quadratic functionals on Rn in [NCSE]. y

§1.2.3.7 (Energies are quadratic functionals) Now, let us identify the bilinear forms a and linear forms ℓ
contributing to the specific quadratic energy functionals in (1.2.3.1):

• For JS(v) =
b∫

a

1
2 σ(x)

∣∣∣∣
dv

dx
(x)

∣∣∣∣
2

− f (x)v(x)dx from (1.2.3.1a):

a(w, v) =

b∫

a

σ(x)
dw

dx
(x)

dv

dx
(x)dx , ℓ(v) =

b∫

a

f (x)v(x)dx . (1.2.3.8)

• For JM(v) =
∫

Ω

1
2 σ(x)‖grad v(x)‖2 − f (x)v(x)dx from (1.2.3.1b):

a(w, v) =
∫

Ω

σ(x)grad w(x) · grad v(x)dx , ℓ(v) =
∫

Ω

f (x)v(x)dx . (1.2.3.9)

• For JE(v) =
∫

Ω

1
2(ǫ(x) grad u(x)) · grad u(x)dx from (1.2.3.1c):

a(w, v) =
∫

Ω

grad u(x)Tǫ(x)grad v(x)dx , ℓ(v) = 0 . (1.2.3.10)

y

Obviously, (1.2.3.1) is all about minimizing quadratic functionals. We introduce a name for this kind of

minimization problems.
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Definition 1.2.3.11. Quadratic minimization problem

A minimization problem

w∗ = argmin
w∈V0

J(w)

is called a quadratic minimization problem, if J is a quadratic functional on a real vector space V0.

§1.2.3.12 (Offset functions) Objection! Neither (1.2.3.1a), nor (1.2.3.1b) nor (1.2.3.1c) are genuine

quadratic minimization problems in the sense of Def. 1.2.3.11, because they are posed over affine spaces

instead of vector spaces. Just notice that the configuration spaces may not contain the zero function.

Definition ??. Affine (sub)space

A subset Ŵ ⊂ V of a vector space V is called an affine (sub-)space, if

Ŵ = V0 + w0 := {w ∈ V : w = v0 + w0, v0 ∈ V0} ,

for some subspace V0 ⊂ V and some w0 ∈ V.

By a simple trick we can recover proper quadratic minimization problems when asked to minimize a

quadratic functional over an affine subspace. This so-called offset function trick is suggested by the very

definition of an affine subspace. First, observe that for a quadratic functional J(v) := 1
2a(v, v)− ℓ(v)

according to Def. 1.2.3.2 and defined on a vector space V we have

J(u + u0) =
1
2a(u + u0, u + u0)− ℓ(u + u0) + c

= 1
2a(u, u) + 1

2a(u, u0) +
1
2a(u0, u) + 1

2a(u0, u0)− ℓ(u)− ℓ(u0) + c

= 1
2a(u, u) + a(u, u0)− ℓ(u)︸ ︷︷ ︸

=:−ℓ̃(u)

+ 1
2a(u0, u0)− ℓ(u0) + c︸ ︷︷ ︸

=:c̃

,
(1.2.3.13)

due to the bilinearity of a and the linearity of ℓ. Hence, the minimizer of J over the affine subspace

u0 + V0, V0 ⊂ V a subspace of V, can be computed as follows:

argmin
u∈u0+V0

J(u) = u0 + argmin
v∈V0

J(v + u0) = u0 + argmin
v∈V0

J̃(v) , (1.2.3.14)

with J̃(v) := 1
2a(v, v)− ℓ̃(v) + c̃ , (1.2.3.15)

and the functional ℓ̃, and c̃ ∈ R as defined in (1.2.3.13). We have ended up with a quadratic minimization

problem over a genuine vector space, here V0, compliant with Def. 1.2.3.11.

Thus, in the sequel we can focus on quadratic minimization problems posed on genuine vector spaces as

introduced in Def. 1.2.3.11. y

EXAMPLE 1.2.3.16 (Offset function for elastic string model) In Section 1.2.1.3 we learned that for the

1D elastic string model minimization of the potential energy JS has to be performed over the affine space

V̂S :=
{

u ∈ C1
pw([a, b]), u(a) = ua, u(b) = ub

}

C1
pw,0([a, b]) + u0 ,

where u0 is any function in V̂S.
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Fig. 36

u0

x
a b

[ a
ua ]

[
b

ub

]

u(x1)

u
✁ u0 =̂ —

Of course, u0 should be as simple a possible.

Clearly the simplest choice is an affine linear function

whose graph, a line segment, connects the pinning

points:

u0(x) = ua
b− x

b− a
+ ub

x− a

b− a
. (1.2.3.17)

y

Summing up, for the minimization problems considered so far the underlying vector spaces and modified

linear forms ℓ̃ read, with bilinear forms a as in (1.2.3.8)–(1.2.3.10):

✦ For elastic string model↔ (1.2.3.1a): with u0 from (1.2.3.17)

V0 = C1
pw,0([a, b]) , ℓ̃(v) :=

b∫

a

f (x)v(x)dx− a(u0, v) , (1.2.3.18)

(1.2.3.19)

✦ For membrane model↔ (1.2.3.1b): with u0 ∈ C1
pw(Ω) with u0|∂Ω = g:

V0 = C1
pw,0(Ω) , ℓ̃(v) =

∫

Ω
f (x)v(x)dx− a(u0, v) , (1.2.3.20)

(1.2.3.21)

✦ For the electrostatic model from Section 1.2.2: with u0 ∈ C1
pw(Ω) with u0|∂Ω = U:

V0 = C1
pw,0(Ω) , ℓ̃(v) = −a(u0, v) . (1.2.3.22)

The bilinear forms a are different in each case and given by (1.2.3.8)–(1.2.3.9).

1.2.3.2 Existence and Uniqueness of Minimizers

Our models would be highly dubious, if they gave rise to quadratic minimization problems that failed to

have unique solutions. We first tackle this issue in an abstract context. To begin with recall an impor-

tant property of a bilinear form, which yields a necessary condition for the existence of a minimizer of a

quadratic functional.

Definition 1.2.3.23. Positive semi-definite bilinear form → Def. 0.3.1.16

A (symmetric) bilinear form a : V0×V0 7→ R on a real vector space V0 is positive semi-definite, if

a(u, u) ≥ 0 ∀u ∈ V0 . (1.2.3.24)

Necessity of (1.2.3.24) for the existence of a minimizer can be concluded as follows: In case (1.2.3.24)

fails to hold there is a u ∈ V0 for which a(u, u) < 0. Hence, for a quadratic functional J : V0 → R as in

(1.2.3.3) we find

J(tu) = 1
2 t2 a(u, u)︸ ︷︷ ︸

<0

−tℓ(u) + c , t ∈ R ,
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such that J(tu)→ −∞ for t→ ∞: J has no minimum. The next corollary summarizes this insight.

Corollary 1.2.3.25. Necessary condition for existence of minimizer

The quadratic functional J(v) := 1
2a(v, v)− ℓ(v) (→ Def. 1.2.3.2) on a vector space V0 is bounded

from below, only if the bilinear form a : V0 ×V0 → R is positive semi-definite.

Next, let us tackle the issue of uniqueness of the minimizer of the quadratic functional J from (1.2.3.3).

There is a necessary and sufficient condition in terms of a simple property of a, see also Thm. 1.2.3.30

below.

Definition 1.2.3.26. Positive definite bilinear form → Def. 0.3.1.16

A (symmetric) bilinear form a : V0 ×V0 7→ R on a real vector space V0 is positive definite, if

u ∈ V0 \ {0} ⇐⇒ a(u, u) > 0 .

EXAMPLE 1.2.3.27 (Positive definite matrices) As in Ex. 0.3.1.7, for the special case V0 = RN any

matrix A ∈ RN,N induces a bilinear form via

a(u, v) := uTAv = (Av) · u , u, v ∈ RN . (1.2.3.28)

This connects the concept of a symmetric positive definite bilinear form to the more familiar concept of

s.p.d. matrices (→ [NCSE])

A s.p.d. (→ Def. 0.3.1.24) ⇔ a from (1.2.3.28) is symmetric, positive definite.

y

EXAMPLE 1.2.3.29 (Quadratic functionals with positive definite bilinear form in 2D) Worth remem-

bering is the analogy between quadratic functionals with positive definite bilinear form and parabolas

opening upwards:

J(v) = 1
2 a(v, v) − ℓ(v)

l l l
f (x) = 1

2 ax2 − bx

with a > 0!

Graphs of quadratic functionals with s.p.d. bilinear

forms are “higher-dimensional” upward-open parabo-

las.

graph of quadratic functional R2 7→ R ✄

Geometric intuition suggests unique global and local

minimum. Fig. 37

y
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Theorem 1.2.3.30. Uniqueness of solutions of quadratic minimization problems

If the bilinear form a : V0 ×V0 7→ R is positive definite (→ Def. 1.2.3.26), then any solution of

u∗ = argmin
u∈V0

J(u) , J(u) := 1
2a(u, u)− ℓ(u) + c ,

is unique for any linear form ℓ : V0 7→ R.

Proof. (indirect) Assume that both u∗ ∈ V0 and w∗ ∈ V0, u∗ 6= w∗ are global minimizers of J on V0.

➊ ϕ(t) := J(tu∗ + (1− t)w∗) has two distinct global minima in t = 0, 1.

➋ However ϕ(t) = 1
2 t2 a(u∗ − w∗, u∗ − w∗)︸ ︷︷ ︸

>0

+t . . . is a non-degenerate parabola opening towards +∞,

which clearly has a unique global minimum at its apex.

Contradiction between ➊ and ➋ ⇒ assumption wrong.
✷

Supplement 1.2.3.31 (Convexity of quadratic functionals) Under the assumptions of the theorem, the

quadratic functional J is convex, cf. [NCSE]:

Definition 1.2.3.32. Convexity of a real-valued function → [STRLN09]

A function F : V0 → R on a vector space V0 is called convex, if

F(λx + (1− λ)y) ≤ λF(x) + (1− λ)F(y) ∀x, y ∈ V0 . (1.2.3.33)

A function is concave, if its negative is convex.

It is well known that a twice continuously differentiable function F : R → R is convex if and only if its

second derivative F′′ is non-negative everywhere. Thus, the convexity of a quadratic functional based

on a positive definite quadratic bilinear form is easily seen by considering the second derivative of the

function

ϕ(t) := J(u + tv) ⇒ ϕ̈(t) = a(v, v) > 0 , if v 6= 0 .

y

1.2.3.3 Energy Norm

Recall that s.p.d. bilinear forms induce norms:

Theorem 0.3.1.21. Norms from inner products

If a is an inner product (= symmetric positive definite bilinear form, Def. 0.3.1.18) on the real vector

space V, then

‖·‖
a

: V → R , ‖v‖
a

:= a(v, v)
1
2 , (0.3.1.22)

defines a norm (→ Def. 0.3.1.10) on V.

1. Second-Order Scalar Elliptic Boundary Value Problems, 1.2. Equilibrium Models: Examples 66

http://en.wikipedia.org/wiki/Convex_function


NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

We have seen that the s.p.d. property of the bilinear form is necessary for the existence of a unique

minimizer of a quadratic minimization problem. Thus there is natural norm associated with any meaningful

quadratic minimization problem:

Definition 1.2.3.34. Energy norm, cf. [NCSE]

Let a be the symmetric positive definite bilinear form a : V0×V0 7→ R (→ Def. 0.3.1.16) underlying

a quadratic functional J. Then the related energy norm is

‖u‖
a

:= (a(u, u))
1/2 , u ∈ V0 .

Of course, the term “energy norm” is inspired by the quadratic potential energy functionals as they occur

in many mathematical models.

Do the potential energy functionals from Section 1.2.1 and Section 1.2.2 really induce energy norms, that

is, are they symmetric positive definite? We discuss this for the case of electrostatics.

§1.2.3.35 (Positive definite bilinear form for electrostatic variational problem) We have to establish

that

a(u, v) :=
∫

Ω

(ǫ(x) grad u(x)) · grad v(x)dx

is positive definite on the function space V0 := C1
pw,0(Ω). Two arguments will confirm this:

❶: Since ǫ bounded and uniformly positive definite (→ Def. 1.2.2.9)

∃0 < ǫ− ≤ ǫ+ < ∞: ǫ−‖z‖2 ≤ (ǫ(x)z) · z ≤ ǫ+‖z‖2 ∀z ∈ R3, ∀x ∈ Ω , (1.2.2.8)

we infer the bounds

0 ≤ ǫ−
∫

Ω
‖grad u(x)‖2 dx ≤ a(u, u) ≤ ǫ+

∫

Ω
‖grad u(x)‖2 dx ∀u . (1.2.3.36)

Hence, it is sufficient to examine the simpler bilinear form

d(u, v) :=
∫

Ω
grad u(x) · grad v(x)dx , u, v ∈ C1

pw,0(Ω) . (1.2.3.37)

❷: Obviously d(u, u) = 0 ⇒ grad u = 0
(1.2.1.22)
=⇒ u ≡ const in Ω

Observe: u = 0 on ∂Ω ⇒ u = 0

Zero boundary conditions are essential; otherwise one could add constants to the arguments of a without

changing its value. y

1.2.3.4 A Continuity Condition for the Linear Functional ℓ

In Cor. 1.2.3.25 and Thm. 1.2.3.30 we found necessary conditions on the bilinear form a for the existence

of a minimizer of an abstract quadratic minimization problem. Now we answer the questions whether the

linear functional ℓ also has to satisfy some conditions.

As before, we consider a quadratic minimization problem (→ Def. 1.2.3.11) for a quadratic functional (→
Def. 1.2.3.2)

J : V0 7→ R , J(u) = 1
2a(u, u)− ℓ(u) ,

based on a symmetric positive definite (s.p.d.) bilinear form a → Def. 1.2.3.26.
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The following insight demonstrates that the linear form ℓ has to match the bilinear form a(·, ·) to ensure

the existence of a minimizer of J:

Lemma 1.2.3.38. Boundedness condition on linear form

The quadratic functional J (→ Def. 1.2.3.2)

J(u) := 1
2a(u, u)− ℓ(u) + c , u ∈ V0 , (1.2.3.3)

based on a symmetric positive definite bilinear form a (→ Def. 1.2.3.26) is bounded from below on

V0, if and only if

∃C > 0: |ℓ(u)| ≤ C‖u‖
a
∀u ∈ V0 , (1.2.3.39)

where ‖·‖
a

is the energy norm induced by a, see Def. 1.2.3.34.

Remark 1.2.3.40. Assertion (1.2.3.39) is written in a way customary in numerical analysis and the theory

of partial differential equations. It should be read as “there is a constant C > 0 such that for all u ∈ V0 the

estimate |ℓ(u)| ≤ C‖u‖
a

holds true.”. In logic the quantors would be arranged differently:

(1.2.3.39) ⇔ ∃C > 0: {∀u ∈ V0: |ℓ(u)| ≤ C‖u‖
a
} .

y

Proof. (of Lemma 1.2.3.38)

➊ Condition (1.2.3.39) ensures that J is bounded from below:

J(u) = 1
2a(u, u)− ℓ(u) ≥ 1

2‖u‖
2
a
− C‖u‖

a
≥ −1

2
C2 .

We arrive at this conclusion, since the parabola p(ξ) = 1
2 ξ2 − Cξ has a global minimum in ξ = C.

➋ The proof of the other implication is indirect (proof by contradiction). Assume that (1.2.3.39) does not

hold. Then, for every n ∈ N, we can find un ∈ V0 such that

ℓ(un) ≥ n‖un‖a .

By rescaling un ← un
‖un‖a

, we can assume without loss of generality that ‖un‖a = 1, which implies

J(un) ≤ 1
2 − n→ −∞ for n→ ∞ .

Hence J can attain values below any threshold.
✷

Parlance: In mathematical terms (1.2.3.39) means that ℓ is continuous w.r.t. the energy norm ‖·‖
a
.

Definition 1.2.3.41. Continuity of a linear form and bilinear form

Consider a normed vector space V0 with norm ‖·‖. A linear form ℓ : V0 → R (→ Def. 0.3.1.4) is

continuous or bounded on V0, if

∃C > 0: |ℓ(v)| ≤ C‖v‖ ∀v ∈ V0 .

A bilinear form a : V0 ×V0 → R (→ Def. 0.3.1.4) on V0 is continuous, if

∃K > 0: |a(u, v)| ≤ K‖u‖‖v‖ ∀u, v ∈ V0 .
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Remark 1.2.3.42 (Existence of minimizers in finite dimensions) Beside uniqueness, existence of min-

imizers of quadratic minimization problems (→ Def. 1.2.3.11) with positive definite bilinear form a is a key

issue. In a finite dimensional setting this is not a moot point, see Fig. 37 for a “visual proof”. We do not

even need any assumption on ℓ!

Theorem 1.2.3.43. Existence of unique minimizer in finite dimensions

Let J(u) := 1
2a(u, u) − ℓ(u) + c with symmetric positive definite (→ Def. 1.2.3.26) bilinear form

a : V0×V0 → R (→ Def. 0.3.1.4), linear form ℓ : V0 → R, c ∈ R, be a quadratic functional on the

vector space V0.

If V0 has finite dimension, then the quadratic minimization problem (→ Def. 1.2.3.11)

u∗ = argmin
u∈V0

J(u)

always possesses a unique solution.

However, as we will see below infinite dimensional spaces hold a lot of surprises and existence of solutions

of quadratic minimization problems becomes a subtle issue, even if the bilinear form is positive definite. y

EXAMPLE 1.2.3.44 (Point load) Now we inspect a striking case of quadratic minimization problem with

a linear form that fails to satisfy the continuity condition (1.2.3.39). Of course, this can happen only in an

infinite-dimensional setting.

We consider energy minimization for a homogeneous 2D membrane, that is, the stiffness σ is constant

and we will simply set it to 1. Let us assume that a needle is poked at the membrane: loading by a force f
“concentrated in a point y”, often denoted by f = δy, y ∈ Ω, where δ is the so-called Dirac delta function

(delta distribution).

Then, in light of the property

∫

Ω
δy(x) v(x)dx = v(y) ∀v ∈ C0(Ω)

of the Dirac delta function, the quadratic minimization problem (1.2.3.1b) for the potential energy takes the

special form

u∗ = argmin
u∈C1

pw(Ω)

u=g on ∂Ω

∫

Ω

1
2 σ(x)‖grad u(x)‖2 dx

︸ ︷︷ ︸
=:

1
2a(u,u)

− u(y)︸︷︷︸
=:ℓ(u)

. (1.2.3.45)

By formal arguments we will now make the startling discovery that the linear functional

ℓ : C1
pw(Ω)→ R , v 7→ v(y)

is not bounded with respect to the energy norm

‖v‖
a

:=
(∫

Ω
‖grad v‖2 dx

) 1
2

, v ∈ C1
pw(Ω) .
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For ǫ > 0 consider the function

vǫ(x) :=

{
log | log‖x‖| , if ‖x‖ > ǫ ,

log | log ǫ| , if ‖x‖ ≤ ǫ ,

on the disk domain Ω = {x ∈ R2: ‖x‖ < 1
e}.

By definition vǫ ∈ C1
pw(Ω), since we have cut off the

peak at x = 0.

Fig. 38
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First, we express this function in polar coordinates

(r, ϕ)

x1 = r cos ϕ , x2 = r sin ϕ , (1.2.3.46)

vǫ(r, ϕ) = log | log r|, r > ǫ .

Then we recall the expression for the gradient in polar

coordinates

grad vǫ(r, ϕ) =
∂vǫ

∂r
(r, ϕ)er +

1

r

∂vǫ

∂ϕ
(r, ϕ)eϕ ,

(1.2.3.47)

where er and eϕ are orthogonal unit vectors in the

polar coordinate directions. Fig. 39
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Also recall integration in polar coordinates, see [STRLN09]:

∫

Ω
f (x)dx =

1/e∫

0

2π∫

0

f (r, ϕ)r dϕdr . (1.2.3.48)

Using polar coordinates and (1.2.3.48), we compute ‖v‖
a

by evaluating an improper integral,

‖vǫ‖2
a
=
∫

Ω

‖grad v(x)‖2 dx =

1/e∫

ǫ

2π∫

0

∥∥∥∥−
1

log r r
er

∥∥∥∥
2

r dϕdr ≤ 2π

1/e∫

0

1

log2 r
· 1

r
dr

= 2π[−1/log r]
1/e

0 =
2π

log e
= 2π< ∞ .

This is allowed, because the improper integral has a finite value. This means that vǫ has “finite elastic

energy” for any ǫ > 0.

Yet, vǫ(0) = log | log ǫ| → ∞ as ǫ→ 0. In 2D functions with arbitrarily small energy can attain arbitrarily

big values in isolated points!
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This is the mathematics behind the observation that a

needle can easily prick a taut membrane: a point load

leads to configurations with “infinite elastic energy”.

Of course, this does not correspond to “real physics”,

but indicates that point loads are outside the scope

of the simple linear continuum membrane model.

Fig. 40

y

Review question(s) 1.2.3.49 (Quadratic minimization problems)

(Q1.2.3.49.A) [Fundamental concepts] Let V be a real vector space. Give the formal mathematical

definitions of the following concepts:

• of a linear form ℓ on V,

• of a bilinear form a on V,

• of a positive definite bilinar form a on V,

• and of a quadratic functional on V.

(Q1.2.3.49.B) [Electrostatic field energy as quadratic functional] The electrostatic field energy

JE(u) :=
∫

Ω

1
2(ǫ(x) grad u(x)) · grad u(x)dx .

is a quadratic functional. On which space is it defined and what are the involved bilinear form and linear

form according to the abstract definition of a quadratic functional?

(Q1.2.3.49.C) [Quadratic functional in two dimensions] The general form a quadratic functional on RN,

N ∈ N, is

J(~η) = 1
2~η
⊤A~η−~β

⊤
~η+ c , A = A⊤ ∈ RN,N , ~β ∈ RN , c ∈ R . (1.2.3.6)

Write down the matrix A, the vector ~β, and the number c concretely for the quadratic functional

x ∈ R2 7→ ‖x‖2 − (x1 − 1) .

(Q1.2.3.49.D) For what values of α, β, γ ∈ R does the quadratic functional

J : R2 → R , J(x) := x⊤
[

α 0
0 β

]
x− γx1 + α ,

possess a unique minimizer.

(Q1.2.3.49.E) [Energy norm] What is the energy norm induced by a symmetric positive definite bilinear

form on a vector space V?

(Q1.2.3.49.F) [Bounded/continuous linear functional] What does it mean that a linear functional ℓ on a

vector space V0 is bounded/continuous with respect to a norm ‖·‖ on V0?

(Q1.2.3.49.G) Show that every linear functional on V0 := R2 is bounded with respect to the Euclidean

norm on R2.
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(Q1.2.3.49.H) [Unbounded point evaluation] Rephrase the following statement in formal mathematical

terms:

Point evaluation is an unbounded linear functional on C1([0, 1]2) with respect to the energy

norm

‖v‖
a

:=

(∫

[0,1]2
‖grad v(x)‖2 dx

) 1
2

.

(Q1.2.3.49.I) [Extracting components of a quadratic functional] Outline the implementation of the

class QuadFunc meant to extract the building blocks of a quadratic functional according to the following

definition.

Definition 1.2.3.2. Quadratic functional

A quadratic functional on a real vector space V0 is a mapping J : V0 7→ R of the form

J(u) := 1
2a(u, u)− ℓ(u) + c , u ∈ V0 , (1.2.3.3)

where a : V0 ×V0 7→ R is a symmetric bilinear form (→ Def. 0.3.1.4), ℓ : V0 7→ R a linear form,

and c ∈ R.

template <VECTOR,QF_FUNCTOR>

c lass QuadFunc {

pub l i c:

QuadFunc(QF_FUNCTOR &qf_functor):qf_functor_(qf_functor) {}

double a(const VECTOR &u, const VECTOR &v) const;

double ell(const VECTOR &v) const;

p r i v a t e:

QF_FUNCTOR &qf_functor_;

};

The type QF_FUNCTOR must provide an evaluation operator

double opera tor () (const VECTOR &u) const;

which gives access to J(u) ∈ R for any argument vector u ∈ V0. An object of such a type is passed

to the constructor of the class. Based on that object, the methods a() and ell() should allow the

evaluation of a(u, v) and ℓ(v).

△

1.3 Sobolev spaces

Video tutorial for Section 1.3: Sobolev Spaces: (47 minutes) Download link, tablet notes

EXAMPLE 1.3.0.1 (Non-existence of solutions of positive definite quadratic minimization problem)

We consider the quadratic functional

J(u) :=
∫ 1

0

1
2 u2(x)− u(x)dx = 1

2

∫ 1

0

{
(u(x)− 1)2 − 1

}
dx ,
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on the space of continuous functions which attain value zero at the endpoints of the interval: V0 :=
C0

0([0, 1]). The functional J fits the abstract form from Def. 1.2.3.2 with

a(u, v) =
∫ 1

0
u(x)v(x)dx , ℓ(v) =

∫ 1

0
v(x)dx u, v ∈ V0. (1.3.0.2)

The quadratic minimization problem involving J is “very nice”: all necessary conditions for existence and

uniqueness of minimizers from Cor. 1.2.3.25, Thm. 1.2.3.30, and Lemma 1.2.3.38 are satisfied.

Lemma 1.3.0.3.

The bilinear form a(·, ·) from (1.3.0.2) is symmetric and positive definite on V0 and the linear form

ℓ(·) is continuous w.r.t. the energy norm induced by a(·, ·).

Proof. The s.p.d. property of a(·, ·) is obvious, because a(v, v) =
1∫

0

v2(x)dx.

The continuity of ℓ w.r.t the energy norm ‖·‖
a

(→ Def. 1.2.3.34) follows from the Cauchy-Schwarz inequal-

ity Thm. 0.3.1.19:

|ℓ(v)| = |a(1, v)| ≤ ‖1‖
a
‖v‖

a
= ‖v‖

a
∀v ∈ C0([a, b]) .

✷

Now we study minizers of J: The function ϕ(ξ) = 1
2 ξ2 − ξ = 1

2 ξ(1− 2ξ) = 1
2(ξ − 1)2 − 1

2 has a global

minimum at ξ = 1 and ϕ(ξ)− ϕ(1) = 1
2(ξ − 1)2.

➤ |η − 1| > |ξ − 1| ⇒ ϕ(η) > ϕ(ξ).

Assume that u∗ ∈ V0 is a global minimizer of J.
Then

w(x) := min{1, 2 max{u∗(x), 0}} ,

0 ≤ x ≤ 1 ,

is another function ∈ C0
0([0, 1]), which satisfies

u(x) 6= 1 ⇒ |w(x)− 1| < |u∗(x)− 1|
⇒ J(w) < J(u∗) !

Fig. 41
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Hence, whenever we think we have found a minimizer ∈ C0
0([0, 1]), the formula provides another eligible

function for which the value of the functional is even smaller! Therefore we can find sequences (un)n of

functions in C0
0([0, 1]) for which J(un) tends to the minimum, whereas the sequence itself has no limit in

C0
0([0, 1]).

The problem in this example seems to be that we have chosen “too small” a function space, c.f. Section 1.3

below. y

§1.3.0.4 (Preview) Mathematical theory is much concerned about proving existence of suitably defined

solutions for minimization problems. As demonstrated in Ex. 1.3.0.1 this can encounter profound problems.

In this section we will learn about a class of abstract function spaces that has been devised to deal with

the question of existence of solutions of quadratic minimization problems like (1.2.3.1b) and (1.2.3.1c). We
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can only catch of glimpse of the considerations; thorough investigation is done in the mathematical field of

functional analysis. y

1.3.1 Function Spaces for Energy Minimization

Now we return to the question of how to choose the right function space for a linear variational problem.

Bounded energy norm will be the linchpin of the argument:

Guideline: for a quadratic minimization problem (→ Def. 1.2.3.11) with

✦ symmetric positive definite (s.p.d.) bilinear form a,

✦ a linear form ℓ that is continuous w.r.t. ‖·‖
a
, see (1.2.3.39),

posed over a function space follow the advice:

consider it on the largest space of functions

for which a still makes sense !

(and which complies with boundary conditions)

In the concrete case of quadratic minimization problems like (1.2.3.1b) (minimization of potential energy of

a membrane) and (1.2.3.1c) (minimization of the energy of an electrostatic field) we arrive at the following

recommendation:☛
✡

✟
✠Choose “V0 := {functions v on Ω: a(v, v) < ∞}”

Then V0 is called the energy (function) space generated by the energy norm ‖·‖
a
.

➤ “Reasoning turned upside down”: now we first look at the quadratic functional J or, equivalently, the

bilinear form a (and potential boundary conditions), they determine the function space on which the

minimization problem/variational problem is posed!

§1.3.1.1 (Switching to a larger set of numbers) Long ago you already witnessed an application of the

policy of considering a minimization problem on a larger space in order to obtain solutions.

Consider the minimization problem:

Find x∗ ∈ argmin
x∈Q

J(x) for J(x) := |x2 − 2| .

Obviously, there is no solution: for every x∗ ∈ Q we find another one, for which J returns a smaller value.

The remedy is to switch from Q to R: minimizers ∈ R obviously exist. y

1.3.2 The Function Space L2(Ω)

Consider the quadratic functional (related to J from Ex. 1.3.0.1)

J(u) :=
∫

Ω

1
2 |u(x)|2 − u(x)dx .

(
u ∈ C0

pw(Ω) ?
)

(1.3.2.1)

Employing the reasoning of Section 1.2.1.3 we conclude that the space of piecewise continuous functions

might provide the right setting for treating this functional. Now we follow the above recipe, which suggests

that we choose

V0 := {v : Ω 7→ R integrable:
∫

Ω
|v(x)|2 dx < ∞} (1.3.2.2)
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Definition 1.3.2.3. Space L2(Ω) → Def. 0.3.2.27

The function space defined in (1.3.2.2) is the space of square-integrable functions on Ω and denoted

by L2(Ω).

It is a normed space with norm

(
‖v‖0 :=

)
‖v‖L2(Ω) :=

(∫

Ω
|v(x)|2 dx

)1/2

.

✎ Notation: L2(Ω)
← superscript “2”, because square in the definition of norm ‖·‖0

We point out the straightforward inclusion C0
pw(Ω) ⊂ L2(Ω).

Remark 1.3.2.4 (Mathematical notion of L2(Ω)) Here, we do not make an attempt to provide a rigorous

mathematical definition of L2(Ω). This is done the measure theory and involves quotient spaces; a rather

accessible presentation is given in [RUD86a]. y

EXAMPLE 1.3.2.5 (Boundary conditions and L2(Ω)) Recall that in Ex. 1.3.0.1 we had intended to use

a space of functions vanishing at the endpoints of the interval. Yet, no boundary conditions are implied by

Eq. (1.3.2.2): It seems that L2(]0, 1[) is not the right space for the minimization problem of Ex. 1.3.0.1,

because apparently the boundary conditions have been forgotten.

Now we pursue a more sophisticated reasoning,

which will finally tell us that fixing the values in

x = 0, 1 for functions in L2(]0, 1[) does not make

sense.

Consider u ∈ C0([0, 1]) and try to impose any

boundary values u0, u1 ∈ R by “altering” u in the

following way:

(red parts of the graph belong to ũn.)
Fig. 42

u0

u1

u(x)

u(x)

10

ũn(x) :=





u(x) + (1− nx)(u0 − u(0)) , for 0 ≤ x ≤ 1
n ,

u(x) , for 1
n < x < 1− 1

n ,

u(x)− n(1− 1
n − x)(u1 − u(1)) , for 1− 1

n < x ≤ 1 ,

n ∈ N .

ũn(0) = u0 , ũn(1) = u1 , ‖ũn − u‖2
L2(]0,1[) =

1
3n (u0 + u1 − u(0)− u(1))→ 0 for n→ ∞ .

Measured in the L2-norm, tiny perturbations of a function u ∈ L2(]0, 1[) can make it attain any

value at x = 0 and x = 1:

∀u ∈ L2(]0, 1[) , ∀ua, ub ∈ R, ∀ǫ > 0: ∃ũ ∈ L2(]0, 1[):

{
ũ(0) = ua, ũ(1) = ub,

‖u− ũ‖L2(]0,1[)≤ ǫ .

Mathematically, this means that the space V =
{

u ∈ L2(]0, 1[) : u(0) = u(1) = 0
}

is not closed

in the energy space L2(]0, 1[), meaning that there exist functions which are not in V but which can

be arbitrarily well approximated by elements of V. Ex. 1.3.0.1 makes this concrete: the solution is

approximated better and better but it is never reached because the trial space is too small.
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Boundary conditions cannot be imposed in L2(Ω) !

This example has taught us an important lesson:

Energy-based function spaces and boundary conditions

Given a function space V0 “defined” through its energy norm, only boundary conditions compatible

with the energy norm can be imposed on functions ∈ V0.

y

1.3.3 Supplement: Quadratic Minimization Problems on Hilbert Spaces

In this section we let you catch a glimpse of the rigorous functional analytic treatment of minimization prob-

lems on infinite dimensional spaces. We review the mathematical arguments that confirm the existence of

minimizers of quadratic minimization problems

u∗ = argmin
v∈V0

J(v) , J(v) = 1
2a(v, v)− ℓ(v) , (1.3.3.1)

where

✦ V0 is a real vector space, possibly of infinite dimension,

✦ a : V0×V0 → R is a symmetric positive definite bilinear form (→ Def. 1.2.3.26) inducing an energy

norm (→ Def. 1.2.3.34) ‖·‖
a

on V0,

✦ ℓ : V0 → R is a linear form, which is bounded with respect to the energy norm (→ Def. 1.2.3.41).

§1.3.3.2 (Completeness of normed vector spaces) The entire theory is based on a key matching

condition for the space V0 and its energy norm. To express this, we need a fundamental concept from

analysis:

Definition 1.3.3.3. Cauchy sequence → [STRLN09]

Consider a normed vector space V0 equipped with a norm ‖·‖ (→ Def. 0.3.1.10). A sequence

(vn)n∈N of vectors of V0 is called a Cauchy sequence, if

∀ǫ> 0: ∃n = n(ǫ) ∈ N: ‖vk − vm‖ ≤ ǫ ∀k, m ≥ n .

Clearly, every convergent sequence is a Cauchy sequence. The converse is true only in exceptional

cases, which are of enormous importance in mathematical modelling, however, which has earned them a

particular name.

Definition 1.3.3.4. Complete normed vector spaces and Hilbert spaces → [WER95]

A normed vector space is called complete, if every Cauchy sequence converges. A complete

normed vector space is known as Banach space.

If the norm of a complete normed vector space V0 is an energy norm (→ Def. 1.2.3.34) associated

with a symmetric positive definite bilinear form (→ Def. 1.2.3.26), then V0 is called a Hilbert space.

y

EXAMPLE 1.3.3.5 (Important Banach spaces and Hilbert spaces)
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• The real numbers R equipped with the modulus as norm | · | are complete.

• Every finite dimensional normed real or complex vector space is complete.

• For every bounded (⇒ compact) domain Ω ⊂ Rd the space C0(Ω), equipped with the supremum

norm ‖·‖∞ (→ Def. 0.3.2.25) is a Banach space [WER95].

• For any domain Ω ⊂ Rd the function space L2(Ω) (→ Def. 1.3.2.3) is a Hilbert space [WER95].

y

The main existence theorem is given next.

Theorem 1.3.3.6. Existence of minimizers in Hilbert spaces

On a real Hilbert space V0 with (energy) norm ‖·‖
a

for any ‖·‖
a
-bounded linear functional ℓ : V0 →

R the quadratic minimization problem

u∗ = argmin
v∈V0

J(v) , J(v) := 1
2‖v‖

2
a
− ℓ(v) , (1.3.3.7)

has a unique solution.

Proof. Owing to the assumptions on ℓ, by Lemma 1.2.3.38 the quadratic functional J is bounded from

below. Hence, there is a minimizing sequence (vn)n∈N, which satisfies

|J(vn)− µ| ≤ 1/n where µ := inf
v∈V0

J(v) . (1.3.3.8)

Write a(·, ·) for the bilinear form spawning ‖·‖
a
, that is ‖v‖2

a
= a(v, v). From (bi-)linearity it is immediate

that

1
2(J(v) + J(w))− J(1

2(v + w)) = 1
4

(
a(v, v) + a(w, w)− 2a(1

2(v + w), 1
2(v + w))

)
= 1

8‖v− w‖2
a

.

This implies

1
8‖vk − vm‖2

a
≤ 1

2( J(vk)︸ ︷︷ ︸
≤µ+1/k

+ J(vm)︸ ︷︷ ︸
≤µ+1/m

)− J(1
2(vk + vm))︸ ︷︷ ︸
≥µ

(1.3.3.8)

≤ 1
2(1/k + 1/m) ≤ max{1/k, 1/m} .

Hence, (vn)n∈N is a Cauchy sequence (→ Def. 1.3.3.3) and

u∗ := lim
n→∞

vn ∈ V0

exists and satisfies

J(u∗) = inf
v∈V0

J(v) .

In other words, the limit u∗ is a global minimizer of J on V0. Its uniqueness is established by the arguments

of the proof of Thm. 1.2.3.30.
✷

Remark 1.3.3.9 (Quadratic minimization problem in L2(Ω)) Since L2(Ω) is a Hilbert space, the previ-

ous theorem guarantees that the quadratic minimization problem for the quadratic functional from (1.3.2.1)

on the function space V0 = L2(Ω), Ω :=]0, 1[, possesses a solution.
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Conversely, though the minimization problem of Ex. 1.3.0.1 was considered on the Banach space V0 :=
C0

0([0, 1]), the bilinear form in the quadratic functional failed to be related to the (supremum) norm, which

rules out the application of Thm. 1.3.3.6. y

§1.3.3.10 (Completion of a normed vector space) The powerful Thm. 1.3.3.6 is available only in Hilbert

spaces, which makes it very desirable to put quadratic minimization problems in a Hilbert space setting.

Surprisingly, this can always be achieved by the procedure of completion.

Completion can be used to “fill the pores” of any normed vector spaces with potential limits of Cauchy

sequences so that the resulting augmented space is complete in the sense of Def. 1.3.3.4.

Theorem 1.3.3.11. Completion of a normed vector space

For every normed vector space V0 there is a unique (up to isomorphism) complete vector space Ṽ0

that contains V0 as a dense subspace.

Definition 1.3.3.12. Dense subset

A subset U ⊂ V0 is said to be dense in a normed vector space V0, if every element of V0 is the limit

of a sequence in U.

EXAMPLE 1.3.3.13 (R by completion of Q) Every reader has seen an example of completion already

in secondary school: the real numbers R are obtained by “completing” the rational numbers Q. This

amounts to “filling the gaps in Q”. Thus many equations that fail to possess a solution in Q can be solved

in R, see § 1.3.1.1. y

Hence, when tackling the minimization of a quadratic functional (1.3.3.1) with positive definite bilinear form

a on a vector space V0, we can first switch to the completion Ṽ0 of V0 with respect to the energy norm

‖·‖
a

induced by a. Then, Thm. 1.3.3.6 will ensure the existence of a unique minimizer in Ṽ0.

What will we get when we apply the completion trick to the quadratic functional of Ex. 1.3.0.1, for which

V0 = C0
0([0, 1]) and a(u, v) =

∫ 1
0 u(x)v(x)d)x? The next theorem gives an answer.

Theorem 1.3.3.14. L2(Ω) by completion

For any domain Ω ⊂ Rd the completion of C0
0(Ω) equipped wit the norm ‖·‖L2(Ω) is the function

space L2(Ω).

As a consequence, when we resort to completion in Ex. 1.3.0.1, we end up in L2(]0, 1[) and inevitably

loose the boundary conditions, cf. Ex. 1.3.2.5, but get the unique solution u ≡ 1. y

Remark 1.3.3.15 (Boundary conditions and density) In Ex. 1.3.2.5 we have seen that we cannot impose

boundary conditions in L2(Ω). This is evident from Thm. 1.3.3.14: Since functions that vanish on the

boundary ∂Ω are dense in L2(Ω), any v ∈ L2(Ω) can be approximated to arbitrary precision (in L2(Ω)-
norm, of course) by a function, which is zero on ∂Ω. This was, what the sequence of functions ũn, n ∈ N,

did in Ex. 1.3.2.5. y

1.3.4 The Sobolev Space H1(Ω)

Now consider a quadratic minimization problem for the functional, c.f. (1.2.3.1b),

J(u) :=
∫

Ω

1
2‖grad u‖2 − f (x)u(x)dx

(
u ∈ C1

pw,0(Ω) ?
)

(1.3.4.1)
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What is the natural function space for this minimization problem? According to Section 1.2.1.3 we should

opt for C1
pw(Ω). Now, again, we follow the above recipe, which suggests that we choose

V0 := {v : Ω 7→ R integrable: v = 0 on ∂Ω,
∫

Ω
| grad v(x)|2 dx < ∞} (1.3.4.2)

Definition 1.3.4.3. Sobolev space H1
0(Ω)

The space of integrable functions on Ω with square integrable gradient that vanish on the boundary

∂Ω,

V0 := {v : Ω 7→ R integrable: v = 0 on ∂Ω,
∫

Ω
| grad v(x)|2 dx < ∞} , (1.3.4.2)

is the Sobolev space H1
0(Ω) with norm

|v|H1(Ω) :=

(∫

Ω
‖grad v‖2 dx

)1/2

.

✎ Notation: H1
0(Ω)

← superscript “1”, because first derivatives occur in norm

← subscript “0”, because zero on ∂Ω

✎ Notation: Alternative notations for H1-norm: |v|H1(Ω) = |v|1,Ω = |v|1, where the last notation is

used, when the domain is clear from the context.

Note: |·|H1(Ω) is the energy norm (→ Def. 1.2.3.34) associated with the bilinear form in the quadratic

functional J from (1.3.4.1), cf. (1.2.3.3).

Remark 1.3.4.4 (Boundary conditions in H1
0(Ω)) The example Ex. 1.3.2.5 conveyed why imposing

boundary conditions on functions in L2(Ω) does not make sense.

Yet, in (1.3.4.2) zero boundary conditions are required for v ! This might not be possible and Def. 1.3.4.3

might be wrong.

We focus on Ω =]0, 1[ as in Ex. 1.3.2.5 and wonder, whether any boundary values in x = 0, 1 can be

imposed on a function with a negligible change of its |·|H1(Ω)-norm. We try to reason parallel to Ex. 1.3.2.5.

Consider u ∈ C1([0, 1]) and attempt to enforce boundary values u0, u1 ∈ R by “altering” u, see Fig. 42:

as before, for n ∈ N set

ũn(x) =





u(x) + (1− nx)(u0 − u(0)) , for 0 ≤ x ≤ 1
n ,

u(x) , for 1
n < x < 1− 1

n ,

u(x)− n(1− 1
n − x)(u1 − u(1)) , for 1− 1

n < x ≤ 1 .

ũn(0) = u0 , ũn(1) = u1 , BUT |ũn − u|2H1(]0,1[) = n(u0 + u1 − u(0)− u(1))→ ∞ for n→ ∞ .

Enforcing boundary values at x = 0 and x = 1 cannot be done without significantly changing the

“energy” of the function: Def. 1.3.4.3 seems to be correct.

There is an important lesson to be learned from Ex. 1.3.2.5 and the above considerations for H1(]0, 1[):
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Boundary conditions in energy spaces

The energy norm that generated an energy function space also determines what kind of boundary

conditions can be imposed on functions in that space.

y

§1.3.4.6 (Point evaluation functional) At this point let us view the point-load case of Ex. 1.2.3.44 from the

perspective of Sobolev spaces. The function v that we examined in that example satisfies |v|H1(Ω) < ∞,

though it is unbounded. We conclude, that H1(Ω) “contains” unbounded functions! An equivalent state-

ment is made in the following corollary:

Corollary 1.3.4.7. Point evaluation on H1(Ω)

For d ≥ 2 and a domain Ω ⊂ Rd the point evaluation v 7→ v(y), y ∈ Ω, is not a continuous

linear form on H1(Ω).

y

Often the solutions of the quadratic minimization problems (1.2.3.1b), (1.2.3.1c) are to satisfy non-zero

boundary conditions. They belong to an affine space u0 + V0 for a suitable offset function u0, see

§ 1.2.3.12. This affine space will be contained in a larger Sobolev space, which arises from H1
0(Ω)

by dispensing with the requirement “v = 0 on ∂Ω”.

Definition 1.3.4.8. Sobolev space H1(Ω)

The Sobolev space

H1(Ω) := {v : Ω 7→ R integrable:
∫

Ω
| grad v(x)|2 dx < ∞}

is a normed function space with norm

‖v‖2
H1(Ω) := ‖v‖2

0 + |v|2H1(Ω) .

H1(Ω) is the “maximal function space” on which both JS,JM and JE from (1.2.3.1b), (1.2.3.1c) are

defined.

It is the natural function space, in which to state the energy minimization problems (1.2.3.1a)–(1.2.3.1b):

Section 1.2.1.2

[1D, string]
u∗ = argmin

v∈H1(]a,b[)
v(a)=ua v(b)=ub

b∫

a

1
2 σ(x)

∣∣∣∣
dv

dx
(x)

∣∣∣∣
2

− f (x)v(x)dx

︸ ︷︷ ︸
=JS(u), see (1.2.1.18)

(1.3.4.9a)

Section 1.2.1.2

[2D membrane]
u∗ = argmin

v∈H1(Ω)
v=g on ∂Ω

∫

Ω

1
2 σ(x)‖grad v(x)‖2 − f (x)v(x)dx

︸ ︷︷ ︸
=:JM(u), see (1.2.1.19)

, (1.3.4.9b)

Section 1.2.2

[2D, 3D electrostatics]
u∗ = argmin

v∈H1(Ω)
v=U on ∂Ω

∫

Ω

1
2(ǫ(x) grad v(x)) · grad v(x)dx

︸ ︷︷ ︸
=:JE(u), see (1.2.2.6)

. (1.3.4.9c)
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In all these cases we have V0 = H1
0(Ω) (Ω =]a, b[ for (1.3.4.9a)).

Supplement 1.3.4.10 (H1(Ω) through completion) In § 1.3.3.10 we elaborated how one can build a

complete function space as suitable setting for a quadratic minimization problem. In fact, the heuristic

construction of H1
0(Ω) and H1(Ω) given above fits this technique.

Theorem 1.3.4.11. Sobolev spaces by completion

For domains as described in § 1.2.1.14 the function space H1(Ω) can be obtained through com-

pletion (→ Thm. 1.3.3.11) of C∞(Ω) equipped with the norm ‖·‖H1(Ω).

For any domain Ω ⊂ Rd, the space H1
0(Ω) arises from the completion of C∞

0 (Ω) under the norm

‖·‖H1(Ω).

As a consequence, the spaces of smooth functions C∞(Ω) and C∞
0 (Ω) are dense (→ Def. 1.3.3.12) in

H1(Ω) and H1
0(Ω), respectively.

y

Remark 1.3.4.12 (|·|H1(Ω)-seminorm) Note that |·|H1(Ω) alone is no longer a norm on H1(Ω), because

for v ≡ const obviously |v|H1(Ω) = 0, which violates (N1) of Def. 0.3.1.10. This justifies the part ‖·‖2
0 in

the above definition of the norm ‖·‖H1(Ω).

Yet, |·|H1(Ω) still satisfies (N2) and (N3) and qualifies as a semi-norm on H1(Ω). y

§1.3.4.13 (Quadratic minimization problems on H1(Ω)) Lemma 1.2.3.38 tells us that a quadratic

functional with s.p.d. bilinear form a is bounded from below, if its linear form ℓ satisfies the continuity

(1.2.3.39). Now, we discuss this for the quadratic functional J from (1.3.4.1) in lieu of JM and JE.

J(u) :=
∫

Ω

1
2‖grad u‖2 − f (x)u(x)dx u ∈ H1

0(Ω) . (1.3.4.1)

This quadratic functional J involves the linear form

ℓ(u) :=
∫

Ω
f (x)u(x)dx . (1.3.4.14)

The load function f need not be continuous, integrability is enough. Hence, f ∈ C0
pw(Ω) should be

admitted.

Crucial question: Is ℓ as given in (1.3.4.14) continuous on H1
0(Ω) ?

m (c.f. (1.2.3.39))

∃C > 0: |ℓ(u)| ≤ C|u|H1(Ω) ∀u ∈ H1
0(Ω) ? .

(Again, recall Lemma 1.2.3.38 to appreciate the importance of this continuity: it is a necessary condition

for the existence of a minimizer.)

To answer the question, we use the Cauchy-Schwarz inequality (CSI) of Thm. 0.3.1.19 in its special version

for integrals

∣∣∣∣
∫

Ω
u(x)v(x)dx

∣∣∣∣ ≤
(∫

Ω
|u(x)|2 dx

)1/2(∫

Ω
|v(x)|2 dx

)1/2

= ‖u‖L2(Ω)‖v‖L2(Ω) (1.3.4.15)
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for all u, v ∈ L2(Ω), which implies

|ℓ(u)| =

∣∣∣∣∣∣

∫

Ω

f (x)u(x)dx

∣∣∣∣∣∣
≤


∫

Ω

| f (x)|2dx




1/2

∫

Ω

|u(x)|2dx




1/2

= ‖ f ‖0︸︷︷︸
<∞

‖u‖0 . (1.3.4.16)

This reduces the problem to bounding ‖u‖0 in terms of |u|H1(Ω).

Theorem 1.3.4.17. First Poincaré-Friedrichs inequality

If Ω ⊂ Rd, d ∈ N, is bounded, then

‖u‖0 ≤ diam(Ω) ‖grad u‖0 ∀u ∈ H1
0(Ω) .

Proof. The proof employs a powerful technique in the theoretical treatment of function spaces: exploit

density of smooth functions (which, by itself, is a deep result).

It boils down to the insight:

In order to establish inequalities between continuous functionals on Sobolev spaces of functions on Ω

it often suffices to show the target inequality for smooth functions in C∞
0 (Ω) or C∞(Ω), respectively.

✎ notation: C∞
0 (Ω) =̂ smooth functions with (compact) support inside Ω

In the concrete case (note the zero boundary values inherent in the definition of H1
0(Ω)) we have to

establish the first Poincaré-Friedrichs inequality for functions u ∈ C∞
0 (Ω) only.

1D: For the sake of lucidity the proof is first elaborated for d = 1, Ω = [0, 1]. It merely employs elementary

results from calculus throughout, namely the Cauchy-Schwarz inequality (1.3.4.15) and the fundamental

theorem of calculus [STRLN09],

∫ b

a
F′(x)dx = F(b)− F(a) . (1.3.4.18)

We infer that

∀u ∈ C∞
0 ([0, 1]): u(x) = u(0)︸︷︷︸

=0

+

x∫

0

du

dx
(τ)dτ , 0 ≤ x ≤ 1 .

‖u‖2
0 =

1∫

0

∣∣∣∣∣∣

x∫

0

du

dx
(τ)dτ

∣∣∣∣∣∣

2

dx
(1.3.4.15)

≤
1∫

0




x∫

0

1 dτ ·
x∫

0

∣∣∣∣
du

dx
(τ)

∣∣∣∣
2

dτ


dx

≤
1∫

0




1∫

0

1 dτ ·
1∫

0

∣∣∣∣
du

dx
(τ)

∣∣∣∣
2

dτ


dx ≤

1∫

0

∣∣∣∣
du

dx
(τ)

∣∣∣∣
2

=
∥∥∥ du

dx

∥∥∥
2

0
.

Taking the square root finishes the proof in 1D.
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Fig. 43

Ω

a1 b1

a2

b2

2D: In two dimensions we put the bounded domain

Ω into its bounding box:

ai = inf{xi,
[ x1

x2

]
∈ Ω} ,

bi = sup{xi,
[ x1

x2

]
∈ Ω} ,

i = 1, 2 .

Exploiting the density of smooth compactly supported functions in H1
0(Ω), we pick u ∈ C∞

0 (Ω) and de-

fine

ũ(x) =

{
u(x) for x ∈ Ω ,

0 outside Ω .

It goes without saying that ũ ∈ C∞
0 (R2). By the fundamental theorem of calculus (1.5.1.6) applied in

x1-direction, we get

u(
[ x1

x2

]
) = u(

[ a1
x2

]
)︸ ︷︷ ︸

=0

+
∫ x1

a1

∂ũ

∂x1

([
ξ

x1

])
dξ ∀x :=

[ x1
x2

]
∈ R2 .

We apply this integral representation formula and then the Cauchy-Schwarz inequality (1.3.4.15):

∫

Ω
|u(x)|2 dx =

∫

Ω

∣∣∣∣
∫ x1

a1

1· ∂ũ

∂x1

([
ξ

x1

])
dξ

∣∣∣∣
2

dx

≤
∫ b2

a2

∫ b1

a1

|x1 − a1|
∫ x1

a1

∣∣∣∣
∂ũ

∂x1

([
ξ

x2

])∣∣∣∣
2

dξ dx1 dx2

≤ |b1 − a1|
∫ b2

a2

∫ b1

a1

∫ a2

a1

∥∥∥grad u(
[

ξ
x2

]
)
∥∥∥

2
dx1 dξ dx2

≤ |b1 − a1|2
∫ b2

a2

∫ b1

a1

∥∥∥grad u(
[

ξ
x2

]
)
∥∥∥dξ dx2 = |b1 − a1|2

∫

Ω
‖grad u(x)‖2 dx .

Thus, we have shown ‖u‖L2(Ω) ≤ |b1 − a1||u|H1(Ω).

The elementary proof in higher dimensions can be found in [HAC92] and in even greater generality in

[EVA98].
✷

Corollary 1.3.4.19. Admissible loading/source functions linear 2nd-order elliptic problems

If f ∈ L2(Ω), then ℓ(v) :=
∫

Ω
f (x)v(x)dx is a continuous linear functional on H1

0(Ω).

As in Section 1.2.3.4 in this lemma “continuity” has to be read as

∃C > 0: |ℓ(u)| ≤ C|u|H1(Ω) ∀u ∈ H1
0(Ω) . (1.2.3.39)
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How to “work with” Sobolev spaces

Most concrete results about Sobolev spaces boil down to relationships between their norms. The

spaces themselves remain intangible, but the norms are very concrete and can be computed and

manipulated as demonstrated above.✓
✒

✏
✑

Do not be afraid of Sobolev spaces!

It is only the norms that matter for us, the ‘spaces” are irrelevant!

Sobolev spaces = “concept of convenience”: the minimization problem seeks its own function space.

Minimization problem

u = argmin
v:Ω 7→R

J(v)

“Maximal” function space

on which J is defined

(Sobolev space)

“seek”↔ in more rigorous terms: completion with respect to energy norm, see § 1.3.3.10. y

Remark 1.3.4.21 (Justification for teaching Sobolev spaces) Then, why do you bother me with these

uncanny “Sobolev spaces” after all ?

✦ Anyone involved in CSE must be able to understand mathematical publications on numerical

methods for PDEs, Those regularly resort to the concept of Sobolev spaces to express their findings

Fig. 44

✦ The statement that a function belongs to a certain Sobolev space can be regarded as a concise way

of describing quite a few of its essential properties.

The next §will elucidate the second point. y

§1.3.4.22 (Built-in continuity of functions in H1(Ω)) For the elastic membrane models of Section 1.2.1

it was clear that the displacement functions must be continuous. In fact, this property is also built into the

energy space H1(Ω):
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Theorem 1.3.4.23. Compatibility conditions

for piecewise smooth functions in H1(Ω)

Let Ω be partitioned into sub-domains Ω1 and

Ω2. A function u that is continuously differen-

tiable in the closures (∗) of both sub-domains,

belongs to H1(Ω), if and only if u is continu-

ous on Ω.

(*) means existence of continuous derivatives on Ω1

and Ω2, respectively, that is, “up to the boundary

of the sub-domains”, cf. Rem. 1.2.1.13.
Fig. 45

Ω1

Ω2

Ω

The proof of this theorem requires the notion of weak derivatives that will not be introduced in this course.

y

EXAMPLE 1.3.4.24 (Piecewise linear functions (not) in H1
0(]0, 1[)) We conclude from Thm. 1.3.4.23

applied in 1D that a “tent function” belongs to H1, whereas jumps are not allowed for functions in this

space:

u

x

11/2

u ∈ H1
0(]0, 1[)

u

x

11/2

u 6∈H1
0(]0, 1[)

y

§1.3.4.25 (Piecewise smooth functions contained in Sobolev space) From Thm. 1.3.4.23 we conclude

that the function spaces we opted for in Section 1.2.1.3 were not far off:

• C1
pw([a, b]) ⊂ H1(]a, b[) and C1

pw,0([a, b]) ⊂ H1
0(]a, b[),

• but C0
pw([a, b]) 6⊂ H1(]a, b[).

On more general domains Ω ⊂ Rd still holds true

• C1
pw(Ω) ⊂ H1(Ω) and C1

pw,0(Ω) ⊂ H1
0(Ω) ,

• but C0
pw(Ω) 6⊂ H1(Ω) .

If you are feeling uneasy when dealing with Sobolev spaces, do not hesitate to resort to the following

“mental substitutions”:

L2(Ω) → C0
pw(Ω) , H1

0(Ω) → C1
pw,0(Ω) .

y
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Thm. 1.3.4.23 also provides a simple recipe for computing the norm |u|H1(Ω) of a piecewise C1-function

that is continuous in all of Ω.

Corollary 1.3.4.26. H1-norm of piecewise smooth functions

Under the assumptions of Thm. 1.3.4.23 we have for a continuous, piecewise smooth function

u ∈ C0(Ω)

|u|2H1(Ω) = |u|2H1(Ω1)
+ |u|2H1(Ω2)

=
∫

Ω1

| grad u(x)|2 dx +
∫

Ω2

| grad u(x)|2 dx .

Thus, if u ∈ C1
pw(Ω), we can evaluate all energy functionals from (1.2.3.1) by ‘piecewise differentiation”

followed by integration of the resulting discontinuous function.

EXAMPLE 1.3.4.27 (Non-differentiable function in H1
0(]0, 1[)) We demonstrate the computation of the

norm |·|H1(Ω) for the non-smooth function in Ex. 1.3.4.24, which is an example for a u ∈ H1
0(Ω)]0, 1[,

which is not globally differentiable. d = 1, Ω =]0, 1[:

“Tent function” u(x) =

{
2x for 0 < x < 1/2 ,

2(1− x) for 1/2 < x < 1 .

u

x
11/2

Compute |u|2H1(Ω) =
∫ 1

2

0
|u′(x)|2 dx +

∫ 1

1
2

|u′(x)|2 dx = 4 < ∞ .

y

Cor. 1.3.4.26 makes it possible to talk about the gradient of a function, which is only piecewise continuously

differentiable.

Definition 1.3.4.28. Weak/generalized gradient

The weak/generalized gradient of a function u ∈ C1
pw(Ω), still denoted by grad u, is a function in

C0
pw(Ω) ⊂ L2(Ω), which agrees with the classical gradient of u, wherever the function is differen-

tiable.

Note the point values of the weak/generalized gradient grad u are not defined at kinks of ∈ C1
pw(Ω). This

does not matter, because point values are not meaningful for functions in L2(Ω) anyway.

Review question(s) 1.3.4.29 (Sobolev spaces)

(Q1.3.4.29.A) Which of the following functions belong to the spaces L2(]− 1, 1[) and H1(]− 1, 1[), re-

spectively?

1. f1(x) = |x|,
2. f2(x) = log |x|,
3. f3(x) = sgn(x),

4. f4(x) =
√
|x|+ x.

(Q1.3.4.29.B) Explain the statement
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For bounded domains Ω ⊂ Rd the restriction of functions to the boundary ∂Ω makes sense

in H1(Ω)

in terms of H1(Ω)-norms of functions.

(Q1.3.4.29.C) Show that the point evaluation v 7→ v(1
2) is an unbounded linear functional on L2(]0, 1[).

(Q1.3.4.29.D) For a bounded domain Ω ⊂ Rd, d = 1, 2, which of the spaces C0
pw(Ω), C1

pw(Ω), and

C2
pw(Ω) is/is not contained in L2(Ω) and H1(Ω), respectively?

(Q1.3.4.29.E) Let Ω ⊂ R2 be a bounded domain. Define the Sobolev space fitting the quadratic mini-

mization problem for the functional

J(v) :=
∫

Ω
|div v(x)|2 + ‖v‖2 dx , v = (C1(Ω))2 .

(Q1.3.4.29.F) Which Sobolev space, call it W, fits minimization problems for the functional

J(v) :=
∫

Ω
|d · grad u|2 + u2 dx , v ∈ C∞(Ω) ,

where d ∈ R2 is a fixed unit vector, and Ω =]0, 1[2.

• Give an example of a function belonging to W, but not to H1(Ω).

• Show that H1(Ω) ⊂W.

(Q1.3.4.29.G) [Square-root functions] For which α ∈ R does the function uα(x) := xα, 0 < x < 1,

belong to L2(]0, 1[)?

Hint. Since ua ∈ C∞(]0, 1[) all you need to check is whether ‖ua‖L2(]0,1[) < ∞.

△

1.4 Linear Variational Problems

In this section we derive an equivalent reformulation for quadratic minimization problems (→ Def. 1.2.3.11)

with symmetric positive definite bilinear forms.

EXAMPLE 1.4.0.1 (Recasting quadratic minimization problems on RN) As in Ex. 1.2.3.5 we consider

a quadratic functional (→ Def. 1.2.3.2) on the vector space V0 := RN, N ∈ N:

J(~η) := 1
2~η
⊤A~η−~β

⊤
~η , A = A⊤ ∈ RN,N , ~β,~η ∈ RN , (1.4.0.2)

where the matrix A is symmetric and positive definite (→ Def. 0.3.1.17).

Clearly, a quadratic functional like J is a smooth function RN → R. Thus from calculus we know that

every minimizer of J must be a zero of its gradient:

~µ ∈ argmin
~η∈RN

J(~η) ⇔ grad J(~µ) = 0 .

Let us compute the gradient of J at~µ ∈ RN based on its definition

grad J(~µ)⊤~η = lim
t→0

J(~µ + t~η)− J(~µ)

t
= ~µ⊤A~η−~β

⊤
~η ,
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where we used the symmetry of A. We have arrived at

grad J(~µ) = A~µ−~β ∈ RN , ~µ ∈ RN . (1.4.0.3)

The zeros of grad J can be found by solving a linear system of equations (LSE):

grad J(~µ) = 0 ⇔ A~µ = ~β .

For s.p.d. A the linear system of equations A~µ = ~β has a unique solution. In addition, Thm. 1.2.3.43 tells

us that this J will possess a unique minimizer. We can finally conclude that for J from (1.4.0.2)

~µ ∈ argmin
~η∈RN

J(~η) ⇔ A~µ = ~β . (1.4.0.4)

y

1.4.1 Quadratic Variational Calculus

Again abstracting the quadratic energy functionals summarized in § 1.2.3.7, we consider the quadratic

functional (→ Def. 1.2.3.2)

J(v) := 1
2a(v, v)− ℓ(v) + c , v ∈ V , (1.2.3.3)

on a real vector space V, with a bilinear form a : V ×V → R and a linear form ℓ : V → R. In light of

the theory developed in Section 1.2.3.2 and Section 1.2.3.4 we take for granted conditions that ensure

existence and uniqueness of minimizers for J:

Assumption 1.4.1.1.

We assume that

• a is symmetric positive definite (→ Def. 0.3.1.16), and

• that (maybe only on a subspace V0 ⊂ V) ℓ is bounded w.r.t. the energy norm ‖·‖
a

(→
Def. 1.2.3.34) induced by a(·, ·), cf. Lemma 1.2.3.38.

Inspired by the quadratic minimization problems of (1.2.3.1) we also consider a subspace V0 ⊂ V and,

for some g ∈ V, the associated affine space V̂ := g + V0. Then we can state the (slightly generalized)

quadratic minimization problem (→ Def. 1.2.3.11)

Seek u∗ ∈ V̂: u∗ = argmin
v∈V̂

J(v) . (1.4.1.2)

In passing, we remark that existence and uniqueness of u∗ is guaranteed provided that V0 equipped with

the norm ‖·‖
a

is a Hilbert space, see Rem. 1.3.3.9.

The following formal argument is at the heart of an area of mathematics known as variational calculus,

which studies extremal problems on infinite-dimensional function spaces.

Assume that u∗ ∈ V̂ solves (1.4.1.2) and, for arbitrary v ∈ V0 define the function.

ϕv : R → R , ϕv(t) = J(u∗ + tv) , t ∈ R . (1.4.1.3)

Invoking the bilinearity and symmetry of a and the linearity of ℓ, we easily find

ϕv(t) =
1
2 t2a(v, v) + ta(u∗, v) + 1

2a(u∗, u∗)− tℓ(v)− ℓ(u∗) , t ∈ R .
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Note that ϕv is a quadratic polynomial, its graph a parabola. By definition of u∗ the function ϕv has a

global minimum at t = 0. Since ϕv is continuously differentiable, we conclude that

dϕv

dt
(0) = a(u∗, v)− ℓ(v) = 0 . (1.4.1.4)

This will hold for any v ∈ V0 and we end up with a new form of equation, a linear variational equation,

u∗ solves (1.4.1.2) ⇒ a(u∗, v) = ℓ(v) ∀v ∈ V0 . (1.4.1.5)

Definition 1.4.1.6. (Generalized) Linear variational problem (LVP)

With V a vector space, V̂ ⊂ V an affine space (→ Def. 0.3.1.1), and V0 ⊂ V the associated sub-

space the equation

u ∈ V̂: a(u, v) = ℓ(v) ∀v ∈ V0 , (1.4.1.7)

is called a (generalized) linear variational problem, if

• a : V ×V0 7→ R is a bilinear form, that is, linear in both arguments (→ Def. 0.3.1.4),

• and ℓ : V0 → R is a linear form (→ Def. 0.3.1.3).

The attribute “generalized” has been addded, because (1.4.1.7) is posed on an affine space. Strictly

speaking, a “linear variational problem” should be posed on a vector space.

Terminology related to variational problems: V̂ is called the trial space

V0 is called the test space

A key result concerns the equivalence of (generalize) quadratic minimization problems and linear varia-

tional problems.

Theorem 1.4.1.8. Equivalence of quadratic minimization problem and linear variational prob-

lem

For a (generalized) quadratic functional J(v) = 1
2a(v, v)− ℓ(v) + c on a vector space V and with

a symmetric positive definite bilinear form a : V ×V → R are equivalent:

(i) The quadratic minimization problem for J has unique minimizer u∗ ∈ V̂ over the affine sub-

space V̂ = g + V0, g ∈ V.

(ii) The linear variational problem

u ∈ V̂: a(u, v) = ℓ(v) ∀v ∈ V0 ,

has a unique solution u∗ ∈ V̂.

Proof. The arguments for the direction (i)⇒ (ii) have been given above.

To conclude (ii)⇒ (i) first observe, that by the bilinearity of a

a(u∗, v) = ℓ(v) ∀v ∈ V0 ⇒ J(w)− J(u∗) = 1
2a(w, w)− ℓ(w)−− 1

2a(u∗, u∗) + ℓ(u∗)

= 1
2a(w, w)− ℓ(w− u∗︸ ︷︷ ︸

∈V0

)− 1
2a(u∗, u∗)

= 1
2a(w, w)− a(u∗, w− u∗) + 1

2a(u∗, u∗)

= 1
2a(w− u∗, w− u∗) = ‖w− u∗‖2

a
,
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for every w ∈ Ŵ. Since, a is positive definite, this means that J(w)− J(u∗) ≥ 0 for all w ∈ V̂: u∗ is a

global minimizer of J.
✷

Graphical summary:

Quadratic minimization problem (1.4.1.2) ⇐⇒ Linear variational problem (1.4.1.7)

§1.4.1.9 (Offset function technique for linear variational problems) We use the notations of

Def. 1.4.1.6. If V̂ = g + V0 for some g ∈ V, then it is easy to convert the linear variational problem

into an equivalent one for which trial space and test space coincide:

u∗ ∈ V̂: a(u∗, v) = ℓ(v) ∀v ∈ V0 ⇔ u ∈ V0: a(u + g, v) = ℓ(v) ∀v ∈ V0

u ∈ V0: a(u, v) = ℓ(v)− a(g, v) ∀v ∈ V0 .

We end up with a linear variatational problem with modified linear functional v 7→ ℓ(v)− a(g, v) posed

on the trial and test space V0. Its solution u ∈ V0 allows to recover u∗ by adding the offset function

u∗ = u + g.

Recall that this transformation of a linear variational problem just reflects the transformation of a quadratic

minimization problem presented in § 1.2.3.12. y

1.4.2 Linear Second-Order Elliptic Variational Problems

Based on Thm. 1.4.1.8 and the results of § 1.2.3.7, it is straightforward to state the linear variational

problems arising from the (generalized) quadratic minimization problems (1.2.3.1a)–(1.2.3.1c).

• For the elastic string model the minimization problem

u = argmin
v∈H1(]a,b[)

v(a)=ua v(b)=ub

b∫

a

1
2 σ(x)

∣∣∣∣
dv

dx
(x)

∣∣∣∣
2

− f (x)v(x)dx , (1.3.4.9a)

gives rise to

u ∈ H1(]a, b[) ,

u(a) = ua, u(b) = ub

:

b∫

a

σ(x)
du

dx
(x)

dv

dx
(x)dx =

b∫

a

f (x)v(x)dx ∀v ∈ H1
0(]a, b[) .

(1.4.2.1)

• For the 2D membrane model we can convert

u = argmin
v∈H1(Ω)
v=g on ∂Ω

∫

Ω

1
2 σ(x)‖grad v(x)‖2 − f (x)v(x)dx ,

into the linear variational problem

u ∈ H1(Ω) ,

u = g on ∂Ω
:
∫

Ω

σ(x) grad u(x) · grad v(x)dx =
∫

Ω

f (x)v(x) ∀v ∈ H1
0(Ω) . (1.4.2.2)

• The electrostatic field problem

u = argmin
v∈H1(Ω)

v=U on ∂Ω

∫

Ω

1
2(ǫ(x) grad v(x)) · grad v(x)dx , (1.3.4.9c)
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yields the linear variational problem

u ∈ H1(Ω) ,

u = U on ∂Ω
:
∫

Ω

(ǫ(x) grad u(x)) · grad v(x)dx = 0 ∀v ∈ H1
0(Ω) . (1.4.2.3)

All the linear variational problems (1.4.2.1), (1.4.2.2), and (1.4.2.3) are structurally similar and fit the fol-

lowing form:

A generic second-order linear elliptic Dirichlet problem (∗) in variational form seeks

u ∈ H1(Ω) ,

u = g on ∂Ω
:
∫

Ω

(α(x) grad u(x)) · grad v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0(Ω) . (1.4.2.4)

Symmetric uniformly positive definite material tensor α : Ω 7→ Rd,d

(∗) The attribute “Dirichlet” refers to a setting, in which the function u is prescribed on the entire boundary.

This is a particular type of boundary condition, which will be studied in detail in Section 1.7.

Some more explanations and terminology:

✦ Ω ⊂ Rd, d = 2, 3 =̂ (spatial) domain, bounded, piecewise smooth boundary

✦ g ∈ C0(∂Ω) =̂ boundary values (Dirichlet data)

✦ f ∈ C0
pw(Ω) =̂ loading function, source function

✦ α : Ω 7→ Rd,d =̂ material tensor, stiffness function, diffusion coefficient

(uniformly positive definite, bounded → Def. 1.2.2.9):

∃0 < α− ≤ α+: α−‖z‖2 ≤ (α(x)z) · z ≤ α+‖z‖2 ∀z ∈ Rd , (1.4.2.5)

for almost all x ∈ Ω.

Putting (1.4.2.4) into the abstract framework of Def. 1.4.1.6 we find

V0 = H1
0(Ω) , V̂ = {v ∈ H1(Ω) : v|∂Ω = g} ,

a(w, v) =
∫

Ω

(α(x) grad w(x)) · grad v(x)dx , (1.4.2.6)

ℓ(v) =
∫

Ω

f (x)v(x)dx . (1.4.2.7)

1.4.3 Stability of Second-Order Elliptic Linear Variational Problems

“Stability” asks the question whether for a mathematical model small changes in the input data cause only

small changes of the solution. This is a central concern, because data will usually have been obtained

by measurement or some approximation and are inevitably tainted by “small” errors. If those triggered

massive changes of the solution, the latter would not be useful.
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We address “stability” for a generic second-order linear elliptic Dirichlet problem with a scalar-valued co-

efficient

u ∈ H1(Ω) ,

u = g on ∂Ω
:
∫

Ω

(α(x) grad u(x)) · grad v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0(Ω) .

The highlighted quantities qualify as data, namely

• the continuous function g ∈ C0(∂Ω) providing the (Dirichlet) boundary conditions,

• the uniformly positive and bounded coefficient function

α : Ω→ R , ∃0 < α− ≤ α+: α− ≤ α(x) ≤ α+ for almost all x ∈ Ω , (1.4.3.1)

• and the right-hand side source/loading function f : Ω→ R.

We use norms to give a meaning to “small”. Concretely, we use

• the energy norm (→ Def. 1.2.3.34) ‖v‖2
a

:=
∫

Ω
grad v⊤α grad v dx to measure changes of the

solution,

• the L2(Ω)-norm for right-hand side source/loading functions, as suggested by Cor. 1.3.4.19,

• and the supremum norm

‖α‖L∞(Ω) := sup
x∈Ω

‖α(x)‖2 , (1.4.3.2)

for coefficient functions.

(The appropriate norm for boundary data is a delicate issue and will not be discussed here.)

The perturbed linear variational problem is

ũ ∈ H1(Ω)

ũ = g on ∂Ω
:
∫

Ω

((α + δα)(x) grad ũ(x) · grad v(x)dx =
∫

Ω

( f + δ f )(x)v(x)dx ∀v ∈ H1
0(Ω) ,

(1.4.3.3)

with “small” perturbation functions δα and δ f ∈ L2(Ω), satisfying

‖δα‖L∞(Ω) ≤
1

2
α− . (1.4.3.4)

This condition makes sure that the bilinear form in (1.4.3.3) is still positive definite. Writing ‖·‖
a

for the

energy norm induced by the bilinear form of (1.4.3), the bound (1.4.3.4) also implies

1
2‖v‖

2
a
≤
∫

Ω
(α + δα)(x)‖grad v‖2 dx ≤ 3

2‖v‖
2
a
∀v ∈ H1(Ω) . (1.4.3.5)

In a first step we subtract both variational problems, using the same test function v ∈ H1
0(Ω) for both:

∫

Ω
(α + δα)(x) grad ũ(x) · grad v(x)dx =

∫

Ω
( f + δ f )(x)v(x)dx ,

−
∫

Ω
(α(x) grad u(x)) · grad v(x)dx =

∫

Ω
f (x)v(x)dx ,

∫
Ω
(α + δα) grad δu · grad v dx +

∫
Ω

δα grad u · grad v dx =
∫
Ω

δ f v dx ,
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where we wrote δu := ũ− u∈ H1
0(Ω) for the perturbation of the solution.

Idea: Choose the special test function v := δu

∫

Ω
(α + δα)‖grad δu‖2 dx =

∫

Ω
δ f δu dx−

∫

Ω
δα grad u · grad δu dx .

Next, apply the estimate (1.4.3.5) to the left-hand side, which yields

1
2‖δu‖2

a
≤
∣∣∣∣
∫

Ω
δ f δu dx

∣∣∣∣+
∣∣∣∣
∫

Ω
δα grad u · grad δu dx

∣∣∣∣ .

Then use the Cauchy-Schwarz inequality for integrals

∫

Ω
u(x)v(x)dx ≤

(∫

Ω
|u(x)|2 dx

)1/2(∫

Ω
|v(x)|2 dx

)1/2

= ‖u‖L2(Ω)‖v‖L2(Ω) (1.3.4.15)

twice and pull δα out from the integral:

1
2‖δu‖2

a
≤ ‖δ f ‖L2(Ω)‖δu‖L2(Ω) + ‖δα‖L∞(Ω)|u|H1(Ω)|δu|H1(Ω) .

The L2(Ω)-norm of δu can be dealt with by the Poincaré-Friedrichs estimate from Thm. 1.3.4.17:

1
2‖δu‖2

a
≤
(

diam(Ω)‖δ f ‖L2(Ω) + ‖δα‖L∞(Ω)|u|H1(Ω)

)
|δu|H1(Ω) .

Finally we use |v|2H1(Ω) ≤ 1/α−‖v‖2
a

from (1.4.3.5) and end up with

‖δu‖
a
≤ 2√

α−

(
diam(Ω)‖δ f ‖L2(Ω) + ‖δα‖L∞(Ω)|u|H1(Ω)

)
. (1.4.3.6)

This is stability in the chosen norms: the energy norm of the perturbation of the solution decreases

proportional to the size (in suitable norms) of the perturbations in the data. In quantitative terms

‖δu‖
a
. max{‖δ f ‖L2(Ω), ‖δα‖L∞(Ω)} , (1.4.3.7)

with . indicating constants independent of the perturbations.

Review question(s) 1.4.3.8 (Linear variational problems)

(Q1.4.3.8.A) State the linear variational problem equivalent to the minimization of

J : R2 → R , J(x) := ‖x‖2
2 + x1 + x2 + 1 .

(Q1.4.3.8.B) Let V be a vector space, a : V ×V → R a symmetric positive definite bilinear form and

ℓ : V → R a linear form bounded w.r.t. to the energy norm ‖·‖
a

induced by a(·, ·). Assuming that the

quadratic functional

J(v) := 1
2a(v, v)− ℓ(v) + c , v ∈ V , (1.2.3.3)

has a minimizer, what is the minimal value of J expressed

• in terms of ‖u‖
a
, or

• in terms of ℓ(u),

1. Second-Order Scalar Elliptic Boundary Value Problems, 1.4. Linear Variational Problems 93



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

where u ∈ V satisfies

a(u, v) = ℓ(v) ∀v ∈ V .

(Q1.4.3.8.C) For a bounded domain Ω ⊂ R2 consider the second-order linear elliptic Dirichlet problem

u ∈ H1
0(Ω):

∫

Ω

(α(x) grad u(x)) · grad v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0(Ω) .

with uniformly positive definite α : Ω→ R2,2.

1. For what source functions f will the right-hand side functional still be continuous on H1
0(Ω)? (Give

a reasonably general sufficient condition.)

2. Let u ∈ H1
0(Ω) be the solution of the above variational problem. For which norms introduced in

Section 1.3 (� ∈ {H1(Ω), L2(Ω)}) does the estimate

‖u‖� ≤ C‖ f ‖�
hold with a constant C > 0 independent of f ?

△

1.5 Equilibrium Models: Boundary Value Problems

We have not seen a genuine partial differential equation yet. This is intended and meant to convey the

crucial message that energy minimization over a Sobolev space is the essence of second-order elliptic

boundary value problems, not the way, in which they can be written as a partial differential equation. Nev-

ertheless, in this section we are going to extract (partial) differential equations from the linear variational

problems obtained in Section 1.4.2.

1.5.1 Two-Point Boundary Value Problems

We revisit the pinned elastic string linear variational problem

u∗ ∈ H1(]a, b[) ,

u(a) = ua, u(b) = ub

:

b∫

a

σ(x)
du

dx
(x)

dv

dx
(x)dx =

b∫

a

f (x)v(x)dx ∀v ∈ H1
0(]a, b[) , (1.4.2.1)

with a uniformly positive stiffness coefficient function σ ∈ C0
pw([a, b]) and f ∈ L2(]a, b[).

§1.5.1.1 (Extra smoothness requirements) The conditions σ ∈ C0
pw([a, b]) and f ∈ L2(]a, b[) were the

smoothness requirements sufficient for a well-defined variational formulation (1.4.2.1). However, in order

to tease out a differential equation from (1.4.2.1) we have to demand extra smoothness of coefficients and

solution:

Assumption 1.5.1.2. Smoothness required for two-point boundary value problems

The following smoothness requirements have to be satisfied

u ∈ C2([a, b]) , σ ∈ C1([a, b]) , f ∈ C0([a, b]) . (1.5.1.3)

It is instructive to contrast (1.5.1.3) with the weaker smoothness requirements for the variational approach

expressed by classical function spaces, cf. § 1.3.4.25. For (1.4.2.1) we merely demanded

u ∈ C1
pw([a, b]) , σ ∈ C0

pw([a, b]) , f ∈ C0
pw([a, b]) . (1.5.1.4)
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y

§1.5.1.5 (Integration by parts in 1D) The main tool to obtain a differential equation from (1.4.2.1) is

integration by parts (IBP) . Remember that integration by parts is a consequence of the fundamental

theorem of calculus [STRLN09], which tells us that for F ∈ C1
pw([a, b]), a, b ∈ R,

∫ b

a
F′(x)dx = F(b)− F(a) , (1.5.1.6)

where ′ stands for differentiation w.r.t x. This formula is combined with the product rule [STRLN09]

F(x) = f (x) · g(x) ⇒ F′(x) = f ′(x)g(x) + f (x)g′(x) : (1.5.1.7)
∫ b

a
f ′(x)g(x) + f (x)g′(x)dx = f (b)g(b)− f (a)g(a) ,

which amounts to the integration by parts formula in 1D

b∫

a

f (ξ)v′(ξ)dξ = −
b∫

a

f ′(ξ)v(ξ)dξ + ( f (b)v(b)− f (a)v(a))︸ ︷︷ ︸
boundary terms

∀ f , v ∈ C1
pw([a, b]) . (1.5.1.8)

Why “boundary terms”? Well, {a, b} is the boundary of ]a, b[.

§1.5.1.9 (A two-point boundary value problem by integration by parts in 1D) We first tackle the linear

variational equation in one spatial dimension:

u ∈ H1
0(]a, b[):

∫ b

a
u′(x)v′(x)dx =

∫ b

a
f (x) v(x)dx ∀v ∈ H1

0(Ω)]a, b[ . (1.5.1.10)

We invoke Ass. 1.5.1.2: Assuming u ∈ C2([a, b]) as in Ass. 1.5.1.2, we resort to the one-dimensional

integration by parts formula (1.5.1.8) on [a, b] to establish

b∫

a

u′(x)v′(x)dx = u′(b)v(b)− u′(a)v(a)︸ ︷︷ ︸
=0, since v(a)=v(b)=0

−
b∫

a

u′′(x)v(x)dx . (1.5.1.11)

Thus, if u ∈ C2
pw([a, b]) the linear variational problem (1.5.1.10) can equivalently be stated as

u ∈ C2([a, b]): −
b∫

a

u′′(x)v(x)dx =

b∫

a

f (x) v(x)dx ∀v ∈ H1
0(]a, b[) ,

m

u ∈ C2([a, b]):

b∫

a

(
−u′′(x)− f (x)

)
v(x)dx = 0 ∀v ∈ H1

0(]a, b[) . (1.5.1.12)

Again Ass. 1.5.1.2 will be important: Assuming f ∈ C0([a, b]), we conclude that −u′′ − f ∈ C0([a, b]).
The final step relies on the following mathematical result.

Lemma 1.5.1.13. fundamental lemma of the calculus of variations

Let f ∈ C0
pw([a, b]), −∞ < a < b < ∞, satisfy

∫ b

a
f (ξ)v(ξ)dξ = 0 ∀v ∈ C∞([a, b]), v(a) = v(b) = 0 .

Then f ≡ 0.
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As H1
0(]a, b[) contains all compactly supported smooth functions, (1.5.1.12) implies the differential equa-

tion −u′′ = f on ]a, b[. The condition u ∈ H1
0(]a, b[) gives the boundary conditions u(a) = u(b) = 0.

Eventually, we have found that a solution u ∈ C2([a, b]) of (1.5.1.10) (for f ∈ C0([a, b])) also solves the

two-point boundary value problem

−u′′ = f in ]a, b[ , u(a) = u(b) = 0 . (1.5.1.14)

In this case d = 1 the differential equation is an ordinary differential equation, which can be regarded as

a “PDE in 1D”. y

§1.5.1.15 (General second-order elliptic two-point Dirichlet problem) Under Ass. 1.5.1.2 the more

general variational problem

u∗ ∈ H1(]a, b[) ,

u(a) = ua, u(b) = ub

:

b∫

a

σ(x)
du

dx
(x)

dv

dx
(x)dx =

b∫

a

f (x)v(x)dx ∀v ∈ H1
0(]a, b[) , (1.4.2.1)

is amenable to the very same integration-by-parts trick. We pick v ∈ C1
0([a, b]) ⊂ H1

0(]a, b[) and apply

(1.5.1.8) on the left-hand side, observing that boundary terms can be dropped, because v(a) = v(b) = 0.

This leads to

b∫

a

− d

dx

(
σ(x)

du

dx
(x)

)
v(x)dx =

b∫

a

f (x)v(x)dx ⇔
b∫

a

(
f (x) +

d

dx

(
σ(x)

du

dx
(x)

))

︸ ︷︷ ︸
⇒ =0

v(x)dx = 0 .

This has to hold true for all v ∈ C1
0([a, b]) and thanks to Lemma 1.5.1.13 we conclude that f (x) +

d
dx

(
σ(x) du

dx (x)
)
= 0. Taking into account the fixed values of u in the points a, b, we arrive at the two-point

boundary value problem

− d

dx

(
σ(x)

du

dx
(x)

)
= f in ]a, b[ , u(a) = ua , u(b) = ub . (1.5.1.16)

In mathematics, fixed values of the solution in the endpoint of the interval are usually referred to as Dirich-

let boundary conditions. y

1.5.2 Integration by parts in higher dimensions

The main objective of this section is to extend the extraction from linear variational problems of a differential

equations to domains Ω ⊂ Rd, d ≥ 1 (usually d = 2, 3). To that end, we employ integration by parts, but

now we need integration by parts in higher dimensions! We try to follow the derivation in § 1.5.1.5.

Indeed, there is a product rule in higher dimensions and it involves functions and vector fields, see

[STRLN09]

Lemma 1.5.2.1. General product rule

For all j ∈ (C1(Ω))d, v ∈ C1(Ω) holds

div(jv) = v div j + j · grad v in every point of Ω . (1.5.2.2)

Supplement 1.5.2.3 (Divergence operator, see also § 0.3.2.19) From § 0.3.2.19 recall the definition of

the following first-order differential operator, see also [STRLN09]:

1. Second-Order Scalar Elliptic Boundary Value Problems, 1.5. Equilibrium Models: Boundary Value Problems 96



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

The divergence of a C1-vector field j = [ f1, . . . , fd]
⊤ : Ω 7→ Rd is

div j(x) :=
∂ f1

∂x1
(x) + · · ·+ ∂ fd

∂xd
(x) , x ∈ Ω .

A widely used “∇-notation” for the divergence is: (∇ · j)(x) := div j(x).

The importance of the divergence for the mathematical modelling of flow fields will be explained in Chap-

ter 12.
y

Proof. (of Lemma 1.5.2.1) The indentity (1.5.2.2) follows from the definition of div and grad and the

standard product rule for partial derivatives.
✷

A truly fundamental result from differential geometry provides a multidimensional analogue of the funda-

mental theorem of calculus:

Theorem 1.5.2.4. Gauss’ theorem → [STRLN09]

With n : ∂Ω 7→ Rd denoting the exterior unit normal vectorfield on ∂Ω and dS indicating integration

over a surface, we have

∫

Ω
div j(x)dx =

∫

∂Ω
j(x) · n(x)dS(x) ∀j ∈ (C1

pw(Ω))d . (1.5.2.5)

Note that in (12.2.1.19) the fact that the vector fields and its divergence are integrated allows to relax

smoothness requirements and state the formula for piecewise smooth vectorfields.

Proof. ➊ By linearity and the possibility to renumber coordinate directions, it is sufficient to show Gauss’

theorem for vector fields of the special form

j(x) = f (x)ed , f ∈ C1(Ω) , ed =̂ d-th coordinate vector .

Then, writing n(x) = [n1(x), . . . , nd(x)]⊤ for the exterior unit normal of Ω, (12.2.1.19) becomes

∫

Ω

∂ f

∂xd
(x)dx =

∫

∂Ω
f (x)nd(x)dS(x) . (1.5.2.6)

➋ Next, we assume that Ω is “graph-type”. It is the

volume between the graph of a function and a coor-

dinate plane:

Ω =

{[
x̂

xd

]
∈ Rd : x̂ ∈ Ω̂, 0 < xd < g(x̂)

}
,

for a suitable cross-section domain Ω̂ ⊂ Rd−1 and

a real-valued function g ∈ C1(Ω̂), g(x̂) ≥ 0 for all

x̂ ∈ Ω̂. The boundary of that domain is composed of

three different parts:

∂Ω = Γtop ∪ Γbot ∪ Γside ,

Fig. 46

x̂

xd Γtop

Γbot

Γside

1. Second-Order Scalar Elliptic Boundary Value Problems, 1.5. Equilibrium Models: Boundary Value Problems 97

http://en.wikipedia.org/wiki/Divergence_theorem


NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

with

Γtop :=

{[
x̂

g(x̂)

]
: x̂ ∈ Ω̂

}
,

Γbot :=

{[
x̂

0

]
: x̂ ∈ Ω̂

}
,

Γside :=

{[
x̂

xd

]
: x̂ ∈ ∂Ω̂, 0 < xd < g(x̂)

}
.

(i) For all x ∈ Γside we have nd(x) = 0, because Γside is parallel to the xd-direction. Thus, this part of

the boundary does not contribute to the right-hand side of (1.5.2.6).

(ii) The exterior unit normal vector at Γbot is
[

0
−1

]
, which means nd(x) = −1 for x ∈ Γbot, so that

∫

Γbot

f (x)nd(x)dS(x) = −
∫

Ω̂
f

([
x̂

0

])
dx̂ .

(iii) To elaborate the contribution of Γtop we have to remember the formula for the surface integral of a

function ϕ : Σ→ R

∫

Σ
ϕ(x)dS(x) :=

∫

Ω̂
ϕ(Φ(x̂))

√
det
(
DΦ(x̂)⊤DΦ(x̂)

)
dx̂ , (0.3.2.34)

whence Σ = Φ(Ω̂) for a continuous function Φ : Ω̂→ Rd, the “parameterization” of Σ. In the

present particular situation we have

Φ(x̂) :=

[
x̂

g(x̂)

]
, x̂ ∈ Ω̂ ,

with DΦ(x̂) =

[
Id−1

grad g(x̂)⊤

]
∈ Rd,d−1 , x̂ ∈ Ω̂ ,

DΦ(x̂)⊤DΦ(x̂) = Id−1 + grad g(x̂) grad g(x̂)⊤ ,

det
(
DΦ(x̂)⊤DΦ(x̂)

)
= 1 + ‖grad g(x̂)‖2

2 .

The exterior normal vector at Γtop can most easily be computed by switching to an implicit repre-

sentation

Γtop :=

{
x =

[
x̂

xd

]
∈ Rd : F(x) := g(x̂)− xd = 0, x̂ ∈ Ω̂

}
.

Then − grad F(x) is parallel to n(x) for x ∈ Γtop:

n(x) ‖ grad F(x) =

[
grad g(x̂)
−1

]
, x =

[
x̂

g(x̂)

]
, x̂ ∈ Ω̂

⇒ n(x) =
1√

1 + ‖grad g(x̂)‖2
2

[− grad g(x̂)
1

]
.

Combining all these formulas yields a “lucky cancellation”,

∫

Γtop

f (x)nd(x)dS(x) =
∫

Ω̂
f

([
x̂

g(x̂)

])
1√

1 + ‖grad g(x̂)‖2
2

√
1 + ‖grad g(x̂)‖2

2 dx̂

=
∫

Ω̂
f

([
x̂

g(x̂)

])
dx̂ .
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Adding all contributions we get

∫

∂Ω
f (x)nd(x)dS(x) =

∫

Γtop

f (x)nd(x)dS(x) +
∫

Γbot

f (x)nd(x)dS(x) +

[∫

Γside

f (x)nd(x)dS(x)

]

=
∫

Ω̂
f

([
x̂

g(x̂)

])
− f

([
x̂

0

])
dx̂ .

Next, apply the fundamental theorem of calculus (1.5.1.6) in xd-direction:

∫

∂Ω
f (x)nd(x)dS(x) =

∫

Ω̂

g(x̂)∫

0

∂ f

∂xd

([
x̂

xd

])
dxd dx̂ =

∫

Ω

∂ f

∂xd
(x)dx ,

and this proves Gauss’ theorem for the special “graph-type” domain Ω.

➌ Assume that a generic domain Ω ⊂ Rd is partitioned into N ∈ N subdomains,

Ω = Ω1 ∪Ω2 ∪ · · · ∪ΩN , Ωℓ ∩Ωk = ∅ for ℓ 6= k .

Write ni : ∂Ωi → Rd for the exterior unit vector field of Ωi. We point out that on ∂Ωℓ ∩ ∂Ωk 6= ∅ the two

involved exterior unit normals have opposite orientation: nℓ = −nk. Thus we find a cancellation of interior

normal fluxes

N

∑
ℓ=1

∫

∂Ωℓ

j(x) · nℓ(x)dS(x) =
∫

∂Ω
j(x) · n(x)dS(x) for j ∈ (C0(Ω))d .

It goes without saying that every “reasonable” domain Ω ⊂ Rd can be partitioned into finitely many small

“graph-type” sub-domains Ω1, . . . , ΩN, for which we have already established Gauss’ theorem. Hence,

∫

Ω
div j(x)dx =

N

∑
ℓ=1

∫

Ωℓ

div j(x)dx
➋
=

N

∑
ℓ=1

∫

∂Ωℓ

j(x) · n(x)dS(x) =
∫

∂Ω
j(x) · n(x)dS(x) .

This finishes the proof.
✷

Theorem 1.5.2.7. Green’s first formula

For all vector fields j ∈ (C1
pw(Ω))d and functions v ∈ C1

pw(Ω) holds

∫

Ω
j · grad v dx = −

∫

Ω
div j v dx +

∫

∂Ω
j · n v dS . (1.5.2.8)

Note that the dependence on the integration variable x is suppressed in the formula (12.2.3.2) to achieve

a more compact notation. The first Green formula could also have been written as

∫

Ω
j(x) · (grad v)(x)dx = −

∫

Ω
(div j)(x) v(x)dx +

∫

∂Ω
j(x) · n(x) v(x)dS(x) . (12.2.3.2)

Proof. (of Thm. 1.5.2.7) The assertions follows straightforwardly from Lemma 1.5.2.1 and Thm. 1.5.2.4.
✷
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1.5.3 Linear Scalar Second-order Elliptic Partial Differential Equations

Now we apply Green’s first formula to the variational problem

u ∈ H1(Ω) ,

u = g on ∂Ω
:
∫

Ω

(α(x) grad u(x)) · grad v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0(Ω) , (1.4.2.4)

posed on a domain Ω ⊂ Rd, d = 1, 2, 3, which covers the membrane model and electrostatics. As before,

it will be crucial to assume extra smoothness of coefficient, source and solution functions.

Assumption 1.5.3.1. Extra smoothness requirements

We assume that the coefficient, source and solution functions in (1.4.2.4) satisfy

α ∈
(

C1
pw(Ω)

)d,d
, f ∈ C0

pw(Ω) , u ∈ C2
pw(Ω) . (1.5.3.2)

Apply integration by parts through Green’s first formula (12.2.3.2) to the left-hand side of (1.4.2.4), where

the role of j is played by the vector field α grad u : Ω 7→ Rd.

∫

Ω

α(x) grad u(x)︸ ︷︷ ︸
=:j(x)

· grad v(x)dx

= −
∫

Ω

div(α(x) grad u(x)) v(x)dx +
∫

∂Ω

(α(x) grad u(x)) · n(x) v(x)dS(x) .

Plug this into the variational equation (1.4.2.4):

(1.4.2.4) −
∫

Ω

div(α(x) grad u(x)) v(x)dx

+
∫

∂Ω

(α(x) grad u(x)) · n(x) v(x)dS(x)

︸ ︷︷ ︸
=0 , since v|∂Ω=0

=
∫

Ω

f (x)v(x)dx ∀v ∈ C1
pw,0(Ω) ,

(1.5.3.3)

where we appeal to Ass. 1.5.3.1, because for these manipulations we need that u and α are sufficiently

smooth so that α grad u ∈ C1
pw(Ω). Moving everything to one side we get

∫

Ω

(div(α(x) grad u(x)) + f (x)) v(x)dx = 0 ∀v ∈ C1
pw,0(Ω) .

Now we can invoke the multidimensional analogue of the fundamental lemma of the calculus of variations,

see Lemma 1.5.1.13.

Lemma 1.5.3.4. Fundamental lemma of calculus of variations in higher dimensions

If f ∈ L2(Ω) satisfies

∫

Ω
f (x)v(x)dx = 0 ∀v ∈ C∞

0 (Ω) ,

then f ≡ 0 can be concluded.
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This permits us to obtain a partial differential equation from (1.5.3.3):

(1.4.2.4)

α grad u∈C1(Ω) Partial differential equations (PDE)

−div(α(x) grad u) = f in Ω .
(1.5.3.5)

Again, for the sake of brevity, the dependence of grad u = grad u(x), f = f (x) on x is not made

explicit in the PDE in (1.5.3.5).

Remark 1.5.3.6 (Laplace operator) If α agrees with a positive constant, by rescaling of (1.6.0.9) we can

achieve

−∆u = f in Ω . (1.5.3.7)

∆ = div ◦ grad =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

= Laplace operator

Terminology: (1.5.3.7) is called Poisson equation, ∆u = 0 in Ω is called Laplace equation y

Finally: PDE (1.5.3.5) + boundary conditions

−div(α(x) grad u) = f in Ω , u = g on ∂Ω . (1.5.3.8)

(1.5.3.8) = second-order elliptic BVP with Dirichlet boundary conditions Short name for BVPs of

the type (1.5.3.8): “Dirichlet problem”

Remark 1.5.3.9 (Extra smoothness requirement for PDE formulation) Same situation as in § 1.5.1.9,

cf. Ass. 1.5.3.1.

The transition from a variational equation to PDE requires

extra assumptions on smoothness of solution and coefficients.

For instance, in the case of (1.5.3.5) we demand div(α(x) grad u) ∈ C0(Ω), which is an implicit smooth-

ness requirement for u, provided that the smoothness of the coefficient σ is known.

Terminology: A function u ∈ C1(Ω), for which the partial differential equation (1.5.3.5) holds pointwise

in Ω and all derivatives exist in the sense of classical analysis, is called a classical solution.

y

Remark 1.5.3.10 (Equivalent formulations of elliptic BVPs) With (1.5.3.8) we have found a third way to

state a second order elliptic boundary value problem, beside the quadratic minimization problem and the

linear variational problem (1.4.2.4).

Minimization problem

(1.4.2)

u∗ = argmin
v∈V

J(v)

❶⇔

Variational problem

(1.4.2.4)

a(u, v) = ℓ(v) ∀v

❷⇒

BVP for PDE (1.5.3.8)

Lu = f in Ω ,

u|∂Ω = g .
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❶: Strict equivalence of a minimization problem for a quadratic functional and linear variational problem,

see Thm. 1.4.1.8.

❷: Statement as a boundary value problem for a (partial) differential equations hinges on extra smooth-

ness, see Rem. 1.5.3.9 above.

Terminology:





the minimization problem

m
the variational problem



 are called the weak form of the elliptic BVP,

The statement (1.5.3.8) is called the strong form of the elliptic BVP

A solution u of (1.5.3.8), for which all occurring derivatives are continuous and which

satisfies the PDE and the boundary conditions pointwise is called a classical solution

of the elliptic BVP.

Below, Thm. 1.8.0.9 will confirm our expectations: classical solutions of a boundary value problem will

also be weak solutions. y

EXAMPLE 1.5.3.11 (Taut membrane with free boundary values) Above we studied the case of a

membrane attached to a frame on all sides. Now let us consider frames with gaps, where the membrane

has a “free boundary”. In this setting we explore the entire passage from a minimization problem up to a

boundary value problem for a PDE.

Again we use the graph description of a taut mem-

brane’s shape from § 1.2.1.8 through a function u :
Ω 7→ R, see § 1.2.1.8.

But now the membrance is clamped only on a part

Γ0 ⊂ ∂Ω of its edge.

– – – : prescribed boundary values here (Γ0)

——-: “free boundary” (gap of frame)

Fig. 47 0
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Configuration space V̂ := {u ∈ H1(Ω): u|Γ0
= g} → Def. 1.3.4.8

The expression for the total potential energy remains the same as in (1.2.1.19):

JM(u) :=
∫

Ω

1
2 σ(x)‖grad u‖2 − f (x)u(x)dx . (1.2.1.19)

Next we we derive the variational formulation for the quadratic minimization problem for JM. The only

change compared to Section 1.4.1 concerns a modified test and trial space. The trial space is given by V̂,

the test space is the subspace associated with this affine space:

test space in variational formulation V0 := {u ∈ H1(Ω): u|Γ0
= 0}

Variational formulation, c.f. (1.4.2.2)

u ∈ H1(Ω) ,

u = g on Γ0
:
∫

Ω

σ(x) grad u(x) · grad v(x)dx =
∫

Ω

f (x)v(x) ∀v ∈ V0 . (1.5.3.12)
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Our goal is to extract a second-order boundary value problem from this variational formulation. To begin

with, an application of Green’s first formula (12.2.3.2) to (1.5.3.12) leads to

−
∫

Ω

(div(σ(x) grad u(x)) + f (x)) v(x)dx

+
∫

∂Ω\Γ0

((σ(x) grad u(x)) · n(x)) v(x)dS(x) = 0 ∀v ∈ V0 . (1.5.3.13)

Note that, unlike in (1.5.3.3), the boundary integral term cannot be dropped entirely, because the test

function v need not vanish on all of ∂Ω: v 6= 0 on ∂Ω \ Γ0 is possible!

In the sequel we assume (→ Rem. 1.5.3.9) extra smoothness u ∈ C2
pw(Ω), σ ∈ C1

pw(Ω)

How to deal with the boundary term in (1.5.3.13) ?

(Note that test functions in Lemma 1.5.3.4 vanish on ∂Ω.)

Idea: ➊ First restrict test function v to C∞
0 (Ω) ⊂ V

➣ Boundary term vanishes !

Then, apply Lemma 1.5.3.4.

PDE: div(σ(x) grad u(x)) + f (x) = 0 in Ω . (1.5.3.14)

➋ Then test (1.5.3.13) with generic v ∈ V0 and make use of (1.5.3.14). More precisely, plugging (1.5.3.14)

into (1.5.3.13) makes the domain integral
∫

Ω
. . . disappear and only boundary terms remain.

∫

∂Ω\Γ0

((σ(x) grad u(x)) · n(x)) v(x)dS(x) = 0 ∀v ∈ V0 . (1.5.3.15)

Thanks to the assumed smoothness of u and σ, u ∈ C2
pw(Ω) and σ ∈ C1

pw(Ω), we infer that

{x 7→ (σ(x) grad u(x)) · n(x)} ∈ C0(∂Ω). This paves the way for applying the following “boundary-

based” variant of Lemma 1.5.3.4.

Lemma 1.5.3.16. Fundamental lemma of calculus of variations on boundaries

Let Ω ⊂ Rd be a bounded domain with piecewise smooth boundary and Γ0 ⊂ ∂Ω a part of ∂Ω

with non-zero measure. If g ∈ C0(∂Ω) satisfies

∫

Γ0

g(x)v(x)dS(x) = 0 ∀v ∈ C∞(Ω) ,

then g vanishes on Γ0: g|Γ0
≡ 0.

In combination with (1.5.3.15) this lemma gives boundary conditions on Γ0:

(1.5.3.15)
Lemma 1.5.3.16 on ∂Ω \ Γ0

=⇒ (σ(x) grad u(x)) · n(x) = 0 on ∂Ω \ Γ0 . (1.5.3.17)

1. Second-Order Scalar Elliptic Boundary Value Problems, 1.5. Equilibrium Models: Boundary Value Problems 103



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

When removing pinning conditions on ∂Ω \ Γ0 the equilibrium conditions imply the (homogeneous)

Neumann boundary conditions (σ(x) grad u(x)) · n(x) = 0 on ∂Ω \ Γ0.

Boundary value problem (strong form) for membrane clamped at Γ0 ⊂ ∂Ω

−div(σ(x) grad u) = f in Ω ,
u = g on Γ0 ,

(σ(x) grad u) · n = 0 on ∂Ω \ Γ0 .
(1.5.3.18)

(1.5.3.18) = Second-order elliptic BVP with Neumann boundary conditions on ∂Ω \ Γ0 Short name

for BVPs of the type (1.5.3.18): “Mixed Neumann–Dirichlet problem” y

Review question(s) 1.5.3.19 (Boundary Value Problems for Equilibrium Models)

(Q1.5.3.19.A) State Gauss’ theorem for a vector field j ∈ (C1(Ω))d on a domain Ω ⊂ Rd.

(Q1.5.3.19.B) What is meant by the weak form and the strong form of an elliptic boundary value prob-

lem?

(Q1.5.3.19.C) What 2-point boundary value problem corresponds to the variational problem

u∗ ∈ H1(]a, b[) ,

u(a) = ua, u(b) = ub

:

b∫

a

du

dx
(x)

dv

dx
(x) + u(x)v(x)dx =

b∫

a

f (x)v(x)dx ∀v ∈ H1
0(]a, b[) ,

(Q1.5.3.19.D) State the 2-point boundary value problem satisfied by the solution of the variational equa-

tion

u ∈ H1(]0, 1[):
∫ 1

0
(1 + x2)

du

dx
(x)
(dv

dx
(x)− v(x)

)
dx = v(0) ∀v ∈ H1(]0, 1[) .

(Q1.5.3.19.E) Give an example for a linear variational problem on H1
0(]0, 1[) with continuous and s.p.d.

bilinear form and continuous right-hand side linear form whose solution will not be the solution of a

two-point boundary value problem in the sense of classical calculus.

Hint. “in the sense of classical calculus” implies that the solution u should at least be continuously

differentiable: u ∈ C1([0, 1]).

(Q1.5.3.19.F) State the boundary value problem satisfied by the solution of the following variational prob-

lem

u ∈ H1(Ω) ,

u = g on ∂Ω
:
∫

Ω

∂u

∂x1
(x)

∂v

∂x1
+ 2

∂u

∂x2

∂v

∂x2
dx = 0 ∀v ∈ H1

0(Ω) .

(Q1.5.3.19.G) For a bounded domain Ω ⊂ R3 state the second-order elliptic boundary value problem

associated with the linear variational problem

u ∈ H1(Ω):
∫

Ω
grad u(x) · grad v(x)dx =

∫

Ω
v(x)dx +

∫

∂Ω
v(x)dS(x) ∀v ∈ H1(Ω) .

(Q1.5.3.19.H) We consider the variational problem

u : Ω→ R2:
∫

Ω
div u(x)div v(x) + u(x) · v(x)dx =

∫

∂Ω

v(x) · n(x)dx ∀v : Ω→ R2 .

What is a suitable Sobolev space and what boundary value problem is satisfied by the vector field u?
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(Q1.5.3.19.I) Which boundary value problem does the minimizer of the functional

J(v) =
∫

Ω

∣∣∣∣
∂u

∂x1
(x)− ∂u

∂x2
(x)

∣∣∣∣
2

+ |u(x)|2 − ‖x‖u(x)dx , v ∈ H1
0(Ω) ,

solve? Here, Ω ⊂ R2 is a bounded domain.

(Q1.5.3.19.J) For a bounded domain Ω ⊂ R2 and a given vector field a ∈ C0(Ω, R2), we consider the

functional

J : H1
0(Ω)→ R, J(v) :=

∫

Ω

[
|a(x) · grad v(x)|2 − v(x)

]
dx . (1.5.3.20)

State the variational problem satisfied by a global minimizer of J.

(Q1.5.3.19.K) What is the “physical meaning” of the homogeneous Neumann boundary conditions in

−div(σ(x) grad u) = f in Ω ,
u = g on Γ0 ,

(σ(x) grad u) · n = 0 on ∂Ω \ Γ0 ,
(1.5.3.18)

if this boundary value problem is regarded as a mathematical model for the vertical displacement of a

taut membrane?

△

1.6 Diffusion Models (Stationary Heat Conduction)

Now we look at a class of physical phenomena, for which models are based on two building blocks

1. a conservation principle (of mass, energy, etc.),

2. a potential driven flux of the conserved quantity.

Mathematical modelling for these phenomena naturally involves partial differential equations in the first

steps, which are supplemented with boundary conditions. Hence, second-order elliptic boundary value

problems arise first, while variational formulations are deduced from them, thus reversing the order of

steps followed for equilibrium models in Section 1.2 through Section 1.5.

§1.6.0.1 (Heat flux) In order to keep the presentation concrete, the discussion will target heat conduction,

about which everybody should have a sound “intuitive grasp”.

✎ notation: Ω ⊂ R3: bounded open region occupied by solid object

(=̂ Ω→ computational domain)

Fundamental concept: heat flux, modelled by vector field j : Ω 7→ R3

Heat flux = power flux: [j] = W
m2
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Vector field j : Ω :=]0, 1[2 7→ R3
✄

normal vector n
Σ

Total heat flux through oriented surface Σ ⊂ R3

Power PΣ =
∫

Σ
j · n dS . (1.6.0.2)
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PΣ ([PΣ] = 1W): directed total power flowing through the oriented surface Σ per unit time. Note that the

sign of PΣ will change when flipping the normal of Σ! y

For stationary heat conduction it is clear that for every volume the total net power flux through its boundary

must be balanced by heat production or cooling inside. This is the effect of a heat source modeled by a

power density function f . The following balance law casts this into formulas.

★

✧

✥

✦

Conservation of energy

∫

∂V
j · n dS =

∫

V
f dx for all “control volumes” V . (1.6.0.3)

power flux through surface of V heat production inside V

f = heat source/sink ([ f ] = W
m3 ), f = f (x) and f can be discontinuous ( f ∈ C0

pw(Ω))

§1.6.0.4 (Flux law) A flow of heat is triggered by temperature differences. Now we aim to quantify this

relationship.

Intuition:
✦ heat flows from hot zones to cold zones

✦ the larger the temperature difference, the stronger the heat flow

Experimental evidence supports this intuition and, for many materials, yields the following quantitative

relationship that connects the heat flux in a point to the local change of temperature.✛

✚

✘

✙
Fourier’s law

j(x) = −κ(x) grad u(x) , x ∈ Ω . (1.6.0.5)

Meaning of the quantities:

j = heat flux ([j] = 1 W
m2 )

u = temperature ([u] = 1K)

κ = heat conductivity ([κ] = 1 W
Km )

(all functions of x ∈ Ω)

(1.6.0.5)⇒ Heat flow from hot to cold regions is linearly proportional to the gradient of the temperature u
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Some facts about the heat conductivity κ:

☞ • κ = κ(x) for non-homogeneous materials. (spatially varying heat conductivity)

• κ can even be discontinuous for composite materials.

• κ may be R3,3-valued (heat conductivity tensor).

The most general form of the heat conductivity (tensor) enjoys the very same properties as the dielectric

tensor introduced in Section 1.2.2:

From thermodynamic principles, cf. (1.2.2.8):

∃κ−,κ+ > 0: 0 < κ− ≤ κ(x) ≤ κ+ < ∞ for almost all x ∈ Ω . (1.6.0.6)

Terminology: (1.6.0.6) ↔ κ is bounded and uniformly positive, see Def. 1.2.2.9. y

§1.6.0.7 (Derivation of 2nd-order linear elliptic PDE) From (1.6.0.3), by Gauss’ theorem Thm. 1.5.2.4,

we deduce a the conservation law in integral form:
∫

V
div j(x)dx =

∫

V
f (x)dx for all “control volumes” V ⊂ Ω .

Now appeal to another version of the fundamental lemma of the calculus of variations, see Lemma 1.5.3.4,

this time sporting piecewise constant test functions.

local form of energy conservation:

div j = f in Ω . (1.6.0.8)

︸ ︷︷ ︸
Combine equations (1.6.0.8) & (1.6.0.5)

j = −κ(x) grad u (1.6.0.5)
+

div j = f (1.6.0.8)

−div(κ(x) grad u) = f in Ω . (1.6.0.9)

This is a linear scalar second order elliptic PDE satisfied by the unknown temperature u. It is exactly the

same type of equation that we found in Section 1.5.3, (1.5.3.5).

Review question(s) 1.6.0.10 (Stationary heat conduction)

(Q1.6.0.10.A) Why is Fourier’s law called a linear material law?

(Q1.6.0.10.B) What is the physical meaning of the right hand side function f of the stationary heat equa-

tion.

(Q1.6.0.10.C) Derive the partial differential equation governing stationary heat conduction by combining

the balance law ∫

∂V
j · n dS =

∫

V
f dx for all “control volumes” V ,

with Fourier’s law

j = −κ(x) grad u .

What physical quantities and properties are modelled by u, j, f , and κ?
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△

1.7 Boundary Conditions

In the model problems (1.3.4.9a)–(1.4.2.3) listed in the beginning of Section 1.4.2 we fixed the value of

the unknown function u : Ω 7→ R on the boundary ∂Ω, which gave rise to Dirichlet boundary conditions

in the strong form (1.5.3.8)

u = g on ∂Ω for given g ∈ C0(∂Ω) .

The only exception was the gappy frame setting for a membrane, see Ex. 1.5.3.11: There we found (ho-

mogeneous) Neumann boundary conditions in the strong form (1.5.3.18) of the boundary value problem:

(σ(x) grad u) · n = 0 on ∂Ω .

In this section we resume the discussion of boundary conditions and examine them for stationary heat

conduction, see previous section. This has the advantage that for this everyday physical phenomenon

boundary conditions have a very clear intuitive meaning.

Specifying boundary conditions is essential for obtaining a well-posed problem, because the plain (partial)

differential equation usually has infinitely many solutions. We need to impose boundary conditions in order

to obtain a unique solution. This is why we invariable study boundary value problems,

−div(κ(x) grad u) = f + boundary conditions ⇒ elliptic boundary value problem (BVP) ,

instead of aiming to “solve partial differential equations”.

Fundamental boundary conditions for 2nd-order elliptic BVPs

Boundary conditions on surface/boundary ∂Ω of Ω:

(i) Temperature u is fixed: with g : ∂Ω 7→ R prescribed

u = g on ∂Ω . (1.7.0.2)

Dirichlet boundary conditions

(ii) Heat flux j through ∂Ω is fixed: with h : ∂Ω 7→ R prescribed (n : ∂Ω 7→ R3 exterior unit

normal vectorfield) on ∂Ω

j · n = −h on ∂Ω . (1.7.0.3)

Neumann boundary conditions
(iii) Heat flux through ∂Ω depends on (local) temperature: with increasing function Ψ : R 7→ R

j · n = Ψ(u) on ∂Ω (1.7.0.4)

radiation boundary conditions

EXAMPLE 1.7.0.5 (Convective cooling (simple model)) Heat is carried away from the surface of the

body by a fluid at bulk temperature u0. A crude model assumes that the heat flux depends linearly on the
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temperature difference between the surface of Ω and the bulk temperature of the fluid.

j · n = q(u− u0) on ∂Ω , where 0 < q− ≤ q(x) ≤ q+ < ∞ for almost all x ∈ ∂Ω .

When combined with Fourier’s law (1.6.0.5), the convective cooling boundary conditions become

κ(x) grad u(x) + q(u(x)− u0) = 0 , x ∈ ∂Ω , (1.7.0.6)

and in this form they are known as Robin boundary conditions or impedance boundary conditions. y

EXAMPLE 1.7.0.7 (Radiative cooling (simple model)) A hot body emits electromagnetic radiation

(blackbody emission), which drains thermal energy. The radiative energy loss is roughly proportional to

the 4th power of the temperature difference between the surface temperature of the body and the ambient

temperature. This spawns a boundary condition of the type (1.7.0.4),

j · n = α|u− u0|(u− u0)
3 on ∂Ω , with α > 0 . (1.7.0.8)

We point out that this constitutes a non-linear boundary condition, because the heat flux j obviously does

not depend affine-linearly on the temperature u as in Ex. 1.7.0.5. y

Terminology: If g = 0 or h = 0, we talk about homogeneous Dirichlet or Neumann boundary conditions

Remark 1.7.0.9 (Mixed boundary conditions) Different boundary conditions can be prescribed on dif-

ferent parts of ∂Ω (→ mixed boundary conditions, cf. Ex. 1.5.3.11) y

EXAMPLE 1.7.0.10 (“Wrapped rock on a stove”) We consider a solid cylinder mounted on a heating

plate whose temperature can be controlled. The vertical walls of the cylinder are covered with an insulating

layer, which is assumed to be perfect. The top face is in contact with air and, thus, heat is transported

away by convective cooling, see Ex. 1.7.0.5.

Fig. 49

ΓN

ΓD

ΓR

Ω

• Non-homogeneous Dirichlet boundary conditions on ΓD ⊂ ∂Ω

• Homogeneous Neumann boundary conditions on ΓN ⊂ ∂Ω

• Convective cooling boundary conditions on ΓR ⊂ ∂Ω

Partition: ∂Ω = ΓD ∪ ΓN ∪ ΓR, ΓD, ΓN, ΓR mutually disjoint

This example demonstrates a setting, in which different boundary conditions are imposed on different

parts of the boundary of the computational domain. y

What we have just observed in the previous example reflects a general principle:

For second order elliptic boundary value problems exactly one boundary condition is needed on

every part of ∂Ω.

Remark 1.7.0.11 (Linear BVP) So far we have exclusively studied linear boundary value problems. What

does “linearity” mean in this context? What we have in mind is that

the solution mapping

(
f

g

)
7→ u for (1.6.0.9), (1.7.0.2) is linear.

This means that, if ui solves the Dirichlet problem with source function fi and Dirichlet data gi, i = 1, 2,

then u1 + u2 solves (1.6.0.9) & (1.7.0.2) for source f1 + f2 and boundary values g1 + g2. y

Review question(s) 1.7.0.12 (Boundary conditions)

(Q1.7.0.12.A) [Exterior unit normal vector field] Give the formula for the exterior unit normal vectorfield

n : ∂Ω→ R2 for Ω := {x ∈ R2 : ‖x‖ < 1
2}.
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(Q1.7.0.12.B) [Different types of boundary conditions] For the second-order elliptic partial differential

equation

−2
∂2u

∂x1
2
− ∂2u

∂x2
2
+ u = f in Ω ⊂ R3 .

give the formulas for

1. Dirichlet boundary conditions on ∂Ω,

2. Neumann boundary conditions on ∂Ω,

3. and impedance boundary conditions on ∂Ω.

(Q1.7.0.12.C) We learned that

For second order elliptic boundary value problems exactly one boundary condition is needed

on every part of ∂Ω.

Fig. 50

ΓN

ΓD

ΓR

Ω
Describe in your own words what this rule means for

the setting discussed in Ex. 1.7.0.10, see figure be-

side.

(Q1.7.0.12.D) [Stationary current model] In this quizz we consider stationary electric currents in a

conducting body occupying Ω ⊂ R3. In this model a vector field j : Ω → R3 describes the electric

current density (units [j] = A
m2 ) obeying Ohm’s law j = −σ grad u, which corresponds to Fourier’s law

(1.6.0.5). Here, u is the electric potential, cf. (1.2.2.2) (units [u] = V), and σ : Ω → R+ stands for the

uniformly positive conductivity (units [σ] = A
Vm ).

• What is the meaning of div j?

• Argue, why the normal component of j has to be continuous across any smooth surface.

• What is the physical meaning of Dirichlet and Neumann boundary conditions in the stationary

current model?

• What could be the physical interpretation of a Neumann boundary condition

j · n = −h on ∂Ω , (1.7.0.3)

for the stationary current model?

△

1.8 Second-Order Elliptic Variational Problems

In Section 1.2 through Section 1.5 we pursued the derivation:

Minimization problem

(e.g., (1.2.1.24), (1.2.2.16))

➣ Variational problem

(e.g., (1.4.2.3), (1.4.2.2))

➣ BVP for PDE

(e.g., (1.5.3.8), (1.5.3.18))

Now want to move in the opposite direction:
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PDE

(e.g. (1.6.0.9))
+

boundary conditions

(e.g., (1.7.0.2), (1.7.0.3), (1.7.0.4))
➣ variational problem

This can be done following a sequence of routine steps:

Formal transition from boundary value problem for PDE to variational problem

STEP 1: test PDE with smooth functions

(do not test, where the solution is known, e.g., on the boundary)

STEP 2: integrate over domain

STEP 3: perform integration by parts

(e.g. by using Green’s first formula, Thm. 1.5.2.7)

STEP 4: [optional] incorporate boundary conditions into boundary terms

STEP 5: Choose suitable function spaces (Sobolev spaces)

(Section 1.3.1: largest function space on which variational problem well posed)

EXAMPLE 1.8.0.2 (Variational formulation for heat conduction with Dirichlet boundary conditions)

Remember that Dirichlet boundary conditions mean prescribed values of the solution on the boundary

∂Ω. In the case of heat conduction this leads to the elliptic BVP

−div(κ(x) grad u) = f in Ω , u = g on ∂Ω . (1.8.0.3)

Here the solution is fixed on ∂Ω. Therefore, we test with functions that vanish on ∂Ω: “do not test where

the solution is known”.

STEP 1 & 2: test the PDE with v ∈ C∞
0 (Ω) (smooth functions vanishing on ∂Ω) and integrate over Ω

−
∫

Ω
div(κ(x) grad u) v dx =

∫

Ω
f v dx . (1.8.0.4)

Again note: v|∂Ω = 0 for test function, because u is known already on ∂Ω.

STEP 3: use Green’s formula from Thm. 1.5.2.7 on Ω ⊂ Rd (multidimensional integration by parts):

Apply

∫

Ω
j · grad v dx = −

∫

Ω
div j v dx +

∫

∂Ω
j · n v dS . (12.2.3.2)

to (1.8.0.4) choosing the vector field as j := κ(x) grad u:

∫

Ω
κ(x) grad u · grad v dx−

∫

∂Ω
κ(x) grad u · n v dS

︸ ︷︷ ︸
=0,because v|∂Ω=0

=
∫

Ω
f v dx ∀v ∈ C∞

0 (Ω) .
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This gives the variational formulation after we switch to “maximal admissible function spaces” (Sobolev

spaces, see Section 1.3, as spaces of functions with finite energy).✬

✫

✩

✪

Variational form of (1.8.0.3): seek

u ∈ H1(Ω)

u = g on ∂Ω
:
∫

Ω
κ(x) grad u · grad v dx =

∫

Ω
f v dx ∀v ∈ H1

0(Ω) . (1.8.0.5)

Note that this weak form is exactly the same as that obtained for the clamped membrane problem (1.4.2.2):

Rather different physical phenomena have led to the same mathematical model! y

EXAMPLE 1.8.0.6 (Variational formulation: heat conduction with general radiation boundary con-

ditions) In this case the appropriate treatment of boundary conditions in STEP 4 can be demon-

strated.

BVP: −div(κ(x) grad u) = f in Ω , − κ(x) grad u · n = Ψ(u) on ∂Ω . (1.8.0.7)

STEP 1 & 2: u|∂Ω not fixed ⇒ test with v ∈ C∞(Ω)

−
∫

Ω
div(κ(x) grad u) v dx =

∫

Ω
f v dx ∀v ∈ C∞(Ω) .

STEP 3 & 4: STEP 3 & 4: apply Green’s first formula (12.2.3.2) and incorporate boundary conditions:

∫

Ω
κ(x) grad u · grad v dx−

∫

∂Ω
κ(x) grad u · n︸ ︷︷ ︸
=−Ψ(u) (STEP 4)

v dS =
∫

Ω
f v dx ∀v ∈ C∞(Ω) .

★

✧

✥

✦

Variational formulation of (1.8.0.7): seek

u ∈ H1(Ω):
∫

Ω
κ(x) grad u · grad v dx +

∫

∂Ω
Ψ(u) v dS =

∫

Ω
f v dx ∀v ∈ H1(Ω) . (1.8.0.8)

y

In the above manipulations we have tacitly assumed that the coefficients and source functions of

the boundary value problems we started from are sufficient smooth and that the solutions u are

classical solutions. Then integration by parts showed that u also satisfies the weak (variational) form

of the boundary value problem.

Theorem 1.8.0.9. Classical solutions are weak solutions

If κ ∈ C1(Ω), classical solutions u ∈ C2(Ω) of the boundary value problems (1.8.0.3) and (1.8.0.7)

also solve the associated variational problems.

Proof. Apply Thm. 1.5.2.7 as in the derivation of the weak formulations.
✷

EXAMPLE 1.8.0.10 (Variational formulation for Neumann problem) We start from the heat conduction

problem with given fixed heat flux h on the boundary, the following 2nd-order elliptic (inhomogeneous)
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Neumann problem:

BVP:
−div(κ(x) grad u) = f in Ω ,

κ(x) grad u · n = h(x) on ∂Ω .
(1.8.0.11)

In this example we deal with Neumann boundary conditions (1.7.0.3), prescribed heat flux) on the whole

boundary.

The corresponding variational formulation can be derived as in Ex. 1.8.0.6. It is

u ∈ H1(Ω):
∫

Ω
κ(x) grad u · grad v dx +

∫

∂Ω
Ψ(u) v dS =

∫

Ω
f v dx ∀v ∈ H1(Ω) . (1.8.0.8)

with the special choice Ψ(u) = −h:

u ∈ H1(Ω):
∫

Ω
κ(x) grad u · grad v dx−

∫

∂Ω
h v dS =

∫

Ω
f v dx ∀v ∈ H1(Ω) . (1.8.0.12)

In the “standard form” of a linear variational problem it reads:

u ∈ H1(Ω):
∫

Ω
κ(x) grad u · grad v dx

︸ ︷︷ ︸
=:a(u,v)

=
∫

Ω
f v dx +

∫

∂Ω
h v dS

︸ ︷︷ ︸
=:ℓ(v)

∀v ∈ H1(Ω) .

For this simple linear variational problem existence and uniqueness of solutions becomes an issue.

Observation: when we test (1.8.0.8) with v ≡ 1 −
∫

∂Ω
h dS =

∫

Ω
f dx (1.8.0.13)

This is a compatibility condition for the existence of (variational) solutions of the Neumann problem!

Interpretation of (1.8.0.13) against the backdrop of the stationary heat conduction model:

conservation of energy → (1.6.0.3): Heat generated inside Ω (↔ f ) must be offset by heat

flux through ∂Ω (→ h).

y

Remark 1.8.0.14 (Uniqueness of solutions of the Neumann problem) We saw that for the Neumann

problem in weak form (1.8.0.12), the given data f and h have to fulfill the compatibility condition (1.8.0.13).

This is a necessary condition for the existence of a solution.

We also observe that if (1.8.0.13) holds true, then

v ∈ H1(Ω) solves (1.8.0.8) ⇐⇒ v + γ solves (1.8.0.8) ∀γ ∈ R ,

we say, “the solution is unique only up to constants”.

A complementary observation is that the bilinear form a(u, v) :=
∫

Ω
κ(x) grad u · grad v dx of (1.8.0.12)

is not s.p.d (→ Def. 1.2.3.26) on the trial/test space H1(Ω). How can be fix this?

Idea: Restore uniqueness of solutions by

enforcing average temperature to be zero

∫

Ω
u(x)dx = 0

This amounts to posing the variational problem (1.8.0.8) over the constrained function space

H1
∗(Ω) := {v ∈ H1(Ω):

∫

Ω
v(x)dx = 0} . (1.8.0.15)
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The norm on H1
∗(Ω) is the same as on H1

0(Ω), see Def. 1.3.4.8:

‖v‖2
H1∗(Ω) = |v|

2
H1(Ω) =

∫

Ω
‖grad v‖2 dx , v ∈ H1

∗(Ω) .

The norm property (N1) is satisfied, because

|v|H1(Ω) = 0 ⇒ grad v ≡ 0 in Ω ⇒ v ≡ const

∫
Ω

v dx=0
=⇒ v ≡ 0 .

In this argument a condition on Ω stated in § 1.2.1.14 plays a crucial role, the assumption that Ω is

connected . Otherwise, a vanishing gradient would just imply that v is merely piecewise constant in different

connected components of Ω, and these constant values could be chosen to make the overall mean vanish.

These arguments also show that a is s.p.d (→ Def. 1.2.3.26) on H1
∗(Ω), cf. Thm. 1.8.0.20.

Uniquely solvable variational formulation of Neumann problem:

u ∈ H1
∗(Ω):

∫

Ω
κ(x) grad u · grad v dx =

∫

Ω
f v dx +

∫

∂Ω
h v dS ∀v ∈ H1

∗(Ω) . (1.8.0.16)

y

Supplement 1.8.0.17 (Stability of variational Neumann problem) For the sake of simplicity we consider

the homogeneous Neumann problem with constant coefficients, that is (1.8.0.16) with vanishing Neumann

data h = 0 and κ ≡ 1:

u ∈ H1
∗(Ω):

∫

Ω
grad u · grad v dx =

∫

Ω
f v dx ∀v ∈ H1

∗(Ω) . (1.8.0.18)

General Neumann data will be discussed below in § 1.9.0.9.

We ask the same question as in Section 1.4.3: How do perturbations δ f in the source function f , measured

in L2(Ω)-norm, affect the energy norm (= |·|H1(Ω)) of the solution. As in Section 1.4.3, we find that the

induced perturbation δu of the solution again solves a linear variational equation:

δu ∈ H1
∗(Ω):

∫

Ω
grad δu · grad v dx =

∫

Ω
δ f v dx ∀v ∈ H1

∗(Ω) . (1.8.0.19)

Recall that the estimate (1.4.3.6) was a consequence of the first Poincaré-Friedrichs inequality of

Thm. 1.3.4.17, which makes a statement about norms on H1
0(Ω). However, now we deal with a vari-

ational problem posed on H1
∗(Ω). Thus, we need a counterpart of Thm. 1.3.4.17 on that space:

Theorem 1.8.0.20. Second Poincaré-Friedrichs inequality

If Ω ⊂ Rd, d ∈ N, is bounded and connected, then

∃C = C(Ω) > 0: ‖u‖0 ≤ C diam(Ω)‖grad u‖0 ∀u ∈ H1
∗(Ω) .

✎ notation: C = C(Ω) indicates that the constant C may depend on the shape of the domain Ω.

Proof. We deal with the simple case d = 1, Ω = [0, 1] first. As in the proof of Thm. 1.3.4.17, we employ

a density argument and assume that u is sufficiently smooth, u ∈ C1([0, 1]).
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By the fundamental theorem of calculus (1.5.1.6)

u(x) = u(y) +

x∫

y

du

dx
(τ)dτ , 0 ≤ x, y ≤ 1 .

u(x) =

1∫

0

u(x)dy =

1∫

0

u(y)dy

︸ ︷︷ ︸
=0

+

1∫

0

x∫

y

du

dx
(τ)dτ dy .

Then use the Cauchy-Schwarz inequality (1.3.4.15):

u(x)2 ≤
1∫

0

x∫

y

1 dτ dy

1∫

0

x∫

y

∣∣∣∣
du

dx
(τ)

∣∣∣∣
2

dτ dy ≤
1∫

0

∣∣∣∣
du

dx
(τ)

∣∣∣∣
2

dτ .

Integrating over Ω yields the estimate

‖u‖2
0 =

1∫

0

u2(x)dx ≤
1∫

0

∣∣∣∣
du

dx
(τ)

∣∣∣∣
2

dτ = |u|2H1(Ω) .

By (1.3.4.15), Thm. 1.8.0.20 implies the continuity of the first term in ℓ.

In higher dimensions d > 1 we restrict ourselved to convex domains Ω ⊂ Rd, i.e., domains containing

all line segments connecting two of their points. We pick any u ∈ C1(Ω) with vanishing mean and we

employ the fundamental theorem of calculus along lines, also known as “mean-value theorem”:

u(x) = u(y) +
∫ 1

0
grad u(y + τ(x− y)) · (x− y)dτ ∀x, y ∈ Ω . (1.8.0.21)

We integrate the right-hand side over Ω in y, which gives an integral representation of u:

u(x) =
1

|Ω|
∫

Ω
u(y)dy

︸ ︷︷ ︸
=0 , since u∈H1∗(Ω)

+
1

|Ω|
∫

Ω

1∫

0

grad u(y + τ(x− y)) · (x− y)dτ dy . (1.8.0.22)

∫

Ω

u(x)2 dx =
1

|Ω|2
∫

Ω

∣∣∣
∫

Ω

1·
1∫

0

grad u(y + τ(x− y)) · (x− y)dτ dy
∣∣∣
2

dx

➀

≤ 1

|Ω|2
∫

Ω

(∫

Ω

1 dy
) ∫

Ω

∣∣∣
1∫

0

grad u(y + τ(x− y)) · (x− y)
∣∣∣
2

dy dx

➁

≤ 1

|Ω|
∫

Ω

∫

Ω

1∫

0

|grad u(y + τ(x− y)) · (x− y)|2 dτ dy dx

=
1

|Ω|
∫

Ω

∫

Ω

1∫

1/2

|grad u(y + τ(x− y)) · (x− y)|2 dτ dx dy+

1

|Ω|
∫

Ω

∫

Ω

1/2∫

0

|grad u(x + (1− τ)(y− x)) · (y− x)|2 dτ dy dx =: I + I I .
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In step ➀ we invoked the Cauchy-Schwarz inequality (1.3.4.15) for L2(Ω), whereas ➁ is a consequence

of the Cauchy-Schwarz inequality in L2([0, 1]).

Next, we employ the transformation formula for integrals to deal with I and I I. For I we change the

variables according to




z
w
σ


 =




y + τ(x− y)
y
τ


 dzdσdw = σddτdxdy .

The integration in z-direction will be over the w/σ-dependent domain Ω′ := y + σ(Ω− y)⊂ Ω, which

is contained in Ω thanks to convexity. This makes it possible to enlarge the domain of integration to the

whole of Ω and obtain the following estimate.

I =
1

|Ω|
∫

Ω

1∫

1/2

∫

Ω′

∣∣∣grad u(z) · 1
σ (z−w)

∣∣∣
2
σ−d dz dσ dw ≤ 2d+2 diam(Ω)2‖grad u‖2

L2(Ω) .

For I I we use the transformation



z
w
σ


 =




x + (1− τ)(y− x)
x

1− τ


 dzdσdw = −σddτdydx ,

and the same arguments as before yield

I I =
1

|Ω|
∫

Ω

1∫

1/2

∫

Ω′

∣∣∣grad u(z) · 1
σ (z−w)

∣∣∣
2
σ−d dz dσ dw ≤ 2d+2 diam(Ω)2‖grad u‖2

L2(Ω) .

The final estimate is

‖u‖L2(Ω) ≤
√

2
d+3

diam(Ω) ‖grad u‖L2(Ω) ,

which implies the assertion of the theorem by density arguments as in the proof of Thm. 1.3.4.17.
✷

An immediate consequence of Thm. 1.8.0.20 and the Cauchy-Schwarz inequality (1.3.4.15) for integrals

is

|δu|H1(Ω) ≤ diam(Ω)C ‖δ f ‖L2(Ω) , (1.8.0.23)

where δu solves (1.8.0.19) and C > 0 depends on the shape of Ω only.
y

Supplement 1.8.0.24 (Generalizing Poincaré-Friedrichs estimates) The Poincaré-Friedrichs estimates

from both Thm. 1.3.4.17 and Thm. 1.8.0.20 are special cases of a more general result. To state it we need

to know what are “bounded linear operators”

Definition 1.8.0.25. Bounded linear operator

Given two normed vector spaces X and W we call a linear mapping F : X →W a bounded linear

operator, if

∃C > 0: ‖F(x)‖W ≤ C‖x‖X ∀x ∈ X .
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Below, read “Lipschitz domain” as spatial computational domain according to § 1.2.1.14.

Theorem 1.8.0.26. Poincaré-Friedrichs-type estimate

Let Ω ⊂ Rd a bounded and connected Lipschitz domain and F : H1(Ω)→W a bounded/contin-

uous linear operator, where W is some normed vector space.

If F({x 7→ 1}) 6= 0, then

∃C > 0: ‖u‖L2(Ω) ≤ C
(
‖grad u‖L2(Ω) + ‖F(u)‖W

)
∀u ∈ H1(Ω) . (1.8.0.27)

The proof relies on a deep and, unfortunately, truly non-intuitive result about Sobolev space, see [EVA98].

Theorem 1.8.0.28. Rellich’s Theorem: Compact embedding of H1(Ω) in L2(Ω)

Let Ω ⊂ Rd be a bounded Lipschitz domain. Then every bounded sequence in H1(Ω) possesses

a sub-sequence that converges in L2(Ω).

Proof. (of Thm. 1.8.0.26, by contradiction) Assume that (1.8.0.27) is false. Then there is a sequence

(un)n∈N ⊂ H1(Ω) , ‖un‖L2(Ω) = 1: ‖un‖L2(Ω) ≥ n
(
‖grad un‖L2(Ω) + ‖F(un)‖W

)
,

(1.8.0.29)

which means

lim
n→∞
‖grad un‖L2(Ω) = 0 and lim

n→∞
‖F(un)‖W = 0 . (1.8.0.30)

Obviously, the sequence (un)n∈N is bounded in H1(Ω) and, by Thm. 1.8.0.28, possesses a sub-

sequence that converges in L2(Ω). Abusing notation, we still write (un)n∈N for that sub-sequence. Let

u∗ ∈ L2(Ω) be its limit. From (1.8.0.30) we conclude that this sub-sequence also converges in H1(Ω)
and

lim
n→∞
‖grad un‖L2(Ω) = 0 ⇒ u∗ ∈ H1(Ω) and grad u∗ = 0 .

As a consequence, u∗ ≡ const. However, from (1.8.0.29) and due to the continuity of F

F(u∗) = lim
n→∞

F(un) = 0 .

This cannot be reconciled with the assumption F({x 7→ 1}) 6= 0.
✷

Note that both Thm. 1.3.4.17 and Thm. 1.8.0.20 can immediately be inferred from Thm. 1.8.0.26:

• In the case of Thm. 1.3.4.17 choose the “restriction to the boundary operator”

F : H1(Ω)→ L2(∂Ω), F(u) := u|∂Ω, whose continuity is a consequence of Thm. 1.9.0.10.

• To conclude Thm. 1.8.0.20 pick F : H1(Ω)→ R, F(u) :=
∫

Ω
u(x)dx, which is trivially continuous

by the Cauchy-Schwarz inequality.

y

Supplement 1.8.0.31 (Compact embedding) In functional analysis the statement of Reliich’s theorem

Thm. 1.8.0.28 is often phrased as

H1(Ω) is compactly embedded in L2(Ω).
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This paragraph should give you some insight into this notion.

We begin with an explanation of that mysterious “convergent sb-sequence”: Let K be a compact subset

of Rd. As you know from real analysis this means that K is closed and bounded. Consider a sequence(
pj

)
j∈N

of points in K: pj ∈ K for all j ∈ N. Then we know that

There is a least one point p∗ ∈ K such that every open neighborhood of p∗ contains infinitely

many points of the sequence:

∃p∗ ∈ K: ∀ǫ > 0: ∃Iǫ ⊂ N: ♯Iǫ = ∞ ∧
∥∥∥pj − p∗

∥∥∥ < ǫ ∀j ∈ Iǫ .

This is equivalent to the statement:

The sequence

(
pj

)
j∈N

contains a convergent sub-sequence.

Next, we give an example that bounded closed subsets of infinite-dimensional spaces need not enjoy

that special “compactness property” of bounded closed subsets in finite dimensions. For the interval

Ω =]0, 2π[ we consider

K := {v ∈ L2(]0, 2π[): ‖v‖L2(]0,2π[) ≤ 1} (bounded and closed in L2(]0, 2π[)) ,

and the sequence

(
vj := {t 7→ 1√

2π
sin(jt)}

)

j∈N

⊂ K .

Elementary computations yield

∫ 2π

0
vj(t) vk(t)dt =

{
1
2 for j = k ,

0 for j 6= k ,
⇒

∥∥vj − vk

∥∥
L2(Ω)

= 1 ∀j, k ∈ N, j 6= k .

All members of the sequence have an L2(]0, 2π[)-distance 1! Thus it cannot have a convergent

sub-sequence in L2(]0, 2π[). This does not supply a counterexample for Thm. 1.8.0.28, because∥∥vj

∥∥
H1(]0,2π[)

→ ∞ for j→ ∞; the sequence is not bounded in H1(]0, 2π[).

It is also instructive to understand, why the assumption that Ω is bounded is necessary in Thm. 1.8.0.28.

Consider Ω = R and the sequence of “tent functions”

ϕj :=
{

t 7→





1 + t− 2j for 2j− 1 ≤ t ≤ 2j ,

1 + 2j− t for 2j ≤ t ≤ 2j + 1 ,

0 elsewhere.

}
, j ∈ N .

These are continuous piecewise smooth functions, and, as we have seen in § 1.3.4.22, they all belong

to H1(R). Their supports do not overlap and, thus,
∣∣ϕj − ϕk

∣∣
H1(Ω)

= 2 whenever j 6= k. As before, this

rules out the existence of a convergent sub-sequence.
y

Review question(s) 1.8.0.32 (Elliptic variational problems)

(Q1.8.0.32.A) What is the meaning and relationship of classical and weak solutions of 2nd-order elliptic

boundary value problems?

(Q1.8.0.32.B) State the linear variational equation and the corresponding quadratic minimization problem

related to the second-order linear elliptic boundary value problem

−div

([
2 1
1 2

]
grad u

)
+ u = 0 in Ω ⊂ R2 , u = 1 on ∂Ω .
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(Q1.8.0.32.C) Which linear variational problem gives the weak form of the boundary value problem

−∆u = 0 in Ω ⊂ R2 ,
− grad u · n = u− 1 on Γ0 ,

u = 0 on Γ1 ,

where ∂Ω = Γ0 ∪ Γ1 is a partition of the boundary ∂Ω?

(Q1.8.0.32.D) Consider the pure Neumann boundary value problem

−div(A(x) grad u) = f in Ω ⊂ Rd , A grad u · n = h on ∂Ω .

State the compatibility conditions on the data f and h that is necessary for existence of weak solutions.

Give a physical interpretation in the context of stationary heat conduction.

(Q1.8.0.32.E) Consider the partial differential equation

grad div u + c(x)u = f in Ω ⊂ R3 ,

where c : Ω → R is a bounded and uniformly positive definite coefficient function. Derive the formal

variational formulations for boundary value problems for this PDE when equipped with the boundary

conditions

1. u · n = 0 on ∂Ω, where n is the exterior unit normal vectorfield on ∂Ω.

2. div u = 0 on ∂Ω.

△

1.9 Essential and Natural Boundary Conditions

Let us take a closer look at the boundary conditions that we have found so far.

§1.9.0.1 (A synopsis of scalar 2nd-order linear elliptic boundary value problems) BVPs in strong and

weak form, see Section 1.7 for a discussion of boundary conditions and both Section 1.8 and Section 1.5

for how to connect weak and strong forms.

☛ 2nd-order elliptic Dirichlet problem:

−div(α(x) grad u) = f in Ω , u = g on ∂Ω . (1.5.3.8)

with variational formulation

u ∈ H1(Ω) ,

u = g on ∂Ω
:
∫

Ω

(α(x) grad u(x)) · grad v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0(Ω) . (1.4.2.4)

☛ 2nd-order elliptic Neumann problem:

−div(α(x) grad u) = f in Ω , (α(x) grad u) · n = h on ∂Ω . (1.9.0.2)

with variational formulation

u ∈ H1
∗(Ω):

∫

Ω
α(x) grad u · grad v dx =

∫

Ω
f v dx +

∫

∂Ω
h v dS ∀v ∈ H1

∗(Ω) . (1.8.0.16)

☛ 2nd-order elliptic mixed Neumann-Dirichlet problem, see Ex. 1.5.3.11:

−div(α(x) grad u) = f in Ω ,
u =g on Γ0 ⊂ ∂Ω ,

(α(x) grad u) · n = h on ∂Ω \ Γ0 .
(1.9.0.3)
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with variational formulation

u ∈ H1(Ω) ,

u = g on Γ0
:
∫

Ω

(α(x) grad u(x)) · grad v(x)dx =
∫

Ω

f (x)v(x)dx +
∫

∂Ω\Γ0

h v dS (1.9.0.4)

for all v ∈ H1(Ω) with v|Γ0
= 0. y

Natural and essential boundary conditions

A pattern has emerged: In the variational formulations of 2nd-order elliptic BVPs of Section 1.8:

Dirichlet boundary conditions are directly imposed on trial space and (in homogeneous form) on

test space.

Terminology: essential boundary conditions

Neumann boundary conditions are enforced only through the variational equation.

Terminology: natural boundary conditions

The attribute “natural” has been coined, because Neumann boundary conditions “naturally” emerge when

removing constraints on the boundary, as we have seen for the partially free membrane of Ex. 1.5.3.11.

§1.9.0.6 (Admissible Dirichlet data) In the framework of variational problems in Sobolev spaces the

minimum requirement for “Dirichlet data” g : ∂Ω 7→ R is that (1.5.3.8):

there is u ∈ H1(Ω) such that u|∂Ω = g

There is a criterion analogous to Thm. 1.3.4.23 that permits us to distinguish valid Dirichlet data:✎
✍

☞
✌

If g : ∂Ω 7→ R is piecewise continuously differentiable (and bounded with bounded piecewise deriva-

tives), then it can be extended to an u0 ∈ H1(Ω), if and only if it is continuous on ∂Ω.

Important conclusion: Dirichlet boundary values have to be continuous

This is also stipulated by physical insight, e.g. in the case of the taut membrane model of Section 1.2.1:

discontinuous displacement on ∂Ω would entail ripping apart the membrane. y

Supplement 1.9.0.7 (H
1
2 (∂Γ)) The set of a admissible Dirichlet data g : ∂Ω→ R can also be character-

ized as an energy space in the sense of Section 1.3.1, albeit with a strange-looking norm:

‖g‖2

H
1
2 (∂Ω)

:=
∫

∂Ω

|g(x)|2 dS(x) +
∫

∂Ω

∫

∂Ω

|g(x)− g(y)|2
‖x− y‖d

dS(x)dS(y) . (1.9.0.8)

The common notation for this energy space in mathematics is H
1
2 (∂Ω). Its properties are rather peculiar

and not relevant for understanding the numerical methods presented in this course.
y

§1.9.0.9 (Admissible Neumann data) In the variational problem (1.8.0.16) Neumann data h : ∂Ω 7→ R

enter through the linear form on the right hand side

ℓ(v) :=
∫

Ω

f (x)v(x)dx +
∫

∂Ω

h(x)v(x)dS(x) .
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Remember the discussion in the beginning of Section 1.3, also Ex. 1.2.3.44: we have to establish that

ℓ is continuous on H1
∗(Ω) defined in (1.8.0.15). This is sufficient, because the coefficient function κ is

uniformly positive and bounded, see (1.6.0.6). Thus, the energy ‖·‖
a

associated with the bilinear form

a(u, v) =
∫

Ω
κ(x) grad u · grad v dx

can be bounded from above and below by |·|H1(Ω).

Continuity of the boundary contribution to the right hand side linear functional ℓ is ensured by a trace

theorem:

Theorem 1.9.0.10. Multiplicative trace inequality

∃C = C(Ω) > 0: ‖u‖2
L2(∂Ω) ≤ C‖u‖L2(Ω) · ‖u‖H1(Ω) ∀u ∈ H1(Ω) .

Proof. 1D: To eludicate idea we first give the proof for d = 1, Ω = [0, 1]:

As in the proof of Thm. 1.3.4.17 and Thm. 1.8.0.20, we employ a density argument and assume that u is

sufficiently smooth, u ∈ C1([0, 1]).

By the fundamental theorem of calculus (1.5.1.6):

u(1)2 =

1∫

0

dw

dξ
(x)dx , with w(ξ) := ξu2(ξ) ,

u(1)2 =

1∫

0

u2(x) + 2u(x)
du

dx
(x)x dx .

Then use the Cauchy-Schwarz inequality (1.3.4.15):

u(1)2 ≤
1∫

0

u2(x)dx + 2

1∫

0

|x||u(x)|
∣∣∣∣
du

dx
(x)

∣∣∣∣dx ≤ ‖u‖2
0 + 2‖u‖0

∥∥∥∥
du

dx

∥∥∥∥
0

.

A similar estimate holds for u(0)2.

Fig. 51

Ω

0
x

n(x)

ρ

Next, we treat general d ∈ N. Temporarily we make

the following assumption

There is a ρ > 0 so that Ω is star-

shaped with respect to every point in

Bρ(0) := {x ∈ R2, ‖x‖ < ρ}:

∀x ∈ Ω, z ∈ Bρ(0):

{ξx + (1− ξ)z, 0 ≤ ξ ≤ 1} ⊂ Ω .
(1.9.0.11)

In other words, every point of the boundary ∂Ω “can

be seen” from every point inside the circle with radius

ρ around the origin.

Elementary geometric considerations reveal a consequence of (1.9.0.11):

∃δ > 0: x · n(x) ≥ δ ∀x ∈ ∂Ω . (1.9.0.12)
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This means that the vector x and the exterior unit normal n(x) “point in the same direction”. The key idea

is to apply Gauss’ theorem to a smartly chosen function.

Theorem 1.5.2.4. Gauss’ theorem → [STRLN09]

With n : ∂Ω 7→ Rd denoting the exterior unit normal vectorfield on ∂Ω and dS indicating integration

over a surface, we have

∫

Ω
div j(x)dx =

∫

∂Ω
j(x) · n(x)dS(x) ∀j ∈ (C1

pw(Ω))d . (12.2.1.19)

We apply this “fundamental theorem of calculus in higher dimensions” with j(x) := x u(x)2, where

u ∈ C1(Ω):

‖u‖2
L2(∂Ω) =

∫

∂Ω
u2(x)dS(x)

(1.9.0.12)

≤ δ−1
∫

∂Ω
u2(x)x · n(x)dS(x)

Thm. 1.5.2.4
= δ−1

∫

Ω
div(u2(x) x)dx

= δ−1
∫

Ω

d u2(x) + 2u(x) grad u(x) · x dx

≤ d/δ

∫

Ω
u2(x) + |u(x)|‖grad u(x)‖‖x‖dx

≤ 2d/δ

(∫

Ω
|u(x)|2 dx

)1/2(∫

Ω
|u(x)|2 + diam(Ω)2‖grad u(x)‖2 dx

)1/2

.

In the last step we used the Cauchy-Schwarz inequality.

In order to dispense with the assumption of star-shapedness, we split Ω into sub-domains Ωj,

j = 1, . . . , M, M ∈ N, all of which are star-shaped with respect to some balls and satisfy

Ωj ∩Ωℓ = ∅ if k 6= ℓ , Ω = Ω1 ∪ · · · ∪ΩM .

Thus, appealing to the estimate from above, with C > 0 depending on the shapes of the sub-domains,

‖u‖2
L2(∂Ω) ≤

M

∑
j=1

‖u‖2
L2(∂Ωj)

≤ C
M

∑
j=1

‖u‖L2(Ωj)
‖u‖H1(Ωj)

≤ C‖u‖L2(Ω)‖u‖H1(Ω) .

The last estimate amounts to an application of the Cauchy-Schwarz inequality in RM. Then density

arguments finish the proof.
✷

Now we can combine

✦ the Cauchy-Schwarz inequality (1.3.4.15) on ∂Ω,

✦ the 2nd Poincaré-Friedrichs inequality of Thm. 1.8.0.20,

✦ the multiplicative trace inequality of Thm. 1.9.0.10:

∫

∂Ω

hv dS
(1.3.4.15)

≤ ‖h‖L2(∂Ω)‖v‖L2(∂Ω)

Thm. 1.9.0.10

≤ C‖h‖L2(∂Ω)‖v‖H1(Ω)

Thm. 1.8.0.20

≤ C‖h‖L2(∂Ω)|v|H1(Ω) ∀v ∈ H1
∗(Ω) .
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☛
✡

✟
✠h ∈ L2(∂Ω) provides valid Neumann data for the 2nd order elliptic BVP (1.9.0.2).

In particular, Neumann data h can be discontinuous. y

Review question(s) 1.9.0.13 (Essential and natural boundary conditions)

(Q1.9.0.13.A) For a scalar 2nd-order elliptic boundary value problem for −div(α(x) grad u) = f the

Robin boundary conditions read, cf. Ex. 1.7.0.5,

α(x) grad u + γ(x)u = 0 on ∂Ω ,

with γ : ∂Ω→ R uniformly positive. Are these boundary conditions essential or natural.

(Q1.9.0.13.B) Describe the minimal regularity of Dirichlet and Neumann data for scalar 2nd-order elliptic

BVPs on Ω ⊂ Rd in terms of classical smoothness spaces Ck
pw(∂Ω).

(Q1.9.0.13.C) Appealing to the following estimate

Theorem 1.9.0.10. Multiplicative trace inequality

∃C = C(Ω) > 0: ‖u‖2
L2(∂Ω) ≤ C‖u‖L2(Ω) · ‖u‖H1(Ω) ∀u ∈ H1(Ω) .

prove that for the linear variational problem

u ∈ H1(Ω):
∫

Ω
grad u · grad v dx +

∫

∂Ω
uv dS =

∫

∂Ω
hv dS ∀v ∈ H1(Ω) ,

both the bilinear form and the right-hand side linear form are continuous on H1(Ω), if h ∈ L2(∂Ω).

(Q1.9.0.13.D) In the case of the PDE − grad div u + u = f on Ω ⊂ R3, what are essential, what are

natural boundary conditions. To answer this questions apply Thm. 1.5.2.7 and determine and study the

boundary terms arising from it.

(Q1.9.0.13.E) Another stability issue: How does a perturbation (measured in L2(∂Ω)-norm) δh ∈ L2(∂Ω)
of the Neumann data h ∈ L2(∂Ω) in the linear variational problem

u ∈ H1
∗(Ω):

∫

Ω
α(x) grad u · grad v dx =

∫

Ω
f v dx +

∫

∂Ω
h v dS ∀v ∈ H1

∗(Ω) .

impact the energy norm of the solution of that variational problem? The coefficient function

α : Ω→ R3,3 can be assumed to be uniformly positive definite,

∃0 < α− ≤ α+ < ∞: α−‖z‖2 ≤ (α(x)z) · z ≤ α+‖z‖2 ∀z ∈ R3, ∀x ∈ Ω .

(Q1.9.0.13.F) For a bounded polygon Ω ⊂ R2, we consider the linear variational problem

u ∈ H1(Ω) :
∫

Ω
e‖x‖ grad u(x) · grad v(x) dx =

∫

∂Ω
x1v(x) dx, ∀v ∈ H1(Ω) . (1.9.0.14)

State the boundary value problem satisfied by sufficiently smooth solutions of Eq. (1.9.0.14). Write

down a domain Ω for which Eq. (1.9.0.14) has a solution.

△
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Learning outcomes

After having studied this chapter you should (be able to)

• be familiar with a few mathematical models whose core is the minimization of quadratic energy

functionals over infinite-dimensional function spaces,

• convert a quadratic minimization problem into a linear variational problem,

• understand and verify necessary conditions for the existence of unique solutions of a quadratic

minimization problem,

• know the norms of the Sobolev spaces L2(Ω), H1(Ω), and H1
0(Ω) and how to use them in the

statement of variational problems,

• state the continuity featured by piecewise smooth functions in a Sobolev space,

• appreciate the importance of the continuity in the energy norm of right hand side functionals of

variational problems,

• extract a PDE and boundary conditions from a variational problem using integration by parts,

• recast a boundary value problem for a 2nd-order PDE in variational form (using suitable Sobolev

spaces).

• tell which boundary conditions make sense for a given 2nd-order PDE.

• distinguish essential and natural boundary conditions for a PDE in variational form.

• know sufficient conditions for admissible Dirichlet- and Neumann data in the case of scalar 2nd-order

elliptic variational problems.

• know the compatibility conditions for the data in the case of a pure Neumann problem.
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2.1 Introduction

Our goal is to solve linear scalar second-order elliptic boundary value problem as introduced in Chapter 1

in various forms, as a minimization problem (1.2.3.1), a linear variational problem like (1.4.2.4) (“weak

form”), or in strong form (1.5.3.5). Only, in exceptional situations we can find an analytic solution, that

is, a concrete formula for the unknown function u : Ω→ R. In all other cases, we have to settle for

approximate solutions obtained by running a numerical algorithm on a computer:✓
✒

✏
✑

The only option

for solving BVPs
:

Finitely many floating point operations

Numerical algorithm Computer−−−−−→ approximate solution

2.1.1 Discretization

In this chapter we introduce the most important class of methods designed for the numerical solution of

second-order elliptic boundary value problems. More precisely, these methods provide discretizations

of boundary value problems, which is only one, but a crucial step in the numerical treatment of boundary

value problems.

Mathematical

modeling
Discretization

Solving systems

of equations

Post-

processing

According to our understanding, PDE models inherently rely on infinite-dimensional state spaces. Thus it

takes an infinite amount of information to characterize the solution. Since computers are finite automata,

(numerical) algorithms can operate only on discrete models.

Definition 2.1.1.1. Discrete model

A discrete model for a physical system/phenomenon is a model, for which both data/parameters

and states can be described by a finite number of real numbers.

The construction of meaningful discrete models from continuous models whose data/unknowns contain

an infinite amount of information is the task of discretization:

Continuous (PDE) model

(“∞-dimensional”)

Discretization−−−−−−→
Discrete model

(finitely many “degrees of freedom”)

as small as possible

(only a few unknowns)

as accurate as possible

(good approximation (∗) )

as faithful as as possible

(structure preserving)

(∗): needs a measure for quality of a solution, usually a norm of the error where the error is regarded as

the difference of exact/analytic and approximate solution.
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Parlance: number of “degrees of freedom” =̂ number of doubles required to describe discrete configu-

ration space (usually agrees with number of “unknowns” in the discrete model.)

2.1.2 Focus: Variational Formulations of BVPs

This chapter is devoted to the discretization of linear second-order elliptic boundary value problems by

means of the so-called finite element method. This methods tackles the BVPs in variational (“weak”) form,

abstractly written as linear variational problem (LVP)

u ∈ V̂: a(u, v) = ℓ(v) ∀v ∈ V0 , (1.4.1.7)

with bi-/linear form a/ℓ. Thus, the present chapter heavily relies on the material covered in Section 1.3,

Section 1.8, and Section 1.9. The reader will not be able to grasp the ideas and arguments of this chapter,

unless she or he is familiar with these foundation parts of the course.

Condensed into one line, the objective of this chapter is to supply tools for the discretization of (linear)

variational problems posed on function spaces:

Variational boundary value

problem
DISCRETIZATION−−−−−−−−−−−−−−→

System of a finite number of

equations for (real) unknowns

§2.1.2.1 (Targeted boundary value problems) We will restrict ourselves to linear 2nd-order elliptic

variational problems on spatial domains Ω ⊂ Rd, d = 2, 3, whose properties have been elaborated in

§ 1.2.1.14. Concretely, with source functions f ∈ L2(Ω), we tackle the

☛ 2nd-order elliptic Dirichlet problems:

u ∈ H1(Ω) ,

u = g on ∂Ω
:
∫

Ω

(α(x) grad u(x)) · grad v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0(Ω) , (1.4.2.4)

with continuous (→ § 1.9.0.6) Dirichlet data g ∈ C0(∂Ω) and uniformly positive definite (→ Def. 1.2.2.9)

diffusion tensor α ∈ (C0
pw(Ω))d,d.

☛ 2nd-order elliptic Neumann problems:

u ∈ H1
∗(Ω):

∫

Ω
(α(x) grad u) · grad v dx =

∫

Ω
f v dx +

∫

∂Ω
h v dS ∀v ∈ H1

∗(Ω) , (1.8.0.16)

posed on the constrained Sobolev space of functions with vanishing mean

H1
∗(Ω) := {v ∈ H1(Ω):

∫

Ω
v(x)dx = 0} , (1.8.0.15)

and with piecewise continuous (→ § 1.9.0.9) Neumann data h ∈ C0
pw(∂Ω) that satisfy the

compatibility condition

−
∫

∂Ω
h(x)dS(x) =

∫

Ω
f (x)dx . (1.8.0.13)

A simpler version with homogeneous Neumann data h = 0 and reaction term reads

u ∈ H1(Ω):
∫

Ω
α(x) grad u · grad v + c(x)u v dx =

∫

Ω
f v dx ∀v ∈ H1(Ω) , (2.1.2.2)

with uniformly positive reaction coefficient c : Ω 7→ R+, c ∈ C0
pw(Ω), cf. (1.2.2.8), Def. 1.2.2.9:

∃0 < γ− ≤ γ+ < ∞: γ− ≤ c(x) ≤ γ+ for almost all (→ Suppl. 2.1.2.4) x ∈ Ω . (2.1.2.3)
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The variational problem (2.1.2.2) is easier than (1.8.0.13), because no compatibility condition like

(1.8.0.13) is needed to ensure existence and uniqueness of solutions.

The considerations in Section 1.8 and Section 1.9 have established the following key properties of these

variational problems:

The linear variational problems (1.4.2.4), (1.8.0.16), and (2.1.2.2) feature symmetric positive def-

inite bilinear forms (→ Def. 1.2.3.26) and right hand side linear forms that are continuous (→
Def. 1.2.3.41) with respect to the energy norm (→ Def. 1.2.3.34).

existence and uniqueness of solutions (→ Rem. 1.3.3.9)

Please remember that all the variational problems are connected with quadratic minimization problems,

see Section 1.2.3, Def. 1.2.3.11. y

Supplement 2.1.2.4 (Almost all/almost everywhere) In (mathematical) articles on function spaces and

variational formulations posed on them you will often encounter phrases like “almost all” or “almost every-

where”. They mark statements about point values of functions that remain true, if the function is changed

on sets of points that “do not matter for integration”.

For instance, since in (2.1.2.2) the reaction coefficient c occurs only in an integrand, we do not care about

it being positive on “sets of measure/volume zero” like lines in 2D or surfaces in 3D. Whether domains of

integration are open or closed is immaterial, too.
y

Remark 2.1.2.5 (Data in procedural form) A developer of software for numerical simulation must not

expect that the data (here the coefficient functions α, c, source function f , Dirichlet data g, Neumann data

h) are given in closed form (as formulas). Instead they will usually be given in procedural form through

sub-routines that merely allow point evaluations. This may be the only way to access the coefficient

functions, because they may have been obtained, for instance, as results of another computation, or by

interpolation from a table of measured values. The sub-routines might even be “black-box” library functions

providing little information about how the function is actually evaluated.

In C++ data types providing functions are called functors. The two main ways of defining functors are the

following, illustrated by sample code snippets, see also [NCSE].

(I) A functor is represented by a class supplying an evaluation operator: operator ()

C++ code 2.1.2.6: Example: a functor class definition

1 template <typename ReturnType , typename PointCoordinates >

2 class Function {

3 using value_type = ReturnType ;

4 using arg_type = Poin tCoord inates ;

5 Function ( void ) ;

6 // evaluation operator

7 value_type operator ( ) ( const arg_type &x ) const ;

8 . . . . .

9 } ;

(II) A simple function can be defined through a lambda function, e.g.

C++ code 2.1.2.7: A simple lambda function

1 auto f = [&param ] ( const PointCoord inates &x ) −> double

2 { /* function body */ } ;

2. Finite Element Methods (FEM), 2.1. Introduction 128

https://en.cppreference.com/w/cpp/language/lambda


NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

Recall that parameters can be passed to a lambda function through the capture list [].

A dedicated functor class will be preferred to a lambda function, if the evaluation is complicated or if it

requires substantial pre-computations that can be done in the constructor of the class. y

Review question(s) 2.1.2.8 (FEM: Introduction)

(Q2.1.2.8.A) We consider the scalar elliptic boundary value problem

−div(α(x) grad u) = f in Ω , u = g on ∂Ω . (2.1.2.9)

What does the statement “All data and paramters for (2.1.2.9) are provided in procedural form.” mean?

(Q2.1.2.8.B) Devise the C++ code for a lambda function that provides the diffusion tensor

α(x) =

[
1 + c2 1

2 c2

1
2 c2 1

]
,

where the parameter c ∈ R is store in a local variable c of the calling function.

△

2.1.3 Preview

The next section introduces the simple but powerful idea underlying the Galerkin discretization of linear

variational problems (→ Def. 1.4.1.6). This is done on an abstract level, in order to convey the main ideas.

Section 2.3 marks our first encounter with the finite element method in the simplest conceivable setting, in

one-dimension for two-point second-order elliptic boundary value problem like the elastic string model dis-

cussed in Section 1.5.1. We will present the simplest finite element method making use of approximation

by piecewise linear continuous functions.

The following Section 2.4 is devoted to extending the linear finite element method from one to two dimen-

sions. The leap from d = 1 to d = 2 will encounter additional difficulties and many new aspects will

emerge. This will entail a more detailed discussion of algorithms and data structures, demonstrated with

a model C++ code based on EIGEN.

In Section 2.5 we return to a more abstract level and learn about fundamental aspects and characteristics

of finite element methods (FEM). Everything will be made concrete again in Section 2.6, in which the

class of so-called Lagrangian finite element methods for 2nd-order linear variational problems on bounded

spatial domains Ω in two and three dimensions will be presented in full generality.

In Section 2.7 we dip into details of algorithms for FEM and their implementation in C++. Simultaneously,

we introduce the LEHRFEM++ finite element library as a model code and environment for solving BVPs

with finite elements. We will regulary inspect codes to connect mathematical ideas with their algorithmic

realizations.

Finally, Section 2.8 is devoted to another key conceptual and algorithmic approach to FEM: constructions

based on mappings and pullbacks. This will mesh nicely with the use of local quadrature rules.

2.2 Principles of Galerkin Discretization

Video tutorial for Section 2.2: Principles of Galerkin Discretization: (47 minutes)

Download link, tablet notes
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§2.2.0.1 (Recalled from Section 1.4: linear variational problems, LVPs) In this section we adopt an

abstract perspective: Targets of discretization will be linear variational problems (1.4.1.7) of the special

form

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (2.2.0.2)

✦ V0 =̂ a vector space (Hilbert space) (usually a Sobolev space→ Section 1.3) with norm ‖·‖V ,

✦ a(·, ·) =̂ bilinear form, continuous (→ Def. 1.2.3.41) on V0, which means

∃C > 0: |a(u, v)| ≤ C‖u‖V‖v‖V ∀u, v ∈ V0 . (2.2.0.3)

✦ ℓ =̂ continuous linear form in the sense of Def. 1.2.3.41, cf. (1.2.3.39),

∃C > 0: |ℓ(v)| ≤ C‖v‖V ∀v ∈ V0 . (2.2.0.4)

The importance of this continuity property is discussed in the beginning of Section 1.2.3.4, see also

Ex. 1.2.3.44. (The Cs in (2.2.0.3) and (2.2.0.4) are so-called “generic constants”, whose values need not

agree though they are designated by the same symbol, see Rem. 3.3.5.8 below.)

If a is symmetric and positive definite (→ Def. 1.2.3.26), we may choose ‖·‖V := ‖·‖
a
, the “energy norm”

of Def. 1.2.3.34. By the Cauchy-Schwarz inequality of Thm. 0.3.1.19 continuity of a w.r.t. ‖·‖
a

is clear. y

Remark 2.2.0.5 (Linear variational problems on affine spaces) Many of the linear variational problems

we saw in Chapter 1, in particular the Dirichlet problem (1.4.2.4) with general boundary data, go beyond

(2.2.0.2) in that they are posed on an affine space (→ ??) V̂ := u0 + V0, u0 ∈ V, V a “hold-all” vector

space, of which V0 ⊂ V is a subspace, cf. Def. 1.4.1.6:

u ∈ V̂: a(u, v) = ℓ(v) ∀v ∈ V0 , (2.2.0.6)

In this case we expect (2.2.0.3) to hold on the large space V:

∃C > 0: |a(u, v)| ≤ C‖u‖V‖v‖V ∀u, v ∈ V . (2.2.0.7)

In the concrete case of (1.5.3.5) we have

V = H1(Ω) , u0 ∈ H1(Ω) such that u0|∂Ω = g , V0 = H1
0(Ω) .

We have seen in § 1.4.1.9 how the linear variational problem (2.2.0.6) can be can be converted into the

form (2.2.0.2) with a modified right hand side functional through the “offset function trick”. It gives us

w ∈ V0: a(w, v) = ℓ(v)− a(u0, v) ∀v ∈ V0 . (2.2.0.8)

If and only if w ∈ V0 solves (2.2.0.8), then w + u0 ∈ V̂ will solve (2.2.0.6). This equivalence justifies the

focus on the simpler case (2.2.0.2). y

2.2.1 Galerkin Discretization: First Step

The simple idea of the first step of Galerkin discretization:

Replace the infinite-dimensional function space V0 in the linear variational

problem (2.2.0.2) with a finite-dimensional subspace V0,h ⊂ V0.

Thus we arrive at a restriction of (1.4.1.7) to V0,h:
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Discrete (linear) variational problem (DVP):

uh ∈ V0,h: a(uh, vh) = ℓ(vh) ∀vh ∈ V0,h . (2.2.1.1)

the Galerkin solution

Remark 2.2.1.2 (Notation for “discrete entities”) Note that a subscript tag h distinguishes “discrete

functions/quantities”, that is, functions/operators etc. that are associated with a finite dimensional space.

The symbol h has its origin in a widely used notation for the stepsize/meshwidth underlying a discretization,

see § 2.3.1.3 below. y

Remark 2.2.1.3 (Discrete quadratic minimization problems) In this remark assume that a is symmetric

and positive definite (→ Def. 1.2.3.26), that is, it induces an “energy norm” ‖·‖a (→ Def. 1.2.3.34), and

that the vector space V0 equipped with the norm ‖·‖a is a Hilbert space (→ Def. 1.3.3.4).

In this setting, according to Thm. 1.4.1.8, we have the equivalence of the quadratic minimization problem

(→ Def. 1.2.3.11)

u = argmin
w∈V0

J(w) , J(w) := 1
2a(w, w)− ℓ(w) , (2.2.1.4)

and of the linear variational problem

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 . (2.2.0.2)

According to Thm. 1.3.3.6 for both (2.2.1.4) and (2.2.0.2) unique solutions exist and they agree.

Exactly the same proof as that of Thm. 1.4.1.8 shows that this equivalence carries over to the discrete

context.

Solving the discrete variational problem (2.2.1.1) amounts to determining a minimizer of J over the

finite dimensional subspace V0,h ⊂ V0.

In other words, the Galerkin discretization of abstract (linear) variational problem (2.2.0.2) corresponds

to discretizing a minimization problem over a functions space by considering it on a finite-dimensional

subspace. This approach is often called the Ritz method [PIR05].

Continuous minimization problem

u = argmin
v∈V0

J(v) .
Ritz method−−−−−−→

Discrete minimization problem

uh = argmin
vh∈V0,h

J(vh) .

m m

Continuous variational problem

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 .
Galerkin disc.−−−−−−−→

Discrete variational problem

uh ∈ V0,h: a(uh, vh) = ℓ(vh)

∀vh ∈ V0,h .

Terminology: Problems on infinite-dimensional spaces are often called “continuous”, those on finite-

dimensional spaces “discrete”, remember Def. 2.1.1.1.
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y

In light of Thm. 1.2.3.43 the equivalence discussed in the previous remark has a straightforward conse-

quence for the case of s.p.d. a inducing an energy norm ‖·‖
a

via ‖v‖2
a

:= a(v, v), Def. 1.2.3.34.

Theorem 2.2.1.5. Existence and uniqueness of solutions of discrete variational problems

If the bilinear form a : V0 × V0 7→ R is symmetric and positive definite (→ Def. 1.2.3.26) and the

linear form ℓ : V0 7→ R is continuous in the sense of

∃Cℓ > 0: |ℓ(u)| ≤ Cℓ‖u‖a ∀u ∈ V0 , (1.2.3.39)

then the discrete variational problem (2.2.1.1) has a unique Galerkin solution uh ∈ V0,h that satisfies

the energy estimate

‖uh‖a ≤ sup
vh∈V0,h

|ℓ(vh)|
‖vh‖a

≤ Cℓ . (2.2.1.6)

Proof. Uniqueness of uh is clear: Similar to the proof of Thm. 1.2.3.30,

a(uh, vh) = ℓ(vh) ∀vh ∈ V0,h

a(wh, vh) = ℓ(vh) ∀vh ∈ V0,h
⇒ a(uh − wh, vh) = 0 ∀vh ∈ VN,0

vh :=uh−wh∈V0,h
=⇒ ‖uh − wh‖a = 0

a s.p.d.
=⇒ uh − wh = 0 .

The discrete linear variational problem (2.2.1.1) is set in the finite-dimensional space V0,h. Thus, unique-

ness of solutions is equivalent to existence of solutions (→ linear algebra).

If you do not like this abstract argument, wait and see the equivalence of (2.2.1.1) with a linear system of

equations. It will turn out that under the assumptions of the theorem, the resulting system matrix will be

symmetric and positive definite in the sense of [NCSE], Ex. 1.2.3.27.

The estimate (2.2.1.6) is immediate from setting vh := uh in (2.2.1.1)

|a(uh, uh)| = |ℓ(uh)| ≤ Cℓ(a(uh, uh))
1/2 .

Then cancel a square root of a(uh, uh) = ‖uh‖2
a
. This holds for any Cℓ satisfying (1.2.3.39), which makes

it possible to switch to the supremum in (2.2.1.6).
✷

Remark 2.2.1.7 (Discrete variational problems in affine spaces) We revisit the linear variational prob-

lem examined in Rem. 2.2.0.5:

u ∈ V̂ := u0 + V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (2.2.0.6)

If u0 is a simple function and allows a closed-form representation, that is, u0 is given by a formula

that can be implemented easily, we may choose as a trial space the finite-dimensional affine space

V̂h := u0 + V0,h. We end up with the slightly more general discrete variational problem

uh ∈ V̂h: a(uh, vh) = ℓ(vh) ∀vh ∈ V0,h . (2.2.1.8)

Any solution uh can be written as uh = u0 + wh, with

wh ∈ V0,h: a(wh, vh) = ℓ(vh)− a(u0, vh) ∀vh ∈ V0,h . (2.2.1.9)

However, if u0 is not available is a “coding-suitable” format, one is forced to use an approximation. We

return to this issue in Rem. 2.3.3.15 and § 2.7.6.1. y
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2.2.2 Galerkin Discretization: Second Step

A computer is clueless about a concept like “finite dimensional subspace”. What it can process are arrays

of floating point numbers (vectors and matrices). Hence, all discretization methods must yield equations

connecting vectors, aka, systems of equations. There is a well-known tool from linear algebra that accom-

plishes this reduction to matrix-vector algebra for the Galerkin method.

Definition 0.3.1.2. Basis of a finite dimensional vector space

Let V be a real vector space. A finite subset {b1, . . . , bN} ⊂ V, N ∈ N, is a basis of V, if for every

v ∈ V there are unique coefficients µℓ ∈ R, ℓ ∈ {1, . . . , N}, such that v = ∑
N
ℓ=1 µℓb

ℓ. Then N
agrees with the dimension of V.

Idea: ✦ choose (ordered) basis Bh = {b1
h, . . . , bN

h }, N := dim V0,h, of

V0,h:

V0,h = Span{Bh}
✦ insert basis representation into the variational equation (2.2.1.1)

vh ∈ V0,h ⇒ vh = ν1b1
h + · · ·+ νNbN

h , νi ∈ R , (2.2.2.1)

uh ∈ V0,h ⇒ uh = µ1b1
h + · · ·+ µNbN

h , µi ∈ R . (2.2.2.2)

The number N ∈ N above is the dimension of the discrete trial and test space V0,h.

Thus, the task of finding the Galerkin solution uh ∈ V0,h is recast as the task of finding the N < ∞ basis

expansion coefficients in (2.2.2.2). Of course, we have to employ the discrete linear variational problem

(2.2.1.1). Key to the following manipulations is the bi-linearity of a,

a(α1v1 + β1u1, α2v2 + β2u2) =

α1α2 a(v1, v2) + α1β2 a(v1, u2) + β1α2 a(u1, v2) + β1β2 a(u1, u2) ,

for all ui, vi ∈ V0, αi, βi ∈ R, and the linearity of ℓ

ℓ(αu + βv) = αℓ(u) + βℓ(v) ,

for all u, v ∈ V0, α, β ∈ R, see Def. 0.3.1.4. They give the following chain of equivalent statements:

uh ∈ V0,h: a(uh, vh) = ℓ(vh) ∀vh ∈ V0,h . (2.2.1.1)

m [
uh = µ1b1

h + · · ·+ µNbN
h ,µi ∈ R

vh = ν1b1
h + · · ·+ νNbN

h ,νi ∈ R
]

N

∑
k=1

N

∑
j=1

µkνja(b
k
h, b

j
h) =

N

∑
j=1

νjℓ(b
j
h) ∀ν1, . . . , νN ∈ R ,

m
N

∑
j=1

νj

(
N

∑
k=1

µka(b
k
h, b

j
h)− ℓ(b

j
h)

)
= 0 ∀ν1, . . . , νN ∈ R ,
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m (∗)
N

∑
k=1

µka(b
k
h, b

j
h) = ℓ(b

j
h) for j = 1, . . . , N .

m [~µ = (µ1, . . . , µN)
⊤ ∈ RN]

A linear system of equations (LSE)

A~µ = ~ϕ , with

A =
[
a(bk

h, b
j
h)
]N

j,k=1
∈ RN,N ,

~ϕ =
[
ℓ(b

j
h)
]N

j=1
.

Note that the equivalence (∗) is implied by the following lemma, applied to the linear form

v 7→ a(uh, v)− ℓ(v).

Lemma 2.2.2.3. Testing with basis vectors

For every linear form ℓ : V 7→ R (→ Def. 0.3.1.4) on a vector space V holds

ℓ(v) = 0 ∀v ∈ V ⇔ ℓ(b) = 0 ∀b ∈ B

for any basis B (→ Def. 0.3.1.2) of V.

Summary: notions connected with Galerkin discretization

Linear discrete variational problem

uh ∈ V0,h: a(uh, vh) = ℓ(vh) ∀vh ∈ V0,h

Choosing basis Bh−−−−−−−−−→
Linear system

of equations

A~µ = ~ϕ

Galerkin matrix: A =
[
a(bk

h, b
j
h)
]N

j,k=1
∈ RN,N ,

Right hand side vector: ~ϕ =
[
ℓ(b

j
h)
]N

j=1
∈ RN ,

Coefficient vector: ~µ = [µ1, . . . , µh]
⊤ ∈ RN ,

Recovery of solution: uh = ∑
N

k=1
µk bk

h .

Remark 2.2.2.5 (Alternative (“legacy”) terminology) In the context of finite element methods the building

blocks of the linear systems of equations arising from Galerkin discretization have special names:

(Legacy) terminology for FEM: Galerkin matrix = stiffness matrix

Right hand side vector = load vector

Galerkin matrix for (u, v) 7→
∫

Ω
uv dx = mass matrix

This parlance hails from the times (lates 60s and early 70s), when finite element methods were mainly

applied to solid mechanics (linear elasticity).

The term degree of freedom (d.o.f./DOF) is frequently used in connection with finite element methods. It

has a double meaning denoting

(i) either a single component of the basis expansion vector µ for the Galerkin solution,

(ii) or a basis function bk
h ∈ Bh.

y
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Of course, there are infinitely many ways to choose the basis Bh and in terms of the idea of Step I they

are all equivalent:

Theorem 2.2.2.6. Independence of Galerkin solution of choice of basis

The choice of the basis Bh has no impact on the (set of) Galerkin solutions uh of (2.2.1.1).

In other words, different bases Bh will, of course, yield different solutions for the vector~µ of basis expan-

sion coefficients, but the linear combination (2.2.2.2) will always yield the same function uh ∈ V0,h.

2.2.3 Galerkin Matrices

As explained above the Galerkin matrix is the matrix A of the linear system of equations arising from the

Galerkin discretization of (2.2.0.2):

A =
[
a(bk

h, b
j
h)
]N

j,k=1
∈ RN,N ,

j =̂ row index,

k =̂ column index,

where {b1
h, . . . , bN

h } is the chosen (ordered) basis of the discrete trial/test space V0,h ⊂ V0,

N := dim V0,h.

A consequence of the equivalence of the linear system of equations A~µ = ~ϕ and the

discrete variational problem (2.2.1.1) is immediate:

Corollary 2.2.3.1.

(2.2.1.1) has unique solution ⇔ A nonsingular (invertible)

On one hand, we know from Thm. 2.2.2.6 that the Galerkin solution uh ∈ V0,h does not the depend

on the choice of basis Bh. On the other hand, it is clear that for different bases Bh we get different

Galerkin matrices. What do they have in common? The next lemma gives answers.

Lemma 2.2.3.2. Effect of change of basis on Galerkin matrix

Consider (2.2.1.1) and two bases of V0,h,

Bh := {b1
h, . . . , bN

h } , B̃h := {b̃1
h, . . . , b̃N

h } ,

related by the basis transformation matrix S according to

b̃
j
h =

N

∑
k=1

sjkbk
h with S =

[
sjk

]N

j,k=1
∈ RN,N regular. (2.2.3.3)

Then the Galerkin matrices A, Ã ∈ RN,N, the right hand side vectors~ϕ,~̃ϕ ∈ RN,

and the coefficient vectors~µ,~̃µ ∈ RN, respectively, satisfy

Ã = SAS⊤ , ~̃ϕ = S~ϕ , ~̃µ = S−⊤~µ . (2.2.3.4)

✍ notation: S−⊤ := (S−1)⊤ = (S⊤)−1 for any S ∈ RN.N

Proof. Thanks to linearity and the definition of the entries of the right-hand-side vector ~̃ϕ, we get for

j ∈ {1, . . . , N}
(
~̃ϕ
)

j
= ℓ(b̃

j
h) = ℓ(

N

∑
k=1

sjkbk
h) =

N

∑
k=1

sjkℓ(b
k
h) =

N

∑
k=1

sjk(~ϕ)k = (S~ϕ)j ,
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which implies the assertion for the right-hand-side vector.

Concerning the Galerkin matrix, make use of the bilinearity of a (→ Def. 0.3.1.4), (2.2.3.3) and the defini-

tion of the entries of the Galerkin matrix: for l, m ∈ {1, . . . , N},
(

Ã
)

lm
= a(b̃m

h , b̃l
h) =

N

∑
k=1

N

∑
j=1

smka(b
k
h, b

j
h)sl j =

N

∑
k=1

( N

∑
j=1

sl j(A)jk

︸ ︷︷ ︸
(SA)lk

)
smk = (SAS⊤)lm ,

where we used the rules for the product of square matrices.
✷

The relationship Ã = SAS⊤ between matrices has a special name in linear algebra:

Definition 2.2.3.5. Congruent matrices

Two matrices A ∈ RN,N, B ∈ RN,N, N ∈ N, are called congruent, if there is a regular matrix

S ∈ RN,N such that B = SAST.

Congruence of matrices is an equivalence relation and partitions the space of N × N-matrices into disjoint

congruence classes. Any regular matrix describes a change of basis. Hence, any regular matrix can occur

as basis transformation matrix S in Lemma 2.2.3.2. Thus, given a discrete variational problem (2.2.1.1) all

matrices of an entire congruence class can arise as Galerkin matrices.

Lemma 2.2.3.6. Congruent Galerkin matrices

Matrix property invariant under

congruence
⇔ Property of Galerkin matrix invariant

under change of basis Bh

§2.2.3.7 (Invariant properties of congruent matrices) The reader may wonder what properties of

Galerkin matrices can be predicted without knowing the basis Bh. They are the following✤

✣

✜

✢
matrix properties invariant under congruence :

• regularity → [NCSE]

• symmetry (A⊤ = A)

• positive definiteness → [NCSE]

Proving the invariance of these properties is straightforward from the definition of congruence. We point

out that the list above is almost exhaustive, because almost no other property one may associate with a

matrix is stable under congruence, in particular

not invariant are ✦ any structure and sparsity of the Galerkin matrix, and

✦ its eigenvalues and condition number (→ Section 0.3.1.4).

Nevertheless, these latter properties have fundamental consequences for the numerical solution of the

linear system of equations (required storage, computational effort, and impact of roundoff errors), as was

already remarked above. y

Remark 2.2.3.8 (Properties of the Galerkin matrix inherited from a) The invariant properties of Galerkin

matrices found in § 2.2.3.7 are not surprising, because they directly arise from corresponding properties

of the underlying bilinear form a:

• a symmetric (→ Def. 0.3.1.15) ⇒ Galerkin matrix A symmetric.

• a positive definite (→ Def. 0.3.1.16) ⇒ Galerkin matrix A positive definite.

y
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Remark 2.2.3.9 (Summary: Impact of choice of basis) Let us summarize the dichotomy applying to the

choice of basis Bh for a Galerkin method.✓
✒

✏
✑

Thm. 2.2.2.6: the choice of Bh does not affect uh

(assuming exact arithmetic)

⇒ No impact on discretization error !

✞
✝

☎
✆But: Key properties (e.g., conditioning, sparsity) of the Galerkin matrix crucially depend on Bh!

• The choice of trial/test space V0,h alone determines the quality of the Galerkin solution.

• The choice of basis Bh determines how well (stably, efficiently) we can compute the Galerkin

solution.

y

Review question(s) 2.2.3.10 (Principles of Galerkin Discretization)

(Q2.2.3.10.A) Described the first step of the Galerkin discretization of a linear variational problem. What

does it yield?

(Q2.2.3.10.B) The Galerkin discretization of a linear variational problem leads to a linear system of equa-

tions. What determines the size of its coefficient matrix?

(Q2.2.3.10.C) Give simple necessary and sufficient conditions for existence and uniqueness of solutions

of a linear system of equations arising from the Galerkin discretization of a linear variational problem.

(Q2.2.3.10.D) Write A~µ = ~ϕ for the square linear system of equations produced by the Galerkin

discretization of a linear variational problem posed on the vector space V0 and using the basis

B := {b1
h, . . . , bN

h } of the discrete trial/test space V0.h, N := dim V0,h. Now we switch to the rescaled

basis B̃ := {b1
h, 2b2

h, 3b3
h, . . . , NbN

h }. What linear system will we get?

(Q2.2.3.10.E) Let A~µ = ~ϕ, A ∈ RN,N, ~ϕ ∈ RN, N ∈ N, be the linear system of equations obtained by

the Galerkin discretization of a linear variational problem (LVP)

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 ,

using a finite-dimensial trial/test space V0,h ⊂ V0 equipped with basis B := {b1
h, . . . , bN

h }. Which linear

system do we get when performing the Galerkin discretization of the same LVP but dropping every other

basis function, that is, using the discrete trial/test space spanned by {b1
h, b3

h, . . . , bN−1
h } (for even N).

(Q2.2.3.10.F) Which properties of a Galerkin matrix do not depend on the choice of basis for the discrete

trial and test space?

(Q2.2.3.10.G) As regards Galerkin discretization of a linear variational problem, which properties of the

right-hand-side vector do not depend on the choice of basis for the discrete trial/test space?

(Q2.2.3.10.H) Let A ∈ RN,N be the Galerkin matrix obtained by the Galerkin discretization of a bilinear

form a(·, ·). Given~µ,~η ∈ RN, express the number~µ⊤A~η through a(·, ·).
(Q2.2.3.10.I) On a vector space V0 we consider a linear variational problem

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 ,

with a symmetric positive definite bilinear form a and an ‖·‖
a
-bounded linear form ℓ : V0 → R. Show

that for every finite-dimensional subspace V0,h ⊂ V0 there exists a basis B ⊂ V0,h such that the asso-

ciated Galerkin matrix for a(·, ·) is the identity matrix.

Hint. Use the following fundamental result from linear algebra:
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Theorem 0.3.1.26. Real diagonalization of symmetric matrices

For every symmetric matrix A ∈ Rn,n, that is, A⊤ = A, we can find a diagonal matrix D ∈ Rn,n

and an orthogonal matrix Q ∈ Rn,n such that

Q⊤AQ = D . (2.2.3.11)

For a symmetric positive definite matrix A the non-zero entries of the diagonal matrix D are all positive.

(Q2.2.3.10.J) Give an example of a linear variational problem and of a discrete variational problem arising

from its Galerkin discretization such that

• the linear variational problem has a unique solution,

• but the discrete variational problem fails to have a unique solution.

(Q2.2.3.10.K) We learned

Theorem 2.2.2.6. Independence of Galerkin solution of choice of basis

The choice of the basis Bh has no impact on the (set of) Galerkin solutions uh of (2.2.1.1).

How can this be true, though a change of basis will generally affect the linear system of equations

arising from Galerkin discretization and will also lead to a different solution vector?

△

2.3 Case Study: Linear FEM for Two-Point Boundary Value Prob-

lems

Video tutorial for Section 2.3: Case Study: Linear FEM for Two-Point Boundary Value Prob-

lems: (49 minutes) Download link, tablet notes

Now we make first acquaintance with the simplest conceivable finite element Galerkin discretization for

the simplest conceivable class of second-order boundary value problems, the second-order two-point

boundary value problem with homogeneous Dirichlet boundary conditions in weak form, cf. Section 1.5.1

for a slightly more general case. On an interval ]a, b[⊂ R, a < b, we consider

u ∈ H1
0(]a, b[):

b∫

a

du

dx
(x)

dv

dx
(x)dx

︸ ︷︷ ︸
=:a(u,v)

=

b∫

a

f (x)v(x)dx

︸ ︷︷ ︸
=:ℓ(v)

∀v ∈ H1
0(]a, b[) . (2.3.0.1)

This is a linear variational problem fitting (2.2.0.2). In particular, in this case V0 is the Sobolev space

H1
0(]a, b[), see Def. 1.3.4.3. The strong form of (2.3.0.1) was given in Section 1.5.1:

−u′′ = f in ]a, b[ , u(a) = u(b) = 0 .

2.3.1 Step I: Choice of Discrete Trial/Test Space

Functions in the Galerkin trial/test space V0,h must be capable of approximating the solution function u.

Thus, the discretization of boundary value problem is intimately connected with the problem of approx-

imating functions, a topic covered in [NCSE]. For the sake of function approximation the finite element

method resorts to polynomials.
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§2.3.1.1 (Approximation by (piecewise) polynomials) From the introduction to numerical methods we

know two ways to harness polynomials for the approximation of functions [a, b]→ R: approximation can

rely on

global polynomials

[NCSE]
←→ piecewise polynomials

[NCSE]

The finite element method is based on approximation by piecewise polynomials, where “piecewise” is to

be understood with respect to a partition of the computational domain Ω, Ω =]a, b[ in this section.

Approximation in the FEM

Idea underlying the finite element method:

approximate u by means of continuous, piecewise polynomial functions.

y

§2.3.1.3 (Meshes (grids) in one dimension) When talking about piecewise polynomials one has to fix a

partitioning of the domain ]a, b[ first.

Therefore we equip Ω = [a, b] with M + 1 nodes

(M ∈ N) forming the set

V(M) := {a = x0 < x1 < · · · < xM−1 < xM = b} .

Fig. 52
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

a b

The nodes define small intervals that constitute a mesh/grid

M := {]xj−1, xj[: 1 ≤ j ≤ M} .

The intervals [xj−1, xj], j = 1, . . . , M are the cells of the meshM, which is often identified with the set

of its cells. A special case is an equidistant mesh with uniformly spaced nodes:

xj := a + jh , h :=
b− a

M
.

The local and global resolution of a mesh/grid is measured through two quantities, the

(local) cell size hj := |xj − xj−1|, j = 1, . . . , M
(global) meshwidth hM := max

j
|xj − xj−1|

y

§2.3.1.4 (Piecewise linear finite element trial space) Now we take for granted that the interval ]a, b[ is

equipped with a meshM as introduced in § 2.3.1.3.

Recall from Thm. 1.3.4.23 that merely continuous, piecewise C1 functions on [a, b] belong to the Sobolev

space H1(]a, b[):

Theorem 1.3.4.23. Compatibility conditions for piecewise smooth functions in H1(Ω)

Let Ω be partitioned into sub-domains Ω1 and Ω2. A function u that is continuously differentiable

in both sub-domains and continuous up to their boundary, belongs to H1(Ω), if and only if u is

continuous on Ω.
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Thus, continuous piecewise polynomials provide valid trial and test functions for the variational problem

(2.3.0.1). We give a first example.

Fig. 53

1

x1 x2 x3 · · ·a b
⇑ a function ∈ S0

1,0(M)

The simplest space of continuous, M-piecewise

polynomial functions in H1
0(]a, b[):

V0,h = S0
1,0(M)

:=

{
v ∈ C0([a, b]): v|[xi−1,xi]

linear,

i = 1, . . . , M, v(a) = v(b) = 0

}

➣ N := dimS0
1,0(M) = M− 1

We infer the dimension of S0
1,0(M) from the obvious fact that every function ∈ S0

1,0(M) is uniquely

determined by prescribing its values at the interior nodes x1, x2, . . . , xM−1 of the meshM.

✍ notation: The symbol S alludes to the fact that S0
1,0(M) is a space of splines, actually a subspace of

the degree-1 spline space S1,M from [NCSE]. It also indicates that we deal with a space of scalar-valued

functions.

2.3.2 Step II: Choice of Basis

The space S0
1,0(M) will serve as both trial and test space for the Galerkin discretization (→ Section 2.2.1)

of (2.3.0.1). As we learned in Section 2.2.2, for a complete description of both steps we also need to

specify an (ordered) basis of S0
1,0(M).

Our choice of the (ordered) basis Bh{b1
h, . . . , bM−1

h }
of Vh is the following:

1D “tent functions” [NCSE] ✄

b
j
h(x) :=





(x− xj−1)/hj , if xj−1 ≤ x ≤ xj ,

(xj+1 − x)/hj+1 , if xj ≤ x ≤ xj+1 ,

0 elsewhere.

(2.3.2.1)

Fig. 54

1

a bx1 x2 x3 · · ·

b
j
h(xi) = δij :=

{
1 , if i = j ,

0 , if i 6= j .
(2.3.2.2)

We point out that (2.3.2.2) qualifies the tent functions as a cardinal basis of S0
1,0(M) with respect to the

node set X := {xi}. As a consequence the basis expansion coefficients for any function in S0
1,0(M) are

given by the function values at the interior nodes of the mesh:

uh ∈ S0
1,0(M) ⇔ uh =

M−1

∑
i=1

uh(xi)b
i
h . (2.3.2.3)

It is clear that Bh is a basis of S0
1,0(M). Moreover a key property of the tent basis functions is that their

support just comprises two adjacent cells of the mesh,

supp(b
j
h) = [xj−1, xj+1] , j ∈ {1, . . . , N} , (2.3.2.4)

where we have relied on the following notion of “support”:
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Definition 2.3.2.5. Support of a function

The support of a function f : Ω 7→ R is defined as

supp( f ) := {x ∈ Ω: f (x) 6= 0} .

To differentiate b
j
h despite the presence of a kink, we can apply the rule that the derivative of a function

∈ C1
pw([a, b]) as a function in L2(]a, b[) can be computed piecewise, cf. Ex. 1.3.4.24. So from (2.3.2.1)

we immediately get

(2.3.2.1)
db

j
h

dx
(x) =





1
hj

, if xj−1 ≤ x ≤ xj ,

− 1
hj+1

, if xj < x ≤ xj+1 ,

0 elsewhere.

(2.3.2.6)

Obviously, this derivative isM-piecewise constant and discontinuous. y

Remark 2.3.2.7 (Benefit of variational formulations of BVPs) The possibility of using simple piecewise

linear trial and test functions is a clear benefit of the weak/variational formulations of elliptic two-point

boundary value problems, since these still make sense for merely piecewise continuously differentiable

functions.

Below, in Section 4.4 we will learn about a method that targets the strong form of the 2-point BVP and,

thus, has to impose more regularity on the trial functions. y

2.3.3 Formulas for Galerkin Matrices and Right-Hand-Side Vectors

We follow the policy of Galerkin discretization elaborated in Section 2.2. We plug in trial functions from

the finite element space S0
1,0(M) into (2.3.0.1), expand them as a linear combination of tent functions,

and test with all tent functions as explained in Section 2.2.2. Using uh = µ1b1
h + · · · + µNbN

h with

coefficients µj, j = 1, . . . , N, and N = dimS0
1,0(M), by Lemma 2.2.2.3 we arrive at the “algebraic”

variational problem: seek µl ∈ R, l = 1, . . . , N,

b∫

a

N

∑
l=1

µl

dbl
h

dx
(x)

dbk
h

dx
(x)dx

︸ ︷︷ ︸
=a(uh,bk

h)

=

b∫

a

f (x)bk
h(x)dx

︸ ︷︷ ︸
=ℓ(bk

h)

, k = 1, . . . , N .

m
N

∑
l=1




b∫

a

dbl
h

dx
(x)

dbk
h

dx
(x)dx


µl =

b∫

a

f (x)bk
h(x)dx

︸ ︷︷ ︸
:=ϕk

, k = 1, . . . , N .

m
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A~µ = ~ϕ with
(A)kl :=

b∫

a

dbl
h

dx
(x)

dbk
h

dx
(x)dx , k, l = 1, . . . , N ,

~µ = [µl]
N
l=1 ∈ RN , ~ϕ = [ϕk]

N
k=1 ∈ RN .

A linear system of equations!

✄ Galerkin matrix A ∈ RN,N, (A)ij :=

b∫

a

db
j
h

dx
(x)

dbi
h

dx
(x)dx, 1 ≤ i, j ≤ N

piecewise derivatives

✄ r.h.s. vector ~ϕ ∈ RN, (~ϕ)k :=

b∫

a

f (x)bk
h(x)dx, k = 1, . . . , N .

§2.3.3.1 (Computation of entries of Galerkin matrix) We rely on the tent functions b
j
h as basis functions

on a meshM as described in § 2.3.1.3.

b
j
h(x) :=





(x− xj−1)/hj , if xj−1 ≤ x ≤ xj ,

(xj+1 − x)/hj+1 , if xj ≤ x ≤ xj+1 ,

0 elsewhere.

(2.3.2.1)

The detailed computations start with the evident fact that

|i− j| ≥ 2 ⇒ db
j
h

dx
(x) · dbi

h

dx
(x) = 0 ∀x ∈ [a, b] ,

because there is no overlap of the supports (→ Def. 2.3.2.5) of the two basis functions.

In addition, we use that the gradients of the tent functions are piecewise constant:

db
j
h

dx
(x) =





1
hj

, if xj−1 ≤ x ≤ xj ,

− 1
hj+1

, if xj < x ≤ xj+1 ,

0 elsewhere,

(2.3.2.6)

and immediately get

b∫

a

db
j
h

dx
(x)

dbi
h

dx
(x)dx =





0 , if |i− j| ≥ 2 →
0 1

1

− 1
hi+1

, if j = i + 1 →
0 1

1 bi
h b

j
h

− 1
hi

, if j = i− 1 →
0 1

1 b
j
h bi

h

1
hi
+ 1

hi+1
, if 1 ≤ i = j ≤ M− 1 →

0 1

1
b

j
h
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We obtain the following Galerkin matrix, which is symmetric, positive definite (→ Def. 0.3.1.16), and

tridiagonal:

A =




1
h1
+ 1

h2
− 1

h2
0 0

− 1
h2

1
h2
+ 1

h3
− 1

h3

0
. . .

. . .
. . .

. . . 0
. . .

. . . − 1
hM−1

0 0 − 1
hM−1

1
hM−1

+ 1
hM




∈ RN,N , N := M− 1 . (2.3.3.2)

✍ notation: hj := |xj − xj−1| =̂ local meshwidth, cell size

Remark 2.3.3.3 (Special case: Linear system of equations for linear finite element discretization on

equidistant mesh) On an equidistant mesh with uniform meshwidth h > 0 we learn from (2.3.3.2) that

the finite element linear system of equations becomes

1

h




2 −1 0 0
−1 2 −1

0
. . .

. . .
. . .

. . .
. . .

. . . 0
−1 2 −1

0 0 −1 2







µ1

...

µN



= h




f (x1)

...

f (xN)




. (2.3.3.4)

This is a symmetric positive definite Töplitz matrix, that is, a matrix with constant entries on diagonals,

see [NCSE]. Its eigenvectors, indexed by ℓ = 1, . . . , N, have the components

ηℓ
j = sin(2π

ℓj

N + 1
) , j = 1, . . . , N . (2.3.3.5)

y

§2.3.3.6 (Computation of right hand side vector for linear finite element Galerkin discretization) The

right hand side linear form of the linear variational equation (2.3.0.1) involves a general source function

f = f (x), which may be available only in procedural form, recall Rem. 2.1.2.5.

If only point evaluations of f are possible, then the only option is the computation

of right hand side vector~ϕ ∈ RN by numerical quadrature [NCSE]!

The standard approach is to approximate an integral by a weighted sum of function values, a so-called

quadrature formula:

Replace the integral with an m-point quadrature formula/quadrature rule on [a, b], m ∈ N →
[NCSE]:

∫ b

a
ψ(t)dt ≈ Qm(ψ) :=

m

∑
j=1

ωm
j ψ(ζm

j ) . (2.3.3.7)

ωm
j : quadrature weights , ζm

j : quadrature nodes ∈ [a, b] .
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Special considerations apply in the current setting: The natural choice of numerical quadrature for M-

piecewise linear trial/test spaces is the use of an M-based composite quadrature rule, which applies a

simple quadrature formula on all cells of the mesh, e.g., the composite trapezoidal rule

b∫

a

ψ(t)dt ≈
M

∑
l=1

1
2 hl(ψ(xl−1) + ψ(xl)) . (2.3.3.8)

Now the cardinal basis property (2.3.2.2) of the tent functions comes handy and leads to

ϕk := (~ϕ)k=

b∫

a

f (x)bk
h(x)dx ≈ 1

2(hk + hk+1) f (xk) , 1 ≤ k ≤ N . (2.3.3.9)

§2.3.3.10 (Linear finite element Galerkin discretization for general stiffness coefficient) We gener-

alize the considerations of § 2.3.3.1 and perform a piecewise linear finite element Galerkin discretization

of the linear variational problem arising from the pinned elastic string model, cf. (1.4.2.1),

u ∈ H1
0(]a, b[):

b∫

a

σ(x)
du

dx
(x)

dv

dx
(x)dx =

b∫

a

f (x)v(x)dx ∀v ∈ H1
0(Ω)]a, b[ .

We repeat that the coefficient function σ : [a, b]→ R is uniformly positive

∃σ0 > 0: σ(x) ≥ σ0 ∀x ∈ [a, b] . (1.2.1.20)

and is given in procedural form only as discussed in Rem. 2.1.2.5. Our design of the finite element method

relies on the following additional properties of σ:

Assumption 2.3.3.11. Smoothness requirement for stiffness coefficient

σ is piecewise continuous, σ ∈ C0
pw([a, b]), with jumps only at grid nodes xj

As above we plug in a basis expansion of the trial function uh ∈ S0
1,0(M), uh = µ1b1

h + · · ·+ µNbN
h , and

test with all tent functions bk
h:

b∫

a

σ(x)
N

∑
l=1

µl

dbl
h

dx
(x)

dbk
h

dx
(x)dx =

b∫

a

f (x)bk
h(x)dx , k = 1, . . . , N . (2.3.3.12)

In light of Rem. 2.1.2.5 numerical quadrature will be required for the (approximate) evaluation of both

integrals. We use different quadrature rules,

✦ the composite midpoint rule for left-hand-side integral → [NCSE]

∫ b

a
ψ(x)dx ≈

M

∑
j=1

hjψ(mj) , mj := 1
2(xj + xj−1) . (2.3.3.13)

and, as before, the composite trapezoidal rule

b∫

a

ψ(t)dt ≈
M

∑
l=1

1
2 hl(ψ(xl−1) + ψ(xl)) , (2.3.3.8)

see also [NCSE], for the right-hand side integral.
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This numerical quadrature applied to (2.3.3.12) results in the following linear system of equations for the

expansion coefficients µℓ:

N

∑
ℓ=1

(
M

∑
j=1

hjσ(mj)
dbℓh
dx

(mj)
dbk

h

dx
(mj)

)

︸ ︷︷ ︸
=(A)k,ℓ

µℓ =
1
2(hk+1 + hk) f (xk)︸ ︷︷ ︸

=:(~ϕ)k

, k = 1, . . . , N ,

m
A~µ = ~ϕ .

Concretely, on an equidistant mesh with uniform cell size h > 0 we end up with the linear system of

equations

1

h




σ1 + σ2 −σ2 0 . . . . . . 0
−σ2 σ2 + σ3 −σ3 . . .

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
... −σM−2 σM−2 + σM−1 −σM−1

0 . . . . . . 0 −σM−1 σM−1 + σM







µ1

...

µN




= h




f (x1)

...

f (xN)




, (2.3.3.14)

with σj := σ(mj), j = 1, . . . , m. y

Remark 2.3.3.15 (Offset function for finite element Galerkin discretization) Recall the offset function

trick as discussed in § 1.2.3.12, where it enabled us to return to a vector space as trial space, if the original

linear variational problem was posed on an affine space. We face this situation for the pinned elastic string

variational problem (1.4.2.1) unless the boundary values ua and ub are both zero, which we have assumed

so far.

Now we return to the general situation of non-homogeneous Dirichlet boundary conditions and wonder

what are computationally convenient offset functions in the context of linear finite element Galerkin dis-

cretization?

To deal with the case of general Dirichlet boundary

conditions

u(a) = ua , u(b) = ub

we use a piecewise linear offset function ✄
Fig. 55

1

a bx1 x2 x3 · · ·

ua

ub

u0,h(x) =





ua(1− x−a
h1

) , if a ≤ x ≤ x1 ,

ub(1− b−x
hM

) , if xM−1 ≤ x ≤ b ,

0 elsewhere,

,
u0,h ∈ H1(]a, b[) ,

u0,h(a) = ua, u0,h(b) = ub .
(2.3.3.16)
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Of course, we could have used a linear offset function as in Ex. 1.2.3.16

u0(x) =
b− x

b− a
ua +

x− a

b− a
ub , x ∈ [a, b] ,

but the above choice (2.3.3.16) has considerable benefits:

✦• u0,h is a simple function (since it isM-piecewise linear),

• u0,h is locally supported : contributions from u0,h will alter only first and last component of right hand

side vector. To understand why, recall the linear variational problem arising from the use of an offset

function

w ∈ V0: a(w, v) = ℓ(v)− a(u0,h, v) ∀v ∈ V0 . (2.2.0.8)

and verify that, a(u0,h, b
j
h) 6= 0 only for j = 1, M− 1. Thus, only two entries of the right-hand-side

vector will change.

y

Review question(s) 2.3.3.17.

Linear FEM for two-point boundary value problems

(Q2.3.3.17.A) [Non-differentiable finite-element trial and test functions] The piecewise linear functions

used for the finite element Galerkin discretization of a second-order elliptic boundary value problem on

]a, b[ are not differentiable on ]a, b[ in general. Explain why they can be used nevertheless.

(Q2.3.3.17.B) [Graded mesh] We consider a graded meshMα of the interval Ω := [0, 1] with node

set

V(M) := {xj := (j/n)α, j = 0, . . . , n} , n ∈ N , α > 0 . (2.3.3.18)

What is the smallest and largest cell size ofMα?

(Q2.3.3.17.C) [Tent functions on graded mesh] Let {b1
h, . . . , bn−1

h } stand for the tent function basis

of S0
1,0(M2) on the graded mesh M2 of Ω :=]0, 1[, whose nodes are given by (2.3.3.18) for α = 2.

These basis functions satisfy b
j
h(xi) = δi,j, i, j = 1, . . . , n− 1. Compute the norms

∥∥bi
h

∥∥
L2(Ω)

and∣∣bi
h

∣∣
H1(Ω)

.

(Q2.3.3.17.D) [Galerkin discretization of a right-hand side functional on a graded mesh] On the graded

meshM2 as given by (2.3.3.18) for α = 2 we consider the finite element space S0
1,0(M) equipped with

the tent function basis {b1
h, . . . , bn−1

h }, b
j
h(xi) = δi,j, i, j = 1, . . . , n− 1. Compute the vector~ϕ ∈ Rn−1

obtained by the Galerkin discretization of the right-hand side functional ℓ(v) :=
∫ 1

0 v(x)dx.

(Q2.3.3.17.E) [Non-zero entries of Galerkin matrix] We conduct the Galerkin finite-element discretiza-

tion of the generic second-order elliptic two-point Dirichlet boundary value problem

u ∈ H1
0(]0, 1[):

b∫

a

σ(x)
du

dx
(x)

dv

dx
(x)dx =

b∫

a

f (x)v(x)dx ∀v ∈ H1
0(]0, 1[) ,

with uniformly positive coefficient σ, using the trial and test space S0
1,0(Mα) on the graded mesh ac-

cording to

V(M) := {xj := (j/n)α, j = 0, . . . , n} , n ∈ N , α > 0 , (2.3.3.18)

and with the standard tent function basis. Give sharp upper and lower bounds for the number of non-

zero entries of the Galerkin matrix.
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(Q2.3.3.17.F) [Numerical quadrature] What is numerical quadrature and how is it applied in the context

of the Galerkin discretization of the right-hand side linear functional

v 7→
∫ 1

0
f (x)v(x)dx , f ∈ C0([0, 1]) .

(Q2.3.3.17.G) [Composite trapezoidal rule] The use of the composite trapezoidal quadrature rule on a

meshM of ]a, b[ with nodes a = x0 < x1 < · · · < xM−1 < xM := b amounts to the approximation

∫ b

a
φ(x)dx ≈ 1

2 h1φ(x0) +
M−1

∑
j=1

φ(xj)
1
2(hj + hj+1) +

1
2 hMφ(xM) .

Explain the difficulty encountered when applying this quadrature rule for the computation of entries of

the Galerkin matrix for the linear variational problem

u ∈ H1
0(]a, b[):

b∫

a

σ(x)
du

dx
(x)

dv

dx
(x)dx =

b∫

a

f (x)v(x)dx ∀v ∈ H1
0(]a, b[) ,

discretized based on S0
1,0(M) and its tent function basis.

(Q2.3.3.17.H) [Finite-element Galerkin discretization non-symmetric bilinear form] We consider the

bilinear form

b(u, v) :=
∫ 1

0
u(x)

dv

dx
(x)dx , u ∈ L2(]0, 1[) , v ∈ H1(]0, 1[) .

We study its Galerkin discretization based on the trial/test space S0
1,0(M) on an equidistant mesh of

]0, 1[ with M cells, using the standard tent function basis. Compute the resulting Galerkin matrix.

△

2.4 Case Study: Triangular Linear FEM in Two Dimensions

1.
Video tutorial for Section 2.4: Case Study: Triangular Linear FEM in Two Dimensions

(I): (53 minutes) Download link, tablet notes

2.
Video tutorial for Section 2.4: Case Study: Triangular Linear FEM in Two Dimensions

(II): (61 minutes) Download link, tablet notes

This section elaborates how to extend the linear finite element Galerkin discretization of Section 2.3 to two

dimensions. Familiarity with the 1D setting is essential for understanding the current section.

Parts of the presentation are based on a simple C++ finite element code that is available on the course Git

repository ➺ GitLab

§2.4.0.1 (Polygonal computational domain) In this section we consider boundary value problems posed

on a two-dimensional bounded domain Ω ⊂ R2.
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For general assumptions on the domain Ω ⊂ R2

refer to § 1.2.1.14:

• Ω is bounded and

• Ω has a piecewise smooth boundary.

For the sake of simplicity we further restrict the set of

admissible domains.

Additional assumption: Ω is a polygon

polygon with 10 corners ✄

(By default, the domain Ω is assumed to be an open

set, that is, x ∈ Ω implies x 6∈ ∂Ω!)

Fig. 56

Ω

§2.4.0.2 (Model problem) We initially focus on the following well-posed 2nd-order linear variational

problem posed on the Sobolev space H1(Ω) (→ Def. 1.3.4.8). It represents a Neumann problem (→
Ex. 1.8.0.10) with homogeneous Neumann data and reaction term

u ∈ H1(Ω):
∫

Ω
α(x) grad u · grad v + c(x)u v dx =

∫

Ω
f v dx ∀v ∈ H1(Ω) , (2.1.2.2)

m← see Section 1.5

strong form, BVP:
−div(α(x) grad u) + c(x)u = f in Ω ,

grad u · n = 0 on ∂Ω .

We take for granted that the reaction coefficient c = c(x) is supposed to be uniformly positive definite

according to (2.1.2.3), a concept explained in (1.2.2.8) and Def. 1.2.2.9. Thus we avoid potential non-

uniqueness of solutions, see Rem. 1.8.0.14 for a discussion.

2.4.1 Meshes in 2D: Triangulations

Question: What is the 2D counterpart of the 1D mesh/gridM as introduced in § 2.3.1.3 ? There the mesh

was defined through a partition of the computational domain Ω =]a, b[. While in 1D splitting the interval

into disjoint sub-intervals is about the only meaningful option to define a partition, we have many more

possibilities in higher dimensions. We opt for a very special way to cut Ω ⊂ R2 into pieces, which relies

on triangulations.

Fig. 57

Ω

✬

✫

✩

✪

A triangulationM of Ω satisfies

(i) M = {Ki}M
i=1, M ∈ N, Ki =̂ open triangle

(ii) disjoint interiors: i 6= j⇒ Ki ∩ Kj = ∅

(iii) tiling/partition property:

M⋃

i=1

Ki = Ω

(iv) intersection Ki ∩ K j, i 6= j,

is – either ∅

– or an edge of both triangles

– or a vertex of both triangles

✎ notation: overline tag X =̂ a subset of Rd together with its boundary (“closure”)
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Common parlance: vertices of triangles = nodes of the triangulation (= set V(M))
triangles of the mesh = cells or elements of mesh (= setM)

For both sets we assume that their elements are numbered: M = {K1, . . . , KM},
V(M) = {x1, . . . , xN}, N ∈ N.

!
In most parts of this document we stick to the mathematical indexing convention counting

from 1, as opposed to the C++ indexing convention starting with 0. Confusing both is a

major source of errors.

Most decompositions of Ω into non-overlapping tri-

angles will not qualify as triangulations.

A mesh that does not comply with

the property (iv) from above. ✄

Parlance: • =̂ “hanging node”

Fig. 58

Ω

§2.4.1.1 (Data structure describing a (triangular) triangulation in 2D) Thanks to the constraints im-

posed on the triangles of a triangulation with M ∈ N triangles and N vertices, its full description requires

only two matrices, see Code 2.4.1.2:

(I) _nodecoords =̂N × 2 matrix ∈ RN,2 , i-th row containing the coordinates of the i-th vertex,

i ∈ {1, . . . , N}
(II) _elements =̂M× 3-matrix ∈ NM,3, j-th row containing the index numbers of the vertices of the

j-th triangle, j ∈ {1, . . . , M}.
Note: A local ordering/numbering of the vertices of every triangle of the triangulation

is implicitly provided by this data structure.

(Here we follow the mathematical convention using indices ∈ N.)

The following C++ class TriaMesh2D stores this minimal information of a planar triangular mesh. This

is a rudimentary implementation; a proper object oriented design would call for many more access and

manipulation methods.
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C++ code 2.4.1.2: Class handling planar triangular mesh ➺ GitLab

2 // Matrix containing vertex coordinates of a triangle

3 using TriGeo_t = Eigen : : Matrix <double , 2 , 3 >;

4 struct TriaMesh2D {

5 // Constructor: reads mesh data from file, whose name is passed

6 TriaMesh2D ( std : : s t r i n g f i lename ) ; //

7 v i r t u a l ~TriaMesh2D ( void ) { }

8 // Retrieve coordinates of vertices of a triangles as columns

9 // of a fixed-size 2x3 matrix

10 TriGeo_t getVtCoords ( std : : size_t ) const ;

11 // Data members describing geometry and topolgy

12 Eigen : : Matrix <double , Eigen : : Dynamic , 2> _nodecoords ;

13 Eigen : : Matrix < int , Eigen : : Dynamic , 3> _elements ;

14 } ;

The constructor of TriaMesh2D, Line 6, Code 2.4.1.2, reads the

mesh from a file with this format displayed on the right ✄

1st line: positive integer N followed by keyword vertices, N =̂
number of vertices.

line 2↔N+1: pairs x y of reals =̂ coordinates of vertices

line N+2: positive integer M and keyword triangles, M =̂ number

of triangles.

line N+3↔N+2+M: triplets v1 v2 v3 of positive integers ∈
{1, . . . , N}, indices of vertices of triangles.

1 N vertices

2 x y

3 ....

4 x y

5 M triangles

6 v1 v2 v3

7 ....

8 v1 v2 v3

Details of the mesh data structure can be inferred from how a mesh is built from the information stored in

a file, see the constructor of the class TriaMesh2D reading mesh from file ➺ GitLab.

The member function getVtCoords (→ Code 2.4.1.3)

stores the coordinates of the three vertices of a triangle in

the columns of a 2× 3-matrix:

[
a1 a2 a3

]
=

[
a1

1 a2
1 a3

1
a1

2 a2
2 a3

2

]
∈ R2,3 .

This format is used in the C++ code below and the fixed

size matrix data type TriGeo_t is introduced for storing

triplets of triangle vertex coordinates.

Fig. 59

a1 =
[
a1

1, a1
2

]T
a2 =

[
a2

1, a2
2

]T

a3 =
[
a3

1, a3
2

]T

n1n2

n3

C++ code 2.4.1.3: Retrieve coordinates of vertices of a triangles as rows of a 2x3-matrix

➺ GitLab

1 TriGeo_t TriaMesh2D : : getVtCoords ( size_t i ) const {

2 // Check whether valid cell index (starting from zero!)

3 assert ( i < _elements . rows ( ) ) ;

4 // Obtain numbers of vertices of triangle i

5 const Eigen : : RowVector3i i dx = _elements . row ( i ) ;

6 // Build matrix of vertex coordinates

7 Eigen : : Matrix <double , 3 , 2> v tc ;

8 v tc << _nodecoords . row ( i dx [ 0 ] ) ,

9 _nodecoords . row ( i dx [ 1 ] ) ,

10 _nodecoords . row ( i dx [ 2 ] ) ;

2. Finite Element Methods (FEM), 2.4. Case Study: Triangular Linear FEM in Two Dimensions 150

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/lecturecodes/SimpleLinearFEM2D/SimpleLinearFEM2D.h
https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/https://gitlab.math.ethz.ch/ralfh/npdecodes/blob/master/lecturecodes/SimpleLinearFEM2D/Mesh.cc
https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/lecturecodes/SimpleLinearFEM2D/Mesh.cc


NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

11 return v tc . transpose ( ) ;

12 }

y

EXAMPLE 2.4.1.4 (Internal array representation of 2D triangular mesh) We make explicit the con-

tents of the _nodecoords and _elements matrices, data members of TriaMesh2D, for the special

triangulation of the square Ω =]− 1, 1[2 drawn in Fig. 60.

Fig. 60

2

2

9

3

3

1

1

6

6

7

7

4

4

8

8

5

5

(−1, 1)

(−1,−1) (1,−1)

(1, 1)

i (xi)1 (xi)2

1 -1 1

2 -1 0

3 -1 -1

4 0 -1

5 0 0

6 1 -1

7 1 0

8 1 1

9 0 1

Matrix _nodecoords

Kj Vertex indices

1 1 2 9

2 2 5 9

3 5 8 9

4 5 7 8

5 3 4 2

6 4 5 2

7 4 7 5

8 4 6 7

Matrix _elements

y

2.4.2 Linear Finite Element Space

§2.4.2.1 (Recalled: Piecewise linear functions in 1D) Recall the spline space S0
1,0(M) ⊂ H1

0([a, b]) of

piecewise linear functions on a 1D gridM with M cells, see § 2.3.1.4, that was used as Galerkin trial/test

space in 1D in Section 2.3.

Fig. 61

1

x1 x2 x3 · · ·a b
⇑ function ∈ S0

1,0(M)

1D linear finite element trial space on mesh M :=
{]xj−1, xj[: j = 1, . . . , M} of Ω :=]a, b[⊂ R:

S0
1,0(M) :=

{
v ∈ C0([a, b]): v|[xi−1,xi]

linear,

i = 1, . . . , M, v(a) = v(b) = 0

}

This was tailored to provide the test space V0,h for a two-point Dirichlet problem. We can easily alter

this space to obtain a piecewise linear finite element space suitable for the Galerkin discretization of a

two-point Neumann problem.
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Full 1D linear finite element space on mesh M :=
{]xj−1, xj[: j = 1, . . . , M} of ]a, b[⊂ R:

S0
1 (M) :=
{

v ∈ C0([a, b]): v|[xi−1,xi]
linear ∀i

}
(2.4.2.2)

Fig. 62

1

x1 x2 x3 · · ·a b
⇑ function ∈ S0

1 (M)
y

The goal is to generalize the space S0
1 (M) as defined in (2.4.2.2) to 2D and 3D. To do so we first extend

the concept of (affine) linear scalar-valued functions. The following table exhibits the natural correspon-

dence of concepts in 1D and 2D. Then we define S0
1,0(M) over a triangular mesh in 2D in the same

fashion as we defined it in 1D over a partition of an interval.

d = 1 d = 2

Grid/mesh cells: intervals ]xi−1, xi[, i = 1, . . . , M triangles Ki, i = 1, . . . , M

Linear functions: x ∈ R 7→ α + β · x, α, β ∈ R x ∈ R2 7→ α + β · x, α ∈ R, β ∈ R2

This suggests that we try a definition analogous to the 1D case (2.4.2.2):

V0,h = S0
1 (M) :=

{
v ∈ C0(Ω): ∀K ∈ M:

v|K(x) = αK + βK · x,

αK ∈ R, βK ∈ R2, x ∈ K

}
⊂H1(Ω)

see Thm. 1.3.4.23

Recall that Thm. 1.3.4.23 tells us that a function that is piecewise (w.r.t to a “nice” partition of Ω) smooth

and bounded belongs to H1(Ω), if and only if it is continuous on the entire domain Ω. This accounts for

the requirement v ∈ C0(Ω) in the above definition.

Parlance: Functions of the form x 7→ αK + βK · x, αK ∈ R, βK ∈ R2 are called (affine) linear.

✎ notation: S0
1(M)

continuous functions, cf. C0(Ω)
Scalar functions

locally 1st degree polynomials

Fig. 63

✁ Continuous piecewise affine linear function ∈
S0

1 (M) on a triangular meshM
Many plotting libraries can directly visualize such

functions; this image was created with the

MATLAB function trisurf, MathGL offers the

method triplot.

Remark 2.4.2.3 (Piecewise gradient → Section 1.3) Functions in S0
1 (M) will usually have kinks

across intercell interfaces, which rules out global differentiability. However, we can differentiate them
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nevertheless, if we do not insist on getting a value for the derivative in every point. This is acceptable, if

the derivative occurs only under an integral as it is invariably the case in weak formulations. Again, also

in two dimensions we reap the benefit of the reduced smoothness requirements inherent in a variational

formulation, cf. Rem. 2.3.2.7.

Moreover, we can simply patch together the derivative by separately differentiating the smooth parts of the

function, see Ex. 1.3.4.24 and (2.3.2.6) for the same reasoning in 1D. Summing up:

Thm. 1.3.4.23 ⇒ S0
1 (M) ⊂ H1(Ω), because S0

1 (M) ⊂ C0(Ω) and piecewise smooth.

⇒ for uh ∈ S0
1 (M) the gradient grad uh can be computed on each triangle

as piecewise constant function, cf. Ex. 1.3.4.27.

(Easy: on K ∈ M: grad{x 7→ αK + βK · x} = βK ∈ R2)
y

2.4.3 Nodal Basis Functions

Our next goal is the generalization of “tent functions”, see (2.3.2.1).

Recall the 1D “tent functions” [NCSE]

✄

In 1D, adding two more “half-tent” functions, cardi-

nal basis functions belonging to the endpoints x0 and

xM, we obtain a basis of S0
1 (M):

B = {b0
h, . . . , bM

h } , (2.4.3.1)

b
j
h(xi) = δij :=

{
1 , if i = j ,

0 , if i 6= j ,
(2.3.2.2)

Fig. 64 a = x0 b = xM
x1 x2 x3 · · ·

1

The “nodal (value) property” condition (2.3.2.2) already defines a tent function in the space S0
1 (M). This

approach carries over to 2D.

Fig. 65

Idea: define the basis function bx
h,

x ∈ V(M), by “nodal condi-

tions”

bx
h(y) =

{
1 , if y = x ,

0 , if y ∈ V(M) \ {x} .
(2.4.3.2)

Is this possible ?

§2.4.3.3 (Fixing a piecewise affine linear function) Heuristic reasoning: there is exactly one plane

through three non-collinear points in R3. Moreover, the graph of a linear function R2 7→ R is a plane.

This can be made rigorous by a little linear algebra. Let x→ α+ β · x describe the plane through (a1, v1),
(a2, v2), (a3, v3), vi ∈ R, ai ∈ R2 not collinear. Then α, β1, β2 satisfy the linear system of equations




1 a1
1 a1

2
1 a2

1 a2
2

1 a3
1 a3

2






α
β1

β2


 =




v1

v2

v3


 , (2.4.3.4)
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where ai =

[
ai

1

ai
2

]
. Since the points ai do not lie on a line, the vectors a2 − a1 and a3 − a1 are linearly

independent, which ensures that (2.4.3.4) always has a unique solution, because

det




1 a1
1 a1

2
1 a2

1 a2
2

1 a3
1 a3

2


 = det

[
a2

1 − a1
1 a2

2 − a1
2a3

1 − a1
1 a3

2 − a1
2

]
= 2|K| 6= 0 .

“Visual proof”:

On a non-degenerate triangle K with vertices

a1, a2, a3: an (affine) linear scalar function q : K 7→
R is uniquely determined by the values q(ai). ✄

Fig. 66

a1 a2

a3

x1

x2

q(x)

q(a1)
q(a2)

q(a3)

Issue: Is aM-piecewise affine linear function v : Ω→ R continuous, when its vertex values are fixed?

Yes, because on each edge e of M v|e is linear and, thus, uniquely determined by its values in the

endpoints of e, see Fig. 66 for an illustration. As a consequence, v has the same value on e no matter

from which side it is approached.

vh ∈ S0
1 (M) is uniquely determined by {vh(x), x node ofM}!

dimS0
1 (M) = ♯V(M) (V(M) = set of nodes (= vertices of triangles) ofM)

Note that the condition (iv) for a valid triangulation makes possible the construction of the basis function

bx
h for each x ∈ V(M); no simple basis functions could be associated with the red vertices (“hanging

nodes”) in Fig. 58. y

Now we have found the perfect 2D counterpart of the tent function basis (→ (2.3.2.2)) of the linear finite

element space in 1D:

Writing V(M) = {x1, . . . , xN}, an ordering of the nodes is implied, the nodal basis Bh :=
{b1

h, . . . , bN
h } of S0

1 (M) is defined by the conditions

bi
h ∈ S0

1 (M) ,

bi
h(xj) =

{
1 , if i = j ,

0 else,

i, j ∈ {1, . . . , N} .

(2.4.3.5)

Piecewise linear nodal basis function

(“hat function”/ “tent function”)
✄

Fig. 67

1

Note that the defining relations (2.4.3.5) amount to the cardinal basis property of Bh with respect to the

node set V(M) = {x1, . . . , xN}. As a consequence, the coefficients of the nodal basis expansion of a
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uh ∈ S0
1 (M) agree with the so-called nodal values uh(xi):

uh ∈ S0
1 (M): uh =

N

∑
i=1

µib
i
h ⇔ µi = uh(xi) ∀i = 1, . . . , N . (2.4.3.6)

§2.4.3.7 (Linear finite element space for homogeneous Dirichlet problem) Recall that the Dirichlet

problem with homogeneous boundary conditions u|∂Ω = 0 is posed on the Sobolev space H1
0(Ω) (→

Def. 1.3.4.3), see (1.4.2.4), Ex. 1.8.0.2.

This leads to a “formal” characterization:

Galerkin space for homogeneous Dirichlet b.c.: V0,h = S0
1,0(M) := S0

1 (M)∩H1
0(Ω)

☛ Notation: S0
1,0(M) zero on ∂Ω, cf. H1

0(Ω)

Fortunately, this space can immediately be obtained from S0
1 (M) by dropping basis functions on the

boundary:

S0
1,0(M) = Span{bj

h: xj ∈ Ω (interior node !)}

dimS0
1,0(M) = ♯{x ∈ V(M): x 6∈ ∂Ω}

Fig. 68

Ω

✁ “Location” of nodal basis functions:

(meshM→ Fig. 57)

•, • → nodal basis functions of S0
1 (M)

• → nodal basis functions of S0
1,0(M)

Bottom line: the linear finite element trial/test space contained in H1
0(Ω) is obtained by removing

all “tent functions” of S0
1 (M) that do not vanish on ∂Ω from the standard basis of S0

1 (M)..

y

2.4.4 Sparse Galerkin Matrix

Already for linear finite element Galerkin discretization in one dimension in Section 2.3 the tridiagonal

structure of the Galerkin matrices (2.3.3.14) caught our attention. Will Galerkin matrices in 2D also turn

out to be banded?

To answer this question, we now study the filling pattern of the Galerkin matrix arising from the discretiza-

tion of a 2nd-order scalar linear elliptic variational problem with linear finite elements. By filling pattern we
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mean the number and location of non-zero entries of that matrix. It will turn out that Galerkin matrices are

always sparse, that is, most of their entries vanish.

Throughout the discussion we have in mind a second-order elliptic variational problem featuring a bilinear

form

a(u, v) :=
∫

Ω

(α(x) grad u) · grad v + c(x)u v dx =
∫

∂Ω

h v dS , u, v ∈ H1(Ω) . (2.4.4.1)

We write b
j
h for the nodal basis function associated with the node xj of the triangulation M of Ω, see

Section 2.4.3.

Note that a is symmetric which will spawn a symmetric Galerkin matrix.

Now, for the “tent” basis functions bi
h of S0

1 (M) from (2.4.3.5), we study the sparsity (→ [NCSE]) of the

Galerkin matrix

A :=
(
a(b

j
h, bi

h)
)N

i,j=1
∈ RN,N , N := dimS0

1 (M) = ♯V(M) ,

as introduced in Section 2.2.

The consideration are fairly parallel to those that made us understand that the Galerkin matrix for the 1D

case was tridiagonal, see (2.3.3.2). Again, a key concept is that of the support of a function as defined in

Def. 2.3.2.5. We first examine the possible relative locations of the supports of two nodal basis functions.

Fig. 69

xi

xj

Ω

Fig. 70

Ω

xi

xj

{
Nodes xi, xj ∈ V(M)

not connected by an edge
⇔ Vol(supp(bi

h) ∩ supp(b
j
h)) = 0

}
⇒ (A)ij = 0 .

For instance, the number of non-zero entries in row i of the Galerkin matrix tells us, the minimal number

of edges abutting the node xi.
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Lemma 2.4.4.2. Sparsity of Galerkin matrix

There is a constant C > 0 depending only on the topology of Ω, that is, the number of “holes” in it,

such that for any triangular meshM of Ω (N := ♯V(M) = number of vertices)

♯{(i, j) ∈ {1, . . . , N}2: (A)ij 6= 0} ≤ 7 · N + C ,

where A is any Galerkin matrix arising from a discretization of a 2nd-order linear scalar elliptic

variational problem with linear finite elements.

Proof. We rely on Euler’s formula for triangulations.

♯M− ♯E(M) + ♯V(M) = χΩ , χΩ = Euler characteristic of Ω .

Note that χΩ is a topological invariant (alternating sum of Betti numbers).

By combinatorial considerations (traverse edges and count triangles):

2 · ♯EI(M) + ♯EB(M) = 3 · ♯M ,

where EI(M), EB(M) stand for the sets of interior and boundary edges ofM, respectively.

♯EI(M) + 2♯EB(M) = 3(♯V(M)− χΩ) .

Then use

N = ♯V(M) , nnz(A) ≤ N + 2 · ♯E(M) ≤ 7 · ♯V(M)− 6χΩ ,

which yields the assertion for any triangulation.
✷

Recall from [NCSE] (not a definition in a rigorous mathematical sense):

Notion 2.4.4.3. Sparse matrix

A ∈ Km,n, m, n ∈ N, is sparse, if

nnz(A) := #{(i, j) ∈ {1, . . . , m} × {1, . . . , n}: aij 6= 0} ≪ mn .

Sloppy parlance: matrix sparse :⇔ “almost all” entries = 0 /“only a few percent of” entries 6= 0

Galerkin discretization of a 2nd-order linear variational problem

utilizing the nodal basis of S0
1 (M)/S0

1,0(M)
leads to sparse linear systems of equations.

EXAMPLE 2.4.4.4 (Sparse Galerkin matrices) We compute on the triangular meshM shown in Fig. 71

(left figure). The right figure displays a “spy-plot” of the Galerkin matrix obtained from the finite el-

ement Galerkin discretization of a second-order elliptic Dirichlet BVP by means of the trial/test space

V0,h = S0
1,0(M).
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Triangular meshM Fig. 72
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nz = 2670

Resulting sparsity pattern of Galerkin matrix

A spy-plot indicates the location of the non-zero entries of a matrix by drawing a dot at the position of

every non-zero entry. y

2.4.5 Computation of Galerkin Matrix

Now we learn about an efficient algorithm for computing the non-zero entries of the sparse finite element

Galerkin matrix. For sake of simplicity we consider the bilinear form for the Poisson equation

a(u, v) :=
∫

Ω

grad u · grad v dx , u, v ∈ H1
0(Ω) .

and a Galerkin discretization based on

• a triangular mesh, see Section 2.4.1, set of vertices {xi} = V(M),

• the discrete trial/test space S0
1 (M) ⊂ H1(Ω),

• the nodal basis Bh =
{

b
j
h

}
of tent functions according to (2.4.3.2).

The entries of the Galerkin matrix A are given by the formula

(A)i,j = a(b
j
h, bi

h) =
∫

Ω

grad b
j
h · grad bi

h dx .

In Section 2.4.4 we realized that when computing (A)i,j we need deal only with the situations, where the

two nodes xi, xj ∈ V(M)

(i) are connected by an edge of the triangulation,

(ii) coincide,

because in all other cases the matrix entries are known to vanish a priori. We first elaborate the case (i):
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Idea:
“Assembly”

(add up cell contributions)

(A)ij =
∫

K1

grad b
j
h|K1
· grad bi

h|K1
dx+

∫

K2

grad b
j
h|K2
· grad bi

h|K2
dx

Fig. 73

K1

K2

xi

xj

2.4.5.1 Local Computations

Motivated by the above formula we now zero in on a single triangle K ∈ M, restrict the bilinear form to it,

and examine the cell contribution

aK(b
j
h, bi

h) :=
∫

K
grad b

j
h|K · grad bi

h|K dx , xi, xj nodes ∈ vertices of K . (2.4.5.1)

§2.4.5.2 (Barycentric coordinate functions) We aim to find analytic formulas for the restrictions bi
h|K. If

a1
K, a2

K, a3
K are the vertices of the triangle K with coordinates a1

K =

[
a1

1

a1
2

]
, a2

K =
[

a2
1

a2
2

]
, and a3

K =

[
a3

1

a3
2

]
,

we write

λi := b
j
h|K with ai

K = xj

[
i↔ local vertex number

j↔ global node number

]
(2.4.5.3)

The functions λ1, λ2, λ3 on the triangle K are also

known as barycentric coordinate functions.

The barycentric coordinate functions are the non-

trivial restrictions of 2D tent functions to triangles,

see Fig. 74, where the green surface represents the

graph of λ2.

Fig. 74

1
K

a1
K

a2
K

a3
K

The barycentric coordinate functions owe their name to the fact that they can be regarded as “coordinates

of a point with respect to the vertices of a triangle” in the sense that

x = λ1(x)a1
K + λ2(x)a2

K + λ3(x)a3
K .

The attribute “barycentric” is related to barycenter = center of gravity, which has barycentric coordinates

(1
3 , 1

3 , 1
3).

Plots of the graphs of the functions λi, i = 1, 2, 3 look as follows:
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Fig. 75

Restrictions λ1, λ2, λ3 of p.w. linear nodal basis functions of S0
1 (M) to a triangle K

Formulas for the λi can easily be found from the defining property that they are affine linear and that

λi(aj) = δij.

λ1(x) =
1

2|K|
(

x− a2
K

)
·
[

a2
2 − a3

2
a3

1 − a2
1

]
= − |e1|

2|K| (x− a2
K) · n1 ,

λ2(x) =
1

2|K|
(

x− a3
K

)
·
[

a3
2 − a1

2
a1

1 − a3
1

]
= − |e2|

2|K| (x− a3
K) · n2 ,

λ3(x) =
1

2|K|
(

x− a1
K

)
·
[

a1
2 − a2

2
a2

1 − a1
1

]
= − |e3|

2|K| (x− a1
K) · n3 .

(ei = edge opposite vertex ai
K, see Figure for numbering

scheme ✄)
Fig. 76

a1
K =

[
a1

1, a1
2

]⊤
a2

K =
[
a2

1, a2
2

]⊤

a3
K =

[
a3

1, a3
2

]⊤

ω1
ω2

ω3
n1n2

n3

Obviously, these formulas define affine linear functions. Their complete justification of appeals to the

distance formula for a point w.r.t. to a line given in Hesse normal form:

|(ai
K − a

j
K) · ni| = dist(ai

K; ei) = hi (hi =̂ height) and 2|K| = |ei|hi ⇒ λi(ai
K) = 1.

This shows that the λi really provide the restrictions of p.w. linear nodal basis functions (tent functions) of

S0
1 (M) to triangle K, because they are clearly (affine) linear and comply with (2.4.3.2).

For the constant gradients of the barycentric coordinate functions we find

grad λ1 = − |e1|
2|K| n1 =

1

2|K| (a2
K − a3

K)
⊥ =

1

2|K|

[
a2

2 − a3
2

a3
1 − a2

1

]
, (2.4.5.4a)

grad λ2 = − |e2|
2|K| n2 =

1

2|K| (a3
K − a1

K)
⊥ =

1

2|K|

[
a3

2 − a1
2

a1
1 − a3

1

]
, (2.4.5.4b)

grad λ3 = − |e3|
2|K| n3 =

1

2|K| (a1
K − a2

K)
⊥ =

1

2|K|

[
a1

2 − a2
2

a2
1 − a1

1

]
. (2.4.5.4c)

Here x⊥ for x =
[

x1
x2

]
indicates clockwise rotation by π/2: x⊥ :=

[
x2
−x1

]
. y

§2.4.5.5 (A formula for the element matrix for −∆) Armed with the formula (2.4.5.4),

grad λi = − |ei|
2|K|n

i, i = 1, 2, 3, we can now compute the contributions to entries of the Galerkin matrix

as entries of the element (stiffness) matrix

AK =

[∫

K
grad λi · grad λj dx

]3

i,j=1

∈ R3,3 . (2.4.5.6)
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Concretely, since the gradients are constant we get

a(λi, λj) =
∫

K

grad λi · grad λj dx =
1

4|K| |ei||ej| ni · nj .

Then use ✦ the angle formula ni · nj = cos(π −ωk) = − cos ωk, (i 6= j)

✦ the area formula |K| = 1

2
|ei||ej| sin ωk, (i 6= j).

The case i = j employs a trick:

3

∑
i=1

λi = 1 ⇒
3

∑
i=1

aK(λi, λj) = 0 ⇒ a(λi, λi) = −∑
j 6=i

a(λi, λj) . (2.4.5.7)

Plugging in these formulas we end up with [KNA03]

AK =
1

2




cot ω3 + cot ω2 − cot ω3 − cot ω2

− cot ω3 cot ω3 + cot ω1 − cot ω1

− cot ω2 − cot ω1 cot ω2 + cot ω1


 . (2.4.5.8)

The local numbering and naming conventions are displayed in Fig. 76. y

Remark 2.4.5.9 (Alternative computation of element matrix for −∆) From (2.4.3.4) we conclude that

the coefficients in the representation λi(x) = αi + βi · x of the barycentric coordinate functions λ1, λ2, λ3

on a triangle with vertices a1
K =

[
a1

1

a1
2

]
, a2

K =
[

a2
1

a2
2

]
, and a3

K =

[
a3

1

a3
2

]
satisfy




1 a1
1 a1

2
1 a2

1 a2
2

1 a3
1 a3

2






α1 α2 α3

β1
1 β2

1 β3
1

β1
2 β2

2 β3
2


 =




1 0 0
0 1 0
0 0 1


 . (2.4.5.10)

Observe that grad λi = βi, which explains, why Code 2.4.5.11 computes the gradients of the barycen-

tric coordinate functions:

C++ code 2.4.5.11: Computation of gradients of barycentric coordinate functions on a trian-

gle ➺ GitLab

2 Eigen : : Matrix <double , 2 , 3> gradbarycoordinates ( const TriGeo_t& v e r t i c e s ) {

3 Eigen : : Matrix <double , 3 , 3> X;

4 // Argument vertices passes the vertex positions of the triangle

5 // as the columns of a 2× 3-matrix, , see

6 // Code 2.4.1.3. The function returns the components of the

7 // gradients as the columns of a 2× 3-matrix
8

9 // Computation based on (2.4.5.10), solving for the

10 // coefficients of the barycentric coordinate functions.

11 X. block <3 , 1 >(0 , 0) = Eigen : : Vector3d : : Ones ( ) ;

12 X. block <3 , 2 >(0 , 1) = v e r t i c e s . transpose ( ) ;

13 return X. inverse ( ) . block <2 , 3 >(1 , 0) ;

14 }

This suggests another way to compute the element matrix AK given in (2.4.5.8):

AK = |K|
[

β1
1 β2

1 β3
1

β1
2 β2

2 β3
2

]⊤[
β1

1 β2
1 β3

1
β1

2 β2
2 β3

2

]
∈ R3,3 . (2.4.5.12)
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This formula should be used in a code, because directly evaluating (2.4.5.8) requires the angles ωk and

involves expensive evaluations of trigonometric functions.

C++ code 2.4.5.13: Computation of element matrix for −∆ on a triangle and for linear La-

grangian finite elements ➺ GitLab

2 Eigen : : Matrix3d ElementMatrix_Lapl_LFE ( const TriGeo_t& V) {

3 // Argument V same as vertices in Code 2.4.5.11.

4 // The function returns the 3× 3 element matrix as a fixed size

5 // EIGEN matrix.

6

7 // Evaluate (2.4.5.1), exploiting that the gradients are constant.

8 // First compute the area of triangle by determinant formula

9 double area = 0.5 * std : : abs ( ( V(0 , 1) − V(0 , 0) ) * (V(1 , 2) − V(1 , 1) ) −

10 (V(0 , 2) − V(0 , 1) ) * (V(1 , 1) − V(1 , 0) ) ) ;

11 // Compute gradients of barycentric coordinate functions, see

12 // Code 2.4.5.11

13 Eigen : : Matrix <double , 2 , 3> X = gradbarycoordinates (V) ;

14 // compute inner products of gradients through matrix multiplication

15 return area * X . transpose ( ) * X ;

16 }

y

Supplement 2.4.5.14 (Scaling of entries of element matrix for−∆) When we scale a mesh, we subject

all cells to a uniform dilation. Let us elaborate, how entries of the Galerkin matrix change in the process.

An observation: (2.4.5.8) ➣ AK does not depend on the “size” of triangle K!

(more precisely, element matrices are equal for similar triangles)

This can be seen by the following reasoning:

• Obviously translation and rotation of K does not change. AK

• Scaling of K by a factor ρ > 0 has the following effect that

– the area |K| is scaled by ρ2,

– the gradients grad λi are scaled by ρ−1 (the barycentric coordinate functions λi become

steeper when the triangle shrinks in size.).

Both effects just offset in aK from (2.4.5.1) such that AK remains invariant under scaling.

Note, however that for d = 3 the element matrix AK behaves differently under scaling. What is the scaling

in 3D precisely?
y

2.4.5.2 Assembly of Full Galerkin Matrix

Now we tackle the computation of the full Galerkin matrix A ∈ RN,N. This so-called “assembly” of (A)ij

for i 6= j starts from summing cell contributions

(A)ij =
∫

K1

grad b
j
h|K1
· grad bi

h|K1
dx +

∫

K2

grad b
j
h|K2
· grad bi

h|K2
dx .
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(A)ij can be obtained by summing respective(∗) entries of the element matrices of the elements

adjacent to the edge connecting xi and xj.

(∗): determined by the correspondence of local and global vertex numbers!

When we use (2.4.5.8), the origin of the matrix entry (A)ij, i 6= j, can be visualized as follows (➊, ➋, and

➌ give the local vertex numbers):

Fig. 77
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➌

➊

➋

➌
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K2

xi

xj



∗ ∗ ∗
∗ ∗ ∗
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∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗




+

(A)ij by summing entries of two element matrices

Next we look at the “assembly” of the diagonal entry (A)ii of the Galerkin matrix A. It can be obtained by

summing corresponding diagonal entries of element matrices belonging to triangles adjacent to node xi.

Fig. 78
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➂
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➂

xi

(A)ii by summing diagonal entries of element matrices of adjacent triangles
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§2.4.5.15 (Assembly algorithm for linear Lagrangian finite elements) We make a first attempt to

outline an algorithm for building the S0
1 (M)-Galerkin matrix and

assume: ✦ a numbering of nodal basis functions ↔ numbering of mesh vertices ∈ V(M)
✦ a numbering of triangles (cells) of meshM = {K1, . . . , KM}, M := ♯M
✦ a (local) numbering of the three vertices of every triangle K ∈ M

The adding up of entries of element matrices illustrated in Fig. 77 and Fig. 78 might suggest the following

implementation (pseudo-code) of the “collect approach” visualized in Fig. 77 and Fig. 78.

Pseudocode 2.4.5.16: Vertex-centered assembly of Galerkin matrix for linear finite elements

foreach e ∈ E(M) (✎ notation: E(M) =̂ set of edges ofM)

(i, j) =̂ vertex numbers of endpoints of e
(A)i,j ← 0, (A)j,i ← 0,

foreach triangle K adjacent to e
find local numbers l, m ∈ {1, 2, 3} of endpoints of e
(A)i,j ← (A)i,j + (AK)l,m → Fig. 77, AK from (2.4.5.8)

(A)j,i ← (A)j,i + (AK)m,l → Fig. 77, AK from (2.4.5.8)

endfor

endfor

foreach v ∈ V(M)
j =̂ number of vertex v
(A)j,j ← 0
foreach triangle K adjacent to v

l =̂ local number of v in K
(A)j,j ← (A)j,j + (AK)l,l → Fig. 78, AK from (2.4.5.8)

endfor

endfor

§2.4.5.17 (Cell-oriented assembly) The algorithm implemented in Code 2.4.5.16 will strain the capabil-

ities of the simple data structures available in a mesh object of type TriaMesh2D, because it requires

information about the edges of the mesh. There is a dual way of organizing assembly, which needs only

the basic topology and geometry information stored in TriaMesh2D, see Code 2.4.1.2.

In short, the the idea of cell-oriented as-

sembly is

✦ to loop over all cells K ∈ M
✦ and to “distribute” all entries of the

element matrices AK to the corre-

sponding entries of the Galerkin ma-

trix.

This distribute step is illustrated in the fig-

ure ✄

• ↔ edges, to which we can formally as-

sociate off-diagonal entires of the

Galerkin matrix. ✄

• ↔ vertices, carrying diagonal entries of

the Galerkin matrix, local numbering

given. ✄

→ =̂ “contributes to” Fig. 79

➊

➋

➌

AK =




a11 a12 a13

a21 a22 a23

a31 a32 a33
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Cell oriented assembly

A simpler implementation can be achieved by adopting the perspective of cell-oriented assembly

(“distribute scheme”): instead of traversing edges and vertices as in the above algorithm and col-

lecting entries of element matrices of adjacent triangles, we loop over all triangles and distribute

entries of their element matrices to their vertices and edges.

This is how the “distribute scheme” can be implemented:

Pseudocode 2.4.5.19: Cell-oriented assembly of Galerkin matrix for linear finite elements

SparseMatrix A ∈ RN,N, N := ♯V(M) (No of vertices)

A := O;

M := ♯M; (no of cells)

for i = 1 to M do

K ← mesh.getVtCoords(i); (Obtain cell-shape information)

AK ← getElementMatrix(K); (Compute element matrix)

for k = 1 to 3 do

for j = 1 to 3 do

A(m : xm = ak
K, ℓ : xℓ = a

j
K) + = AK(k, j);

endfor

endfor

endfor

We see that global vertex indices for the vertices of triangles have to be accessed. The next § will discuss

how to organize this. y

§2.4.5.20 (Index mapping for linear finite elements on triangular mesh) Invariably, cell oriented as-

sembly entails knowing the global number of the basis functions associated with the vertices of each

triangle. This information must be provided in an easily accessible form:

Data structure: dofh ∈ N♯M,3: local→global index mapping array : “d.o.f. mapper”

dofh(k, l) = global number of vertex l of k-th cell ∈ {1, . . . , N}
x
dofh(k,l) = al when a1, a2, a3 are the vertices of Kk ,

(2.4.5.21)

for l ∈ {1, 2, 3}, k ∈ {1, . . . , M}, M := ♯M, N := ♯V(M) (“mathematical indexing”!).

We assume that the triangulation is encoded in the data members _nodecoords ∈ RN,2 and

_elements ∈ NM,3 of an object Mesh of type TriaMesh2D as explained in § 2.4.1.1.

➣ simple realization of index mapping: dofh(k,l) := Mesh._elements(k-1,l-1)

mathematical indexing C++ indexing

The use of index mapping in the context of assembly of a finite element Galerkin matrix will be discussed

in more generality and detail in Section 2.7.4. y

EXAMPLE 2.4.5.22 (Index mapping by d.o.f. mapper) Fig. 80 displays a small planar triangulation,

complete with all local and global index numbers of the vertices and the index numbers of the triangles. On

the right the corresponding dofh-array complying with (2.4.5.21) is displayed (“mathematical indexing”).
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Fig. 80
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K15 K16
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K18
1

2
3

4
5

6

7

8

9

10

11

12

13

14

15

16

dofh:

K1 1 2 5

K2 2 5 6

K3 2 3 6

K4 4 5 8

K5 8 9 5

K6 9 5 10

K7 5 6 10

K8 10 6 11

K9 6 7 11

K10 7 11 12

K11 9 10 13

K12 13 10 14

K13 10 11 14

K14 14 11 15

K15 11 12 15

K16 12 15 16

K17 1 4 5

K18 6 3 7

In Fig. 80, for cell K8: element matrix AK contributes to A([10 6 11],[10 6 11]) y

The algorithmic details of cell-oriented assembly are remarkably simple and illustrated by the following

pseudocode. It takes for granted information about a triangular mesh to be available in an object named

mesh of a type similar to TriaMesh2D, see § 2.4.1.1 and, in particular, Code 2.4.1.2.

Pseudocode 2.4.5.23: Assembly of finite element Galerkin matrix for linear finite elements

SparseMatrix A ∈ RN,N, N := ♯V(M) (number of vertices)

A := O;

for i = 1 to N do

K ← mesh.getVtCoords(i)
AK ← getElementMatrix(K);
for k = 1 to 3 do

for j = 1 to 3 do

A(dofh(i, k), dofh(i, j)) + = AK(k, j);
endfor

endfor endfor

Note that homogeneous Dirichlet boundary conditions are not taken into account in Code 2.4.5.23, it builds

the Galerkin matrix for the full finite element space S0
1 (M), as needed, for instance, for the Neumann

boundary value problem (2.1.2.2).

Code 2.4.5.23 demonstrates a fundamental paradigm in the implementation of finite element

Galerkin schemes for variational problems connected with partial differential equations: loops gen-

erally run over the mesh cells and, if possible, computations are carried out on the level of the mesh

cells, which usually, results in optimal (∗) computational effort. For Code 2.4.5.23 this means the

following.

Computational effort = O(♯M)

(∗): computational cost for assembly that is linearly proportional to the number of nonzero entries

of the Galerkin matrix is considered optimal.
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A concrete C++ implementation of Code 2.4.5.23 is given next. The function argument Mesh refers to

an object of TriaMesh2D describing the triangulation in the form of the _nodecoords and _elements

matrices according to § 2.4.1.1. The parameter getElementMatrix must contain a function that

expects a 2× 3-matrix of vertex coordinates and returns a 3× 3 element matrix:

typedef function<Eigen::Matrix3d(const TriGeo_t &)>

LocalMatrixHandle_t;

An example is the function ElementMatrix_Lapl_LFE from Code 2.4.5.13. The function

assembleGalMatLFE() returns a sparse N × N-matrix in CRS format, where N = ♯V(M) is the

number of vertices of the mesh.

C++ code 2.4.5.24: Cell-oriented assembly of Galerkin matrix for linear finite elements on a

triangular mesh ➺ GitLab

1 Eigen : : SparseMatrix <double>

2 assembleGalMatLFE ( const TriaMesh2D& Mesh ,

3 const LocalMatr ixHandle_t getElementMatrix ) {

4 // Fetch the number of vertices

5 i n t N = Mesh . _nodecoords . rows ( ) ;

6 // Fetch the number of elements/cells, see § 2.4.1.1

7 i n t M = Mesh . _elements . rows ( ) ;

8 // Create empty sparse Galerkin matrix A
9 Eigen : : SparseMatrix <double> A(N,N) ;

10 // Loop over elements and “distribute” local contributions

11 for ( i n t i = 0 ; i < M; i ++) {

12 // Get local→global index mapping for current element, cf. (2.4.5.21)
13 Eigen : : Vec to r3 i dofhk = Mesh . _elements . row ( i ) ;

14 TriGeo_t Ver t i ces ;

15 // Extract vertices of current element, see § 2.4.1.1

16 for ( i n t j = 0 ; j < 3 ; j ++)

17 Ver t i ces . col ( j ) = Mesh . _nodecoords . row ( dofhk ( j ) ) . transpose ( ) ;

18 // Compute 3× 3 element matrix AK

19 Eigen : : Matrix3d Ak = getElementMatrix ( Ve r t i ces ) ;

20 // Add local contribution to Galerkin matrix

21 for ( i n t j = 0 ; j < 3 ; j ++)

22 for ( i n t k = 0; k < 3; k++)

23 A. coef fRef ( dofhk ( j ) , dofhk ( k ) ) += Ak ( j , k ) ;

24 }

25 // Convert into CRS format, see [NCSE].
26 A. makeCompressed ( ) ;

27 return A;

28 }

!
Regard Code 2.4.5.24 as “C++ pseudo-code”: in an actual implementation A must be

initialized differently (→ Rem. 2.4.5.25), because random Lvalue access to entries of a

sparse matrix in CRS format in Line 23 might be inefficient.
y

Remark 2.4.5.25 (Efficient assembly of sparse Galerkin matrices) Entry-by-entry initialization of a

sparse matrix as in Code 2.4.5.23 involves huge hidden effort for moving data in memory, because sparse

matrices are usually stored in CRS/CCS format, which exploits knowledge about vanishing matrix entries.

An more detailed presentation is given in [NCSE] and [GMS92].

More efficient initialization can be achieved by using an intermediate triplet/coordinate list (COO) format,

see [NCSE]. first store the N × N matrix as a vector of triplets (i, j, aij), i, j ∈ {1, . . . , N}, which allows

adding entries with little effort, and finally compute the more economical CRS/CCS format. How to do it in
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EIGEN is explained in [NCSE]. y

EXAMPLE 2.4.5.26 (Impact of efficient initialization of sparse Galerkin matrix) A code that blindly

implements the entry-by-entry initialization of the Galerkin matrix according to Code 2.4.5.23 is correct,

but will probably be rather slow due to massive moving of data in memory.

Comparison of runtimes of assembly of Galerkin ma-

trices for −∆ (bilinear form as in (2.4.5.1)) on trian-

gular meshes with different numbers of elements.

Computation of element matrices by di-

rect vs. triplet initialization, timing by C++

sys/time.h routines, minimal time over

10 runs, Implementation ➺ GitLab, functions

(in)efficientGalerkinAssembly()

(OS: Linux Fedora 22, CPU: AMD Opteron 6174,

Compiler: c++, optimization flag -O3.) Fig. 81

We observe that for large matrices the triplet based initialization is significantly faster. y

2.4.6 Computation of Right-Hand Side Vector

§2.4.6.1 (Model right hand side linear form) We consider the linear form (, which may represent the

right-hand side of a linear variational problem), see (1.4.2.4), (2.1.2.2):

ℓ(v) :=
∫

Ω
f (x) v(x)dx , v ∈ H1(Ω) , f ∈ L2(Ω) .

Recall the formula for the entries of the right hand side vector: With N = dim VN,0, B = {b1
h, . . . , bN

h }
the tent function basis of S0

1 (M) according to (2.4.3.5),

(~ϕ)j = ℓ(b
j
h) =

∫

Ω
f (x) b

j
h(x)dx , j = 1, . . . , N . (2.4.6.2)

y

Our considerations run parallel to those in Section 2.4.5: we split of right hand side linear form into cell

contributions, cf. (2.4.5.1), page 174, for similar approach to the bilinear form a.

Idea: “Assembly”

(~ϕ)j =

Nj

∑
l=1

∫

Kl

f (x) b
j
h |Kl

(x)dx ,

where K1, . . . , KNj
are the trian-

gles adjacent to node xj. No

other matter, because the integra-

tion can be confined to supp(b
j
h)!Fig. 82

K1

K2 K3

K4

K5

xj

Zero in on single triangle K ∈ M:

ℓK(b
j
h) :=

∫

K

f (x) b
j
h |K(x)dx = ℓK(λi) , xj vertex of K , (2.4.6.3)
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where λi is the barycentric coordinate function associated with (local) vertex i of the triangle and j =
dofh(k, i), with k the (global) number of the triangle K and dofh defined in (2.4.5.21) on page 181. Recall

that in this case b
j
h |K = λi.

As above in Fig. 78: Entries of the right hand side vector can be obtained by summing up the values that

the localized right hand side functionals ℓK return for barycentric coordinate functions:

This can be expressed through the vertex-oriented formula (“collect scheme”)

(~ϕ)j = ∑
K,i:dofh(k,i)=j

ℓK(λi) . (2.4.6.4)

Here: k↔ global index of triangle K

Fig. 83
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However, implementation according to this formula would emulate the cumbersome algorithm on page

179 for the computation of the Galerkin matrix.

Idea: As in Section 2.4.5, § 2.4.5.15, and Code 2.4.5.23 we aim to compute ~ϕ in a cell-

oriented fashion (“distribute scheme”).

To that end we need a counterpart of the element (stiffness) matrix from (2.4.5.8), the

element (load) vector : ~ϕK := [ℓK(λi)]
3
i=1 ∈ R3 , (2.4.6.5)

which is obtained by plugging the restrictions of basis functions to an element into that part of the right

hand side linear form belonging to the element.
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Cell-oriented “assembly” of (~ϕ)j by summing

up contributions from element vectors of trian-

gles adjacent to xj (Nj =̂ no. of triangles abut-

ting xj)

(~ϕ)j =

Nj

∑
l=1

ℓKl
(b

j
h |Kl

) =

Nj

∑
l=1

(~ϕK)i(l,j) , (2.4.6.6)

where i(l, j) is the local vertex index of the node

xj (global index j, j = 1, . . . , N) in the triangle Kl,

l = 1, . . . , ♯M.

Note: with index array dofh from § 2.4.5.15:

dofh(l, i(l, j)) = j Fig. 84

➊

➋
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ϕK,1

ϕK,2

ϕK,3




Remark 2.4.6.7 (Assembly of right hand side vector for linear finite elements → § 2.4.5.15) Entries

of element load vectors from triangles sharing a vertex are summed up, see Fig. 83 for illustration and

Code 2.4.6.8 for the implementation of this cell-oriented assembly.

The argument Mesh passes a reference to an object of type TriaMesh2D, see Code 2.4.1.2 for the class

definition, the argument getElementVector is a functor whose evaluation operator

(i) takes the geometry of a triangle in the form of a 3× 2 coordinate matrix and returns the element

load vector as defined in (2.4.6.6),

(ii) accepts a handle to a function R2 → R, which provides the source function f .

C++ code 2.4.6.8: Cell-oriented assembly of right hand side vector for linear finite elements,

see (2.4.6.6) ➺ GitLab

1 typedef f unc t i on <double ( const Eigen : : Vector2d&)> FHandle_t ;

2 typedef f unc t i on <Eigen : : Vector3d ( const TriGeo_t & , FHandle_t ) > LocalVectorHandle_t ;

3

4 Eigen : : VectorXd assemLoad_LFE ( const TriaMesh2D &Mesh ,

5 const LocalVectorHandle_t &getElementVector ,

6 const FHandle_t &FHandle )

7 {

8 // Obtain the number of vertices and cells (elements)

9 i n t N = Mesh . _nodecoords . rows ( ) ;

10 i n t M = Mesh . _elements . rows ( ) ;

11 // Initialize right hand side vector with zero.

12 Eigen : : VectorXd phi = Eigen : : VectorXd : : Zero (N) ;

13

14 // Loop over elements and “distribute” local contributions

15 for ( i n t i = 0 ; i < M; i ++) {

16 // get local→global index mapping for current element,

17 // cf. (2.4.5.21)
18 Eigen : : Vector3i dofhk = Mesh . _elements . row ( i ) ;

19 TriGeo_t Ver t i ces ;

20 // Extract geometry of current element, see § 2.4.1.1

21 for ( i n t j = 0 ; j < 3 ; j ++)

22 Ver t i ces . col ( j ) = Mesh . _nodecoords . row ( dofhk ( j ) ) . transpose ( ) ;

23 //compute element right hand side vector

24 Eigen : : Vector3d p h i l o c = getElementVector ( Ver t i ces , FHandle ) ;

25 //add contributions to global load vector

26 for ( i n t j = 0 ; j < 3 ; j ++)

27 phi ( dofhk ( j ) ) += p h i l o c ( j ) ;

28 }
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29 return phi ;

30 }

Same as Code 2.4.5.23, also Code 2.4.6.8 employs only a loop over all cells of the mesh (cell oriented

assembly ), again resulting in optimal computational effort O(♯M). y

§2.4.6.9 (Numerical quadrature for assembly of right hand side vector) Recall Rem. 2.1.2.5: f :
Ω 7→ R is usually given in procedural form

typedef function<double(const Eigen::Vector2d &)> FHandle_t;

Mandatory: use of numerical quadrature for approximate evaluation of ℓK(b
j
h), cf. (2.3.3.8).

In the 1D setting of Section 2.3 we used composite quadrature rules based on low order Gauss/Newton-

Cotes quadrature formulas on the cells [xj−1, xj] of the grid, e.g. the composite trapezoidal rule (2.3.3.8).

What is the 2D counterpart of the composite trapezoidal rule ?

Recall:

trapezoidal rule [NCSE] integrates linear interpolant

of integrand based on endpoint values

Fig. 85
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Idea: 2D trapezoidal rule

for triangle K with vertices a1, a2, a3

∫

K
f (x)dx ≈ |K|

3
( f (a1) + f (a2) + f (a3)) . (2.4.6.10)

=̂ integration of linear interpolant ∑
3
i=1 f (ai)λi of f .

element (load) vector: ~ϕK :=
[
ℓK(b

j(i)
h

∣∣∣
K
)
]3

i=1
= [ℓK(λi)]

3
i=1 ≈

|K|
3




f (a1)
f (a2)
f (a3)


 , (2.4.6.11)

where xj(i) = ai, i = 1, 2, 3 (global node number↔ local vertex number).

The following code relies on (2.4.6.11) to compute the element load vector for an arbitrary triangle, whose

vertex coordinates are passed as rows of a 3× 2-matrix, cf. Code 2.4.5.13. The source function f is

made available through a functor object.

C++ code 2.4.6.12: (Approximate) computation of element load vector by means of 2D trape-

zoidal local quadrature rule (2.4.6.11) ➺ GitLab
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1 // Functor type for right hand side source function

2 typedef f unc t i on <double ( const Eigen : : Vector2d &)> FHandle_t ;

3

4 Eigen : : Vector3d localLoadLFE ( const t_Tr iGeo& V, const FHandle_t& FHandle )

5 {

6 // Compute area of triangle, cf. Code 2.4.5.13

7 double area =

0 . 5 * ( (V(1 ,0 ) −V(0 ,0 ) ) * (V(2 ,1 ) −V(1 ,1 ) ) −(V(2 ,0 ) −V(1 ,0 ) ) * (V(1 ,1 ) −V(0 ,1 ) ) ) ;

8 // Evaluate source function for vertex location

9 Eigen : : Vector3d p h i l o c = Eigen : : Vector3d : : Zero ( ) ;

10 // Implements (2.4.6.11)
11 for ( i n t i = 0 ; i < 3 ; i ++) p h i l o c ( i ) = FHandle (V . row ( i ) ) ;

12 // Scale with 1
3 ·area of triangle

13 p h i l o c *= area / 3 . 0 ;

14 return p h i l o c ;

15 }

y

Review question(s) 2.4.6.13 (Linear finite elements in 2D)

(Q2.4.6.13.A) [“Closing” a mesh with hanging nodes]

Fig. 86

Ω

The mesh M̃ displayed beside contains a few hang-

ing nodes marked with •.
Sketch a triangulation (without hanging nodes) with

the same nodes as that mesh M̃.

(Q2.4.6.13.B) [“Tensor-product” triangular mesh] Chop up a square Ω ⊂ R2 into n2 congruent small

squares and create a triangular meshM of Ω by splitting each small square along parallel diagonals.

What is dimS0
1 (M) and dimS0

1,0(M) in terms of n?

(Q2.4.6.13.C) [Imposing Dirichlet boundary conditions] LetM be a triangulation of a polygonal domain.

Describe a modification of the space S0
1 (M) ofM-piecewise linear continuous functions that yields a

subspace S0
1,0(M) ⊂ S0

1 (M) of maximal dimension such that S0
1,0(M) ⊂ H1

0(Ω).

(Q2.4.6.13.D) [Linear independence of barycentric coordinate functions] Prove that the barycentric

coordinate functions for any non-degenerate planar triangle K ⊂ R2 are linearly independent.

(Q2.4.6.13.E) [Non-zero entries of Galerkin matrix] For the domain and mesh from Ques-

tion (Q2.4.6.13.B) determine the maximal number of non-zerp entries of the Galerkin matrix obtained

when discretizing (2.1.2.2) with trial and test space S0
1,0(M) (sharp bound).

(Q2.4.6.13.F) [Computing gradients of barycentric coordinate functions] Explain the mathematics

underlying the following code.
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C++ code 2.4.5.11: Computation of gradients of barycentric coordinate functions on a

triangle ➺ GitLab

2 Eigen : : Matrix <double , 2 , 3> gradbarycoordinates ( const TriGeo_t& v e r t i c e s ) {

3 Eigen : : Matrix <double , 3 , 3> X;

4 // Argument vertices passes the vertex positions of the triangle

5 // as the columns of a 2× 3-matrix, , see

6 // Code 2.4.1.3. The function returns the components of the

7 // gradients as the columns of a 2× 3-matrix
8

9 // Computation based on (2.4.5.10), solving for the

10 // coefficients of the barycentric coordinate functions.

11 X. block <3 , 1 >(0 , 0) = Eigen : : Vector3d : : Ones ( ) ;

12 X. block <3 , 2 >(0 , 1) = v e r t i c e s . transpose ( ) ;

13 return X. inverse ( ) . block <2 , 3 >(1 , 0) ;

14 }

(Q2.4.6.13.G) [Computing gradients of barycentric coordinate functions] Justify, why the following code

computes an element matrix for −∆ on a triangle.

C++ code 2.4.5.13: Computation of element matrix for −∆ on a triangle and for linear

Lagrangian finite elements ➺ GitLab

2 Eigen : : Matrix3d ElementMatrix_Lapl_LFE ( const TriGeo_t& V) {

3 // Argument V same as vertices in Code 2.4.5.11.

4 // The function returns the 3× 3 element matrix as a fixed size

5 // EIGEN matrix.

6

7 // Evaluate (2.4.5.1), exploiting that the gradients are constant.

8 // First compute the area of triangle by determinant formula

9 double area = 0.5 * std : : abs ( ( V(0 , 1) − V(0 , 0) ) * (V(1 , 2) − V(1 , 1) ) −

10 (V(0 , 2) − V(0 , 1) ) * (V(1 , 1) − V(1 , 0) ) ) ;

11 // Compute gradients of barycentric coordinate functions, see

12 // Code 2.4.5.11

13 Eigen : : Matrix <double , 2 , 3> X = gradbarycoordinates (V) ;

14 // compute inner products of gradients through matrix multiplication

15 return area * X . transpose ( ) * X ;

16 }

(Q2.4.6.13.H) [Taking in account zero Dirichlet boundary conditions] We are provided with

an TriaMesh2D object describing a planar triangulation M of a polygon Ω with N nodes and

std::vector<bool> bdflags; where bdflags[k] == true, if the node with number k is located

on ∂Ω. Outline how one has to modify Code 2.4.5.24 (this you may look up in the lecture document)so

that it assembles a Galerkin matrix w.r.t. the trial/test space S0
1,0(M).

C++ code 2.4.1.2: Class handling planar triangular mesh ➺ GitLab

2 // Matrix containing vertex coordinates of a triangle

3 using TriGeo_t = Eigen : : Matrix <double , 2 , 3 >;

4 struct TriaMesh2D {

5 // Constructor: reads mesh data from file, whose name is passed

6 TriaMesh2D ( std : : s t r i n g f i lename ) ; //

7 v i r t u a l ~TriaMesh2D ( void ) { }

8 // Retrieve coordinates of vertices of a triangles as columns

9 // of a fixed-size 2x3 matrix

10 TriGeo_t getVtCoords ( std : : size_t ) const ;

11 // Data members describing geometry and topolgy
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12 Eigen : : Matrix <double , Eigen : : Dynamic , 2> _nodecoords ;

13 Eigen : : Matrix < int , Eigen : : Dynamic , 3> _elements ;

14 } ;

(Q2.4.6.13.I) [Element matrices] Write AK for the element matrix for linear finite elements, the bilinear

form a(u, v) :=
∫

Ω
grad u · grad v dx, and a triangle K. We use numerical quadrature based on the

2D trapezoidal rule to compute the element matrix BK for the bilinear form b̃(u, v) :=
∫

Ω
σ(x) grad u ·

grad v dx, σ ∈ C0(Ω). How can BK be computed from AK?

(Q2.4.6.13.J) [Galerkin matrix]

Fig. 87

2

2

9

3

3

1

1

6

6

7

7

4

4

8

8

5

5

(−1, 1)

(−1,−1) (1,−1)

(1, 1)

Compute the Galerkin matrix for the bilinear form

a(u, v) =
∫

Ω
grad u · grad v dx ,

u, v ∈ H1(Ω), Ω =]−1, 1[2, and the trial/test space

S0
1 (M),M shown in Fig. 87, using the tent function

bases numbered according to the numbering of the

nodes of the mesh as indicated in Fig. 87.

Hint. All triangles of the mesh are congruent. You may also use the formula

AK =
1

2




cot ω3 + cot ω2 − cot ω3 − cot ω2

− cot ω3 cot ω3 + cot ω1 − cot ω1

− cot ω2 − cot ω1 cot ω2 + cot ω1


 , (2.4.5.8)

giving the S0
1 (M)-element matrix for −∆ on a triangle with angles ωi, i = 1, 2, 3.

(Q2.4.6.13.K) [Galerkin matrix for n-gon] The cells of a triangular meshM are generated by connect-

ing all n corners of a regular polygon with diameter 2 with its center. On this mesh we consider the finite

element space S0
1 (M) and the corresponding Galerkin matrix for the bilinear form

a(u, v) =
∫

Ω
grad u · grad v dx u, v ∈ H1(Ω) ,

where Ω is the interior of the polygon. We assume that the standard tent function basis of S0
1 (M) is

used and that their numbering starts with the central node and then continues counterclockwise through

the corners of the polygon.

(i) Sketch the pattern formed by the non-zero entries of the finite-element Galerkin matrix A ∈
Rn+1,n+1.
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(ii) Compute the non-zero entries of A.

Hint. The formula

AK =
1

2




cot ω3 + cot ω2 − cot ω3 − cot ω2

− cot ω3 cot ω3 + cot ω1 − cot ω1

− cot ω2 − cot ω1 cot ω2 + cot ω1


 , (2.4.5.8)

can be used.

(Q2.4.6.13.L) [Gradients of barycentric coordinate functions] Let K ⊂ R2 be a triangle and λi,

i = 1, 2, 3, the associated barycentric coordinate functions. Explain, why grad λi is orthogonal to the

direction of the edge opposite the vertex i.

△

2.5 Building Blocks of General Finite Element Methods

Video tutorial for Section 2.5: Building Blocks of General Finite Element Methods: (39 min-

utes) Download link, tablet notes

§2.5.0.1 (Overview) The previous section explored the details of a simple finite element discretization

of 2nd-order elliptic variational problems. Yet, it already introduced key features and components that

distinguish the finite element approach to the discretization of linear boundary value problems for partial

differential equations:

✦ variational formulations of a boundary value problem as starting point→ Section 1.8,

✦ a partitioning of the computational domain Ω by means of a meshM (→ Section 2.4.1)

✦ the use of Galerin trial and test spaces based on piecewise polynomials w.r.t.M (→ Section 2.4.2),

✦ the use of locally supported basis functions for the assembly of the resulting linear system of equa-

tions (→ Section 2.4.3).

In this section a more abstract point of view is adopted then in Section 2.4.2, and the components of a

finite element method for scalar 2nd-order elliptic boundary value problems will be discussed in greater

generality. However, prior perusal of Section 2.4 is strongly recommended. y

2.5.1 Meshes

First main ingredient of FEM: triangulation/mesh of Ω, generalizes the concepts of Section 2.4.1.

Definition 2.5.1.1. Finite element mesh/triangulation

A mesh (or triangulation) of Ω ⊂ Rd is a finite collection M := {Ki}M
i=1, M ∈ N, of open

non-degenerate (curvilinear) polygons (d = 2)/polyhedra (d = 3) such that

(A) Ω =
⋃
{Ki, i = 1, . . . , M},

(B) Ki ∩ Kj = ∅ ⇔ i 6= j,

(C) for all i, j ∈ {1, . . . , M}, i 6= j, the intersection Ki ∩ K j is either empty or a vertex, edge, or

face of both Ki and Kj.

Requirements (A) & (B) ensure that the cells Ki of the mesh form a partition of Ω (up to a set of measure

zero)
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Requirement (C) rules out “hanging nodes”, cf. condition (iv) on the triangulation introduced in Sec-

tion 2.4.1, page 164. Fig. 58 depicts the “hanging node” situation.

§2.5.1.2 (Finite element meshes: customary terminology) To talk about finite element algorithms

concisely, we need quite a few terms and notions:

• Entities refer to the geometric entities “vertex”, ”edge”, ”face” of polygon/polyhedron: meaning of

these terms corresponds to geometric intuition.

Entities can be classified by their dimen-

sion or co-dimension, which add up to the

world dimension/physical dimension d:

mesh entity dimension codimension

2D, d = 2:

triangles 2 0
edges 1 1
vertices 0 2
3D, d = 3:

tetrahedra 3 0
faces 2 1
edges 1 2
vertices 0 3

• Given a meshM := {Ki}M
i=1 the Ki called cells or elements =̂ entities of co-dimension 0

• Vertices of a mesh are often called nodes =̂ entities of co-dimension d
(✎ notation for set of nodes: V(M))

• Given a mesh and one of its mesh entities K, the sub-entities of K are all those mesh entities

contained in the closure K of K, including K itself. For example, a triangle has three edges and

three nodes as sub-entities.

The relative co-dimension of a sub-entity K′ of K is the difference of the dimensions of K and K′.

Relative co-dimensions for enti-

ties and different sub-entities of

a 2D mesh. ✄

entity sub-entity

cell edge node

cell 0 1 2

edge – 0 1

node – – 0

In finite element codes the use of co-dimension is popular, because loops over cells are a core part of most

algorithms, recall § 2.4.5.17, and cells will invariably be distinguished by co-dimension = 0, independently

of the ambient dimension. y

§2.5.1.3 (Types of meshes) Meshes according to Def. 2.5.1.1 can be classified further:

Fig. 88

Triangular mesh in 2D

Fig. 89

Quadrilateral mesh in 2D
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Fig. 90

✁ 2D hybrid mesh comprising

• triangles

• quadrilaterals

• curvilinear cells (at ∂Ω)

(Curved) tetrahedral meshes in 3D (created with NETGEN):

Fig. 91

Fig. 92

Another special type are tensor product meshes, also

called grids ✄

in 2D: a = x0 < x1 < . . . < xn = b ,

c = y0 < y1 < . . . < ym = d .

M = {]xi−1, xi[×]yj−1, yj[: (2.5.1.4)

1 ≤ i ≤ n, 1 ≤ j ≤ m} .

☞ Restricted to tensor product domains
Fig. 93 a b

c

d

Terminology: Simplicial mesh =̂
triangular mesh in 2D

tetrahedral mesh in 3D

Remark 2.5.1.5 (Finite element meshes with hanging nodes)
If (C) does not hold

Triangular non-conforming mesh

(with hanging nodes)

Ki ∩ K j is only part of an edge/face for at most one

of the adjacent cells.

(However, this mesh is conforming, if degenerate quadri-

laterals are admitted.) Fig. 94

y

2.5.2 Polynomials

The gist of FEMs is approximation by piecewise polynomials.
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In FEM: Galerkin trial/test spaces compriseM-locally polynomial functions on Ω

Polynomials are attractive, because

• they allow fast and easy evaluation [NCSE] and straightforward analytic differentiation and integra-

tion,

• (smooth) functions can be approximated efficiently by means of polynomials [NCSE].

The reader will certainly know polynomials of degree ≤ p, p ∈ N0, in 1D (uni-variate polyomials)

Pp(R) := {x 7→ c0 + c1x + c2x2 + . . . cpxp} .

In higher dimensions this concept allows various generalizations, one given in the following definition, one

given in Def. 2.5.2.7.

§2.5.2.1 (Multivariate Polynomials) This is a first way to generalize uni-variate polynomials so that they

are recovered for d = 1:

Definition 2.5.2.2. Multivariate polynomials

Space of multivariate (d-variate) polynomials of (total) degree p ∈ N0:

Pp(R
d) := {x ∈ Rd 7→∑α∈Nd

0 , |α|≤p
cαxα , cα ∈ R} .

Def. 2.5.2.2 relies on multi-index notation:

α = (α1, . . . , αd): xα := xα1
1 · · · · · x

αd
d , (2.5.2.3)

|α| = α1 + α2 + · · ·+ αd . (2.5.2.4)

Special case:

d = 2: Pp(R
2) =



 ∑

α1,α2≥0
α1+α2≤p

cα1,α2 xα1
1 xα2

2 , cα1,α2 ∈ R





.

Examples: P2(R
2) = Span{1, x1, x2, x2

1, x2
2, x1x2},

P1(R
2) = affine linear functions R2 7→ R, see Section 2.4.2

Lemma 2.5.2.5. Dimension of spaces of polynomials

dimPp(R
d) =

(
d + p

p

)
for all p ∈ N0, d ∈ N

Proof. Distribute p “powers” to the d independent variables or discard them ✄ d + 1 bins.

Combinatorial model: number of different linear arrangements of p identical items and d separators

=

(
d + p

p

)
.

✷

Leading order for p→ ∞: dimPp(R
d) = O(pd)

§2.5.2.6 (Tensor product polynomials) This is another way to extend uni-variate polynomials to higher

dimensions.
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Definition 2.5.2.7. Tensor product polynomials

Space of tensor product polynomials of degree p ∈ N in each coordinate direction

Qp(R
d) :=

{
x 7→

p

∑
ℓ1=0

· · ·
p

∑
ℓd=0

cℓ1,...,ℓd
xℓ1

1 · · · · · x
ℓd
d , cℓ1,...,ℓd

∈ R

}

= Span{x 7→ p1(x1) · · · · · pd(xd), pi ∈ Pp(R), i = 1, . . . , d} .

Example: Q2(R
2) = Span{1, x1, x2, x1x2, x2

1, x2
1x2, x2

1x2
2, x1x2

2, x2
2}

Lemma 2.5.2.8. Dimension of spaces of tensor product polynomials

dimQp(R
d) = (p + 1)d for all p ∈ N0, d ∈ N

Terminology:
Pp(Rd)/Qp(Rd) = complete spaces of polynomials/tensor product polynomials

2.5.3 Basis Functions

Third main ingredient of FEM: locally supported basis functions

(see Section 2.2 for role of bases in Galerkin discretization)

Basis functions b1
h, . . . , bN

h for a finite element trial/test space V0,h built on a meshM must satisfy:

(B1) Bh := {b1
h, . . . , bN

h } is basis of V0,h ➣ N = dim V0,h,

(B2) each bi
h is associated with a single geometric entity (cell/edge/face/vertex) ofM,

(B3) supp(bi
h) =

⋃
{K: K ∈ M, p ⊂ K}, if bi

h associated with cell/edge/face/vertex p.

Some finite element terminology connected with the basis functions:

• The basis functions bi
h are also called global shape functions (GSF)/global basis functions/

degrees of freedom (DOFs)

• We say the a mesh entity K is covered by a basis function bi
h, if K ⊂ interior of supp(bi

h). (Note the

distinction: a basis function is associated with exactly one entity, but can cover many.)

Often finite element spaces are directly defined by specifying a set of basis functions:

MeshM + global shape functions ➨ complete description of finite element space

The specification of the global shape functions is considered an integral part of the description of a finite

element method. However, remember from Thm. 2.2.2.6 and Section 2.2 that it is the sheer finite element

space, that is, the span of the global shape functions, that determines the Galerkin solution uh.

EXAMPLE 2.5.3.1 (Supports of global shape functions in 1D → Section 2.3) We recall the construc-

tion of the finite element space S0
1,0(M) in 1D and the choice of basis functions made in Section 2.3.2.

Now we try to give a concrete meaning to (B3) in this case.
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✦ Ω =]a, b[ =̂ interval

✦ Equidistant mesh

M := {]xj−1, xj[, j = 1, . . . , M} ,

xj := a + hj, h := (b− a)/M, M ∈ N.

Support (→ Def. 2.3.2.5) of global shape function (tent

function) associated with x7

Fig. 95
0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

Obviously the support of each tent functions is the interval comprised by two adjacent cells. y

EXAMPLE 2.5.3.2 (Supports of global shape functions on triangular mesh) We discuss (B3) for a 2D

triangular mesh. For the 2D tent function found in Section 2.4.3 it is clear that their supports cover all the

triangles surrounding the vertex to which the basis function is associated. The general case addressed

in (B3) is best illustrated by pictures. The symbol • marks the mesh entity to which a basis function is

associated.

Fig. 96

Support of node-associated basis

function, cf. Fig. 99

Fig. 97

Support of edge-associated basis

function

Fig. 98

Support of cell-associated basis

function

The higher the dimension of the entity, the smaller the support. y

§2.5.3.3 (Importance of local supports) The requirement (B3) implies that

global finite element basis functions are locally supported.

What is the rationale for this requirement ?

Consider a generic bilinear form a arising from a linear scalar 2nd-order elliptic BVP, see (2.4.4.1): it

involves integration over Ω/∂Ω of products of (derivatives of) basis functions. Thus the integrand for

a(b
j
h, bi

h) vanishes outside the overlap of the supports of b
j
h and bi

h.

Galerkin matrix A ∈ RN,N with (A)ij := a(b
j
h, bi

h), i, j = 1, . . . , N satisfies

(A)ij 6= 0 only if bi
h and b

j
h associated with

vertices/faces/edges(cells) adjacent to common cell

✞
✝

☎
✆Finite element Galerkin matrices are sparse (→ Notion 2.4.4.3)

In turns, sparsity of the coefficient matrix is crucial for

• the ability to store the Galerkin matrix with O(N) memory requirements for large N, where N is the

dimension of the finite element space,

• for the fast direct or iterative solution of the linear system of equations arising from finite element

Galerkin discretization.
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y

Now we introduce an important notion that will be key to understanding the efficient assembly of finite

element Galerkin matrices. Recall that “assembly” means the initialization of finite element Galerkin matrix

from element contributions, cf. § 2.4.5.15.

Definition 2.5.3.4. Local shape functions (LSF)

Given a finite element function space on a meshM with global shape functions bi
h, i = 1, . . . , N,

for every mesh entity K we define

{
b

j
K

}Q(K)

j=1
:= {bj

h|K, K ⊂ interior of supp(b
j
h)} := set of local shape functions (LSF) ,

that is the local shape functions are the basis functions that cover K, restricted to K.

Global shape functions
Restriction to entity−−−−−−−−−→ local shape functions (2.5.3.5)

Note that some authors use the term “local shape functions” only for entities of co-dimension 0, that is, for

cells.

Also note a consequence of property B2 of global shape functions:

B2 ⇒ Also local shape functions b1
K, . . . , bQ

K , Q = Q(K) ∈ N, are associated with a unique sub-entity

(a vertex/edge/face/the interior) of K.

EXAMPLE 2.5.3.6 (Cell-local shape functions for S0
1 (M) in 2D → Section 2.4.3) We assume a

triangular mesh and view the barycentric coordinate functions through the lens of Def. 2.5.3.4: (2.4.5.3)

tells us that they are local shape functions for S0
1 (M) on triangles.

Global basis function for S0
1 (M) ✄

Example: On the “unit triangle” K̂ with vertices

a1 =

[
0

0

]
, a2 =

[
1

0

]
, a3 =

[
0

1

]
:

we find the local shape functions

b1
K̂
(x) := 1− x1 − x2 ,

b2
K̂
(x) := x1 ,

b3
K̂
(x) := x2 .

Fig. 99

1

Fig. 100
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These are the barycentric coordinate functions λ1, λ2, λ3 on K̂ as introduced in Section 2.4.5. y

EXAMPLE 2.5.3.7 (LSFs for S0
1 (M) on edges) Restrictions of tent functions to edges emanating from

the vertex where they sit are straightforward:

Fig. 101

1

xi

xj

b
j
h

Fig. 102 x1

x2

xi

xj

e

b1
e

b2
e 1

1

There are two local shape functions on an edge e, linear along e, attaining values 0, 1 at its endpoints. If e
connects the nodes xi (first endpoint) and xj (second endpoint), then

x = ξxi + (1− ξ)xj ∈ e ⇒ b1
e (x) = ξ , b2

e (x) = 1− ξ . (2.5.3.8)

y

Review question(s) 2.5.3.9 (Building blocks of FEM)

(Q2.5.3.9.A) [Homogeneous polynomials]

Definition Def. 2.5.2.2. Multivariate homogeneous polynomials

The space of d-variate homogeneous polynomials of (total) degree p ∈ N0 is

P̃p(R
d) := {x ∈ Rd 7→∑α∈Nd

0 , |α|=p
cαxα , cα ∈ R} .

What is dim P̃p(Rd)? Show by induction that

p

∑
j=0

dim P̃j(R
d) = dimPp(R

d) ∀p ∈ N0 .

(Q2.5.3.9.B) [A basis for P1(R
2)] Show that

{x 7→ x1, x 7→ x2, x 7→ 1− x1 − x2} , x :=
[ x1

x2

]
∈ R2 ,

is a basis of P1(R
2).

(Q2.5.3.9.C) [Quadratic polynomials vanishing on a line] What is the dimension of the space of

polynomials

V :=
{

p ∈ P2(R
2) : p(

[
ξ
0

]
) = 0 ∀ξ ∈ R

}
?

Give a basis for V.

(Q2.5.3.9.D) [Rational for piecewise polynomial functions] What are the advantages of piecewise poly-

nomial trial and test functions in the context of the Galerkin discretization of 2nd-order elliptic variational

problems on 2D triangular meshes.
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(Q2.5.3.9.E) [Rationale for locally supported basis functions] Explain why finite element methods

employ basis functions with local supports for the Galerkin discretization of partial differential equations

in weak form.

(Q2.5.3.9.F) [From hanging nodes to hybrid mesh] What 2D triangular meshes with hanging nodes

can be regarded as valid hybrid meshes comprising triangular and quadrilateral cells?

(Q2.5.3.9.G) [Data structure for quadrilateral mesh] Devise a class QuadMesh2D for general planar

quadrilateral meshes in analogy to the class TriaMesh2D listed in Code 2.4.1.2.

C++ code 2.4.1.2: Class handling a planar triangular mesh

2 // Matrix containing vertex coordinates of a triangle

3 using TriGeo_t = Eigen : : Matrix <double , 2 , 3 >;

4 struct TriaMesh2D {

5 // Constructor: reads mesh data from file, whose name is passed

6 TriaMesh2D ( std : : s t r i n g f i lename ) ; //

7 v i r t u a l ~TriaMesh2D ( void ) { }

8 // Retrieve coordinates of vertices of a triangles as columns

9 // of a fixed-size 2x3 matrix

10 TriGeo_t getVtCoords ( std : : size_t ) const ;

11 // Data members describing geometry and topolgy

12 Eigen : : Matrix <double , Eigen : : Dynamic , 2> _nodecoords ;

13 Eigen : : Matrix < int , Eigen : : Dynamic , 3> _elements ;

14 } ;

(Q2.5.3.9.H) [Converting a quadrilateral into a triangular mesh] How can a quadrilateral mesh be con-

verted into a triangular mesh? Based on the data structures QuadMesh2D and TriaMesh2D considered

in Question (Q2.5.3.9.G) outline an algorithm.

(Q2.5.3.9.I) [Local shape functions and global shape functions] Elaborate on the relationship between

local shape functions (LSF) and global shape functions (GSF) in the finite-element method.

(Q2.5.3.9.J) [Supports of basis functions] Consider a finite-element space on a planar triangular

mesh. How many nodes/edges/cells are contained in the support of a vertex/edge/cell-associated finite-

element basis function

Hint. The support of a function is closed set:

Definition 2.3.2.5. Support of a function

The support of a function f : Ω 7→ R is defined as

supp( f ) := {x ∈ Ω: f (x) 6= 0} .

(Q2.5.3.9.K) [Edge-associated basis functions] Consider the Galerkin discretization of

u ∈ H1(Ω):
∫

Ω
α(x) grad u · grad v + c(x)u v dx =

∫

Ω
f v dx ∀v ∈ H1(Ω) , (2.1.2.2)

on a planar triangular mesh M using global shape functions associated with the edges of the mesh.

Give a sharp bound for the number of non-zero entries of the Galerkin matrix in terms of the number of

vertices ♯V(M), number of edges ♯E(M), and number of cells ♯M of the mesh.

(Q2.5.3.9.L) Is the following a valid definition of a triangular finite-element mesh?

Definition. A collectionM of open planar triangles is a finite-element mesh, if

convex(V(K) ∩ V(K′)) = K ∩ K′ ∀K, K′ ∈ M ,
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where

• V(K) is the set of vertices of a triangle K,

• and convex denotes the convex hull of a set of points ∈ R2.

△

2.6 Lagrangian Finite Element Methods

Video tutorial for Section 2.6: Lagrangian Finite Element Methods: (43 minutes)

Download link, tablet notes

In the previous section we adopted a bird’s eye’s view of finite element methods and established their

essential characteristics. Unfortunately, we had only the simple case of S0
1 (M), piecewise linear finte el-

ement functions on simplicial meshesM as a concrete realization. In this section we will see an important

family of finite element spaces contained in H1(Ω), the Lagrangian finite element spaces and they will

all fit the mold of Section 2.5. Throughout this section we take for granted that the computational domain

Ω ⊂ Rd, d = 1, 2, 3, is equipped with a finite element meshM according to Def. 2.5.1.1.

§2.6.0.1 (H1-conforming finite element spaces) Our goal is the construction of finite element spaces

and global shape functions of higher polynomials degrees, generalizing the space S0
1 (M) introduced in

Section 2.4.3.

Throughout, the Lagrangian finite element spaces introduced in this section provide spaces V0,h of M-

piecewise polynomials that fulfill

VN,0 ⊂ C0(Ω)
Thm. 1.3.4.23

=⇒ VN,0 ⊂ H1(Ω) .

Theorem 1.3.4.23. Compatibility conditions for piecewise smooth functions in H1(Ω)

Let Ω be partitioned into sub-domains Ω1 and Ω2. A function u that is continuously differentiable

in both sub-domains and continuous up to their boundary, belongs to H1(Ω), if and only if u is

continuous on Ω.

Parlance: finite element spaces that are contained in H1(Ω) are often called “H1-conforming”.

Notation:

(Lagrangian FE spaces)
S0

p(M) continuous functions, cf. C0(Ω)

locally, polynomials of degree p , e.g. Pp(Rd)

y

2.6.1 Simplicial Lagrangian FEM

In this section letM be a simplicial mesh of a polygonal/polyhedral domain Ω ⊂ Rd, d = 2, 3, consisting

of triangles in 2D, tetrahedra in 3D.

Now we generalize S0
1 (M)/S0

1,0(M) from Section 2.4 to higher polynomial degree p ∈ N0.
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Definition 2.6.1.1. Simplicial Lagrangian finite element spaces

The space of p-th degree Lagrangian finite element functions on simplicial meshM is defined

as

S0
p(M) := {v ∈ C0(Ω): v|K ∈ Pp(K) ∀K ∈ M} .

Def. 2.6.1.1 merely describes the space of trial/test functions used in a Lagrangian finite element method

on a simplicial mesh. A crucial ingredient is still missing (→ Section 2.5.3): the global shape functions still

need to be specified. This is done by generalizing (2.4.3.2) based on sets of special interpolation nodes.

We begin the explanations with the case p = 2

EXAMPLE 2.6.1.2 (Triangular quadratic (p = 2) Lagrangian finite elements) Let M be a planar

triangular mesh. Functions in the space S0
2 (M) coincide with quadratic multi-variate polynomials on

every cell of the meshM:

vh ∈ S0
2 (M) ⇒ vh|K ∈ Span{x 7→ 1, x1, x2, x2

1, x2
2, x1x2} ∀K ∈ M . (2.6.1.3)

Def. 2.6.1.1 and (2.6.1.3) provide scant hints about how to choose suitable locally supported basis func-

tions bi
h, i = 1, . . . , N, nor is it clear what is N := dimS0

2 (M). We propose a more useful device for

fixing the finite element basis.

We rely on a set N of interpolation nodes

N := V(M) ∪ {midpoints of edges} ,

N = {p1, . . . , pN} (ordered) .

Fig. 103

Nodal basis functions b
j
h, j = 1, . . . , N, are then defined by the familiar cardinal basis property, cf. (2.4.3.2)

b
j
h(pi) =

{
1 , if i = j ,

0 else,
i, j ∈ {1, . . . , N} . (2.6.1.4)

STEP I: A “definition” like (2.6.1.4) is cheap, but it may be pointless, in case no such functions b
j
h exist. To

establish their existence, we first study the case of a single triangle K.

We have to show that there is a basis of P2(R
2) that satisfies (2.6.1.4) in the case of a mesh consisting

of a single triangleM = {K}.
The six interpolation nodes on a triangle K with vertices a1, a2, and a3 are, see Fig. 104:

p1 = a1 ,p2 = a2 ,p3 = a3 ,

p4 = 1
2(a1 + a2) ,p5 = 1

2(a2 + a3) ,p6 = 1
2(a1 + a3) .

(2.6.1.5)

What is the rationale for this numbering? There is absolutely none, because the numbering of the local

interpolation nodes can be chosen arbitrarily. Once it is decided, however, one has to adhere to this choice

consistently throughout a finite element code.
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A first simple consistency check : does the number of interpolation nodes ♯N forM = {K} agree with

dimP2(R
2) = 6? Yes, it does!

Next, we give a “Proof of existence by construction”, that is we give precise formulas for local shape

functions.

We express the local shape functions in terms of

barycentric coordinate functions:

b1
K = (2λ1 − 1)λ1 ,

b2
K = (2λ2 − 1)λ2 ,

b3
K = (2λ3 − 1)λ3 ,

b4
K = 4λ1λ2 ,

b5
K = 4λ2λ3 ,

b6
K = 4λ1λ3 .

(2.6.1.6)

Fig. 104 p1

p2

p3

p4

p6
p5

K

We remark that it is generally true for Lagrangian finite elements that local shape functions are linear

combinations of (products of) barycentric coordinate functions, see (2.7.5.1) below.

To confirm the validity of the formulas (2.6.1.6), that is, the compliance with the local cardinal basis property

(2.6.1.4), note that

• both λi ∈ P1(R
2) and λiλj ∈ P2(R

2) for all 1 ≤ i, j ≤ 3,

• λi(ai) = 1 and λi(aj) = 0, if i 6= j, where a1, a2, a3 are the vertices of the triangle K,

• λ1(m
12) = λ1(m

13) = 1
2 , λ2(m

12) = λ2(m
23) = 1

2 , λ3(m
13) = λ3(m

23) = 1
2 , λ1(m

23) =

λ2(m
13) = λ3(m

12) = 0, where mij = 1
2(a

i + aj) denotes the midpoint of the edge connecting ai

and aj,

• each barycentric coordinate function λi is affine linear such that λiλj ∈ P2(R
2).

Let us look at the graphs of selected local shape functions for S0
2 (M) over a triangle:

Fig. 105

b1
K

Fig. 106

b6
K

So far we have seen that local shape functions can be found that satisfy (2.6.1.4).

STEP II: We have to tackle the following issue:
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Can the local shape functions from (2.6.1.6) be “stiched together” across interelement edges

such that they yield a continuous gobal basis function?

(Remember that Thm. 1.3.4.23 demands global continuity in order to obtain a subspace of H1(Ω).)

Fig. 107

Considerations:

1. The restriction of a quadratic polynomial to an edge is an

univariate quadratic polynomial.

2. Fixing its value in three points, the midpoint of the edge

and the endpoints, uniquely fixes this polynomial.

3. The local shape functions associated with the same

interpolation node “from left and right” agree on the edge.

➣ continuity !

“Stitching” visualized:

Fig. 108
Fig. 109

Fig. 110

✁ Global basis function for S0
2 (M) associated

with a vertex

The cardinal basis property (2.6.1.4) is satisfied, be-

cause this function attains value = 1 at a vertex (•)
and vanishes at the midpoints (•) of the edges of ad-

jacent triangles, as well as at any other vertex.

y

EXAMPLE 2.6.1.7 (Local interpolation nodes for cubic (p = 3) and quartic (p = 4) Lagrangian FE

in 2D) The construction for p = 2 can be generalized to any polynomial degree and justified with similar

arguments:
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Fig. 111

(local) interpolation nodes for S0
3 (M)

Fig. 112

(local) interpolation nodes for S0
4 (M)

Can you already guess a general pattern underlying the location of local interpolation nodes for degree

p Lagrangian finite elements on triangles? They are the points whose barycentric coordinates satisfy

λi(pj) ∈ { 0
p , 1

p , . . . ,
p−1

p ,
p
p}. y

2.6.2 Tensor-Product Lagrangian FEM

Now we consider tensor product meshes (grids), see (2.5.1.4), Fig. 93, for a 2D example.

EXAMPLE 2.6.2.1 (Bilinear Lagrangian finite elements) We seek a generalization of 1D piecewise

linear finite element functions from Section 2.3, see § 2.3.1.4, to a 2D tensor product gridM.

Idea: Tensor product structure ofM ➤ tensor product construction of FE space

This is best elucidated by a tensor product construction of basis functions:

b
j
N,x(x) : 1D tent function onMx = {[xj−1, xj], j = 1, . . . , n}

bl
N,y(y) : 1D tent function onMy = {[yj−1, yj], j = 1, . . . , n}

tensor product “tent function” associated with node p:

b
p
h (x) = b

j
N,x(x1) · bl

N,y(x2) , where p =

[
xj

yl

]
. (2.6.2.2)
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Fig. 114

✁ 2D tensor product tent function

No pyramid !

Obviously these basis functions are associated

(→ Section 2.5.3, condition (B3)) with the nodes

ofM.

Tensor product construction ➤ bilinear local shape functions, e.g. on K =]0, 1[2

b1
K(x) = (1− x1)(1− x2) ,

b2
K(x) = x1(1− x2) ,

b3
K(x) = x1x2 ,

b4
K(x) = (1− x1)x2 .

(2.6.2.3)

bi
K(aj) = δij , 1 ≤ i, j ≤ 4 ,

that is, these basis functions satisfy a local version of

the cardinal basis propoerty (2.6.1.4).

Fig. 115

K

➀ ➁

➂➃

x1

x2

a1
a2

a3
a4

Fig. 116

Bilinear local shape functions on unit square K

Span{b1
K, b2

K, b3
K, b4

K} = Q1(R
2) .

Bilinear Lagrangian finite element space on 2D tensor product meshM:

S0
1 (M) := {v ∈ C0(Ω): v |K ∈ Q1(R

2) ∀K ∈ M} . (2.6.2.4)

y

The following is a natural generalization of (2.6.2.4) to higher degree local tensor product polynomials, see

Def. 2.5.2.7. We apply the rule that on tensor-product meshes local spaces consisting of tensor-product

polynomials should be used.
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Definition 2.6.2.5. Tensor product Lagrangian finite element spaces

Space of p-th degree Lagrangian finite element functions on tensor product meshM

S0
p(M) := {v ∈ C0(Ω): v|K ∈ Qp(K) ∀K ∈ M} .

Terminology: S0
1 (M) = multilinear finite elements (p = 1, d = 2 = bilinear finite elements)

Remaining issue: definition of global basis functions (global shape functions)

Policy: Use of interpolation nodes p1, . . . , pN, N := dimS0
p(M) as in Section 2.6.1, see Ex. 2.6.1.2.

Define global shape functions b1
h, . . . , bN

h through cardinal basis property

b
j
h(pi) =

{
1 , if i = j ,

0 else,
i, j ∈ {1, . . . , N} . (2.6.1.4)

EXAMPLE 2.6.2.6 (Bi-linear tensor-product Lagrangian finite element functions) In the lowest-order

case p = 1 everything is clear:

Fig. 117

Ω ✁ — =̂ grid lines of a 2D tensor product mesh

• =̂ interpolation nodes for S0
1 (M)

For p = 1 the interpolation nodes agree with the

nodes of the mesh.

Note: A function ∈ Q1(R
2) is uniquely determined

by its values in the corners of a rectangle.

y

EXAMPLE 2.6.2.7 (Quadratic tensor product Lagrangian finite elements) Consider the case p =
2, d = 2 for Def. 2.6.2.5:

Interpolation nodes for S0
2 (M)

N = V(M) ∪ {midpoints of edges} .

Note: number of interpolation nodes belonging to

one cell is

9 = dimQ2(R
2) .

Fig. 118 a b

c

d

Global basis functions defined by cardinal basis property analoguously to (2.6.1.4).

N = {p1, . . . , pN}: b
j
h ∈ S0

2 (M) , b
j
h(pi) :=

{
1 , if j = i ,

0 else.

y
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Choice of interpolation nodes for tensor product Lagrangian finite elements of higher degree:

p = 1 p = 2

Fig. 119

p = 3

§2.6.2.8 (Imposing homogeneous Dirichlet boundary conditions) What is a global basis for S0
p(M)∩

H1
0(Ω), whereM is either a simplicial mesh or a tensor product mesh?

We proceed analoguous to § 2.4.3.7: recall that global basis functions are defined via interpolation nodes

pj, j = 1, . . . , N, see (2.6.1.4).

S0
p,0(M) := S0

p(M) ∩ H1
0(Ω) = Span{bj

h: pj ∈ Ω (interior node)} . (2.6.2.9)

In words: the subspace S0
p,0(M) of functions in S0

p(M) that vanish on ∂Ω can be obtained by dropping

all global shape functions associated with interpolation nodes on ∂Ω. y

Remark 2.6.2.10 ((Bi)-linear Lagrangian finite elements on hybrid meshes) 2D hybrid meshes are

meshes containing both triangles and quadrilaterals. At this point we assume that all the quadrilaterals

are rectangles in order to remain in the framework of the tensor-product construction of Ex. 2.6.2.7 .

M: 2D hybrid mesh comprising triangles & rectan-

gles ✄

Idea: use

✦ linear functions (→
Def. 2.5.2.2, p = 1) on

triangular cells,

✦ bi-linear functions (→
Def. 2.6.2.5, p = 1) on

rectangles.
Fig. 120

S0
1 (M) =

{
v ∈ H1(Ω): v |K ∈

{
P1(R

2) , if K ∈ M is triangle,

Q1(R
2) , if K ∈ M is rectangle

}
. (2.6.2.11)

Two issues arise:

1. Does the prescription (2.6.2.11) yield a large enough space? (Note that v ∈ H1(Ω)⇒ S0
1 (M) ⊂

C0(Ω), see Thm. 1.3.4.23, but continuity might enforce too many constraints.)

2. Does the space from (2.6.2.11) allow for locally supported basis functions associated with nodes of

the mesh?

We wil give a positive answer to both question by constructing the basis functions:

Define global shape functions b
j
h according to (2.4.3.5)

This makes sense, because
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✦ linear/bi-linear functions on K are uniquely determined by their values in the vertices,

✦ the restrictions to an edge of K of the local linear and bi-linear shape functions are both linear

univariate functions, see Fig. 75 and Fig. 116.

Fixing vertex values for vh ∈ S0
1 (M) uniquely determines v on all edges of M already, thus,

ensuring global continuity , which is necessary due to Thm. 1.3.4.23.
y

Remark 2.6.2.12 (Lagrangian finite elements on hybrid meshes) Does the construction employed in

Rem. 2.6.2.10 carry over to polynomial degrees p > 1? let us examine the case p = 2, drawing on

Ex. 2.6.1.2 and Ex. 2.6.2.7.

M: 2D hybrid mesh comprising triangles & rectan-

gles, as in Rem. 2.6.2.10

☞ Matching interpolation nodes on edges of trian-

gles and rectangles

Glueing of local shape functions on triangles

and rectangles possible

gobal interpolation nodes for p = 2 ✄
Fig. 121

y

Review question(s) 2.6.2.13 (Lagrangian finite elements)

(Q2.6.2.13.A)

Fig. 122

Explain why the local shape functions

• for S0
1 (M) on a triangular mesh (= the

barycentric coordinate function of Ex. 2.5.3.6)

• and those for S0
1 (M) on a tensor-product

mesh as defined by (2.6.2.3)

remain valid local shape functions for the lowest de-

gree Lagrangian finite element space on the hybrid

mesh displayed beside.

(Q2.6.2.13.B) LetM be a triangular mesh with ♯V(M) vertices, ♯E(M) edges, and ♯M cells. What is

dimS0
p(M) for p = 1, 2, 3?

(Q2.6.2.13.C) For a triangular meshM with ♯V(M) vertices, ♯E(M) edges, and ♯M cells give sharp

upper bounds for the number of non-zero entries of the Galerkin matrix arising from the finite element

discretization of

u ∈ H1(Ω):
∫

Ω
α(x) grad u · grad v + c(x)u v dx =

∫

Ω
f v dx ∀v ∈ H1(Ω) , (2.1.2.2)

with trial and test space S0
p(M), p = 1, 2.

(Q2.6.2.13.D) Consider a tensor product meshM of Ω :=]0, 1[2 with n ∈ N cells in each direction and

the finite-element space

V0,h :=
{

v ∈ H1
0(Ω): v |K ∈ Q1(R

2) ∀K ∈ M
}

.

What is the dimension of this space?
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(Q2.6.2.13.E) LetM be a tensor product mesh of Ω :=]0, 1[2 and M̃ a triangular mesh arising fromM
by splitting each rectangular cell into two congruent triangles. Show that S0

1 (M) 6= S0
1 (M̃).

(Q2.6.2.13.F) Express the local shape functions for linear Lagrangian finite elements on a triangle as

linear combinations of the quadratic local shape functions as given in

b1
K = (2λ1 − 1)λ1 , b2

K = (2λ2 − 1)λ2 ,

b3
K = (2λ3 − 1)λ3 , b4

K = 4λ1λ2 ,

b5
K = 4λ2λ3 , b6

K = 4λ1λ3 .

(2.6.1.6)

(Q2.6.2.13.G) Characterize the space of gradients of Pp(R2) and Qp(R2) as spaces of componentwise

polynomial vectorfields.

(Q2.6.2.13.H) We consider the bilinear form

b(u, v) :=
∫

∂Ω

(1 + ‖x‖) u(x)v(x) dS , (2.6.2.14)

where ∂Ω is the boundary of the domain sketched in Fig. 123.

Fig. 123

WritingM for the mesh drawn in Fig. 123, what is the

maximal number of nonzero entries of the Galerkin

matrix arising from the finite element Galerkin dis-

cretization of b(·, ·) using S0
1 (M) equipped with the

standard nodal basis as trial and test space?

(Q2.6.2.13.I) For the hybrid meshM displayed in Fig. 123 determine the dimensions of the finite element

spaces

(i) S0
1 (M) :=

{
v ∈ C0

(
Ω
)

:
v|K ∈ P1(K) ∀triangles K ∈ M
v|K ∈ Q1(K) ∀rectangles K ∈ M

}
,

(ii) S0
1,0(M) := S0

1 (M) ∩ H1
0(Ω).

(Q2.6.2.13.J) We perform the Galerkin discretization of

a(u, v) :=
∫

∂Ω

u(x)v(x) dS ,

where ∂Ω is the boundary of the domain from Fig. 123, by means of the finite element space S0
1 (M)

equipped with the standard nodal basis. HereM is the hybrid mesh sketched in Fig. 123.

Compute the element matrices for the two cells of the mesh of Fig. 123 whose vertices are the nodes

with the following numbers:
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(i) nodes 9, 1, 7, 8 (quadrilateral),

(ii) nodes 3, 11, 4 (triangle)

Any local numbering of the nodes can be used.

△

2.7 Implementation of Finite Element Methods

This section discusses algorithmic details of Galerkin finite element discretization of 2nd-order elliptic

variational problems for spatial dimension d = 2, 3 on bounded polygonal/polyhedral domains Ω ⊂ Rd.

Remember that guiding principle behind the implementation of finite element codes is✞
✝

☎
✆to rely on local computations as much as possible!

We witnessed this principle in action already in Section 2.4.5 (→ Code 2.4.5.23) and Section 2.4.6 (→
Code 2.4.6.8). Local computations are enough thanks to local supports of the global basis functions, see

Section 2.5.3, Ex. 2.5.3.2.

Remark 2.7.0.1 (LEHRFEM++– A simple but flexible C++ finite element library ➺ GITHUB) The imple-

mentation of finite element methods in this course will rely on the C++ finite element library LEHRFEM++,

a software package offering a framework for the implementation of finite element methods on 2D hybrid

meshes.

LEHRFEM++ was designed with the following objectives in mind: ease of use, clarity of structure, modu-

larity, consistency of design, ability to accommodate a vast range of 2D FEM, and compliance with best

practices of C++ programming.

LEHRFEM++ is an open source software and is being developed at ETH Zurich. Lead developers are

Dr. Raffael Casagrande and Prof. Dr. Ralf Hiptmair and several students of ETH Zurich have contributed

and are contributing to LEHRFEM++. An extensive documentation is available created using DOXYGEN.

All modules of the library come with thorough unit tests in test sub-directories.

LEHRFEM++ can be cloned from ➺ GITHUB using the command.

1 g i t clone h t t ps : / / g i thub . com / c r a f f a e l / lehrfempp . g i t

However, LEHRFEM++ and all other required libraries will automatically be installed by the cmake build

system set up for this course. y

Remark 2.7.0.2 (Learning LEHRFEM++) Ultimately, proficiency in LEHRFEM++ is a learning outcome of

this course and essential for performing well in the examination.

Though individual learning styles differ widely, here are some recommendations on how to become familiar

with LEHRFEM++:

✦ Follow the order in which aspects of LEHRFEM++ are covered in the course and in this lecture

document.

✦ Study the sample code listings. The sources are also available on ➺ GITHUB.

✦ Consult the DOXYGEN documentation ➺ GITHUB, which give comprehensive information about all

functions an classes and also contains code snippets demonstrating their use.

✦ Do not hesitate to inspect the very source code, which usually comes with verbose inline comments.
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✦ Look at the test codes in test subdirectoies of every module directory. They of demonstrate the

use of classes and functions for a particular purpose.

✦ Last, but not least: Practice coding finite element computations with LEHRFEM++ by doing all

corresponding homework programming assignments.

y

Remark 2.7.0.3 (The rationale behind learning LEHRFEM++) Of course, LEHRFEM++ is a special

piece of software and not even a particularly powerful one, though it has turned out to be useful as a

software platform for small thesis projects.

However, the main reason for covering LEHRFEM++ in this course and using it for exercises is that it can

serve as prototypical finite-element software library in terms of modules, data structures, and algorithms.

Many other FE software libraries with many more and more sophisticated capabilities are available, for in-

stance MFEM [MFEM21], XLIFE++, or NETGEN/NGSOLVE. However, their wealth of functionality makes

them hard to grasp for a beginner and they are hardly suitable for teaching. Learning LEHRFEM++ will

prepare you well for using such software. y

Remark 2.7.0.4 (Modules of LEHRFEM++) Using C++ namespaces LEHRFEM++ is organized in mod-

ules according to a hierarchy of dependency that can be visualized by the following pyramid diagram:

uscalfe-module: Lagrangian FEM

fe-module: Parametric scalar finite elements

assemble-module: d.o.f. handling and flagging

refinement-module: mesh hierarchies

geometry-module: entity shapes and mappings

mesh-module: mesh entity management

base-module: containers, data types, entity types

These are supplemented by the

• io-module: reading and writing from/to files meshes and finite element functions,

• quad-module: supplying pre-defined quadrature rules.

The purpose of some might be obscure at this point, but this chapter and the next one will shed light on

everything. y

2.7.1 Mesh Generation and Mesh File Format

In Section 2.5.1 we identified triangulations (→ Def. 2.5.1.1) as one of the main building blocks of finite

element methods. Their algorithmic generation turns out to be a separate issue, because the data flow in

(most) finite element software packages look like this:

CAD data Parameters
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Mesh generator
Finite element solver

(computational kernel)

Post-processor

(e.g. visualization)

Here “ ” designates passing of information, which is usually done by writing and reading files to and

from hard disk. This requires particular file formats.

Algorithms for generating a finite element mesh from some description of the geometry of the computa-

tional domain are beyond the scope of this course. Sophisticated methods have been developed over

many years and they are implemented in powerful commercial software packages. The problem of gen-

erating “suitable” finite element meshes without user interference is a persistent research topic, because

complex geometries (slender domain, multiple length scales, layered media, etc.) entail immense chal-

lenges.

Supplement 2.7.1.1 (Gmsh – geometric modeling and mesh generation tool [GER09]) We use the

open source geometric modeler and mesh generator Gmsh (pronounced “G-mesh”), which is employed

in many projects in academic and industrial research.

Gmsh has been and is being developed by

Prof. Ch. Geuzaine and Prof. J.-F. Remacle at the

University of Liége in Belgium. Code and documen-

tation are available through

http://gmsh.info/

Gmsh graphical user interface (GUI) ✄

Fig. 124

For most Linux distributions Gmsh is available in repositories of precompiled codes accessible through the

standard installers.

!
GMSH development is still ongoing and new versions with expanded functionality and

slightly changed interfaces are being released continuously. Thus, some GMSH-related

information in this document may not be current.

The latest stable version of GMSH as of May 21, 2024 is 4.12.2, which saves meshes in a format different

from what we discuss below. In order to save in the old format you have to do the following steps:

1. Menu item File -> Export...

2. A dialogue pops up; there choose a filename with the extension .msh. Then click “OK”.

3. Another dialogue “MSH Options” pops up, in which you may choose “Version 2 ASCII” as format.

Then click “OK”.

In order to make the “Version 2 ASCII” format the default, you visit the menu item File -> Save

Options As Default.

y

EXAMPLE 2.7.1.2 (Geometric modeling with Gmsh) In this example we define a simple geometry

interactively using the Gmsh geometric modeling interface. We specify Points, Lines and Surfaces that

define our computational domain, the unit square Ω =]0, 1[2.

➊ Setting points. Select the menu item
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Modules -> Geometry -> Elementary entities -> Add -> Point.

You can start adding points by interactively clicking, holding the position of the mouse, and pressing ’e’.

The coordinates of your mouse pointer are reflected on the Contextual Geometry Defintions

window that appears. It is, however, advisable to use this window and manually enter the coordinates of

the points you want to create in the X, Y and Z coordinate text boxes.

Start by adding your first point with coordinates (0, 0, 0) in the coordinate field. After you press return, one

point should appear on your canvas. Similarly, add points (1, 0, 0), (1, 1, 0), and (0, 1, 0). This sets all

four corners of the square.

➋ Defining lines. To add the lines that form the edges of our square, use the menu

Modules -> Geometry -> Elementary entities -> Add -> Line.

Now, select the point (0, 0) as starting point.

The selected point will be show in red. Then,

complete the line by selecting (1, 0) as the end

point. Similarly, create three other lines, forming

a square. See the figure beside.

Fig. 125

➌ Creating surfaces (domains). To finish the definition of a computational domain, we have to tell Gmsh

which of closed line loops form a surface. This can be easily done by using the menu

Modules -> Geometry -> Elementary entities -> Add -> Plane Surface.

Then click on any part of the square. After

the boundary has been selected, press ’e’, to

create a surface. See the figure beside for a

screenshot.

Fig. 126

Many online video tutorials for GMSH are available. e.g. here. y

EXAMPLE 2.7.1.3 (Gmsh geometry description file) When geometric elements are created interac-

tively using the GUI, gmsh stores the data in a .geo file, with its own scripting language. This file can be

opened, and edited by the menu

Modules -> Geometry -> Edit Script

The .geo file for the square mesh reads (without comments):

1 Point(1) = {0, 0, 0, 1};

2 Point(2) = {1, 0, 0, 1};

3 Point(3) = {1, 1, 0, 1};

4 Point(4) = {0, 1, 0, 1};
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5 Line(1) = {1, 2};

6 Line(2) = {2, 3};

7 Line(3) = {3, 4};

8 Line(4) = {4, 1};

9 Curve Loop(1) = {1, 2, 3, 4};

10 Plane Surface(1) = {1};

The line numbers 1-4 in the above code define Points 1-4, with the following syntax,

Po in t ( i d ) = { x , y , z , mesh−s ize } ;

Similarly, line numbers 5-8 specify the four edges of the square, as

Line ( i d ) = { id −of − s t a r t −po in t , id −of −end− po in t } ;

Defining a closed polygon (line loop) also follows a similar syntax, but you have to make sure that lines

are in proper cyclic order. To invert the direction of a line, use a minus sign before line id.

Line Loop ( i d ) = { id −of − l i n e −1 , id −of − l i n e −2 , id −of − l i n e −3 , . . . } ;

The final line of the code defines surface that is created with the line loop as the boundary, and is defined

as follows.

Plane Surface ( i d ) = { id −of − l i n e −loop , id −of −holes −loop } ;

y

§2.7.1.4 (Generating a mesh with Gmsh) After the geometry has been specified or a .geo file has

been read in, a mesh can be generated for currently active domain (surface). Click the menu

Modules -> Mesh -> 2D.

Then Gmsh should display an unstructured mesh for

the square surface, see the figure beside for a mesh

covering the square domain created in Ex. 2.7.1.2.

When points are added (→ Ex. 2.7.1.2) in the di-

alogue there is text box for Prescribed mesh

size at point. This can be used to define the

size of the meshes around a particular point. In this

example this was set to 1. In general, this parame-

ter can be used to control the local resolution of the

mesh. Fig. 127

Fig. 128

To create a finer mesh, edit the .geo-file and spec-

ify a smaller local mesh size for the points (→
Ex. 2.7.1.3). Do not forget a subsequent click on

Modules -> Geometry -> Reload.

The figure beside displays a mesh for the square

generated with local mesh size 0.1. The Delaunay

algorithm was used for that purpose after it had been

selected in Tools->Options->Mesh.

y

EXAMPLE 2.7.1.5 (Gmsh file format for storing meshes) Now we take a look at the main mesh file

format used in the course, the one in which GMSH saves its output.
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!
The below mesh file is the version-2.2 format. By default latest versions of GMSH store

mesh data in a different version-4 file format. Thus, it may be advisable to set the default

format for saving meshes to “Version 2”.

Gmsh can store mesh data in plain ASCI .msh-files. The file

corresponding to the mesh from Fig. 127 is as follows ✄

Lines 1-3: Version number, file format, and floating point format

used.

Line 4-11 (between $Nodes and $EndNodes): List of nodes

The first line in the nodes section gives the number of nodes in

the mesh, followed by each of the nodes. In our case, the mesh

comprises 5 nodes. In each node line, the first integer describes

the id(entifier) of the entity in the .msh-file, followed by the x-,

y- and z- coordinates of the node (floating point numbers). In

the example, the four points we created are part of the mesh,

and Gmsh has created a new fifth node in the center of the

mesh at coordinates (0.5, 0.5, 0).

Line 12-26 (between $Elements and $EndElements): List

of elements and boundary entities

Some entities, such as points, lines, triangles, quadrangles,

etc., are coded in this section. The first line (line number 13)

gives the number of entities listed. In each entity line, the inte-

ger denotes the entity id(entifier), followed by an identifier for a

type of the entity. The third integer denotes the number of tags

for this entity, followed by that many integers (tags). The mean-

ing of the tags will be covered in Rem. 2.7.1.8. The remainder

of the line lists the id(entifier)s of nodes which are contained in

the boundary of this particular entity.

1 $MeshFormat

2 2.2 0 8

3 $EndMeshFormat

4 $Nodes

5 5

6 1 0 0 0

7 2 1 0 0

8 3 1 1 0

9 4 0 1 0

10 5 0.5 0.5 0

11 $EndNodes

12 $Elements

13 12

14 1 15 2 0 1 1

15 2 15 2 0 2 2

16 3 15 2 0 3 3

17 4 15 2 0 4 4

18 5 1 2 0 1 1 2

19 6 1 2 0 2 2 3

20 7 1 2 0 3 3 4

21 8 1 2 0 4 4 1

22 9 2 2 0 1 1 2 5

23 10 2 2 0 1 4 1 5

24 11 2 2 0 1 2 3 5

25 12 2 2 0 1 3 4 5

26 $EndElements

y

§2.7.1.6 (Gmsh Element Types) GMSH uses numeric type specifiers to convey information about the

topological type of mesh entities in .msh files:

A selection of entity types used by Gmsh for 2D

meshes

The meaning of “3-node line” and “6-node triangle

will be explained in 2.8.4.3.

Number Element Type

15 1-node point

1 2-node line

2 3-node triangle

3 4-node quadrilateral

8 3-node line

9 6-node triangle

For example, in Ex. 2.7.1.5 line number 14 describes an entity with identifier 1, and the element type of 15,

which is a 1-node point. This entity has 2 tags (for now ignore the following 2 integers). The last integer,

1, corresponds to the node identifier which is a part of the entity. The node identifier 1 is the point that is

located at (0, 0, 0). Hence the entity 1, correspondes to the node 1. The entities 2, 3, and 4 are also of

type “1-node point”, and represent the points (1, 0, 0), (1, 1, 0) and (0, 1, 0), respectively.

The line numbers 18-21 code for entities with identifiers 5-8, and represent entities of type 1, which is a

2-node line. Ignoring the tags, the last two integers represent the nodes corresponding to the endpoints

of the lines. Their order endows the line with a direction. For instance, entity number 7 represents a line
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between the nodes 3 and 4. Hence, this is a line between the Points (1, 1, 0) and (0, 1, 0).

The element numbers 9-12 represent, the element of type 2, which are 3-node triangles. The last three

integers give the node numbers of the vertices. For example, the element number 9, is a triangle with

vertices (0, 0, 0), (1, 0, 0) and (0.5, 0.5, 0). y

Gmsh mesh file format: interior edges skipped

Note that only the points and lines (edges) which are a part of the boundary are included as separate

entities; interior edges and points are not.

Remark 2.7.1.8 ( Gmsh – marking parts of a mesh by tags) Often one wants to distinguish parts of

the computational domain (sub-domains), where special coefficient functions or source functions should

be used. Moreover, parts of the boundary have to be marked, if they carry different boundary conditions

as in Ex. 1.7.0.10. In Gmsh this can be achieved by assigning mesh entities to different physical groups.

Those can be created using the menu item

Modules -> Geometry -> Physical Groups -> Add

Physical groups are distinguished by

their name and the .geo-file for the

square extended by physical groups

may look as follows. ✄

In this file four physical groups are

present, calles “bottom-pts”, “top-

bottom”, “left-right”, and “thesurface”.

1 Point(1) = {0, 0, 0, 1};

2 Point(2) = {1, 0, 0, 1};

3 Point(3) = {1, 1, 0, 1};

4 Point(4) = {0, 1, 0, 1};

5 Line(1) = {1, 2};

6 Line(2) = {2, 3};

7 Line(3) = {3, 4};

8 Line(4) = {4, 1};

9 Curve Loop(1) = {1, 2, 3, 4};

10 Plane Surface(1) = {1};

11 Physical Point("bottom-pts") = {1, 2};

12 Physical Curve("top-bottom") = {1, 3};

13 Physical Curve("left-right") = {4, 2};

14 Physical Surface("thesurface") = {1};
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Gmsh manages physical groups using the tags, whose discus-

sion we skipped in Ex. 2.7.1.5. For instance, the .msh-file gen-

erated from the above .geo-file is printed beside. ✄

The .msh file has changed; a new section $PhysicalNames

has been created which tabulates the keys for looking up the

physical groups the entities belong to. Line 5 gives the number

of physical groups. Each line of this section has the following

format: the first integer defines the dimension of the entities

of the group (0 for points, 1 for lines and 2 for surfaces). The

second integer gives the tag number for the physical group, and

third its corresponding string identifier.

Comparing with Ex. 2.7.1.5, we can see that the tag numbers

of elements have changed. The first tag denotes the physical

group an entity belongs to, and the second tag represents the

geometric entity it belongs to. The groupings can be read off

from the tags of the entities and the corresponding name of the

physical group. For example, the elements 1 and 2 belong to

the physical group 1, which is “bottom-pts”. The elements 3

and 5 that are lines have the physical tag 2, which corresponds

to the group “top-bottom”. Similarly, entities 4 and 6 belong to

“left-right”. The remaining entities that are triangles belong to

the physical group “thesurface”.

1 $MeshFormat

2 2.2 0 8

3 $EndMeshFormat

4 $PhysicalNames

5 4

6 0 1 "bottom-pts"

7 1 2 "top-bottom"

8 1 3 "left-right"

9 2 4 "thesurface"

10 $EndPhysicalNames

11 $Nodes

12 5

13 1 0 0 0

14 2 1 0 0

15 3 1 1 0

16 4 0 1 0

17 5 0.5 0.5 0

18 $EndNodes

19 $Elements

20 10

21 1 15 2 1 1 1

22 2 15 2 1 2 2

23 3 1 2 2 1 1 2

24 4 1 2 3 2 2 3

25 5 1 2 2 3 3 4

26 6 1 2 3 4 4 1

27 7 2 2 4 1 1 2 5

28 8 2 2 4 1 4 1 5

29 9 2 2 4 1 2 3 5

30 10 2 2 4 1 3 4 5

31 $EndElements

y

EXAMPLE 2.7.1.9 (Gmsh – meshing more complex geometries) Curved boundaries can also be

modelled in Gmsh. Refer to the documentation for details.
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1 Point(1) = {0, 0, 0, 0.25};

2 Point(2) = {1, 0, 0, 0.25};

3 Point(3) = {0, 2, 0, 0.25};

4 Point(4) = {1, 2, 0, 0.25};

5 Point(5) = {2, 2, 0, 0.25};

6 Point(6) = {2, 3, 0, 0.25};

7 Point(7) = {2, 4, 0, 0.25};

8 Point(8) = {4, 4, 0, 0.25};

9 Point(9) = {4, 3, 0, 0.25};

10 Line(1) = {3, 1};

11 Line(2) = {1, 2};

12 Line(3) = {2, 4};

13 Line(4) = {6, 9};

14 Line(5) = {9, 8};

15 Line(6) = {8, 7};

16 Circle(7) = {4, 5, 6};

17 Circle(8) = {3, 5, 7};

18 Curve Loop(1) = {1, 2, 3, 7, 4, 5, 6, -8};

19 Plane Surface(1) = {1};

Fig. 129

y

Remark 2.7.1.10 (Other tools for mesh generation) Freely available mesh generators:

✦ DistMesh (MATLAB)

✦ Triangle (easy to use 2D mesh generator)

✦ TETGEN (Tetrahedral mesh generation)

✦ NETGEN (industrial strength open source mesh generator)

y

EXAMPLE 2.7.1.11 (LEHRFEM++– building mesh from Gmsh mesh file) LEHRFEM++ offers rather

advanced facilities for parsing Gmsh mesh files (suffix .msh) and building mesh data structures from the

information contained in them. The following code reads the data for a 2D hybrid mesh from file.

C++ code 2.7.1.12: Use of LEHRFEM++’s lf::io::GmshReader functionality ➺ GITHUB

2 // Create a 2D mesh data structure from the information contained in

3 // the file mesh_file. A factory object is in charge of

4 // creating mesh entities and has to be initialized first.

5 auto f a c t o r y = std : : make_unique< l f : : mesh : : hybr id2d : : MeshFactory >(2) ;//

6 l f : : i o : : GmshReader reader ( std : : move( f a c t o r y ) , mesh_f i le . s t r i n g ( ) ) ; //

7 // Obtain pointer to read only mesh from the mesh reader object

8 // Meshes in LEHRFEM++ are managed through shared pointers, see

9 // documentation.

10 const std : : shared_ptr <const l f : : mesh : : Mesh> mesh_ptr = reader . mesh ( ) ;

11 const l f : : mesh : : Mesh &mesh { * mesh_ptr } ;

12

13 // Output general information on mesh; self-explanatory

14 std : : cout << "Mesh from f i l e " << mesh_f i le . s t r i n g ( ) << " : [ "
15 << mesh .DimMesh ( ) << ’ , ’ << mesh . DimWorld ( )

16 << " ] dim : " << ’ \ n ’ ;

17 std : : cout << mesh . NumEntities ( 0 ) << " cel ls , " << mesh . NumEntities ( 1 )

18 << " edges , " << mesh . NumEntities ( 2 ) << " nodes" << ’ \ n ’ ;
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The factory object of type lf::mesh::MeshFactory built in Line 5 serves the policy to separate the creation

of the building blocks of the mesh (nodes, edges, cells) from constructing their relationships describing the

mesh. The purpose is to be able to use the algorithms for mesh construction with different types for the

building blocks.

In LEHRFEM++ mesh objects are to be derived from the interface class lf::mesh::Mesh

➺ (documentation). All operations on a mesh are mediated through this class. Objects of type

lf::mesh::Mesh are created dynamically and managed through shared pointers ➣ CppRef in order to

ensure that they remain valid as long as they are in use in some part of the code. y

EXAMPLE 2.7.1.13 (Processing extra information in Gmsh mesh file with LEHRFEM++)

In Rem. 2.7.1.8 we saw that geometric mesh entities can be endowed with special “physical groups” tags

in Gmsh. These are automatically extracted by LEHRFEM++ lf::io::GmshReader-type helper objects

through a method PhysicalEntities(). A demonstration code is available ➺ GITHUB. y

Supplement 2.7.1.14 (Postprocessing: Visualization with PARAVIEW)

LEHRFEM++ supplies the helper class

lf::io::VtkWriter, which can be used to write

data describing functions defined on a triangulated

domain to so-called .vtk-files. Here, VTK stands

for Visulaization Toolkit, an open-source software

project targetting basic visualization tasks.

The documentation of lf::io::VtkWriter gives details

about how to created .vtk input files for the data vi-

sualization software PARAVIEW and about some ba-

sic visualizations with PARAVIEW.

Fig. 130 y

Review question(s) 2.7.1.15 (Mesh generation and mesh file format)

(Q2.7.1.15.A) [Rationale for shared pointer] Explain, why lf::mesh::Mesh objects in LEHRFEM++ are

managed through shared pointers.

(Q2.7.1.15.B) [Creating a mesh with GMSH ] Using GMSH create a .msh file describing a triangular

mesh of the domain

Ω := {x ∈ R2 : 1
2 < ‖x‖ < 1} .

What is the problem, if the mesh cells are all of type “3-node triangle”?

△

2.7.2 Mesh Information and Mesh Data Structures

Video tutorial for Section 2.7.2: Mesh Information and Mesh Data Structures: (39 minutes)

Download link, tablet notes

In this section we examine the internal representation of a mesh (→ Def. 2.5.1.1) in a computer code and

the definition of suitable programming interfaces, with focus on LEHRFEM++, of course.

From an algorithmic and software point of view

a mesh is a collection of (geometric) entities (→ § 2.5.1.2) of particular shapes and location,

connected by adjacency/incidence relations (∗).
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(∗) An example for an incidence relation on the set of mesh entities is “is sub-entity of”.

To begin with, we have to be aware of the principal purposes to be served by the collection of objects and

data that represent meshes in finite element codes.

Purposes of mesh data structures

Mesh data structures must

1. offer unique identification of mesh entities [= cells/(faces)/(edges)/vertices]
(for instance, by an integer index)

2. make possible traversal of cells of the mesh (→ global numbering)

3. represent mesh topology (= incidence relationships of cells/faces/edges/vertices)

4. allow sequential access to edges/faces of a cell

(→ traversal of local shape functions/degrees of freedom)

5. describe mesh geometry (= location/shape of cells/faces/edges/vertices)

Remark 2.7.2.2 (Importance of global numbering of geometric entities) Remember from Section 2.2:

we need on ordered basis B of the finite element space, that is, we have to establish a consecutive

numbering of the finite element basis functions/global shape functions, B = {b1
h, . . . , bN

h }.

For assembly as explained in Section 2.4.5 we also assumed that the local shape functions carried num-

bers, there corresponding to the (local) numbers of the vertices of each triangle of the mesh. Thus, in a

code using linear Lagrangian finite elements, we have to number the vertices of a mesh.

More generally, in Section 2.5.3 we saw that global shape functions are associated with geometric entities.

➣ Numbering geometric entities paves the way for numbering global shape functions.

y

§2.7.2.3 (Classification of mesh functionality and data) The substantial functionality of a mesh repre-

sentation and the supporting data structure can be categorized according to different aspects. The first

approach distinguishes two kinds of data types and associated objects according to “local ↔ global”,

“many↔ few”:

Global objects

• single instance exists

• container for geometric entities

↔
Local objects

• many instances exist

• store geometry/topology

In LEHRFEM++ this classification directly manifests itself in two fundamental interface classes (abstract

base classes with purely virtual functions)

global: lf::mesh::Mesh

➺ (documentation)
←→ local: lf::mesh::Entity

➺ (documentation)

Another classification considers different layers of information contained in a mesh.

global local☛
✡

✟
✠Refinement layer (∗)✞

✝
☎
✆Geometry layer✞

✝
☎
✆Topology layer✞

✝
☎
✆Container layer
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This classification is natural from the above point of view that, in terms of data structures and algorithms,

a mesh is a collection (➣ container) of (geometric) entities of particular shapes and location

(➣ geometry), connected by adjacency relations (➣ topology).

(∗) “Refinement” refers to the process of creating a new mesh from an existing one by splitting all or some

of the its cells. This will briefly be addressed later in this course.

y

2.7.2.1 LEHRFEM++ Mesh: Container Layer

The container aspect for a mesh is covered by the main methods supplied by lf::mesh::Mesh objects

➺ (documentation),

• size_type lf::mesh::Mesh::NumEntities(dim_t codim) const;

telling the total number of entities of the co-dimension codim,

• nonstd::span<const Entity* const>

lf::mesh::Mesh::Entities(unsigned codim) const;

which returns a so-called span ➺ (documentation), an object that allows to run sequentially through

all entities of a particular co-dimension (→ § 2.5.1.2).

• bool lf::mesh::Mesh::Contains (const lf::mesh::Entity &e) const;

which tests whether an entity belongs to the mesh.

Moreover, lf::mesh::Mesh provides indexing, numbering of geometric entities through consecutive non-

negative integers. For every entity in the mesh its index is returned by the member function

size_type lf::mesh::Mesh::Index(const Entity &e) const;

Its index is unique for an entity of a fixed co-dimension, and it can even serve as an array index:

Global indexing of mesh entities in LEHRFEM++

For every mesh the global indices of the entities of any fixed co-dimension run from 0 to n− 1,

where n is the total number of those entities.

This statement can be written as

{mesh.Index(e): e ∈ mesh.Entities(codim)} =
{0, . . . ,mesh.NumEntities(codim)− 1} . (2.7.2.5)

Therefore, by the index we can access the entities of a mesh and a fixed co-dimension like the elements

of an array:

lf::mesh::Entity *lf::mesh::Mesh::EntityByIndex(dim_t codim,

lf::base::glb_idx_t index) const;

EXAMPLE 2.7.2.6 (Using entity iterators in LEHRFEM++) In this example we see a LEHRFEM++

function which implements loops over the entities of a lf::mesh::Mesh object and prints their indices.

These loops are fundamental for almost every task in a finite element code.
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C++ code 2.7.2.7: Traversal of entities of a mesh ➺ GITHUB

2 i n t t r a v e r s e E n t i t i e s ( const l f : : mesh : : Mesh &mesh , dim_t codim ) {

3 LF_ASSERT_MSG( ( codim <= mesh .DimMesh ( ) ) , "codim " << +codim << " too large " ) ;

4 std : : cout << "Mesh dimension = " << mesh .DimMesh ( )

5 << " , i t e ra t i ng over en t i t i es of co−dim . " << codim << " : "
6 << mesh . NumEntities ( codim ) << " ex is t " << ’ \ n ’ ;

7 i n t cnt = 0 ;

8 // Typical loop for running through all entities of a specific
co-dimension

9 for ( const l f : : mesh : : Ent i ty * e n t i t y : mesh . Ent i t i es ( codim ) ) {

10 // Print entity information including its unique index

11 std : : cout << cnt << " : Ent i ty #" << mesh . Index ( * e n t i t y ) << " : " << * e n t i t y

12 << ’ \ n ’ ;

13 cnt ++;

14 }

15 return cnt ;

16 }

Note that the loop variable entity is a pointer to lf::mesh::Entity objects. y

Supplement 2.7.2.8 (Mesh data sets in LEHRFEM++) Connected with the container capabilities of

LEHRFEM++’s mesh data structures are auxiliary classes that can be used to attach rather arbitrary

data to the entities of a mesh. The most important is lf::mesh::utils::CodimMeshDataSet ➺ GITHUB,

whose most important member function is the set/get access operator

T& lf::mesh::utils::CodimMeshDataSet::opera tor()(const Entity& e);

const T lf::mesh::utils::CodimMeshDataSet::opera tor()(const Entity&

e) const;

A (pointer to an) object of type lf::mesh::utils::CodimMeshDataSet can be created by calling

template <c lass S, class >

std::shared_ptr<CodimMeshDataSet<S>>

lf::mesh::utils::make_CodimMeshDataSet(

std::shared_ptr<const lf::mesh::Mesh> mesh_p, base::dim_t codim, S

init);

where codim specified the co-dimension of the entities to which data should be attached, and init

is an optional default value for the data. The functions implemented in special_entity_sets.cc

➺ GITHUB well demonstrate the use of these “arrays indexed by entities”.
y

2.7.2.2 LEHRFEM++ Mesh: Topology Layer

§2.7.2.9 (Topological types of mesh entities in 2D) We examine the adjacency/incidence relations re-

stricted to a single entity. In LEHRFEM++ the topology of an entity can be queried by the method RefEl() of

lf::mesh::Entity. It returns a static object of type lf::base::RefEl of which there are four different versions

(I) NODE-type (= lf::base::RefEl::kPoint()): 0-dimensional entity without sub-entities,

(II) EDGE-type (= lf::base::RefEl::kSegment()): a 1-dimensional entity with two 0-

dimensional NODE-type subentities

(III) TRIA-type (= lf::base::RefEl::kTria()): a 2-dimensional entity with three sub-entities of

EDGE-type and further three sub-entities of NODE-type

(IV) QUAD-type (= lf::base::RefEl::kQuad()): another 2-dimensional entity possessing four

sub-entities of EDGE-type and NODE-type, respectively.
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Topological entities in LEHRFEM++ (for hybrid 2D meshes)

NODE

(RefEl::kPoint())

EDGE

(RefEl::kSegment())

TRIA

(RefEl::kTria())

QUAD

(RefEl::kQuad())

y

EXAMPLE 2.7.2.10 (Testing for topological type) The following C++ function demonstrates how to test

for a particular topological type of an entity in LEHRFEM++.

C++ code 2.7.2.11: Counting cells of topological type QUAD and TRIA ➺ GITHUB

2 std : : pair <size_type , s ize_type > countCel lTypes ( const l f : : mesh : : Mesh &mesh) {

3 s ize_type t r i a _ c n t = 0 ;

4 s ize_type quad_cnt = 0 ; // Counters

5 // Loop over all cells (= co-dimension-0 entities) of the mesh

6 for ( const l f : : mesh : : Ent i ty * c e l l : mesh . E n t i t i e s ( 0 ) ) {

7 // Fetch type information

8 const l f : : base : : RefEl r e f _ e l { c e l l −>RefEl ( ) } ;

9 // Test, if current cell is of a particular type

10 switch ( r e f _ e l ) {

11 case l f : : base : : RefEl : : kT r ia ( ) : { t r i a _ c n t ++; break ; }

12 case l f : : base : : RefEl : : kQuad ( ) : { quad_cnt ++; break ; }

13 defaul t : { LF_VERIFY_MSG( false , "Unknown ce l l type " ) ; }

14 } }

15 return { t r i a _ c n t , quad_cnt } ;

16 }

y

An important aspect of local topology concerns the local numbering/local ordering of sub-entities, which

underlies the implementation of the fundamental method

nonstd::span<const lf::mesh::Entity* const>

SubEntities(unsigned rel_codim) const

It returns a random access container, an array, of sub-entities of a particular relative co-dimension, which

is the dimension gap between the current entity object and the requested sub-entity.

EXAMPLE 2.7.2.12 (Accessing sub-entities in LEHRFEM++) This code is a snipped from a unit test

using the Google Test framework. It checks the matching of relative and absolute dimensions.

C++ code 2.7.2.13: Verification of consistency of relative dimensions ➺ GITHUB

2 void checkRelCodim ( const E n t i t y &e ) {

3 using dim_t = l f : : base : : RefEl : : dim_t ;

4 using RefEl = l f : : base : : RefEl ;

5 using s ize_type = l f : : mesh : : Mesh : : s ize_type ;

6

7 // Obtain basic information about current Entity

8 const RefEl r e f _ e l = e . RefEl ( ) ;

9 const dim_t dimension = r e f _ e l . Dimension ( ) ;

10 // Loop over all possible co-dimensions of sub-entities

11 for ( dim_t sub_codim = 1; sub_codim <= dimension ; ++sub_codim ) {

2. Finite Element Methods (FEM), 2.7. Implementation of Finite Element Methods 207

https://github.com/google/googletest
https://github.com/craffael/lehrfempp/blob/master/lib/lf/mesh/test_utils/check_local_topology.cc


NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

12 // Obtain array of sub-entities of co-dimensjon sub_codim

13 std : : span<const l f : : mesh : : E n t i t y * const> sub_ent_array {

14 e . SubEnt i t i es ( sub_codim ) } ;

15 // Query number of sub-entities

16 const s ize_type num_subent = r e f _ e l . NumSubEntit ies ( sub_codim ) ;

17 // Index-based loop over sub-entities

18 for ( i n t sub_ent_idx = 0; sub_ent_idx < num_subent ; ++sub_ent_idx ) {

19 // Test whether relative dimension matches absolute dimensions

20 EXPECT_EQ( sub_codim ,

21 dimension − sub_ent_array [ sub_ent_idx ]−> RefEl ( ) . Dimension ( ) )

22 << "Dimension mismatch : " << e << " <−> subent ( " << sub_ent_idx << " ) "
23 << std : : endl ;

24 }

25 }

26 }

Note the access to the sub-entity objects via the []-operator. y

§2.7.2.14 (Local numbering of cell sub-entities in LEHRFEM++) As demonstrated in Code 2.7.2.13 the

sub-entities returned from SubEntities() can be accessed through the [] operator using their local

index, thus defining the local numbering of the sub-entities of an entity. This local numbering starts from 0
and must be fixed by convention.

Fig. 131

1

0

1
0

2

2

The conventions adopted by LEHRFEM++ for setting

the local indices of the edges of a TRIA entity are

illustrated in Fig. 131

(red↔ node numbers, green↔ edge numbers).

This means that, for instance, the EDGEs with local

numbers 0 and 1 are guaranteed to share the NODE

with local number 1.

LEHRFEM++’s numbering convention for QUAD-

type entities is given beside ✄

(red↔ node numbers, green↔ edge numbers).

• Edge i, i ∈ {0, . . . , 3}, has nodes i and

(i + 1) mod 3 as endpoints.

• Node k, k ∈ {0, . . . , 3}, is endpoint of edges i
and (i− 1) mod 3.

Fig. 132

3

0
1

2

0

1

2

3

Refer to ➺ GITHUB for a unit test verifying the fulfillment of local conventions on topology. y

Remark 2.7.2.15 (Orientation of sub-entities) In the figures Fig. 131 and Fig. 132 the green arrows

indicate the convention about the local orientation of the edges of a cell, which are always supposed to

point from the vertex with the smaller index to the vertex with the larger index. Distinguis from global

orientation, which is intrinsic to an edge and fixed arbitrarily during the construction of a mesh. y

§2.7.2.16 (Global mesh topology) When we mention the “(global) topology” of a mesh we have in mind
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the adjacency relations among mesh entities, while completely ignoring their location and shape. We are

interested in the

incidence relations: ✦ “boundary contains”-relation: boundary of an entity of a higher dimension contains

entity of a lower dimension, a so-called sub-entity.

✦ “is part of”-relation: entity of lower dimension is part of the boundary of an entity

of a higher dimension, a super-entity.

The incidence relations yield an abstract (generalized) graph description of a finite element mesh

Possible internal realization of incidence relations:

• Dynamic, distributed objects: for some (j, k) ∈ {0, . . . , d}2, 0 ≤ j < k ≤ d, entities of dimension k
hold ordered lists (vectors) of references (pointers) to those entities of dimension j contained in their

boundary. This is the storage scheme in LEHRFEM++.

• Array-based: for some (m, n) ∈ {0, . . . , d}2, 0 ≤ m < n ≤ d, the code stores matrices of indices,

with rows corresponding to entities of co-dimension m, and columns to entities of co-dimension n.

The matrix entries supply unique identifiers for sub-entities. This is the storage scheme used in the

code of Section 2.4, see Code 2.4.1.2.

EXAMPLE 2.7.2.17 (Storing topology of triangular mesh in 2D) LetM be a triangular mesh according

to Def. 2.5.1.1 as in Section 2.4.1. Various schemes for storing topological information are conceivable. In

the figures below: black↔ triangles, blue↔ edges, red↔ vertices.

Fig. 133

(A) Minimal scheme: triangles hold lists/vectors of

references to their vertices. Edges not stored.

Realized in the mesh data structure discussed in

Section 2.4.1, see the class TriaMesh2D listed in

Code 2.4.1.2. This is sufficient for linear Lagrangian

finite elements, if no special boundary conditions

have to be dealt with.

Note that this scheme already provides com-

plete topological information (edges can be recon-

structed)!

This scheme is used by MFEM.
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(B) Element centered scheme with edges:

✦ Elements, edges and vertices stored as (vir-

tual) “objects”

✦ Elements have lists/vectors of references to

their vertices and edges.

Fig. 134

Fig. 135

(C) Full unidirectional topology representation:

✦ All geometric entities are stored as (virtual)

“objects”.

✦ Elements hold lists/vectors of references to

their vertices and edges.

✦ Edges have references to their endpoints.

Topology representation in LEHRFEM++

(D) Restricted bidirectional topology representation:

✦ All geometric entities are stored as (virtual)

“objects”.

✦ Elements hold vectors of references to their

vertices and edges.

✦ Elements also possess a vector of references

to their neighbors.

Fig. 136
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Fig. 137

(E) Full bidirectional topology representation:

✦ Elements hold vectors of references to their

vertices and edges.

✦ Edges have references to their endpoints and

their adjacent triangles

✦ Vertices have references to their adjacent tri-

angles.

y

Notation: M = mesh (set of elements = set of geometric entities of co-dimension 0)

V(M) = set of nodes (vertices) inM (geometric entities of co-dimension 2)

E(M) = set of edges inM (geometric entities of co-dimension 1)

Global topology of the mesh is completely, and even redundantly, encoded by the mesh entities’

SubEntities() member function that we have already seen above. y

EXAMPLE 2.7.2.18 (Inspecting mesh topology in LEHRFEM++) The following code demonstrates the

access to sub-entities and the retrieval of their indices.

C++ code 2.7.2.19: Printing topology information for a mesh in LEHRFEM++ ➺ GITHUB

2 void scanTopology ( const l f : : mesh : : Mesh &mesh , dim_t codim ) {

3 LF_ASSERT_MSG( ( codim <= mesh . DimMesh ( ) ) ,

4 "codim " << +codim << " too large " ) ;

5 // loop over all entities of the specified codimension

6 for ( const l f : : mesh : : Ent i ty * ent : mesh . E n t i t i e s ( codim ) ) {

7 // Fetch topology type (TRIA or QUAD so far)

8 const l f : : base : : RefEl r e f _ e l { ent −>RefEl ( ) } ;

9 // Print topological type and global index of the ent

10 const g l b _ i d x _ t en t_ idx = mesh . Index ( * ent ) ;

11 std : : cout << r e f _ e l << " : idx = " << ent_ idx << ’ \ n ’ ;

12 // Inspect sub-entities of any co-dimension

13 for ( dim_t sub_codim = 1; sub_codim <= mesh . DimMesh ( ) − codim ;

14 ++sub_codim ) {

15 // Obtain iterator over sub-entities

16 const std : : span<const l f : : mesh : : Ent i ty * const>

17 sub_ent_range { ent −>SubEnt i t i es ( sub_codim ) } ;

18 s ize_type sub_cnt = 0 ; // Counter for sub-entities

19 // Loop over sub-entities, whose types and indices will be output

20 for ( const l f : : mesh : : Ent i ty * subent : sub_ent_range ) { //

21 std : : cout << " \ t r e l . codim " << +sub_codim << " sub−ent "
22 << sub_cnt << " : " << * subent << " , idx = "
23 << mesh . Index ( * subent ) << ’ \ n ’ ;

24 sub_cnt ++;

25 } } } }

The loop of Line 20 could be replaced with an index-based loop as in Code 2.7.2.13. y

EXAMPLE 2.7.2.20 (Indexing and numbering of (sub-)entities in LEHRFEM++) We report the output of
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a LEHRFEM++ demo program ➺ GITHUB (invoked with -d 1 option) that reads a mesh in GMSH format

from a .msh-file and prints information calling the scanTopology() function from Code 2.7.2.19.

On the left we show the .msh-file (→ Ex. 2.7.1.5) created by Gmsh describing the simple planar hybrid

mesh comprising triangular (in green) and rectangular (in magenta) cells drawn on the right

1 $MeshFormat

2 2.2 0 8

3 $EndMeshFormat

4 $Nodes

5 8

6 1 0 0 0

7 2 1 0 0

8 3 2 0 0

9 4 2 2 0

10 5 1 2 0

11 6 0 2 0

12 7 0 1 0

13 8 1 1 0

14 $EndNodes

15 $Elements

16 16

17 1 15 2 5 1 1

18 2 15 2 5 3 3

19 3 15 2 5 4 4

20 4 15 2 5 6 6

21 5 1 2 1 1 1 2

22 6 1 2 1 2 2 3

23 7 1 2 2 3 3 4

24 8 1 2 3 4 4 5

25 9 1 2 3 5 5 6

26 10 1 2 4 6 6 7

27 11 1 2 4 6 7 1

28 12 2 2 6 2 8 4 5

29 13 2 2 6 2 3 8 2

30 14 2 2 6 2 3 4 8

31 15 3 2 7 1 5 6 7 8

32 16 3 2 7 1 8 7 1 2

33 $EndElements

0

1

2 0

0

1

2

1

0

12

2

0 1

23

3

0 1

23

4

0

6

1

7

2

8

3

9

4

105

11

0 1 2

345

6 7

Annotations: 0,. . . =̂ global indices of vertices,

0,. . . =̂ global indices of edges,

cells and cell indices drawn in magenta and green, local indices of nodes placed at cell

corners.

The rendering of the mesh was produced by the function lf::io::writeTikZ() ➺ GITHUB. The

following output is produced by scanTopology() from Code 2.7.2.19.

1 TRIA : i dx = 0

2 r e l . codim 1 sub−ent 0 : EDGE, i dx = 2

3 r e l . codim 1 sub−ent 1 : EDGE, i dx = 9

4 r e l . codim 1 sub−ent 2 : EDGE, i dx = 8

5 r e l . codim 2 sub−ent 0 : NODE, i dx = 2

6 r e l . codim 2 sub−ent 1 : NODE, i dx = 3

7 r e l . codim 2 sub−ent 2 : NODE, i dx = 7

8 TRIA : i dx = 1

9 r e l . codim 1 sub−ent 0 : EDGE, i dx = 8

10 r e l . codim 1 sub−ent 1 : EDGE, i dx = 7

11 r e l . codim 1 sub−ent 2 : EDGE, i dx = 1

12 r e l . codim 2 sub−ent 0 : NODE, i dx = 2

13 r e l . codim 2 sub−ent 1 : NODE, i dx = 7

14 r e l . codim 2 sub−ent 2 : NODE, i dx = 1

15 TRIA : i dx = 2

16 r e l . codim 1 sub−ent 0 : EDGE, i dx = 9

17 r e l . codim 1 sub−ent 1 : EDGE, i dx = 3

18 r e l . codim 1 sub−ent 2 : EDGE, i dx = 10

19 r e l . codim 2 sub−ent 0 : NODE, i dx = 7

20 r e l . codim 2 sub−ent 1 : NODE, i dx = 3

21 r e l . codim 2 sub−ent 2 : NODE, i dx = 4

22 QUAD: i dx = 3

23 r e l . codim 1 sub−ent 0 : EDGE, i dx = 0

24 r e l . codim 1 sub−ent 1 : EDGE, i dx = 7

25 r e l . codim 1 sub−ent 2 : EDGE, i dx = 11

26 r e l . codim 1 sub−ent 3 : EDGE, i dx = 6

27 r e l . codim 2 sub−ent 0 : NODE, i dx = 0

28 r e l . codim 2 sub−ent 1 : NODE, i dx = 1

29 r e l . codim 2 sub−ent 2 : NODE, i dx = 7

30 r e l . codim 2 sub−ent 3 : NODE, i dx = 6

31 QUAD: i dx = 4

32 r e l . codim 1 sub−ent 0 : EDGE, i dx = 11

33 r e l . codim 1 sub−ent 1 : EDGE, i dx = 10

34 r e l . codim 1 sub−ent 2 : EDGE, i dx = 4

35 r e l . codim 1 sub−ent 3 : EDGE, i dx = 5

36 r e l . codim 2 sub−ent 0 : NODE, i dx = 6

37 r e l . codim 2 sub−ent 1 : NODE, i dx = 7

38 r e l . codim 2 sub−ent 2 : NODE, i dx = 4

39 r e l . codim 2 sub−ent 3 : NODE, i dx = 5

1 EDGE: i dx = 0

2 r e l . codim 1 sub−ent 0 : NODE, i dx = 0

3 r e l . codim 1 sub−ent 1 : NODE, i dx = 1

4 EDGE: i dx = 6

5 r e l . codim 1 sub−ent 0 : NODE, i dx = 6

6 r e l . codim 1 sub−ent 1 : NODE, i dx = 0

7 EDGE: i dx = 1

8 r e l . codim 1 sub−ent 0 : NODE, i dx = 1

9 r e l . codim 1 sub−ent 1 : NODE, i dx = 2

10 EDGE: i dx = 7

11 r e l . codim 1 sub−ent 0 : NODE, i dx = 7

12 r e l . codim 1 sub−ent 1 : NODE, i dx = 1

13 EDGE: i dx = 2

14 r e l . codim 1 sub−ent 0 : NODE, i dx = 2

15 r e l . codim 1 sub−ent 1 : NODE, i dx = 3

16 EDGE: i dx = 8

17 r e l . codim 1 sub−ent 0 : NODE, i dx = 7

18 r e l . codim 1 sub−ent 1 : NODE, i dx = 2

19 EDGE: i dx = 3

20 r e l . codim 1 sub−ent 0 : NODE, i dx = 3

21 r e l . codim 1 sub−ent 1 : NODE, i dx = 4

22 EDGE: i dx = 9

23 r e l . codim 1 sub−ent 0 : NODE, i dx = 3

24 r e l . codim 1 sub−ent 1 : NODE, i dx = 7

25 EDGE: i dx = 4

26 r e l . codim 1 sub−ent 0 : NODE, i dx = 4

27 r e l . codim 1 sub−ent 1 : NODE, i dx = 5

28 EDGE: i dx = 10

29 r e l . codim 1 sub−ent 0 : NODE, i dx = 4

30 r e l . codim 1 sub−ent 1 : NODE, i dx = 7

31 EDGE: i dx = 5

32 r e l . codim 1 sub−ent 0 : NODE, i dx = 5

33 r e l . codim 1 sub−ent 1 : NODE, i dx = 6

34 EDGE: i dx = 11

35 r e l . codim 1 sub−ent 0 : NODE, i dx = 7

36 r e l . codim 1 sub−ent 1 : NODE, i dx = 6

y
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2.7.2.3 LEHRFEM++ Mesh: Geometry Layer

LEHRFEM++ stores the shape of any entity in objects derived from the interface class

lf::geometry::Geometry ➺ (documentation). A raw pointer to an object of this type can be obtained

by calling the following member function of lf::mesh::Entity:

lf::geometry::Geometry *lf::mesh::Entity::Geometry () const;

The discussion of lf::geometry::Geometry will be postponed until we have introduced the technique of

parametric finite elements.

§2.7.2.21 (Coordinates in LEHRFEM++) LEHRFEM++ encodes all geometric information by vectors of

Cartesian coordinates of points in Euclidean space R2.

In LEHRFEM++ coordinate vectors are small fixed size EIGEN vector types, see [NCSE] and Sec-

tion 2.7.3. Thus, all of EIGEN’s linear algebra operations and functions are available for them.

Often, LEHRFEM++ stores the coordinates of several points packed into the columns of a matrix: the

positions of n ∈ N points ∈ Rd are held in an n× d matrix. y

At this point the main method for learning the shape of an entity is the function

Eigen::MatrixXd

lf::geometry::Corners(const lf::geometry::Geometry& geo);

It returns the Cartesian coordinates of the corner points of a (geometric) entity as the columns of a ma-

trix. For instance, if the shape of the entity is a 2D triangle with vertices a1 =

[
a1

1

a1
2

]
, a2 =

[
a2

1

a2
2

]
, and

a3 :=

[
a3

1

a3
2

]
, then this matrix reads

[
a1

1 a2
1 a3

1
a1

2 a2
2 a3

2

]
∈ R2,3 .

EXAMPLE 2.7.2.22 (Accessing corner coordinates in LEHRFEM++) This sample code shows the

actual use of the function lf::geometry::Corners() to obtain information about the geometry of

mesh entities.

C++ code 2.7.2.23: Output of locations of entity corners ➺ GITHUB

2 void Pr in tGeometry In fo ( const l f : : mesh : : Mesh &mesh , dim_t codim ) {

3 LF_ASSERT_MSG( ( codim <= mesh . DimMesh ( ) ) ,

4 "codim " << +codim << " too large " ) ;

5 // loop over all entities of the specified codimension

6 for ( const l f : : mesh : : Ent i ty * ent : mesh . E n t i t i e s ( codim ) ) {

7 // Number of nodes = number of corner points

8 const s ize_type num_nodes = ent −>RefEl ( ) .NumNodes ( ) ;

9 // Obtain pointer to geometry object associated with entity

10 const l f : : geometry : : Geometry * geo_ptr = ent −>Geometry ( ) ;

11 LF_ASSERT_MSG( geo_ptr != nul lpt r , " Missing geometry ! " ) ;

12 // Fetch coordinates of corner points in packed format § 2.7.2.21

13 Eigen : : MatrixXd corners = l f : : geometry : : Corners ( * geo_ptr ) ;

14 LF_ASSERT_MSG( corners . rows ( ) == geo_ptr −>DimGlobal ( ) ,

15 "dimension mismatch for coordinate vectors " ) ;

16 LF_ASSERT_MSG( corners . cols ( ) == num_nodes , "#corners mismath" ) ;

17 std : : cout << ent −>RefEl ( ) << " ( " << mesh . Index ( * ent ) << " ) pts : " ;

18 for ( i n t l = 0 ; l < num_nodes ; ++ l ) {
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19 std : : cout << l << " =[ " << corners . col ( l ) . transpose ( ) << " ] , " ;

20 }

21 std : : cout << ’ \ n ’ ;

22 } }

y

Review question(s) 2.7.2.24 (Mesh data structures)

(Q2.7.2.24.A) Give concise descriptions of the three fundamental aspects of information contained in a

finite element mesh:

• container aspect,

• topological information,

• geometric information

(Q2.7.2.24.B) [The Index() method] Explain the meaning of the following set identity:

{mesh.Index(e): e ∈ mesh.Entities(codim)} =
{0, . . . ,mesh.NumEntities(codim)− 1} , (2.7.2.5)

where mesh is a immutable reference to an object of type lf::mesh::Mesh.

(Q2.7.2.24.C) [An index invariant] The two methods of lf::mesh::Mesh

• lf::mesh::Mesh::Index(),

• and lf::mesh::Mesh::EntityByIndex()

realize inverse operations. Devise three lines of C++ code that test this statement for a given

lf::mesh::Mesh object.

(Q2.7.2.24.D) [Sub-entities] What is the value of the following expression

e.SubEntities(rel_codim).size()

depending on the topolgical type of e and the argument rel_codim? Here, e is a reference to an

lf::mesh::Entity object of a 2D mesh, and rel_codim an integer ∈ {0, 1, 2}.
(Q2.7.2.24.E) [Cells adjacent to edges] Given a reference mesh to an immutable lf::mesh::Mesh

object describing a planar 2D hybrid mesh, design a C++ code snippet that initializes

lf::mesh::utils::CodimMeshDataSet<std::array<const

lf::mesh::Entity *, 2>> cell_at_edge;

so that it contains, for each edge of the mesh, pointers to all adjacent cells.

(Q2.7.2.24.F) [Orienting cells] For a planar mesh the orientation of a cell is de-

fined through the numbering of its vertices as “clockwise” or “counterclockwise” sense of

moving around the cell. Using the facilitiies of LEHRFEM++, in particular the method

lf::mesh::Entity::RelativeOrientation(), outline an algorithm for initializing an object

rel_cell_ori of type lf::mesh::utils::CodimMeshDataSet <int> such that

rel_cell_ori(e) =

{
1 , if the orientation of e agrees with that of e0

−1 otherwise,

where e0 is the cell of the mesh with index = 0.
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(Q2.7.2.24.G) [EntityByIndex()] What is the purpose of the following code snippet?

((idx < mesh.NumEntities(codim)) &&

mesh.Index(*mesh.EntityByIndex(codim,idx)) == idx)

What is an appropriate type of idx?

△

2.7.3 Vectors and Matrices

§2.7.3.1 (Functions of vectors and matrices in a FE code) Data structures representing matrices and

vectors serve different important purposes in a finite element code:

➊ They represent coordinate vectors of points and have to support geometric calculations.

➋ They store element matrices and element vectors, recall Section 2.4.5, Section 2.4.6, and see

Def. 2.7.4.5 below.

➌ They are needed for handling the Galerkin matrices and and have to be used by the linear (direct or

iterative) solver.

For ➊ small fixed size vectors and matrices are sufficient, and they may also be used for ➋, if the mesh

consists of a single type of cells only. For ➌ we need data structures suitable for large variable size vectors

and matrices, where the latter are sparse, moreover, see Section 2.4.4. y

§2.7.3.2 (EIGEN– A C++ template library for numerical linear algebra) C++ relies on the open source

software EIGEN for its numerical linear algebra needs.

EIGEN is a C++ template library designed to enable easy, natural and efficient numerical linear algebra: it

provides data structures and a wide range of operations for matrices and vectors, see below. EIGEN also

implements (→ doc)

• all important matrix decompositions of dense numerical linear algebra (LU-, QR-, Cholesky-

decompositions) and direct solvers based on them,

• “direct” eigensolvers for various types of dense eigenvalue problems,

• the singular value decomposition (SVD) of a matrix,

• ranks, determinants and inverses of matrices.

Eigen relies on expression templates to allow the efficient evaluation of complex expressions involving

matrices and vectors. Refer to the example given in the EIGEN documentation for details.

The principal components and capabilities of the EIGEN library have been covered in the course “Numeri-

cal Methods for Computational Science and Engineering” [NCSE].

In LEHRFEM++ all matrices and vectors are objects of a suitable Eigen::(Sparse)Matrix type.

y

§2.7.3.3 (LEHRFEM++ triplet-based sparse matrix format) In Rem. 2.4.5.25 we saw that sparse

Galerkin matrices can be initialized efficiently using an intermediate triplet-based format, also called COO

format.

LEHRFEM++ implements a dedicated type lf::assemble::COOMatrix ➺ GITHUB to manage data in COO

format. The main member functions are

2. Finite Element Methods (FEM), 2.7. Implementation of Finite Element Methods 215

http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/dox/group__TutorialLinearAlgebra.html
https://en.wikipedia.org/wiki/Expression_templates
http://eigen.tuxfamily.org/dox/TopicInsideEigenExample.html
https://craffael.github.io/lehrfempp/classlf_1_1assemble_1_1_c_o_o_matrix.html
https://craffael.github.io/lehrfempp/classlf_1_1assemble_1_1_c_o_o_matrix.html


NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

• Eigen::Index lf::assemble::COOMatrix::rows() const;

Eigen::Index lf::assemble::COOMatrix::cols() const;

telling the size of the matrx,

• void lf::assemble::COOMatrix::AddToEntry(gdof_idx_t i,

gdof_idx_t j, SCALAR increment);

adding the value increment to the matrix entry at position (i, j),

• std::vector <Eigen::Triplet<SCALAR>> &triplets();

gives access to the internal vector of triplets.

y

§2.7.3.4 (EIGEN: some pointers to information) Comprehensive information about EIGEN is available

online:

✦ Matrix and vector data types in EIGEN: see [NCSE] and documentation.

✦ Initialization of dense matrices in EIGEN: see [NCSE].

✦ Access to submatrices in EIGEN: see [NCSE] and documentation.

✦ Componentwise operations in EIGEN: see [NCSE] and documentation.

✦ Sparse matrices in EIGEN (CRS/CCS-format): see [NCSE] and documentation; already used in

Code 2.4.5.24.

y

2.7.4 Assembly Algorithms

Video tutorial for Section 2.7.4: Assembly Algorithms: (46 minutes) Download link,

tablet notes

In English “assemble” means “fit pieces together”, the meaning in FEM is similar:

“Assembly” = term used for computing entries of stiffness matrix/right hand side vector (load vector) in a

finite element context, cf. § 2.4.5.15.

Aspects of assembly for linear Lagrangian finite elements (V0,h = S0
1,0(M)) were discussed in Sec-

tion 2.4.5 and Section 2.4.6. (Refresh yourself on these sections in case you cannot remember the main

ideas behind building the Galerkin matrix and right hand side vector.)

2.7.4.1 Assembly: Localization

Cell-local concepts and operations play a key role in the efficient initialization of finite element Galerkin

matrices and right hand side vectors.

§2.7.4.1 (Localized (bi-)linear forms in variational formulations) We consider a

discrete variational problem (V0,h = FE space, dim V0,h = N ∈ N, see (2.2.1.1))

uh ∈ V0,h: a(uh, vh) = ℓ(vh) ∀vh ∈ V0,h . (2.2.1.1)
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Let B = {b1
h, . . . , bN

h } designate the set of locally supported basis functions of V0,h to be used in the

computations (→ Section 2.5.3). Then we have to compute (see also Section 2.4.5 and Section 2.4.6) the

following algebraic information, the

• Galerkin matrix (stiffness matrix): A =
[
a(b

j
h, bi

h)
]N

i,j=1
∈ RN,N,

• and the r.h.s. vector (load vector): ~ϕ :=
[
ℓ(bi

h)
]N

i=1
∈ RN.

︸ ︷︷ ︸
both can be written in terms of local cell contributions, since usually

a(u, v) = ∑
K∈M

aK(u|K, v|K) , ℓ(v) = ∑
K∈M

ℓK(v|K) , (2.7.4.2)

where ·|K designates the restriction of a function to cell K; u|K and v|K are not defined outside K.

Example: bilinear forms/linear forms arising from 2nd-order elliptic BVPs, e.g, (1.9.0.2), (1.9.0.3),

(1.9.0.4), can be localized in straightforward fashion by restricting integration to mesh cells

(→ Rem. 2.4.2.3): for u, v ∈ H1(Ω)

a(u, v) :=
∫

Ω
α(x) grad u · grad v dx = ∑

K∈M

∫

K
α(x) grad u · grad v dx

︸ ︷︷ ︸
=:aK(u|K ,v|K)

, (2.7.4.3)

ℓ(v) :=
∫

Ω
f v dx = ∑

K∈M

∫

K
f v dx

︸ ︷︷ ︸
=:ℓK(v|K)

. (2.7.4.4)

y✞
✝

☎
✆Recall (2.5.3.5): Restrictions of global shape functions to entities = local shape functions

Definition 2.7.4.5. Element (stiffness) matrix and element (load) vector

Given a mesh entity K ∈ M and local shape functions {b1
K, . . . , bQ

K }, Q = Q(K) ∈ N, we

introduce

the element (stiffness) matrix AK :=
[
aK(b

j
K, bi

K)
]Q

i,j=1
∈ RQ,Q ,

and the element (load) vector ~ϕK :=
[
ℓK(b

i
K)
]Q

i=1
∈ RQ .

§2.7.4.6 (Numbers of local shape functions) In Def. 2.7.4.5: Q = the number of local shape functions

on element K ∈ M, may be different for different mesh cells K. For instance, this occurs

✦ in the case of hybrid meshes as discussed in Rem. 2.6.2.10, e.g., Q(K) ∈ {3, 4} for linear La-

grangian finite element spaces S0
1 (M).

✦ in the case of enforcement of zero essential boundary conditions by dropping basis functions asso-

ciated with interpolation nodes on ∂Ω, as explained in § 2.6.2.8: according to the formal definition

Def. 2.5.3.4 this will lead to a reduced number of local shape functions. However, in implementations

zero essential boundary conditions are handled differently, see Section 2.7.6.
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For standard Lagrangian finite element spaces S0
p(M) the dimensions of the spaces spanned by local

shape functions are the same for all mesh cells and given by the following formulas:

Type of FE space Q

degree p Lagrangian FE on triangular mesh → dimPp(R2) = 1
2(p + 1)(p + 2)

degree p Lagrangian FE on tetrahedral mesh → dimPp(R3) = 1
6(p + 1)(p + 2)(p + 3)

degree p Lagrangian FE on tensor product mesh in 2D→ dimQp(R2) = (p + 1)2

We arrive at these formulas, by the following considerations:

✦ For Lagrangian finite element spaces the local shape functions span a polynomial space, either

Pp(Rd) (simplicial mesh) or Qp(Rd) (tensor product mesh).

✦ The dimensions of Pp(Rd)/Qp(Rd) are given in Lemma 2.5.2.5 and Lemma 2.5.2.8.

Lemma 2.5.2.5. Dimension of spaces of polynomials

dimPp(R
d) =

(
d + p

p

)
for all p ∈ N0, d ∈ N

Lemma 2.5.2.8. Dimension of spaces of tensor product polynomials

dimQp(R
d) = (p + 1)d for all p ∈ N0, d ∈ N

y

2.7.4.2 Assembly: Index Mappings

What we have discovered in the case of linear finite elements in Section 2.4.5 (conveyed in Fig. 77 and

Fig. 78 and the accompanying remarks) and implemented in Code 2.4.5.23 is a general principle.

We find that in the (not so special) setting of this section, characterized by the possibility to localize the

bilinear form a and right hand side linear form ℓ in the sense of (2.7.4.2),

✦ the entries of the finite element Galerkin matrix can be obtained by summing corre-

sponding entries of some element matrices,

✦ this corresponding entry of an element matrices is determined by the unique associa-

tion of a local basis function to a global basis function (through a “d.o.f. mapper”/”d.o.f.

handler”).

§2.7.4.7 (Abstract “d.o.f. mapper” facility) The correct assignment of local contributions to entries of

the Galerkin matrix and the right hand side vector requires a

☞ Local→global index map (“d.o.f. mapper”/”d.o.f. handler”)

locglobmap : {co-dim.-m entities} ×N → N ,

locglobmap(K, i) = j , if b
j
h |K = bi

K , i ∈ {1, . . . , Q(K)} .
(2.7.4.8)

global shape function local shape function

We point out that according to Def. 2.5.3.4 every entity K of a finite element mesh is endowed with a set

{b1
K, . . . , b

Q(K)
K } of local shape functions, not only cells. y
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Remark 2.7.4.9 (Local→global index mapping and index array) The mapping locglobmap generalizes

the device of the index mapping array dofh introduced in (2.4.5.21) on Page 181 for linear Lagrangian finite

elements on 2D triangular meshes and also used in Code 2.4.5.23: Precisely, they are related by

dofh(k, l) = locglobmap(K, l) , if K has index k , l ∈ {1, 2, 3} .

(Mathematical indexing starting from 1 is used!) y

EXAMPLE 2.7.4.10 (Local→global mapping for linear Lagrangian finite elements on triangular

mesh) This example refreshes § 2.4.5.20.

Using the local/global numbering indicated in the fig-

ure to the right the local→global index map for the

marked cells yields

locglobmap(K∗, 0) = 2 ,

locglobmap(K∗, 1) = 7 ,

locglobmap(K∗, 2) = 9 .

See also Fig. 80 for similar considerations.

Fig. 138
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y

§2.7.4.11 (Ordering convention for local shape functions in LEHRFEM++) In Ex. 2.7.4.10 it seemed

natural that the local shape function (= barycentric coordinate function) associated with NODE #i,
i = 0, 1, 2, had the number i. Yet, at second glance this turns out to be a mere convention.

To understand this better, consider quadratic La-

grangian finite elements, whose local shape func-

tions on a triangle are associated with both vertices

and edges, see (2.6.1.6). In this case it is clear that

we have ample freedom to number the local shape

functions – vertices first, then edges vs. edges first

then vertices – and that any scheme is as good as

any other.

However, in a code we have to fix a convention for

numbering the local shape functions and we have to

adhere to it throughout. Fig. 139 ?

?

?

?

? ?

K

a1
a2

a3

e1

e2e3

The following local numbering convention is universally applied in LEHRFEM++ for the cells of logically

two-dimensional meshes:

(I) The local shape functions of every cell (co-dimension-0 entity) are arranged according to

increasing dimension of the geometric entities they are associated with:

POINT −→ SEGMENT −→ {TRIA,QUAD} .

(II) Local shape functions belonging to geometric entities of the same dimension are or-

dered according to the intrinsic local indexing of those entities. See § 2.7.2.14 for

LEHRFEM++’s conventions.

(III) No ordering of local shape functions attached to the same geometric entity is implied.

Here every user may follow her or his own conventions.

(LN)
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y

EXAMPLE 2.7.4.12 (Numbering of local shape functions for quadratic Lagrangian finite elements)

Following the rules (LN) we find the following local numbering for the local shape functions for quadratic

Lagrangian finite elements.

Magenta numbers give LEHRFEM++’s numbering

convention applied to the local shape functions for

triangular quadratic Lagrangian finite elements from

(2.6.1.6). ✄

(0, . . . , 2 =̂ local indices of nodes)
Fig. 140 0
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Fig. 141
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23
✁ Numering convention (LN) for local shape func-

tions of S0
2 (M) on a quadrilateral.

(0, . . . , 3 =̂ local indices of nodes)

Note: C++ indexing!

y

§2.7.4.13 (D.o.f. handler/d.o.f. mapper in LEHRFEM++) In LEHRFEM++ local→global index mappings

in the spirit of the d.o.f. mapper function locglobmap from (2.7.4.8) are managed by objects of the inter-

face type lf::assemble::DofHandler ➺ (documentation), which supplies the following main methods:

• size_type lf::assemble::DofHandler::NumDofs () const;

which returns the total number of global basis functions, that is, the dimension of the finite element

space.

• size_type lf::assemble::DofHandler::NumLocalDofs(

const lf::mesh::Entity & ) const;

which returns the number of global/local shape function covering any geometric entity of the mesh

of any co-dimension.

• nonstd::span<const lf::assemble::gdof_idx_t>

lf::assemble::DofHandler::GlobalDofIndices(

const lf::mesh::Entity &entity) const;

which returns an array of index numbers ∈ {0, . . . ,NumDofs()− 1} for the global shape functions

covering a particular entity of any dimension. The convention (LN), Page 237, for the numbering of

local shape functions applies.

• size_type lf::assemble::DofHandler::NumInteriorDofs(

const lf::mesh::Entity & ) const;

which tells us the number of global/local shape functions associated with a particular geometric

entity of any co-dimension.
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• nonstd::span<const lf::assemble::gdof_idx_t>

lf::assemble::DofHandler::InteriorGlobalDofIndices(

const lf::mesh::Entity &entity) const;

which provides the array of global indices ∈ {0, . . . ,NumDofs()− 1} of the global shape functions

associated with a specific geometric entity of any co-dimension.

• const lf::mesh::Entity &lf::assemble::DofHandler::Entity(

gdof_idx_t dofnum) const;

which returns a reference to the unique geometric entity to which the global shape function with

index dofnum is associated .

Internally a lf::assemble::DofHandler object maintains the information about the indices of global shape

functions in array format. y

EXAMPLE 2.7.4.14 (Use of methods of lf::assemble::DofHandler) We examine a C++ func-

tion that prints comprehensive information about the local-to-global index mapping realized by a

lf::assemble::DofHandler object.

C++ code 2.7.4.15: Listing of d.o.f. indexing ➺ GITHUB

2 void p r i n t D o f I n f o ( const l f : : assemble : : DofHandler &dofh ) {

3 // Obtain pointer to the underlying mesh

4 auto mesh = dofh .Mesh ( ) ;

5 // Number of degrees of freedom managed by the DofHandler object

6 const l f : : assemble : : s ize_type N_dofs ( dofh . NumDofs ( ) ) ;

7 std : : cout << "DofHandler ( " << dofh . NumDofs ( ) << " dofs ) : " << ’ \ n ’ ;

8 // Output information about dofs for entities of all co-dimensions

9 for ( l f : : base : : dim_t codim = 0; codim <= mesh−>DimMesh ( ) ; codim++) {

10 // Visit all entities of a codimension codim

11 for ( const l f : : mesh : : E n t i t y * e : mesh−> E n t i t i e s ( codim ) ) {

12 // Fetch unique index of current entity supplied by mesh object

13 const l f : : base : : g l b _ i d x _ t e_idx = mesh−>Index ( * e ) ;

14 // Number of shape functions covering current entity

15 const l f : : assemble : : s ize_type no_dofs ( dofh . NumLocalDofs ( * e ) ) ;

16 // Obtain global indices of those shape functions ...

17 const std : : span<const l f : : assemble : : gdof_ idx_t > do fa r ray {

18 dofh . GlobalDofIndices ( * e ) } ;

19 // and print them

20 std : : cout << *e << ’ ’ << e_idx << " : " << no_dofs << " dofs = [ " ;

21 for ( i n t l oc_do f_ idx = 0; loc_do f_ idx < no_dofs ; ++ loc_do f_ idx ) {

22 std : : cout << dofa r ray [ loc_do f_ idx ] << ’ ’ ;

23 }

24 std : : cout << ’ ] ’ ;

25 // Also output indices of interior shape functions

26 const std : : span<const l f : : assemble : : gdof_ idx_t >

27 i n t d o f a r r a y { dofh . Inter iorGlobalDofIndices ( * e ) } ;

28 std : : cout << " i n t = [ " ;

29 for ( const l f : : assemble : : gdo f_ idx_ t i n t _ d o f : i n t d o f a r r a y ) {

30 std : : cout << i n t _ d o f << ’ ’ ;

31 }

32 std : : cout << ’ ] ’ << ’ \ n ’ ;

33 }

34 }

35 // List entities associated with the dofs managed by the current

36 // DofHandler object

37 for ( l f : : assemble : : gdo f_ idx_ t do f_ idx = 0; do f_ idx < N_dofs ; do f_ idx ++) {

38 const l f : : mesh : : E n t i t y &e ( dofh . E n t i t y ( do f_ idx ) ) ;

39 std : : cout << " dof " << dof_ idx << " −> " << e << " " << mesh−>Index ( e )
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40 << ’ \ n ’ ;

41 }

42 } // end function printDofInfo

y

§2.7.4.16 (Initialization of d.o.f. handlers in LEHRFEM++) In order to set up a local-to-global index

mapping for shape functions/degrees of freedom, it is necessary to specify the number of shape functions

associated with every mesh entity. This is the information required for the most general implementation

of the lf::assemble::DofHandler interface in the class lf::assemble::DynamicFEDofHandler, whose

constructor

template <typename LOCALDOFINFO>

DynamicFEDofHandler(std::shared_ptr<const lf::mesh::Mesh> mesh_p,

LOCALDOFINFO &&locdof)

has to be supplied with an object locdof featuring an evaluation operator

size_type opera tor ()(const lf::mesh::Entity &);

which tells the number of shape functions associated with every entity of the mesh passed as mesh_p

argument to the constructor.

A more specialized implementation is lf::assemble::UniformFEDofHandler with constructor

using dof_map_t = std::map<lf::base::RefEl, base::size_type>;

UniformFEDofHandler(std::shared_ptr<const lf::mesh::Mesh> mesh_p,

dof_map_t dofmap);

Its dofmap argument is an associative array linking entity types to fixed numbers of global shape functions

associated with them. This definess local-to-global index mappings for finite element spaces with the same

arrangement of local shape functions for every cell like the Lagrangian finite element spaces introduced in

Section 2.6. The constructor can be called as follows ➺ GITHUB:

lf::assemble::UniformFEDofHandler dof_handler(

mesh_p, {{lf::base::RefEl::kPoint(), ndof_node},

{lf::base::RefEl::kSegment(), ndof_edge},

{lf::base::RefEl::kTria(), ndof_tria},

{lf::base::RefEl::kQuad(), ndof_quad}});

where the variables ndof_* contain the numbers of

global/local shape functions associated with the en-

tity type in front of them. For the 2D finite element

spaces S0
p(M) the table beside gives the numbers:

p = 1 p = 2 p = 3

ndof_node 1 1 1

ndof_edge 0 1 2

ndof_tria 0 0 1

ndof_quad 0 1 4
y

Remark 2.7.4.17 (LEHRFEM++ numbering convention for global shape functions) In principle, as

long as the numbering of global shape functions established by lf::assemble::DofHandler is unique and

consecutive from 0 to NumDofs())− 1, it implements a valid local-to-global index mapping.

In practice, it may be convenient to impose more structure on the indices and the current implementations

of the lf::assemble::DofHandler interface comply with the following rules:

(I) D.o.f. associated with lower-dimensional entities are numbered first:
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POINT −→ SEGMENT −→ {TRIA,QUAD} .

(II) The indices of d.o.f. belonging to entities of the same co-dimension increase with increasing entity

indices as returned by the Index() function.

Note that this reflects a mere convention. y

EXAMPLE 2.7.4.18 (Numbering of global shape functions) We give a concrete example of how a

lf::assemble::DofHandler object indexes the global shape functions.

We rely on a simple 2-cell hybrid mesh with 6 edges

and 5 nodes displayed beside was used. The index

numbers of all mesh entities are given along with the

local numbers of corners. ✄

The figure was produced by the LEHRFEM++

function lf::io::writeTikZ() with flags

RenderCells, VerticeNumbering,

EdgeNumbering, CellNumbering,

NodeNumbering.
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The lf::assemble::DofHandler studied in this example was initialized as follows:

lf::assemble::UniformFEDofHandler dof_handler(

mesh_p, {{lf::base::RefEl::kPoint(), 1},

{lf::base::RefEl::kSegment(), 2},

{lf::base::RefEl::kTria(), 1},

{lf::base::RefEl::kQuad(), 4}});

This means that every NODE carries one d.o.f., every EDGE two of them, every TRIA 1, and there are

four global shape functions associated to every QUAD. Thus we compute

(dof_handler.NumDofs() == 22) == t r u e;

Note that this arrangement of shape functions is characteristic for cubic Lagrangian finite elements

S0
2 (M), see Ex. 2.6.1.7 and Fig. 119.

Next, we list an excerpt of the output of the program in examples/lecturedemo ➺ GITHUB listing

the indices of global shape functions covering and associated with all the mesh entities (“dofs” =̂ covering

d.o.f.s, “int” =̂ associated d.o.f.s):

1 QUAD 0: 16 dofs = [0 1 3 2 5 6 9 10 13 14 7 8 17 18 19 20]

2 i n t = [17 18 19 20]

3 TRIA 1: 10 dofs = [1 3 4 9 10 15 16 11 12 21 ] i n t = [ 2 1 ]

4 EDGE 0: 4 dofs = [0 1 5 6 ] i n t = [5 6 ]

5 EDGE 1: 4 dofs = [2 0 7 8 ] i n t = [7 8 ]

6 EDGE 2: 4 dofs = [1 3 9 10 ] i n t = [9 10]

7 EDGE 3: 4 dofs = [4 1 11 12 ] i n t = [11 12]

8 EDGE 4: 4 dofs = [3 2 13 14 ] i n t = [13 14]

9 EDGE 5: 4 dofs = [3 4 15 16 ] i n t = [15 16]

10 NODE 0: 1 dofs = [0 ] i n t = [ 0 ]

11 NODE 1: 1 dofs = [1 ] i n t = [ 1 ]

12 NODE 2: 1 dofs = [2 ] i n t = [ 2 ]

13 NODE 3: 1 dofs = [3 ] i n t = [ 3 ]

14 NODE 4: 1 dofs = [4 ] i n t = [ 4 ]

y
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2.7.4.3 Distribute Assembly Schemes

§2.7.4.19 (Cell-oriented assembly of finite element Galerkin matrix and right hand side vector) An-

other fundamental design principle for the assembly realized already in Code 2.4.5.23 was to rely on☛
✡

✟
✠loops only over mesh cells combined with purely local operations.

The loops distributed entries of element matrices/vectors to the Galerkin matrix and right-hand-side vector,

respectively.

Notion: local operations =̂
✦ require data only from fixed “neighbourhood” of cell K
✦ computational effort “O(1)”: independent of ♯M

This design principle is honored in the following “pseudo-code” Code 2.7.4.20, which extends

Code 2.4.5.23, which was confined to linear Lagrangian finite elements, to general finite element methods.

The local→global index mapping is realized through the locglobmap-function/matrix. Prior knowledge

about the dimension N of the finite element space is assumed and indexing from 1 is employed.

Pseudocode 2.7.4.20: Abstract assembly routine for finite element Galerkin matrices

1 Sparse Matrix ← assembleGalMat (Mesh M ) {

2 A = N × N sparse mat r i x ; // Allocated zero sparse matrix

3 foreach K ∈ M { // loop over all cells

4 Qk = no_loc_shape_functions ( K ) ;

5 // Local operation: compute Qk×Qk element matrix → Def. 2.7.4.5,

6 // usually incurs cost of only “O(1)”

7 Ak = getElementMatrix ( K ) ;

8 // Get vector of global indices (length Qk);

9 // Usage of locglobmap as in Ex. 2.7.4.10

10 Vector i dx = { locglobmap ( K , 1 ) , . . . , locglobmap ( K ,Qk) } ;

11 // Add local contributions to global matrix

12 for i :=1 to Qk {

13 for j :=1 to Qk {

14 // Update entry of FE Galerkin matrix

15 A( idx ( i ) , i dx ( j ) ) += Ak ( i , j ) ;

16 } }

17 } // end main loop

18 return (A) ;

19 }

Note that in Code 2.4.5.24 the local→global index mapping could be inferred from the mesh data directly

through the Elements-vetor.

The very same ideas in a somewhat simpler version govern the initialization of the right hand side

vector from element (load) vectors. The following MATLAB-style “pseudocode” Code 2.7.4.21 extends

Code 2.4.6.8 and supplies a generic finite element assembly algorithm for right hand side vectors:

Pseudocode 2.7.4.21: Generic assembly algorithm for finite element right hand side vectors

1 Vector ← assembleRhsVector (Mesh M ) {

2 phi = Vector (N) ; // Allocate zero vector of appropriate length

3 foreach K ∈ M { // loop over all cells
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4 // Obtain number Q(K) of local shape functions, see Def. 2.7.4.5

5 Qk = no_loc_shape_functions ( K ) ;

6 // Local operation: compute element vector, length Qk →
Def. 2.7.4.5,

7 // (usually incurs cost of only “O(1)”)

8 phi_k = getElementVector ( K ) ;

9 // Get vector of global indices (length Q(K));

10 // Usage of locglobmap as in Ex. 2.7.4.10

11 Vector i dx = { locglobmap ( K , 1 ) ) , . . . , locglobmap ( K ,Qk) } ;

12 // Add local contributions to global right-hand-side vector

13 for i :=1 to Qk {

14 phi ( i dx ( i ) ) = ph i ( i dx ( i ) ) + phi_k ( i ) ;

15 }

16 }

17 return ( ph i ) ;

18 }

y

EXAMPLE 2.7.4.22 (Assembly of Galerkin matrices in LEHRFEM++) We list the complete code of the

core matrix assembly function of LEHRFEM++:

C++ code 2.7.4.23: Assembly function of LEHRFEM++ ➺ GITHUB

1 template <typename TMPMATRIX, E n t i t y M a t r i x P r o v i d e r ENTITY_MATRIX_PROVIDER>

2 void AssembleMatrixLocally ( dim_t codim , const DofHandler &d o f _ h a n d l e r _ t r i a l ,

3 const DofHandler &dof_hand ler_ tes t ,

4 ENTITY_MATRIX_PROVIDER &entity_matrix_provider ,

5 TMPMATRIX &matrix ) {

6 // Fetch pointer to underlying mesh

7 auto mesh = d o f _ h a n d l e r _ t r i a l . Mesh ( ) ;

8 // Central assembly loop over entities of co-dimension specified by

9 // the function argument codim

10 for ( const l f : : mesh : : E n t i t y * e n t i t y : mesh−> E n t i t i e s ( codim ) ) {

11 // Some entities may be skipped

12 i f ( entity_matrix_provider . isActive ( * e n t i t y ) ) {

13 // Size, aka number of rows and columns, of element matrix

14 const s ize_type nrows_loc = do f_hand le r_ tes t . NumLocalDofs ( * e n t i t y ) ;

15 const s ize_type nco ls_ loc = d o f _ h a n d l e r _ t r i a l . NumLocalDofs ( * e n t i t y ) ;

16 // row indices of for contributions of cells

17 std : : span<const gdof_ idx_t > row_idx (

18 do f_hand le r_ tes t . G loba lDof Ind ices ( * e n t i t y ) ) ;

19 // Column indices of for contributions of cells

20 std : : span<const gdof_ idx_t > col_idx (

21 d o f _ h a n d l e r _ t r i a l . G loba lDof Ind ices ( * e n t i t y ) ) ;

22 // Request local matrix from ENTITY_MATRIX_PROVIDER object. In the

23 // case codim = 0, when entity is a cell,

24 // this is the element matrix

25 const auto elem_mat { entity_matrix_provider . Eval ( * e n t i t y ) } ; //

26 // Assembly double loop over element matrix

27 for ( i n t i = 0 ; i < nrows_loc ; i ++) {

28 for ( i n t j = 0 ; j < nco ls_ loc ; j ++) {

29 // Add the element at position (i,j) of the local matrix to

30 // the entry at (row_idx[i],col_idx[j]) of the global matrix

31 matrix . AddToEntry ( row_idx [ i ] , col_idx [ j ] , elem_mat ( i , j ) ) ;

32 } }
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33 } } }

The template argument parameters and corresponding function arguments must match particular require-

ments:

• TMPMATRIX must be a matrix type supporting the efficient entry-wise intialization of large sparse

Galerkin matrices. It must provide a member function

void AddToEntry(gdof_idx_t i, gdof_idx_t j, SCALAR increment);

that adds the increment argument to the matrix entry with row index i and column index j. A

suitable type meeting this requirement is lf::assemble::COOMatrix, see § 2.7.3.3.

The argument matrix is a mutable reference to a TMPMATRIX object, meant for returning

the initialized matrix. The size of this matrix must fit the number of d.o.f.s managed by the

lf::assemble::DofHandler arguments. Note that assembly adds information to this matrix. Pass

a matrix with all entries set to zero, if you want to build a Galerkin matrix from scratch.

• ENTITY_MATRIX_PROVIDER ➺ (documentation) and the corresponding argument

entity_matrix_provider is a class/object intended to perform the computation of ele-

ment matrices through a call to the member function

auto Eval(const lf::mesh::Entity &entity);

which has to return an EIGEN matrix type. In particular that returned objects must

– allow access to entries via an operator ()(int i,int j),

– give information about its size through the member functions rows() and cols().

Note that compile-time type resolution via auto in Line 25 of Code 2.7.4.23 offers a lot of flexibility

about the return type of Eval(), which can be a dynamic or a fixed-size matrix.

The entity_matrix_provider must also have a member function

bool isActive((const lf::mesh::Entity &entity);

which makes the assembly loop skip entities, if it returns false.

y

Remark 2.7.4.24 (Variational problems with different trial and test spaces) Now we give an expla-

nation for the occurrence of two different lf::assemble::DofHandler arguments dof_handler_trial

and dof_handler_test in the dof_handler_trial in the definition of the LEHRFEM++ function

AssembleMatrixLocally() presented in Ex. 2.7.4.22.

So far we have always considered variational problems where trial and test space coincided both on the

continuous and discrete level. This need not be the case, because the natural Sobolev spaces for a

bilinear form may differ, as for

a(u, v) :=
∫

Ω
c · grad u(x) v(x)dx , u ∈ H1(Ω), v ∈ L2(Ω) . (2.7.4.25)

The simplest Galerkin finite element discretization of this bilinear form on a mesh M would employ

S0
1 (M) ⊂ H1(Ω) for u and merelyM-piecewise constant functions as test space.

Another more exotic case is the deliberate use of different finite element subspaces even in the case of

a variational problem for which test and function space are the same. This generalization of the Galerkin

approach is called a Petrov-Galerkin discretization. y

2. Finite Element Methods (FEM), 2.7. Implementation of Finite Element Methods 226

https://craffael.github.io/lehrfempp/classlf_1_1assemble_1_1_c_o_o_matrix.html
https://craffael.github.io/lehrfempp/classlf_1_1assemble_1_1_dof_handler.html
https://craffael.github.io/lehrfempp/conceptlf_1_1assemble_1_1_entity_matrix_provider.html
https://craffael.github.io/lehrfempp/classlf_1_1assemble_1_1_dof_handler.html


NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

§2.7.4.26 (Cell oriented assembly: “O(N)” computational effort) If we assume “constant cost” for the

local operations (invocation of Eval() in Code 2.7.4.23) then we conclude for the asymptotic computa-

tional effort as we use meshes with more and more elements:

Computational cost(Assembly of Galerkin matrix A) = O(♯M)

EXAMPLE 2.7.4.27 (Global assembly of right-hand-side vector in LEHRFEM++) The following function

provides the LEHRFEM++ realization of the algorithm of Code 2.7.4.21.

C++ code 2.7.4.28: Vector assembly function of LEHRFEM++ ➺ GITHUB

1 template <typename VECTOR, En t i t yVec to rP rov i de r ENTITY_VECTOR_PROVIDER>

2 void AssembleVectorLocal ly ( dim_t codim , const DofHandler &dof_handler ,

3 ENTITY_VECTOR_PROVIDER &entity_vector_provider ,

4 VECTOR &r e s u l t v e c t o r ) {

5 // Pointer to underlying mesh

6 auto mesh = dof_handler . Mesh ( ) ;

7

8 // Central assembly loop over entities of the co-dimension specified
via

9 // the template argument CODIM

10 for ( const l f : : mesh : : E n t i t y & e n t i t y : mesh−> E n t i t i e s ( codim ) ) {

11 // Some cells may be skipped

12 i f ( entity_vector_provider . isActive ( e n t i t y ) ) {

13 // Length of element vector

14 const s ize_type veclen = dof_handler . NoLocalDofs ( e n t i t y ) ;

15 // global dof indices for contribution of the entity

16 l f : : base : : RandomAccessRange<const gdof_ idx_t > dof_idx (

17 dof_handler . Globa lDof Ind ices ( e n t i t y ) ) ;

18 // Request local vector from entity_vector_provider object.

19 // In the case codim == 0, when ‘entity‘ is a cell,

20 // this is the element vector

21 const auto elem_vec { entity_vector_provider . Eval ( e n t i t y ) } ;

22 // Assembly (single) loop: update of vector entries

23 for ( i n t i = 0 ; i < veclen ; i ++) {

24 r e s u l t v e c t o r [ dof_idx [ i ] ] += elem_vec [ i ] ;

25 } } } }

The template arguments are similar to those discussed in Ex. 2.7.4.22:

• VECTOR is a rather generic vector type allowing component access via operator [](int) and

telling the vector length by a size() member function.

Note that the resultvector argument is not initialized by zero in the function. It will just be

updated, which paves the way for multiple invocations of AssembleVectorLocally in order to

build a right-hand-side vector in several steps.

• ENTITY_VECTOR_PROVIDER ➺ (documentation) and the related argument

entity_vector_provider are meant for objects that take care of the computation of

element vectors through a call to an Eval() method. An isActive() methods restricts

assembly to entities, for which it returns true.

y

Remark 2.7.4.29 (Provider types as C++ 20 concepts) C++ 20 has introduced new ways for

compile-time validation of template argument types. These new language features are known as con-

cepts, requirements, and constraints [JOS22]. LEHRFEM++ makes limited use of these for EN-

TITY_MATRIX_PROVIDER and ENTITY_VECTOR_PROVIDER types.
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C++ code 2.7.4.30: Concept EntityMatrixProvider ➺ GITHUB

1 template <class EMP>

2 concept EntityMatr ixProvider = requ i res (EMP& emp, const mesh : : E n t i t y& e ) {

3 { emp. i s A c t i v e ( e ) } −> std : : same_as<bool >;

4 { emp. Eval ( e ) } −> base : : EigenMatrix <void , −1 , −1>;

5 } ;

It makes use of the auxiliary concept EigenMatrix, which asserts compliance wit basic matrix data types

of EIGEN:

C++ code 2.7.4.31: Concept EigenMatrix ➺ GITHUB

1 template <class T , class SCALAR = void , i n t ROWS = −1 , i n t COLS = −1>

2 concept EigenMatrix =

3 std : : is_same_v<decltype ( i n t e r n a l : : I sE igenMat r i xTes te r : : Test (

4 std : : declval <T>( ) , 0) ) ,

5 bool> &&

6 ( std : : same_as<SCALAR, void> | | std : : same_as<typename T : : Scalar , SCALAR>)&&(

7 ROWS == −1 | |

8 std : : remove_cvref_t <T > : : RowsAtCompileTime == Eigen : : Dynamic | |

9 std : : remove_cvref_t <T > : : RowsAtCompileTime == ROWS) &&

10 (COLS == −1 | |

11 std : : remove_cvref_t <T > : : ColsAtCompileTime == Eigen : : Dynamic | |

12 std : : remove_cvref_t <T > : : ColsAtCompileTime == COLS) ;

C++ code 2.7.4.32: Concept EntityVectorProvider ➺ GITHUB

1 template <class EVP>

2 concept EntityVectorProvider = requ i res (EVP& evp , const mesh : : E n t i t y& e ) {

3 { evp . i s A c t i v e ( e ) } −> std : : same_as<bool >;

4 { evp . Eval ( e ) } −> base : : EigenMatrix <void , −1 , 1 >;

5 } ;

y

EXAMPLE 2.7.4.33 (LEHRFEM++ interface to local computations) We give concrete incar-

nations of the concepts underlying the parameter types ENTITY_MATRIX_PROVIDER and EN-

TITY_VECTOR_PROVIDER required for the assembly functions AssembleMatrixLocally() and

AssembleVectorLocally().

We consider the following linear variational problem related to a second-order elliptic Neumann boundary

value problem for the Laplacian with zero flux boundary conditions, see Ex. 1.8.0.10:

u ∈ H1(Ω):
∫

Ω

grad u · grad v dx =
∫

Ω

f v dx ∀v ∈ H1(Ω) , (2.7.4.34)

with given source function f ∈ C0(Ω). We opt for a finite element Galerkin discretization with linear

Lagrangian finite elements, V0,h = S0
1 (M), where M is a 2D triangular mesh of a polygonal domain

Ω ⊂ R2. The same setting was studied in Section 2.4.

All the details concerning the computation of the 3× 3 element matrices for the Laplacian have been pre-

sented in Section 2.4.5 and an implementation code is given in Code 2.4.5.13. Refer to Section 2.4.6 for an

in-depth discussion of how to compute element vectors for (2.7.4.34) based on the 2D trapezoidal rule and

(2.4.6.11) for the final formula. The following types implement these formulas in LEHRFEM++. According
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to Code 2.7.4.23 and Code 2.7.4.28, they all have to provide the functions Eval() and isActive()

➺ (documentation).

C++ code 2.7.4.35: Interface to element matrix for −∆ on a triangle ➺ GITHUB

1 class LinFELaplaceElemMatProvider {

2 public :

3 LinFELaplaceElemMatProvider ( ) = defaul t ;

4 v i r t u a l bool i s A c t i v e ( const l f : : mesh : : Ent i ty & /*cell*/) { return true ; }

5 Eigen : : Matrix <double , 3 , 3> Eval ( const l f : : mesh : : Ent i ty & t r i a ) ;

6 } ;

C++ code 2.7.4.36: Interface to element vector induced by source function f ∈ L2(Ω)
➺ GITHUB

1 template <typename FUNCTOR>

2 class LinFEElemVecProvider {

3 public :

4 // Constructor: initialization of functor data member

5 e x p l i c i t LinFEElemVecProvider (FUNCTOR f ) : f_ ( f ) { }

6 v i r t u a l bool i s A c t i v e ( const l f : : mesh : : Ent i ty & /*cell*/) { return true ; }

7 Eigen : : Vector3d Eval ( const l f : : mesh : : Ent i ty & t r i a ) ;

8 private :

9 FUNCTOR f_ ; // Functor object for source function f
10 } ;

The concrete implementations are the LEHRFEM++ equivalents of Code 2.4.5.13 and Code 2.4.6.12. The

underlying formulas are discussed there.

C++ code 2.7.4.37: Computation of element matrix for −∆ on a triangle ➺ GITHUB

2 Eigen : : Matrix <double , 3 , 3> LinFELaplaceElemMatProvider : : Eval ( // NOLINT

3 const l f : : mesh : : Ent i ty & t r i a ) {

4 // Throw error in case no triangular cell

5 LF_VERIFY_MSG( t r i a . RefEl ( ) == l f : : base : : RefEl : : kT r ia ( ) ,

6 "Unsupported ce l l type " << t r i a . RefEl ( ) ) ;

7 // Obtain vertex coordinates of the triangle in a 2x3 matrix

8 const auto v e r t i c e s = l f : : geometry : : Corners ( * ( t r i a . Geometry ( ) ) ) ;

9 LF_ASSERT_MSG( ( v e r t i c e s . cols ( ) == 3) && ( v e r t i c e s . rows ( ) == 2) ,

10 " Inva l id vertex coordinate " << v e r t i c e s . rows ( ) << "x "
11 << v e r t i c e s . cols ( ) << " matrix " ) ;

12

13 // Set up an auxiliary 3x3-matrix with a leading column 1 and

14 // the vertex coordinates in its right 3x2 block

15 Eigen : : Matrix <double , 3 , 3> X; // temporary matrix

16 X. block <3 , 1 >(0 , 0) = Eigen : : Vector3d : : Ones ( ) ;

17 X. block <3 , 2 >(0 , 1) = v e r t i c e s . transpose ( ) ;

18 // The determinant of the auxiliary matrix also supplies the
determinant

19 const double area = 0.5 * std : : abs (X . determinant ( ) ) ;

20 // Compute the gradients of the barycentric coordinate functions

21 // and store them in the columns of a 2x3 matrix grad_bary_coords

22 Eigen : : Matrix <double , 2 , 3>

23 grad_bary_coords {X . inverse ( ) . block <2 , 3 >(1 , 0) } ;

24

25 // Since the gradients are constant, local integration is easy

26 return ( ( area * grad_bary_coords . transpose ( ) ) * grad_bary_coords ) ;

27 }
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C++ code 2.7.4.38: Approximate computation of element load vector for v 7→
∫

K f (x)dx on a

triangle K ➺ GITHUB

2 template <typename FUNCTOR>

3 Eigen : : Vector3d LinFEElemVecProvider<FUNCTOR> : : Eval (

4 const l f : : mesh : : Ent i ty & t r i a ) {

5 // Throw error in case no triangular cell

6 LF_VERIFY_MSG( t r i a . RefEl ( ) == l f : : base : : RefEl : : kT r ia ( ) ,

7 "Unsupported ce l l type " << t r i a . RefEl ( ) ) ;

8 // Obtain vertex coordinates of the triangle in a 2x3 matrix

9 const auto corners { l f : : geometry : : Corners ( * ( t r i a . Geometry ( ) ) ) } ;

10 const double a rea_ th i r d = l f : : geometry : : Volume ( * ( t r i a . Geometry ( ) ) ) / 3 . 0 ;

11 LF_ASSERT_MSG( ( corners . cols ( ) == 3) && ( corners . rows ( ) == 2) ,

12 " Inva l id vertex coordinate " << corners . rows ( ) << "x "
13 << corners . cols ( ) << " matrix " ) ;

14 return Eigen : : Vector3d ( a rea_ th i r d * f_ ( corners . col ( 0 ) ) ,

15 a rea_ th i r d * f_ ( corners . col ( 1 ) ) ,

16 a rea_ th i r d * f_ ( corners . col ( 2 ) ) ) ;

17 }

y

EXAMPLE 2.7.4.39 (Assembly of Galerkin linear system for homogeneous Neumann problem) In

the previous Ex. 2.7.4.33 we learned about the LEHRFEM++ interfaces to local computations for the finite

element space S0
1 (M) on a triangular 2D planar meshM. In the following code we combine them with

the assembly functions studied in Ex. 2.7.4.22 to set up the final linear system of equations with a system

matrix in compressed storage format amenable to sparse direct elimination techniques.

To begin with, following § 2.7.4.16, the local-to-global d.o.f. index mapper object is set up by the C++

statement:

lf::assemble::UniformFEDofHandler dof_handler(

mesh_p, {{lf::base::RefEl::kPoint(), 1}});

that is, a single degree of freedom is assigned to every node of the mesh, no global shape function is

associated with any higher-dimensional entities.

C++ code 2.7.4.40: Assembly of Galerkin linear system for (2.7.4.34) and V0,h = S0
1 (M)

➺ GITHUB

2 // Query dimension of the finite element space, equal to the number of
nodes

3 const s ize_type N_dofs ( dof_handler . NumDofs ( ) ) ;

4 // Matrix in triplet format holding temporary Galerkin matrix

5 l f : : assemble : : COOMatrix<double> mat ( N_dofs , N_dofs ) ;

6

7 // Initialize objects for local computations

8 LinFELaplaceElemMatProvider loc_mat_ lap lace { } ;

9 LinFEElemVecProvider<decltype ( f ) > loc_vec_sample ( f ) ;

10

11 // Building the Galerkin matrix (trial space = test space)

12 // for the pure Neumann Laplacian, assembly over cells

13 mat = l f : : assemble : : AssembleMatr ixLocal ly < l f : : assemble : : COOMatrix<double >>(

14 0 , dof_handler , loc_mat_ lap lace ) ;

15 // Filling the right-hand-side vector, assembly over cells

16 auto rhsvec = l f : : assemble : : AssembleVectorLocal ly <Eigen : : VectorXd >(

17 0 , dof_handler , loc_vec_sample ) ;

2. Finite Element Methods (FEM), 2.7. Implementation of Finite Element Methods 230

https://github.com/craffael/lehrfempp/blob/master/examples/lecturedemos/lecturedemoassemble.cc
https://github.com/craffael/lehrfempp/blob/master/examples/lecturedemos/lecturedemoassemble.cc


NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

2 // Convert the matrix from triplet format to CRS format

3 const Eigen : : SparseMatrix <double> A( mat . makeSparse ( ) ) ; // NOLINT

y

EXAMPLE 2.7.4.41 (Assembly of boundary contributions) In the case of a second-order elliptic bound-

ary value problem with Robin boundary conditions (→ Ex. 1.7.0.5, Ex. 1.8.0.6), we may face an augmented

version of the variational problem (2.7.4.34).

u ∈ H1(Ω):
∫

Ω

grad u · grad v dx +
∫

∂Ω

u(x)v(x)dS(x) =
∫

Ω

f v dx ∀v ∈ H1(Ω) . (2.7.4.42)

How can we use the assembly facilities offered by LEHRFEM++ to incorporate the additional contributions

from the boundary part of the bilinear form in Eq. (2.7.4.42)? As in Ex. 2.7.4.22 and Ex. 2.7.4.39 we

consider the finite element space S0
1 (M) on a triangular planar mesh M and equipped with the nodal

basis of tent functions.

The contribution of the boundary term
∫

∂Ω
. . . dS can be computed by “cell-oriented” as-

sembly on M|∂Ω.

➣ Use AssembleMatrixLocally() with codim=1,

Use ENTITY_MATRIX_PROVIDER for edges, with isActive()== true for bound-

ary edges only.

C++ code 2.7.4.43: Interface to element mass matrix for a straight edge ➺ GITHUB

1 class LinFEMassEdgeMatProvider {

2 public :

3 LinFEMassEdgeMatProvider ( l f : : mesh : : u t i l s : : CodimMeshDataSet<bool> &bd_f lags )

4 : bd_f lags_ ( bd_f lags ) { }

5 // Assumes that bd_flags_ contain true for boundary edges only.

6 v i r t u a l bool i s A c t i v e ( const l f : : mesh : : Ent i ty &edge ) {

7 return bd_f lags_ ( edge ) ;

8 }

9 Eigen : : Matrix2d Eval ( const l f : : mesh : : Ent i ty &edge ) ;

10 private :

11 l f : : mesh : : u t i l s : : CodimMeshDataSet<bool> &bd_f lags_ ;

12 } ;

Objects of LinFEMassEdgeMatProvider hold a reference to a LEHRFEM++ flag array of type

lf::mesh::utils::CodimMeshDataSet based on bool. This data type offers an evaluation operator bool

operator()(const Entity &) that tells a true/false flag value for every mesh entity of co-dimension

1 (edge). This can be used to flag edges on the boundary.

The implementation of the Eval() member function computes the 2 × 2 “element matrix” Me for the

L2(e) inner product over a straight edge e = [p1, p2] discretized by means of linear Lagrangian finite

elements. The local shape functions on e are “1D barycentric coordinate functions”

λe
1, λe

2 ∈ P1(e): λe
i (pj) = δi,j , i, j = 1, 2 .

Also recall the formula∫

Σ
ϕ(x)dS(x) :=

∫

Ω̂
ϕ(Φ(x̂))

√
det
(
DΦ(x̂)⊤DΦ(x̂)

)
dx̂ , (0.3.2.34)

for surface integrals. Now we apply it with the parameterization Φ : [o, 1]→ e, Φ(x̂) := p1(1− x̂) + p2x̂,

0 ≤ x̂ ≤ 1, which leads to
∫

e
ϕ(x)dS(Bx) =

∫ 1

0
ϕ(Φ(x̂))‖p2 − p1‖dx̂ .
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Note that

λe
1(Φ(x̂)) = 1− x̂ , λe

2(Φ(x̂)) = x̂ , 0 ≤ x̂ ≤ 1 .

This yields concrete formulas for the entries of Me:

Me =



∫

e

λe
i (x)λe

j(x)dS(x)




i,j=1,2

= |e|
[ ∫ 1

0 (1− x̂)2 dx̂
∫ 1

0 (1− x̂)x̂ dx̂∫ 1
0 x̂(1− x̂)dx̂

∫ 1
0 x̂2 dx̂

]

= |e|
[

1/3 1/6

1/6 1/3

]
, |e| =̂ length of edge .

(2.7.4.44)

C++ code 2.7.4.45: Computation of local mass matrix for straight edge ➺ GITHUB

2 Eigen : : Matrix2d LinFEMassEdgeMatProvider : : Eval ( const l f : : mesh : : Ent i ty &edge ) { //
NOLINT

3 LF_VERIFY_MSG( edge . RefEl ( ) == l f : : base : : RefEl : : kSegment ( ) ,

4 "Unsupported edge type " << edge . RefEl ( ) ) ;

5 // Obtain endpoint coordinates of the triangle in a 2x3 matrix

6 const auto endpoints = l f : : geometry : : Corners ( * ( edge . Geometry ( ) ) ) ;

7 // Compute length of edge

8 const double edge_length = ( endpoints . col ( 1 ) − endpoints . col ( 0 ) ) . norm ( ) ;

9 // Diagonal and off-diagonal entries of edge mass matrix

10 const double m1 = edge_length * 1.0 / 3 . 0 ;

11 const double m2 = edge_length * 1.0 / 6 . 0 ;

12 return ( ( Eigen : : Matrix2d (2 , 2) << m1, m2, m2, m1) . f inished ( ) ) ;

13 }

We point out that the LEHRFEM++ utility class lf::fe::MassEdgeMatrixProvider could substitute for Lin-

FEMassEdgeMatProvider provided that the right finite element space is used for initialization.

Let us see how to obtain the boundary part of the Galerkin matrix. The main version of

AssembleMatrixLocally permits us to update the Galerkin matrix. This is done by the following

code snippet. The variable mat is of type lf::assemble::COOMatrix and contains the Galerkin matrix in

triplet format.

C++ code 2.7.4.46: Adding boundary contribution to Galerkin matrix ➺ GITHUB

2 // Flag all edge (co-dimension-1 entities) on the boundary

3 l f : : mesh : : u t i l s : : CodimMeshDataSet<bool> bd_f lags {

4 l f : : mesh : : u t i l s : : flagEntitiesOnBoundary ( mesh_p , 1) } ;

5 LinFEMassEdgeMatProvider loc_edge_mass ( bd_f lags ) ;

6 // Add boundary contributions to Galerkin matrix stored in ’mat’

7 // Assembly covers edges (co-dimensions-1 entities)!

8 l f : : assemble : : AssembleMatr ixLocal ly (1 , dof_handler , dof_handler ,

9 loc_edge_mass , mat ) ;

This example also demonstrates the use of the LEHRFEM++ utility function

lf::mesh::utils::CodimMeshDataSet<bool>

lf::mesh::utils::flagEntitiesOnBoundary(

const std::shared_ptr<const lf::mesh::Mesh>& mesh_p,

lf::base::dim_t codim);
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which supplies a predicate (*) on the set of mesh entities of a particular co-dimension. That predicate

evaluates to true, if an entity is contained in the boundary of meshed domain. The boundary is defined as

the union of edges adjacent to only one cell and all of their sub-entities.

(*) a predicate is a type or object with an evaluation operator bool operator (). y

2.7.4.4 Assembly: Linear Algebra Perspective

There is a formal “mathematical” way to express assembly in the language of linear algebra in terms of

sums of matrix products. This is presented in the next theorem:

Theorem 2.7.4.47. Assembly through index mapping matrices

The stiffness matrix and load vector can be obtained from their cell counterparts, the element (stiff-

ness) matrix AK and element (load) vector~ϕK (→ Def. 2.7.4.5), by

A = ∑
K

T⊤K AKTK , ~ϕ = ∑
K

T⊤K~ϕK , (2.7.4.48)

with the index mapping matrices (“T-matrices”) TK ∈ RQ,N, defined by

(TK)ij :=

{
1 , if (b

j
h)|K = bi

K ,

0 , otherwise.
1 ≤ i ≤ Q, 1 ≤ j ≤ N . (2.7.4.49)

☞ Every index mapping matrix has exactly one non-vanishing entry per row! (why?)

“MATLAB-style pseudo-code” for the initialization of a sparse index mapping matrix based on the

local→global index map introduced in (2.7.4.8), Qk = number opf local shape functions, initialization of

TK from triplet format:

TK = sparse(1:Qk,locglobmap(K,1:Qk),ones(Qk,1));

Proof. (of Thm. 2.7.4.47) Use the definition of the entries of the Galerkin matrix, of the element matrix (→
Def. 2.7.4.5), and of the local shape functions (→ Def. 2.5.3.4):

(A)ij = a(b
j
h, bi

h) = ∑
K∈M

aK(b
j
h|K, bi

h|K) =

∑
K∈M, supp(b

j
h
)∩K 6=∅,

supp(bi
h
)∩K 6=∅

aK(b
l(j)
K , b

l(i)
K ) = ∑

K∈M, supp(b
j
h
)∩K 6=∅,

supp(bi
h
)∩K 6=∅

(AK)l(i),l(j) .

Here, l(i) ∈ {1, . . . , Q}, 1 ≤ i ≤ N =̂ index of the local shape function corresponding to the global

shape function bi
h on K.

➣ By (2.7.4.49), the indices l(i) encode the T-matrix according to

(TK)l(i),i = 1 , i = 1, . . . , N ,

where all other entries of TK are understood to vanish.

⇒ (A)ij = ∑
K∈M, supp(b

j
h
)∩K 6=∅,

supp(bi
h
)∩K 6=∅

Q

∑
l=1

Q

∑
n=1

(TK)li(AK)ln(TK)nj .
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The rules for matrix multiplication give the assertion of the theorem.
✷

EXAMPLE 2.7.4.50 (Index mapping matrix for linear Lagrangian finite elements on triangular mesh)

The local→ global index mapping for linear finite el-

ements with vertex associated global basis functions

and three local basis functions was studied in Sec-

tion 2.4.5, see also Rem. 2.7.4.9.

This example is connected to Ex. 2.7.4.10.

Using the local/global numbering indicated beside we

find

→ TK∗ =




0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0




Fig. 142
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12 K∗

y

Now we can rephrase the operation of Code 2.7.4.20 and Code 2.7.4.23 from a linear algebra point of

view:

➣

✎
✍

☞
✌Cell oriented assembly ↔ (2.7.4.48)↔ A = ∑

K
T⊤K AKTK

m

A = ∑
K

T⊤K AKTK :=





foreach K ∈ M do

local operations on K (→ AK) and A = A + T⊤K AKTK

enddo





Obviously, this is little to do with the actual implementation and may just serve as a convenient notation.

Review question(s) 2.7.4.51 (Assembly Algorithms)

(Q2.7.4.51.A) Explain the following concepts that play an essential role in finite-element methods:

• cell-oriented assembly,

• local and global shape functions,

• element matrices.

(Q2.7.4.51.B) What is the number of local shape functions for a cell of a 2D planar hybrid mesh and for

the finite-element space S0
p(M), p ∈ N?

Hint. S0
p(M)

∣∣∣
K

is a space of polynomials. Which one?

(Q2.7.4.51.C) Consider the local shape functions for S0
2 (M) for a triangle or a quadrilateral K ∈ M.

Which (sub-)entities of K are they associated with?

(Q2.7.4.51.D) We consider the Lagrangian finite element space S0
3 (M) on a 2D planar hybrid mesh. The

variable dofh is a reference to a lf::assemble::DofHandler object for that finite element space. What

will be returned by the following function calls

• dofh.NumDofs(),

• dofh.NumLocalDofs(entity),

• dofh.NumInteriorDofs(entity),
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where entity is a constant reference to an lf::mesh::Entity object belonging to the mesh M. Of

course, the return value will depend on entity.

(Q2.7.4.51.E) For which Lagrangian finite element space on a 2D hybrid mesh does this code line set up

an appropriate lf::assemble::DofHandler object:

lf::assemble::UniformFEDofHandler dof_handler(

mesh_p, {{lf::base::RefEl::kPoint(), 1},

{lf::base::RefEl::kSegment(), 2},

{lf::base::RefEl::kTria(), 1},

{lf::base::RefEl::kQuad(), 4}});

(Q2.7.4.51.F) Give an example of a variational problem connected with a second-order elliptic boundary

value problem, where assembly will involve loops over entities of co-dimension > 0.

(Q2.7.4.51.G) In LEHRFEM++ you have to deal with an exotic finite element scheme which assigns two

local shape functions to each edge and two to each vertex. What is the type of the geometric entity

which the local shape function bi
K, i = 1, . . . , Q, Q =̂ the total number of local shape functions, is

associated with?

These are the rules for numbering local shape functions in LEHRFEM++:

(I) The local shape functions of every cell (co-dimension-0 entity) are arranged according to

increasing dimension of the geometric entities they are associated with:

POINT −→ SEGMENT −→ {TRIA,QUAD} .

(II) Local shape functions belonging to geometric entities of the same dimension are or-

dered according to the intrinsic local indexing of those entities. See § 2.7.2.14 for

LEHRFEM++’s conventions.

(III) No ordering of local shape functions attached to the same geometric entity is implied.

Here every user may follow her or his own conventions.

(LN)

(Q2.7.4.51.H) For the finite element scheme from Question (Q2.7.4.51.G), what is the dimension of the

finite element space on a triangular mesh with ♯M cells, ♯E(M) edges, and ♯V(M) vertices?

Give a rule for telling the type of geometric entity associated with a particular component of the vector

of basis expansion coefficients.

The convention adopted by LEHRFEM++ when internally numbering the d.o.f.s managed by a

lf::assemble::DofHandler object is as follows:

(I) D.o.f. associated with lower-dimensional entities are numbered first:

POINT −→ SEGMENT −→ {TRIA,QUAD} .

(II) The indices of d.o.f. belonging to entities of the same co-dimension increase with increasing entity

indices as returned by the Index() function.

(Q2.7.4.51.I) Explain, why endowing edges of the mesh with an orientation, which means giving them a

well-defined direction, is important for the implementation of cubic Lagrangian finite elements.

△
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2.7.5 Local Computations

Video tutorial for Section 2.7.5: Local Computations: (48 minutes) Download link,

tablet notes

We have seen that the (global) Galerkin matrix and right hand side vector are conveniently generated by

“assembling” entries of element (stiffness) matrices and element (load) vectors.

Now we study the computation of these local quantities for Lagrangian finite elements on 2nd-order scalar

linear boundary value problems in weak form, see also Section 2.4.5 and Section 2.4.6.

2.7.5.1 Analytic Formulas for Entries of Element Matrices

First option: Direct analytic evaluations (➥ “closed form” expressions)

We discuss this for the bilinear form related to −∆, triangular Lagrangian finite elements of degree p,

Section 2.6.1, Def. 2.6.1.1:

K triangle: aK(u, v) :=
∫

K
grad u · grad v dx element stiffness matrix .

Use barycentric coordinate representations of local shape functions, in 2D

bi
K = ∑

α∈N3
0 ,|α|=p

κα λα1
1 λα2

2 λα3
3 , κα ∈ R , |α| := α1 + α2 + α3 , (2.7.5.1)

where λi are the affine linear barycentric coordinate functions (linear shape functions), see Fig. 75.

For the barycentric coordinate representation of the quadratic local shape functions see (2.6.1.6), for a

justification of (2.7.5.1) consult Suppl. 2.8.1.14.

⇒ grad bi
K = ∑

α∈N3
0, |α|≤p

κα

(
α1λα1−1

1 λα2
2 λα3

3 grad λ1 + α2λα1
1 λα2−1

2 λα3
3 grad λ2+

α3λα1
1 λα2

2 λα3−1
3 grad λ3

)
.

(2.7.5.2)

To evaluate:

∫

K
λ

β1

1 λ
β2

2 λ
β3

3 grad λi · grad λj dx , i, j ∈ {1, 2, 3}, βk ∈ N . (2.7.5.3)

The (constant!) gradients of barycentric coordinate functions have already been computed in Section 2.4.5

on Page 175, see also Rem. 2.4.5.9.

If a1, a2, a3 vertices of K (counterclockwise ordering):

λ1(x) =
1

2|K|

(
x−

[
a2

1
a2

2

])
·
[

a2
2 − a3

2
a3

1 − a2
1

]
,

λ2(x) =
1

2|K|

(
x−

[
a3

1
a3

2

])
·
[

a3
2 − a1

2
a1

1 − a3
1

]
,

λ3(x) =
1

2|K|

(
x−

[
a1

1
a1

2

])
·
[

a1
2 − a2

2
a2

1 − a1
1

]
.

Fig. 143

a1 =
(
a1

1, a1
2

)T
a2 =

(
a2

1, a2
2

)T

a3 =
(
a3

1, a3
2

)T

ω1
ω2

ω3
n1n2

n3
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grad λ1 =
1

2|K|

[
a2

2 − a3
2

a3
1 − a2

1

]
, grad λ2 =

1

2|K|

[
a3

2 − a1
2

a1
1 − a3

1

]
, grad λ3 =

1

2|K|

[
a1

2 − a2
2

a2
1 − a1

1

]
. (2.7.5.4)

By (2.7.5.3), it remains to figure out the integral of products of powers of berycentric coordinate functions

over a triangle.

Lemma 2.7.5.5. Integration of powers of barycentric coordinate functions

For any non-degenerate d-simplexa K with barycentric coordinate functions λ1, . . . , λd+1 and ex-

ponents αj ∈ N, j = 1, . . . , d + 1,

∫

K
λα1

1 · · · · · λ
αd+1

d+1 dx = d!|K| α1!α2! · · · · · αd+1!

(α1 + α2 + · · ·+ αd+1 + d)!
∀α ∈ Nd+1

0 . (2.7.5.6)

aA d-simplex is the convex hull of d + 1 points in Rd, which do not all lie in a single plane.

Proof. (for d = 2) The idea is to transform K to the “unit triangle” K̂ := convex
{[

0
0

]
,
[

1
0

]
,
[

0
1

]}
:

⇒
∫

K
λ

β1

1 λ
β2

2 λ
β3

3 dx = 2|K|
1∫

0

1−x1∫

0

x
β1

1 x
β2

2 (1− x1 − x2)
β3 dx2dx1

(∗)
= 2|K|

1∫

0

x
β1

1

1∫

0

(1− x1)
β2+β3+1sβ2(1− s)β3 ds dx1

= 2|K|
1∫

0

x
β1

1 (1− x1)
β2+β3+1 dx1 · B(β2 + 1, β3 + 1)

= 2|K| B(β1 + 1, β2 + β3 + 2) · B(β2 + 1, β3 + 1) ,

At step (∗) we preformed the substitution s(1− x1) = x2, B(·, ·) =̂ Euler’s beta function, a well known

special function defined as

B(α, β) :=
∫ 1

0
tα−1(1− t)β−1 dt , 0 < α, β < ∞ .

It satisfies the important relation Γ(α + β) B(α, β) = Γ(α)Γ(β), where Γ denotes the Gamma function,

which interpolates the factorials: Γ(n) = (n− 1)!,

⇒
∫

K
λ

β1

1 λ
β2

2 λ
β3

3 dx = 2|K| · Γ(β1 + 1)Γ(β2 + 1)Γ(β3 + 1)

Γ(β1 + β2 + β3 + 3)
.

By the properties of the Gamma function, this amounts to the assertion of the lemma.
✷

EXAMPLE 2.7.5.7 (Element matrix for quadratic Lagrangian finite elements) In this example we,

again, consider the local bilinear form related to −∆: aK(u, v) =
∫

K grad u · grad v dx. We state the

element matrix for an arbitrary triangle K for the nodal local shape functions as given in (2.6.1.6):

[vertex associated]: b1
K = (2λ1 − 1)λ1 , b2

K = (2λ2 − 1)λ2 , b3
K = (2λ3 − 1)λ3 ,

[edge associated]: b4
K = 4λ1λ2 , b5

K = 4λ2λ3 , b6
K = 4λ1λ3 ,
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where the λi ∈ P1(R
2) are barycentric coordinate functions, see Section 2.4.5, Rem. 2.4.5.9. They are

affine-linear functions. The indices of the local shape functions respect LEHRFEM++’s local numbering

convention from Fig. 140. The entries of the 6× 6 element matrix AK are given by the formula:

AK =

[∫

K
grad b

j
K(x) · grad bi

K(x)dx , i, j ∈ {1, . . . , 6} .

]

First, by the product rule we compute the gradients of the local shape functions: Writing gℓ := grad λℓ

for the constant gradients of the barycentric coordinate functions we find

grad bℓK = (4λℓ − 1)gℓ , ℓ = 1, 2, 3 ,

grad b
j
K = 4(λigk + λkgi) , j = 4, 5, 6 , i = j− 3, k = j− 2 ,

where cyclic numbering is used (“k = 4→ k = 1”). As auxiliary quantities for the computation of AK we

use the integrals from Lemma 2.7.5.5:

Lemma 2.7.5.5. Integration of powers of barycentric coordinate functions

For any non-degenerate d-simplex K with barycentric coordinate functions λ1, . . . , λd+1 and expo-

nents αj ∈ N, j = 1, . . . , d + 1,

∫

K
λα1

1 · · · · · λ
αd+1

d+1 dx = d!|K| α1!α2! · · · · · αd+1!

(α1 + α2 + · · ·+ αd+1 + d)!
∀α ∈ Nd+1

0 . (2.7.5.6)

∫

K
λℓ(x)dx =

|K|
3

,
∫

K
λ2
ℓ(x)dx =

|K|
6

,
∫

K
λi(x)λj(x)dx =

|K|
12

,

and the S0
1 (M)-element matrix for a(·, ·):

LK :=
[
Li,j

]3
i,j=1

:=
[
aK(λj, λi)

]3
i,j=1

= |K|
[
gj · gi

]3
i,j=1
∈ R3,3 .

Formulas for the entries of L have been derived in § 2.4.5.5 and a code for its computation is presented in

Code 2.4.5.13. The row and column sums of LK vanish.

Then the 6× 6 element matrix can be written as (Li,j := (LK)i,j)

AK =
1

3




3L1,1 −L1,2 −L1,3 4L1,2 0 4L1,3

−L1,2 3L2,2 −L2,3 4L1,2 4L2,3 0

−L1,3 −L2,3 3L3,3 0 4L3,2 4L3,1

4L1,2 4L1,2 0 A4.4 8L1,3 8L2,3

0 4L2,3 4L3,2 8L1,3 A5,5 8L1,2

4L1,3 0 4L3,1 8L2,3 8L1,2 A6,6




with

A4,4 := 8(L1,1 + L1,2 + L2,2) ,

A5,5 := 8(L2,2 + L2,3 + L3,3) ,

A6,6 := 8(L1,1 + L1,3 + L3,3) .

The partitioning of the matrix indicates that different parts of AK arise from the interaction of basis functions

associated with vertices & vertices (top left block), vertices & edges (off-diagonal blocks), and edges &

edges (bottom right block). Also verify that AK has zero row and column sums. y
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2.7.5.2 Local Quadrature

At this point turn the pages back to (2.3.3.12) and remember the use of numerical quadrature for computing

the Galerkin matrix for the linear finite element method in 1D. Also recall the rationale for using mesh based

composite quadrature rules.

Also recall § 2.4.6.9, where a simple local quadrature rule was used for the computation of element vectors.

Next we take a look at its implementation in LEHRFEM++.

Since Lagrangian finite element functions are merelyM-piecewise smooth, numerical integration

of expressions containing FE functions has to rely on composite quadrature rules onM (“cell based

quadrature”).

§2.7.5.8 (General local quadrature rules) A composite quadrature rule on a mesh M of a domain

Ω ⊂ Rd splits an integral over Ω into cell contributions and approximately evaluates those. This latter

step is based on so-called local quadrature rules.

Definition 2.7.5.9. (Local) quadrature rule

A local quadrature rule on the element K ∈ M is an approximation

∫

K
f (x)dx ≈

PK

∑
l=1

ωK
l f (ζK

l ) , ζK
l ∈ K , ωK

l ∈ R , PK ∈ N . (2.7.5.10)

Terminology:
ωK

l → weights , ζK
l → quadrature nodes

(2.7.5.10) = P-point local quadrature rule

Def. 2.7.5.9 generalizes the quadrature rule (2.3.3.7) in 1D. The same terminology still applies. We have

already come across a local quadrature rule in 2D, the trapezoidal rule from (2.4.6.10).

Recall from § 2.3.3.6, § 2.3.3.10 that numerical quadrature is inevitable

• for computation of load vector, if f is complicated or only available in procedural form, Rem. 2.1.2.5,

• for computation of stiffness matrix, if the non-constant coefficient α = α(x) in the bilinear form from

(1.4.2.4), (1.8.0.16) does not permit analytic integration.

We recall a constraint on the weights of local quadrature rules:

Guideline [NCSE]: only quadrature rules with positive weights are numerically stable.

y

§2.7.5.11 (Transformation of quadrature rules) Generically, the quadrature rule (2.7.5.10) is specific for

the cell K. This begs the questions how local quadrature rules are handled on finite element meshes with

millions of cells.

The policy is the same as in 1D in [NCSE]: there the (local) quadrature rule was defined on a reference

interval, e.g., [−1, 1] for Gaussian quadrature and mapped to a general interval by (affine) transformation,

cf. [NCSE].

The local quadrature rules used in finite element methods are obtained by transformation from (a

few) local quadrature rules defined on reference elements.
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Reference elements and the associated transformations will be studied in the sequel with focus on the

construction of local quadrature rules, and in a more general context in Section 2.8.

y

§2.7.5.12 (Affine transformation of triangles) Now we examine the generalization of affine transforma-

tions from 1D to two dimensions:

Definition 2.7.5.13. Affine (linear) transformation

A mapping Φ : Rd 7→ Rd is affine (linear), if Φ(x) = Fx + τ with some F ∈ Rd,d, τ ∈ Rd.

✎ Reference triangle: ‘unit triangle” K̂ := convex

{[
0

0

]
,

[
1

0

]
,

[
0

1

]}
(numbered vertices!)

Lemma 2.7.5.14. Affine transformation of triangles

For any non-degenerate triangle K ⊂ R2 (|K| > 0) with numbered vertices there is a unique affine

transformation ΦK, ΦK(x̂) = FK x̂ + τK (→ Def. 2.7.5.13), with K = ΦK(K̂) and preserving the

numbering of the vertices.

Visualization of the affine mapping of the reference triangle onto K:

Fig. 144

ΦK(x̂) =

[
2 1
4 3

]
x̂

[
0
0

] [
1
0

]

[
0
1

]

[
0
0

]

[
1
3

]
[

2
4

]

K

K̂

The matrix FK and translation vector τK can be determined by solving a 6× 6 linear system of equations,

from which we obtain:

K = convex

{[
a1

1

a1
2

]
,

[
a2

1

a2
2

]
,

[
a3

1

a3
2

]}
⇒ ΦK(x̂) =

[
a2

1 − a1
1 a3

1 − a1
1

a2
2 − a1

2 a3
2 − a1

2

]
x̂ +

[
a1

1

a1
2

]
. (2.7.5.15)

Remember that for any affine transformation the resulting relative change of volume is given by the con-

stant determinant of its matrix, which gives in the setting of Lemma 2.7.5.14

K := ΦK(K̂) ⇒ |K| = |K̂| |det FK| . (2.7.5.16)

y

§2.7.5.17 (Reference elements and transformations in LEHRFEM++) Every entity of co-dimension 0
(= cell, element) of the mesh has a reference element associated with it, depending on the topological

type of the element, which is returned by the member function

lf::base::RefEl lf::mesh::Entity::RefEl() const;

For the entity types relevant for cells of 2D hybrid meshes we have:

EDGE : reference element K̂ :=]0, 1[ , (2.7.5.18a)
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TRIA : reference element K̂ := convex

{[
0

0

]
,

[
1

0

]
,

[
0

1

]}
, (2.7.5.18b)

QUAD : reference element K̂ := convex

{[
0
0

]
,

[
1
0

]
,

[
1
1

]
,

[
0
1

]}
. (2.7.5.18c)

The corner coordinates of the reference element of an entity object entity packed into the columns of a

matrix can be retrieved as follows:

const Eigen::MatrixXd ref_el_corners = entity.RefEl().NodeCoords();

Each mesh entity object of any dimension n ∈ {0, . . . , 2} in LEHRFEM++ comes with a mapping ΦK from

the corresponding reference element K̂ ⊂ Rn to its actual shape K ⊂ Rd, d = 2, 3. This mapping

• is always bijective (one-to-one) and smooth up to boundary of K̂,

• will take the j-th vertex of K̂ to the j-th vertex of K. In § 2.7.2.14 we have seen how the ordering

of the nodes of an entity is determined by the array returned by the SubEntities() member

functions of lf::mesh::Entity.

The mapping ΦK is information beloning to the geometry layer and, thus, stored in the

lf::geometry::Geometry object invariably attached to every lf::mesh::Entity object. Remember that the

geometry object of entity can be fetched by the following statement:

lf::geometry::Geometry &geo_obj{*entity.Geometry()};

The key member function of the interface class lf::geometry::Geometry encoding the mapping ΦK is

Eigen::MatrixXd lf::geometry::Geometry::Global(

const Eigen::MatrixXd &local) const;

It takes “reference coordinates” of k points ∈ K̂ packed into the columns of the n× k-matrix local and

returns the world coordinates of their images under ΦK in the columns of a d× k-matrix:

Global(
[

x̂1, . . . , x̂k
]
) =

[
ΦK(x̂1), . . . , ΦK(x̂k)

]
, ∀x̂j ∈ K̂ , j ∈ {1, . . . , k} . (2.7.5.19)

To elucidate the use of lf::geometry::Geometry::GLobal(), we list the implementation of the

LEHRFEM++ function returning the coordinates of the corners of an entity.

C++ code 2.7.5.20: Implementation of lf::geometry::Corners() ➺ GITHUB

1 i n l i n e Eigen : : MatrixXd Corners ( const Geometry& geo ) {

2 return geo . Global ( geo . RefEl ( ) . NodeCoords ( ) ) ;

3 }

y

§2.7.5.21 (Transformation of local quadrature rules on triangles) Now we resume the discussion

started in § 2.7.5.11: We write ΦK(x̂) := FK x̂ + τK for an affine transformation (→ Def. 2.7.5.13) of the

reference triangle K̂ to the general triangle K, see Lemma 2.7.5.14.

By the transformation formula for integrals [STRLN09] we can pull back integrals over K to K̂:

∫

K
f (x)dx =

∫

K̂
f (ΦK(x̂)) |det FK|dx̂ . (2.7.5.22)

This enables the transition

P-point quadrature formula on K̂ P-point quadrature formula on K,
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and (2.7.5.16) tells us how to adapt the quadrature weights (|K| = Vol(K)):

∫

K̂
f (x̂)dx̂ ≈

P

∑
ℓ=1

ω̂ℓ f (ζ̂ℓ)

∫

K
f (x)dx ≈ |K|

|K̂|
P

∑
ℓ=1

ωK
ℓ f (ζK

ℓ )

with ωK
ℓ = ω̂ℓ , ζK

ℓ = ΦK(ζ̂ℓ) .

(2.7.5.23)

➣ Only the quadrature formula (2.7.5.10) on the reference triangle K̂ needs to be specified!

(The same applies to tetrahedra, where affine mappings for d = 3 are used.)
y

§2.7.5.24 (Transformation of quadrature rules on general mesh entities) Now let K stand for a mesh

entity of any topological type, for instance, a potentially curved EDGE in the plane. Its shape is defined by

the bijective transformation ΦK : K̂ → K from the reference element: K := ΦK(K̂).

Fig. 145

ê

0 1

Φe

e

✁ a curved edge e obtained as the im-

age of the reference segment ê = [0, 1]
under a general bijective mapping

Φe ⊂ R : ê→ e ⊂ R2

Note that K̂ ∈ Rn, K ⊂ Rd, and that n 6= d is possible; in the case of an edge in the plane we have n = 1
and d = 2. In terms of LEHRFEM++ functions and K an lf::mesh::Entity object

n = K.Geometry()->DimLocal() , d = K.Geometry()->DimGlobal() .

This means that DΦK(x̂) ∈ Rd,n need not be a square matrix. Thus we need a more general transforma-

tion formula:

∫

K

f (x)dS(x) =
∫

K̂

f (ΦK(x̂))
√

det
(
DΦ(x̂)⊤DΦ(x̂)

)
︸ ︷︷ ︸

=̂Gramian determinant

dx̂ , (2.7.5.25)

of which (0.3.2.32) is the special variant for n = d.

Now, given the quadrature rule on the reference element K̂

∫

K̂

f (x̂)dx̂ ≈
P

∑
ℓ=1

ω̂ℓ f (ζ̂ℓ) ,

by means of (2.7.5.25) we can convert it to a quadrature formula on K

∫

K

f (x)dS(x) ≈
P

∑
ℓ=1

ωK
ℓ f (ζK

ℓ ) with
ωK
ℓ := det

(
DΦ(ζ̂ℓ)

⊤DΦ(ζ̂ℓ)
)1/2

ω̂ℓ ,

ζK
ℓ := ΦK(ζ̂ℓ) .

(2.7.5.26)

In the case of an affine mapping ΦK(x̂) := FK x̂ + τK, FK ∈ Rd,n with full rank, we end up with the

Gramian determinant det
(
F⊤K FK

)1/2
and the formula ωK

ℓ = det
(
F⊤K FK

)1/2
ω̂ℓ, ℓ = 1, . . . , P.

In LEHRFEM++ the general Gramian determinant

x̂ 7→
√

det
(
DΦ(x̂)⊤DΦ(x̂)

)

is available through a dedicated member function of lf::geometry::Geometry:
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Eigen::VectorXd lf::geometry::Geometry::IntegrationElement(

const Eigen::MatrixXd &local) const;

that takes an array of (reference) coordinates of points x̂j ∈ K̂, j = 1, . . . , k stored in the columns of the

local n× k-matrix argument, and returns a k-vector with Gramian determinants:

IntegrationElement(
[

x̂1, . . . , x̂k
]

︸ ︷︷ ︸
∈Rn,k

) =




det
(
DΦ(x̂1)⊤DΦ(x̂1)

)1/2

...

det
(
DΦ(x̂k)⊤DΦ(x̂k)

)1/2


 ∈ Rk , x̂j ∈ K̂ ⊂ Rn .

y

§2.7.5.27 (Order of local quadrature rule) How can we gauge the quality of mapped local quadrature

rules ? We briefly review the discussion in [NCSE].

Gauging the quality of a quadrature formula

The quality of a parametric local quadrature rule on K is measured maximal degree of polynomials

(multivariate → Def. 2.5.2.2, or tensor product → Def. 2.5.2.7) on K integrated exactly by the

corresponding quadrature rule on K.

Definition 2.7.5.29. Order of a local quadrature rule

A local quadrature rule according to Def. 2.7.5.9 is said to be of order q ∈ N, if

• for a simplex K (triangle tetrahedron) it is exact for all polynomials f ∈ Pq−1(R
d),

• for a tensor product element K (rectangle, brick) it is exact for all tensor product polynomials

f ∈ Qq−1(R
d).

Note: Quadrature rule exact for Pp(Rd) ⇒
quadrature rule of order p + 1

degree of exactness p

How is the order of a local quadrature rule linked with the number of quadrature points?

Recall 1D: P-point Gaussian quadrature rule achieves maximal order 2P, see [NCSE]

On triangles/tetrahedra there is no simple general formula has been found linking the order and the minimal

number of quadrature nodes, but there is a simple overall relationship for “optimal” quadrature formulas:

The price of higher order quadrature

For “optimal” local quadrature formulas:

the higher the order the more quadrature nodes are required.

y

§2.7.5.31 (Preservation of order under affine mappings) An important observation is that the space

Pp(Rd) is invariant under affine mappings, that is

q ∈ Pp(R
d) ⇒ x̂ 7→ q(Φ(x̂)) ∈ Pp(R

d) for any affine transformation Φ . (2.7.5.32)
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This means, if a quadrature rule on the reference element integrates all polynomials up to degree p exactly,

the same is achieved by the mapped quadrature rule on K, if the underlying mapping is affine.

The orders of the quadrature rules on the left and right hand side of (2.7.5.23) agree!

Its order is an intrinsic property of a quadrature rule on the reference triangle/tetrahedron K̂ and

will be inherited by all derived quadrature rules on elements that are affine images of K̂.
y

EXAMPLE 2.7.5.33 (Local quadrature rules on triangles) By the transformation policy it is enough to

specify the quadrature rule for the reference triangle (“unit triangle”) K̂ := convex
{[

0
0

]
,
[

1
0

]
,
[

0
1

]}
.

According to Def. 2.7.5.9 quadrature rules on K̂ can be described by pairs (ω̂1, ζ̂1), . . . , (ω̂P, ζ̂P), P ∈ N,

of weights ω̂P and nodes ζ̂P ∈ K̂.

✦ P3O2: 3-point quadrature rule of order 2 (exact for P1(K̂))

{(
1

3
,

[
0

0

])
,

(
1

3
,

[
0

1

])
,

(
1

3
,

[
1

0

])}
. (2.7.5.34)

✦ P3O3: 3-point quadrature rule of order 3 (exact for P2(K̂))

{(
1

3
,

[
1/2

0

])
,

(
1

3
,

[
0

1/2

])
,

(
1

3
,

[
1/2

1/2

])}
. (2.7.5.35)

✦ P1O2: One-point quadrature rule of order 2 (exact for P1(K̂))

{(
1,

[
1/3

1/3

])}
. (2.7.5.36)

✦ P7O6: 7-point quadrature rule of order 6 (exact for P5(K̂))

{(
9

40
,

[
1/3

1/3

])
,

(
155 +

√
15

1200
,

[
6+
√

15/21

6+
√

15/21

])
,

(
155 +

√
15

1200
,

[
9−2
√

15/21

6+
√

15/21

])
,

(
155 +

√
15

1200
,

[
6+
√

15/21

9−2
√

15/21

])
,

(
155−

√
15

1200
,

[
6−
√

15/21

9+2
√

15/21

])
,

(
155−

√
15

1200
,

[
9+2
√

15/21

6−
√

15/21

])
,

(
155−

√
15

1200
,

[
6−
√

15/21

6−
√

15/21

])}
(2.7.5.37)

Location of quadrature nodes ζ̂l in the unit triangle K̂:

 Quadrature rule P1O2

(2.7.5.36): P = 1, order 2

 Quadrature rule P3O3

P = 3, order 3

 Quadrature rule P6O4

P = 6, order 4

 Quadrature rule P7O6

(2.7.5.37): P = 7, order 6
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In the article [DUN85] oen can find quadrature rules up to order p = 21 with P ≤ 1/6p(p + 1) + 5 points.

y

EXAMPLE 2.7.5.38 (Local quadrature rules on quadrilaterals) If K is a quadrilateral, then the reference

element is K̂ := convex
{[

0
0

]
,
[

1
0

]
,
[

1
1

]
,
[

0
1

]}
(unit square).

On the unit square K̂ use a tensor product construction: If {(ω1, ζ1), . . . , (ωP, ζP)}, P ∈ N, quadra-

ture rule on the interval ]0, 1[, exact for Pp]0, 1[, then a quadrature rule on the unit square is given by the

following sequence of P2 weight–nodes pairs:

{
(ω2

1,
[

ζ1
ζ1

]
) · · · (ω1ωP,

[
ζ1
ζP

]
)

...
...

(ω1ωP,
[

ζP
ζ1

]
) · · · (ω2

P,
[

ζP
ζP

]
)

}

It provides a quadrature rule on the unit square K̂ that is exact for Qp(K̂). → order p + 1!

Recall quadrature rules on ]0, 1[ (→ [NCSE]):

• classical Newton-Cotes formulas (equidistant

quadrature nodes).

• Gauss-Legendre quadrature rules, exact for

P2P(]0, 1[) using only P nodes.

• Gauss-Lobatto quadrature rules: P nodes in-

cluding {0, 1}, exact for P2P−1(]0, 1[).

Fig. 146
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§2.7.5.39 (Quadrature rules in LEHRFEM++) The concept of a quadrature rule according to Def. 2.7.5.9

is incarnated in the LEHRFEM++ class lf::quad::QuadRule with the following member functions:

• RefEl(), returns reference element K̂ on which the quadrature rule is defined; one of NODE, EDGE,

TRIA, QUAD for 2D hybrid meshes, see (2.7.5.18).

• Degree(), Order() tell the degree of (polynomial) exactness and the order, respectively, of the

quadrature rule as given in Def. 2.7.5.29.

• NumPoints() returns the number P of quadrature nodes, see (2.7.5.10).

• Points() yields a matrix of size n× P containing the (reference/local) coordinates of the nodes

ζ̂ ∈ K̂ of the P-point quadrature rule on K̂.

• Weights() gives a column P-vector (Eigen::VectorXd) of quadrature weights ω̂ℓ, ℓ = 1, . . . , P, for

a P-point quadrature rule on K̂.

LEHRFEM++ comes with a large stock of predefined quadrature rules, accessible through the function

➺ GITHUB

lf::quad::QuadRule lf::quad::make_QuadRule(

base::RefEl ref_el, unsigned degree);
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Here, ref_el specifies the type of the reference element, while degree passes the desired minimal

degree of exactness.

Alternatively, a few special quadrature rules can directly be fetched by dedicated functions, for instance,

lf::quad::make_TriaQR_P7O6() will return a 7-point rule of order 6 on the reference triangle

TRIA, see ➺ GITHUB for other functions available in make_quad_rule.h

lf::quad::QuadRule lf::quad::make_TriaQR_MidpointRule();

lf::quad::QuadRule lf::quad::make_TriaQR_P1O2();

lf::quad::QuadRule lf::quad::make_TriaQR_EdgeMidpointRule();

lf::quad::QuadRule lf::quad::make_TriaQR_P3O3();

lf::quad::QuadRule lf::quad::make_TriaQR_P7O6();

lf::quad::QuadRule lf::quad::make_TriaQR_P6O4();

lf::quad::QuadRule lf::quad::make_QuadQR_MidpointRule();

lf::quad::QuadRule lf::quad::make_QuadQR_P1O2();

lf::quad::QuadRule lf::quad::make_QuadQR_P4O2();

The naming convention for the functions lf::quad::make_TriaQR_P?O?() is explained in

Ex. 2.7.5.33. y

§2.7.5.40 (Local quadrature on mesh entities in LEHRFEM++) We discuss how to apply numerical

quadrature on a mesh entity K of any co-dimension in LEHRFEM++. Since we do not impose restrictions

on the mapping ΦK from the reference element K̂ we have to resort to the general formula

∫

K

f (x)dS(x) ≈
P

∑
ℓ=1

ωK
ℓ f (ζK

ℓ ) with
ωK
ℓ := det

(
DΦ(ζ̂ℓ)

⊤DΦ(ζ̂ℓ)
)1/2

ω̂ℓ ,

ζK
ℓ := ΦK(ζ̂ℓ) ,

(2.7.5.26)

from § 2.7.5.24 based on the P-point quadrature rule on K̂

∫

K̂
f (x̂)dx̂ ≈

P

∑
ℓ=1

ω̂ℓ f (ζ̂ℓ) .

The following code implements (2.7.5.26) based on methods of the interfaces lf::quad::QuadRule and

lf::geometry::Geometry to accomplish the composite local quadrature of a function f ∈ C0(Ω) given

through a functor object. Of course, a mesh M of Ω has to be supplied. Note that the argument

quadrules passes different quadrature rules for different reference elements.

C++ code 2.7.5.41: Entity-based composite numerical quadrature ➺ GITHUB

2 template <typename FUNCTOR>

3 auto localQuadFunction (

4 const l f : : mesh : : Mesh &mesh ,

5 std : : map< l f : : base : : RefEl , l f : : quad : : QuadRule> quadrules , FUNCTOR &&f ,

6 dim_t codim ,

7 std : : f unc t i on <bool ( const l f : : mesh : : Ent i ty &)> pred =

8 [ ] ( const l f : : mesh : : Ent i ty & /*entity*/) −> bool { return true ; } ) {

9 LF_ASSERT_MSG(mesh . DimMesh ( ) >= codim , " I l l e g a l codim = " << codim ) ;

10 // Variable for summing the result

11 using va lue_t = std : : i nvoke_ resu l t _ t <FUNCTOR, Eigen : : VectorXd >;

12 va lue_t sum_var { } ;

13 // Loop over entities of co-dimension codim

14 for ( const l f : : mesh : : Ent i ty * e n t i t y : mesh . E n t i t i e s ( codim ) ) {

15 // Obtain geometry information for entity

16 const l f : : geometry : : Geometry &geo { * e n t i t y −>Geometry ( ) } ;

17 // obtain quadrature rule suitable for entity type

18 auto tmp = quadrules . f i n d ( e n t i t y −>RefEl ( ) ) ;
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19 i f ( tmp != quadrules . end ( ) ) {

20 // A quadrature rule has been found

21 const l f : : quad : : QuadRule &qr { tmp−>second } ;

22 // Number of quadrature points

23 const s ize_type P = qr . NumPoints ( ) ;

24 // Quadrature points

25 const Eigen : : MatrixXd ze ta_ re f { qr . Po in ts ( ) } ;

26 // Map quadrature points to physical/world coordinates

27 const Eigen : : MatrixXd zeta { geo . Global ( ze ta_ re f ) } ;

28 // Quadrature weights

29 const Eigen : : VectorXd w_ref { qr . Weights ( ) } ;

30 // Gramian determinants

31 const Eigen : : VectorXd gram_dets { geo . In teg ra t ionE lement ( ze ta_ re f ) } ;

32 // Iterate over the quadrature points

33 for ( i n t l = 0 ; l < P ; ++ l ) {

34 sum_var += w_ref [ l ] * f ( zeta . col ( l ) ) * gram_dets [ l ] ;

35 }

36 } else {

37 LF_VERIFY_MSG( false , " Missing quadrature rule fo r " << e n t i t y −>RefEl ( ) ) ;

38 }

39 }

40 return sum_var ;

41 }

Note that the functor object may return any type that supports cumulative addition += and multiplication

with double. This function may be called as follows, using an initializer list to generate the associative

array of quadrature rules.

C++ code 2.7.5.42: Use of localQuadFunction() ➺ GITHUB

2 // Function to be integrated

3 auto f = [ ] ( const Eigen : : VectorXd& x ) −> double {

4 return ( x [ 0 ] * x [ 0 ] + x [ 1 ] * x [ 1 ] ) ;

5 } ;

6 // Cell-based composite quadrature covering all cells

7 const double i n t e g r a l _ v a l = localQuadFunction (

8 *mesh_p ,

9 { { l f : : base : : RefEl : : kT r ia ( ) , l f : : quad : : make_TriaQR_EdgeMidpointRule ( ) } ,

10 { l f : : base : : RefEl : : kQuad ( ) , l f : : quad : : make_QuadQR_P4O4 ( ) } } ,

11 f , 0) ;

y

Review question(s) 2.7.5.43 (Local Computations in FEM)

(Q2.7.5.43.A) We have the general formula:

Lemma 2.7.5.5. Integration of powers of barycentric coordinate functions

For any non-degenerate d-simplex K with barycentric coordinate functions λ1, . . . , λd+1 and ex-

ponents αj ∈ N, j = 1, . . . , d + 1,

∫

K
λα1

1 · · · · · λ
αd+1

d+1 dx = d!|K| α1!α2! · · · · · αd+1!

(α1 + α2 + · · ·+ αd+1 + d)!
∀α ∈ Nd+1

0 . (2.7.5.6)
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What is the value of
∫

K

(
λ1(x)

)p(
λ2(x)

)q
dx , p, q ∈ N0 ,

for a planar triangle K with area |K|.
(Q2.7.5.43.B) Let b1

K, . . . , b4
K be the local shape functions for the finite element space S0

1 (M) and a

rectangle K with vertices

a1
K =

[
0

0

]
, a2

K =

[
0.5

0

]
, a3

K =

[
0.5

0.5

]
, a4

K =

[
0

0.5

]
.

What is the value of
∫

K

(
b1

K(x)
)p(

b3
K(x)

)q
dx , p, q ∈ N0 ?

Hint. The basis functions are products of functions of x1 and function of x2. This leads to integrals

you have already seen in the proof of Lemma 2.7.5.5.

(Q2.7.5.43.C) Outline a way to create (in LEHRFEM++) a vector of pairs of pointers to POINT objects with

each pair corresponding to the endpoints of an edge of a 2D hybrid mesh.

(Q2.7.5.43.D) Recall the following definition of the order of a local quadrature rule:

Definition 2.7.5.29. Order of a local quadrature rule

A local quadrature rule according to Def. 2.7.5.9 is said to be of order q ∈ N, if

• for a simplex K (triangle tetrahedron) it is exact for all polynomials f ∈ Pq−1(R
d),

• for a tensor product element K (rectangle, brick) it is exact for all tensor product polynomials

f ∈ Qq−1(R
d).

Based on Def. 2.7.5.29 determine the minimal order of a quadrature rule on the unit square that is exact

for all polynomials in Pp(R2).

(Q2.7.5.43.E) The following three pairs (ω̂ℓ, ζ̂ℓ), ℓ = 1, 2, 3, of weights and nodes define the three-point

quadrature of order 3 on the reference triangle K̂:

{(
1

3
,

[
1/2

0

])
,

(
1

3
,

[
0

1/2

])
,

(
1

3
,

[
1/2

1/2

])}
. (2.7.5.35)

We construct a quadrature rule on the unit square ✷ by applying (2.7.5.35) on the two triangles created

by splitting ✷ into two triangles along the diagonal connecting 0 and
[

1
1

]
.

• Describe the pairs of weights and nodes for the resulting quadrature rule on ✷.

• What is the order of the new quadrature rule?

△

2.7.6 Treatment of Essential Boundary Conditions

Video tutorial for Section 2.7.6: Treatment of Essential Boundary Conditions: (38 minutes)

Download link, tablet notes
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According to the terminology introduced in Section 1.9, we call those boundary conditions essential that

are imposed on the functions in the trial space of variational problems. For second order elliptic bound-

ary value problems and the variational formulations discussed in Section 1.8, essential boundary condi-

tions are synonymous to Dirichlet boundary conditions. Now we elaborate how to handle non-zero (non-

homogeneous) Dirichlet boundary conditions within finite element Galerkin discretization.

Recall the variational formulation of a non-homogeneous Dirichlet boundary value problem from

Ex. 1.8.0.2:

u ∈ H1(Ω)

u = g on ∂Ω
:
∫

Ω
κ(x) grad u · grad v dx =

∫

Ω
f v dx ∀v ∈ H1

0(Ω) . (1.8.0.5)

⇓
−div(κ(x) grad u) = f in Ω , u = g on ∂Ω ,

with (admissible → § 1.9.0.6) Dirichlet data g ∈ C0(∂Ω). This problem fits the abstract notation from

Def. 1.4.1.6 for a linear variational problem posed on an affine space:

u ∈ V̂: a(u, v) = ℓ(v) ∀v ∈ V0 , (1.4.1.7)

with obvious meanings of a (bilinear form on H1
0(Ω)× H1

0(Ω)), ℓ (linear form on H1
0(Ω)), V̂ (affine space

ĝ + H1
0(Ω)), and V0 := H1

0(Ω).

Recall from Section 1.9 that Dirichlet boundary conditions are essential boundary conditions, that is,

they are built into the trial space V̂

Now we will learn, how discrete trial spaces and algorithms have to be modified in order to accommodate

essential boundary conditions.

§2.7.6.1 (Offset functions for Lagrangian finite element methods) Remember the offset function tech-

nique, explained in § 1.4.1.9, that can be used to convert (1.8.0.5) into a variational problem with the same

trial and test space:

(1.8.0.5) ⇔ u = u0 + w ,
w ∈ H1

0(Ω):
∫

Ω
κ(x) grad w · grad v dx

=
∫

Ω
−κ(x) grad u0 · grad v + f v dx ∀v ∈ H1

0(Ω) ,
(2.7.6.2)

with offset function u0 ∈ H1(Ω) satisfying u0 = g on ∂Ω

We adapt the offset function policy to finite element Galerkin discretization by generalizing the 1D example

from Rem. 2.3.3.15 to d = 2, 3:

Remember: we already know finite element subspaces V0,h := S0
p,0(M) ⊂ H1

0(Ω), see § 2.6.2.8:

S0
p,0(M) := S0

p(M) ∩ H1
0(Ω) = Span{bj

h: pj ∈ Ω (interior node)} , (2.6.2.9)

that is, the nodal basis of S0
p,0(M) is obtained by dropping all those nodal basis functions (global shape

functions) of S0
p(M) that belong to geometric entities ⊂ ∂Ω, see § 2.4.3.7 for an example.
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Finite element offset functions

Idea (inspired by choice in 1D), Rem. 2.3.3.15):

use offset function u0 ∈ Vh := S0
p(M)

locally supported near the boundary :

m
use offset function in the span of global basis functions associated with

geometric entities on ∂Ω

The rules governing the supports of global shape functions (→ Section 2.5.3, Section 2.5.3) tell us the

maximal support of finite element boundary offset functions:

supp(u0) ⊂
⋃
{K ∈ M: K ∩ ∂Ω 6= ∅} . (2.7.6.4)

Fig. 147

Ω

(2.7.6.4) is a consequence of the

local support property of finite element basis

functions, see Ex. 2.5.3.2.

✁ Largest possible support of u0 on a triangular

mesh.

As in Rem. 2.3.3.15, a small support of u0 will en-

sure that changes to the right-hand-side vector will

be confined to only a small percentage of its entries.

y

EXAMPLE 2.7.6.5 (Offset functions for linear Lagrangian FE) Now we apply this idea to the special

case of linear Lagrangian finite elements, which will yield a direct generalization of the choice of an offset

function in 1D presented in Rem. 2.3.3.15.

For Vh = S0
1 (M) and Dirichlet data g ∈ C0(∂Ω)

use

u0 = ∑
x∈V(M)∩∂Ω

g(x) bx
h (2.7.6.6)

bx
h =̂ tent function associated with node x ∈ V(M),

cf. Section 2.4.3. (2.7.6.6) generalizes (2.3.3.16) to

2D.

Note that this offset functions vanishes in all interior

vertices: u0(x) = 0 for all x ∈ V(M) ∩Ω.
Fig. 148

y

Remark 2.7.6.7 (Approximate Dirichlet boundary conditions) Be aware that the formula (2.7.6.6) ac-
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tually violates the strict trace condition, because in general

u0 6= g on ∂Ω .

Rather, u0 is a piecewise linear interpolant of the Dirichlet data g ∈ C0(∂Ω). Therefore, another approx-

imation comes into play when enforcing Dirichlet boundary conditions by means of piecewise polynomial

offset functions. y

§2.7.6.8 (Implementation of non-homogeneous Dirichlet b.c. for linear FE: Elimination) Consider

the linear variational problem

u ∈ H1(Ω)

u = g on ∂Ω
:
∫

Ω
κ(x) grad u · grad v dx =

∫

Ω
f v dx ∀v ∈ H1

0(Ω) , (1.8.0.5)

its finite-element Galerkin discretization by means of p.w. linear Lagrangian finite elements, and, for the

sake of simplicity of presentation, assume the following ordering of the nodal basis functions, see Fig. 68

B0 := {b1
h, . . . , bN

h } =̂ nodal basis of S0
1,0(M),

(tent functions associated with interior nodes)

B := B0 ∪ {bN+1
h , . . . , bM

h } =̂ nodal basis of S0
1 (M)

(extra basis functions associated with nodes ∈ ∂Ω).

Here: M := ♯V(M) = dimS0
1 (M),

N := ♯{x ∈ V(M), x 6∈ ∂Ω} = dimS0
1,0(M) (no. of interior nodes).

A0 ∈ RN,N =̂ Galerkin matrix for discrete trial/test space S0
1,0(M),

A ∈ RM,M =̂ Galerkin matrix for discrete trial/test space S0
1 (M).

This gives rise to a block-partitioning of the Galerkin matrix A,

A =

[
A0 A0∂

AT
0∂ A∂∂

]
,

A0∂ :=
(
a(b

j
h, bi

h)
)

i=1,...,N
j=N+1,...,M

∈ RN,M−N ,

A∂∂ :=
(
a(b

j
h, bi

h)
)

i=N+1,...,M
j=N+1,...,M

∈ RM−N,M−N .
(2.7.6.9)

If u0 ∈ S0
1 (M) is chosen according to (2.7.6.6), then

u0 ∈ Span{bN+1
h , . . . , bM

h } ⇔ u0 =
M

∑
j=N+1

γj−Nb
j
h ,

with suitable coefficients γj, j = 1, . . . , M− N, defined, for instance, by (2.7.6.6). We can now plug this

into the discrete variational problem for the “correction” wh ∈ V0,h, which in abstract form reads

wh ∈ V0,h: a(wh, vh) = ℓ(vh)− a(u0, vh) ∀vh ∈ V0,h ,

where we used the abbreviation a for the bilinear form in Eq. (1.8.0.5) and ℓ for the right hand side linear

form. Thus, we get with wh = ∑
N
j=1 νjb

j
h

N

∑
j=1

νja(b
j
h, bi

h) = ℓ(bi
h)−

M

∑
k=N+1

γk−Na(b
k
h, bi

h) , i = 1, . . . , N ,

which means that the basis expansion coefficient vector ~ν = [ν1, . . . , νN ]
⊤

of the finite element ap-

proximation wh ∈ S0
1,0(M) of w ∈ H1

0(Ω) from (2.7.6.2) solves the linear system of equations

(~γ = [γ1, . . . , γM−N ]
⊤)

A0~ν = ~ϕ−A0∂~γ . (2.7.6.10)
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➣ Summing up, non-homogeneous Dirichlet boundary data are taken into account through a modified

right hand side vector.
y

Supplement 2.7.6.11 (Alternative consideration leading to (2.7.6.10)) We may want to keep the original

size M×M of the linear system and modify it in a way so that (2.7.6.10) is embedded into it. The rationale

for doing this will become clear in § 2.7.6.13.

➊ First ignore essential boundary conditions and assemble the linear system of equations arising from

the discretization of a on the (larger) FE space S0
1 (M):

[
A0 A0∂

AT
0∂ A∂∂

][
~µ0
~µ∂

]
=

[
~ϕ
~ϕ∂

]
. (2.7.6.12)

Here,
~µ0 =̂ coefficients for interior basis functions b1

h, . . . , bN
h

~µ∂ =̂ coefficient for basis functions bN+1
h , . . . , bM

h associated with nodes located on ∂Ω.

➋ We realize that the coefficient vector of (2.7.6.12) is that of a FE approximation of u

~µ∂ known = values of g at boundary nodes: ~µ∂ = ~γ

➌ Moving known quantities in (2.7.6.12) to the right hand side yields (2.7.6.10).

y

§2.7.6.13 (Imposing essential constraints in LEHRFEM++) LEHRFEM++ provides tools for solving

partitioned linear like (2.7.6.12),

A~µ :=

[
A0 A0∂

AT
0∂ A∂∂

][
~µ0
~γ

]
=

[
~ϕ
∗
]

, (2.7.6.14)

where the matrix A ∈ RM,M, and the vectors ~γ ∈ RM−N and ~ϕ ∈ RN are given. We want to find the

solution component~µ0 ∈ RN and do not take into account the ∗-part of the right-hand-side vector.

In practice the basis functions will not be numbered in a way to yield a nice block-partitioning as in

(2.7.6.14). Rather the fixed degrees of freedom corresponding to components of ~γ may rather er-

ratically be scattered among all d.o.f.s. They will usually be identified by a predicate, a mapping

{1, . . . , M} 7→ {true, false}, realized by a suitable functor in a C++ code.

In LEHRFEM++ there are two pre-processing functions ➺ GITHUB to transform linear systems of equa-

tions with fixed solution components. Both take a predicate argument of a type SELECTOR, which must

feature an evaluation operator of the form

std::pair<bool,SCALAR> opera tor () (unsigned i n t dof_idx) const;

accepting the index j ∈ {0, . . . , M− 1} of a d.o.f. as an argument and returning the tuple (true,µj), if this

d.o.f. has a fixed value µj, (false ,∗) otherwise. The two functions are

(I) template <typename SCALAR, typename SELECTOR,

typename RHSVECTOR>

void FixFlaggedSolutionComponents(SELECTOR &&selectvals,

ld::assemble::COOMatrix<SCALAR> &A, RHSVECTOR &b);

which changes A and b such that, in the case of (2.7.6.14), they correspond to the modified linear

system
[

A0 O
O I

][
~µ0
~µ∂

]
=

[
~ϕ−A0∂~γ

~γ

]
. (2.7.6.15)
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(II) template <typename SCALAR, typename SELECTOR,

typename RHSVECTOR>

void FixFlaggedSolutionCompAlt(SELECTOR &&selectvals,

lf::assemble::COOMatrix<SCALAR> &A, RHSVECTOR &b);

which changes the matrix and right hand side of the linear system of equations A~µ = b in a way that

would transform (2.7.6.14) into

[
A0 A0∂

O I

][
~µ0
~µ∂

]
=

[
~ϕ
~γ

]
. (2.7.6.16)

A possible implementation of FixFlaggedSolutionCompAlt() is given next to show the manipula-

tion of the triplets representing the sparse matrix A:

C++ code 2.7.6.17: Transformation function (2.7.6.14)→ (2.7.6.16) ➺ GITHUB

1 template <typename SCALAR, typename SELECTOR, typename RHSVECTOR>

2 void FixFlaggedSolutionCompAlt (SELECTOR &&se lec t va l s , COOMatrix<SCALAR> &A,

3 RHSVECTOR &b ) {

4 const l f : : assemble : : s ize_type N(A . cols ( ) ) ;

5 LF_ASSERT_MSG(A . rows ( ) == N, " Matrix must be square ! " ) ;

6 LF_ASSERT_MSG(N == b . size ( ) , "Mismatch N = " << N << " <−> b . size ( ) = " <<

b . size ( ) ) ;

7 // I: Set components of right-hand-side vector to prescribed values

8 for ( l f : : assemble : : gdo f_ idx_ t k = 0; k < N; ++k ) {

9 const auto s e l v a l { s e l e c t v a l s ( k ) } ;

10 i f ( s e l v a l . f i r s t ) b [ k ] = s e l v a l . second ;

11 }

12 // II: Set rows of the sparse matrix corresponding

13 // to the fixed solution components to zero

14 typename l f : : assemble : : COOMatrix<SCALAR> : : T r i p l e tVec : : i t e r a t o r new_last =

15 std : : remove_i f (

16 A . t r i p l e t s ( ) . begin ( ) , A . t r i p l e t s ( ) . end ( ) ,

17 [& f ixed_comp_f lags ] (

18 typename l f : : assemble : : COOMatrix<SCALAR> : : T r i p l e t & t r i p l e t ) {

19 return ( f ixed_comp_f lags [ t r i p l e t . row ( ) ] ) ;

20 } ) ;

21 // Adjust size of triplet vector

22 A . t r i p l e t s ( ) . erase ( new_last , A . t r i p l e t s ( ) . end ( ) ) ;

23 // III: Add Unit diagonal entries corrresponding to fixed components

24 for ( l f : : assemble : : gdo f_ idx_ t dofnum = 0; dofnum < N; ++dofnum ) {

25 i f ( s e l e c t v a l s ( dofnum ) . f i r s t ) A . AddToEntry ( dofnum , dofnum , 1 .0 ) ;

26 } }

It is worth trying to understand this code! The SELECTOR type must provide an evaluation operator

std::pair<bool, SCALAR> opera tor() (lf::assemble::gdof_idx_t);

which, for each d.o.f. referenced by its index returns a flag and a value. If the flag is set, that d.o.f. has to

be fixed to the associated value. y

Remark 2.7.6.18 (Ordering of global shape functions required?) We emphasize that the order-

ing of the global shape functions underlying the presentation in § 2.7.6.8 and, in particular (2.7.6.9),

(2.7.6.12), (2.7.6.14), (2.7.6.15), and (2.7.6.16), was just imposed “for the sake of simplicity of

presentation”. In fact, both LEHRFEM++ functions FixFlaggedSolutionComponents() and

FixFlaggedSolutionCompAlt() work regardless of the numbering of global shape functions.
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The only information they need is that passed through selectvals and involves flags for d.o.f.s to be

fixed and the corresponding values. y

EXAMPLE 2.7.6.19 (Solution of a Dirichlet BVP with LEHRFEM++) We examine a simple LEHRFEM++

code capable of solving the Dirichlet boundary value problem

−∆u = 0 in Ω ⊂ R2 , u = g on ∂Ω .

The polygonal domain Ω is specified through a triangular planar finite element mesh M and a finite

element Galerkin discretization based on S0
1 (M) is employed. The Dirichlet boundary conditions are

treated as discussed in § 2.7.6.8 using the LEHRFEM++ tools introduced in § 2.7.6.13.

C++ code 2.7.6.20: Solving a Dirichlet BVP −∆u = 0 with LEHRFEM++ ➺ GITHUB

2 // Initialization of local-to-global index mapping for linear finite
elements

3 const l f : : assemble : : UniformFEDofHandler dof_handler (

4 mesh_p , { { l f : : base : : RefEl : : kPo in t ( ) , 1 } } ) ;

5 // Query dimension of the finite element space, equal to the number of
nodes

6 const s ize_type N_dofs ( dof_handler . NumDofs ( ) ) ;

7 // Matrix in triplet format holding temporary Galerkin matrix

8 l f : : assemble : : COOMatrix<double> mat ( N_dofs , N_dofs ) ;

9 // Initialize objects for local computation of element matrices for
−∆

10 LinFELaplaceElemMatProvider loc_mat_ lap lace { } ;

11

12 // Building the Galerkin matrix (trial space = test space)

13 // for the pure Neumann Laplacian, assembly over cells

14 mat = l f : : assemble : : AssembleMatrixLocally< l f : : assemble : : COOMatrix<double >>(

15 0 , dof_handler , loc_mat_ lap lace ) ;

16 // Zero right-hand side vector

17 Eigen : : VectorXd rhsvec ( N_dofs ) ;

18 rhsvec . setZero ( ) ;

19

20 // Treatment of Dirichlet boundary conditions g = u|∂Ω
21 // Flag all nodes on the boundary (and only those)

22 auto bd_f lags { l f : : mesh : : u t i l s : : flagEntitiesOnBoundary ( mesh_p , 2) } ;

23 // Set up predicate: Run through all global shape functions and check
whether

24 // they are associated with an entity on the boundary, store Dirichlet
data.

25 std : : vector <std : : pair <bool , double>> ess_dof_se lec t { } ;

26 for ( l f : : assemble : : gdo f_ idx_ t dofnum = 0; dofnum < N_dofs ; ++dofnum ) {

27 const l f : : mesh : : E n t i t y &dof_node { dof_handler . E n t i t y ( dofnum ) } ;

28 const Eigen : : Vector2d node_pos {

29 l f : : geometry : : Corners ( * dof_node . Geometry ( ) ) . col ( 0 ) } ;

30 const double g_val = u_sol ( node_pos ) ;

31 i f ( bd_f lags ( dof_node ) ) {

32 // Dof associated with a entity on the boundary: "essential dof"

33 // The value of the dof should be set to the value of the function

34 // u at the location of the node.

35 ess_dof_se lec t . emplace_back ( true , g_val ) ;

36 } else {

37 // Interior node, also store value of solution for comparison
purposes

38 ess_dof_se lec t . emplace_back ( false , g_val ) ;

39 }

40 }

41 // modify linear system of equations

42 l f : : assemble : : FixFlaggedSolutionCompAlt<double >(

43 [& ess_dof_se lec t ] ( g l b _ i d x _ t do f_ idx ) −> std : : pair <bool , double> {

44 return ess_dof_se lec t [ do f_ idx ] ;
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45 } ,

46 mat , rhsvec ) ;

47

48 // Convert the matrix from triplet format to CRS format

49 const Eigen : : SparseMatrix <double> A( mat . makeSparse ( ) ) ;

y

Review question(s) 2.7.6.21 (Treatment of essential boundary conditions)

(Q2.7.6.21.A) Explain the offset-function technique for dealing with essential boundary conditions im-

posed on a 2nd-order elliptic variational problem.

(Q2.7.6.21.B) What is a “convenient” offset function when performing the Galerkin discretization of a pure

Dirichlet boundary value problem based on the quadratic Lagrangian finite-element space S0
2 (M) and

a simplicial meshM?

(Q2.7.6.21.C) On a polygonally bounded domain Ω ⊂ R2 we solve the Dirichlet problem

−∆u = 0 in Ω , u = g on ∂Ω ,

with g ∈ C0(∂Ω).

We use a finite element Galerkin discretization based

on S0
1 (M), whereM is the triangular mesh drawn

beside.

We employ the elimination of essential boundary

conditions based on the offset function technique.

How many entries of the right-hand side vector of the

finite-element linear system of equations will change,

when the data g change?

Fig. 149

Ω

(Q2.7.6.21.D) Sketch the implementation of a class

c lass SolveLaplaceBVP {

pub l i c:

SolveLaplaceBVP(std::shared_ptr<const lf::assemble::DofHandler>

dofh_p);

~SolveLaplaceBVP() = d e f a u l t;

template <typename FUNCTOR>

Eigen::VectorXd solveLaplaceBVP(FUNCTOR &&g) const;

p r i v a t e:

....

};

The constructor takes a shared pointer to a lf::assemble::DofHandler object associated belonging to

the finite element space S0
1 (M). The method solveLaplaceBVP() takes a functor argument of
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type std::function<double(Eigen::Vector2D)>, which supplies the boundary data g. It is

supposed to return the basis expansion coefficient vector (with respect to the standard tent function

basis) of the finite element solution ∈ S0
1 (M) of the Dirichlet boundary value problem

−∆u = 0 in Ω , u = g on ∂Ω .

△

2.8 Parametric Finite Element Methods

1.
Video tutorial for Section 2.8: Parametric Finite Element Methods (I): (45 minutes)

Download link, tablet notes

2.
Video tutorial for Section 2.8: Parametric Finite Element Methods (II): (56 minutes)

Download link, tablet notes

Already in Section 2.7.5 we exploited (affine) transformation (→ Def. 2.7.5.13) to a reference cell in order

to obtain numerical quadrature formulas (2.7.5.10) for all cells of a mesh in one fell swoop. In this section

we will witness the full power of this idea of using transformations to reference cells. It will enable us

to extend the range of Lagrangian finite element spaces significantly, and will also be a key element in

algorithm design (The entire LEHRFEM++ finite element library relies on the construction of finite elements

by transformation).

We need to enhance the flexibility of finite element spaces. For instance, the construction of Lagrangian

finite element spaces done in Section 2.6 cannot cope with the following situation:

Fig. 150

? ? ?
?

???
?

✁ 2D hybrid meshM with curvilinear triangles and

general quadrilaterals

How to build S0
1 (M)?

2.8.1 Affine Equivalence

We recall a transformation that we have already seen in Lemma 2.7.5.14, namely the affine transformation

of triangles (2.7.5.15).

Lemma 2.7.5.14. Affine transformation of triangles

For any non-degenerate triangle K ⊂ R2 (|K| > 0) with numbered vertices there is a unique affine

transformation ΦK, ΦK(x̂) = FK x̂ + τK (→ Def. 2.7.5.13), with K = ΦK(K̂) and preserving the

numbering of the vertices.

This lemma conveys the following insight:

All cells of a triangular mesh are affine images of the “unit triangle” K̂ := convex
{
(0

0), (
1
0), (

0
1)
}
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The affine mapping ΦK from the “Unit tri-

angle” K̂ to a general triangle K is easily

determined:

For K = convex
{

a1, a2, a3
}

it reads

ΦK(x̂) := FK x̂ + τK ,

with

FK :=

[
a2

1 − a1
1 a3

1 − a1
1

a2
2 − a1

2 a3
2 − a1

2

]
, τK = a1 .Fig. 151 1

1

K

K̂

ΦK(x̂) = FK x̂ + τK

x̂1

x̂2

a1

a2

a3

➊ ➋

➌

§2.8.1.1 (Pullback of functions) In a natural way, a transformation of domains induces a transformation

of the functions defined on them:

Definition 2.8.1.2. Pullback

Given domains Ω, Ω̂ ⊂ Rd and a bijective mapping Φ : Ω̂ 7→ Ω, the pullback Φ
∗u : Ω̂ 7→ R of a

function u : Ω 7→ R is a function on Ω̂ defined by

(Φ∗u)(x̂) := u(Φ(x̂)) , x̂ ∈ Ω̂ .

✦ Implicitly, we used the pullback of integrands when defining quadrature rules through transformation,

see (0.3.2.32) and (2.7.5.22):

∫

K
f (x)dx =

∫

K̂
f (ΦK(x̂)) |det FK|dx̂ . (2.7.5.22)

✦ Obviously, the pullback Φ
∗ induces a linear mapping between spaces of functions on Ω and Ω̂,

respectively:

Φ
∗(α f + βg) = α Φ

∗ f + β Φ
∗g ∀ f , g : Ω→ R , α, β ∈ R . (2.8.1.3)

The following picture can aid understanding: the pullback Φ
∗
K maps in the “opposite direction” compared

to ΦK:

Fig. 152

Ω̂

Ω

Φ

Φ∗

Φ
∗u defined here u defined here

y

In the context of numerical quadrature, when wondering whether transformation preserved the order of a

quadrature rule, we made the following observation, cf. (2.7.5.32):
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Lemma 2.8.1.4. Preservation of polynomials under affine pullback

If Φ : Rd 7→ Rd is an affine (linear) transformation (→ Def. 2.7.5.13), then

Φ
∗(Pp(R

d)) = Pp(R
d) and Φ

∗(Qp(R
d)) = Qp(R

d) .

In fact, Lemma 2.7.5.14 reveals another reason for the preference for polynomials in building discrete

Galerkin spaces.

Proof. (of Lemma 2.7.5.14) Since the pullback is linear, we only need to study its action on the (monomial)

basis x 7→ xα, α ∈ Nd
0 of Pp(Rd), see Def. 2.5.2.2 and the explanations on multi-index notation (2.5.2.3).

Then resort to induction w.r.t. degree p.

Φ
∗
K(xα) = Φ

∗
K(x1) ·Φ∗K( xα′

︸︷︷︸
∈Pp−1(Rd)

) = (
d

∑
l=1

(F)1l x̂l + τ1)

︸ ︷︷ ︸
∈P1(Rd)

· Φ
∗
K(xα′)︸ ︷︷ ︸

∈Pp−1(Rd)

∈ Pp(R
d) ,

with α′ := (α1− 1, α2, . . . , αd), where we assumed α1 > 0. Here, we have used the induction hypothesis

to conclude Φ
∗
K(xα′) ∈ Pp−1(R

d).
✷

§2.8.1.5 (Pullback of local shape functions for Lagrangian finite elements) We start with simple

observation: Consider the lowest-order Lagrangian finite element space S0
1 (M) and a triangle K ∈ M.

Let K̂ be the unit triangle and ΦK the unique affine mapping K̂ 7→ K. We write

• b1
K, b2

K, b3
K for the (standard) local shape functions on K,

• b̂1, b̂2, b̂3 for the (standard) local shape functions on K̂,
as defined in Ex. 2.5.3.6.

(In each case we deal with the barycentric coordinate functions introduced in § 2.4.5.2!)

We find a fundamental relationship with respect to the pullback Φ
∗
K:

b̂i = Φ
∗
Kbi

K ⇔ b̂i(x̂) = bi
K(x) , x = ΦK(x̂) . (2.8.1.6)

Of course, we assume that ΦK respects the local numbering of the vertices of K̂ and K: ΦK(âi) = ai,

i = 1, 2, 3.

The proof of (2.8.1.6) is straightforward: both Φ
∗
Kbi

K (by Lemma 2.8.1.4) and b̂i are (affine) linear functions

that attain the same values at the vertices of K̂. Hence, they have to agree. in fact (2.8.1.6) holds true for

all simplicial Lagrangian finite element spaces.

Lemma 2.8.1.7. Affine equivalence of Lagrangian finite elements on simplicial meshes

Let the global shape functions for S0
p(M), p ∈ N,M a simplicial mesh, be defined by the cardinal

basis property (2.6.1.4) with respect to the canonical choice of interpolation nodes, see Ex. 2.6.1.2

and Ex. 2.6.1.7. Then for any two simplices K1, K2 ∈ M there is an affine mapping Φ : K1 → K2,

K2 = Φ(K1), such that

Φ
∗bj

K2
= b

j
K1

, j ∈ {1, . . . , Q} , (2.8.1.8)

where b
j
K1

, b
j
K2

, j = 1, . . . , Q, are the local shape functions on K1 and K2, respectively.

Proof. (of (2.8.1.6) for general Lagrangian finite element spaces) First, recall the definition of

global shape functions and also local shape functions for S0
p(M), p ∈ N, by means of the conditions

(2.6.1.4) at interpolation nodes, see Ex. 2.6.1.2 for p = 2.
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Now write pi
K =̂ (local) interpolation nodes on triangle K,

p̂i =̂ (local) interpolation nodes on unit triangle K̂.

Observe: Assuming a matching numbering we have pi
K = ΦK(p̂i), where ΦK : K̂ 7→ K is the unique

affine transformation mapping K̂ onto K, see (2.7.5.15).

This is clear for p = 2, because affine transfor-

mations take midpoints of edges to midpoints of

edges. The same applies to the interpolation nodes

for higher degree Lagrangian finite elements defined

in Ex. 2.6.1.7.

Fig. 153 1

1

K

K̂

ΦK

x̂1

x̂2

a1

a2

a3

For Lagrangian finite element spaces the local shape functions bi
K ∈ Pp(Rd), b̂i ∈ Pp(Rd), i = 1, . . . , Q,

on K and K̂, respectively, are uniquely defined by the interpolation conditions

bi
K(p

j
K) = δij , b̂i(p̂j) = δij . (2.8.1.9)

Together with pi
K = ΦK(p̂i) this shows that Φ

∗
Kbi

K satisfies the interpolation conditions (2.8.1.9) on K̂

and, thus, has to agree with b̂i.
✷

y

The property of local shape functions

b̂i = Φ
∗
Kbi

K ⇔ b̂i(x̂) = bi
K(x) , x = ΦK(x̂) , (2.8.1.6)

paves the way for profound algorithmic simplifications in finite element codes. Thus it is very desirable that

global basis functions of finite element spaces comply with (2.8.1.6).

Terminology: Finite element spaces satisfying (2.8.1.6) with a affine mapping (→ Def. 2.7.5.13) ΦK : K̂ →
K for every K ∈ M are called affine equivalent.

Remark 2.8.1.10 (Local computations based on affine equivalence) Affine equivalence can be ex-

ploited to achieve substantial reduction in computational effort for local computations. Let us consider

Lagrangian finite element spaces on a simplicial mesh M. We denote by {b1
K, . . . , bQ

K }, Q ∈ N, the

set of local shape functions for the cell K ∈ M. For the same cell let ΦK : K̂ → K stand for the affine

mapping satisfying K = ΦK(K̂), where K̂ is the “unit simplex”.

Frequently, in finite-element codes the following type of integrals has to be evaluated
∫

K
F(b1

K(x), . . . , bQ
K (x))dx , for some F : RQ → R . (2.8.1.11)

Such integrals may occur, for instance, for L2-type bilinear forms: for
∫

K b
j
K(x)bℓK(x)dx we have

F(ξ, η) := ξη.

Of course, for general F, we have to rely on numerical quadrature. Recall from Section 2.7.5 the definition

(2.7.5.23) of local quadrature formulas via transformation from a “unit simplex” (reference cell/element K̂),

where a P-point quadrature formula with weights ω̂ℓ and nodes ζ̂ℓ, ℓ = 1, . . . , P, is given.

∫

K̂
f (x̂)dx̂ ≈

P

∑
ℓ=1

ω̂ℓ f (ζ̂ℓ)

∫

K
f (x)dx ≈ |K|

|K̂|
P

∑
ℓ=1

ωK
ℓ f (ζK

ℓ )

with ωK
ℓ = ω̂ℓ , ζK

ℓ = ΦK(ζ̂ℓ) .

(2.7.5.23)
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This means that we actually need to compute

∫

K
F(b1

K(x), . . . , bQ
K (x))dx

(0.3.2.32)
=

∫

K̂
F(Φ∗Kb1

K(x̂), . . . , Φ
∗
KbQ

K (x̂))|detDΦK(x̂)|dx̂

(2.8.1.6)
=
|K|
|K̂|

∫

K̂
F(b̂1(x̂), . . . , b̂Q(x̂))dx̂

≈ |K|
|K̂|

P

∑
ℓ=1

ω̂ℓF(b̂1(ζ̂ℓ), . . . , b̂Q(ζ̂ℓ)) ,

because, thanks to (2.8.1.6), we can exploit the relationship between local shape functions on K and K̂:

Φ
∗
K(b

i
K)(ζ̂

ℓ
) = b̂i(ζ̂

ℓ
) independent of K ! . (2.8.1.12)

This can be exploited for the fast numerical quadrature of expressions depending on local shape functions

only:

∫

K
F(b1

K(x), . . . , bQ
K (x))dx ≈ |K|

|K̂|
P

∑
ℓ=1

ω̂ℓF(b̂1(ζ̂ℓ), . . . , b̂Q(ζ̂ℓ)) , (2.8.1.13)

for any integrable function F : RQ 7→ R. We observe that

we can precompute the values F(b̂1(ζ̂ℓ), . . . , b̂Q(ζ̂ℓ)), ℓ = 1, . . . , P, and store them in a

table!

y

Supplement 2.8.1.14 (Barycentric representation of local shape functions) We consider Lagrangian

finite element spaces on a simplicial mesh M in 2D, standard reference triangle used. From

Lemma 2.8.1.7 we know that we deal with an affine equivalent finite element method. This paves the

way for an “affine equivalent” representation of local shape functions.

Already in (2.6.1.6) the formulas for local shape functions for S0
2 (M) (d = 2) were given in terms of

barycentric coordinate functions λi, i = 1, 2, 3. Is this possibility coincidental? NO! Does

bi
K = ∑

α∈N3
0 ,|α|≤p

κα λα1
1 λα2

2 λα3
3 , κα ∈ R , (2.7.5.1)

hold for any (simplicial) Lagrangian finite element space?

YES , because
bi

K(x)
(2.8.1.6)
= (Φ−1

K )∗
(

x̂ 7→ b̂i(x̂1, x̂2)
)

= b̂i((Φ−1
K )∗(λ̂2)(x), (Φ−1

K )∗(λ̂3)(x)) = b̂i(λ2(x), λ3(x)) ,

where λ2(x̂) = x̂1, λ3(x̂) = x̂2, λ1(x̂) = 1− x̂1 − x̂2 =̂ barycentric coordinate functions on K̂,

see Ex. 2.5.3.6,

λi =̂ barycentric coordinate functions on triangle K, see Fig. 75,

ΦK =̂ affine transformation (→ Def. 2.7.5.13), ΦK(K̂) = K, see (2.7.5.15).

The above formula is a consequence of the trivial fact that for an affine transformation ΦK : K̂ → K
between simplices (triangles or tetrahedra) the corresponding pullback (→ Def. 2.8.1.2) maps barycentric

coordinate functions onto each other, cf. Lemma 2.8.1.7 for p = 1,

Φ
∗
K(λk) = λ̂k , k = 1, . . . , d + 1 . (2.8.1.15)
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➣ By the chain rule:

grad bi
K(x) =

∂b̂i

∂x̂1
(x̂) grad λ2 +

∂b̂i

∂x̂2
(x̂) grad λ3

=
[
grad λ2 grad λ3

]
gradx̂ b̂i(x̂) , x = ΦK(x̂) .

(2.8.1.16)

This formula is convenient, because grad λi ≡ const, see (2.7.5.4).

This facilitates the computation of element (stiffness) matrices for 2nd-order elliptic problems in variational

form with scalar valued coefficient α = α(x): when using a quadrature formula according to (2.7.5.23)
∫

K

(α(x) grad bi
K) · grad b

j
K dx

≈ |K|
|K̂|

PK

∑
l=1

ω̂lα(ζl)







∂b̂i

∂x̂1
(ζ̂l)

∂b̂i

∂x̂2
(ζ̂l)




⊤
[

grad λ2 · grad λ2 grad λ2 · grad λ3

grad λ2 · grad λ3 grad λ3 · grad λ3

]



∂b̂j

∂x̂1
(ζ̂l)

∂b̂j

∂x̂2
(ζ̂l)







This is attractive from an implementation point of view, because

✦ the values
∂b̂i

∂x̂1
(ζ̂l) can be precomputed ,

✦ simple expressions for grad λi · grad λj are available, see Section 2.4.5.

More on the use of these transformation techniques ➣ Section 2.8.3
y

2.8.2 Example: Quadrilaterial Lagrangian Finite Elements

So far, see Section 2.5.3 and Eq. (2.5.3.5), we have adopted the perspective that we first define global

basis functions/global shape functions for a finite element space, from which the local shape functions are

deduced according to Def. 2.5.3.4:

global shape functions
Restriction to element−−−−−−−−−−−→ local shape functions

Now we reverse this construction!

local shape functions
“glueing”−−−−→ global shape functions (2.8.2.1)

In fact, when building the global basis functions for quadratic Lagrangian finite elements we already pro-

ceeded this way, see Ex. 2.6.1.2. Fig. 109 lucidly conveys what is meant by “glueing”.

Be aware that the possibility to achieve a continuous global basis function by glueing local shape function

on adjacent cells, entails a smart choice of the local shape functions.

This section will demonstrate how the policy (2.8.2.1) together with the formula (2.8.1.6) will enable us to

extend Lagrangian finite element constructions beyond the meshes discussed in Section 2.6.

Fig. 154

✁ quadrilateral meshM in 2D

What is “S0
1 (M)”?

So far we know Lagrangian finite elements only on

rectangles, see Section 2.6.2, for which the local

spaces are given by Qp(K) (→ Def. 2.6.2.5).

What to do on general quadrilaterals?
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§2.8.2.2 (Bilinear transformations) It is clear that if K is a rectangle, K̂ the unit square, then there is

a unique affine transformation ΦK (→ Def. 2.7.5.13) with K = ΦK(K̂). In this case (2.8.1.6) holds for

the local shape functions of bilinear Lagrangian finite elements from Ex. 2.6.2.1 (and all tensor product

Lagrangian finite elements introduced in Section 2.6.2)!

Now we turn (2.8.1.6) upside down!

Principle of constructing of parametric finite elements

Idea:
✦ local shape functions

“glueing”−−−−→ global shape functions

✦ Build local shape functions by “inverse pullback”

bi
K = (Φ−1

K )∗b̂i , (2.8.2.4)

where

{
b̂i
}Q

i=1
=̂ set of shape functions on reference element K̂.

➣ This idea instantly begs the question: What is ΦK for a general quadrilateral?

Fig. 155

Affine
mapping

x̂1

x̂2

â1 â2

â3â4

ΦK

unit square K̂ parallelogram

Affine transformations fail to produce gen-

eral quadrilaterals from a square. They

only give parallelograms.

It takes bilinear transformations to ob-

tain a generic quadrilateral from the unit

square!
Fig. 156

mapping
bilinear

x̂1

x̂2

â1
â2

â3â4

a1

a2

a3

a4

ΦK

unit square K̂ quadrilateral K

The following formula describes a bilinear transformation of unit square to quadrilateral with vertices ai,

i = 1, 2, 3, 4:

ΦK(x̂) = (1− x̂1)(1− x̂2) a1 + x̂1(1− x̂2) a2 + x̂1x̂2 a3 + (1− x̂1)x̂2 a4 . (2.8.2.5)

⇓

ΦK(x̂) =

[
α1 + β1x̂1 + γ1x̂2 + δ1x̂1x̂2

α2 + β2x̂1 + γ2x̂2 + δ2x̂1x̂2

]
, for some αi, βi, γi, δi ∈ R .

The mapping property ΦK(â
i) = ai is evident. In order to see ΦK(K̂) = K (K̂ =̂ unit square) for (2.8.2.5),

verify that ΦK maps all parallels to the coordinate axes to straight lines.

Moreover, a simple computation establishes:
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If K̂ is the unit square, ΦK : K̂ 7→ K a bilinear transformation, and b̂i the bilinear local shape functions

(2.6.2.3) on K̂,

then (Φ−1
K )∗b̂i are linear on the edges of K.

y

§2.8.2.6 (Glueing of local shape functions on quadrilateral meshes) The last observation in § 2.8.2.2

makes possible the “glueing” of local shape functions obtained by inverse pullback from a nodal basis of

Q1(K̂) on the unit square K̂. We give a detailed explanation:

Fig. 157

K

K̃

e

x

i

j

y

➊ Pick a vertex x ∈ V(M) and consider an ad-

jacent quadrilateral K, on which there is a local

shape function bi
K such that bi

K(x) = 1 and bi
K

vanishes on all other vertices of K. This local

shape function is obtained by inverse pullback

of the b̂i associated with Φ
−1
K (x).

➋ The same construction can be carried out for

another quadrilateral K̃ that shares the vertex

x and an edge e with K. On that quadrilateral

we find the local shape function b
j

K̃

➌ Both bi
K |e and b

j

K̃ |e are linear and attain the same values, that is 0 and 1 at the endpoints x and y

of e, respectively.

bi
K |e = b

j

K̃ |e

Continuity of global shape function (defined by interpolation conditions at nodes)

y

Remark 2.8.2.7 (Non-polynomial “bilinear” local shape functions) Note that the components of Φ
−1
K

are not polynomial even if ΦK is a bilinear transformation (2.8.2.5).

The local shape functions bi
K defined by (2.8.2.4), where ΦK is a bilinear transformation and b̂i are

the bilinear local shape functions on the unit square, are not polynomial in general.

Visualization of local shape functions on trapezoidal cell K := convex
{[

0
0

]
,
[

3
0

]
,
[

2
1

]
,
[

1
1

]}
:
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y

Remark 2.8.2.8 (Parametric bilinear finite elements in LEHRFEM++) In LEHRFEM++ the implementa-

tion lf::geometry::QuadO1 of the interface lf::geometry::Geometry supplies general quadrilaterals with

straight edges, whose shape is defined by specifying the location of the four vertices, passed as columns

of a matrix to the constructor:

lf::geometry::QuadO1(

Eigen::Matrix<double, Eigen::Dynamic, 4> coords);

The transformation ΦK is implemented in the Global() member function is listed in Code 2.8.2.9. The

coordinates of points in the reference element are made available as the column of a matrix in order to sup-

port modest vectorization. The member variable coords_ is a matrix containing the vertex coordinates

in its columns.

C++ code 2.8.2.9: Global() member function of lf::geometry::QuadO1 ➺ GITHUB

2 Eigen : : MatrixXd QuadO1 : : Global ( const Eigen : : MatrixXd& l o c a l ) const {

3 LF_ASSERT_MSG( l o c a l . rows ( ) == 2 , " reference coords must be 2−vectors " ) ;

4 // Componentwise bilinear transformation from unit square in a

5 // vectorized fashion.

6 // Note the use of array and matrix views offered by Eigen.

7 return coords_ . col ( 0 ) *
8 ( ( 1 − l o c a l . array ( ) . row ( 0 ) ) * (1 − l o c a l . array ( ) . row ( 1 ) ) )

9 . matrix ( ) +

10 coords_ . col ( 1 ) *
11 ( l o c a l . array ( ) . row ( 0 ) * (1 − l o c a l . array ( ) . row ( 1 ) ) ) . matrix ( ) +

12 coords_ . col ( 2 ) *
13 ( l o c a l . array ( ) . row ( 0 ) * l o c a l . array ( ) . row ( 1 ) ) . matrix ( ) +

14 coords_ . col ( 3 ) *
15 ( ( 1 − l o c a l . array ( ) . row ( 0 ) ) * l o c a l . array ( ) . row ( 1 ) ) . matrix ( ) ;

16 }

y

2.8.3 Transformation Techniques

In the previous section we already generalized the notion of affine equivalent finite element spaces from

Section 2.8.1. Now we make this a universal concept and introduce the parametric construction of finite

elements. Lagrangian finite elements can also be obtained this way.✞
✝

☎
✆“Bilinear” Lagrangian finite elements = a specimen of parametric finite elements
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Definition 2.8.3.1. Parametric finite elements

A finite element space on a meshM is called parametric, if there exist a few reference elements

K̂1, . . . , K̂R, R ∈ N, numbers Qr ∈ N, and functions b̂i
r ∈ C0(K̂), i = 1, . . . , Qr, r = 1, . . . , R,

such that

∀K ∈ M: ∃ r ∈ {1, . . . , R}, bijection ΦK : K̂ 7→ K: b̂i
r = Φ

∗
Kbi

K, i = 1, . . . , Qr ,

where {b1
K, . . . , bQ

K } is the set of local shape functions on K.

For 2D hybrid meshes as commonly used in LEHRFEM++, Def. 2.8.3.1 applies with R = 2, and K̂1 the

“reference triangle” (topological cell type TRIA), K̂2 the unit square (topological cell type QUAD), see also

§ 2.7.2.9.

Remark 2.8.3.2 (Non-degenerate parametric mappings) The inconspicuous requirement that

ΦK : K̂ → K is bijective may not be easy to meet or even to check for simple constructions. An “almost

equivalent” requirement is that detDΦK does not change sign.

Assumption 2.8.3.3. Non-degeneracy of ΦK

For a parametric finite element method on a meshM we assume that

∀K ∈ M: ∃δK > 0: detDΦK(x̂) ≥ δK ∀x̂ ∈ K̂ . (2.8.3.4)

y

Remark 2.8.3.5. This definition takes the possibility of “glueing” for granted: the concept of a

local shape function, see (2.5.3.5), implies the existence of a global shape function with the right conti-

nuity properties (C0-continuity for H1(Ω)-conforming finite element spaces). y

It turns out that parametric finite elements offer huge algorithmic benefits, which we elaborate now in the

case of a generic elliptic 2nd-order variational Dirichlet problem

u ∈ H1(Ω) ,

u = g on ∂Ω
:
∫

Ω

(α(x) grad u(x)) · grad v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0(Ω) . (1.4.2.4)

§2.8.3.6 (Local computations for parametric finite elements) We focus on the computation of

element (stiffness) matrices and element (load) vectors (→ Def. 2.7.4.5), a key step in the set-up of the

Galerkin matrix and right hand side vector.

Both challenges and opportunities arise from the implicit definition of the local local shape functions bi
K

via the pullback (→ Def. 2.8.1.2) of local shape functions b̂i on the reference element (R = 1 assumed in

Def. 2.8.3.1, index r suppressed):

bi
K = (Φ−1

K )∗b̂i ⇔ b̂i = Φ
∗
Kbi

K , i = 1, . . . , Q .

This formula can result in very complicated or even elusive closed-form expressions for the local shape

functions bi
K. Consequently, their evaluation or that of their gradients in quadrature points might not be

possible immediately. This problem is solved by transformation to the reference element.
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Known: transformation ΦK : K̂ 7→ K from reference element K̂.

Idea: use transformation to K̂ to compute element stiffness matrix AK, and

element load vector ~ϕK:

We elaborate the details for the variational problem (1.4.2.4). In this case the formulas for entries of

element matrices AK and element vectors ~ϕK are, i, j = 1, . . . , Q,

(AK)ij =
∫

K
α(x) grad b

j
K(x) · grad bi

K(x)dx

=
∫

K̂
(Φ∗Kα)(x̂)(Φ∗K(grad b

j
K)︸ ︷︷ ︸

= ?

)(x̂) · (Φ∗K(grad bi
K)︸ ︷︷ ︸

= ?

)(x̂) |det DΦK(x̂)|dx̂ ,

(~ϕK)i =
∫

K
f (x)bi

K(x)dx =
∫

K̂
(Φ∗K f )(x̂) b̂i(x̂) |det DΦK(x̂)|dx̂ ,

by the transformation formula (for multidimensional integrals, see also (0.3.2.32))

∫

K
ϕ(x)dx =

∫

K̂
(Φ∗K ϕ)(x̂)|det DΦK(x̂)|dx̂ for integrable ϕ : K 7→ R . (2.8.3.7)

Recall the notation Φ
∗
K f for the pullback (→ Def. 2.8.1.2) of a function to K̂:

(Φ∗Ku)(x̂) := u(ΦK(x̂)) , x̂ ∈ K̂ .

By now, all integrals have been transformed to the reference element K̂, where we can now apply a

quadrature formula:

∫

K̂
f̂ (x̂)dx̂ ≈

P

∑
l=1

ω̂l f̂ (ζ̂l) , ζ̂l ∈ K̂, ω̂l ∈ R , (2.7.5.23)

which, as in § 2.7.5.21, can be combined with (2.8.3.7):

∫

K
f (x)dx ≈

P

∑
l=1

ω̂l f (ΦK(ζ̂l)) |det DΦK(ζ̂l)| . (2.8.3.8)

Thus, we get the following approximation of an entry of the right-hand side vector:

(~ϕK)i ≈
P

∑
ℓ=1

ω̂ℓ f (ΦK(ζ̂ℓ)) b̂i(ζ̂ℓ) |det DΦK(ζ̂ℓ)| . (2.8.3.9)

Required information and evaluations:

• values b̂i(ζ̂l), i = 1, . . . , Q, l = 1, . . . , P,

• gradients Φ
∗(grad bi

K) at quadrature nodes ζ̂l ∈ K̂ !?

• metric factors at quadrature nodes in K̂: det DΦK(ζ̂l)

• values α(ΦK(ζ̂l)) ∈ Rd,d and f (ΦK(ζ̂l)) ∈ R from point evaluations of functions α : Ω →
Rd,d, f : Ω→ R.

y

The gradients seem to pose a problem (!?) as bi
K may be elusive, cf. Rem. 2.8.2.7! Fortunately we

can compute them from the gradients of the local shape functions b̂j on the reference element using the

formulas given in the next lemma.
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Lemma 2.8.3.10. Transformation formula for gradients

For differentiable u : K 7→ R and any diffeomorphism Φ : K̂ 7→ K we have

(gradx̂(Φ
∗u))(x̂) = (DΦ(x̂))⊤ (gradx u)(Φ(x̂))︸ ︷︷ ︸

=Φ
∗(grad u)(x̂)

∀x̂ ∈ K̂ . (2.8.3.11)

Proof. Use the chain rule to compute components of the gradient vector

(grad Φ
∗u(x̂))i =

∂Φ
∗u

∂x̂i
(x̂) =

∂

∂x̂i
u(Φ(x̂)) =

d

∑
j=1

∂u

∂xj
(Φ(x̂))

∂Φj

∂x̂i
(x̂) .




∂Φ
∗u

∂x̂1
(x̂)

...

∂Φ
∗u

∂x̂d
(x̂)



= (gradx̂ Φ

∗u)(x̂) = DΦ(x̂)⊤




∂u

∂x1
(Φ(x̂))

...
∂u

∂xd
(Φ(x̂))



= DΦ(x̂)⊤(gradx u)(Φ(x̂)) .

Here, DΦ(x̂) ∈ Rd,d is the Jacobian of Φ at x̂ ∈ K̂, according to the general formula from § 0.3.2.15:

Df(x) ↔ Df(x) =

[
∂ fi

∂xj
(x)

]d

i,j=1

=




∂ f1
∂x1

(x) ∂ f1
∂x2

(x) · · · · · · ∂ f1
∂xd

(x)
∂ f2
∂x1

(x) ∂ f2
∂xd

(x)
...

...
∂ fd
∂x1

(x) ∂ fd
∂x2

(x) · · · · · · ∂ fd
∂xd

(x)



∈ Rd,d , (0.3.2.16)

see also [STRLN09].
✷

Using Lemma 2.8.3.10 we arrive at a tractable expression for the entries of the element matrix:

(AK)ij =
∫

K̂
(α(Φ(x̂))(DΦ)−⊤ grad b̂i) · ((DΦ)−⊤ grad b̂j)|detDΦ|dx̂

=
∫

K̂
((DΦ)−1α(Φ(x̂))(DΦ)−⊤) grad b̂i · grad b̂j|detDΦ|dx̂ .

(2.8.3.12)

Note that the argument x̂ is suppressed for some terms in the integrand.

✎ notation: for matrix S write S−⊤ :=
(
S−1

)⊤
=
(
S⊤
)−1

The next step is the approximation of (2.8.3.12) by means of a quadrature rule (2.7.5.10) on K̂

∫

K̂
f (x̂)dx̂ ≈

P

∑
ℓ=1

ω̂ℓ f (ζ̂ℓ) , (2.7.5.23)

which yields

(AK)ij ≈
P

∑
ℓ=1

ω̂ℓ α(Φ(ζ̂ℓ))(DΦ(ζ̂ℓ))
−⊤ grad b̂i(ζ̂ℓ))·

((DΦ(ζ̂ℓ))
−⊤ grad b̂j(ζ̂ℓ)) |detDΦ(ζ̂ℓ)|

=
P

∑
ℓ=1

ω̂ℓ (MK(ζ̂ℓ) grad b̂i(ζ̂ℓ)) · grad b̂j(ζ̂ℓ)|detDΦ(ζ̂ℓ)| ,

with MK(x̂) := (DΦ)−1(x̂)α(Φ(x̂))(DΦ)−⊤(x̂) , x̂ ∈ K̂ .

(2.8.3.13)
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The vectors grad b̂i(ζ̂l) are easily computed, since the local shape functions b̂i will usually be simple

polynomials. In addition, they are independent of K, so they can be precomputed and stored in a table.

The same holds for the numbers |detDΦ(ζ̂l)|.
§2.8.3.14 (LEHRFEM++ support for transformation of gradients) From (2.8.3.12) and (2.8.3.13) we

see that DΦ(x̂)−⊤ for a few (quadrature) points x̂ ∈ K̂ is required for the computation of entries of element

matrices. LEHRFEM++ supplies this matrix through a function of lf::geometry::Geometry:

Eigen::MatrixXd lf::geometry::Geometry::JacobianInverseGramian(const

Eigen::MatrixXd &local) const;

This function takes a n× P-matrix argument local (n ∈ N as returned from

ent.Geometry()->DimLocal() for an lf::mesh::Entity object ent), whose columns provide

P point coordinates ζ̂l, l = 1, . . . , P, in the reference element as explained in § 2.7.2.21.

We focus on the case DimLocal()== DimGlobal, that is n = d. Then the function returns the P
inverses of the transposed Jacobian, horizontally concatenated into a big d× (P · d) matrix. The d× d

matrix DΦ(ζ̂l)
−⊤ can be fetched by the statement

Eigen::MatrixXd JTinv =

ent.Geometry()->JacobianInverseGramian(local).block(0,l*d,d,d);

Fig. 158

d

(l − 1)d d (P− l)d
DΦ(ζ̂l)

−⊤
y

§2.8.3.15 (Local computations for parametric finite elements, § 2.8.3.6 cnt’d) In light of the formula

(AK)ij ≈
P

∑
l=1

ω̂l (MK(ζ̂l) grad b̂i(ζ̂l)) · grad b̂j(ζ̂l)|detDΦ(ζ̂l)| ,

with MK(x̂) := (DΦ)−1(x̂)α(Φ(x̂))(DΦ)−⊤(x̂) , x̂ ∈ K̂ .

(2.8.3.13)

we find that for a scalar parametric H1(Ω)-conforming finite element method for a second-order elliptic

boundary value problem using a fixed mapped quadrature rule with nodes ζ̂l ∈ K̂, l = 1, . . . , P,

(I) the following quantities can be pre-computed for all cells:

• the P ·Q values b̂i(ζ̂l) ∈ R, i = 1, . . . , Q, l = 1, . . . , P,

• and the P ·Q vectors grad b̂i(ζ̂l) ∈ Rd, i = 1, . . . , Q, l = 1, . . . , P,

In LEHRFEM++ this information is precomputed and provided by objects of type

lf::uscalfe::PrecomputedScalarReferenceFiniteElement.

(II) Conversely, the following evaluations have to be done for every cell K separately:

• the computation of ΦK(ζ̂l), l = 1, . . . , P
(by lf::mesh::Geometry::Global() in LEHRFEM++),

• the calculation of of |detDΦK(ζ̂l)|, l = 1, . . . , P
(by lf::mesh::Geometry::IntegrationElement() in LEHRFEM++),
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• the evaluations of DΦK(ζ̂l)
−⊤, l = 1, . . . , P

(by lf::mesh::Geometry::JacobianInverseGramian() in LEHRFEM++).

If we assume a parametric construction matching Def. 2.8.3.1, need to know surprising little about the

finite element space.

Information defining a H1(Ω)-conforming parametric finite element

In order to define a H1(Ω)-conforming parametric finite element in a finite element code we have

to implement for all reference elements and i = 1, . . . , Q
(i) a function realizing x̂ 7→ b̂i(x̂), x ∈ K̂,

(ii) and the evaluation x̂ 7→ grad b̂i(x̂), x ∈ K̂.

y

EXAMPLE 2.8.3.17 (Cell-dependent evaluations for bilinear transformations) In Section 2.8.2 we

saw that it takes a general bilinear transformation (2.8.2.5) to map a square onto a general quadrilateral

cell, see Fig. 156 on page 283. It turned out that these bilinear mappings are key to defining parametric

Lagrangian finite elements on general quadrilaterals.

In order to compute the element (stiffness) matrices according to (2.8.3.13), we have to evaluate the

Jacobians for bilinear transformations R2 → R2 and their determinants. This can be done through the

following formulas:

For Φ(x̂) =

[
α1 + β1x̂1 + γ1x̂2 + δ1x̂1x̂2

α2 + β2x̂1 + γ2x̂2 + δ2x̂1x̂2

]
, αi, βi, γi, δi ∈ R , (2.8.3.18a)

⇒ DΦ(x̂) =

[
β1 + δ1x̂2 γ1 + δ1x̂1

β2 + δ2x̂2 γ2 + δ2x̂1

]
, (2.8.3.18b)

⇒ det(DΦ(x̂))= β1γ2 − β2γ1 + (β1δ2 − β2δ1)x̂1 + (δ1γ2 − δ2γ1)x̂2 . (2.8.3.18c)

Note that both DΦ(x̂) and det(DΦ(x̂)) are (componentwise) linear functions in x.

If Φ = ΦK for a generic quadrilateral K with corners aℓ, ℓ = 1, 2, 3, 4, as in (2.8.2.5), then the coefficients

αi, βi, γ1, δi depend on the shape of K in a straightforward fashion:

[
α1

α2

]
= a1 ,

[
β1

β2

]
= a2 − a1 ,

[
γ1

γ2

]
= a4 − a1 ,

[
δ1

δ2

]
= a3 − a2 − a4 + a1 . (2.8.3.19)

The formulas (2.8.3.18a)–(2.8.3.18c) and (2.8.3.19) are directly implemented in the member functions

of lf::geometry::QuadO1, see Rem. 2.8.2.8. For details refer to the following listings. In each case,

coordinates of points in the unit square K̂ are passed as columns of a matrix in order to allow vectorization.

C++ code 2.8.3.20: Member function Jacobian() of lf::geometry::QuadO1, see (2.8.3.18b)

➺ GITHUB

2 Eigen : : MatrixXd QuadO1 : : Jacobian ( const Eigen : : MatrixXd& l o c a l ) const {

3 Eigen : : MatrixXd r e s u l t ( DimGlobal ( ) , l o c a l . cols ( ) * 2) ;

4

5 // Note that coords_ stores the coordinates of the vertices of

6 // the quadrilateral in its columns.

7 for ( Eigen : : Index i = 0 ; i < l o c a l . cols ( ) ; ++ i ) {

8 // Partial derivative of componentwise bilinear mapping

9 // w.r.t. to first reference coordinate

10 r e s u l t . col (2 * i ) = ( coords_ . col ( 1 ) − coords_ . col ( 0 ) ) * (1 − l o c a l (1 , i ) ) +

11 ( coords_ . col ( 2 ) − coords_ . col ( 3 ) ) * l o c a l (1 , i ) ;

12 // Partial derivative of componentwise bilinear mapping
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13 // w.r.t. to second reference coordinate

14 r e s u l t . col (2 * i + 1) =

15 ( coords_ . col ( 3 ) − coords_ . col ( 0 ) ) * (1 − l o c a l (0 , i ) ) +

16 ( coords_ . col ( 2 ) − coords_ . col ( 1 ) ) * l o c a l (0 , i ) ;

17 }

18 return r e s u l t ;

19 }

C++ code 2.8.3.21: Member function JacobianInverseGramian() of

lf::geometry::QuadO1 ➺ GITHUB

2 Eigen : : MatrixXd QuadO1 : : JacobianInverseGramian (

3 const Eigen : : MatrixXd& l o c a l ) const {

4 Eigen : : MatrixXd r e s u l t ( DimGlobal ( ) , l o c a l . cols ( ) * 2) ;

5 Eigen : : MatrixXd j acob ian ( DimGlobal ( ) , 2) ;

6

7 // Loop over all evaluatin points

8 for ( Eigen : : Index i = 0 ; i < l o c a l . cols ( ) ; ++ i ) {

9 // Compute Jacobian matrix in one evaluation point.

10 j acob ian . col ( 0 ) = ( coords_ . col ( 1 ) − coords_ . col ( 0 ) ) * (1 − l o c a l (1 , i ) ) +

11 ( coords_ . col ( 2 ) − coords_ . col ( 3 ) ) * l o c a l (1 , i ) ;

12 j acob ian . col ( 1 ) = ( coords_ . col ( 3 ) − coords_ . col ( 0 ) ) * (1 − l o c a l (0 , i ) ) +

13 ( coords_ . col ( 2 ) − coords_ . col ( 1 ) ) * l o c a l (0 , i ) ;

14 // Distinguish whether the cell lies in a planar mesh or a surface
mesh

15 i f ( DimGlobal ( ) == 2) {

16 // Standard case: 2D planar mesh

17 // Eigen has a built-in function for computing the inverse of a
small

18 // matrix

19 r e s u l t . block (0 , 2 * i , DimGlobal ( ) , 2) = jacob ian . transpose ( ) . inverse ( ) ;

20 } else {

21 r e s u l t . block (0 , 2 * i , DimGlobal ( ) , 2) = ( jacob ian . transpose ( ) * jacob ian )

22 . colPivHouseholderQr ( )

23 . solve ( jacob ian . transpose ( ) )

24 . transpose ( ) ;

25 }

26 }

27 return r e s u l t ;

28 }

C++ code 2.8.3.22: Member function IntegrationElement() of lf::geometry::QuadO1,

see (2.8.3.18c) ➺ GITHUB

2 Eigen : : VectorXd QuadO1 : : IntegrationElement ( const Eigen : : MatrixXd& l o c a l ) const {

3 Eigen : : VectorXd r e s u l t ( l o c a l . cols ( ) ) ;

4 Eigen : : MatrixXd j acob ian ( DimGlobal ( ) , 2) ;

5

6 // Loop over all evaluatin points

7 for ( Eigen : : Index i = 0 ; i < l o c a l . cols ( ) ; ++ i ) {

8 // Compute Jacobian matrix in one evaluation point.

9 j acob ian . col ( 0 ) = ( coords_ . col ( 1 ) − coords_ . col ( 0 ) ) * (1 − l o c a l (1 , i ) ) +

10 ( coords_ . col ( 2 ) − coords_ . col ( 3 ) ) * l o c a l (1 , i ) ;

11 j acob ian . col ( 1 ) = ( coords_ . col ( 3 ) − coords_ . col ( 0 ) ) * (1 − l o c a l (0 , i ) ) +

12 ( coords_ . col ( 2 ) − coords_ . col ( 1 ) ) * l o c a l (0 , i ) ;

13 // For planar cell, simply the determinant, for a cell in 3D space,
the

14 // volume form
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15 i f ( DimGlobal ( ) == 2) {

16 r e s u l t ( i ) = std : : abs ( jacob ian . determinant ( ) ) ;

17 } else {

18 r e s u l t ( i ) = std : : s q r t ( ( jacob ian . transpose ( ) * jacob ian ) . determinant ( ) ) ;

19 }

20 }

21 return r e s u l t ;

22 }

y

Remark 2.8.3.23 (Finite element methods on surfaces) In Code 2.8.3.21 and Code 2.8.3.22 the “world

dimension” of the cell is tested by calling the DimGlobal() member function of the entity. The standard

case of cells of a 2D planar mesh is DimGlobal()== 2.

However, DimGlobal()== 3 is possible. In this case we have 2D quadrilateral in 3D space. In this

case we have to deal with a mapping ΦK : K̂ ⊂ R2 → K ⊂ R3 and its Jacobian will be a 3× 2-matrix:

DΦK(x̂) ∈ R3,2.

Then the member function IntegrationElement() has to implement the metric factor from the trans-

formation formula for surface integrals, cf. (0.3.2.34),

∫

K

ϕ(x)dS(x) =
∫

K̂
ϕ(ΦK(x̂))

√
det(DΦ

⊤
K (x̂)DΦK(x̂))dx̂ , f ∈ C0(K) . (2.8.3.24)

This accounts for the formula implemented in Code 2.8.3.22.

LEHRFEM++’s capability to handle meshes covering 2D surfaces in three-dimensional space paves the

ways for solving PDEs on surfaces. Those frequently occur in biological models (diffusion on a membrane)

and meteorological simulations (fluid flow on the surface of the globe).

The following pictures exhibit meshes describing the surface of a torus.

Fig. 159 Fig. 160

A LEHRFEM++ demo showing the creation of a mesh describing a toroidal surface in 3D is available.

➺ GITHUB. y

§2.8.3.25 (Interface for scalar-valued parametric finite in LEHRFEM++) Motivated by the insights

gleaned in § 2.8.3.15 the LEHRFEM++ class lf::fe::ScalarReferenceFiniteElement defines a general

interface for defining scalar parametric finite elements. Among others, it provides the member functions

• base::RefEl ScalarReferenceFiniteElement::RefEl() const;

unsigned i n t ScalarReferenceFiniteElement::Degree() const;

which provide the topological type of the associated entity and the polynomial degree of the local

finite element space.
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• size_type ScalarReferenceFiniteElement::NumRefShapeFunctions()

const;

size_type ScalarReferenceFiniteElement::NumRefShapeFunctions(

dim_t codim) const;

size_type ScalarReferenceFiniteElement::NumRefShapeFunctions(

dim_t codim, sub_idx_t subidx) const;

which tell the number Q of local shape functions, either covering the whole entity or some sub-entity.

• Eigen::Matrix<SCALAR, Eigen::Dynamic, Eigen::Dynamic>

ScalarReferenceFiniteElement::EvalReferenceShapeFunctions(

const Eigen::MatrixXd& refcoords) const;

which performs the evaluation x̂ 7→ b̂i(x̂) for all i and all the P points ∈ K̂, whose coordinates are

passed through the columns of refcoords. It returns a Q× P-matrix with the values.

• Eigen::Matrix<SCALAR, Eigen::Dynamic, Eigen::Dynamic>

ScalarReferenceFiniteElement::GradientsReferenceShapeFunctions(

const Eigen::MatrixXd& refcoords) const;

meant for computing x̂ 7→ grad b̂i(x̂), at the P points passed in refcoords. The gradients

for all i are returned packed into the rows of an Q× (Pn)-matrix, n the dimension of K̂: If

refcoords = [x̂1, . . . , x̂P]
⊤

, and b̂1, . . . , b̂Q are the reference shape functions, then the returned

matrix is




(
grad b̂1(x̂1)

)⊤
. . .

(
grad b̂1(x̂P)

)⊤

...
...(

grad b̂Q(x̂1)
)⊤

. . .
(

grad b̂Q(x̂P)
)⊤


 ∈ RQ,Pn .

Another group of member functions of lf::fe::ScalarReferenceFiniteElement is meant to support the

definition of “nodal” interpolation operators. An in-depth discussion will be postponed to Chapter 3, see

Def. 3.3.2.1 for a particular example, and § 3.3.5.2 for the case of Lagrangian finite elements of degree

p ∈ N.

For parametric scalar-valued finite element schemes, these nodal interpolation operators are first defined

on the reference elements and they rely on Q, Q ∈ N the number of reference shape functions, refer-

ence interpolation nodes (also known as “evaluation nodes”) p̂1, . . . , p̂Q ∈ K̂. Concretely, one defines

reference nodal interpolation operators as mappings

Î : RQ → V̂ := Span{b̂1, . . . , b̂Q} , (2.8.3.26)

such that

I(~η)(p̂k) = (~η)k , ∀~η ∈ RQ , k = 1, . . . , Q . (2.8.3.27)

The involved member functions of lf::fe::ScalarReferenceFiniteElement are

• Eigen::MatrixXd ScalarReferenceFiniteElement::EvaluationNodes()

const;

which returns the reference coordinates of the interpolation nodes p̂ℓ, ℓ = 1, . . . , Q, as the columns

of an d×Q matrix, where d is the dimension of K̂.
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• lf::assemble::size_type NumEvaluationNodes() const;

which gives the number Q of evaluation nodes.

• Eigen::Matrix<SCALAR, 1, Eigen::Dynamic>

ScalarReferenceFiniteElement::NodalValuesToDofs(

const Eigen::Matrix<SCALAR, 1, Eigen::Dynamic>& nodvals) const;

returns the vector of {b̂k}-basis expansion coefficients for Î(nodvals):

Î(nodvals) =
Q

∑
k=1

NodalValuesT!oDofs(nodvals)[k] · b̂k ,

m

nodvals[i] =
Q

∑
k=1

NodalValuesToDofs(nodvals)[k] · b̂k(pi) , i = 1, . . . , Q ,

with Î defined in (2.8.3.26) and (2.8.3.27).

Note that NodalValuesToDofs() just returns its argument row-vector, if the reference shape functions

b̂ℓ are a cardinal basis with respect to the reference interpolation nodes p̂ℓ, that is, satisfy b̂i(p̂j) = δi,j,

i, j ∈ {1, . . . , Q}.
We point out that a lf::fe::ScalarReferenceFiniteElement object can be created for any type of

entity, in particular also for entities of topological type EDGE. The type of entity to which an

lf::fe::ScalarReferenceFiniteElement object belongs can be queried through the member function

lf::fe::ScalarReferenceFiniteElement::RefEl().

The LEHRFEM++ library implements the lf::fe::ScalarReferenceFiniteElement interface for lowest-order

(“linear”) Lagrangian finite elements, that is, the spaces S0
1 (M) on hybrid 2D meshesM, in the following

classes

• lf::uscalfe::FeLagrangeO1Tria (barycentric coordinate functions, Q = 3)

• lf::uscalfe::FeLagrangeO1Quad (local shape functions (2.6.2.3), Q = 4)

• lf::uscalfe::FeLagrangeO1Segment (local shape functions as in Ex. 2.5.3.7, Q = 2)

Here, Q ∈ N stands for the number returned by the virtual method

lf::uscalfe::ScalarReferenceFiniteElement:: NumRefShapeFunctions().

y

§2.8.3.28 (Simple scalar-valued parametric “finite element spaces” in LEHRFEM++) If the local shape

functions for a scalar-valued parametric finite element method are specified, the definition of the finite

element space is complete! Thus giving lf::fe::ScalarReferenceFiniteElement objects for every type of

entity of a mesh is sufficient information for the initialization of lf::assemble::DofHandler objects in charge

of local→global index mappings for shape functions.

This is essentially the purpose of the LEHRFEM++ interface lf::uscalfe::UniformScalarFESpace,

whose constructor takes a (pointer to) an lf::mesh::Mesh object and suitable

lf::fe::ScalarReferenceFiniteElement objects to build the appropriate lf::assemble::DofHandler

objects and stores them in member data variables.

templace<SCALAR>

UniformScalarFESpace<SCALAR>::

UniformScalarFESpace(

std::shared_ptr<const lf::mesh::Mesh> mesh_p,
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std::shared_ptr<const ScalarReferenceFiniteElement<SCALAR>>

rfs_tria_p,

std::shared_ptr<const ScalarReferenceFiniteElement<SCALAR>>

rfs_quad_p,

std::shared_ptr<const ScalarReferenceFiniteElement<SCALAR>>

rfs_edge_p);

Any lf::fe::ScalarReferenceFiniteElement argument is optional and a nullptr may be given.

The main member functions of lf::uscalfe::UniformScalarFESpace are:

• std::shared_ptr<const lf::mesh::Mesh>

lf::uscalfe::UniformScalarFESpace<SCALAR>::

Mesh();

which returns a pointer to the underlying mesh.

• const lf::assemble::DofHandler &

lf::uscalfe::UniformScalarFESpace<SCALAR>::

LocGlobMap();

which returns a reference to the lf::assemble::DofHandler object for the finite element space.

• std::shared_ptr<const ScalarReferenceFiniteElement<SCALAR>>

lf::uscalfe::UniformScalarFESpace<SCALAR>::

ShapeFunctionLayout(lf::base::RefEl rel_el_type);

which gives the lf::fe::ScalarReferenceFiniteElement object for a particular type of entity.

In general, the interface lf::uscalfe::UniformScalarFESpace is a convenient way to initialize

lf::assemble::DofHandler objects for parametric scalar-valued finite element methods.

A concrete implementation is given by lf::uscalfe::FeSpaceLagrangeO1 for lowest-order Lagrangian fi-

nite element spaces S0
1 (M) on hybrid 2D meshes, see Section 2.6. y

EXAMPLE 2.8.3.29 (Computing element matrices for parametric FEM in LEHRFEM++) LEHRFEM++

comes with a class dedicated to the computation of element matrices (→ Def. 2.7.4.5) for the bilinear

form

a(u, v) =
∫

Ω

α(x) grad u · grad v + γ(x)u v dx , u, v ∈ H1(Ω) , (2.8.3.30)

and a general scalar-valued parametric finite element method according to Def. 2.8.3.1, whose reference

shape functions are defined via objects of type lf::fe::ScalarReferenceFiniteElement, see § 2.8.3.25.

Here α : Ω→ R2,2 is a matrix-valued diffusion coefficient, and γ : Ω→ R a reaction coefficient, both

given in procedural form through functor object.

The key type is lf::uscalfe::ReactionDiffusionElementMatrixProvider which complies with

LEHRFEM++’s concept of an ENTITY_MATRIX_PROVIDER. Its constructor is specified as follows:

template <typename SCALAR, typename DIFF_COEFF, typename

REACTION_COEFF>

ReactionDiffusionElementMatrixProvider<SCALAR, DIFF_COEFF,

REACTION_COEFF>::

ReactionDiffusionElementMatrixProvider(

std::shared_ptr<UniformScalarFESpace<SCALAR>> fe_space,

DIFF_COEFF alpha, REACTION_COEFF gamma, quad_rule_collection_t

qr_collection);

2. Finite Element Methods (FEM), 2.8. Parametric Finite Element Methods 274

https://craffael.github.io/lehrfempp/classlf_1_1fe_1_1_scalar_reference_finite_element.html
https://craffael.github.io/lehrfempp/classlf_1_1uscalfe_1_1_uniform_scalar_f_e_space.html
https://craffael.github.io/lehrfempp/classlf_1_1assemble_1_1_dof_handler.html
https://craffael.github.io/lehrfempp/classlf_1_1fe_1_1_scalar_reference_finite_element.html
https://craffael.github.io/lehrfempp/classlf_1_1uscalfe_1_1_uniform_scalar_f_e_space.html
https://craffael.github.io/lehrfempp/classlf_1_1assemble_1_1_dof_handler.html
https://craffael.github.io/lehrfempp/classlf_1_1uscalfe_1_1_fe_space_lagrange_o1.html
https://craffael.github.io/lehrfempp/classlf_1_1fe_1_1_scalar_reference_finite_element.html
https://craffael.github.io/lehrfempp/classlf_1_1uscalfe_1_1_reaction_diffusion_element_matrix_provider.html


NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

The meaning of the fe_space argument is explained in § 2.8.3.28, the two functor arguments pass mesh

function objects. The last argument is a

using quad_rule_collection_t = std::map<lf::base::RefEl,

lf::quad::QuadRule>;

and, optionally, supplies a suitable lf::quad::QuadRule object (→ § 2.7.5.39) for every type of entity. Thus

the user can prescribe the local quadrature rules to be used for local computations.

Using the quadrature formula on the reference element

∫

K̂
f (x̂)dx̂ ≈

P

∑
ℓ=1

ω̂ℓ f (ζ̂ℓ) , (2.7.5.23)

the following implementation of the Eval() method implements the formula for the element matrix

AK ∈ RQ,Q:

(AK)ij =
P

∑
ℓ=1

ω̂ℓ

(
α(Φ(ζ̂ℓ))(DΦ(ζ̂ℓ))

−⊤ grad b̂i(ζ̂ℓ)) · ((DΦ(ζ̂ℓ))
−⊤ grad b̂j(ζ̂ℓ))+

γ(Φ(ζ̂ℓ))b̂
j(ζ̂ℓ)b̂

i(ζ̂ℓ)
)
|detDΦ(ζ̂ℓ)| ,

(2.8.3.13)

for i, j ∈ {1, . . . , Q} and with reference shape functions b̂1, . . . , b̂Q according to (2.8.2.4). This formula

can be rewritten after abbreviating

g
j
ℓ := (DΦ(ζ̂ℓ))

−⊤ grad b̂j(ζ̂ℓ) , ℓ ∈ {1, . . . , P} , j ∈ {1, . . . , Q} ,

G :=
[

g1
ℓ , . . . gQ

ℓ

]
∈ R2,Q :

AK =
P

∑
ℓ=1

ω̂ℓ

((
α(Φ(ζ̂ℓ))G

)⊤
G+

γ(Φ(ζ̂ℓ))




b̂1(ζ̂ℓ)
...

b̂Q(ζ̂ℓ)



[
b̂1(ζ̂ℓ) . . . b̂Q(ζ̂ℓ)

])
|detDΦ(ζ̂ℓ)| .

This formula is implemented in the highlighted code lines.

C++ code 2.8.3.31: Eval() method for LEHRFEM++ class

lf::uscalfe::ReactionDiffusionElementMatrixProvider ➺ GITHUB

1 template <typename SCALAR, typename DIFF_COEFF, typename REACTION_COEFF>

2 typename l f : : usca l fe : : Reac t ionDi f fus ionE lementMat r i xProv ider <

3 SCALAR, DIFF_COEFF, REACTION_COEFF> : : ElemMat const

4 React ionDi f fus ionE lementMat r i xProv ider <

5 SCALAR, DIFF_COEFF, REACTION_COEFF> : : Eval ( const l f : : mesh : : E n t i t y & c e l l ) {

6 // Topological type of the cell

7 const l f : : base : : RefEl r e f _ e l { c e l l . RefEl ( ) } ;

8 // Fetch precomputed quantities

9 PrecomputedScalarReferenceFini teElement <SCALAR> &pfe = //

10 fe_precomp_ [ r e f _ e l . Id ( ) ] ;

11 // Query the shape of the cell

12 const l f : : geometry : : Geometry * geo_ptr = c e l l . Geometry ( ) ;

13 // Physical dimension of the cell

14 const dim_t world_dim = geo_ptr −>DimGlobal ( ) ;

15 // Request Gramian determinants at quadrature points

16 const Eigen : : VectorXd determinants (

17 geo_ptr −> IntegrationElement ( pfe . Qr ( ) . Points ( ) ) ) ;
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18 // Fetch the transformation matrices for the gradients

19 const Eigen : : MatrixXd JinvT (

20 geo_ptr −>JacobianInverseGramian ( pfe . Qr ( ) . Points ( ) ) ) ;

21 // compute values of coefficients alpha, gamma at quadrature points:

22 auto a lphava l = alpha_ ( c e l l , pfe . Qr ( ) . Points ( ) ) ; //

23 auto gammaval = gamma_( c e l l , pfe . Qr ( ) . Points ( ) ) ; //

24

25 // For returning the element matrix

26 elem_mat_t mat ( pfe . NumRefShapeFunctions ( ) , pfe . NumRefShapeFunctions ( ) ) ;

27 mat . setZero ( ) ;

28

29 // Loop over quadrature points

30 for ( i n t k = 0; k < pfe . Qr ( ) . NumPoints ( ) ; ++k ) {

31 const double w = pfe . Qr ( ) . Weights ( ) [ k ] * determinants [ k ] ;

32 // Matrix G whose columns contain transformed gradients g
j
ℓ according

to (2.8.3.11)
33 const auto t r f _ g r a d ( JinvT . block (0 , 2 * k , world_dim , 2) *
34 pfe . PrecompGradientsReferenceShapeFunctions ( )

35 . block (0 , 2 * k , mat . rows ( ) , 2)

36 . transpose ( ) ) ;

37 // Transformed gradients multiplied with α coefficient

38 const auto a lpha_ t r f_g rad ( a lphava l [ k ] * t r f _ g r a d ) ; //

39 // Add low-rank contribution of current quadrature point

40 mat += w * ( a lpha_ t r f_g rad . transpose ( ) * t r f _ g r a d +

41 ( gammaval [ k ] * pfe . PrecompReferenceShapeFunctions ( ) . col ( k ) ) *
42 ( pfe . PrecompReferenceShapeFunctions ( ) . col ( k ) . transpose ( ) ) ) ;

43 }

44 return mat ;

45 }

• The template paramaters DIFF_COEFF and REACTION_COEFFICIENT must comply with the

MeshFunction concept, which requires that they supply the evaluation operator

std::vector <R> opera tor () (const lf::mesh::Entity &,

const::Eigen::MatrixXd &refcoords);

which takes an entity and coordinates of points in the corresponding reference element (packed into

the columns of the matrix refcoords→ § 2.7.2.21) as arguments and returns an array of objects

of some type R. The evaluation operators are called in Line 22 and Line 23.

For DIFF_COEFF the type T must be either a scalar or a type compatible with EIGEN’s matrix

arithmetic, that is, an Eigen::Matrix itself, because it has to support the matrix-matrix multiplication

of Line 38.

For REACTION_COEFFICIENT the return type T should be a simple scalar type like double of

complex<double>.

• Line 9: the class lf::uscalfe::PrecomputedScalarReferenceFiniteElement exploits the possibility

to pre-compute values of reference shape functions and their gradients, if a fixed local parametric

quadrature rule is used, see § 2.8.3.6.

The use of lf::uscalfe::ReactionDiffusionElementMatrixProvider to solve a second-order scalar elliptic

boundary value problem is demonstrated in an example code ➺ GITHUB. An analoguous helper class

dedicated to the computation of element load vectors is lf::fe::ScalarLoadElementVectorProvider. y

Supplement 2.8.3.32 (MeshFunction in LEHRFEM++) The LEHRFEM++ library knows the concept of a

MeshFunction, which describes a type

• templated with another type R that should be CopyAssignable and CopyConstructible,
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• offers an evaluation operator with signature

std::vector <R> opera tor()(const lf::mesh::Entity& e, const

Eigen::MatrixXd& local) const;

The local argument of operator() passes an d× n-matrix of reference coordinates, where d agrees

with the local dimension of the entity e and n the number of points in the reference entity, see also the

description of the lf:geometry::Global() method in § 2.7.5.17.

The evaluation operator returns an array of length n, representing the value of the MeshFunction at those

points in e whose local coordinates are given by the columns of the argument matrix local.

Special incarnations of mesh functions are:

• lf::mesh::utils::MeshFunctionGlobal wraps a functor object std::function<R(Eigen::Vector2d)

into a MeshFunction object.

• lf::mesh::utils::MeshFunctionConstant represents a constant as a MeshFunction object.

• lf::fe::MeshFunctionFE is constructed based on an lf::fe::ScalarFESpace object together with a

basis expansion coefficient vector and represents the associated scalar-valued finite element func-

tion.

• lf::fe::MeshFunctionGradFE represents the gradient of a scalar-valued continuous finite element

function. The evaluation operator returns an EIGEN column vector.

Note that MeshFunction objects support the binary arithmetic operations +, -, and *, including scalar

multiplication, provided that such operations are possible for their underlying types. In addition the unary

operations -, transpose(), and squaredNorm() are supplied, see Code 3.2.3.5.
y

2.8.4 Application of Parametric FEM: Boundary Approximation

This section presents an important application of parametric finite elements, which is already suggested

in Fig. 150. There, curved edges occurred at the boundary ∂Ω, which was a smooth curve rather than a

polygon in this case.

Intuitively its clear that approximating a (smooth) curved boundary ∂Ω by a polygon/polyhedron will

amount to fudging the model and introduce another kind of error. Hence, it is desirable to represent

the boundary either exactly or employ a highly accurate approximation. Parametric finite element con-

structions allow this, as we will see now.

Parametric finite elment constructions provide a tool going beyond polygonal/polyhedral approxima-

tion of boundaries (by simple straight lines or flat faces).

Here we discuss the treatment of piecewise smooth curved boundaries for the very simple case of trian-

gular meshes in 2D (more details→ [BRS94]).

2. Finite Element Methods (FEM), 2.8. Parametric Finite Element Methods 277

https://craffael.github.io/lehrfempp/group__mesh__function.html
https://craffael.github.io/lehrfempp/classlf_1_1mesh_1_1utils_1_1_mesh_function_global.html
https://craffael.github.io/lehrfempp/group__mesh__function.html
https://craffael.github.io/lehrfempp/classlf_1_1mesh_1_1utils_1_1_mesh_function_constant.html
https://craffael.github.io/lehrfempp/group__mesh__function.html
https://craffael.github.io/lehrfempp/classlf_1_1fe_1_1_mesh_function_f_e.html
https://craffael.github.io/lehrfempp/classlf_1_1fe_1_1_scalar_f_e_space.html
https://craffael.github.io/lehrfempp/classlf_1_1fe_1_1_mesh_function_grad_f_e.html
https://craffael.github.io/lehrfempp/group__mesh__function.html


NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

Idea: Piecewise polynomial approximation of

boundary (boundary fitting)

(∂Ω locally considered as function over

straight edge of an element)

Example: Piecewise quadratic boundary

approximation

(Part of ∂Ω between a1 and a2

approximated by parabola)

Fig. 161

a1

a2

a3

∂Ω

K̃
nEΓ

δ

§2.8.4.1 (Piecewise quadratic polynomial boundary approximation) Mapping K̃→ “curved element”

K:

Φ̃K(x̃) := x̃ + 4δ λ1(x̃)λ2(x̃) n . (2.8.4.2)

(λi barycentric coordinate functions on K̃, n normal to EΓ, see Fig. 161)

Note: Essential: δ sufficiently small =⇒ Φ bijective

The complete transformation ΦK : K̂ 7→ K is obtained by joining an affine transformation (→ Def. 2.7.5.13)

Φ
a
K : K̂ 7→ K̃, Φ

a
K(x̂) := FK x̂ + τK, and Φ̃K:

ΦK = Φ̃K ◦Φ
a
K .

For parabolic boundary fitting:

DΦ̃K = I + 4δ n · grad(λ1λ2)
⊤ ∈ R2,2 , det(DΦ̃K) = 1 + 4δ n · grad(λ1λ2) .

y

EXAMPLE 2.8.4.3 (Second-order geometry approximation in GMSH) Most mesh generators opera-

tor of computer-aided-design (CAD) descriptions of geometries, which usually give spline-based repre-

sentations of curved boundaries. So all information needed for high-order polynomial approximation of

boundaries is available.

Of course, also GMSH can generate meshes containing curved entities like the “3-node line” and “6-node

triangle” mentioned in § 2.7.1.6. These two, in particular, are meant for piecewise quadratic polynomial

boundary approximation. The menu item Mesh->Set Order 2 makes GMSH insert information into

the .msh-file that is necessary for parabolic boundary approximation.
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Fig. 162 Fig. 163

Polygonal (left) and parabolic (right) approximation of a circular boundary

The .msh-file then contains entities of type 8 and 9, which corresponds to 3-node lines and 6-node trian-

gles. The former is described by three point locations, the latter by six, where the extra points designate

the (shifted) midpoints of edges. y

EXAMPLE 2.8.4.4 (6-Node triangles in LEHRFEM++) LEHRFEM++ offers an implementation

of the lf::geometry::Geometry interface for cells with quadratic polynomial parameterizations:

lf::geometry::TriaO2 for triangular cells of type TRIA.

Fig. 164

â1 â2

â3

m̂1

m̂2
m̂3

a1
K

a2
K

a3
K

m1
K

m2
Km3

K

K
K̂

ΦK

Their shape is defined by prescribing the

three vertex locations aℓ
K, ℓ = 1, 2, 3, plus

the coordinates of three “midpoints” mℓ
K,

ℓ = 1, 2, 3, of the curved edges of the

“curved triangle” K.

Then there is a unique 2-vector-valued quadratic polynomial ΦK : K̂ → K such that

ΦK(âℓ) = aℓ
K , ΦK(m̂

ℓ) = mℓ
K ,

where âℓ, m̂ℓ are the vertices/midpoints of edges of the “unit triangle”. We can give a precise formula

based on the reference shape functions for degree-2 triangular Lagrangian finite elements, cf. (2.6.1.6),

b̂1(x̂) = (1− 2x̂1 − 2x̂2)(1− x̂1 − x̂2) , b̂2(x̂) = (2x̂1 − 1)x̂1 b̂3(x̂) = (2x̂2 − 1)x̂2 ,

b̂4(x̂) = 4(1− x̂1 − x̂2)x̂1 , b̂5(x̂) = 4x̂1x̂2 , b̂6(x̂) = 4(1− x̂1 − x̂2)x̂2 ,

(2.8.4.5)

ΦK(x̂) = a1
K b̂1(x̂) + a2

K b̂2(x̂) + a3
K b̂3(x̂)+

m1
K b̂4(x̂) + m2

K b̂5(x̂) + m3
K b̂6(x̂)

(2.8.4.6)

The LEHRFEM++ implementation of the mapping ΦK is given in Code 2.8.4.7.
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C++ code 2.8.4.7: Global() member function of lf::geometry::TriaO2 ➺ GITHUB

2 Eigen : : MatrixXd TriaO2 : : Global ( const Eigen : : MatrixXd& l o c a l ) const {

3 LF_VERIFY_MSG ( ( 0 . <= l o c a l . array ( ) ) . a l l ( ) && ( l o c a l . array ( ) <= 1 . ) . a l l ( ) ,

4 " loca l coordinates out of bounds for reference element " ) ;

5 // Direct vectorized evaluation of componentwise quadratic mapping

6 // given through its monomial coefficients.

7 return ( ( beta_ * l o c a l ) + (gamma_ * l o c a l . array ( ) . square ( ) . matrix ( ) ) +

8 ( de l ta_ * l o c a l . row ( 0 ) . cwiseProduct ( l o c a l . row ( 1 ) ) ) )

9 . colwise ( ) +

10 alpha_ ;

11 }

The member variables alpha_, beta_, gamma_, delta_ contain the coefficients of the vector-

valued quadratic polynomial ΦK.

!

If some of the “midpoints” mℓ
K, ℓ = 1, 2, 3, are too far off the midpoints of the straight

line segment 1
2(aℓ

K + aℓ+1
K ), then the bijectivity of the resulting bi-quadratic mapping

ΦK : K̂ → K may break down. There might arise

x̂ ∈ K̂: detDΦK(x̂) = 0 .

The following example demonstrates this. The green line in Fig. 165 shows the shape of a

lf::geometry::TriaO2 mesh entity object with

[
a1

K a2
K a3

K

]
=

[
1 6 3
1 3 8

]
,
[
m1

K m2
K m3

K

]
=

[
3.7 4.2 2.3
1.2 5.2 4.5

]
.

(* =̂ vertices aℓ
K, * =̂ “midpoints” mℓ

K) This is a “moderately deformed triangle”.

Fig. 165
1 2 3 4 5 6

1

2

3

4

5

6

7

8

Fig. 166

Fig. 166 shows the sign of x̂ 7→ detDΦK(x̂), x̂ ∈ K̂, bluish =̂ < 0, reddish =̂ > 0: no change of sign.

In Fig. 167 we see a strongly deformed triangle with

[
a1

K a2
K a3

K

]
=

[
1 6 3
1 3 8

]
,
[
m1

K m2
K m3

K

]
=

[
5 4.5 1.75
4 9 6.5

]
.

(Fig. 167: * =̂ vertices aℓ
K, * =̂ “midpoints” mℓ

K)
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Fig. 167
1 2 3 4 5 6

2

4

6

8

Fig. 168

In this case x̂ 7→ detDΦK(x̂) changes sign on K̂ and there will be points x̂ ∈ K̂ where DΦK(x̂) becomes

singular; Ass. 2.8.3.3 is violated. y

Review question(s) 2.8.4.8 (Parametric Finite Elements)

(Q2.8.4.8.A) Which data required for the computation of the element matrices for 2nd-order elliptic vari-

ational problems discretized by means of Lagrangian finite elements, depend on the current cell, and

which do not?

(Q2.8.4.8.B) [Transformation of an elliptic BVP] The mapping x̂ 7→ [ax̂1, bx̂2]
⊤

, a, b > 0, takes the

unit disc D̂ ⊂ R2 to a ellipse Ω with axes a and b. Let u ∈ H1
0(Ω) solve ∆u = f , f ∈ L2(Ω). Using

Lemma 2.8.3.10, derive the variational problem solved by the pullback of u to D̂.

To answer this question use the variational formulation and the transformation formula for the gradient:

Lemma 2.8.3.10. Transformation formula for gradients

For differentiable u : K 7→ R and any diffeomorphism Φ : K̂ 7→ K we have

(gradx̂(Φ
∗u))(x̂) = (DΦ(x̂))⊤ (gradx u)(Φ(x̂))︸ ︷︷ ︸

=Φ
∗(grad u)(x̂)

∀x̂ ∈ K̂ . (2.8.3.11)

(Q2.8.4.8.C) [Bilinear transformation onto a triangle] Give the formula for the bilinear transformation

that maps the unit square to the “triangular” quadrilateral with vertices

[
0
0

]
,
[

1
0

]
,
[

1/2
1/2

]
,
[

0
1

]
.

(Q2.8.4.8.D) [Decomposing bilinear transformations] The unit square [0, 1]2 can be mapped onto a

general non-degenerate quadrilateral K by means of a mapping ΦK composed of (i) an affine mapping

Φ
aff

K (→ Def. 2.7.5.13) and (ii) a mapping R2 → R2, x̂ 7→ dx̂1x̂2. Find formulas for both Φ
aff

K and

d ∈ R2 in terms of the vertex coordinates a1, . . . , a4 of K.

(Q2.8.4.8.E) [Degenerate bilinear tranformation] For which x =
[ x1

x2

]
∈ R2 will the determinant of the

bilinear transformation that takes the unit square to a quadrilateral with vertices

a1 =

[
0

0

]
, a2 =

[
1

0

]
, a3 =

[
x1

x2

]
, a4 =

[
0

1

]
,

change sign.
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Recall the formulas for bilinear transformations:

For Φ(x̂) =

[
α1 + β1x̂1 + γ1x̂2 + δ1x̂1x̂2

α2 + β2x̂1 + γ2x̂2 + δ2x̂1x̂2

]
, αi, βi, γi, δi ∈ R , (2.8.3.18a)

⇒ DΦ(x̂) =

[
β1 + δ1x̂2 γ1 + δ1x̂1

β2 + δ2x̂2 γ2 + δ2x̂1

]
, (2.8.3.18b)

⇒ det(DΦ(x̂))= β1γ2 − β2γ1 + (β1δ2 − β2δ1)x̂1 + (δ1γ2 − δ2γ1)x̂2 . (2.8.3.18c)

(Q2.8.4.8.F) [Mapping a square to a circle] The unit disk {x ∈ R2 : ‖x‖ < 1} can be equipped with

a mesh consisting of four congruent curvilinear triangles.

Fig. 169

One of these triangles K∗is shaded in the figure be-

side.

Which mapping ΦK : K → K∗ takes the triangle K
with straight edges and contained in K∗ to K∗? Re-

stricted to the straight edges of K∗ it should coincide

with the identity mapping.

(Q2.8.4.8.G) [Hierarchical local shape functions for S0
2 (M)] For the quadratic Lagrangian finite ele-

ment space S0
2 (M) the following choice of local shape functions on a triangle describes the hierarchical

local shape functions.

b1
K = λ1 ,

b2
K = λ2 ,

b3
K = λ3 ,

b4
K = 4λ1λ2 ,

b5
K = 4λ2λ3 ,

b6
K = 4λ1λ3 ,

(2.8.4.9)

where λℓ, ℓ = 1, 2, 3, stands for the barycentric co-

ordinate functions of K.
Fig. 170 p1

p2

p3

p4

p6
p5

K

You have to develop a specialization of lf::fe::ScalarReferenceFiniteElement for a cell of type TRIA,

the set (2.8.4.9) of local shape functions, and local evaluation/interpolation nodes as given in Fig. 170.

Sketch the implementation of the method NodalValuesToDofs().

(Q2.8.4.8.H) Outline the implementation of a function in LEHRFEM++ that takes a vector ~µ of ex-

pansion coefficients of a finite element function uh ∈ S0
2 (M) (M a triangular mesh), a suitable

lf::uscalfe::FeSpaceLagrangeO2 argument, and a coordinate vector p ∈ R2 and returns the value

uh(p).
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△

Learning Outcomes

This is what you should master after you have thoroughly studied this chapter:

• You must know in detail the idea of the Galerkin discretization of a linear variational problem and

how it leads to a linear system of equations.

• You should remember the concept of a finite-element mesh.

• You should be familiar with the notion of global and local finite-element shape functions.

• You should know what it means that global/local finite-element shape functions are associated with

a geometric entity and that they cover others.

• You should understand the local supports of global finite-element shape functions and their conse-

quences.

• You should know the definition and canonical global shape functions for Lagrangian finite element

spaces of degree one and two on 2D hybrid meshes.

• You grasp the concept of parametric finite-element spaces and how it can be harnessed in the

implementation of finite-element methods.

• You can explain how the parametric finite-element constructions can be used to deal with curved

boundaries and interfaces.

• Skills concerning LEHRFEM++, access to C++ reference pages and complete EIGEN and

LEHRFEM++ DOXYGEN documentation assumed:

– You can retrieve information fast from the online documentation of EIGEN and LEHRFEM++.

– You should be able to extract and process various kinds of topological and geometric informa-

tion from objects encoding a finite-element mesh.

– You must know the role and use of local-to-global index mappings as provided by

lf::assemble::DofHandler.

– You should be able to write bespoke classes providing element matrices and vectors and use

them build linear systems of equations.

– You must know how to use LEHRFEM++’s built-in numerical quadrature facilities.

– You understand the way how LEHRFEM++ implements parametric finite elements.

– You can implement essential boundary conditions in LEHRFEM++.

– You know how to work with finite-element functions given through their basis expansion coeffi-

cient vectors.
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Chapter 3

FEM: Convergence and Accuracy

It goes without saying that, on the one hand, a finite element Galerkin solution uh ∈ H1(Ω) of a scalar

second-order elliptic boundary value problem will hardly ever be equal to its exact solution u. On the other

hand, it also goes without saying that we want it to be “close” to u in some sense. This motivates the

study of the accuracy of Galerkin solutions uh of variational boundary value problems. More precisely,

in this chapter we are going to examine the asymptotic convergence of relevant norms ‖u− uh‖ of the

discretization error u− uh as we let the dimension of the discrete trial space tend to ∞.

Based on the developments of the previous chapters, the focus will be on finite element Galerkin dis-

cretization of linear scalar 2nd-order elliptic boundary value problems in 2D, 3D.
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§3.0.0.1 (Prerequisite knowledge) Familiarity with the following concepts is essential for understanding

the material in this chapter:

➣ Second-order elliptic boundary value problems (from equilibrium models, diffusion models): Sec-

tion 1.5, Section 1.7,

➣ Variational formulation: Section 1.8, see also (1.4.2.4), (1.8.0.16), (2.1.2.2),

➣ Some Sobolev spaces and their norms: L2(Ω), H1(Ω), see Section 1.3

➣ Abstract Galerkin discretization: Section 2.2,

➣ Lagrangian finite elements: Section 2.6, Section 2.4.

y

3.1 Abstract Galerkin Error Estimates

Video tutorial for Section 3.1: Abstract Galerkin Error Estimates: (38 minutes) Download link,

tablet notes

3.1.1 Setting

§3.1.1.1 (Linear variational problems revisited → Section 1.4.1) In this section we adopt an abstract

perspective and study linear variational problems (1.4.1.7) in the form

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (2.2.0.2)

with the following standard ingredients, see also Def. 1.4.1.6:

✦ V0 =̂ (real) vector space, a space of functions Ω 7→ R for scalar 2nd-order elliptic variational

problems,

✦ a : V0 ×V0 7→ R =̂ a bilinear form, see Def. 0.3.1.4,

✦ ℓ : V0 7→ R =̂ a linear form, see Def. 0.3.1.4,

In addition we want (2.2.0.2) to be related to a quadratic minimization problem (→ Def. 1.2.3.11), which

suggests the following assumption.

Assumption 3.1.1.2. S.p.d. bilinear form

The bilinear form a : V0×V0 7→ R in (2.2.0.2) is symmetric and positive definite (→ Def. 1.2.3.26).

a supplies an inner product on V0

a induces energy norm ‖·‖
a

on V0 (→ Def. 1.2.3.34)

We also want (2.2.0.2) to be stable, remember the discussion in Section 1.4.3; In Section 1.2.3.4 elabo-

rates the motivation for the next assumption.
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Assumption 3.1.1.3. Continuity of r.h.s. functional

The right hand side functional ℓ : V0 7→ R from (2.2.0.2) is continuous (→ Def. 1.2.3.41) w.r.t. to

the energy norm (→ Def. 1.2.3.34) induced by a:

∃C > 0: |ℓ(u)| ≤ C‖u‖
a
∀u ∈ V0 . (1.2.3.39)

The next assumption is meant to appease fastidious mathematicians, see Rem. 1.3.3.9 for further discus-

sion:

Assumption 3.1.1.4.

V0 equipped with the energy norm ‖·‖
a

is a Hilbert space, that is, complete (→ Def. 1.3.3.4).

Theorem 3.1.1.5. Existence and uniqueness of solution of linear variational problem

Under Ass. 3.1.1.2–Ass. 3.1.1.4 the linear variational problem has a unique solution u ∈ V0.

This repeats Thm. 1.3.3.6 from Rem. 1.3.3.9 and is also known as Riesz representation theorem for con-

tinuous linear functionals. y

Remark 3.1.1.6 (Repetition: Well-posed 2nd-order linear elliptic variational problems) For instance,

thanks to the Poincaré-Friedrichs inequality from Thm. 1.3.4.17, Ass. 3.1.1.2 is satisfied for the bilinear

form of a second-order linear elliptic (pure) Dirichlet problem, see (1.5.3.8), (1.4.2.4), with

a(u, v) :=
∫

Ω
(α(x) grad u) · grad v dx , u, v ∈ H1

0(Ω) , (3.1.1.7)

and uniformly positive definite (→ Def. 1.2.2.9) coefficient tensor α : Ω 7→ Rd,d, see Section 1.2.3.

A second-order linear elliptic Neumann problem involves the same bilinear form (3.1.1.7), but Ass. 3.1.1.2

holds only on the smaller space

H1
∗(Ω) := {v ∈ H1(Ω):

∫

Ω
v(x)dx = 0} , (1.8.0.15)

thanks to second Poincaré-Friedrichs inequality from Thm. 1.8.0.20.

For the right hand side functional of a 2nd-order Neumann problem, see (1.9.0.2), (1.8.0.16),

ℓ(v) :=
∫

Ω
f (x)v(x)dx +

∫

∂Ω
h(x)v(x)dS , v ∈ H1(Ω) ,

we found in Section 1.3, see (1.3.4.15), and § 1.9.0.9, that f ∈ L2(Ω) and h ∈ L2(∂Ω) ensures

Ass. 3.1.1.3.

Ass. 3.1.1.4 for a from (3.1.1.7) is a deep result in the theory of Sobolev spaces [EVA98]. It has been

stated earlier as Thm. 1.3.4.11. y

3.1.2 Galerkin Discretization Error

§3.1.2.1 (Galerkin discretization error) Now consider a Galerkin discretization of (2.2.0.2) (→ Sec-

tion 2.2) based on the Galerkin trial/test space

V0,h ⊂ V0 , N := dim V0,h < ∞ ,
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which leads to the discrete variational problem

uh ∈ V0,h: a(uh, vh) = ℓ(vh) ∀vh ∈ V0,h . (2.2.1.1)

Since (2.2.1.1) is a linear variational problem with s.p.d. bilinear form posed on a finite-dimensional

space, Thm. 2.2.1.5 guarantees existence and uniqueness of the Galerkin solution uh ∈ V0,h.

Our goal: Bound relevant norms of discretization error u− uh

Note that the discretization error is an element of the vector space V0. For instance, in the particular case

of the second-order elliptic Dirichlet problem (3.1.1.7), the discretization error is a function in H1
0(Ω).

§3.1.2.2 (“Relevant” norms) For the abstract linear variational problem (2.2.0.2) the energy norm im-

mediately comes to mind as a relevant norm. Recall from Section 1.4.1 that (2.2.0.2) is an equivalent

statement of a minimization problem for a quadratic energy functional J : V0 → R:

u ∈ V0: a(u, v) = ℓ(v) v ∈ V0

m
u = argmin

v∈V0

J(v) for J(v) := 1
2a(v, v)− ℓ(v) .

Since minimization of an energy represents the fundamental equilibrium condition of the modeled

“physical/real-world” phenomenon, energy will certainly be a “relevant” quantity. Accepting this, the en-

ergy norm ‖·‖
a

(‖v‖2
a

:= a(v, v), Def. 1.2.3.34) is promoted to a relevant norm for measuring the size

of discretization error, because it immediately tells us how far we are off the minimal energy:

Lemma 3.1.2.3. Energy norm and energy deviation

Let u ∈ V0 solve the linear variational prolem (2.2.0.2),

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (2.2.0.2)

and let Ass. 3.1.1.2–Ass. 3.1.1.4 be satisfied. Then, with J(v) := 1
2a(v, v)− ℓ(v),

J(w)− J(u) = 1
2‖w− u‖2

a
∀w ∈ V0 . (3.1.2.4)

y

Proof. We copy the proof of Thm. 1.4.1.8, which was even slightly more general, because it addressed

variational problems on affine spaces:

a(u, v) = ℓ(v) ∀v ∈ V0 ⇒ J(w)− J(u) = 1
2a(w, w)− ℓ(w)− 1

2a(u, u) + ℓ(u)

= 1
2a(w, w)− ℓ(w− u)− 1

2a(u, u)

= 1
2a(w, w)− a(u, w− u) + 1

2a(u, u)

= 1
2a(w− u, w− u) = 1

2‖w− u‖2
a

,

for every w ∈ V0.
✷

No doubt, energy is a key quantity for the solution of an equilibrium problem. However, other relevant

norms can be suggested by the application context and objectives of numerical simulations. For second-

order elliptic boundary value problems, such other relevant norms can be the following, see Section 0.3.2.4

and Section 1.3,
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• the mean square norm or L2(Ω)-norm, see Def. 1.3.2.3,

• the supremum norm or L∞(Ω)-norm, see Def. 0.3.2.25.

y

3.1.3 Galerkin Orthogonality (GO)

The Galerkin approach allows a remarkably simple bound of the energy norm of the discretization error

u− uh. For the latter we immediately derive the following relationship:

a(u, v) = ℓ(v) ∀v ∈ V0 ,
a(uh, vh) = ℓ(vh) ∀vh ∈ V0,h

V0,h⊂V0
=⇒ a(u− uh, vh) = 0 ∀vh ∈ V0,h . (3.1.3.1)

This is known under a special name:

Galerkin orthogonality

a(u− uh, vh) = 0 ∀vh ∈ V0,h . (3.1.3.2)

[Geometric meaning for inner product a(·, ·)→]
Fig. 171

eh := u− uh

V0

V0,h

u

uh

Remark 3.1.3.3 (“Energy-geometry”) In linear algebra we learned that an symmetric positive definite

bilinear form (→ Def. 1.2.3.26) on a (finite-dimensional) vector spaces induces a Euclidean geometry with

meaningful notions of length (→ Def. 1.2.3.34) and angle. This carries over to Hilbert spaces and makes

it possible for us to draw “geometric” pictures like Fig. 171. y

Parlance: We say that the discretization error eh := u − uh is “a(·, ·)-orthogonal” to the discrete

trial/test space Vh.

Remark 3.1.3.4 (Pythagoras’ theorem)

Fig. 172

eh := u− uh

V0

V0,h

u

uh

vh

If a(·, ·) is inner product on V “Pythagoras’ theorem” tells

us, see Fig. 172:

‖u− vh‖2
a
= ‖u− uh‖2

a
+ ‖uh − vh‖2

a
. (3.1.3.5)

This is immediate from (3.1.3.2) and the bilinearity of

a(·, ·).

Notice that (3.1.3.5) with vh = 0 gives a simple formula for computation of energy norm of Galerkin

discretization error in numerical experiments with known solution u of (2.2.0.2) and uh of (2.2.1.1):

‖u− uh‖2
a
= ‖u‖2

a
− ‖uh‖2

a
. (3.1.3.6)

y

In Euclidean geometry: the point in a hyperplane nearest to a given point is its orthogonal projection onto

the hyperplane. The next theorem states this for the inner product a(·, ·) and V0,h instead of a hyperplane,

see Fig. 172 for an illustration.
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Theorem 3.1.3.7. Cea’s lemma

Under Ass. 3.1.1.2–Ass. 3.1.1.4 the energy norm of the Galerkin discretization error for (2.2.0.2)

satisfies

‖u− uh‖a = inf
vh∈V0,h

‖u− vh‖a .

Proof. Use bilinearity of a and Galerkin orthogonality (3.1.3.2): for any vh ∈ V0,h

‖u− uh‖2
a
= a(u− uh, u− uh) = a(u− vh, u− uh) + a(vh − uh, u− uh)︸ ︷︷ ︸

=0

.

Next, use the Cauchy-Schwartz inequality (CSI) for the inner product a:

CSI: a(u, v) ≤ ‖u‖
a
‖v‖

a
∀u, v ∈ V0 .

‖u− uh‖2
a
≤ ‖u− vh‖a · ‖u− uh‖a ,

and cancel one factor ‖u− uh‖a.
✷

An alternative proof can invoke Pythagoras’ theorem (3.1.3.5):

(3.1.3.5) ⇒ ‖u− uh‖2
a
= ‖u− vh‖2

a
− ‖uh − vh‖2

a
≤ ‖u− vh‖2

a
∀vh ∈ V0,h .

We highlight an obvious, but fundamental consequence of Thm. 3.1.3.7:

Optimality of Galerkin solutions:

‖u− uh‖a = inf
vh∈V0,h

‖u− vh‖a , (3.1.3.9)

((energy) norm of) discretization error ((energy) norm of) best approximation error

☞ As regards the energy norm, the Galerkin solution is the best possible solution we can obtain

in a given trial space.

Thus, Cea’s lemma Thm. 3.1.3.7 permits us to predict the accuracy of Galerkin solution w.r.t. the

energy norm ‖·‖
a

by just studying the capability of functions in V0,h to approximate u!

3.1.4 Refinement

§3.1.4.1 (More accurate solutions by refinement) From Cea’s lemma Thm. 3.1.3.7 we infer a certain

“monotonicity” of the energy norm of Galerkin discretization errors inherited from best approximation er-

rors: consider different trial/test spaces

V0,h, V′0,h ⊂ V0 ,

V0,h ⊂ V′0,h

⇒ inf
vh∈V′0,h

‖u− vh‖a ≤ inf
vh∈V0,h

‖u− vh‖a .

Thus, when we measure the Galerkin discretization error in the energy norm we can

improve accuracy by simply enlarging (“refining”) the trial space.
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y

§3.1.4.2 (Refinement of finite element spaces) Now we return to Lagrangian finite element (→ Sec-

tion 2.6) used for the Galerkin discretization of linear 2nd-order elliptic variational problems.

How can we accomplish the refinement of a (Lagrangian) FE space ?

• h-refinement: Replace the meshM (underlying V0,h) with a finer meshM′ (underlying larger dis-

crete trial space V′0,N′).

• p-refinement: Replace V0,h := S0
p(M), p ∈ N, with V′0,h := S0

p+1(M) ⇒ V0,h ⊂ V′0,h

The extreme case of p-refinement amounts to the use of global polynomials on Ω as trial and test func-

tions. This leads to the class of (polynomial) spectral Galerkin methods.

Combination of h-refinement and p-refinement ? OF COURSE (hp-refinement, [SAB98]) y

EXAMPLE 3.1.4.3 (Regular/uniform refinement of triangular mesh in 2D) “Regular refinement” of a

triangle K means that it is split into four congruent “child triangles” T1, T2, T3, T4:

Fig. 173

K

T1
T2

T3

T4

Logically, the (global) regular/uniform refinement of a triangular mesh is accomplished by executing a

regular refinement of every triangle:

Fig. 174
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 2D triangular mesh

 # Vertices  :  45,      # Elements  :  64,      # Edges  :  108 Fig. 175
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 2D triangular mesh

 # Vertices  :  153,      # Elements  :  256,      # Edges  :  408 Fig. 176
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 2D triangular mesh

 # Vertices  :  561,      # Elements  :  1024,      # Edges  :  1584

Obviously, this process creates another valid finite-element mesh as no hanging nodes are introduced.

Global regular refinement creates so-called nested meshes, where each (closed) cell of the coarse mesh

M is a union of (closed) cells of the fine meshM′. As a consequence Lagrangian finite element spaces

of fixed degree p ∈ N (→ Def. 2.6.1.1) will also be nested:

M regular−−−−−→
refinement

M′ S0
p(M) ⊂ S0

p(M′) ,

that is, h-refinement through global regular refinement is a true refinement in the sense that its creates a

larger finite element space, which contains the original finite element space. y

EXAMPLE 3.1.4.4 (Global regular refinement in LEHRFEM++) LEHRFEM++ supports the refinement

of 2D hybrid meshes in the module lf:refinement. At this point we only discuss high-level routines
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that perform a fixed number of steps of regular refinement of meshes. A special data structure man-

ages a sequence of meshes generate by successive refinement: lf::refinement::MeshHierarchy. Beside

keeping an array of meshes, this type also store copious information about the connections between the

meshes. A member function

std::shared_ptr<lf::mesh::Mesh> getMesh(size_type level);

permits us to obtain a pointer to the mesh on a particular refinement level, level == 0 corresponding

to the coarsest mesh.

The following code demonstrates the creation of a lf::refinement::MeshHierarchy object by the conve-

nience function lf::refinement::GenerateMeshHierarchyByUniformRefinemnt().

C++11 code 3.1.4.5: Demo code for usage of lf::refinement::MeshHierarchy ➺ GITHUB

2 void regrefMeshSequence ( const std : : shared_ptr < l f : : mesh : : Mesh>& mesh_p ,

3 i n t r e f s t eps ) {

4 const std : : shared_ptr < l f : : re f inement : : MeshHierarchy> multi_mesh_p =

5 l f : : re f inement : : GenerateMeshHierarchyByUniformRefinemnt (mesh_p , re f s t eps ) ;

6 l f : : re f inement : : MeshHierarchy& multi_mesh { * multi_mesh_p } ;

7

8 // Ouput summary information about hierarchy of nested meshes

9 std : : cout << " \ t Sequence of nested meshes created \n" ;

10 multi_mesh . P r i n t I n f o ( std : : cout ) ;

11 // Number of levels

12 const s ize_type L = multi_mesh . NumLevels ( ) ;

13

14 // Retrieve meshes on all levels

15 for ( s ize_type l e v e l = 0 ; l e v e l < L ; ++ l e v e l ) {

16 const std : : shared_ptr <const l f : : mesh : : Mesh> lev_mesh_p =

17 multi_mesh . getMesh ( l e v e l ) ;

18 // Reference to current mesh

19 const l f : : mesh : : Mesh& mesh { * lev_mesh_p } ;

20 // Output of mesh information

21 std : : cout << "==== Mesh on leve l " << l e v e l << " : "
22 << mesh . NumEnt i t ies ( l f : : base : : RefEl : : kPo in t ( ) ) << " NODEs, "
23 << mesh . NumEnt i t ies ( l f : : base : : RefEl : : kSegment ( ) ) << " EDGEs, "
24 << mesh . NumEnt i t ies ( l f : : base : : RefEl : : kT r ia ( ) ) << " TRIAs , "
25 << mesh . NumEnt i t ies ( l f : : base : : RefEl : : kQuad ( ) ) << " QUADs. "
26 << ’ \ n ’ ;

27 }

28 }

It may be interesting to see the code actually constructing the sequence of meshes using the

RefineRegular() method of lf::refinement::MeshHierarchy.

C++11 code 3.1.4.6: Implementation of GenerateMeshHierarchyByUniformRefinemnt

➺ GITHUB

2 std : : shared_ptr <MeshHierarchy> GenerateMeshHierarchyByUniformRefinemnt (

3 const std : : shared_ptr < l f : : mesh : : Mesh> &mesh_p , l f : : base : : s ize_type re f_ lev ,

4 RefPat re f_pa t ) {

5 LF_ASSERT_MSG( mesh_p != nul lpt r , "No val id mesh supplied ! " ) ;

6 // Set up the builder object for mesh entities, here suitable for a 2D

7 // hybrid mesh comprising triangles and quadrilaterals

8 std : : unique_ptr < l f : : mesh : : hybr id2d : : MeshFactory> mesh_factory_ptr =

9 std : : make_unique< l f : : mesh : : hybr id2d : : MeshFactory >(2) ;

10 // Create a mesh hierarchy with a single level

11 std : : shared_ptr <MeshHierarchy> multi_mesh_p =
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12 std : : make_shared<MeshHierarchy >(mesh_p , std : : move( mesh_factory_ptr ) ) ;

13 // Perform the desired number of steps of uniform refinement

14 for ( unsigned r e f s t e p = 0; r e f s t e p < r e f _ l e v ; ++ r e f s t e p ) {

15 // Conduct regular refinement of all cells of the currently finest
mesh.

16 // This adds another mesh to the sequence of meshes.

17 multi_mesh_p −>RefineRegular ( r e f_pa t ) ;

18 }

19 return multi_mesh_p ;

20 }

y

Review question(s) 3.1.4.7 (Estimates for Galerkin discretization error)

(Q3.1.4.7.A) [Galerkin orthogonality] Explain the notion of “Galerkin orthogonality” and prove it for

the Galerkin discretization of a linear variational problem

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 ,

with a symmetric positive definite (s.p.d.) bilinear form a”V0 ×V0 → R.

(Q3.1.4.7.B) [Pythagoras’ theorem] We consider the Galerkin discretization of the linear variatonal

problem

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 ,

with a symmetric positive definite (s.p.d.) bilinear form a”V0 ×V0 → R on two nested finite dimensional

subspaces V0,H, V0,h of V0):

V0,H ⊂ V0,h ⊂ V0 , dim V0,H ≤ dim V0,h < ∞ .

Designate by uH ∈ V0,H and uh ∈ V0,h the two Galerkin solutions. Show that

‖u0,h − vH‖2
a
= ‖u0,h − u0,H‖2

a
+ ‖u0,H − vH‖2

a
∀vH ∈ V0,H .

(Q3.1.4.7.C) [Generalized Cea’s lemma] Let the bilinear form a : V×V → R on a normed real vector

space satisfy

|a(u, v)| ≤ C‖u‖‖v‖ ∀u, v ∈ V , |a(v, v)| ≥ γ‖v‖2 ∀v ∈ V ,

for some constants C > 0, γ > 0. Derive a bound for the norm ‖u− uh‖ of the Galerkin discretization

error for a linear variational problem with bilinear form a in terms of the best approximation error for its

exact solution u ∈ V.

(Q3.1.4.7.D) [Sum or energies of errors] Let uℓ ∈ V0,ℓ, ℓ = 0, . . . .L, denote the Galerkin solution of

the linear variatonal problem

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 ,

with a symmetric positive definite (s.p.d.) bilinear form a : V0 ×V0 → R and on a nested sequence of

trial/test spaces

V0,ℓ ⊂ V0 , V0,ℓ−1 ⊂ V0,ℓ , ℓ ∈ {1, . . . , L}, L ∈ N .

Show that

‖uL − u0‖2
a
=

L

∑
ℓ=1

‖uℓ − uℓ−1‖2
a

.
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(Q3.1.4.7.E) [Representation of error norm] Let u ∈ V0 be the solution and uh ∈ V0,h, V0,h ⊂ V0, be

a Galerkin solution of the linear variatonal problem

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 ,

with a symmetric positive definite (s.p.d.) bilinear form a”V0 ×V0 → R. Show that

‖u− uh‖2
a
= ‖u‖2

a
− ‖uh‖2

a
.

(Q3.1.4.7.F) [Exact finite-element Galerkin solution] Give an example for a 2nd-order linear elliptic

boundary value problem for −∆ on a 2D domain for which finite element discretization by means of

S0
1 (M),M a triangular mesh, will always produce the exact solution.

(Q3.1.4.7.G) [Number of geometric entities generated by refinement] Start from a hybrid mesh with

nQ quadrilaterals, nT triangles, ne edges, and np vertices. Develop a formula that gives the numbers of

cells, edges, and vertices of the mesh created by k steps of regular refinement.

Hint: Regular refinement of a quadrilateral cell is done by connecting the midpoints of opposite edges.

Fig. 177

K
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T3

T4

Regular refinement of triangle K into four

congruent triangles T1, T2, T3, T4

Fig. 178

K

Q1 Q2

Q3 Q4

Regular refinement of quadrilateral K into four

congruent quadrilaterals Q1, Q2, Q3, Q4

△

3.2 Empirical (Asymptotic) Convergence of Lagrangian FEM

Video tutorial for Section 3.2: Empirical (Asymptotic) Convergence of FEM: (53 minutes)

Download link, tablet notes

§3.2.0.1 (Disambiguation: Convergence) Unfortunately, in computational mathematics the term con-

vergence is used for different unrelated phenomena:

(I) Convergence of an iterative method, like Newton’s method [NCSE]: we study how fast the iterates

x(k). k ∈ N0, approach a limit x∗ and watch the iteration error norm

∥∥∥x(k) − x∗
∥∥∥.

(II) Convergence of approximations: we study the dependence of the approximation error on the applied

approximations scheme. This notion of convergence was central in [NCSE] and will also be adopted

in the analysis of discretization methods for boundary value problems.

y

3.2.1 Asymptotic Convergence

§3.2.1.1 (Convergence of approximations) The reader has probably seen several different situations

where convergence of approximations is major issue:

(i) In the context of numerical quadrature for the numerical computation of
∫ b

a f (x)dx [NCSE] one is

interested in the dependence of the quadrature error on the number N of evaluations of the integrand

f for families of quadrature formulas.
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(ii) In the course “Numerical Methods for CSE” [NCSE] a whole chapter was devoted to the approxima-

tion of functions in 1D [NCSE]. There, given a function f : I ⊂ R → R, I a finite interval, we built

a “simple” function f̃ : I → R that could be described by a finite number N of degrees of freedom.

For instance, f̃ could be a global polynomial encoded through its expansion coefficients with respect

to a basis of the space of polynomials [NCSE].

In this context the counterpart of the discretization error is the approximation error f − f̃ , also a

function on I.

The size of f − f̃ was naturally measured by computing a suitable norm [NCSE]. The supremum

norm, the L2-norm, and L1-norm were introduced as most important specimens of relevant norms.

(iii) In numerical integration, where the goal is the approximate solution of initial value problems

ẏ = f(y), y(0) = y0 [NCSE] examined the dependence of (a norm of) the error at final time on

the timestep τ for single-step methods. The generic behavior of the error turned out to be O(τq) for

timestep τ → 0, and we called q ∈ N the order of the method.

y

In all these cases we regard the approximation error as a function of comntinuous or discrete discretization

parameters (number of f -evaluations, polynomial degree p timestep τ), and investigate the behavior of

the error as a discretization parameter (DP) approaches a suitable limit; this is the gist of asymptotic

convergence analysis.

Convergence: asymptotic perspective

Crucial: our notion of convergence is asymptotic !

sequence of discrete models ⇒ sequence of approximate solutions (u
(i)
h )i∈N

⇒ study sequence (‖u(i)
h − u‖)i∈N as i→ ∞

created by variation of a discretization parameter.

§3.2.1.3 (Discretization parameters in the finite element method) Talking about (asymptotic) conver-

gence implies agreement on meaningful discretization parameters and their limits. Necessarily, the dis-

cretization parameter must be linked to the resolution (“capability to approximate a generic solution”) of

the Galerkin trial/test space V0,h.

Meaningful discretization parameters for finite element Galerkin methods are suggested by the enhance-

ment of the resolution of finite element spaces through refinement:

✦ In the case of h-refinement the maximal size of cells of the mesh can serve as discretization pa-

rameter. The following generalizes the concept of “mesh width” introduced in one dimension in

Section 2.3.

Definition 3.2.1.4. Mesh width

Given a meshM = {K}, its mesh width hM is defined as

hM := max{diam K: K ∈ M} , diam K := max{|p− q|: p, q ∈ K} .

The natural limit to consider for the meshwidth of a sequence of meshes is hM → 0.

✦ For p-refinement the polynomial degree p ∈ N is a natural discretization parameter. The pertinent

limit for asymptotic convergence is p→ ∞.
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A universal discretization parameter for families of Galerkin discretizations is N := dim V0,h, often called

the “number of degrees of freedom” or “number of unknowns”. It gives the size of the systems of equations

arising from Galerkin discretization and, thus, is often advertised as a good measure for the cost of a

Galerkin scheme.

However, for linear problem a more appropriate measure for the cost may be nnz(A), the number of

non-zero entries of the Galerkin matrix, which can also be used as a discretization parameter. Note

that for fixed-degree Lagrangian finite element spaces dim V0,h ∼ nnz(A). Hence, both discretization

parameters give the same results concerning the asymptotic behavior of norms of the discretization error

in the case of h-refinement. y

3.2.2 Algebraic and Exponential Convergence

In Section 3.1 we pointed out parallels between studying approximation errors and discretization errors.

In the case of approximation errors we discovered rather regular behavior when adopting an asymptotic

perspective, which was introduced, e.g., in [NCSE]. It regards suitable norms of approximation errors as

functions of the number N of parameters for families of approximation schemes and examines their decay

as N → ∞. We do the same for Galerkin discretization errors, where N will stands for the dimension of

the Galerkin tria/test space.

For many different approximation and discretization methods we observe that the asymptotic behavior of

error norms fits a few typical patterns. We recall them writing (in this section) uN for the approximation/dis-

crete solutions belonging to the parameter value N.

Definition 3.2.2.1. Types of convergence → [NCSE], [NCSE]

‖u− uN‖ = O(N−α), α > 0 :⇐⇒ algebraic convergence with rate α

‖u− uN‖ = O(exp(−γNδ)), with γ, δ > 0 :⇐⇒ exponential convergence

(asymptotically for N → ∞)

Here we have relied on the Landau “O-notation” according to (0.3.2):

f (N) = O(g(N)) :⇔ ∃N0 > 0, ∃C > 0 independent of N

such that | f (N)| ≤ Cg(N) for N > N0 .
(3.2.2.2)

Definition 3.2.2.3. Rate of convergence

In the case of algebraic convergence the exponent α in Def. 3.2.2.1 is called the rate of (algebraic)

convergence.

Remark 3.2.2.4 (Implicit sharpness of asymptotic convergence) Often, also in this course, the asser-

tion of a particular qualitative and quantitative kind of asymptotic convergence will imply “sharpness”:

• in the case of algebraic convergence, the claim that ‖u− uN‖ converges algebraically with rate

α > 0, will also mean that

there is no β > α such that ‖u− uN‖ = O(N−β) for N → ∞.

• in the case of exponential convergence, saying that ‖u− uN‖ converges exponentially like

exp(−γNδ) also implies that

there are no ν > δ and µ > δ such that ‖u− uN‖ = O(exp(−νNµ)) for N → ∞.
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y

The following plots illustrate the qualitative behavior of error norms implied by the two different types of

convergence for various parameters.
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Linear plot of qualitative convergence behavior: algebraic/exponential convergence rates

Exponential convergence will always win (asymptotically)
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§3.2.2.5 (Exploring convergence empirically → [NCSE]) When (in homework problems) you are

asked to “investigate the (asymptotic) convergence of a method” in a numerical experiment, you are ex-

pected to make a

qualitative and quantitative statement

about the asymptotic behavior of a suitable norm (∗) of the discretization error in the sense of Defini-

tion 3.2.2.1:

☛ “qualitative”: does the error display algebraic or exponential convergence according to Def. 3.2.2.1,

or none of these?

☛ “quantitative”: determine the rate α in the case of algebraic convergence, γ, δ in the case of expo-

nential convergence.

(∗): the norm of interest and how it is evaluated has to be specified as part of the question!

How to tease qualitative/quantitative information about asymptotic convergence out of raw norms of dis-

cretization error?
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Given: data tuples (Ni, ǫi), i = 1, 2, 3, . . ., Ni =̂ no. of d.o.f.s, ǫi =̂ error norms

1. Conjecture: algebraic convergence with rate α: ǫi ≈ CN−α
i

log(ǫi) ≈ log(C)− α log Ni (affine linear in log-log scale).

➤ visual evidence: (almost) linear error plot in doubly logarithmic scale, slope α,

➤ linear regression on data (log Ni, log ǫi), i = 1, 2, 3, . . . to determine rate α, see Code 3.2.2.8.

2. Conjecture: exponential convergence: ǫi ≈ C exp(−γNδ
i )

log ǫi ≈ log(C)− γNδ
i . (3.2.2.6)

log ǫi − log ǫi−1 ≈ −γ(Nδ
i − Nδ

i−1) , (3.2.2.7)

log ǫi+1 − log ǫi

log ǫi − log ǫi−1
≈ Nδ

i+1 − Nδ
i

Nδ
i − Nδ

i−1

.

Special case: geometric increase/decrease of problem size parameters: Ni = QNi−1 for some

known Q > 0.

log ǫi+1 − log ǫi

log ǫi − log ǫi−1
≈ Qδ − 1

1−Q−δ
=

(
Qδ
)2 −Qδ

Qδ − 1
.

From this you can determine δ by solving a quadratic equation. Then you get γ from (3.2.2.7) or, as

above, by linear regression from (3.2.2.6).

Alternative: non-linear least squares fit (→ [NCSE]) to determine δ:

(c, γ, δ) = argmin

{
∑

i

| log ǫi − c + γNδ
i |2
}

,

residual↔ validity of conjecture. This can be done by a short code, which his left as an exercise.

C++ code 3.2.2.8: Estimating the rate of algebraic convergence

1 double eoc ( const Eigen : : VectorXd &N, const Eigen : : VectorXd &err ,

2 unsigned f romindex = 0 , std : : s t r i n g f i lename = "conv . eps" ) {

3 // The argument N has to pass a sorted vector of length L > 1 of

4 // problem size parameter values, whereas the L-vector err

5 // contains the corresponding error norms. The argument

6 // fromindex∈ {1, . . . , L− 1} restricts the relevant data to

7 // fromindex, . . . , L} in order to suppress the impact of

8 // possible pre-asymptotic behavior.

9 // Returns the estimated rate of convergence.

10 const unsigned dim = N. size ( ) ;

11

12 //truncate preasymptotic behavior if desired:

13 const unsigned i n t newdim = dim − fromindex ;

14 //compute log(N) and log(err) componentwise

15 auto l og fun = [ ] ( double d ) { return std : : log ( d ) ; } ;

16 Eigen : : VectorXd Nlog ( newdim ) , e r r l o g ( newdim ) ;

17 std : : t rans form (N. data ( ) +fromindex ,N. data ( ) +dim , Nlog . data ( ) , l og fun ) ;

18 std : : t rans form ( e r r . data ( ) +fromindex , e r r . data ( ) +dim , e r r l o g . data ( ) , l og fun ) ;

19

20 // perform linear regression, aka least squares fitting to a line.
linearFit

21 // returns the coefficients of the linear polynomial, the second of
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which is its slope
22 Eigen : : Vector2d p o l y f i t = l i n e a r F i t ( Nlog , e r r l o g ) ;

23 double alpha = − p o l y f i t [ 1 ] ;

24

25 return alpha ;

26 }

Linear fitting of a data vector (xi, yi), i = 1, . . . , n, means to solve the least squares problem

(β∗, α∗) := argmin
α,β∈R

n

∑
i=1

(yi − αxi − β)2 . (3.2.2.9)

The task of finding (α∗, β∗) is called linear regression. Numerical methods for solving (3.2.2.9) are

covered in [NCSE].

C++11 code 3.2.2.10: Linear regression of data

1 // Linear fitting of data passed in vectors x and y of equal length.

2 // Returns the 2-vector [β∗, α∗]⊤, cf. (3.2.2.9).
3 Eigen : : Vector2d

4 l i n e a r F i t ( const Eigen : : VectorXd& x , const Eigen : : VectorXd& y ) {

5 assert ( x . rows ( ) == y . rows ( ) ) ;

6 Eigen : : Matrix <double , Eigen : : Dynamic , 2> X( x . rows ( ) , 2) ;

7 // Set up matrix of overdetermined system of equations

8 X. col ( 0 ) = Eigen : : VectorXd : : Constant ( x . rows ( ) , 1) ;

9 X. col ( 1 ) = x ;

10 // Solve least squares problem by QR-decomposition

11 return X. fu l lP ivHouseho lderQr ( ) . solve ( y ) ;

12 }

y

3.2.3 Convergence of FEM: Numerical Experiments

In this section we study the convergence of Galerkin solutions obtained from Lagrangian finite element

discretization of linear scalar 2nd-order elliptic variational problems (→ Section 1.8) empirically . This

means that we conduct numerical experiments, in which we measure norms of the discretization errors.

Of course, this can be done only for finite sequences of discrete models. However, if these cover a

sufficiently wide range of discretization parameters, they will provide evidence of general laws governing

convergence.

§3.2.3.1 (Our model problem) Throughout we consider the Dirichlet problem for Poisson equation on an

interval (1D)/polygonal domain (2D) Ω ⊂ Rd, d = 1, 2:

−∆u = f ∈ L2(Ω) in Ω , u = g ∈ C0(∂Ω) on ∂Ω , (3.2.3.2)

To this problem we apply Lagrangian finite element discretization on equidistant partitions

(d = 1)/triangular meshes (d = 2). For details refer to Section 2.3 (d = 1) and both Section 2.4 and

Section 2.6.1 (d = 2). y

Remark 3.2.3.3 (Approximate computation of error norms) Even if the exact solution u of a boundary

value problem is known and a finite element solution uh has been computed, it will usually be all but

impossible to determine the exact value of ‖u− uh‖ for all interesting norms like ‖·‖L2(Ω), |·|H1(Ω),

‖·‖L∞(Ω), etc.
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In the case of norms involving an integral, ‖u− uh‖ has to be computed by means of

numerical quadrature, which will boil down to the cell-wise application of a local quadrature rule (2.7.5.10),

as discussed in Section 2.7.5.

Danger: The inevitable quadrature error may dominate the discretization error!

Safeguard: (Bolstered by theory) Chose local quadrature of “sufficiently high order”!

Guideline: Chose order≥ 2p+ 1, when using finite element methods based on local polynomial degree p.

In this case and for h-refinement the quadrature error will shrink faster than the finite element discretization

error and it will not “pollute” the observed asymptotic behavior of ‖u− uh‖L2(Ω), |u− uh|H1(Ω).

All examples in this section rely on “overkill quadrature”: the order of the local quadrature rule is much

higher than even demanded by the above guideline. Hence, the impact of quadrature errors can be

ignored. y

EXAMPLE 3.2.3.4 (Computation of norms of finite element discretization errors in LEHRFEM++)

Let us assume that the exact solution u ∈ C0(Ω) of a second-order elliptic boundary value problem is

available in procedural form through a factor object or even a lambda-function, if one has an analytic

expression u as in the “method of manufactured solutions”.

Then the L2(Ω)-norm of the difference of a finite element function uh ∈ S0
p(M) available through its

vector ~µ of expansion coefficients with respect to global shape functions, and of u can be computed

approximately as follows:

const lf::fe::MeshFunctionGlobal mf_u{u_functor};

const lf::fe::MeshFunctionFE mf_sol(fe_space_p, mu_vec);

double L2err = std::sqrt(

lf::fe::IntegrateMeshFunction(mesh,

lf::mesh::utils::squaredNorm(mf_sol - mf_u), quad_degree));

Here fe_space_p is a pointer to an lf::uscalfe::UniformScalarFESpace object, u_functor a functor

object providing u and mu_vec the coefficient vector, compatible with Eigen::VectorXd. The argument

quad_degree tells the function the degree of exactness of the quadrature rule to be used.

A full example for the computation of discretization errors in LEHRFEM++ based on manufactured so-

lutions is given in ellbvp_linfe_demo.cc ➺ GITHUB. Some snippets from that code are listed

next:

C++11 code 3.2.3.5: Computation of error norms ➺ GITHUB

2 // Exact solution u

3 auto u = [ ] ( Eigen : : Vector2d x ) −> double {

4 return std : : log ( x [ 0 ] * x [ 0 ] + x [ 1 ] + 1 .0 ) ;

5 } ;

6 // Has to be wrapped into a mesh function for error computation

7 const l f : : mesh : : u t i l s : : MeshFunctionGlobal mf_u { u } ;

8

9 // Gradient of exact solution

10 auto grad_u = [ ] ( Eigen : : Vector2d x ) −> Eigen : : Vector2d {

11 const double den = x [ 0 ] * x [ 0 ] + x [ 1 ] + 1 . 0 ;

12 return ( ( Eigen : : Vector2d ( ) << 2.0 * x [ 0 ] , 1 .0 ) . f inished ( ) ) / den ;

13 } ;

14 // Convert into mesh function to use for error computation

15 const l f : : mesh : : u t i l s : : MeshFunctionGlobal mf_grad_u { grad_u } ;

2 // Assembly completed: Convert COO matrix A into CRS format using
Eigen’s
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3 // internal conversion routines.

4 const Eigen : : SparseMatrix <double> A_crs = A. makeSparse ( ) ;

5

6 // Solve linear system using Eigen’s sparse direct elimination

7 // Examine return status of solver in case the matrix is singular

8 Eigen : : SparseLU<Eigen : : SparseMatrix <double>> so l ve r ;

9 so l ve r . compute ( A_crs ) ;

10 LF_VERIFY_MSG( so l ve r . i n f o ( ) == Eigen : : Success , "LU decomposition fa i l ed " ) ;

11 const Eigen : : VectorXd sol_vec = so l ve r . solve ( ph i ) ;

12 LF_VERIFY_MSG( so l ve r . i n f o ( ) == Eigen : : Success , " Solving LSE fa i l ed " ) ;

13

14 // Postprocessing: Compute error norms

15 // create mesh functions representing solution / gradient of
solution

16 const l f : : fe : : MeshFunctionFE mf_sol ( fe_space , sol_vec ) ;

17 const l f : : fe : : MeshFunctionGradFE mf_grad_sol ( fe_space , sol_vec ) ;

18 // compute errors with 3rd order quadrature rules, which is
sufficient for

19 // piecewise linear finite elements

20 double L2err = // NOLINT

21 std : : s q r t ( l f : : fe : : IntegrateMeshFunction (

22 mesh , l f : : mesh : : u t i l s : : squaredNorm ( mf_sol − mf_u ) , 2) ) ;

23 double H1serr = std : : s q r t ( l f : : fe : : IntegrateMeshFunction ( // NOLINT

24 mesh , l f : : mesh : : u t i l s : : squaredNorm ( mf_grad_sol − mf_grad_u ) , 2) ) ;

y

EXPERIMENT 3.2.3.6 (Convergence of linear finite element method for two-point BVP) We use

piecewise linear Lagrangian finite elements on equidistant meshes with M cells (→ § 2.3.1.3) to tackle

the following two-point boundary value problem:

✦ domain Ω =]0, 1[,

✦ ODE: −d2u

dx2
= f in Ω,

✦ load f (x) = −4π(cos(2πx2)− 4πx2 sin(2πx2)),
✦ boundary values ua = ub = 0.

unique solution

u(x) = sin(2πx2) . 0 < x < 1 .

(“manufactured solution”)

Computation of integral error norms ‖u− uh‖L2(Ω) and |u− uh|H1(Ω) by local (fourth order) 2-point

Gauss quadrature rule. Maximum norm ‖u− uh‖L∞(Ω) by sampling in nodes of the mesh.

Fig. 179
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We observe conspicuous algebraic convergence (error curves are almost straight lines in doubly logarith-

mic plot) with the following rates:
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• L∞(Ω)-/L2(Ω)-norm: ‖u− uh‖∗ = O(M−2), rate 2,

• H1(Ω)-semi-norm: |u− uh|H1(Ω) = O(M−1), rate 1.

y

EXPERIMENT 3.2.3.7 (Convergence for linear and quadratic Lagrangian finite elements in energy

norm)

Setting: Ω =]0, 1[2, f (x1, x2) = 2π2 sin(πx1) sin(πx2), x ∈ Ω, g = 0

➢ Smooth solution u(x, y) = sin(πx) sin(πy).

• Galerkin finite element discretization based on triangular meshes and

– linear Lagrangian finite elements, V0,N = S0
1,0(M) ⊂ H1

0(Ω) (→ Section 2.4),

– quadratic Lagrangian finite elements, V0,N = S0
2,0(M) ⊂ H1

0(Ω) (→ Ex. 2.6.1.2),

• quadrature rule (2.7.5.37) for assembly of local load vectors (→ Section 2.7.5),

Monitored: H1(Ω)-semi-norm (→ Def. 1.3.4.3) of the Galerkin discretization error u− uh

Approximate (∗) computation of |u− uh|H1(Ω) on a sequence of meshes (created by successive

regular refinement (→ Ex. 3.1.4.3) of coarse initial mesh)

(∗): use of local quadrature rule (2.7.5.37) (on current FE mesh)
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Unstructured triangular meshes of Ω =]0, 1[2 (two coarsest specimens)
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Fig. 181
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Again, recall the two types of convergence (algebraic convergence vs. exponential convergence) from

Def. 3.2.2.1 and how to detect them in a numerical experiment by inspecting appropriate graphs, see

§ 3.2.2.5.

Observations: • Algebraic rates of convergence in terms of N and h
• Quadratic Lagrangian FE converge with double the rate of linear Lagrangian FE

Recall: Rates of algebraic convergence can be estimated by linear least squares fitting→ Code 3.2.2.8.

In Fig. 181 and Fig. 182 these estimated rates are indicated by the slopes of hypothenuses of triangles

(German “Steigungsdreieck”). We find

linear Lagrangian finite elements: |u− uh|H1(Ω) = O(hM) = O(N−
1
2 )

quadratic Lagrangian finite elements: |u− uh|H1(Ω) = O(h2
M) = O(N−1)

y

EXPERIMENT 3.2.3.8 (Convergence of linear and quadratic Lagrangian finite elements in L2-norm)

Setting as above in Exp. 3.2.3.7, Ω =]0, 1[2.

Monitored: asymptotics of the L2(Ω)-semi-norm of the Galerkin discretization error (approximate compu-

tation of ‖u− uh‖L2(Ω) by means of local quadrature rule (2.7.5.37) on a sequence of meshes created by

successive regular refinement (→ Ex. 3.1.4.3) of coarse initial mesh).
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Fig. 183
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Observations: • Linear Lagrangian FE (p = 1) ➽ ‖u− uh‖0 = O(h2
M) = O(N−1)

• Quadratic Lagrangian FE (p = 2) ➽ ‖u− uh‖0 = O(h3
M) = O(N−1.5)

For the “conversion” of convergence rates with respect to the mesh width hM and N := dimS0
p(M),

note that in 2D for Lagrangian finite element spaces with fixed polynomial degree (→ Section 2.6) and

meshes created by global (that is, carried out everywhere) regular refinement

N = O(h−2
M) . (3.2.3.9)

See Section 3.3.5, page 350 for further discussion, (3.3.5.16) for a more general relationship. y

EXPERIMENT 3.2.3.10 (h-convergence of Lagrangian FEM on L-shaped domain)

Setting: model problem (3.2.3.2) on Ω =]− 1, 1[2\(]0, 1[×]− 1, 0[), exact solution (in polar coordinates,

see (1.2.3.46)

u(r, ϕ) = r
2/3 sin(2/3ϕ) ➢ f = 0, g = u|∂Ω.

Fig. 185

Exact solution u

Fig. 186

Norm of gradient: ‖grad u‖

Note: grad u has a so-called singularity at 0, that is, “‖grad u(0)‖ = ∞”.
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• Galerkin finite element discretization based on triangular meshes and

– linear Lagrangian finite elements, V0,N = S0
1,0(M) ⊂ H1

0(Ω) (→ Section 2.4),

– quadratic Lagrangian finite elements, V0,N = S0
2,0(M) ⊂ H1

0(Ω) (→ Ex. 2.6.1.2),

• linear/quadratic interpolation of Dirichlet data to obtain offset function u0 ∈ S0
p,0(M), p = 1, 2, see

Section 2.7.6, Ex. 2.7.6.5.

Sequence of meshes created by successive regular refinement (→ Ex. 3.1.4.3) of coarse initial mesh, see

Fig. 187 and Fig. 188.

Fig. 187

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 2D triangular mesh

 # Vertices  :  45,      # Elements  :  64,      # Edges  :  108 Fig. 188

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 2D triangular mesh

 # Vertices  :  153,      # Elements  :  256,      # Edges  :  408

Unstructured triangular meshes of Ω =]− 1, 1[2\(]0, 1[×]− 1, 0[) (two coarsest specimens)

Approximate computation of |u− uh|H1(Ω) by using local quadrature formula (2.7.5.37) on FE meshes.
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H1(Ω)-semi-norm of discretization error on “L-shaped” domain (− ↔ p = 1, − ↔ p = 2)

Observations: • For both p = 1, 2: ‖u− uh‖1 = O(N−1/3)
• No gain from higher polynomial degree
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Conjecture: singularity of grad u at x = 0 seems to foil faster algebraic convergence of quadratic La-

grangian finite element solutions! y

EXPERIMENT 3.2.3.11 (Convergence of Lagrangian FEM for p-refinement)

✦ Model BVP as in Exp. 3.2.3.7 ➣ unit square domain Ω =]0, 1[2,

Exp. 3.2.3.10 ➣ L-shaped domain Ω =]− 1, 1[2\(]0, 1[×]− 1, 0[).

✦ Galerkin finite element discretization based on S0
p(M), p = 1, 2, 3, 5, 6, 7, 8, 9, 10, built on a fixed

coarse triangular mesh of Ω.

➤ p-refinement

Monitored: H1(Ω)-semi-norm (energy norm) and L2(Ω)-norm of discretization error as functions of poly-

nomial degree p and N := dimS0
p(M).

(Computation of norms by means of local quadrature rule of order 19!. This renders the error in norm

computations introduced by numerical quadrature negligible.)

Meaningful discretization parameters for asymptotic study of error norms:

✦ polynomial degree p for Lagrangian finite element space,

✦ N := dim V0,N as a measure of the “cost” of a discretization, see Section 3.2.2.
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Ω =]0, 1[2: behavior of |u− uh|H1(Ω) for different polynomial degrees.

Lagrangian FEM: p-convergence for smooth (analytic) solution

Observation: We witness exponential convergence of the FE discretization error!

Fig. 193
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Lagrangian FEM: p-convergence for solution with singular gradient (L-shaped domain)
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Observation: Now “only” algebraic convergence of the FE discretization error!

We suspect that the “singular behavior” of grad u at x = 0 thwarts exponential convergence and allows

only algebraic convergence whose rate will be limited by the (lack of) smoothness of the solution. y

EXPERIMENT 3.2.3.12 (Asymptotic nature of convergence) We consider the Galerkin finite element

discretization of the two-point boundary value problem

−d2u

dx2
= g(x) , u(0) = u(1) = 0 , Ω =]0, 1[ , ✁ u(x) = sin(50πx2) ,

by means of piecewise linear Lagrangian finite element on an equidistant meshes with M ∈ N cells. We

perform the same evaluations as in Exp. 3.2.3.6.

Fig. 195
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For large M we still observe asymptotic algebraic convergence with roughly the same rates as in

Exp. 3.2.3.6. This is the “typical” asymptotic behavior of the discretization error norms for lowest-order

Lagrangian finite element methods in one dimension.

!
However, the onset of asymptotic convergence occurs only for rather small meshwidth,

respectively, beyond thresholds that may never be reached in a computation. During a

long pre-asymptotic phase the error is hardly reduced when increasing the resolution of the

discretization. y

§3.2.3.13 (Summary of observations) Observations on convergence of Galerkin finite element solutions

of 2nd-order elliptic BVPs obtained by means of Lagrangian finite elements:

✦ For h-refinement we generally observe algebraic convergence of H1(Ω)-/L2(Ω)-norms of the dis-

cretization errors in meshwidth/problem size.

✦ The rate of convergence seems to depend on

• the kind of error norm considered,

• properties of the exact solution u of the boundary value problem,

• the (uniform) polynomial degree of the Lagrangian finite element space.

✦ In general ‖u− uh‖L2(Ω) seems to converge faster than |u− uh|H1(Ω).

✦ Asymptotic convergence behavior may not emerge for “practical” meshwidths.

The following sections will be devoted to providing some mathematical underpinning for these observation,

which will yield deeper insights into the asymptotic behavior of finite element discretization errors.

y
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Review question(s) 3.2.3.14 (Empirical Convergence of FEM)

(Q3.2.3.14.A) [Forgetting to take the square root] You forget the call to std::sqrt() when computing

approximations of ‖u− uh‖L2(Ω) and |u− uh|H1(Ω), u− uh a finite-element Galerkin discretization er-

ror for a second-order elliptic BVP. What will be the impact on observed rates of algebraic convergence?

(Q3.2.3.14.B) [Estimates for boundary traces] In a numerical experiment we observe the following

asymptotic convergence for the finite-element solutions of a second-order elliptic BVP on Ω ⊂ R2 and

h-refinement (hM → 0)

|u− uh|H1(Ω) = O(hM) , ‖u− uh‖L2(Ω) = O(h2
M) .

What asymptotic convergence for hM → 0 do you predict for the error norm ‖u− uh‖L2(∂Ω)?

Hint. You can refer the the following result

Theorem 1.9.0.10. Multiplicative trace inequality

∃C = C(Ω) > 0: ‖u‖2
L2(∂Ω) ≤ C‖u‖L2(Ω) · ‖u‖H1(Ω) ∀u ∈ H1(Ω) .

(Q3.2.3.14.C) [Determining convergence rates from data] The following table list error norms recorded

for a sequence of finite element solutions uℓ ∈ H1(Ω) belonging to finite element spaces with dimen-

sions Nℓ. From the data predict qualitatively and quantitatively the asymptotic convergence for Nℓ → ∞.

Nℓ 8 16 32 64 128 256 512 1024

|u− uℓ|H1(Ω) 4.98e-01 4.08e-01 3.23e-01 2.57e-01 2.01e-01 1.53e-01 1.26e-01 1.02e-01

‖u− uℓ‖L2(Ω) 3.57e-01 2.55e-01 1.79e-01 1.24e-01 8.89e-02 6.15e-02 4.49e-02 3.05e-02

(Q3.2.3.14.D) [Impact of singularities] We solve a second-order elliptic BVP based on the Lagrangian

finite-element spaces S0
1 (Mℓ) and S0

2 (Mℓ), and on a sequence of triangular meshes (Mℓ)
L
ℓ=0 ob-

tained by uniform regular refinement. We get the finite element Galerkin solutions u1
ℓ ∈ S0

1 (Mℓ) and

u2
ℓ ∈ S0

2 (Mℓ), ℓ = 0, . . . , L.

How will the presence of a singularity of grad u, u ∈ H1(Ω) the exact solution, manifest itself in the

asymptotic behavior of the L2(Ω)- and H1(Ω)-norms of the finite element discretization errors?

(Q3.2.3.14.E) [Exponential versus algebraic convergence] How should you read the following state-

ment?

“Exponentially convergent Galerkin schemes are better than algebraically convergent meth-

ods”

△

3.3 A Priori (Asymptotic) Finite Element Error Estimates

1.
Video tutorial for Section 3.3: A Priori (Asymptotic) Finite Element Error Estimates (I):

(21 minutes) Download link, tablet notes

2.
Video tutorial for Section 3.3: A Priori (Asymptotic) Finite Element Error Estimates (II):

(35 minutes) Download link, tablet notes

3.
Video tutorial for Section 3.3: A Priori (Asymptotic) Finite Element Error Estimates (III):

(35 minutes) Download link, tablet notes
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§3.3.0.1 (A priori versus a posteriori error estimates) We are interested in a priori estimates of norms

of the discretization error u− uh, where u is the exact solution of a linear 2nd-order elliptic boundary value

problem and uh its finite element Galerkin approximation.

A priori estimate: bounds for error norms available before computing approximate solutions.

m

A posteriori estimate: bounds for error norms based on an approximate solution

already computed.

y

We repeat our assumptions: The variational formulation of the elliptic boundary value problem leads to

a linear variational problem (2.2.0.2) with symmetric and positive definite bilinear form a (→ Ass. 3.1.1.2)

and a-continuous right hand side functional (→ Ass. 3.1.1.3).

§3.3.0.2 (General policy for obtaining a-priori error estimates in energy norm) The results of Sec-

tion 3.1 provide us with the tools to address a-priori error estimates for Galerkin discretization error:☛
✡

✟
✠Optimality (3.1.3.9) of Galerkin solution a priori error estimates

Thm. 3.1.3.7

(Cea’s lemma)

➤
Estimate energy norm of Galerkin discretization error u− uh by bounding the

best approximation error for exact solution u in the finite element space:

‖u− uh‖a
︸ ︷︷ ︸

↑

≤ inf
vh∈V0,h

‖u− vh‖a
︸ ︷︷ ︸

↑

, (3.1.3.9)

(norm of) discretization error best approximation error

Issue: How to estimate a best approximation error inf
vh∈V0,h

‖u− vh‖V ?

➣ Well, given solution u seek a candidate function wh ∈ V0,h with

‖u− wh‖V ≈ inf
vh∈Vh

‖u− vh‖V .

Natural choice: wh by interpolation/averaging of (unknown, but existing) u

Thus, the task of bounding the Galerkin discretization error can be reduced to interpolation error

estimates.

y

3.3.1 Estimates for Linear Interpolation in 1D

In this section we first study interpolation error estimates in one spatial dimension, in order to elucidate

the general approach and the structure of the estimates.

The 1D computational domain (→ Section 1.5.1) is just an interval Ω = [a, b]. It is equipped with a

1D mesh (→ Section 2.3): M := {]xj−1, xj[: j = 1, . . . , M}, M ∈ N, on which we define piecewise

linear interpolation:
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Fig. 197 x1 x2 x3 · · ·a b

u
Piecewise linear interpolant of u ∈ C0([a, b]):

I1u ∈ S0
1 (M) ,

(I1u)(xj) = u(xj) , j = 0, . . . , M .
(3.3.1.1)

➣ [NCSE]

Goal: Bound suitable norm of the interpolation error u− I1u in terms of geometric quantities (∗)
characterizingM =̂ discretization parameters→ § 3.2.1.3.

(∗): A typical such quantity is the mesh width hM := max
j
|xj − xj−1|, cf. Def. 3.2.1.4.

Now we investigate different norms of the interpolation error. Beforehand, recall the various norms on

spaces of (bounded/integrable) functions, the supremum norm ‖·‖L∞(]a,b[) (→ Def. 0.3.2.25), the L2-norm

‖·‖L2(]a,b[) (→ Def. 0.3.2.27), and the H1-(semi)norm |·|H1(]a,b[) (→ Def. 1.3.4.3).

§3.3.1.2 (Estimating the error norm ‖u− I1u‖L∞([a,b])) We rely on results from basic numerical analysis,

[NCSE] and [NCSE]. In particular, we can appeal to the following elementary result about polynomial

interpolation in 1D.

Theorem [NCSE]. Error representation for Lagrangian polynomial interpolation

We consider f ∈ Cn+1(I) and the Lagrangian polynomial interpolation operator IT for a node set

T := {t0, . . . , tn} ⊂ I → [NCSE].

Then, for every t ∈ I there exists a τt ∈]min{t, t0, . . . , tn}, max{t, t0, . . . , tn}[ such that

f (t)− IT ( f )(t) =
f (n+1)(τt)

(n + 1)!
·

n

∏
j=0

(t− tj) .

From this theorem for n = 1 we learn that for u ∈ C2([a, b]) we have

∀x ∈ [xj−1, xj]: u(x)− (I1u)(x) = 1
4 u′′(ξx)(xj − xj−1)

2 , for some ξx ∈]xj−1, xj[ , (3.3.1.3)

with local linear interpolant (I1u)(x) =
x− xj−1

xj − xj−1
u(xj) +

xj − x

xj − xj−1
u(xj−1) . (3.3.1.4)

(3.3.1.3) implies the following interpolation error estimate in L∞([a, b])

‖u− I1u‖L∞([a,b]) ≤ 1
4 h2
M‖u′′‖L∞([a,b]) . (3.3.1.5)

This is obtained by simply taking the maximum over all local norms of the interpolation error.

However, we should actually target the energy norm. Hence, we also have to study other norms of the

interpolation error: y

§3.3.1.6 (Estimating the error norm ‖u− I1u‖L2([a,b])) We start from the observation that all mesh cells

contribute to this error norm: with I1u from (3.3.1.4)

‖u− I1u‖2
L2([a,b]) =

M

∑
j=1

‖u− I1u‖2
L2(]xj−1,xj[)

=
M

∑
j=1

xj∫

xj−1

|(u− I1u)(x)|2 dx . (3.3.1.7)
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This suggests localization: Estimate error norms on individual mesh cells and sum local

bounds.

This idea is very natural for piecewise linear interpolation, because it is local in the sense that I1u on a cell

K depends only on the values of u on K!

The local estimates rely on integration by parts in one dimension:

1∫

0

u(ξ)v′(ξ)dξ = −
1∫

0

u′(ξ)v(ξ) + (u(1)v(1)− u(0)v(0))︸ ︷︷ ︸
boundary terms

∀u, v ∈ C1
pw([0, 1]) . (1.5.1.8)

Apply this formula twice, for u ∈ C2([xj−1, xj]), x ∈ [xj−1, xj], thus removing derivatives from u:

x∫

xj−1

(xj − x)(ξ − xj−1)

xj − xj−1
u′′(ξ)dξ +

xj∫

x

(x− xj−1)(xj − ξ)

xj − xj−1
u′′(ξ)dξ

= −
x∫

xj−1

xj − x

xj − xj−1
u′(ξ)dξ +

(xj − x)(x− xj−1)

xj − xj−1
u′(x)

+

xj∫

x

x− xj−1

xj − xj−1
u′(ξ)dξ − (xj − x)(x− xj−1)

xj − xj−1
u′(x)

=
xj − x

xj − xj−1

(
u(xj−1)− u(x)

)
+

x− xj−1

xj − xj−1

(
u(xj)− u(x)

)

=
xj − x

xj − xj−1
u(xj−1) +

x− xj−1

xj − xj−1
u(xj)

︸ ︷︷ ︸
=I1u(x) !

−u(x) . (3.3.1.8)

We also appealed to the fundamental theorem of calculus, which is (1.5.1.8) for v ≡ 1. What we have

obtained is a (kernel) representation formula for the local interpolation error I1u− u of the form

(I1u− u)(x) =
∫ xj

xj−1

G(x, ξ) u′′(ξ)dξ . (3.3.1.9)

with G(x, ξ) =





(xj − x)(ξ − xj−1)

xj − xj−1
for xj−1 ≤ ξ < x ,

(x− xj−1)(xj − ξ)

xj − xj−1
for x ≤ ξ ≤ xj .

, which satisfies

|G(x, ξ)| ≤ |xj − xj−1| ⇒
xj∫

xj−1

G(x, ξ)2 dξ ≤ |xj − xj−1|3 . (3.3.1.10)

The following figures display the kernel function G for 1D linear interpolation and for xj−1 = 0 , xj = 1 .
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The next step relies on the Cauchy-Schwarz inequality
∫

Ω
f (x)g(x)dx ≤ ‖ f ‖L2(Ω)‖g‖L2(Ω) ∀ f , g ∈ L2(Ω) , (1.3.4.15)

for Ω =]xj−1, xj[, which is applied to the representation (3.3.1.9):

xj∫

xj−1

|u(x)− I1u(x)|2 dx =

xj∫

xj−1

∣∣∣∣∣∣∣

xj∫

xj−1

G(x, ξ) u′′(ξ)dξ

∣∣∣∣∣∣∣

2

dx

(1.3.4.15)

≤
xj∫

xj−1





xj∫

xj−1

G(x, ξ)2 dξ ·
xj∫

xj−1

|u′′(ξ)|2 dξ





dx .

(3.3.1.11)

As a consequence of (3.3.1.10) we can drop the kernel function G from right hand side of (3.3.1.11)

(3.3.1.10)⇒ ‖u− I1u‖2
L2(]xj−1,xj[)

=

xj∫

xj−1

|u(x)− I1u(x)|2 dx ≤ |xj − xj−1|4
xj∫

xj−1

|u′′(ξ)|2 dξ .

(3.3.1.12)

Use this estimate on [xj−1, xj], note that |xj − xj−1| ≤ hM for any j, sum over all cells of the meshM,

and take the square root.

(3.3.1.12) ⇒ ‖u− I1u‖L2([a,b]) ≤ h2
M
∥∥u′′

∥∥
L2([a,b]) . (3.3.1.13)

y

§3.3.1.14 (Estimating the error norm |u− I1u|H1([a,b])) In light of the definition of the H1([a, b])-
seminorm in Def. 1.3.4.3, we first differentiate the representation formula (3.3.1.9): for xj−1 < x < xj,

using the explicit piecewise linear representation of G,

d

dx
(I1u− u)(x)=

xj∫

xj−1

∂G

∂x
(x, ξ)u′′(ξ)dξ

=

xj∫

xj−1

− ξ − xj−1

xj − xj−1
u′′(ξ)dξ +

xj∫

xj−1

xj − ξ

xj − xj−1
u′′(ξ)dξ .
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Again, the Cauchy-Schwarz inequality (1.3.4.15) on Ω :=]xj−1, xj[ is useful and yields

xj∫

xj−1

∣∣∣∣
d

dx
(I1u− u)(x)

∣∣∣∣
2

dx =

xj∫

xj−1

∣∣∣∣∣∣∣

xj∫

xj−1

∂G

∂x
(x, ξ)u′′(ξ)dξ

∣∣∣∣∣∣∣

2

dx

≤
xj∫

xj−1





xj∫

xj−1

∣∣∣∣
∂G

∂x
(x, ξ)

∣∣∣∣
2

︸ ︷︷ ︸
≤1

dξ ·
xj∫

xj−1

|u′′(ξ)|2 dξ





dx .

(3.3.1.15)

|u− I1u|2H1(]xj−1,xj[)
≤ (xj − xj−1)

2

xj∫

xj−1

|u′′(ξ)|2 dξ . (3.3.1.16)

As above, apply this estimate on [xj−1, xj], use |xj − xj−1| ≤ hM, sum over all cells of the meshM
and take square root.

(3.3.1.16) ⇒ |u− I1u|H1([a,b]) ≤ hM
∥∥u′′

∥∥
L2([a,b]) . (3.3.1.17)

y

Lessons from the last three §s:

1. We have to rely on smoothness of the interpolant u to obtain bounds for norms of the interpolation

error. In the above estimates, we have to take for granted boundedness/square integrability of the

second derivative.

2. The bounds for the norms of the interpolation error involve norms of derivatives of the interpolant.

3. For sufficiently smooth u we find algebraic convergence (→ Def. 3.2.2.1) of norms of the interpola-

tion error in terms of mesh width hM → 0.

3.3.2 Error Estimates for Linear Interpolation in 2D

The setting for this section is as follows.

We are given

✦ a polygonal domain Ω ⊂ R2

✦ a triangular meshM of Ω

(→ Def. 2.5.1.1)

Fig. 200

Ω

Section 3.3.1 introduced piecewise linear interpolation on a mesh/grid in 1D. The next definition gives the

natural 2D counterpart on a triangular mesh and for piecewise linear Lagrangian finite elements.
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Definition 3.3.2.1. Linear interpolation in 2D

The linear interpolation operator I1 : C0(Ω̄) 7→ S0
1 (M) is defined by

I1u ∈ S0
1 (M) , I1u(p) = u(p) ∀p ∈ V(M) .

!
This is a valid definition, because a function vh ∈ S0

1 (M) is uniquely determined by its

values in the vertices of the mesh (→ 2.4.3.3), which are the interpolation nodes for the

linear Lagrangian finite element space.

Recalling the definition of the nodal basis B = {bp
h : p ∈ V(M)} of S0

1 (M) from (2.4.3.5), where b
p
h is

the “tent function” associated with node p, an equivalent definition is, cf. (2.7.6.6),

I1u = ∑
p∈V(M)

u(p) b
p
h , u ∈ C0(Ω) . (3.3.2.2)

Task: For “sufficiently smooth” u : Ω 7→ R, u ∈ C∞(Ω̄) to begin with, establish a bound for the H1(Ω)-
norm of the interpolation error ‖u− I1u‖H1(Ω) in terms of geometric discretization parameters

related to the meshM.

As in § 3.3.1.6 we note that the error norm ‖u− I1u‖H1(Ω) can be computed by summing local contribu-

tion. This suggests localization in the same vein as in 1D.

Interpolation error estimation: localization trick

Again, linear interpolation in 2D according to Def. 3.3.2.1 is local in the sense that I1u inside a

triangle K depends only on the values of u in K.

Idea: Localization

I1 local ➣ first, estimate ‖u− I1u‖2
H1(K), K ∈ M,

then, global estimate via summation as in § 3.3.1.6.

➣ Focus on single triangle K ∈ M

Crucial for localization to work is the fact that the linear interpolation operator I1 : C0(Ω̄) 7→ S0
1 (M) can

be defined purely locally by the concrete barycentric interpolation formula

I1u|K = u(a1)λ1 + u(a2)λ2 + u(a3)λ3 , (3.3.2.4)

for each triangle K ∈ M with vertices a1, a2, a3 (λk =̂ barycentric coordinate functions = local shape

functions for S0
1 (M), see Fig. 75).

§3.3.2.5 (Representation formula for interpolation error) The main steps parallel those for the 1D

case in § 3.3.1.6 and § 3.3.1.14, though the technicalities are much more intricate. We start with a

representation formula for local interpolation errors, cf. (3.3.1.8). Its derivation solely relies on elementary

formulas from calculus.
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Fig. 201
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ω1
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u ∈ C2(K̄): by mean value formula ∀x ∈ K,

u(aj) = u(x) + grad u(x) · (aj − x)+
∫ 1

0
(aj− x)⊤D2u(x+ ξ(aj− x))(aj− x)(1− ξ)dξ ,

(3.3.2.6)

D2u(x) =

[
∂2u
∂x1

2 (x) ∂2u
∂x1∂x2

(x)
∂2u

∂x1∂x2
(x) ∂2u

∂x2
2 (x)

]
=̂ Hessian.

The formula (3.3.2.6) is easily verified by applying integration by parts (1.5.1.8) in the form

f (b)− f (a) =
[
ξ f ′(ξ)

]b

a
−
∫ b

a
ξ f ′′(ξ)dξ = f ′(a)(b− a) +

∫ b

a
(b− ξ) f ′′(ξ)dξ .

to the function f (t) = u(taj + (1− t)x) with a = 0, b = 1. Use the multi-dimensional chain rule to

express the derivatives of f through derivatives of u:

f ′(t) = grad u(taj + (1− t)x)
⊤
(aj − x) ,

f ′′(t) = (aj − x)⊤D2u(taj + (1− t)x)(aj − x) .

Next, use (3.3.2.6) to replace u(aj) in the formula (3.3.2.4) for local linear interpolation. Also use the

identities for the barycentric coordinate functions

3

∑
j=1

λj(x) = 1 , x =
3

∑
j=1

ajλj(x) . (3.3.2.7)

I1u(x) =
3

∑
j=1

u(aj)λj(x) = u(x) ·
3

∑
j=1

λj(x)

︸ ︷︷ ︸
=1

+ grad u(x) ·
3

∑
j=1

(aj − x)λj(x)

︸ ︷︷ ︸
=0

+R(x) ,

with R(x) :=
3

∑
j=1

(∫ 1

0
(aj − x)⊤D2u(x + ξ(aj − x))(aj − x)(1− ξ)dξ

)
λj(x) . (3.3.2.8)

Again, as in the case of (3.3.1.8) for 1D linear interpolation we have arrived at an integral representation

formula for the local interpolation error:

(u− I1u)(x) =
3

∑
j=1

(∫ 1
0 (aj − x)TD2u(x + ξ(aj − x))(aj − x)(1− ξ)dξ

)
λj(x) . (3.3.2.9)

y

§3.3.2.10 (Estimate for L2-norm of interpolation error) Together with the triangle inequality, the trivial

bound |λj| ≤ 1 yields

‖u− I1u‖L2(K) ≤
3

∑
j=1



∫

K




1∫

0

(aj − x)TD2u(x + ξ(aj − x))(aj − x)(1− ξ)dξ




2

dx




1
2

.
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To estimate an expression of the form

∫

K

(∫ 1

0
(aj − x)TD2u(x + ξ(aj − x))(aj − x)(1− ξ)dξ

)2

dx , (3.3.2.11)

we may assume, without loss of generality, that aj = 0.

➣ Task: estimate terms (where 0 is a vertex of K!)

∫

K

(∫ 1

0
x⊤D2u((1− ξ)x)x(1− ξ)dξ

)2

dx =
∫

K

(∫ 1

0
x⊤D2u(ξx)x ξ dξ

)2

dx .

Denote γ =̂ angle of K at vertex 0,

h =̂ length of longest edge of K.

K is contained in the sector

S := {x = (r cos ϕ
r sin ϕ): 0 ≤ r < h, 0 ≤ ϕ ≤ γ}

Lemma 3.3.2.12. Auxiliary estimate on sector

For any ψ ∈ L2(S) holds

∫

S




1∫

0

|y|2ψ(τy)τ dτ




2

dy ≤ h4

8
‖ψ‖2

L2(S) .

Fig. 202

0
h

S

γ

Using polar coordinates (r, ϕ), ŝϕ = (cos ϕ
sin ϕ), see [STRLN09], and Cauchy-Schwarz inequality (1.3.4.15):

∫

S




1∫

0

|y|2]ψ(τy)τ dτ




2

dy =

γ∫

0

h∫

0




1∫

0

r2ψ(τrŝϕ)τ dτ




2

r drdϕ

=

γ∫

0

h∫

0




r∫

0

ψ(σŝϕ)σ dσ




2

r drdϕ ≤
γ∫

0

h∫

0

r∫

0

ψ2(σŝϕ)σ dσ ·
r∫

0

σ dσ r drdϕ

≤ 1
2

γ∫

0

h∫

0

ψ2(σŝϕ)σ dσdϕ ·
h∫

0

r3 dr .

Use |z⊤Ay| ≤ ‖A‖F‖z‖‖y‖, A ∈ Rn,n, z, y ∈ Rn, and then apply § 3.3.2.10 with y := x − aj,

τ = 1− ξ

‖u− I1u‖2
L2(K) ≤ 3

8 h4
K

∥∥∥
∥∥∥D2u

∥∥∥
F

∥∥∥
2

L2(K)
, (3.3.2.13)

with Frobenius matrix norm

∥∥∥D2u(x)
∥∥∥

2

F
:=

2

∑
i,j=1

∣∣∣∣∣
∂2u

∂xi∂xj
(x)

∣∣∣∣∣

2

(→ [NCSE]),

size of triangle hK := diam K := max{|p− q|: p, q ∈ K}
y
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§3.3.2.14 (Estimate of local H1-seminorm of the interpolation error) Estimate for gradient: from

(3.3.2.6) we infer the local integral representation formula, which can also be obtained by taking the gradi-

ent of (3.3.2.9).

grad I1u(x) =
3

∑
j=1

u(aj) grad λj(x)

=
3

∑
j=1

(
u(x) + grad u(x) · (aj − x) +

∫ 1

0
. . . dξ

)
grad λj(x)

= u(x)
3

∑
j=1

grad λj(x)

︸ ︷︷ ︸
=0

+
( 3

∑
j=1

(aj − x)⊤ grad λj(x)
)

︸ ︷︷ ︸
=1

· grad u(x) + G(x) ,

with G(x) :=
3

∑
j=1

(∫ 1

0
(aj − x)⊤D2u(x + ξ(aj − x))(aj − x)(1− ξ)dξ

)

︸ ︷︷ ︸
cf. (3.3.2.11)

grad λj(x) .

Note that grad
3

∑
j=1

λj(x) = grad 1 = 0 and

3

∑
j=1

grad λj(x)(aj − x)⊤ =
3

∑
j=1

grad λj(x)(aj)⊤ = grad
( 3

∑
j=1

λj(x)aj
)
= grad x = I . (3.3.2.15)

As an immediate consequence of the formulas from Section 2.4.5

grad λ1 = − |e1|
2|K| n1 =

1

2|K| (a2 − a3)⊥ =
1

2|K|

(
a2

2 − a3
2

a3
1 − a2

1

)
,

grad λ2 = − |e2|
2|K| n2 =

1

2|K| (a3 − a1)⊥ =
1

2|K|

(
a3

2 − a1
2

a1
1 − a3

1

)
,

grad λ3 = − |e3|
2|K| n3 =

1

2|K| (a1 − a2)⊥ =
1

2|K|

(
a1

2 − a2
2

a2
1 − a1

1

)
,

we conclude

(2.7.5.4) ➤ | grad λj(x)| ≤ hK

2|K| , x ∈ K . (3.3.2.16)

‖grad(u− I1u)‖2
L2(K) ≤

h2
K

4|K|2‖R‖
2
L2(K)

(3.3.2.13)

≤ 3
8

h6
K

4|K|2
∥∥∥
∥∥∥D2u

∥∥∥
F

∥∥∥
2

L2(K)
. (3.3.2.17)

y

Summary of local interpolation error estimates for linear interpolation according to Def. 3.3.2.1:

Lemma 3.3.2.18. Local interpolation error estimates for 2D linear interpolation

For any triangle K and u ∈ C2(K) the following holds

‖u− I1u‖2
L2(K) ≤ 3

8 h4
K

∥∥∥
∥∥∥D2u

∥∥∥
F

∥∥∥
2

L2(K)
, (3.3.2.13)

‖grad(u− I1u)‖2
L2(K) ≤ 3

24

h6
K

|K|2
∥∥∥
∥∥∥D2u

∥∥∥
F

∥∥∥
2

L2(K)
. (3.3.2.17)
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§3.3.2.19 (Shape regularity) Note: the estimates of Lemma 3.3.2.18 are structurally similar to the 1D

estimates (3.3.1.12) and (3.3.1.16) in the sense that the bounds involve L2-norms of second derivatives

and factors depending on the cell size.

New aspect compared to Section 3.3.1: shape of K enters error bounds of Lemma 3.3.2.18. This de-

pendence on shape can be reduced to a single number:

Definition 3.3.2.20. Shape regularity measure

For a simplex K ∈ Rd we define its shape regularity measure as the ratio

ρK := hd
K : |K| , hK := diam(K) ,

and the shape regularity measure of a simplicial meshM = {K} as

ρM := max
K∈M

ρK .

Important:

☛
✡

✟
✠shape regularity measure ρK is an invariant of a similarity class of triangles.

This means that the shape regularity measure does not change when a triangle is transformed by scaling,

rotation, and translation. Sloppily speaking, ρK depends only on the shape, not the size of K.

For triangle K: ρK large ⇔ K “distorted” ⇔ K has small angles

Fig. 203

ρK small

Fig. 204

ρK large

Fig. 205

ρK large

The shape regularity measure ρM is often used to gauge the quality of meshes produced by mesh gen-

erators. y

Now we return to estimates for norms of the interpolation error for piecewise linear interpolation I1. The

final step is to add up the local estimates from Lemma 3.3.2.18 over all triangles of the mesh and take the

square root.

Theorem 3.3.2.21. Error estimate for piecewise linear interpolation

For any u ∈ C2(Ω̄) and 2D piecewise linear interpolation I1 : C0(Ω) → S0
1 (M),M a triangular

mesh, holds

‖u− I1u‖L2(Ω) ≤
√

3
8 h2
M
∥∥∥
∥∥∥D2u

∥∥∥
F

∥∥∥
L2(Ω)

,

‖grad(u− I1u)‖L2(Ω) ≤
√

3
24 ρMhM

∥∥∥
∥∥∥D2u

∥∥∥
F

∥∥∥
L2(Ω)

.

where hM denotes the mesh width (→ Def. 3.2.1.4) and ρM the shape regularity measure (→
Def. 3.3.2.20) ofM.
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Remark 3.3.2.22 (Energy norm and H1(Ω)-norm) One might object that Cea’s lemma Thm. 3.1.3.7

refers to the energy norm, but Thm. 3.3.2.21 provides estimates in H1(Ω)-norm only!

☞ For uniformly positive definite (→ Def. 1.2.2.9) and bounded coefficient tensor α : Ω 7→ Rd,d, cf.

(1.2.2.8),

∃0 < α− < α+: α−‖z‖2 ≤ zTα(x)z ≤ α+‖z‖2 ∀z ∈ Rd, x ∈ Ω ,

and the energy norm (→ Def. 1.2.3.34) induced by

a(u, v) :=
∫

Ω
(α(x) grad u) · grad v dx , u, v ∈ H1

0(Ω) , (3.1.1.7)

we immediately find the equivalence (= two-sided uniform estimate)

√
α−|v|H1(Ω) ≤ ‖v‖a ≤

√
α+|v|H1(Ω) ∀v ∈ H1(Ω) . (3.3.2.23)

Thus, interpolation error estimates in |·|H1(Ω) immediately translate into estimates in terms of the energy

norm (with bounds for the coefficient entering the constants). y

3.3.3 The Sobolev Scale of Function Spaces

Interpolation error estimates like in Thm. 3.3.2.21 hinge on smoothness of the interpoland u: the bounds

in Thm. 3.3.2.21 the term
∥∥∥∥D2u

∥∥
F

∥∥
L2(Ω)

. This norm conveys two messages:

✦
∥∥∥∥D2u

∥∥
F

∥∥
L2(Ω)

< ∞ is a smoothness requirement.

✦ The size of
∥∥∥∥D2u

∥∥
F

∥∥
L2(Ω)

is a measure for the smoothness of u.

In this section we take a closer look at norms involving derivatives and their capability to indicate the

smoothness of a function. In fact, in the guise of the H1(Ω)-seminorm from Def. 1.3.4.3 we have already

come across an example for such a norm. Thus, what we pursue in this section can also be regarded as

a generalization of H1(Ω).

Definition 3.3.3.1. Higher order Sobolev spaces/norms

The m-th order Sobolev norm, m ∈ N0, for u : Ω ⊂ Rd 7→ R (sufficiently smooth) is defined by

‖u‖2
Hm(Ω) :=

m

∑
k=0

∑
α∈Nd ,|α|=k

∫

Ω
|Dαu|2 dx , where Dαu :=

∂|α|u
∂xα1

1 · · · ∂x
αd
d

.

Sobolev space Hm(Ω) := {v : Ω 7→ R: ‖v‖Hm(Ω) < ∞} .

✎ To understand this definition recall the multi-index notation from (2.5.2.3) and (2.5.2.4):

α = (α1, . . . , αd): xα := xα1
1 · · · · · x

αd
d ,

|α| = α1 + α2 + · · ·+ αd .

§3.3.3.2 (Purposes of Sobolev spaces) Gripe (as in Section 1.3): Don’t bother me with these Sobolev

spaces !

Response: Well, these concepts are pervasive in the numerical analysis literature and you have to be

familiar with them, in particular, with the notations.
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Reassuring: Again, it is only the norms ‖u‖Hm(Ω) that matter for us !

Now, we have come across an additional purpose of Sobolev spaces and their norms:

provide framework for

variational formulation

of elliptic BVP

(→ Section 1.3)

Sobolev

spaces

provide norms

‖·‖Hm(Ω) that

measure strength of

singularities of

functions

y

It goes without saying that the Sobolev spaces Hm(Ω) yield a sequence of nested function spaces on Ω,

the☛
✡

✟
✠Sobolev scale: . . . ⊂ H3(Ω) ⊂ H2(Ω) ⊂ H1(Ω) ⊂ L2(Ω)

Observation: The bounds in Thm. 3.3.2.21 are determined by the “principal parts” of the Sobolev norms,

that is, the parts containing the highest partial derivatives. The next concept isolates these highest-order

derivative terms in the norms, and generalizes the semi-norm |·|H1(Ω), refer to Rem. 1.3.4.12.

Definition 3.3.3.3. Higher-order Sobolev semi-norms

The m-th order Sobolev semi-norm, m ∈ N, for sufficiently smooth u : Ω 7→ R is defined by

|u|2Hm(Ω) := ∑
α∈Nd ,|α|=m

∫

Ω
|Dαu|2 dx .

Elementary observation: |p|Hm(Ω) = 0 ⇔ p ∈ Pm−1(R
d)

By density arguments we can rewrite the interpolation error estimates of Thm. 3.3.2.21 in terms

of Sobolev semi-norms:

Corollary 3.3.3.4. Error estimate for piecewise linear interpolation in 2D

Under the assumptions/with notations of Thm. 3.3.2.21

‖u− I1u‖L2(Ω) ≤
√

3
8 h2
M|u|H2(Ω) ,

|u− I1u|H1(Ω) ≤
√

3
24 ρM hM|u|H2(Ω) ,

∀u ∈ H2(Ω) .

Remark 3.3.3.5 (Continuity of interpolation operators) An interpolation operator like I1 maps functions

to functions; it represents a linear mapping (= operator) between two function spaces. If we specify norms

on these spaces, we may ask whether this mapping is continuous in the sense of the following definition,
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which generalizes Def. 1.2.3.41.

Definition 3.3.3.6. Continuous linear operator

A linear mapping T : X → Y between two normed vector spaces X and Y is continuous or

bounded, if and only if

∃C > 0: : ‖Tv‖Y ≤ C‖v‖X ∀v ∈ X .

In order to investigate the continuity of I1 apply the△-inequality to the estimates of Cor. 3.3.3.4:

‖I1u‖L2(Ω) ≤ ‖u‖L2(Ω) +
√

3
8 h2
M|u|H2(Ω) ≤ 2‖u‖H2(Ω) , (3.3.3.7)

if lengths are scaled such that hM ≤ 1. In light of Def. 3.3.3.6 estimate (3.3.3.7) means that I1 : H2(Ω) 7→
L2(Ω) is a continuous linear mapping.

The same conclusion could have been drawn from the following fundamental result:

Theorem 3.3.3.8. Sobolev embedding theorem

m >
d

2
⇒ Hm(Ω) ⊂ C0(Ω) ∧ ∃C = C(Ω) > 0: ‖u‖∞ ≤ C‖u‖Hm(Ω) ∀u ∈ Hm(Ω) .

(Read this theorem as: If Ω ⊂ Rd is a domain and m > d
2 , then functions in Hm(Ω) are continu-

ous up to the boundary of Ω and their maximum norm can be bounded by the their Hm(Ω)-norm,

‖u‖∞ ≤ C‖u‖Hm(Ω), where the constant C > 0 depends only on the domain Ω.)

Yet, for d > 1 the nodal interpolation operator I1 : H1(Ω) 7→ L2(Ω) is not continuous, as we learn from

Ex. 1.2.3.44 (“needle load” on taut membrane). y

3.3.4 Anisotropic Interpolation Error Estimates

Look at the following triangular cells with “bad shape regularity” (ρK “large”): very small/large angles:

Fig. 206 Fig. 207

The estimates of Lemma 3.3.2.18 might suggest that we face huge local interpolation errors, once ρK

becomes large.

Issue: are the estimates of Lemma 3.3.2.18 sharp ?

We will try to find this out experimentally by computing the best possible constants in the estimates

‖u− I1u‖L2(K) ≤ CK,2h2
k‖u‖H2(K) , ‖u− I1u‖H1(K) ≤ CKhK‖u‖H2(K) .
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Note: Merely translating, rotating, or scaling K does not affect the constants CK,2 and CK. Therefore,

we can restrict ourselves to “canonical triangles”. Every general triangle can be mapped to one of these

by translating, rotating, and scaling.

CK,2 := sup
u∈H2(K)\{0}

‖u− I1u‖L2(K)

‖u‖H2(K)

, CK := sup
u∈H2(k)\{0}

‖u− I1u‖H1(K)

‖u‖H2(K)

,

on triangle K := convex
{
(0

0), (
1
0), (

px
py
)
}

.

Fig. 208

10
px

py
K

Sampling the space of “canonical” triangles

(modulo similarity)

0 ≤ px, py ≤ 1 .

+ Numerical computation of CK, CK,2

implementation by A. Inci (spectral polynomial

Galerkin method)
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Fig. 212

Fig. 213

h

1 x

y

triangle K := convex
{
(0

0), (
1
0), (

1/2

h )
}

, h > 0,

u(x, y) = x(1− x), 0 < x < 1.

✁ linear interpolant of u on K as h→ 0

The interpolant becomes steeper and steeper as h→ 0:

‖u‖2
H2(K) =

3031
1440 h , ‖u− I1u‖2

H1(K) =
29

2880 h + 1
12 h + 1

32 h−1 , ‖u− I1u‖2
L2(K) =

29
2889 h

‖u− I1u‖2
H1(K)

‖u‖2
H2(K)

≥ 269
6062 +

45
3031 h−2 ,

‖u− I1u‖2
L2(K)

‖u‖2
H2(K)

=
29

6062
.

EXPERIMENT 3.3.4.1 (Good accuracy on “bad” meshes) Ω =]0, 1[2, u(x1, x2) = sin(πx1) sin(πx2),
BVP −∆u = f , u|∂Ω = 0, finite element Galerkin discretization on triangular meshes, Vh = S0

1,0(M).

☞ meshes created by random distortion of tensor product grids

Fig. 214
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0

0.1

0.2

0.3
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1

 2D triangular mesh

 # Vertices  :  41,      # Elements  :  64,      # Edges  :  56 Fig. 215
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0.6

0.7

0.8

0.9

1

 2D triangular mesh

 # Vertices  :  145,      # Elements  :  256,      # Edges  :  208
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Fig. 216
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Monitored: for different mesh resolutions, H1(Ω)-seminorm of discretization error as function of small-

est/largest angle in the mesh.

Observation: Accuracy does not suffer much from distorted elements !

y

Remark 3.3.4.2 (Gap between interpolation error and best approximation error) Exp. 3.3.4.1 raises

doubts whether the interpolation error can be trusted to provide good, that is, reasonably sharp bounds

for the best approximation error.

In this example we will see that

inf
vh∈S0

p(M)
‖u− vh‖H1(Ω) ≪

∥∥u− Ipu
∥∥

H1(Ω)
is possible !

Fig. 218 h

δ

Elementary cell of “bad mesh”Mbad

Fig. 219 h

δ

Elementary cell of “good mesh”Mgood

On “bad” mesh : sup
u∈H2(Ω)

‖u− I1u‖H1(Ω)

‖u‖H2(Ω)

→ ∞ as h/δ→ ∞,

On “good” mesh : sup
u∈H2(Ω)

‖u− I1u‖H1(Ω)

‖u‖H2(Ω)

uniformly bounded in h/δ.

Yet, inf
vh∈S0

1 (Mbad)
‖u− vh‖H1(Ω) ≤ inf

vh∈S0
1 (Mgood)

‖u− vh‖H1(Ω) ∀u ∈ H2(Ω) .

y

3.3.5 General Approximation Error Estimates for Lagrangian FEM: A Survey

In Section 3.3.2 we only examined the behavior of norms of the interpolation error for piecewise linear

interpolation into S0
1 (M), that is, the case of Lagrangian finite elements of degree p = 1.
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However, Exp. 3.2.3.7 sent the clear message that quadratic Lagrangian finite elements achieve faster

convergence of the energy norm of the Galerkin discretization error, see Fig. 181,Fig. 182.

m
On the other hand quadratic finite elements could not deliver faster convergence in Exp. 3.2.3.10.

In this section we learn about theoretical results that shed light on these observations and extend the

results of Section 3.3.2.

§3.3.5.1 (L∞ interpolation error estimate in 1D) The faster convergence of quadratic Lagrangian FE in

Exp. 3.2.3.7 does not come as a surprise: recall the estimate from [NCSE]:

∥∥u− Ipu
∥∥

L∞([a,b])
≤ h

p+1
M

(p + 1)!

∥∥∥u(p+1)
∥∥∥

L∞([a,b])
∀u ∈ Cp+1([a, b]) ,

where Ipu is theM-piecewise polynomial interpolant of u of local degree p. It generalizes (3.3.1.5), where

this result was stated for p = 1.

➣ |DS
∥∥u− Ipu

∥∥
L∞([a,b])

= O(h
p+1
M ) , provided that u ∈ Cp+1([a, b]). y

§3.3.5.2 (Local interpolation onto higher degree Lagrangian finite element spaces) Let M be a

triangular/tetrahedral/quadrilateral/hybrid mesh of domain Ω (→ Section 2.5.1)

Recall (→ Section 2.6) that the nodal basis functions of p-th degree Lagrangian finite element space

S0
p(M) are defined as cardinal basis functions with respect to a set of interpolation nodes, cf. (2.6.1.4).

✎ Set of interpolation nodes: N = {p1, . . . , ph} ⊂ Ω , N = dimS0
p(M) .

Based on these interpolation nodes we define a general nodal Lagrangian interpolation operator (which

agrees with I1 from Def. 3.3.2.1 for p = 1):

Ip :





C0(Ω) 7→ S0
p(M)

u 7→ Ip(u) :=
N

∑
l=1

u(pl)b
l
h

, (3.3.5.3)

where bl
h are the nodal basis functions. Thanks to their cardinal basis property with respect toN we easily

infer

(2.6.1.4) ⇒ Ip(u)(pl) = u(pl) , l = 1, . . . , N (Interpolation property!) .

By virtue of the location of the interpolation nodes, see Ex. 2.6.1.2, Ex. 2.6.1.7, and Fig. 119, the nodal

interpolation operators are purely local:

∀K ∈ M: Ipu|K =
Q

∑
i=1

u(qK
i ) bi

K , (3.3.5.4)

qK
i , i = 1, . . . , Q =̂ local interpolation nodes in cell K ∈ M, see Ex. 2.6.1.2, Ex. 2.6.1.7, and Fig. 119,

bK
i , i = 1, . . . , Q =̂ local shape functions: bK

i (q
K
j ) = δij.

In LEHRFEM++ the nodal interpolation operators Ip can be realised based on the function
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template <typename SCALAR, typename MF,

typename SELECTOR = base::PredicateTrue>

Eigen::Matrix<SCALAR, Eigen::Dynamic, 1>

NodalProjection(const UniformScalarFESpace<SCALAR> &fe_space,

MF &&u,

SELECTOR &&pred = base::PredicateTrue{});

The argument u has to be given as an object compatible with MeshFunction and the resulting finite

function is returned in the form of its basis expansion coefficient vector. y

EXAMPLE 3.3.5.5 (Piecewise quadratic interpolation → Ex. 2.6.1.2)

For a triangle K = convex{a1, a2, a3} and p = 2 the piece-

wise quadratic interpolation operator on K is given by

I2u|K = −
3

∑
i=1

λi(1− 2λi) u(ai)

+ ∑
1≤i<j≤3

4λiλj u(1
2(a

i + aj)) .

local shape functions, see (2.6.1.6)
Fig. 220 a1

a2

a3

a12

a13
a23

K

y

The following theorem summarizes best approximation results for affine equivalent Lagrangian FE spaces

S0
p(M) (→ Section 2.6) on meshM of a bounded polygonal/polyhedral domain Ω ⊂ Rd. It is the result

of many years of research in approximation theory, see [SAB98], [BAS87].

Theorem 3.3.5.6. Best approximation error estimates for Lagrangian finite elements

Let Ω ⊂ Rd, d = 1, 2, 3, be a bounded polygonal/polyhedral domain equipped with a mesh M
consisting of simplices or parallelepipeds. Then, for each k ∈ N, there is a constant C > 0
depending only on k and the shape regularity measure ρM such that

inf
vh∈S0

p(M)
‖u− vh‖H1(Ω) ≤ C

(
hM

p

)min{p+1,k}−1

‖u‖Hk(Ω) ∀u ∈ Hk(Ω) . (3.3.5.7)

This theorem is a typical example of finite element analysis results that you can find in literature. It is

important to know what kind of information can be gleaned from statements like that of Thm. 3.3.5.6.

Remark 3.3.5.8 (“Generic constants”) A statement like (3.3.5.7) is typical of a priori error estimates in

the numerical analysis literature, which often come in the form

‖u− uh‖X ≤ C · “discretization parameter” · ‖u‖Y ,

where

✦ C > 0 is not specified precisely or only claimed to exist (“there is”, though, in principle, they could

be computed),

✦ C must neither depend on the exact solution u nor the discrete solution uh,

✦ the possible dependence of C on problem parameters or discretization parameters has to stated

unequivocally.
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Such constants C > 0 are known as generic constants. Customarily, different generic constants are even

denoted by the same symbol (“C” is most common). The use of generic constants is an alternative to the

Landau-O notation (3.2.2.2). y

§3.3.5.9 (Nature of a priori estimates → Section 3.2.2) In combination with Cea’s lemma

(Thm. 3.1.3.7) Thm. 3.3.5.6 implies a priori estimates of the energy norm of the finite element Galerkin

discretization error (see also Rem. 3.3.2.22) of the form

‖u− uh‖a ≤ C

(
hM

p

)min{p+1,k}−1

‖u‖Hk(Ω) , (3.3.5.10)

where u is the exact solution of the discretized 2nd-order elliptic boundary value problem.

(3.3.5.10) does not give concrete information about ‖u− uh‖a, because

✦ we do not know the value of the “generic constant” C > 0, see Rem. 3.3.5.8,

✦ as u is unknown, a bound for ‖u‖Hk(Ω) may not be available.

A priori error estimates like (3.3.5.10) exhibit only the trend of the (norm of) the discretization error as

discretization parameters hM (mesh width), p (polynomial degree) are varied.

y

Supplement 3.3.5.11. The estimate of Thm. 3.3.5.6 is sharp: the powers of hM and p cannot be

increased.
y

§3.3.5.12 (The message of asymptotic a priori convergence estimates) What questions can

Thm. 3.3.5.6 and (3.3.5.10) answer? What do they tell us about the accuracy and efficiency of a La-

grangian finite element Galerkin discretization of a 2nd-order elliptic BVP? Closely related discussions

have been presented for numerical quadrature, see [NCSE], and higher order single step methods for

initial value problems from ODEs, see [NCSE]. You are advised to review these passages in order to

understand the parallels.

Question 3.3.5.13. What computational effort buys us what error (measured in energy norm)?

Bad luck (→ § 3.3.5.9): actual error norm remains elusive! Therefore, rephrase the question so that it

fits the available information about the effect of changing discretization parameters on the error:

Question 3.3.5.14. What increase in computational effort buys us a prescribed decrease of the (energy

norm of the) error?

The answer to this question offers an a priori gauge of the asymptotic efficiency of a discretization method.

Convention: computational effort ≈ number of unknowns N = dimS0
p(M) (problem size)

y

§3.3.5.15 (The price of a finite element space) Let us consider a family M of simplicial meshes of the

computational domain Ω ⊂ Rd, d = 1, 2, 3, created by global regular refinement of a single initial mesh,

that is, we focus on h-refinement.

3. FEM: Convergence and Accuracy, 3.3. A Priori (Asymptotic) Finite Element Error Estimates 326



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

Important specimens of such families of meshes are provided by sequences of simplicial meshes created

by global regular refinement (→ Ex. 3.1.4.3). This refinement rule has distinct benefits:

✦ it avoids greater distortion of “child cells” w.r.t. their parents,

✦ it spawns meshes with fairly uniform size hK of cells.

A mathematical way to express these insights:

uniform shape-regularity: ∃C > 0: ρM ≤ C ,

local quasi-uniformity ∃C > 0: max{hK/hK′ , K, K′ ∈ M} ≤ C ,
∀M ∈M .

Now, for meshes ∈ M, we investigate “N-dependence”, N = dimS0
p(M), of energy norm of finite

element discretization error:

Counting argument N = dimS0
p(M) ≈ pdh−d

M ⇒ hM
p
≈ N−1/d . (3.3.5.16)

dimensions of local spaces, Lemma 2.5.2.5 ∼ ♯M∼ ♯V(M), E(M) etc.

Notation: ≈ =̂ uniform equivalence on the set M, that is, each side can be bounded by a constant

times the other, and the constants can be chosen independently of the meshM ∈M
y

§3.3.5.17 (Dimensions of Lagrangian finite element spaces on triangular meshes) We consider

planar meshes, d = 2. For triangular meshesM, by Lemma 2.5.2.5 and simply counting global shape

functions we find for Lagrangian finite element spaces:

dimS0
p(M) = ♯{nodes(M)}+ ♯{edges(M)} (p− 1) + ♯M 1

2(p− 1)(p− 2) .

1 basis function per vertex

p− 1 basis functions per edge
1
2(p− 1)(p− 2) “interior” basis functions

We continue with geometric considerations based on the fact that for a triangle K its shape regularity

measure ρK (→ Def. 3.3.2.20) directly controls the smallest angle. We find that the number of triangles

sharing a vertex can be bounded in terms of ρM, because ρM implies a lower bound for the smallest

angles of the triangular cells.

∃C = C(ρM): ♯{Kj ∈ M: Ki ∩ K j 6= ∅} ≤ C (i = 1, 2, . . . , #.M) . (3.3.5.18)

If every vertex belongs only to a small number of triangles, the number ♯{nodes(M)} can be bounded by

C · ♯M, where C > 0 will depend on ρM only. The same applies to the edges.

♯{nodes(M)}, ♯{edges(M)} ≈ ♯M . (3.3.5.19)

(d = 2) dimS0
p(M) ≈ (♯M)p2 , (3.3.5.20)

with constants hidden in ≈ depending on ρM only. y

Now, we merge (3.3.5.7) and (3.3.5.16):

u ∈ Hk(Ω)
Thm. 3.3.5.6⇒ inf

vh∈S0
p(M)

‖u− vh‖H1(Ω) ≤ CN−
min{p,k−1}

d ‖u‖Hk(Ω) , (3.3.5.21)

with C > 0 depending only on d, k, and ρM.
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Convergence of best approximation error for Lagrangian finite elements

(3.3.5.21) ➣ Energy norm of the discretization error features algebraic convergence

(→ Def. 3.2.2.1) in the problem size (= number of unknowns) with a

rate =
min{p, k− 1}

d
.

We observe that

✦ the rate of convergence is limited by the polynomial degree p of the Lagrangian FEM,

✦ the rate of convergence is limited by the smoothness of the exact solution u, measured by

means of the Sobolev index k, see Section 3.3.3,

✦ the rate of convergence will be worse for d = 3 than for d = 2, the effect being more

pronounced for small k or p.

§3.3.5.23 (Asymptotic efficiency of Lagrangian finite elements) Now we answer Question 3.3.5.14

(“What increase in computational effort buys us a prescribed decrease of the (energy norm of the) error?”):

Assumption: a priori error estimate (3.3.5.21) is sharp

∃C = C(u, . . .) > 0: error norm(N) ≈ CN−
min{p,k−1}

d ∀M ∈M .

error norm(N1)

error norm(N2)
≈
(

N1

N2

)−min{p, k− 1}
d .

✓
✒

✏
✑

reduction of (the energy norm of)

the error by a factor ρ > 1
requires

increase of the problem size

by factor ρ
d

min{p,k−1}
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Discussion: Solution u ∈ Hk(Ω) ➣ optimal asymptotic efficiency for p = k− 1

(Here, u ∈ Hk(Ω) is supposed to be sharp in the sense that we cannot take for granted u ∈ Hk+1(Ω).)
y
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Remark 3.3.5.24 (General asymptotic estimates) Recall from Section 3.2.2 that convergence is an

asymptotic notion that describes the behavior of error norms as a discretization parameter, here we use

the number N of “degrees of freedoms/unknowns”, tends to a limit value.

Now we deduce asymptotic estimates for the best approximation errors from Thm. 3.3.5.6, and (3.3.5.21),

in particular, for the limit N → ∞, where N is the dimension of the finite element space:

For the exact solution u we assume a certain smoothness expressed by its Sobolev regularity:

u ∈ Hk(Ω) for some k ∈ N.

We discuss the meaning of (3.3.5.21) for different refinement settings with emphasis on asymptotic rates

of algebraic convergence:

• h-refinement: p fixed, hM → 0 forM ∈M:

(3.3.5.21) ⇒ algebraic convergence w.r.t. N

☞ p ≤ k− 1 inf
vh∈S0

p(M)
‖u− vh‖1 = O(N−p/d) (3.3.5.25)

Here the polynomial degree of the Lagrangian finite elements limits the rate of algebraic conver-

gence.

☞ k ≤ p + 1 inf
vh∈S0

p(M)
‖u− vh‖1 = O(N−(k−1)/d) (3.3.5.26)

Here, the smoothness (measured in the Sobolev scale) is the limiting factor for the rate of algebraic

convergence.

Note: for very smooth solution u, i.e. k≫ 1, polynomial degree p limits speed of convergence

• p-refinement: M ∈M fixed, p→ ∞:

☞ p large inf
vh∈S0

p(M)
‖u− vh‖1 = O(N−(k−1)/d) (3.3.5.27)

Note: arbitrarily fast (super-)algebraic convergence for very smooth solutions u ∈ C∞(Ω).
(However, the exponential convergence observed in Exp. 3.2.3.11 is not captured by the

approximation error estimates of Thm. 3.3.5.6.)

y

Remark 3.3.5.28 (Curse of dimension) Note that the dimension d of the domain affects the asymptotic

rates of algebraic convergence in (3.3.5.25), (3.3.5.26), and (3.3.5.27) through a factor d−1! Thus, for large

d convergence in terms of N becomes very slow. This is then bane of the finite element discretization

of boundary value problems in high dimensions and known as the curse of dimension. Such high-

dimensional boundary value problems are common in areas like quantum physics, probability, and in

computational finance. Special Galerkin methods have been developed for them. y

Review question(s) 3.3.5.29 (Convergence of finite element solutions)
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(Q3.3.5.29.A) Let Ip denote nodal interpolation onto S0
p(M), p ∈ N, whereM is an equidistant mesh

of the 1D domain Ω =]0, 1[. Which smoothness is required of the function u : [0, 1]→ R such that we

can expect the asymptotic interpolation error estimate

∥∥u− Ipu
∥∥

L∞(]0,1[)
= O(h

p+1
M ) for hM → 0 ?

(Q3.3.5.29.B) What is meant by the following statement?

The nodal interpolation operator onto S0
2 (M),M a triangular mesh of some polygonal do-

main Ω, is purely local .

(Q3.3.5.29.C) Characterize the set of functions

Z := {v ∈ Hp(Ω) : |v|Hp(Ω) = 0} .

Discuss the implications of your insights for the following theorem.

Theorem 3.3.3.4. Error estimate for piecewise linear interpolation in 2D

Under the assumptions/with notations of Thm. 3.3.2.21

‖u− I1u‖L2(Ω) ≤
√

3
8 h2
M|u|H2(Ω) ,

|u− I1u|H1(Ω) ≤
√

3
24 ρM hM|u|H2(Ω) ,

∀u ∈ H2(Ω) .

(Q3.3.5.29.D) If M′ has been created by regular refinement of a triangular mesh M, how are shape-

regularity measures ρM and ρM′ related?

Definition 3.3.2.20. Shape regularity measure

For a simplex K ∈ Rd we define its shape regularity measure as the ratio

ρK := hd
K : |K| , hK := diam(K) ,

and the shape regularity measure of a simplicial meshM = {K} as

ρM := max
K∈M

ρK .

(Q3.3.5.29.E) For which exponents α > 0 does the function x 7→ xα belong to the Sobolev space

Hm(]0, 1[), m ∈ N?

Hint. Since the function belongs to C∞(]0, 1[), it is sufficient to show that the improper integral defining

its Hm(]0, 1[)-norm has a finite value.

(Q3.3.5.29.F) Suppose it is known that the solution u of a scalar 2nd-order elliptic boundary value problem

belongs to H2(Ω), but fails to be contained in H3(Ω).

1. Describe the convergence of the H1(Ω)-norm of the discretization error one can expect from a

finite element Galerkin discretization by means of degree p, p ∈ N, Lagrangian finite elements

on a sequence of meshes obtained by uniform regular refinement.

2. Which convergence of ‖u− uh‖H1(Ω) in terms of polynomial degree p will probably be observed

for finite element solutions uh ∈ S0
p(M),M fixed, and increasing p?
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(Q3.3.5.29.G) Appealing to Ex. 1.2.3.44 explain why for a bounded polygonal domain Ω ⊂ R2 and I1 :
C0(Ω) → S0

1 (M) denoting the nodal interpolation operator according to Def. 3.3.2.1 the interpolation

error estimate

‖u− I1u‖L2(Ω) ≤ ChM‖u‖H1(Ω) ∀u ∈ H1(Ω) ,

with C > 0 depending only on the shape regularity measure ρM of a triangular mesh M cannot be

true.

(Q3.3.5.29.H) Explain the following statement concerning the asymptotic convergence of finite-element

Galerkin solutions uℓ ∈ S0
p(Mℓ) of a second-order elliptic boundary value problem on Ω ⊂ R2 ob-

tained by means of degree-p Lagrangian finite elements on sequences (Mℓ)ℓ∈N0
of triangular meshes

generated by uniform regular refinement.

The rate of convergence of ‖u− uℓ‖H1(Ω) for ℓ→ ∞ is limited by both the smoothness of u
and the degree p.

Theorem 3.3.5.6. Best approximation error estimates for Lagrangian finite elements

Let Ω ⊂ Rd, d = 1, 2, 3, be a bounded polygonal/polyhedral domain equipped with a meshM
consisting of simplices or parallelepipeds. Then, for each k ∈ N, there is a constant C > 0
depending only on k and the shape regularity measure ρM such that

inf
vh∈S0

p(M)
‖u− vh‖H1(Ω) ≤ C

(
hM

p

)min{p+1,k}−1

‖u‖Hk(Ω) ∀u ∈ Hk(Ω) . (3.3.5.7)

(Q3.3.5.29.I) Let up ∈ S0
p(M), p ∈ N, be finite-element Galerkin solutions of a second-order elliptic

BVP posed on a domain Ω ⊂ R2. Assume that

∣∣u− up

∣∣
H1(Ω)

= O(exp(−cN
1/2
p )) , Np := dimS0

p(M), for p→ ∞ . (3.3.5.30)

• Which type of convergence is enjoyed by the finite-element method in this case?

• By what factor do you have to increase the computational effort, assumed to be proportional to

Np, in order to achieve a reduction of the H1(Ω)-semi-norm of the discretization error by a factor

of 2?

(Q3.3.5.29.J) A student wants to test his finite element code through a numerical experiment on the L-

shaped domain Ω :=]− 1, 1[2\[−1, 0]2. He solves the 2nd-order scalar elliptic BVP

−∆u = f in Ω , u = g on ∂Ω ,

with f ≡ 4 and g(x) = x2
1 + x2

2 so that the exact solution will be u(x) = x2
1 + x2

2.

All experiments rely on a sequence of nested triangular meshes (Mk)
5
k=1, obtained by successive

global regular refinement. We write uk,p ∈ S0
p(Mk), p = 1, 2, 3, for the finite-element Galerkin solu-

tions.

Sketch a doubly logarithmic plot that shows the dependence of
∥∥u− uk,p

∥∥
H1(Ω)

on dimS0
p(Mk),

k = 1, . . . , 5, in a qualitatively correct way.

△
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3.4 Elliptic Regularity Theory

Video tutorial for Section 3.4: Elliptic Regularity Theory: (21 minutes) Download link,

tablet notes

Crudely speaking, in Section 3.3.5 we saw that the asymptotic behavior of the Lagrangian finite element

Galerkin discretization error (for 2nd-order elliptic BVPs) can be predicted provided that

• we use families of meshes, whose cells have rather uniform size and whose

shape regularity measure is uniformly bounded,

• we have an idea about the smoothness of the exact solution u, that is, we know u ∈ Hk(Ω) for a

(maximal) k, see Thm. 3.3.5.6.

Knowledge about the mesh can be taken for granted, but

how can we guess the smoothness of the (unknown !) exact solution u ?

A (partial) answer is given in this section.

Focus: Scalar 2nd-order elliptic BVP with homogeneous Dirichlet boundary conditions

−div(σ(x) grad u) = f in Ω , u = g on ∂Ω .

To begin with, we summarize the available information:

➣ Known: u solves BVP + Information about coefficient σ, domain

Ω, source function f , boundary data g
︸ ︷︷ ︸

u will belong to a certain class of functions (e.g. subspace S ⊂ H1(Ω))

EXAMPLE 3.4.0.1 (Elliptic lifting result in 1D) We look at the simplest case d = 1, Ω =]0, 1[, coefficient

σ ≡ 1, homogeneous (zero) Dirichlet boundary conditions:

u′′ = f , u(0) = u(1) = 0 .

Obvious from Def. 3.3.3.1: f ∈ Hk(Ω) ⇒ u ∈ Hk+2(Ω) (a lifting theorem)

y

Can this be generalized to higher dimensions d > 1?

Partly so:

Theorem 3.4.0.2. Smooth elliptic lifting theorem

If ∂Ω is C∞-smooth, ie. possesses a local parameterization by C∞-functions, and σ ∈ C∞(Ω),
then, for any k ∈ N,

u ∈ H1
0(Ω) and − div(σ grad u) ∈ Hk(Ω)

u ∈ H1(Ω) , − div(σ grad u) ∈ Hk(Ω) and grad u · n = 0 on ∂Ω
⇒ u ∈ Hk+2(Ω) .

In addition, for such u there is C = C(k, Ω, σ) such that

‖u‖Hk+2(Ω) ≤ C‖div(σ grad u)‖Hk(Ω) .
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What about non-smooth ∂Ω ?

These are very common in engineering applications

(“CAD-geometries”, polygonal/polyhedral domains).

Most of the numerical examples have been com-

puted on such domains so far.

✁ polygonal domain with corners ci

How will the corners affect the smoothness of solu-

tions of

u ∈ H1
0(Ω): ∆u = f ∈ C∞(Ω)?

EXAMPLE 3.4.0.3 (Corner singular functions) This example answers some of the questions asked

above by exhibiting locally harmonic functions satisfying homogeneous Dirichlet boundary conditions that,

nevertheless, feature a singularity at a corner of the domain:

Fig. 224

ϕc

ϕ = 0

ϕ = ω r

Ω

corner singular function

us(r, ϕ) = r
π
ω sin(

π

ω
ϕ) , (3.4.0.4)

r ≥ 0 , 0 ≤ ϕ ≤ ω .

(in local polar coordinates)

us = 0 on ∂Ω locally at c!

Straightforward computation (in polar coordinates): ∆us = 0 in Ω !

To see this recall: ∆ in polar coordinates:

∆u =
1

r

∂

∂r
(r

∂u

∂r
) +

1

r2

∂2u

∂ϕ2
. (3.4.0.5)

(3.4.0.4)
=⇒ ∆us(r, ϕ)=

1

r

∂

∂r

(
r

π

ω
r

π
ω−1 sin(

π

ω
ϕ)
)
+

1

r2
r

π
ω

∂

∂ϕ
cos(

π

ω
ϕ)

π

ω

=
(π

ω

)2
r

π
ω−2 sin(

π

ω
ϕ)−

(π

ω

)2
r

π
ω−2 sin(

π

ω
ϕ) = 0 .

What is “singular” about these functions? Plot them for ω = 3π
2 , cf. Exp. 3.2.3.10
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Fig. 225

us for ω = 3π
2

Fig. 226

‖grad us‖ for ω = 3π
2

Recall gradient (1.2.3.47) in polar coordinates

grad u =
∂u

∂r
er +

1

r

∂u

∂ϕ
eϕ . (1.2.3.47)

(3.4.0.4)
=⇒ grad us(r, ϕ) =

π

ω
r

π
ω−1

(
sin(π

ω ϕ)er + cos(π
ω ϕ)

)
eϕ .

ω > π (“re-entrant corner”) =⇒ “grad us(0) = ∞”

How does this “blow-up” of the gradient affect the Sobolev regularity (that is, the smoothness as expressed

through “us ∈ Hk(Ω)”) of the corner singular function us?

We try to compute |u|H2(D), with (in polar coordinates, see Fig. 224)

D := {(r, ϕ):0 < r < 1, 0 < ϕ < ω} .

By tedious computations we find

ω > π ⇒
∫

D

∥∥∥D2us(r, ϕ)
∥∥∥

2

F
rd(r, ϕ) = ∞ .

Def. 3.3.3.1
=⇒

{
ω > π ⇒ us 6∈H2(D)

}
.

y
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Bad news: With the exception of “concocted/manufactured” examples,

corner singular functions like (3.4.0.4) will be present in the solution of linear

scalar 2nd-order elliptic BVP on polygonal domains!

The meaning of “being present” is elucidated in the following theorem:

Theorem 3.4.0.6. Corner singular function decomposition

Let Ω ⊂ R2 be a polygon with J corners ci. Denote the polar coordinates in the corner ci by (ri, ϕi)
and the inner angle at the corner ci by ωi. Additionally, let f ∈ Hl(Ω) with l ∈ N0 and l 6= λik− 1,

where the λik are given by the singular exponents

λik =
kπ

ωi
for k ∈ N . (3.4.0.7)

Then u ∈ H1
0(Ω) with −∆u = f in Ω can be decomposed

u = u0 +
J

∑
i=1

ψ(ri) ∑
λik<l+1

κik sik(ri, ϕi) , κik ∈ R , (3.4.0.8)

with regular part u0 ∈ Hl+2(Ω), cut-off functions ψ ∈ C∞(R+) (ψ ≡ 1 in a neighborhood of 0),

and corner singular functions

λik 6∈ N: sik(r, ϕ) = rλik sin(λik ϕ) ,

λik ∈ N: sik(r, ϕ) = rλik(ln r) sin(λik ϕ).
(3.4.0.9)

✛

✚

✘

✙
Ω ⊂ R2 has re-entrant corners ⇒

if u solves ∆u = f in Ω, u = 0
on ∂Ω, then u 6∈ H2(Ω) in

general.

Theorem 3.4.0.10. Elliptic lifting theorem on convex domains [GRI85]

If Ω ⊂ Rd convex, u ∈ H1
0(Ω), ∆u ∈ L2(Ω) than u ∈ H2(Ω).

Terminology: If the conclusion of Thm. 3.4.0.10 true, then the Dirichlet problem is called 2-regular.

Similar lifting theorems also hold for Neumann BVPs, BVPs with smooth coefficients.

Remark 3.4.0.11 (The Laplacian in Thm. 3.4.0.10) The meaning of “u ∈ H1
0(Ω), ∆u ∈ L2(Ω)” in the

statement of Thm. 3.4.0.10 is the following: there exists a f ∈ L2(Ω) such that

∫

Ω
grad u(x) · grad v(x)dx =

∫

Ω
f (x)v(x)dx ∀v ∈ H1

0(Ω) .

This means that Thm. 3.4.0.10 makes a statement about Dirichlet boundary value problems for “weak

Laplacians”. y
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§3.4.0.12 (Causes for non-smoothness of solutions of elliptic BVPs) Causes for poor Sobolev regu-

larity of solution u of BVPs for −div(σ(x) grad u) = f :

• Corners of ∂Ω, see above

• Discontinuities of σ
→ singular functions at “material corners”

• Mixed boundary conditions

• Non-smooth source function f

σ(x) ≡ σ1

σ(x) ≡ σ2

σ(x) ≡ σ3

c

“material corner” at c
y

Review question(s) 3.4.0.13 (Elliptic regularity)

(Q3.4.0.13.A) [Elliptic regularity in 1D] Consider the one-dimensional boundary value problem u′′ = f
in ]0, 1[, u(0) = u(1) = 0. Which Sobolev regularity will the weak solution u ∈ H1

0(]0, 1[) posses, if f
is piecewise smooth with a single discontinuity?

(Q3.4.0.13.B) [Corner singular function (I)] How does increasing α > 0 in the polar-coordinate formula

us(r, ϕ) = rα sin(αϕ) , r ≥ 0 , 0 ≤ ϕ ≤ 2π , (3.4.0.4)

affect the regularity (measured in the Sobolev scale) of the function us? For which values of α do we

get us ∈ C∞(R2)?

(Q3.4.0.13.C) [Corner singular function (II)] Compute the gradient of the corner singular function

(0 < ω < 2π)

us(r, ϕ) = r
π
ω sin(

π

ω
ϕ) , r ≥ 0 , 0 ≤ ϕ ≤ ω , (3.4.0.4)

in Cartesian coordinates.

Hint. The gradient in polar coordinates is

grad u =
∂u

∂r
er +

1

r

∂u

∂ϕ
eϕ , er :=

[
cos ϕ

sin ϕ

]
, eϕ :=

[− sin ϕ

cos ϕ

]
. (1.2.3.47)

(Q3.4.0.13.D) [Neumann corner singular functions] On the wedge-shaped domain

Ω := {
[

r cos ϕ

r sin ϕ

]
∈ R2 : 0 < ϕ < ω} , 0 < ω < 2π ,

exhibit a corner singular function un that satisfies ∆un = 0 and grad un · n = 0 on ∂Ω.

Hint. In the formula for the Dirichlet corner singular functions replace sin with cos. Also use the formula

for the Laplacian on polar coordinates:

∆u =
1

r

∂

∂r
(r

∂u

∂r
) +

1

r2

∂2u

∂ϕ2
. (3.4.0.5)
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(Q3.4.0.13.E) [Smooth solutions despite re-entrant corners] Give an example for Dirichlet data

g : ∂Ω→ R such that the solution of the Dirichlet BVP

∆u = 0 in Ω , u = g on ∂Ω ,

Ω := {x ∈ R2 : ‖x‖ < 1, x1 > 0 or x2 > 0} ,

is non-zero, but contained in C∞(Ω).

△

3.5 Variational Crimes

Video tutorial for Section 3.5: Variational Crimes: (30 minutes) Download link, tablet notes

We retain the abstract setting outlined in Section 3.1 and consider the linear variational problem

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (2.2.0.2)

and its Galerkin discretization based on the finite-dimensional trial and test space V0,h ⊂ V0.

The term “variational crime” means that instead of solving (exact) discrete (linear) variational problem

uh ∈ V0,h: a(uh, vh) = ℓ(vh) ∀vh ∈ V0,h , (2.2.1.1)

we solve the perturbed variational problem

ũh ∈ V0,h: ah(ũh, vh) = ℓh(vh) ∀vh ∈ V0,h , (3.5.0.1)

with a modified bilinear form ah : V0,h ×V0,h → R and linear form ℓh : V0,h → R.

This causes a perturbation of Galerkin solution uh and we end up with a perturbed solution ũh ∈ V0,h.

In practice, the approximate building blocks ah(·, ·) ≈ a(·, ·), fh(·) ≈ f (·) are usually due to

• the use of numerical quadrature → Section 2.7.5,

• an approximation of the boundary ∂Ω → Section 2.8.4.

We are all sinners! Variational crimes are inevitable in practical FEM, recall Rem. 2.1.2.5!

Which “variational petty crimes” can be tolerated?

Guideline for acceptable variational crimes

Variational crimes must not affect (type and rate) of asymptotic convergence!

This requirement must be met for all boundary value problems the finite element methods has been

designed to solve, in particular, for problems with smooth solutions, for which maximal rates of algebraic

convergence can be achieved (→ Rem. 3.3.5.24).

Hence, when probing the impact of variational crimes in a numerical experiment, always choose test

problems with smooth solutions.
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Supplement 3.5.0.3 (Strang’s lemmas) Let’s get a glimpse of finite-element numerical analysis tech-

niques tackling variational crimes and of the results often called Strang’s lemma, named after the eminent

applied mathematician Gilbert Strang, author of one of the first textbooks on FEM [STF73].

The setting is as follows:

✦ V0 is a Hilbert space with norm ‖·‖,
✦ a : V0 ×V0 → R is a continuous bilinear form satisfying

∃γ > 0: |a(v, v)| ≥ γ‖v‖2 ∀v ∈ V0 , (3.5.0.4a)

∃C > 0: |a(u, v)| ≤ C‖u‖‖v‖ ∀u, v ∈ V0 , (3.5.0.4b)

✦ ℓ : V0 → R is a continuous linear form.

Then the linear variational problem

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (2.2.0.2)

has a unique solution u ∈ V0.

Galerkin discretization is based on the finite-dimensional trial and test space V0,h ⊂ V0 and the perturbed

variational problem

ũh ∈ V0,h: ah(ũh, vh) = ℓh(vh) ∀vh ∈ V0,h . (3.5.0.1)

We take for granted

✦ that ah satisfies estimates analoguous to (3.5.0.4a):

∃γh > 0: |a(vh, vh)| ≥ γh‖vh‖2 ∀vh∈ V0,h , (3.5.0.5a)

∃Ch > 0: |a(uh, vh)| ≤ Ch‖uh‖‖vh‖ ∀uh, vh∈ V0,h , (3.5.0.5b)

✦ ℓh : V0,h → R is a continuous linear form.

Theorem 3.5.0.6. Strang’s second lemma

Under assumptions (3.5.0.4) and (3.5.0.5) there exists a constant K > 0 depending only on the

constants in (3.5.0.4) and (3.5.0.5) such that

‖u− ũh‖ ≤ K

(
inf

vh∈V0,h

‖u− vh‖+ sup
wh∈V0,h

|ah(u, wh)− ℓh(wh)|
‖wh‖

)
, (3.5.0.7)

where u/uh are the solutions of the continuous/discrete variational problems (2.2.0.2)/ (3.5.0.1).

Proof. Pick any vh ∈ V0,h. From (3.5.0.5a) we conclude

γh‖ũh − vh‖2 ≤ ah(ũh − vh, ũh − vh)

= ah(u− vh, ũh − vh) + (ℓh(ũh − vh)− ah(u, ũh − vh)) .

Using (3.5.0.5b), dividing by ‖uh − vh‖ and replacing uh − vh by wh, we get

γh‖uh − vh‖ ≤ Ch‖u− vh‖+
|ah(u, wh)− ℓh(wh)|

‖wh‖
.
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Then the assertion follows by the triangle inequality.
✷

We may use a(u, wh)− ℓ(wh) = 0 to rewrite the estimate (3.5.0.7) as

‖u− uh‖ ≤ K

(
inf

vh∈V0,h

‖u− vh‖+ sup
wh∈V0,h

|(a− ah)(u, wh)|
‖wh‖

+ sup
wh∈V0,h

|(ℓ− ℓh)(wh)|
‖wh‖

)
. (3.5.0.8)

The two highlighted terms are called consistency errors. They can be estimated separately.
y

3.5.1 The Impact of Numerical Quadrature

Model problem: on polygonal/polyhedral Ω ⊂ Rd:

u ∈ H1
0(Ω): a(u, v) :=

∫

Ω
σ(x) grad u · grad v dx = ℓ(v) :=

∫

Ω
f v dx . (3.5.1.1)

Assumptions: σ satisfies (1.6.0.6), σ ∈ C0(Ω), f ∈ C0(Ω)

• Galerkin finite element discretization, Vh := S0
p(M) on simplicial meshM

• Approximate evaluation of a(uh, vh), ℓ(vh) by a fixed stable local numerical quadrature rule (→
Section 2.7.5)

➤ perturbed bilinear form ah, right hand side fh (see (3.5.0.1))

Focus: h-refinement (key discretization parameter is the mesh width hM)

EXPERIMENT 3.5.1.2 (Impact of numerical quadrature on finite element discretization error) We

consider the 2nd-order elliptic boundary value problem (3.5.1.1) on Ω =]0, 1[2, with σ ≡ 1, f (x, y) =
2π2 sin(πx) sin(πy), [ x

y ] ∈ Ω.

➢ This BVP has the smooth solution u(x, y) = sin(πx) sin(πy).

Details of numerical experiment:

• Quadratic Lagrangian FE (Vh = S0
2 (M)) on triangular meshesM, obtained by regular refinement

• “Exact” evaluation of bilinear form by very high order quadrature

• ℓh based on one point quadrature rule (2.7.5.36) of order 2

Fig. 227
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Observation: Use of quadrature rule of order 2 ⇒ Algebraic rate of convergence (w.r.t. N)

drops from α = 1 to α = 1/2 !

Hence, by using the one-point local quadrature rule for the evaluation of the right-hand side linear func-

tional we have committed a non-admissible variational crime in this case. y

Finite element theory [CIA78] tells us that the above guideline can be met, if the

local numerical quadrature rule has sufficiently high order. The quantitative results can be con-

densed into the following rules of thumb:

‖u− uh‖1 = O(h
p
M) at best

Quadrature rule of order 2p− 1 sufficient for right

hand side functional ℓh.

‖u− uh‖1 = O(h
p
M) at best

Quadrature rule of order 2p− 1 sufficient for bilin-

ear form ah.

3.5.2 Approximation of the Boundary

We focus on 2nd-order scalar linear variational problems as in the previous section. In Section 2.8.4 we

saw how curved boundaries can be approximated by means of local polynomial interpolants and how this

method meshes well with parametric finite element schemes.

It goes without saying that an approximation of the boundary amounts to solving the variational boundary

value problem on a perturbed domain Ωh instead of Ω, which constitutes a variational crime. The next

experiment studies the consequences of such a domain perturbation. It also highlights the conceptual

difficulties of measuring discretization errors in this case.

EXPERIMENT 3.5.2.1 (Impact of linear boundary approximation on FE convergence) We consider a

pure Dirichlet boundary value problem for −∆ with zero Dirichlet boundary conditions.

Setting: Ω := B1(0) := {x ∈ R2: |x| < 1}, u(r, ϕ) = cos(rπ/2) (polar coordinates)

➢ f = π
2r sin(rπ/2) + π

2 cos(rπ/2)

• Sequences of unstructured triangular meshesM obtained by regular refinement (of coarse mesh

with 4 triangles) + linear boundary fitting.

• Galerkin FE discretization based on Vh := S0
1,0(M) or Vh := S0

2,0(M).

• Recorded: approximate norm |u− uh|1,Ωh
, evaluated using numerical quadrature rule (2.7.5.37).

(FE solution extended beyond the domain covered by M (“mesh interior”) to Ω (“full domain”) by

means of polynomial extrapolation.)
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Fig. 229
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Linearly boundary fitted unstructured triangular meshes of Ω = B1(0).
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Dashed lines in Fig. 231, Fig. 232: error norms computed on polygonal domain covered by the mesh 6= Ω;

this spurious “error norm” suggests no deterioration of the convergence! y

We may wonder whether guidelines for “safe” boundary approximation can be given, similar to the recipes

formulated for numerical quadrature in Section 3.5.1. Fortunately, there are such guidelines:

Rule of thumb deduced from sophisticated finite element theory:

If V0,h = S0
p(M), use boundary fitting with polynomials of degree p.

Here, in two dimensions, d = 2, boundary fitting with polynomials of degree p means that

• we first employ a polygonal approximation Γpoly of ∂Ω with nodes located on ∂Ω,

• and then, over each edge of Γpoly, employ local interpolation of the corresponding piece of ∂Ω

by means of polynomials of degree p. The interpolants combined give a piecewise polynomial

approximation Γh of ∂Ω. This is illustrated in Fig. 161 for p = 2.

The corresponding algorithms in the context of parametric finite-element Galerkin approximation have
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been discussed in Section 2.8.4 including implementation in LEHRFEM++.

Review question(s) 3.5.2.2 (Variational Crimes)

(Q3.5.2.2.A) The local 2D trapezoidal rule on a triangular meshM of a domain Ω ⊂ R2

∫

Ω
ϕ(x)dx ≈ ∑

K∈M
1
3 |K|

3

∑
ℓ=1

ϕ(aℓ
K) aℓ

K the vertices of K ,

is used to approximate the right-hand-side functional ℓ(v) :=
∫

Ω
f (x) v(x)dx, f ∈ C0(Ω), for a

second-order elliptic boundary value problem, that is we use the perturbed functional

ℓh(v) := ∑
p∈N (M)

ωp f (p)v(p) , ωp ∈ R , (3.5.2.3)

where N (M) is the set of nodes ofM.

• What are the weights ωp?

• Is the functional ℓh from (3.5.2.3) bounded on H1(Ω)?

• Is the functional ℓh from (3.5.2.3) continuous on S0
1 (M)?

(Q3.5.2.2.B) We approximate the right-hand-side functional ℓ(v) :=
∫

Ω
f (x) v(x)dx, f ∈ C∞(Ω), for a

linear variational problem on H1
0(Ω) by

ℓh(v) :=
∫

Ω
(Ip f )(x) v(x)dx , v ∈ H1

0(Ω) , (3.5.2.4)

where Ip : C0(Ω)→ S0
p(M), p ∈ N, is the standard nodal interpolation operator, M a triangular

mesh.

• Is ℓh from (3.5.2.4) bounded on H1
0(Ω)?

• Predict the asymptotic dependence of the quantities

δ(M) := sup
v∈H1

0 (Ω)

|(ℓ− ℓh)(v)|
‖v‖H1(Ω)

on the meshwidth hM on sequences of meshes obtained by uniform regular refinement.

One of the following results can help you answer the second question:

Theorem 3.3.5.6. Best approximation error estimates for Lagrangian finite elements

Let Ω ⊂ Rd, d = 1, 2, 3, be a bounded polygonal/polyhedral domain equipped with a meshM
consisting of simplices or parallelepipeds. Then, for each k ∈ N, there is a constant C > 0
depending only on k and the shape regularity measure ρM such that

inf
vh∈S0

p(M)
‖u− vh‖H1(Ω) ≤ C

(
hM

p

)min{p+1,k}−1

‖u‖Hk(Ω) ∀u ∈ Hk(Ω) . (3.3.5.7)
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Theorem 3.5.2.5. H1(Ω)-Norm interpolation error estimates for Lagrangian finite elements

Let Ω ⊂ Rd, d = 1, 2, 3, be a bounded polygonal/polyhedral domain equipped with a mesh

M consisting of simplices or parallelepipeds. Then, for each k ∈ N, k ≥ 2, p ∈ N there is a

constant C > 0 depending only on k, the polynomial degree p, and the shape regularity measure

ρM such that

∥∥u− Ipu
∥∥

H1(Ω)
≤ C h

min{p+1,k}−1
M ‖u‖Hk(Ω) ∀u ∈ Hk(Ω) ,

where Ip : C0(Ω)→ S0
p(M) is a nodal interpolation operator.

Theorem 3.5.2.6. L2(Ω)-Norm interpolation error estimates for Lagrangian finite elements

Let Ω ⊂ Rd, d = 1, 2, 3, be a bounded polygonal/polyhedral domain equipped with a mesh

M consisting of simplices or parallelepipeds. Then, for each k ∈ N, k ≥ 2, p ∈ N there is a

constant C > 0 depending only on k, the polynomial degree p, and the shape regularity measure

ρM such that

∥∥u− Ipu
∥∥

L2(Ω)
≤ C h

min{p+1,k}
M ‖u‖Hk(Ω) ∀u ∈ Hk(Ω) ,

where Ip : C0(Ω)→ S0
p(M) is a nodal interpolation operator.

(Q3.5.2.2.C) Which of the following practices is a variational crime (V.C.)?

1. The use of a Lagrangian finite elements of insufficient polynomial degree for a second-order elliptic

boundary value problem

Definitely a V.C. Not necessarily a V.C.

2. Computing the finite element solution of a BVP posed on Ω ⊂ R2 on a meshM for which

⋃{
K : K ∈ M

}
6= Ω ?

Definitely a V.C. Not necessarily a V.C.

3. The use of the 2D trapezoidal rule for computing the element vectors for the right-hand-side func-

tional v 7→
∫

Ω
f (x)v(x)dx, f ∈ C0(Ω).

Definitely a V.C. Not necessarily a V.C.

4. The use of global shape functions that fail to satisfy the cardinal basis property with respect to a

set of interpolation nodes

Definitely a V.C. Not necessarily a V.C.

△

3.6 FEM: Duality Techniques for Error Estimation

The focus on convergence of the energy norm of the finite element discretization error, and, implicitly, on

the convergence of underlying quadratic energy functionals, is often too narrow. In this section we study

convergence of other quantities of interest, among them, the L2(Ω)-norm of the discretization error.
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3.6.1 Linear Output Functionals

Video tutorial for Section 3.6.1: Linear Output Functionals: (28 minutes) Download link,

tablet notes

§3.6.1.1 (Setting) We adopt abstract setting of Section 3.1 and consider a linear variational problem

(1.4.1.7) in the form

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (2.2.0.2)

✦ V0 =̂ (real) vector space, a space of functions Ω 7→ R for scalar 2nd-order elliptic variational

problems, usually “energy space” H1(Ω)/H1
0(Ω), see Section 1.3

✦ a : V0 ×V0 7→ R =̂ a bilinear form, see Def. 0.3.1.4,

✦ ℓ : V0 7→ R =̂ a linear form, see Def. 0.3.1.4,

✦ Ass. 3.1.1.2,Ass. 3.1.1.3,Ass. 3.1.1.4 are supposed to hold ➣ existence, uniqueness, and stabil-

ity of solution u by Thm. 3.1.1.5.

(Examples of variational forms for 2nd-order linear BVPs are discussed in Rem. 3.1.1.6, Section 1.8)

The Galerkin discretization of (2.2.0.2) using the trial/test space V0,h ⊂ V0 leads to the discrete variational

problem

uh ∈ V0,h: a(uh, vh) = ℓ(vh) ∀vh ∈ V0,h . (2.2.1.1)

y

New twist: Now we are interested mainly/only in the number F(u), where

F : V0 7→ R is a given output functional.

Mathematical terminology: functional =̂ mapping from a function space into R

EXAMPLE 3.6.1.2 (Output functionals) There are some output functionals for solutions of PDEs com-

monly encountered in applications:

• mean values, see Exp. 3.6.1.6 below,

• total heat flux through a surface (for heat conduction model→ Section 1.6), see Exp. 3.6.2.3 below,

• total surface charge of a conducting body (for electrostatics→ Section 1.2.2),

• total heat production (Ohmic losses) by stationary currents,

• total force on a charged conductor (for electrostatics→ Section 1.2.2),

• lift and drag in computational fluid dynamics (aircraft simulation),

• monostatic radar cross section for wave scattering problems in frequency domain,

• and many more . . ..

y

We consider output functionals with special properties, which are rather common in practice:
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Assumption 3.6.1.3. Linearity of output functional

The output functional F is a linear form (→ Def. 0.3.1.4) on V0

To put the next assumption into context, please recall Ass. 3.1.1.3 and Section 1.4.3.

Assumption 3.6.1.4. Continuity of output functional → Def. 1.2.3.41

The output functional is continuous w.r.t. the energy norm in the sense that

∃C f > 0: |F(v)| ≤ C f ‖v‖a ∀v ∈ V0 .

Now consider the Galerkin discretization of (2.2.0.2) based on the Galerkin trial/test space V0,h ⊂ V0,

N := dim V0,h < ∞, and the associated discrete variational problem

uh ∈ V0,h: a(uh, vh) = ℓ(vh) ∀vh ∈ V0,h . (2.2.1.1)

What would you dare to sell as an approximation of F(u)? Of course, . . .☛
✡

✟
✠Galerkin solution uh ∈ V0,h ➥ approximate output value F(uh)

§3.6.1.5 (A simple estimate) How accurate is F(uh), that is, how big is the output error |F(u)− F(uh)|?
Linearity (→ Ass. 3.6.1.3) and continuity according to Ass. 3.6.1.4 conspire to furnish a very simple esti-

mate

|F(u)− F(uh)| ≤ C f ‖u− uh‖a .

A priori estimates for ‖u− uh‖a ➼ estimates for |F(u)− F(uh)|
Hence, Thm. 3.3.5.6 immediately tells us the asymptotic convergence of linear and continuous output func-

tionals defined for solutions of 2nd-order scalar elliptic BVPs and Lagrangian finite element discretization.

y

EXPERIMENT 3.6.1.6 (Approximation of mean temperature) We consider a simple non-dimensional

heat conduction model (→ Section 1.6), scaled heat conductivity κ ≡ 1, on the domain Ω =]0, 1[2, with

fixed temperature u = 0 on ∂Ω:

−∆u = f in Ω , u = 0 on ∂Ω .

We choose the heat source function f (x, y) = 2π2 sin(πx) sin(πy),
[

x
y

]
∈ Ω, such that we obtain the

exact solution u(x, y) = sin(πx) sin(πy). We are interested in the

mean temperature: F(u) :=
1

|Ω|
∫

Ω
u dx .

Details of finite element Galerkin discretization:

• Sequence of triangular meshesM created by regular refinement.

• Galerkin discretization: (I) V0,h := S0
1,0(M) (linear Lagrangian finite elements→ Section 2.4),

(II) V0,h := S0
2,0(M) (quadratic Lagrangian finite elements→ Ex. 2.6.1.2).

• Quadrature rule (2.7.5.37) of order 6 for assembly of right hand side vector

(more than sufficiently accurate according to the guidelines of Section 3.5.1)
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Expected: algebraic convergence in hM with rate 1 of approximate mean temperature

Fig. 233
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Observation: Mean value converges twice as fast as expected: algebraic convergence O(h2
M) for

hM → 0!
y

Theorem 3.6.1.7. Duality estimate for linear functional output

Define the dual solution gF ∈ V0 belonging to the linear functional F : V0 → R as solution of the

dual variational problem

gF ∈ V0: a(v, gF) = F(v) ∀v ∈ V0 .

Then

|F(u)− F(uh)| ≤ ‖u− uh‖a inf
vh∈V0,h

‖gF − vh‖a . (3.6.1.8)

Proof. For any vh ∈ V0,h:

F(u)− F(uh) = a(u− uh, gF)
(∗)
= a(u− uh, gF − vh) ≤ ‖u− uh‖a ‖gF − vh‖a .

(∗)← by Galerkin orthogonality (3.1.3.2).
✷

If gF can be approximated well in V0,h, then the output error can converge → 0 (much) faster

than ‖u− uh‖a.

EXAMPLE 3.6.1.9 (Approximation of mean temperature cnt’d → Exp. 3.6.1.6)

✦ The mean temperature functional (3.6.1.14) is obviously linear→ Ass. 3.6.1.3

✦ By the Cauchy-Schwarz inequality (1.3.4.15) it clearly satisfies Ass. 3.6.1.4 even with ‖·‖
a
=

‖·‖L2(Ω), let alone for ‖·‖
a
= |·|H1(Ω) on H1

0(Ω).

What is gF ∈ H1
0(Ω) in this case? By Thm. 3.6.1.7 it is the solution of the variational problem

∫

Ω
grad gF · grad v dx = F(v) =

1

|Ω|
∫

Ω
v dx ∀v ∈ H1

0(Ω) .
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The associated 2nd-order BVP reads in strong form

−∆gF =
1

|Ω| in Ω, gF = 0 on ∂Ω . (3.6.1.10)

Now recall the elliptic lifting theory Thm. 3.4.0.10 for convex domains: since Ω =]0, 1[2 is convex, we

conclude gF ∈ H2(Ω).

By interpolation estimate of Thm. 3.3.2.21 (I1 =̂ linear interpolation onto S0
1 (M)) or Thm. 3.3.5.6

with p = 1, k = 2:

inf
vh∈S0

1 (M)
|gF − vh|H1(Ω) ≤ |gF − I1gF|H1(Ω) ≤ ChM|gF|H2(Ω) ,

where C > 0 may depend on Ω and the shape regularity measure (→ Def. 3.3.2.20) ofM.

Plug this into the duality estimate (3.6.1.14) of Thm. 3.6.1.7 and note that u ∈ H2(Ω) by virtue of

Thm. 3.4.0.10 and f ∈ L2(Ω):

|F(u)− F(uh)| ≤ ChM · |u− uh|H1(Ω)︸ ︷︷ ︸
≤ChM if u∈H2(Ω)

≤ Ch2
M ,

where the “generic constant” C > 0 depends only on Ω, u, ρM.

Again, by the elliptic lifting theory Thm. 3.4.0.10 we infer that u ∈ H2(Ω) holds for this example since

f ∈ L2(Ω). y

Remark 3.6.1.11 (Elliptic lifting result for rectangular domains) Owing to their tensor-product geom-

etry, rectangular domains allow more powerful elliptic lifting results than general polygonally bounded 2D

domains. In particular we can conclude

Ω =]0, 1[2 ,
u ∈ H1

0(Ω) ,

∆u∈ H1(Ω)
⇒ u ∈ H3(Ω) ,

‖u‖H3(Ω) ≤ ‖∆u‖H1(Ω) .
(3.6.1.12)

In Exp. 3.6.1.6, the constant right-hand-side source function for the dual Dirichlet boundary value problem

(3.6.1.10) is certainly in H1(Ω). Hence, for the dual solution gF we conclude gF ∈ H3(Ω), which implies

∃C = C(Ω, gF):
∫

vh∈S0
2 (M)

|gF − vh|H1(Ω) ≤ Ch2
M ,

when we invoke Thm. 3.3.5.6 for p = 2, k = 3. As a consequence, the rate of convergence

F(uh)→ F(u) for hM → 0 and quadratic Lagrangian finite elements is larger by 2 compared to the

rate of ‖u− uh‖H1(Ω). This was observed in Exp. 3.6.1.6. y

Review question(s) 3.6.1.13 (Linear output functionals and duality techniques)

(Q3.6.1.13.A) Prove that the “mean temperature functional”

F : H1(Ω)→ R , v 7→ F(v) :=
1

|Ω|
∫

Ω
v(x)dx

is continuous/bounded.
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Definition 1.2.3.41. Continuity of a linear form and bilinear form

Consider a normed vector space V0 with norm ‖·‖. A linear form ℓ : V0 → R (→ Def. 0.3.1.4) is

continuous or bounded on V0, if

∃C > 0: |ℓ(v)| ≤ C‖v‖ ∀v ∈ V0 .

A bilinear form a : V0 ×V0 → R (→ Def. 0.3.1.4) on V0 is continuous, if

∃K > 0: |a(u, v)| ≤ K‖u‖‖v‖ ∀u, v ∈ V0 .

(Q3.6.1.13.B) [Proof of duality estimate] Let u ∈ V0 denote that solution of the linear variational

problem

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (2.2.0.2)

posed on a vector space V0, and with an s.p.d. bilinear form a : V0 ×V0 → R inducing the energy norm

‖·‖
a
, ℓ : V0 → R a linear functional, continuous/bounded with respect to ‖·‖

a
.

Write F : V0 → R for a linear functional that is continuous/bounded with respect to ‖·‖
a
, and uh ∈ V0,h

for the Galerkin solution of (2.2.0.2), V0,h ⊂ V0 some subspace

Give a three-line proof of the following duality estimate.

Theorem 3.6.1.7. Duality estimate for linear functional output

Define the dual solution gF ∈ V0 to F as solution of the dual variational problem

gF ∈ V0: a(v, gF) = F(v) ∀v ∈ V0 .

Then

|F(u)− F(uh)| ≤ ‖u− uh‖a inf
vh∈V0,h

‖gF − vh‖a . (3.6.1.14)

△

3.6.2 Case Study: Computation of Boundary Fluxes with FEM

Model problem (process engineering):

Long pipe carrying turbulent flow of coolant (water)

Ω ⊂ R2 : cross-section of pipe

κ : (scaled) heat conductivity of pipe material

(assumed homogeneous, κ = const)

Assumption: Constant temperatures uo, , ui at out-

er/inner wall Γo, Γi of pipe

Task: Compute heat flow pipe→ water
Fig. 235

Ω (pipe)

Γi

Γo

Water

Mathematical model: elliptic boundary value for stationary heat conduction (→ Section 1.6)

−div(κ grad u) = 0 in Ω , u = ux on Γx, x ∈ {i, o} . (3.6.2.1)
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Heat flux through Γi: J(u) :=
∫

Γi

κ grad u · n dS . (3.6.2.2)

Relate to abstract framework: (3.6.2.1) ∼= (2.2.0.2), V0
∼= H1

0(Ω) (→ Section 1.8)

(Actually, u ∈ H1(Ω), but by means of offset functions we can switch to the variational space H1
0(Ω),

see Section 1.2.3,Section 2.7.6.)

Numerical method: finite element computation of heat conduction in pipe

(e.g. linear Lagrangian finite element Galerkin discretization, Section 2.4)

Expectation: Algebraic convergence |J(u)− J(uh)| = O(h2
M) for regular h-refinement

This expectation is based on the analogy to Exp. 3.6.1.6 (Approximation of mean temperature), where

duality estimates yielded O(h2
M) convergence of the mean temperature error in the case of Galerkin

discretization by means of linear Lagrangian finite elements on a sequence of meshes obtained by regular

refinement. Now, it seems, we can follow the same reasoning.

EXPERIMENT 3.6.2.3 (Computation of heat flux)

✦ Setting: model problem “heat flux pipe→ water”, see (3.6.2.1) and Fig. 235.

✦ Linear output functional from (3.6.2.2)

✦ Domain Ω = BRo(0) \ BRi
(0) := {x ∈ R2: Ri < |x| < Ro} with Ro = 1 and Ri = 1/2

✦ Dirichlet boundary data ui = 60◦C on Γi, uo = 10◦C on Γo, heat source f ≡ 0, heat conductivity

κ ≡ 1.

➢ Exact solution: u(r, ϕ) = C1 ln(r) + C2,

➢ Exact heat flux: J = 2πκC1,

with C1 := (uo − ui)/(ln Ri − ln Ro),
C2 := (ln Roui − ln Riuo)/(ln Ri − ln Ro).

Details of linear Lagrangian finite element Galerkin discretization:

• Sequences of unstructured triangular meshes M obtained by regular refinement of coarse mesh

(from grid generator).

• Galerkin FE discretization based on V0,h := S0
1,0(M).

• Approximate evaluation of a(uh, vh), f (vh) by six point quadrature rule (2.7.5.37) (“overkill quadra-

ture”, see Section 3.5.1)

• Approximate evaluation of J(uh) by 4 point Gauss-Legendre quadrature rule on boundary edges of

M.

• Linear boundary approximation (circle replaced by polygon).

• Recorded: errors |J(u)− J(uh)| on sequence of meshes.
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Fig. 236
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 2D triangular mesh

 # Vertices  :  144,      # Elements  :  232,      # Edges  :  376 Fig. 237
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 2D triangular mesh

 # Vertices  :  520,      # Elements  :  928,      # Edges  :  1448

Unstructured triangular meshes for Ω = B1(0) \ B1/2(0) (two coarsest specimens).

Fig. 238
10

−2
10

−1
10

0

10
1

10
2

 Convergence: standard boundary flux, linear FE

 Mesh width [log scale]

 B
ou

nd
ar

y 
flu

x 
[lo

g 
sc

al
e]

p = 1.02

Observation:

Algebraic convergence of output error for J from

(3.6.2.2) only with rate 1 (in mesh width hM)!

(This is not the fault of the piecewise linear bound-

ary approximation, which is sufficient when using

piecewise linear Lagrangian finite elements, see Sec-

tion 3.5.2.)

y

Why was our expectation mistaken ?

Suspicion: the output functional J fails to meet requirements of duality estimates of Thm. 3.6.1.7:

! boundary flux functional J from (3.6.2.2) is not continuous on H1(Ω)!

§3.6.2.4 (Non-continuity of boundary flux functional) How can we corroborate our suspicion that J
from (3.6.2.2) fails to be continuous? First remember Def. 1.2.3.41.

Idea: find u ∈ H1(Ω), for which “J(u) = ∞”,

cf. investigation of non-continuity of point evaluation functional on H1(Ω)→ Ex. 1.2.3.44.

On Ω = {x ∈ R2: ‖x‖ < 1} (unit disk) consider

u(x) = (1− ‖x‖)α =: g(‖x‖) ,
1

2
< α < 1 ,
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and the boundary flux functional (3.6.2.2) on ∂Ω.

☞ On the one hand, using the expression (1.2.3.47) for the gradient in polar coordinates,

J0(v) =
∫

∂Ω

∂u

∂r
(x)dS(x) = 2π α(1− r)α−1

|r=1“ = ∞′′ .

☞ On the other hand, straightforward computation of improper integral using (1.2.3.48):

|u|2H1(Ω) =
∫

Ω

‖grad u(x)‖2 dx = 2π

1∫

0

|g′(r)|2r dr = 2πα2

1∫

0

(1− r)2α−2r dr

= 2πα2

1∫

0

s2α−2(1− s)ds = 2πα

[
s2α−1

2α− 1
− s2α

2α

]s=1

s=0

= 2π
1

2α− 1
< ∞ .

Def. 1.3.4.8
=⇒ u ∈ H1(Ω) (u ∈ C0(Ω) and u ∈ C∞(Ω \ {0}) !) .

y

The considerations of § 3.6.2.4 show that the duality estimates of Thm. 3.6.1.7 cannot be

applied

No guarantees for good convergence of flux obtained from straightforward evaluation of

J(uh) for FE solution uh ∈ S0
1,0(M)!

Apparently there is no remedy for this, because the boundary flux functional (3.6.2.2) seems to be enforced

on us by the problem: we are not allowed to tinker with it, are we?

“Recovering” continuity of boundary flux functional

Trick:
use fixed cut-off function ψ ∈ C0(Ω) ∩ H1(Ω), ψ ≡ 1 on Γi, ψ|Γo

= 0

∫

Γi

κ grad u · n dS =
∫

Γi

(κ grad u · n)ψ dS =
∫

Ω
div(κ grad u)︸ ︷︷ ︸

=0

ψ + κ grad u · grad ψ dx

use J∗(u) :=
∫

Ω
κ grad u · grad ψ dx . (3.6.2.6)

Obviously (∗): J∗ : H1(Ω) 7→ R continuous & J∗(u) = J(u) for solution of (3.6.2.1)

(∗): By the Cauchy-Schwarz inequality (1.3.4.15), since κ = const,

|J∗(u)| ≤ κ‖grad u‖L2(Ω)‖grad ψ‖L2(Ω) ≤ C|u|H1(Ω) ,

with C := κ‖grad ψ‖L2(Ω), which is a constant independent of u, as ψ is a fixed function.
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Objection: You cannot just tamper with the output functional of a problem just because you do not like

it!

Rebuttal: Of course, one can replace the output function J with another one J∗ as long as

J(u) = J∗(u) for the exact solution u of the BVP,

because the objective is not to “evaluate J”, but to obtain an approximation for J(u)!

EXPERIMENT 3.6.2.7 (Computation of heat flux cnt’d → Exp. 3.6.2.3) We empirically study the use

of a modified heat flux functional J∗ of the form (3.6.2.6). Additional details of the numerical tests are:

• Galerkin FE discretization based on V0,h := S0
1,0(M) or V0,h := S0

2,0(M).

• Approximate evaluation of J∗(uh) by six point quadrature rule (2.7.5.37) (“overkill quadrature”, see

Section 3.5.1)

• Cut-off function with linear decay in radial direction: ψ(x) = 2‖x‖ − 1, ψ ∈ C∞(Ω).

• Recorded: output errors |J(u)− J(uh)| and |J(u)− J∗(uh)|.

Fig. 239
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✁ Convergence of |J(u) − J(uh)| and |J(u) −
J∗(uh)| for linear Lagrangian finite element dis-

cretization.

Additional observations:

• Algebraic convergence |J(u)− J∗(uh)| = O(h2
M) (rate 2 !) for alternative output functional J∗ from

(3.6.2.6).

• Dramatically reduced output error!

y

Remark 3.6.2.8 (Duality estimate for modified heat flux functional) Let us try to understand the rea-

son for the improved convergence of the modified heat flux functional based on the duality estimate of

Thm. 3.6.1.7.

We consider the boundary value problem

−∆u = f in Ω , u = 0 on ∂Ω ,

whose weak formulation is posed on H1
0(Ω), and the stabilized heat flux functional (3.6.2.6)

J∗(v) :=
∫

Ω
grad v(x) · grad ψ(x)dx , v ∈ H1

0(Ω) .

The dual variational problem is

gF ∈ H1
0(Ω):

∫

Ω
grad v · grad gF dx = J∗(v) =

∫

Ω
grad v(x) · grad ψ(x)dx ∀v ∈ H1

0(Ω) .

(3.6.2.9)
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To infer extra smoothness of gF we rely on Green’s formula Thm. 1.5.2.7 to recast the right-hand-side

functional and convert (3.6.2.9) into

gF ∈ H1
0(Ω):

∫

Ω
grad v · grad gF dx = −

∫

Ω
∆ψ v dx ∀v ∈ H1

0(Ω) . (3.6.2.10)

The corresponding BVP in strong form is

∆gF = ∆ψ in Ω , gF = 0 on ∂Ω . (3.6.2.11)

Assume that Ω is convex . Nevertheless, only if ∆ψ ∈ L2(Ω) we can invoke to Thm. 3.4.0.10 to conclude

gF ∈ H2(Ω)!

Thus, in actual computations, as we did in Exp. 3.6.2.7, we had better choose ψ ∈ C2
pw(Ω) in addition to

its other required properties. We cannot simply use a finite element function, e.g., ψ ∈ S0
1 (M). y

Remark 3.6.2.12 (Finding continuous replacement functionals) Now you will ask: How can we find

good (continuous) replacement functionals, if we are confronted with an unbounded output functional on

the energy space?

Unfortunately, there is no recipe, and sometimes it does not seem to be possible to find a suitable J∗ at

all, for instance in the case of point evaluation, cf. Ex. 1.2.3.44.

Good news: another opportunity to show off how smart you are! y

Review question(s) 3.6.2.13 (Duality techniques (II))

(Q3.6.2.13.A) We consider the Galerkin discretization of the Dirichlet BVP

−∆u = f ∈ H1(Ω) in Ω , u = 0 on ∂Ω ,

Ω =]0, 1[2, by means of degree-2 Lagrangian finite elements, V0,h = S0
2,0(M) ⊂ H1

0(Ω), on se-

quences of triangular meshes created by uniform regular refinement.

For the “mean temperature functional”

F : H1(Ω)→ R , v 7→ 1

|Ω|
∫

Ω
v(x)dx

determine the rate of algebraic convergence F(uh)→ F(u) in terms of meshwidth hM → 0, when

uh ∈ S0
2,0(M) is the finite-element solution.

Hint (→ Rem. 3.6.1.11): If Ω =]0, 1[2, u ∈ H1
0(Ω), −∆u = f , f ∈ H1(Ω), then u ∈ H3(Ω) and

there is a constant C > 0 such that ‖u‖H3(Ω) ≤ C‖ f ‖H1(Ω).

(Q3.6.2.13.B) We consider the Dirichlet boundary value problem

−∆u = 0 in Ω , u = g on ∂Ω ,

for given bundary data g ∈ C0(∂Ω) and on a domain Ω ⊂ R2. In Exp. 3.6.2.7 we studied the regular-

ized boundary flux functional

J∗(u) :=
∫

Ω
grad u · grad ψ dx ψ ∈ H1(Ω) .

State the boundary value problem that is solved by the dual solution gF induced by this regularized

output functional J∗ in strong (PDE) form.

(Q3.6.2.13.C) If in Exp. 3.6.2.7 we change the computational domain from an annulus to

Ω :=]−1, 1[2\[− 1
2 , 1

2 ]
2. Speculate how this would affect the convergence rates observed in Fig. 239.

△
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3.6.3 Lagrangian FEM: L2-Estimates

So far we have only studied the energy norm (↔ H1(Ω)-norm, see Rem. 3.3.2.22) of the finite element

discretization error for 2nd-order elliptic BVP.

The reason was the handy tool of Cea’s lemma Thm. 3.1.3.7.

What about error estimates in other “relevant norms”, e.g„

• in the mean square norm or L2(Ω)-norm, see Def. 1.3.2.3,

• in the supremum norm or L∞(Ω)-norm, see Def. 0.3.2.25?

In this section we tackle ‖u− uh‖L2(Ω). We largely reuse the abstract framework of Section 3.6.1: linear

variational problem (2.2.0.2) with exact solution u ∈ V0, Galerkin finite element solution uh ∈ V0,h, see

p. 367, and the special framework of linear 2nd-order elliptic BVPs, see Rem. 3.1.1.6: concretely,

a(u, v) :=
∫

Ω
κ(x) grad u · grad v dx , u, v ∈ H1

0(Ω) .

EXPERIMENT 3.6.3.1 (L2-convergence of FE solutions, Exp. 3.2.3.8 cnt’d)

Setting: Ω =]0, 1[2, D ≡ 1, f (x, y) = 2π2 sin(πx) sin(πy), (x, y)⊤ ∈ Ω

➢ exact solution u(x, y) = sin(πx) sin(πy), u|∂Ω = 0.

• Sequence of triangular meshesM, created by regular refinement.

• FE Galerkin discretization based on S0
1,0(M) or S0

2,0(M).

• Quadrature rule (2.7.5.37) for assembly of local load vectors (→ Section 2.7.5).

• Approximate L2(Ω)-norm by means of quadrature rule (2.7.5.37).
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L2(Ω)-norm of discretization error on unit square (− ↔ p = 1, − ↔ p = 2)

Observations: • Linear Lagrangian FE (p = 1) ➽ ‖u− uh‖0 = O(N−1)
• Quadratic Lagrangian FE (p = 2) ➽ ‖u− uh‖0 = O(N−1.5)

The L2(Ω)-norm of the Galerkin discretization error seems to converge algebraically with a higher rate for

N → ∞ (, which amounts to hM → 0). y

3. FEM: Convergence and Accuracy, 3.6. FEM: Duality Techniques for Error Estimation 354



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

§3.6.3.2 (L2 interpolation error) Recall the interpolation error estimate of Thm. 3.3.2.21

‖u− I1u‖L2(Ω) = O(h2
M) vs. |u− I1u|H1(Ω) = O(hM) ,

on a family of meshes with uniformly bounded shape regularity measure.

☞ Higher rate of algebraic convergence of the interpolation error when measured in the weaker L2(Ω)-
norm compared to the stronger H1(Ω)-norm.

Therefore a similar observation in the case of the finite element approximation error is not so surprising.

y

§3.6.3.3 (Duality techniques for L2-estimates) Now we supply a rigorous underpinning and explanation

of the behavior of ‖u− uh‖L2(Ω) that we have observed and expect.

Idea: Consider special continuous linear “output functional”

F(v) :=
∫

Ω
v · (u− uh)dx !

This is not a practical output functional, because its evaluation will not be possible even if the finite element

solution uh is available. Nevertheless, this F is well defined, because existence and uniqueness of both u
and uh are guaranteed.

This functional is highly relevant for L2-estimates, because

F(u)− F(uh) = ‖u− uh‖2
L2(Ω) !

➣ estimates for the output error will provide bounds for ‖u− uh‖L2(Ω)!

Note: Both u and uh are fixed functions ∈ H1(Ω)!

➣ Linearity of F (→ Ass. 3.6.1.3) is obvious.

➣ Continuity F : H1
0(Ω) 7→ R (→ Ass. 3.6.1.4) is clear, use Cauchy-Schwarz inequality (1.3.4.15).

Duality estimate of Thm. 3.6.1.7 can be applied:

Thm. 3.6.1.7

F(u)− F(uh) = ‖u− uh‖2
L2(Ω) ≤ C|u− uh|H1(Ω) inf

vh∈V0,h

|gF − vh|H1(Ω) , (3.6.3.4)

where C > 0 may depend only on κ, and the dual solution gF ∈ H1
0(Ω) satisfies

a(gF, v) = F(v) ∀v ∈ V0 ⇔
∫

Ω

κ(x) grad gF · grad v dx =
∫

Ω

v(u− uh)dx ∀v ∈ H1
0(Ω)

⇓
−div(κ(x) grad gF) = u− uh in Ω , gF = 0 on ∂Ω . (3.6.3.5)

y
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Assumption 3.6.3.6. 2-regularity of homogeneous Dirichlet problem

We assume that the homogeneous Dirichlet problem with coefficient κ is 2-regular on Ω: There is

C > 0, which depends on Ω only such that

u ∈ H1
0(Ω)

div(κ(x) grad u) ∈ L2(Ω)
⇒ u ∈ H2(Ω) and |u|H2(Ω) ≤ C‖div(κ(x) grad u)‖L2(Ω) .

By the elliptic lifting theorem for convex domains Thm. 3.4.0.10 we know

κ is C1-smooth & Ω convex =⇒ Ass. 3.6.3.6 is satisfied.

§3.6.3.7 (Estimates under assumption of 2-regularity) Ass. 3.6.3.6 in conjunction with (3.6.3.5) yields

|gF|H2(Ω) ≤ C‖u− uh‖L2(Ω) , (3.6.3.8)

where C > 0 depends only on Ω.

Now we can appeal to the general best approximation theorem for Lagrangian finite element spaces

Thm. 3.3.5.6 In the present setting it is applied in the form

inf
vh∈S0

p(M)
|gF − vh|H1(Ω) ≤ C

hM
p
|gF|H2(Ω)

(3.6.3.8)

≤ C
hM

p
‖u− uh‖L2(Ω) , (3.6.3.9)

where the “generic constants” C > 0 depend only on Ω and the shape regularity measure ρM (→
Def. 3.3.2.20).

Combine (3.6.3.4) and (3.6.3.9) and cancel one power of ‖u− uh‖L2(Ω): With C > 0 depending only on

Ω, κ, and the shape regularity measure ρM we conclude

Ass. 3.6.3.6 ⇒ ‖u− uh‖L2(Ω) ≤ C hM
p ‖u− uh‖H1(Ω) . (3.6.3.10)

for h-refinement: gain of one factor O(hM) (vs. H1(Ω)-estimates) y

Is it important to assume 2-regularity, Ass. 3.6.3.6 or merely a technical requirement of the theoretical

approach?

EXPERIMENT 3.6.3.11 (L2-estimates on non-convex domain cf. Exp. 3.2.3.10)

Setting: Ω =]− 1, 1[2\(]0, 1[×]− 1, 0[), D ≡ 1,

u(r, ϕ) = r2/3 sin(2/3ϕ) (exact solution in polar coordinates),

➢ we use f = 0, Dirichlet data g = u|∂Ω.

Finite element Galerkin discretization and evaluations as in Exp. 3.6.3.1.
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L2(Ω)-norm of discretization error on “L-shaped” domain (− ↔ p = 1, − ↔ p = 2)

Observation: For both (p = 1, 2) ➽ algebraic convergence ‖u− uh‖0 = O(N−2/3)

Comparison with Exp. 3.2.3.10: for both linear and quadratic Lagrangian FEM

‖u− uh‖L2(Ω) = O(N−2/3) ←→ ‖u− uh‖H1(Ω) = O(N−1/3) ,

that is, we again observe a doubling of the rate of convergence for the weaker norm.

No gain through the use of quadratic FEM, because of limited smoothness of both u and dual solution gF.

For both the solution and the dual solution the gradient will have a singularity at 0. y

Remark 3.6.3.12 (Usefulness of L2-estimates) To begin with, the L2-estimates derived in this section

are mainly motivated by curiosity: can we expect the higher rates of convergence that we are accustomed

to for weaker norms of interpolation errors also from weaker norm of Galerkin discretization errors.

However, comparing observed convergence in L2-norm with what is predicted by theory, should be used

for testing the correctness of finite element codes, following the procedure of § 3.8.0.9. y

Review question(s) 3.6.3.13 (Duality techniques (III))

(Q3.6.3.13.A) In the setting of Exp. 3.6.3.1 give an estimate (as sharp as possible) for

1. ‖u− uh‖L2(Ω)

2. and ‖u− uh‖L2(∂Ω),

where uh stands for finite element solutions obtained with either piecewise linear or piecewise quadratic

Lagrangian finite elements.

Theorem 1.9.0.10. Multiplicative trace inequality

∃C = C(Ω) > 0: ‖u‖2
L2(∂Ω) ≤ C‖u‖L2(Ω) · ‖u‖H1(Ω) ∀u ∈ H1(Ω) .

(Q3.6.3.13.B) The components of the linear variational problem

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (2.2.0.2)
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on the vector space V0, are supposed to satisfy the “usual assumptions”. Thus, it possesses a unique

solution u ∈ V0 for every (‖·‖
a
-continuous) right-hand-side linear functional ℓ. We perform its Galerkin

discretization based on a subspace V0,h ⊂ V0.

For a continuous output functional F : V0 → R let gF,h be the Galerkin solution of (2.2.0.2) with ℓ re-

placed with F. What does ℓ(gF,h) give you?

(Q3.6.3.13.C) [Multiple right-hand-side functionals] Let

u ∈ H1(Ω): a(u, v) =
∫

Ω
fk(x) v(x)dx ∀v ∈ H1(Ω) , (3.6.3.14)

be the variational formulation of a second-order elliptic boundary value problem,

a : H1(Ω)× H1(Ω)→ R a symmetric positive definite bilinear form, fk ∈ L2(Ω).

We are interested in approximately evaluating F(uk), uk the solution of (3.6.3.14), for a bounded lin-

ear functional F : H1(Ω)→ R and for many different and unrelated source functions fk ∈ L2(Ω),
k = 1, . . . , m, m ∈ N. We rely on finite element Galerkin approximation based on piecewise linear

Lagrangian finite elements, V0,h = S0
1 (M), producing the Galerkin solutions uk,h ∈ S0

1 (M).

Outline an algorithm for computing F(uk,h), k = 1, . . . , m, which involves a minimal number of solves of

sparse linear systems of equations.

(Q3.6.3.13.D) [Quadratic output functionals] We consider the linear variational problem

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 ,

on a vector space V0, and with an s.p.d. bilinear form a : V0 ×V0 → R inducing the energy norm ‖·‖
a
,

ℓ : V0 → R a linear functional, bounded with respect to ‖·‖
a
.

We are interested in a quadratic output functional (→ Def. 1.2.3.2)

F(v) = 1
2b(v, v)− f (v) , (3.6.3.15)

b : V0 ×V0 → R a symmetric bilinear form, f : V0 → R a linear form satisfying

∃C > 0: |b(v, w)| ≤ C‖v‖
a
‖w‖

a
, | f (v)| ≤ C‖v‖

a
∀v, w ∈ V0 .

For the Galerkin solution uh ∈ V0,h, V0,h ⊂ V a subspace, establish the duality estimate

|F(uh)− F(u)| ≤ ‖u− uh‖a inf
vh∈V0,h

‖g− vh‖a

and characterize g ∈ V0.

△

3.7 Discrete Maximum Principle

Video tutorial for Section 3.7: Discrete Maximum Principle: (39 minutes) Download link,

tablet notes

So far we have investigated the accuracy of finite element Galerkin solutions: we studied relevant norms

‖u− uh‖ of the discretization error.

Now we adopt a new perspective: structure preservation by FEM

To what extent does the finite element solution uh inherit key structural properties of the solution u of a

2nd-order scalar elliptic BVP?
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3.7.1 Maximum Principle for Scalar 2nd-Order Elliptic BVPs

The aspect of structure preservation will be discussed for a special structural property of the solution

of the following linear 2nd-order elliptic BVP (inhomogeneous Dirichlet problem) in variational form (→
Section 1.8)

u ∈ g̃ + H1
0(Ω): a(u, v) :=

∫

Ω
κ(x) grad u · grad v dx =

∫

Ω
f v dx ∀v ∈ H1

0(Ω) . (3.7.1.1)

where g̃ =̂ offset function, extension of Dirichlet data g ∈ C0(∂Ω), see Ex. 1.8.0.2, (1.9.0.6),

κ =̂ bounded and uniformly positive definite diffusion coefficient, see (1.6.0.6).

As we known, under some assumptions on the regularity of u, κ, and f (3.7.1.1) gives rise to a BVP in

strong (PDE) form

−div(κ(x) grad u) = f in Ω , u = g on ∂Ω .

Recall (→ Section 1.6): (3.7.1.1) models stationary temperature distribution in body, when temperature

on its surface is prescribed by g.

Our intuition predicts:

✦ In the absence of heat sources maximal and minimal temperature attained on surface.

In the presence of a heat source ( f ≥ 0) the temperature minimum will be attained on surface ∂Ω.

✦✦ If f ≤ 0 (heat sink), then the maximal temperature will be attained on the surface.

In fact this is a theorem:

Theorem 3.7.1.2. Maximum principle for 2nd-order elliptic BVP

For u ∈ C0(Ω) ∩ H1(Ω) holds the maximum principle

−div(κ(x) grad u) ≥ 0 =⇒ min
x∈∂Ω

u(x) = min
x∈Ω

u(x) ,

−div(κ(x) grad u) ≤ 0 =⇒ max
x∈∂Ω

u(x) = max
x∈Ω

u(x) .

The message of Thm. 3.7.1.2 for the special case

κ ≡ 1, f ≡ 0 is the following maximum principle for

harmonic functions:

If ∆u = 0 in Ω, then u has its maximum and

minimum on the boundary ∂Ω

a harmonic function over the disk ✄

Fig. 244

3. FEM: Convergence and Accuracy, 3.7. Discrete Maximum Principle 359

http://en.wikipedia.org/wiki/Maximum_principle


NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

Proof. ➊: case −div(κ(x) grad u) = 0

Section 1.2.3➣ u solves quadratic minimization problem

u = argmin
v∈H1(Ω)
v=g on ∂Ω

J(v) , J(v) :=
∫

Ω

κ(x)‖grad v(x)‖2 dx .

If u had a global maximum at x∗ in the interior of Ω, that is

∃δ > 0: u(x∗) ≥ max
x∈∂Ω

u(x) + δ .

Now “chop off” the maximum and define

w(x) := min{u(x), u(x∗)− δ} , x ∈ Ω . (3.7.1.3)

Fig. 245

u

Fig. 246

w

Since the “flat top” of w does not contribute to the energy functional J, whereas u makes a positive

contribution in that zone, we conclude

∫

Ω
κ(x)‖grad u(x)‖2 dx ≥

∫

Ω
κ(x)‖grad w(x)‖2 dx .

Obviously, w ∈ C0(Ω), and as a continuous function which is piecewise in H1 the function w will also

belong to H1(Ω) (→ Thm. 1.3.4.23). However

∫

Ω

κ(x)‖grad w(x)‖2 dx <

∫

Ω

κ(x)‖grad u(x)‖2 dx ,

which contradicts the definition of u as the global minimizer of the quadratic energy functional.

➋: case f := −div(κ(x) grad u) < 0

Section 1.2.3➣ u solves quadratic minimization problem

u = argmin
v∈H1(Ω)
v=g on ∂Ω

∫

Ω

1
2κ(x)‖grad v(x)‖2 − f (x)u(x)dx .
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The function w from (3.7.1.3) satisfies w ≤ u. Thus

∫

Ω

− f (x)︸ ︷︷ ︸
≥0

u(x)dx ≥
∫

Ω

− f (x)︸ ︷︷ ︸
≥0

w(x)dx .

Hence, again w realizes a smaller value of the energy functional than u. ✷

3.7.2 Maximum Principle for Piecewise Linear Lagrangian FEM

Now we consider a finite element Galerkin discretization of

−div(κ(x) grad u) = f in Ω , u = g on ∂Ω ,

(with weak form (3.7.1.1)) by means of linear Lagrangian finite elements (→ Section 2.6). To enforce the

non-homogeneous Dirichlet boundary conditions we use offset functions supported near ∂Ω as explained

in Section 2.7.6. We obtain the finite element Galerkin solution uh ∈ S0
1 (M) ⊂ C0(Ω).

The key question is: Does uh satisfy a maximum principle, that is, can we conclude

f ≥ 0 =⇒ min
x∈∂Ω

uh(x) = min
x∈Ω

uh(x) ,

f ≤ 0 =⇒ max
x∈∂Ω

uh(x) = max
x∈Ω

uh(x) ?
(3.7.2.1)

Note, how this mirrors the assertions of Thm. 3.7.1.2. If the answer to the questions is “yes”, we say that

the FEM based on S0
1 (M) satisfies a discrete maximum principle.

§3.7.2.2 (Discrete maximum principle on tensor-product mesh)

We consider the Galerkin finite element discretization of the non-homogeneous Dirichlet boundary value

problem

−∆u = 0 in Ω :=]0, 1[2 ,

u = g on ∂Ω,

on an M × M “tensor-product triangular mesh” with equidistant cell spacing h in both directions, see

Fig. 247,

M :=





convex{
[
(i−1)h
(j−1)h

]
,
[

ih
(j−1)h

]
,
[

ih
jh

]
},

convex{
[
(i−1)h
(j−1)h

]
,
[
(i−1)h

jh

]
,
[

ih
jh

]
},

1 ≤ i, j ≤ M



 , M ∈ N .

This is a standard tensor-product mesh with each sqaure [(i− 1)h, ih]× [(j− 1)h, jh] split into two con-

gruent triangles.
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Fig. 247

h

h Fig. 248

1

N+1

NN−1

N*N

2 3

N+2 N+3 2N

N(N−1)+1

Thanks to the cardinal basis property of the tent-function basis of S0
1 (M) with respect to the node set

V(M) = {(xi}i of the mesh, the basis expansion coefficients of uh ∈ S0
1 (M) agree with the values of

uh in the nodes:

uh =
N

∑
ℓ=1

µℓb
ℓ
h ⇒ µℓ = uh(xℓ) , ℓ = 1, . . . , N := dimS0

1 (M) .

Hence, the linear system of equations arising from the finite element discretization imposes relations to be

satisfied by the values of uh in neighboring nodes.

For the tensor-product mesh the nodes are conveniently indexed by tuples:

V(M) =

{
xi,j :=

[
ih

jh

]
, 0 ≤ i, j ≤ M

}
.

Since the global shape functions (tent functions) of S0
1 (M) are associated with the nodes ofM, we can

index them in the same way. This can also be done for the basis expansion coefficients

uh =
M

∑
i=0

M

∑
j=0

µi,jb
i,j
h ⇒ µi,j = uh(xi,j) = uh

([
ih

jh

])
, 0 ≤ i, j ≤ M .

Following the approach of Section 2.4.5 we can compute the linear system of equations satisfied by the

vector ~µ of basis expansion coefficients. To begin with, we notice that all cells ofM are congruent and,

thus, all element matrices agree modulo index permutations. For the triangle

K := convex

{[
0

0

]
,

[
h

0

]
,

[
0

h

]}
, h > 0 ,

the formular (2.4.5.8) gives the element matrix for −∆:

AK =




1 − 1
2 − 1

2
− 1

2
1
2 0

− 1
2 0 1

2


 .

Then perform pen-and-paper cell-oriented assembly around a node of the mesh at [ih, jh]⊤, visiting the

adjacent triangles, which form the support of the associated tent function. This yields a single row of the

Galerkin linear system of equations:

4µi,j − µi−1,j − µi+1,j − µi,j−1 − µi,j+1 = 0 , 1 ≤ i, j ≤ M− 1 , (3.7.2.3)
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where values corresponding to points on the boundary are gleaned from g:

µ0,j := g(0, hj) , µM,j := g(1, hj) , µi,0 := g(hi, 0) , µi,M := g(hi, 1) , 1 ≤ i, j < M .

The linear relations (3.7.2.3) can be expressed graphically by means of a stencil, as depicted in Fig. 249.

(A cluster of nodes connected by the “stencil” is marked in green in Fig. 250.)

Fig. 249

4 −1

−1

−1

−1 Fig. 250

The finite element solution expressed through its “nodal values” (µi,j)1≤i,j<M
will attain its maximal value

somewhere:

∃n, m ∈ {1, . . . , M− 1}: µn,m = µmax := max
0≤i,j≤M

µi,j . (3.7.2.4)

Assume: [nh, mh]⊤ lies int the interior of Ω ⇔ 1 ≤ n, m < M.

Be aware of the following two facts:

(3.7.2.4) ⇒ µn−1,m, µn+1,m, µn,m−1, µn,m+1 ≤ µn,m ,

(3.7.2.3) ⇒ µn,m = 1
4

(
µn−1,m + µn+1,m + µn,m−1 + µn,m+1

)
(average!) .

(3.7.2.5)

⇓← “averaging argument”

µn−1,m = µn+1,m = µn,m−1 = µn,m+1 = µn,m !

The same argument can now target the neighboring grid points ((n − 1)h, mh)T, ((n + 1)h, mh)T,

(nh, (m− 1)h)T, (nh, (m + 1)h)T. By induction we find:

µi,j = µmax ∀0 ≤ i, j ≤ M ,

that is, the finite difference solution has to be constant !

The finite difference solution can attain its maximum in the interior only in the case of constant

boundary data g!

The discrete maximum principle is satisfied for f = 0. y

Remark 3.7.2.6 (Importance of discrete maximum principle) Discretizations that satisfy the maximum

principles will be positivity preserving: they yield non-negative solutions for non-negative sources and
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boundary values (Why?). This can be essential, when we want to compute a quantity that must never drop

below zero, like a density or absolute temperatures. y

§3.7.2.7 (Maximum principle for S0
1 (M)-FEM on triangular meshes) Now we try to generalize the con-

siderations of the previous paragraph to the discretization by means of linear Lagrangian finite elements

(space S0
1 (M) ⊂ H1(Ω)) on a triangular mesh (of a polygonal domain Ω ⊂ R2) see Section 2.4.

Here: Ã ∈ RM,M =̂ S0
1 (M)-Galerkin matrix for a from (3.7.1.1) (M := ♯V(M))

A row of this matrix connects all nodal values µj = uh(x
j) of the

finite element Galerkin solution uh ∈ S0
1 (M) according to

(Ã)iiµi + ∑
j 6=i

(Ã)ijµj = (~ϕ)i , xi interior node ,

where µj := g(xj) for xj ∈ ∂Ω.
Fig. 251

xi

xj1xj2

xj3

xj4

xj5

(Ã)ij1(Ã)ij2

(Ã)ij3

(Ã)ij4

(Ã)ij5

This formula holds even in the case of Dirichlet boundary conditions, as can be seen from the first row of

(2.7.6.12) or (2.7.6.14).

Next we note that the components of the load vector ~ϕ inherit the sign of f , because the nodal basis

functions for S0
1 (M) (→ Section 2.4.3) are non-negative.

(~ϕ)i =
∫

Ω
f (x)bi

h(x)dx ⇒





f ≥ 0 ⇒ (~ϕ)i ≥ 0 ∀i ,
f = 0 ⇒ (~ϕ)i = 0 ∀i ,
f ≤ 0 ⇒ (~ϕ)i ≤ 0 ∀i .

The above averaging argument from § 3.7.2.2 carries over, if the entries of Ã satisfy the following condi-

tions:

• (Ã)ii > 0 (positive diagonal) , (3.7.2.8)

• (Ã)ij ≤ 0 for j 6= i (non-positive off-diagonal entries) , (3.7.2.9)

• ∑
j

(Ã)ij = 0 , if xi is interior node . (3.7.2.10)

(Recall [NCSE]: A matrix Ã satisfying (3.7.2.8)–(3.7.2.10) is called diagonally dominant.)

Averaging argument: For an interior vertex xi is µi a convex combination of the nodal values in adjacent

vertices,

µi = ∑
j 6=i

ωjµj , ωj > 0 , ∑
j 6=i

ωj = 1 , since ωj := − (Ãij)

(Ã)ii

.

min
j 6=i

µj ≤ µi ≤ max
j 6=i

µj ,

where the index j always runs through all the vertices for which (Ã)ij 6= 0.

averaging argument uh(xi) = max
y∈V(M)

uh(y) can only hold for an interior node xi,

if uh ≡ const.
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Since uh ∈ S0
1 (M) attains its extremal values at nodes of the mesh, the maximum principles

holds for it in the case f = 0 provided that (3.7.2.8)–(3.7.2.10) are satisfied.

More general case f ≤ 0 ⇒ (~ϕ)i ≤ 0:

Then the averaging argument again rules out the existence of an interior maximum for an non-constant

solution. The case f ≥ 0 follows similarly. y

Remark 3.7.2.11 (M-matrices) The sign condition (3.7.2.8)–(3.7.2.10) for the extended Galerkin matrix

Ã mean that the Galerkin matrix A ∈ RN,N, N := dimS0
1,0(M), with respect to the finite element space

S0
1,0(M) will satisfy

• (A)ii > 0 (positive diagonal) , (3.7.2.12)

• (A)ij ≤ 0 for j 6= i (non-positive off-diagonal entries) , (3.7.2.13)

• ∑
j

(A)ij≥ 0 (non-negative row sums) . (3.7.2.14)

These conditions are easy to verify and already supply a simple criterion for the invertibility of a matrix.

Lemma 3.7.2.15. Invertibility of “averaging matrices”

If a matrix A ∈ RN,N satisfies the sign conditions (3.7.2.12)–(3.7.2.14), and

(i) ∑
j
(A)ij > 0 for a single i ∈ {1, . . . , N},

(ii) the graph of A is connected,

then A is regular.

Proof. Pick~ξ = [ξ1, . . . , ξh]
⊤ ∈ RN with A~ξ = 0. Let

ℓ ∈ {j ∈ {1, . . . , N} : |ξ j| = max
i=1,...,N

|ξi|}

be the index of the largest (in modulus) component of~ξ. Without loss of generality assume ξℓ ≥ 0. Since

(A)ℓ,ℓ ξℓ + ∑
j∈Uℓ

(A)ℓ,j ξ j = 0 , Uℓ := {j 6= ℓ : (A)ℓ,j 6= 0} ,

we conclude from (3.7.2.12), (3.7.2.13) that

ξℓ = ∑
j∈Uℓ

|(A)ℓ,j|
(A)ℓ,ℓ

ξ j .

As, owing to (3.7.2.14),

∑
j∈Uℓ

|(A)ℓ,j|
(Aℓ,ℓ)

≤ 1 , (3.7.2.16)

the maximality of ξℓ can hold only if

ξ j = ξℓ for all j ∈ Uℓ .

Since the graph of A is connected, this implies that~ξ has constant components. Recall that for at least

one row the sum of the matrix entries is strictly positive, which implies~ξ = 0.
✷
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Theorem 3.7.2.17. Inverse positivity

The inverse of a matrix A ∈ RN,N satisfying the assumptions of Lemma 3.7.2.15 has no negative

entries.

Proof. Pick a vector ~ρ ∈ RN with ρk ≥ 0 for all k ∈ {1, . . . , N} and let ~ξ ∈ RN satisfy A~ξ = ~ρ. Let

ℓ ∈ {1, . . . , N} be the index of the smallest (with sign) component of~ξ that is

ξℓ ≤ ξ j ∀j ∈ {1, . . . , N} .

From (3.7.2.12)–(3.7.2.13) and (3.7.2.16) we infer

ξℓ = ρℓ + ∑
j∈Uℓ

|(A)ℓ,j|
(Aℓ,ℓ)

ξ j ≥ ∑
j∈Uℓ

|(A)ℓ,j|
(Aℓ,ℓ)

ξ j ≥ ξℓ · ∑
j∈Uℓ

|(A)ℓ,j|
(Aℓ,ℓ)

︸ ︷︷ ︸
≤1

≥ 0 .

If ∑
j
(A)ℓ,j > 0, we immediately conclude ξℓ ≥ 0. Otherwise, repeating the reasoning in the proof of

Lemma 3.7.2.15, we conclude ξ j = ξℓ for all j ∈ Uℓ. Marching through the components, we finally reach

the index for which the matrix row sum is strictly positive and then get ξℓ ≥ 0.
✷

Matrices with positive inverse, are not only relevant for discrete maximum principles, but also in many

other modeling contexts, in particular in statistics and optimization.

Definition 3.7.2.18. M-matrix, [HAC93]

An invertible matrix satisfying (3.7.2.12)–(3.7.2.14) is called an M-matrix.

y

§3.7.2.19 (Angle condition for (3.7.2.8)–(3.7.2.10)) When will (3.7.2.8)–(3.7.2.10) hold for S0
1 (M)-

Galerkin matrix?

First consider the simple case κ ≡ 1, ↔ −∆u = f

The linear finite element discretization of this BVP was scrutinized in Section 2.4. There we also derived

the following formula for the S0
1 (M)-element matrix for a general triangle

AK =
1

2




cot ω3 + cot ω2 − cot ω3 − cot ω2

− cot ω3 cot ω3 + cot ω1 − cot ω1

− cot ω2 − cot ω1 cot ω2 + cot ω1


 , (2.4.5.8)

where ωℓ is the interior angle at vertex ℓ.

From formula (2.4.5.8) & “assembly” as in Fig. 77 we obtain

(Ã)ij = − cot α− cot β = −sin(α + β)

sin α sin β
.

⇓
(Ã)ij ≤ 0 ⇔ α + β < π .

Fig. 252

xi

xj
α

β
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Moreover

∑
x∈V(M)

bx
h ≡ 1 ⇒ ∑

j

(Ã)ij = 0 (↔ (3.7.2.10)) .

The condition (3.7.2.8)↔ (Ã)ii > 0 is straightforward.

Theorem 3.7.2.20. Maximum principle for linear FE solution of Poisson equation

The linear finite element solution of

−∆u = 0 in Ω ⊂ R2 , u = g on ∂Ω,

on a triangular meshM satisfies the maximum principle (3.7.2.1), ifM is a Delaunay triangulation

Def. 4.2.2.5.

y

Remark 3.7.2.21 (Maximum principle for linear FE for 2nd-order elliptic BVPs) For the S0
1 (M)-

Galerkin discretization of a general second-order elliptic scalar Dirichlet boundary value problem (3.7.1.1)

on a triangular mesh, the conditions (3.7.2.8)–(3.7.2.10) are fulfilled,

if all angles of triangles ofM≤ π

2
.

y

Remark 3.7.2.22 (Maximum principle for higher order Lagrangian FEM) Even when using p-degree

Lagrangian finite elements with nodal basis functions associated with interpolation nodes, see Sec-

tion 2.6.1, the discrete maximum principle will fail to hold on any mesh for p > 1. y

Review question(s) 3.7.2.23 (Discrete maximum principle)

(Q3.7.2.23.A) [Maximum principle in electrostatics] Why will a point charge moving in an electrostatic

field never come to rest?

(Q3.7.2.23.B) [Visual proof of maximum principle] Explain the “visual proof” of the maximum principle

for harmonic functions given in the following plots.

(Q3.7.2.23.C) [Triangular lattic mesh]
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Fig. 253

We consider the Galerkin discretization of a Dirich-

let boundary value problem by means of linear La-

grangian finite elements on a connected lattice-type

mesh with equilateral triangular cells.

The variational problem is translation- and rotation-

invariant so that all element matrices are the same

and of the form

AK =




α β β
β α β
β β α


 .

Formula sufficient and necessary conditions on the matrix entries α, β ∈ R so that the resulting Galerkin

matrix is an M-matrix.

Definition 3.7.2.18. M-matrix

An invertible matrix satisfying

• (A)ii > 0 (positive diagonal) , (3.7.2.12)

• (A)ij ≤ 0 for j 6= i (non-positive off-diagonal entries) , (3.7.2.13)

• ∑
j

(A)ij≥ 0 (non-negative row sums) . (3.7.2.14)

is called an M-matrix.

△

3.8 Validation and Debugging of Finite Element Codes

In this section you will learn about an important application of a priori finite element convergence results

which you will never find mentioned in any textbook: the detection of programming errors (“debugging”)

in finite element codes. On one hand, whenever, for a well-defined numerical experiment the observed

convergence rates are worse than those predicted by theory, the code must be faulty. On the other hand,

convergence matching theory is circumstantial evidence (no proof, however) for the correctness of the

implementation.
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Also applies to debugging

a code ✄

Fig. 254

§3.8.0.1 (The code under scrutiny (“model problem”)) At our disposal is a code that implements

a Lagrangian finite element discretization (→ Section 2.6) of general scalar linear second-order elliptic

variational problems (→ Section 1.8, Section 1.9) on domains Ω ⊂ Rd, d = 2, 3:

u ∈ H1(Ω)

u = g on ΓD
:
∫

Ω

α(x) grad u · grad v + γ(x)u v dx +
∫

ΓR

λ(x)u v dS(x)

=
∫

Ω

f v dx +
∫

ΓN

h v dS(x) ∀v ∈ H1
ΓD
(Ω) , (3.8.0.2)

where, based on a partition ∂Ω = ΓD ∪ ΓN ∪ ΓR, the test space is the Sobolev space (→ Def. 1.3.4.3)

H1
ΓD
(Ω) :=

{
v ∈ H1(Ω): v = 0 on ΓD

}
. (3.8.0.3)

Data are the coefficients α : Ω→ Rd,d, γ : Ω→ R, λ : ΓR → R, an the source functions f ∈ L2(Ω),
h ∈ L2(ΓN), all or some of them usually given in procedural form as discussed in Rem. 2.1.2.5.

☞ (3.8.0.2) is the variational formulation for a boundary value problem with mixed Dirichlet, Neumann,

and Robin boundary conditions as in Ex. 1.7.0.10.

The following possibilities are available for the sake of testing:

• The source function f ∈ L2(Ω), Dirichlet data g ∈ C0(ΓD), Neumann data h ∈ L2(ΓN), coefficient

functions α : Ω → Rd,d (uniformly positive definite→ Def. 1.2.2.9), γ : Ω → R+
0 , λ : ∂Ω → R+

0
can be set within the code by defining suitable function classes.

• The code can handle general simplicial meshes (which may be read from file, see Section 2.7.1).

The mesh implicitly defines the domain Ω.

• The code can compute the Galerkin finite element solution of (3.8.0.2) based on the Lagrangian

finite element trial and test space V0,h := S0
p(M) ∩ H1

ΓD
(Ω) (→ Def. 2.6.1.1) for fixed uniform

local polynomial degree p ∈ N.

Note that the techniques presented in this section are applicable to finite element discretization of

variational problems way beyond this model setting.

y
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Task:
✦ Code validation: gather evidence for the correctness of the code.

✦ Code debugging: detect and located errors in the code.

It will turn out that asymptotic estimates for error norms as provided by (3.3.5.10), Thm. 3.3.5.6 and in

Section 3.6.3 are key tools for tackling this task. (This is another reason why finite element convergence

theory is relevant for anyone programming finite element methods.)✬

✫

✩

✪

For testing we will take for granted the availability of sequences of meshesM0,M1,M2, . . ., which

satisfy (see § 3.3.5.15 for related requirements)

1) that the meshwidth decreases geometrically: hk = qhk−1 for some 0 < q < 1, where hk is the

meshwidth ofMk.

2) that all cells ofMk have about the same size hk. This feature is called quasi-uniformity .

3) that the shape regularity measure (→ Def. 3.3.2.20) all meshes stays below a common bound,

a property called uniform shape regularity.

Note that Item 1 & Item 3 imply that the number of cells increases in geometric progression: ♯Mk =
σ ♯Mk−1 for some σ > 1 (usually σ = 4 in 2D),

Sequences of meshes complying with the above requirements can, for instance, be generated by suc-

cessive (global) regular refinement of a coarse initial mesh, see Ex. 3.1.4.3. Refer to Ex. 3.1.4.4 for how

to conduct regular refinement in LEHRFEM++. Also Gmsh provides a menu item which triggers global

regular refinement of the current mesh. Thus suitable sequences of input meshes can be generated.

!
Simple global regular refinement may sometimes create meshes endowed with “too much struc-

ture” to observe “generic convergence behavior”.

In this case small random perturbations of vertex positions (mesh jiggling) can restore “truly

unstructured meshes”.

Sequences of meshes with the above properties were used in the numerical experiments of Section 3.2

and in Exp. 3.5.1.2, Exp. 3.5.2.1, Exp. 3.6.1.6, Exp. 3.6.2.3, Exp. 3.6.3.1.

§3.8.0.4 (Observing asymptotic convergence) As explained in Rem. 3.3.5.24 we expect

algebraic convergence of the energy norm (and of the L2(Ω)-norm as well) of the discretization error

in terms of the dimension of the finite element space.

We assume: asymptotic convergence estimates are known and sharp, cf. § 3.3.5.23: with a possibly

unknown convergence rate α > 0 we have for a targeted norm ‖·‖

∃C = C(u, . . .) > 0: ‖u− uh‖ ≈ CN−α ∀Mk . (3.8.0.5)

(u =̂ exact solution, uh =̂ finite element Galerkin solution, ≈ =̂ “approximate equality”; lower and upper

bound with two (slightly) different constants ≈ 1)

According to our assumptions on the sequence of meshes, by § 3.3.5.17, the dimensions Nk :=
dimS0

p(Mk) will also grow in geometric progression (κ = 4 for 2D triangular mesh)

Nk ≈ κNk−1 for some κ > 1 ⇒ Nk ≈ κkN0 . (3.8.0.6)
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Write uk for the finite element Galerkin solution on Mk, combine (3.8.0.5) and (3.8.0.6) and use the

△-inequality

‖uk − uk−1‖ ≤ ‖uk − u‖+ ‖u− uk−1‖ ≈ CN0

(
κ−kα + κ−(k−1)α

)
≈ C′N−α

k , (3.8.0.7)

with a constant C′ > 0 independent of Nk.

Measured norms of differences of Galerkin solutions of consecutive meshes in the sequence should

display algebraic convergence for Nk → ∞.

Consult § 3.2.2.5 for instructions on how to recognize algebraic convergence with sequences of empiric

error norms.

Caveat: Computing ‖uk − uk−1‖ entails forming the difference of finite element functions on different

meshes.

For validation purposes we can circumvent the need to compute uk − uk−1 exploiting the △-inequality,

because for every norm on a function space

|‖uk‖ − ‖uk−1‖| ≤ ‖uk − uk−1‖
(3.8.0.7)≈ CN−α

k . (3.8.0.8)

Hence, also the differences of norms on different levels on refinement should display algebraic conver-

gence with the same rate as ‖u− uk‖ for Nk → ∞. y

§3.8.0.9 (Method of manufactured solutions → [SAK00]) This technique has widely been used in nu-

merical experiments exploring the asymptotic behavior of norms of discretization errors, as in Section 3.2,

Exp. 3.5.1.2, and many more. The method usually involves the following steps:

➊ Pick a simple domain Ω (polygon in 2D) that allows exact triangulation with straight edges.

➋ Choose smooth exact solution u ∈ C∞(Ω) with a simple analytic expression (∗) and compute

corresponding source function f , boundary data g, and coefficient λ (analytically from the strong

form of the BVP). Symbolic computation (Mathematica, MAPLE) should be used.

➌ Choose coefficient functions α, γ, and λ given by simple analytic expressions; start with constants.

➍ Solve the resulting “manufactured BVP” on a sequence (M0,M1,M2, . . . ,ML) of meshes as

introduced above.

➎ Compute the finite element Galerkin solutions uk ∈ S0
p(Mk) on meshMk, k = 0, . . . , m, and the

norms ‖u− uk‖ of the discretization errors. Use “overkill quadrature” for computation of local error

norms, see Rem. 3.2.3.3.

➏ Estimate the rate of algebraic convergence (→ Def. 3.2.2.1) following the recipe in § 3.2.2.5,

Code 3.2.2.8, and plot the errors versus meshwidths in doubly logarithmic scale. Ignore coarse

meshes if they give rise to “outliers” due to pre-asymptotic effects as in Exp. 3.2.3.12.

➐ If the measured rate well matches the predicted rate from (3.3.5.25)

➣ code has passed test

!
Beware of polynomial exact solutions u ∈ Pp! (Why?) On the other hand, if the above test fails

for non-polynomial u, the next step should be to probe u ∈ Pp (Why?).
y
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§3.8.0.10 (Direct testing of (bi-)linear forms) This approach can be used to examine specific parts of

the variational formulation. We abbreviate with b(·, ·) a continuous and symmetric bilinear form on H1(Ω),
with ℓ a continuous (→ Def. 1.2.3.41) linear form on H1(Ω). They satisfy

∃Cr > 0: ℓ(v) ≤ Cr‖v‖H1(Ω) ∀v ∈ H1(Ω) , (3.8.0.11)

∃Cc > 0: b(v, w) ≤ Cc‖v‖H1(Ω)‖w‖H1(Ω) ∀v, w ∈ H1(Ω) . (3.8.0.12)

The Galerkin matrix for b and the right hand side vector associated with ℓ can be tested through the

following steps:

➊ Pick a simple domain Ω (polygon in 2D) that allows exact triangulation with straight edges.

➋ Choose a smooth function w ∈ C∞(Ω) that is not a polynomial.

➌ Compute b(w, w) and ℓ(w) exactly, that is analytically, which is often feasible, if Ω is a square or a

circle. Symbolic computation (Mathematica, MAPLE) is advisable.

➍ With the finite element code evaluate Ikw, where Ik : C0(Ω) → S0
p(Mk) is the local nodal interpo-

lation operator as introduced in § 3.3.5.2, (3.3.5.3). Write~νk ∈ RNk for the vector of basis expansion

coefficients of Ikw.

➎ Use the code to compute the S0
p(Mk)- Galerkin matrix Bk ∈ RNk,Nk for b. Also compute the vector

~ρk ∈ RNk arising from the S0
p(Mk)-Galerkin discretization of ℓ.

➏ Using the asymptotic interpolation error estimates of Thm. 3.3.5.6 and the continuity of b we con-

clude for hk → 0

b(w, w)−~ν⊤k Bk~νk = b(w, w)− b(Ikw, Ikw) = b(w + Ikw, w− Ikw)

(3.8.0.12)

≤ Cc‖w + Ikw‖H1(Ω) ‖w− Ikw‖H1(Ω)

≤ Cc‖w‖H1(Ω)

(
1 + Ch

p
k‖w‖Hp+1(Ω)

)(
Ch

p
k‖w‖Hp+1(Ω)

)
= O(h

p
k ) .

Again, we invoke Thm. 3.3.5.6 and continuity:

ℓ(w)−~ν⊤k ~ρk = ℓ(w)− ℓ(Ikw) = ℓ(w− Ikw)
(3.8.0.11)

≤ Cr‖w− Ikw‖H1(Ω)

≤ CrCh
p
k‖w‖Hp+1(Ω) = O(h

p
k ) .

➐ In both estimates the values on left hand side are readily available (b(w, w) and ℓ(w) are supposed

to be known!) and theory predicts a rather precise rate p of algebraic convergence for them. If this

rate materializes in empiric data

➣ code has passed test

If your code fails a test, repeat it with “simpler” w, for instance with w ∈ Pp(Rd), which implies b(w, w)−
~ν⊤k Bk~νk = 0. because in this case w ∈ S0

p(Mk) for all ℓ. y

Review question(s) 3.8.0.13 (Debugging of finite-element codes)

(Q3.8.0.13.A) Let Ω ⊂ R2 be a bounded domain, and α : Ω→ R2,2, γ : Ω→ R, and λ : ∂Ω→ R con-

tinuous, bounded, and uniformly positive coefficient functions. What is the strong (PDE) form of the

boundary value problem, whose weak form reads
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u ∈ H1(Ω)

u = g on ΓD
:
∫

Ω

α(x) grad u · grad v + γ(x)u v dx +
∫

ΓR

λ(x)u v dS(x)

=
∫

Ω

f v dx +
∫

ΓN

h v dS(x) ∀v ∈ H1
ΓD
(Ω) , (3.8.0.2)

with f ∈ L2(Ω) and the Sobolev space

H1
ΓD
(Ω) :=

{
v ∈ H1(Ω): v = 0 on ΓD

}
, (3.8.0.3)

based on a partition ∂Ω = ΓD ∪ ΓN ∪ ΓR.

(Q3.8.0.13.B) We consider (3.8.0.2) for α ≡ I, γ ≡ 1, λ ≡ 1, and on the unit disk domain

Ω := {x ∈ R2 : ‖x‖ < 1} and with ΓR := ∂Ω.

(i) Is it possible to choose the data f and h such that u(x) = cos(π/2‖x‖) will be the exact solution

of the variational problem. If not, suggests a modification that makes it possible.

(ii) Possibly under the modification found in [(i)], determine those functions f and h that will yield that

exact solution u(x) = cos(π/2‖x‖).
(Q3.8.0.13.C) In connection with the method of manufactured solutions you have seen the warning

!
Beware of polynomial exact solutions u ∈ Pp! (Why?) On the other hand, if the above test

fails for non-polynomial u, the next step should be to probe u ∈ Pp (Why?).

Try to answer the “Whys”.

(Q3.8.0.13.D) You have just finished the implementation of the LEHRFEM++-based C++ function

template <typename FUNC_ALPHA, typename FUNC_GAMMA, typename

FUNC_BETA>

Eigen::SparseMatrix<double> compGalerkinMatrix(

const lf::assemble::DofHandler &lfe_dofh,

FUNC_ALPHA&& alpha, FUNC_GAMMA&& gamma, FUNC_BETA&& beta);

that, given a meshM, (approximately, using “safe” local numerical quadrature) computes the S0
1 (M)-

based finite element Galerkin matrix for the left-hand side of the variational boundary value problem

u ∈ H1(Ω):
∫

Ω
α(x) grad u(x) · grad v(x) + γ(x) u(x) v(x)dx +

∫

∂Ω
β(x) u(x) v(x)dS(x) =

∫

Ω
f (x) v(x)dx ∀v ∈ H1(Ω) ,

where α, γ : Ω→ R, β : ∂Ω→ R are bounded coefficient functions, and f ∈ L2(Ω). The use of the

standard nodal basis consisting of “tent functions” is assumed.

The argument lfe_dofh passes the loca-to-global index mapping for S0
1 (M) and the mesh M,

while alpha, gamma, and beta are functors for the coefficient functions x 7→ α(x), x 7→ γ(x), and

x 7→ β(x).

Unfortunately, your implementation does not work properly. Sketch a debugging strategy based on the

policy of direct testing of bilinear forms.

△
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Learning Outcomes

Essential knowledge and skills acquired in this chapter:

• State, prove and understand Cea’s Lemma and its relevance for the finite element Galerkin dis-

cretization of elliptic BVP.

• Known the meaning of h-refinement and p-refinement.

• Ability to determine empirical (algebraic) convergence rates of various norms of a finite element

discretization error.

• Ability to predict the asymptotic algebraic convergence of the energy norm and L2-norm the finite

element discretization error for scalar 2nd-order elliptic BVP.

• Familiarity with features of an elliptic BVP (corners, discontinuous coefficients) that can thwart the

fastest possible convergence of a Lagrangian finite element discretization for h-refinement.

• Knowledge of how to choose the appropriate order of quadrature and boundary approximation so

as to preserve the optimal rate of convergence (for h-refinement).

• Use duality techniques to obtain improved error estimates for the evaluation of linear and continuous

output functionals. Understanding of the importance of continuity of output functionals.

• Knowledge of the (discrete) maximum principle for scalar 2nd-order elliptic boundary value prob-

lems.

• An idea of common strategies for the debugging and validation of a general finite element code.
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Chapter 4

Beyond FEM: Alternative Discretizations

Now we examine approaches to the discretization of scalar linear 2nd-order elliptic BVPs that offer an

alternative to finite element Galerkin methods discussed in Chapter 2. Some are closely related to the

finite-element method and just adopt a different perspective on the discretization of a BVP. Others are

confined to particular settings and may offer distinct advantages when applicable.

The objective of this chapter is not to introduce non-FEM approaches to the discretization of second-order

scalar elliptic BVPs in depth, but to convey their main design principles and relationships with the FEM,

and to introduce terminology commonly used in computational science.

Contents
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4.1 Finite-Difference Methods (FDMs)

Video tutorial for Section 4.1: Finite-Difference Methods (FDMs): (22 minutes)

Download link, tablet notes

Finite-difference methods represent the approach to the discretization of 2nd-order elliptic boundary equa-

tions with the longest tradition, and, arguably, based on the simplest and most straightforward considera-

tions.
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Construction of finite-difference methods (FDMs): Policy

The idea underlying finite-difference methods is to

(I) replace derivatives with difference quotients,

(II) which are anchored at the nodes/grid points of a (structured) mesh/grid,

(III) and access solution values only at other nodes/grid points.

Note a few implications of this design principle:

• Since they approximate derivatives, finite-difference methods target the “ODE/PDE-formulation”

(strong form, Rem. 1.5.3.10) of boundary value problems.

• The unknowns in a finite-difference method are the point values of an approximation solution at the

nodes/grid points of the mesh.

Now we present concrete finite-difference methods for scalar elliptic 2nd-order BVPs in one and two space

dimensions. This will make clear all the details of the construction and the aspects (I)–(III) of the FDM

policy.

4.1.1 Finite-Difference Method for Two-Point Boundary-Value Problems

For given Dirichlet data ua, ub ∈ R we consider the two-point elliptic 2nd-order Dirichlet boundary-value

problem on the interval ]a, b[, a < b, derived from the elastic string model in Section 1.5.1. In line with the

FDM policy we focus on its strong form

− d

dx

(
σ(x)

du

dx
(x)

)
= f (x) in ]a, b[ , u(a) = ua , u(b) = ub . (1.5.1.16)

We take for granted the following smoothness properties of the uniformly positive coefficient function

σ :]a, b[→ R+, and of the source function f :]a, b[→ R:

σ ∈ C0([a, b]) , f ∈ C0([a, b]) . (4.1.1.1)

In words, both functions have to be continuous, which makes possible point evaluation. We point out that

these smoothness requirements are less strict than those of Ass. 1.5.1.2, but stricter than (1.5.1.4), which

is required for a meaningful weak formulation.

§4.1.1.2 (1D mesh/grid, recalling § 2.3.1.3) We equip the interval Ω :=]a, b[, a < b, with an ordered

sequence of M + 1, M ∈ N, nodes/grid points:

V(M) := {a = x0 < x1 < · · · < xM−1 < xM = b} .

Fig. 255 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

a b

This defines the mesh/grid as a collection of open cells

M := {]xj−1, xj[: 1 ≤ j ≤ M} .

with cell sizes hj := |xj − xj−1|, j = 1, . . . , M. If all those are equal, hj = h > 0 for all j = 1, . . . , M, the

grid is said to be equidistant with mesh width hM = h. y

§4.1.1.3 (Difference quotients (DQs)) The derivative du
dx of a differentiable function u : [a, b]→ R in

x0 ∈]a, b[ is defined as the limit h→ 0 of some difference quotients with span h > 0. For finite span

those provide an approximation of du
dx (x0). The “some” hints that different kinds of difference quotients

can be used:
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✦ Symmetric difference quotient at anchor point x0:

du

dx
(x0) ≈

u(x0 + h)− u(x0 − h)

2h
, with span h > 0 . (4.1.1.4)

✦ One-sided difference quotients at anchor point x0:

du

dx
(x0) ≈

u(x0 + h)− u(x0)

h
≈ u(x0)− u(x0 − h)

h
, with span h > 0 . (4.1.1.5)

We remark that difference quotients provide approximations of du
dx (x0) of different orders, that is, with

different algebraic rates of convergence as h→ 0, provided that u ∈ C2([a, b]): for any x0 ∈]a, b[

symmetric DQ:

∣∣∣∣
du

dx
(x0)−

u(x0 + h)− u(x0 − h)

2h

∣∣∣∣ = O(h2) for h→ 0 , (4.1.1.6)

one-sided DQ:

∣∣∣∣
du

dx
(x0)−

u(x0 + h)− u(x0)

h

∣∣∣∣ = O(h) for h→ 0 . (4.1.1.7)

This can be proved by Taylor expansion of u around x0, use (0.3.2.3a) together with (0.3.2.4). y

§4.1.1.8 (Difference-quotient approximation of 2nd-order differential operator) We consider the lin-

ear 2nd-order differential operator Lu := − d
dx

(
σ du

dx

)
from (1.5.1.16) with σ ∈ C0([a, b]). We implement

the finite-difference policy and successively replace the derivative operators with (two-sided, symmetric)

difference quotients at a mesh node xj:

➊ Replace outer derivative with a two-sided difference quotient (xj−1/2 := 1
2(xj + xj−1)):

d

dx

(
σ(x)

du

dx
(x)

)

|x=xj

≈ 2

hj + hj+1

(
σ(xj+1/2)

du

dx
(xj+1/2)− σ(xj−1/2)

du

dx
(xj−1/2)

)
.

Note that the possibility for point evaluation of the coefficient function σ is essential: σ ∈ C0(]a, b[) is

required.

➋ Replace inner derivative with symmetric difference quotients:

du

dx
(xj+1/2) ≈

u(xj+1)− u(xj)

hj+1
.

− d

dx

(
σ(x)

du

dx
(x)

)

|x=xj

≈
σ(xj−1/2)

u(xj)− u(xj−1)

hj
− σ(xj+1/2)

u(xj+1)− u(xj)

hj+1

1
2(hj + hj+1)

. (4.1.1.9)

Fig. 256

xj−1 xj+1xj

Construction of (4.1.1.9):

magenta: outer difference quotient

green: inner difference quotients

We can apply the approximation (4.1.1.9) to the PDE

− d

dx

(
σ(x)

du

dx
(x)

)
= f (x) , x ∈]a, b[ ,
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in every interior node xj, j = 1, . . . , M− 1 of the meshM and get the M− 1 linear equations

σ(xj−1/2)
u(xj)− u(xj−1)

hj
− σ(xj+1/2)

u(xj+1)− u(xj)

hj+1

1
2(hj + hj+1)

= f (xj) , j = 1, . . . , M− 1 . (4.1.1.10)

Note that the span of the difference quotients have judiciously been chosen so that they only involve values

of u at the nodes of the mesh. y

Remark 4.1.1.11 (Symmetric difference quotient for second derivative) In the case h := hj = hj+1

and for constant coefficient σ ≡ 1 (4.1.1.9) boils down to the well-known symmetric difference quotient

approximation of the second derivative − d2u
dx2 (xj):

−d2u

dx2
(xj) ≈

−u(xj+1) + 2u(xj)− u(xj−1)

h2
. (4.1.1.12)

y

§4.1.1.13 (Finite-difference linear system of equations) The point values of the unknown solution u(xj),
j = 0, . . . , M, occurring in (4.1.1.10) will play the role of the unknowns in the finite-difference method,

denote them by µj ≈ u(xj), j = 0, . . . , M. Using this notation we can rewrite (4.1.1.10)

− σ(xj+1/2)
1
2 hj+1(hj + hj+1)

µj+1 +
h−1

j+1σ(xj+1/2) + h−1
j σ(xj−1/2)

1
2(hj + hj+1)

µj −
σ(xj−1/2)

1
2 hj(hj + hj+1)

µj−1 = f (xj)

(4.1.1.14)

for j = 1, . . . , M− 1. This represents a linear system of M− 1 equations for M + 1 unknowns, which

can be written in matrix-vector form:

A~µ = ~ϕ , with

(A)j,ℓ :=





0 , if |j− l| > 1 ,

− σ(xj+1/2)
1
2 hj+1(hj+hj+1)

, if ℓ = j + 1 ,

h−1
j+1σ(xj+1/2)+h−1

j σ(xj−1/2)

1
2 (hj+hj+1)

, if j = l ,

− σ(xj−1/2)
1
2 hj(hj+hj+1)

, if ℓ = j− 1 ,

ϕj := f (xj) ,

(4.1.1.15)

with~µ := [µ0, . . . , µM]⊤ ∈ RM+1 and j ∈ {1, . . . , M− 1}, ℓ ∈ {0, . . . , M}. Obviously, the matrix A is a

tridiagonal matrix in the sense of [NCSE]. Also note that the row sums of the matrix A all vanish, reflecting

the fact that constant functions x 7→ c ∈ R are in the nullspace of L.

Significant simplifications result for an equidistant mesh, hj = h for all j = 1, . . . , M. Then the matrix

A ∈ RM−1,M+1 as defined in (4.1.1.15) becomes

A =
1

h2




−σ1
2

σ1
2
+ σ3

2
−σ3

2

−σ3
2

σ3
2
+ σ5

2
−σ5

2
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . . −σM− 3

2

−σM− 3
2

σM− 1
2
+ σM− 3

2
−σ

M−1
2




, (4.1.1.16)
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with the abbreviation σ∗ := σ(x∗). y

§4.1.1.17 (Finite-difference methods for two-point Dirichlet BVP) Then linear system A~µ = ~ϕ from

(4.1.1.15) features two equations more than the number of unknowns. These numbers can easily bal-

anced by using the Dirichlet boundary conditions u(a) = ua and u(b) = ub in (1.5.1.16). Motivated by

µ0 ≈ u(a) and µM ≈ u(b) we can simply set µ0 = ua and µM = ub and remove these two unknowns.

In the case of an equidistant mesh with meshwidth h > 0 this yields the square (M − 1) × (M − 1)
tridiagonal linear system of equations

1

h2




σ1
2
+ σ3

2
−σ3

2

−σ3
2

σ3
2
+ σ5

2
−σ5

2
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . . −σM− 3

2

−σM− 3
2

σM− 1
2
+ σM− 3

2







µ1

µ2
...

...

µM−2

µM−1




=




f (x1) + σ1
2

ua

f (x2)
...

...

f (xM−2)
f (xM−1) + σ

M−1
2

ub




.

(4.1.1.18)

The coefficient matrix is diagonally dominant in the sense of [NCSE]. y

§4.1.1.19 (Finite-difference method for two-point Neumann BVP) Instead of Dirichlet boundary condi-

tions we may also impose inhomogeneous Neumann boundary conditions, which leads to the two-point

BVP

− d

dx

(
σ(x)

du

dx
(x)

)
= f (x) in ]a, b[ , − σ(a)

du

dx
(a) = va , σ(b)

du

dx
(b) = vb , (4.1.1.20)

with given Neumann data va, vb ∈ R.

We follow the finite-difference policy and replace the derivatives in the definition of the Neumann boundary

conditions with one-sided difference quotients anchored in x0 = a and xM = b, respectively:

−σ(a)
du

dx
(a) = va σ(x1/2)

u(a)− u(a + h1)

h1
= va , (4.1.1.21)

σ(b)
du

dx
(b) = vb σ(xM−1/2)

u(b)− u(b− hM)

hM
= vb . (4.1.1.22)

Using the µ-notation, µ0 ≈ u(a), µM ≈ u(b), µj ≈ u(xj), we can rewrite these equations as

(4.1.1.21) ⇒ µ0 = µ1 +
h1

σ(x1/2)
va , (4.1.1.23)

(4.1.1.22) ⇒ µM = µM−1 +
hM

σ(xM−1/2)
vb . (4.1.1.24)

We plug this into the equations (4.1.1.14) for j = 1 and j = M− 1, using the abbreviation σ∗ := σ(x∗),

− σ3/2
1
2 h2(h1 + h2)

µ2 +
h−1

2 σ3/2 + h−1
1 σ1/2

1
2(h1 + h2)

µ1 −
σ1/2

1
2 h1(h1 + h2)

µ0 = f (x1) ,

− σM−1/2
1
2 hM(hM−1 + hM)

µM +
h−1

M σM−1/2 + h−1
M−1σM−3/2

1
2(hM−1 + hM)

µM−1 −
σM−3/2

1
2 hM−1(hM−1 + hM)

µM−2 = f (xM−1) .
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This yields the modified equations

− σ3/2
1
2 h2(h1 + h2)

µ2 +
h−1

2 σ3/2
1
2(h1 + h2)

µ1 = f (x1) +
va

1
2(h1 + h2)

,

h−1
M−1σM−3/2

1
2(hM−1 + hM)

µM−1 −
σM−3/2

1
2 hM−1(hM−1 + hM)

µM−2 = f (xM−1) +
vb

1
2(hM−1 + hM)

.

For an equidistant mesh with meshwidth h > 0 the final linear system of equations is

1

h2




σ3
2

−σ3
2

−σ3
2

σ3
2
+ σ5

2
−σ5

2
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . . −σM− 3

2

−σM− 3
2

+σM− 3
2







µ1

µ2
...

...

µM−2

µM−1




=




f (x1) + va/h
f (x2)

...

...

f (xM−2)
f (xM−1) + vb/h




. (4.1.1.25)

y

Remark 4.1.1.26 (Compatibility conditions for 1D FVM for Neumann two-point BVP) Write A~µ = ~ϕ
for the linear system of equations (4.1.1.25). Since all row sums of A evaluate to zero, A1 = 0, where

1 = [1, . . . , 1]⊤. In fact, an easy computation shows N (A) = Span{1}. Thus, solutions of A~µ = ~ϕ

exist, if and only if~ϕ⊤1 = 0, which means

h
M−1

∑
ℓ=1

f (xℓ) = −(va + vb) . (4.1.1.27)

This is the finite-difference discrete counterpart of the compatibility condition for the inhomogeneous

Neumann problem (1.8.0.11) with right hand side source function f : Ω→ R and Neumann data

H : ∂Ω→ R,

−
∫

∂Ω
h dS =

∫

Ω
f dx . (1.8.0.13)

The parallels between (4.1.1.27) and (1.8.0.13) are evident: the latter can be converted into the former by

formally applying a quadrature formula. y

Review question(s) 4.1.1.28 (Finite-difference method for two-point boundary-value problems)

(Q4.1.1.28.A) For given f ∈ C0([0, 1]) write down the linear system of equations arising from the finite-

difference discretization of the two-point homogeneous Dirichlet boundary value problem

−d2u

dx2
(x) = f (x) in ]0, 1[ , u(0) = u(1) = 0 ,

on an equidistant mesh with grid points xj = hj, j = 0, . . . , M, h := 1
M , M ∈ N.

(Q4.1.1.28.B) We consider the elliptic two-point boundary value problem with impedance boundary con-

ditions

−d2u

dx2
(x) = f (x) in ]0, 1[ , − du

dx
(0) + u(0) =

du

dx
(1) + u(1) = 0 . (4.1.1.29)

Develop a finite-difference discretization of (4.1.1.29) on an equidistant mesh with grid points xj = hj,

j = 0, . . . , M, h := 1
M , M ∈ N.

△
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4.1.2 Finite-Difference Method in Two Dimensions

The finite-difference methods in one space dimension introduced in the previous section is rather general.

The limitations of the finite-difference approach, its dependence on “structured” meshes, become apparent

only in higher dimension. Now we discuss the case of scalar elliptic boundary value problems in 2D.

§4.1.2.1 (Model problem and structured mesh) For the sake of simplicity we restrict ourselves to the

model homogeneous Dirichlet boundary value problem for the Laplacian:

−∆u = −∂2u

∂x2
1

− ∂2u

∂x2
2

= f in Ω :=]0, 1[2 , u = 0 on ∂Ω . (4.1.2.2)

Why that boring unit-square domain Ω? Well, we

will see that the finite-difference policy as outlined in

the beginning of Section 4.1 hinges on a very regular

structure of the underlying mesh.

Such a regular structure is only present in

tensor-product meshes, also called grids. This is why

we will limit the discussion the equispaced triangular

tensor-product mesh M of Ω :=]0, 1[2 with mesh-

width h = 1
1+N , N ∈ N displayed beside.

We impose a lexikographic (line-by-line) order-

ing/numbering of the nodes/grid points ofM. ✄

The following elaborations will have a partial over-

lap with § 3.7.2.2, which relied on the same family

of meshes. Fig. 257

1

N+1

NN−1

N*N

2 3

N+2 N+3 2N

N(N−1)+1

y

§4.1.2.3 (Grid-Based difference quotients on equispaced tensor-product mesh) The first step of finite

difference approach to −∆ is the approximation of the of the partial derivatives by means of directional

symmetric difference quotients. This is nothing new: we did this in (4.1.1.9). The following formulas

generalize the symmetric second difference quotient (4.1.1.12) to partial derivatives.

∂2

∂x2
1

u
|x=(ξ,η)

≈ u(ξ − h, η)− 2u(ξ, η) + u(ξ + h, η)

h2
,

∂2

∂x2
2

u
|x=(ξ,η)

≈ u(ξ, η − h)− 2u(ξ, η) + u(ξ, η + h)

h2
.

(4.1.2.4)

−∆u|x=(ξ,η) ≈
1

h2

(
4u(ξ, η)− u(ξ − h, η)− u(ξ + h, η)− u(ξ, η − h)− u(ξ, η + h)

)
.

In a second step we use this approximation at a grid point p = (ih, jh), 1 ≤ i, j ≤ N. This will connect

the five point values of the unknown solution u(ih, jh), u((i− 1)h, jh), u((i + 1)h, jh), u(ih, (j− 1)h),
u(ih, (j + 1)h). We recall that approximations µi,j to the point values u(ih, jh) will be the unknowns of

the finite difference method. y

§4.1.2.5 (Finite-difference linear system of equations) Centering the above difference quotients at all

nodes/grid points ofM and taking into account the PDE−∆u = f yields linear relationships between the

unknowns µi,j ≈ u(ih, jh), i, j ∈ {1, . . . , N}.
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1

h2

(
4u(ih, jh)− u(ih− h, jh)− u(ih + h, jh)− u(ih, jh− h)− u(ih, jh + h)

)
= f (ih, jh) ,

1

h2

(
4µi,j − µi−1,j − µi+1,j − µi,j−1 − µi,j+1

)
= f (ih, jh) . (4.1.2.6)

Also this is familiar from the discussion in 1D, see (4.1.1.14). Yet, in 1D the association of the point values

and of components of the vector~µ of unknowns was straightforward and suggested by the linear ordering

of the nodes of the grid. In 2D we have much more freedom. One option on tensor-product grids is the

line-by-line ordering (lexikographic ordering) depicted in Fig. 257. This allows a simple indexing scheme:

u(p) ↔ µi,j ↔ µ(j−1)N+i i, j = 1, . . . , N .

(4.1.2.5) ➤
−µ(j−2)N+i − µ(j−1)N+i−1 + 4µ(j−1)N+i − µ(j−1)N+i+1 − µjN+i

h2
= f (ih, jh)︸ ︷︷ ︸

=:ϕ(j−1)N+i

.

(4.1.2.7)

We end up with a linear system of N2 equations A~µ = ~ϕ with the N2 × N2 block-tridiagonal

Poisson matrix.

A :=
1

h2




T −I 0 · · · · · · 0

−I T −I
...

0 −I T −I
...

...
. . .

. . .
. . . 0

... −I T −I
0 · · · · · · 0 −I T




, T :=




4 −1 0 0

−1 4 −1
...

0 −1 4 −1
...

...
. . .

. . .
. . .

... −1 4 −1
0 · · · · · · 0 −1 4




∈ RN,N (4.1.2.8)
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A =




0

0




✁ band structure

of Poisson matrix
y

Remark 4.1.2.9 (Extra smoothness of source function in finite difference approach) Obviously, we

have to require f ∈ C0(Ω) in order to render (4.1.2.5) meaningful.

The FD approach entails using regular source functions compared to finite element methods, for

which f ∈ L2(Ω) is enough.

(However, when numerical quadrature (→ Section 2.7.5) is used for the computation of the right hand side

vector ~ϕ as in Section 2.4.6, then point evaluation of f has to be possible and f ∈ C0(Ω) will also be

required.) y

§4.1.2.10 (Stencil notation) One row of the linear system of equations arising from the finite difference

discretization of the 2D model problem on the tensor product mesh depicted in Fig. 257:

1

h2

(
4µi,j − µi−1,j − µi+1,j − µi,j−1 − µi,j+1

)
= f (ih, jh) . (4.1.2.5)

Note that the unknowns µi,j are indexed by the position of the grid point they are associated with. This

suggests the following visualization of (4.1.2.5):
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Fig. 258

−1

−1

−1 −14j

i

j + 1

i + 1

j− 1

i− 1

h
← stencil anchored at (ih, jh) ∈ Ω.

stencil notation:

1

h2




−1
−1 4 −1

−1




h

A stencil as given above is a way to describe a row of

a linear system of equations operating on unknowns

associated with the nodes of a grid without imposing

a global numbering.

The stencil description is particularly convenient in the case of translation invariance, where the stencils

are the same for (almost) all nodes of the grid. Then, instead of specifying the matrix of the big linear

system of equations, it suffices to write down a single stencil. y

Remark 4.1.2.11 (Stencils on more general meshes) Stencils are not confined to tensor product grids.

Here is an example of a stencil describing a finite-difference linear system of equations on a regular

triangular mesh comprising equal equilateral triangles.

Fig. 259

4
√

3− 2
3

√
3 − 2

3

√
3

− 2
3

√
3

− 2
3

√
3

− 2
3

√
3

− 2
3

√
3

h

← Stencil for discretization of −∆

by means of linear Lagrangian fi-

nite elements on a grid consist-

ing of equilateral triangles.

In stencil notation it can be written as

follows:

2

3

√
3 ·



−1 −1
−1 6 −1

−1 −1




h

y

4.1.3 Finite Differences and Finite Elements

§4.1.3.1 (FDM and FEM matrices to two-points BVPs) For the homogeneous Dirichlet two-point

boundary-value problem

− d

dx

(
σ(x)

du

dx
(x)

)
= f (x) in ]a, b[ , u(a) = 0 , u(b) = 0 . (4.1.3.2)
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an equidistant mesh with M + 1 nodes xj = hj and meshwidth h := 1
M , M ∈ N, in Section 4.1.1 we

derived the following linear system of equations by the finite-difference approach:

1

h2




σ1
2
+ σ3

2
−σ3

2

−σ3
2

σ3
2
+ σ5

2
−σ5

2
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . . −σM− 3

2

−σM− 3
2

σM− 1
2
+ σM− 3

2







µ1

µ2
...

...

µM−2

µM−1




=




f (x1)
f (x2)

...

...

f (xM−2)
f (xM−1)




,

where σ2j−1
s

:= σ(1
2(xj−1 + xj)).

In § 2.3.3.10 we used linear Lagrangian finite elements for the Galerkin finite-element discretization of

(4.1.3.2), employing the standard tent basis functions (→ Section 2.3.2) and numerical quadrature based

on the composite midpoint rule and composite trapezoidal rule. This led to the linear system of equations

1

h




σ1 + σ2 −σ2 0 . . . . . . 0

−σ2 σ2 + σ3 −σ3
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
... −σM−2 σM−2 + σM−1 −σM−1

0 . . . . . . 0 −σM−1 σM−1 + σM







µ1

...

µN




= h




f (x1)

...

f (xN)




, (2.3.3.14)

with σj := σ(mj), mj := 1
2(xj + xj−1), j = 1, . . . , M− 1. Up to trivial scaling, the linear systems are

exactly the same! The finite-difference approach to a scalar two-point boundary value problem produces

the same equations as the linear Lagrangian finite-element method using numerical quadrature and the

the cardinal basis of tent functions. Perhaps this should not come as a surprise, because the basis

expansion coefficients in the FEM agree with the values of the approximate solution at grid points. y

§4.1.3.3 (FDM and FEM linear systems for 2D scalar elliptic BVPs) In two dimensions we will also

come to the conclusion of § 4.1.3.1. So, let us derive the Galerkin matrix and right hand side vector for

the 2D model problem on the tensor product mesh depicted in Fig. 257. To begin with we convert it into a

triangular meshM by splitting each square into two equal triangles by inserting a diagonal (green lines in

Fig. 257). On this mesh we use linear Lagrangian finite elements as in Section 2.4.

Now we repeat the considerations of Section 2.4. We consider the linear Lagrangian finite-element

Galerkin discretization of 2D model problem

−∆u = −∂2u

∂x2
1

− ∂2u

∂x2
2

= f in Ω :=]0, 1[2 , u = 0 on ∂Ω . (4.1.2.2)

4. Beyond FEM: Alternative Discretizations, 4.1. Finite-Difference Methods (FDMs) 385



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

We rely on the uniform triangular tensor-product mesh (grid) M described in § 4.1.2.1 and drawn

in Fig. 257. On M we use the finite element space V0,h = S0
1,0(M) and the “tent functions” as

global shape functions, see Fig. 99.

Fig. 260

a1 a2

a3

h

h
K

For all the congruent triangles of M we obtain the following

element stiffness matrix from (2.4.5.8):

AK = 1
2




2 −1 −1
−1 1 0
−1 0 1


 .

The numbering of local shape functions is induced by the num-

bering of vertices as given in the figure.

To compute the element load vectors we use the three-point quadrature formula (2.7.5.34) (local

trapezoidal rule) and obtain

~ϕK = 1
6 h2




f (a1)
f (a2)
f (a3)


 .

Fig. 261

➀

➀
➀

➀

➀

➀

➁

➁

➁

➁

➁

➁

➂

➂

➂

➂
➂

➂

K1

K2

K3

K4

K5

K6

p

To compute one entry of the finite-element

right-hand-side/load vector ~ϕ we perform

local assembly:

← green: local vertex numbers

Contributions to load vector component

associated with node p:

From K1 : (~ϕK1
)2

From K2 : (~ϕK2
)3

From K3 : (~ϕK3
)3

From K4 : (~ϕK4
)1

From K5 : (~ϕK5
)1

From K6 : (~ϕK6
)2

~ϕp = h2 f (p) .

To compute a single line of the finite-element linear system of equations associated with a single node of

the mesh M, we carry out another local assembly “on paper”, see Section 2.7.4 for explanations. We

start with writing down all the element matrices surrounding a node p:
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Fig. 262

1
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1 0 −1
0 1 −1
−1 −1 2


 1
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1 0 −1
0 1 −1
−1 −1 2




1
2




1 0 −1
0 1 −1
−1 −1 2




1
2




1 −1 0
−1 2 −1
0 −1 1




1
2




1 −1 0
−1 2 −1
0 −1 1


1

2




1 −1 0
−1 2 −1
0 −1 1




p

➀

➀

➀

➀

➀

➀

➁

➁

➁

➁

➁

➁

➂

➂

➂

➂

➂

➂

Then we do local assembly by adding up suitable entries of element matrices. We place the non-zero

entries of the resulting row of the final Galerkin matrix on edges of the mesh to indicate which two un-

knowns/nodes they connect. The diagonal entry is written on top of a node itself. Thus, we immediately

obtain a stencil notation describing the row of the Galerkin matrix.
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Fig. 263
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The stencil we obtain is the very same as that obtained in § 4.1.2.10 by means of the finite-difference

approach: Also the Galerkin finite-element discretization of (4.1.2.2) on the triangular tensor-product mesh

of Fig. 257 using standard linear Lagrangian finite-element spaces and bases yields the same N2 × N2

linear system of equations with the Poisson matrix (4.1.2.8) as coefficient matrix as the FDM. This insight

remains valid beyond the model problem in 2D:

(Most) finite difference schemes ↔
finite element Galerkin schemes

with numerical quadrature

on structured meshes

y

§4.1.3.4 (Pros and cons of “finite difference approach”) Let us briefly compare the finite-difference

method and the finite-element Galerkin method, of course, with focus on 2nd-order linear scalar problems:

✦ Finite element methods can be used on general triangulations and structured (tensor-product)

meshes alike, which delivers superior flexibility in terms of geometry resolution (advantage FEM).

✦ The correct treatment of all kinds of boundary conditions (→ Section 1.7). naturally emerges from

the variational formulations in the finite element method (advantage FEM).

✦ Finite difference approach cannot deal with second-order elliptic boundary value problems with dis-

continuous diffusion coefficient (α in (1.4.2.4), (1.8.0.16)), which does not cause difficulties for finite

element methods.
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✦ Finite element methods have built-in “safety rails” because there are clear criteria for choosing viable

finite element spaces and once this is done, there is no freedom left to go astray (advantage FEM).

✦ Finite element methods are harder to understand (advantage FD, but only with students who have

not attended this course!)

Then, why are “finite difference methods” ubiquitous in scientific and engineering simulations ?

When people talk “finite differences” they have in mind structured meshes (translation invariant, tensor

product structure) and use the term as synonym for “discretization on structured meshes”. The popularity

of structured meshes is justified:

• structured meshes allow regular data layout and vectorization, which boost the performance of al-

gorithms on high performance computing hardware. This is outside the scope of the this lecture and

treated in courses on “High Performance Computing”.

• translation invariant PDE operators give rise to simple Galerkin matrices that need not be assembled

and stored (recall the 5-point-stencil for −∆) and support very efficient matrix×vector operations.

✞
✝

☎
✆Use structured meshes whenever possible!

y

Review question(s) 4.1.3.5 (Finite-difference method in two dimensions)

(Q4.1.3.5.A) A boundary value problem for the Poisson equation −∆u = f on Ω :=]0, 1[2 is discretized

by means of bi-linear Lagrangian finite elements on a uniform tensor-product mesh (meshwidth h > 0)

comprising equal squares. What is the “shape” of the resulting stencil for an interior node of the mesh?

(Q4.1.3.5.B) The classical finite-difference discretization of the 2D Poisson equation −∆u = f in

Ω :=]0, 1[2 and on a uniform tensor-product mesh with meshwidth h > 0 can be described by the

customary 5-point stencil



−1
−1 4 −1

−1




h

.

Outline how non-homogeneous Dirichlet boundary conditions, u = g on ∂Ω with g ∈ C0(∂Ω), can be

dealt with in the context of this FDM.

△

4.2 Finite-Volume Methods (FVMs)

Video tutorial for Section 4.2: Finite-Volume Methods (FVMs): (23 minutes) Download link,

tablet notes

In Section 1.6 we have derived second-order elliptic boundary value problems by combining

• a conservation/balance law, expressed by a balance equation
∫

∂V
j · n dS =

∫

V
f dx for all “control volumes” V , (1.6.0.3)

• with flux law like Fourier’s law

j(x) = −κ(x) grad u(x) , x ∈ Ω . (1.6.0.5)
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Finite-volume methods (FVM) for the discretization of second-order elliptic boundary value problems are

inspired by this very derivation.

The focus in this section is on linear scalar 2nd-order elliptic boundary value problem in 2D (→ Sec-

tion 1.6) with homogeneous Dirichlet boundary conditions (→ Section 1.7), uniformly positive scalar heat

conductivity κ = κ(x)

−div(κ(x) grad u) = f in Ω ⊂ R2 , u = g on ∂Ω .

The data f ∈ C0(Ω) and g ∈ C0(∂Ω) are supposed to be given.

4.2.1 Discrete Balance Laws

§4.2.1.1 (Control volumes) As announced above, finite volume methods for 2nd-order elliptic BVP are

inspired by the conservation principle (1.6.0.3). e

∫

∂V
j · n dS =

∫

V
f dx for all “control volumes” V , (1.6.0.3)

where j := −κ grad u : Ω→ R2 is the flux as introduced in § 1.6.0.1. Physics requires that (1.6.0.3)

holds for all (infinitely many) “control volumes” V ⊂ Ω. Since discretization has to lead to a finite number

of equations, the idea is to demand that (1.6.0.3) holds for only a finite number of special control volumes.

Idea of FMV:

Enforce the conservation/balance law (1.6.0.3) only for finitely many control volumes.

First ingredient of FVM: Finitely many non-overlapping control volumes Ci, i = 1, . . . , M̃,

covering the computational domain: Ω =
⋃M̃

i=1 Ci

Fig. 264

.

Ck

Ci

Cj

Γik
nik

pi

pj

pk A concrete collection of 2D control volumes:

✁ In 2D the control volumes may be chosen as

the (polygonal) cells of a general mesh M̃ =
{Ci}i of Ω according to Def. 2.5.1.1.

✎ notations:

• Γik =̂ interface/edge between Ci and Ck

• nik =̂ unit normal at Γik pointing from Ci

into Ck.

y

§4.2.1.2 (The unknowns of the FVM) Then associate with each control volume Ci, i = 1, . . . , M̃, an

unknown value µi ∈ R, which is related to the solution u inside Ci. Different meanings can be assigned

to µi:

• µi can be read as an approximation of the value of the solution u at a “center” pi of the cell Ci,

µi ≈ u(pi) , pi = “center” of Ci . (4.2.1.3)
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• µi may be regarded as an approximation of the average of u over Ci,

µi ≈
1

|Ci|
∫

Ci

u(x)dx . (4.2.1.4)

y

§4.2.1.5 (From discrete flux laws to systems of equations) We have seen that the conservation law

(1.6.0.3) had to be linked to the flux law (1.6.0.5) in order to give rise to a 2nd-order scalar PDE see

(1.6.0.8)–(1.6.0.9). Correspondingly, “heat conservation in control volumes” has to be supplemented by a

rule that furnishes the heat flux between two adjacent control volumes.

Second ingredient of FVM local numerical fluxes

For two adjacent cells Ck, Ci with common edge Γik := Ci ∩ Ck.

Numerical flux Jik = Ψ(µi, µk) ≈
∫

Γik
j · nik dS

Ψ =̂ numerical flux function, j = (heat) flux, see (1.6.0.2), nik =̂ edge normal, see Fig. 264.

To obtain a system of equations from combining (1.6.0.3) with a numerical flux we follow the main idea of

FVM and consider the balance law on the finitely many control volumes Ci:

∫

∂Ci

j · ni dS =
∫

Ci

f dx ⇒ ∑
k∈Ui

Jik =
∫

Ci

f dx . (4.2.1.6)

✎ notation: Ui := {j : Ci and Cj share edge, Cj ∈ M̃}

Using Jik = Ψ(µi, µk) ,this leads to a system of M̃ := ♯M̃ equations for the unknowns µi:

∑
k∈Ui

Ψ(µi, µk) =
∫

Ci

f dx ∀i = 1, . . . , M̃ . (4.2.1.7)

Another approximation for the right hand side: Writing pi for the “center” of Ci we may use a 1-point

quadrature rule for the approximate evaluation of integral over Ci. The resulting system of equations is

∑
k∈Ui

Ψ(µi, µk) = |Ci| f (pi) ∀i = 1, . . . , M̃ . (4.2.1.8)

You may wonder what is is done in case a control volume abuts the boundary ∂Ω. This discussion

is postponed to the next section, Rem. 4.2.2.8, ??. Formulas for the numerical flux function Ψ will be

presented in § 4.2.3.2. y

4.2.2 Dual Meshes

Dual meshes are a commonly used technique for the construction of control volumes for FVM, based on a

conventional finite-element meshM of Ω, as introduced in Section 2.5.1. The discussion here is confined

to dual meshes for a triangular meshM in 2D, Ω a polygon. This triangular mesh is often called the primal

mesh.

§4.2.2.1 (Voronoi dual meshes) A popular choice of control volumes for FVMs is provided by the

Voronoi dual mesh associated with the primal triangular meshM.
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Write V(M) = {p1, . . . , pM} for the set of nodes of the primal meshM. For every node pi defined its

Voronoi cell as the polygon

Ci := {x ∈ Ω: ‖|x− pi‖ <
∥∥∥x− pj

∥∥∥ ∀j 6= i} . (4.2.2.2)

In words, Ci is the points of the plane closer to pi than any other node. The collection of these Voronoi

cells forms the Voronoi dual mesh M̃ := {Ci}M
i=1.

Fig. 265

Ci

pi

✁ Voronoi dual mesh:

•: nodes of primal mesh

—: edges of primal mesh

—: edges Voronoi dual mesh

�: Voronoi dual cell for pi

Obviously there is a ont-to-one relationship between the nodes of the primal meshM and the cells of the

Voronoi dual mesh M̃:

nodes ofM ←→ cells of M̃ .

Construction of a polygonal Voronoi dual cell associ-

ated with node pi:

• Its edges are the perpendicular bisectors of pri-

mal edges adjacent to pi
• Its vertices are the circumcenters of triangles

ofM, which have pi as a vertex.

This construction even has a straightforward gener-

alization to 3D.

Fig. 266

Ci

pi

Remark 4.2.2.3 (Circumcenter-based construction: Geometric obstruction) The construction of a

Voronoi dual mesh based on circumcenters of triangles encounters difficulties in case some triangles of

M have obtuse angles.
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Fig. 267

. .

.ω
⇐ Obtuse angle ω:

➢ circumcenter 6∈ triangle

➢ Ci ∩ Cj 6= ∅ 6⇒
nodes i, j connected by edge

➢ geometric construction breaks down

➢ connectivity of unknowns unclear

What we want is that the two Voronoi cells belonging to two nodes ofM that are connected by an edge

also hav a common edge. y

Theorem 4.2.2.4. Angle condition for Voronoi dual meshes

The following angle condition ensures that the Voronoi cells belonging to adjacent nodes of a trian-

gular mesh have a common edge (Ci ∩ Cj 6= ∅ ⇔ nodes i, j connected by edge ofM):

(i) sum of angles facing interior edge ≤ π,

(ii) angles facing boundary edges ≤ π/2.

Note: Condition (ii) important only for FV methods with unknowns attached to boundary vertices, that is,

in the case of non-Dirichlet boundary conditions, cf. Rem. 4.2.2.8 below.

Definition 4.2.2.5. Delaunay triangulation

Triangular meshes satisfying the angle conditions (i) and (ii) from Thm. 4.2.2.4 are called

Delaunay triangulations.

y

§4.2.2.6 (Barycentric dual meshes) Another popular choice for dual meshes associated with triangular

primal mehes are Barycentric dual meshes. To begin with remember that the barycenter of a triangle with

vertices a1, a2, a3 ∈ R2 is the point p := 1
3(a1 + a2 + a3).

Fig. 268

Construction of barycentric dual mesh:

• The nodes are the barycenters of the triangles

ofM
• The edges of dual cells are the lines connect-

ing barycenters and midpoints of edges ofM.

This construction can be carried out for any triangular

mesh: There are no geometric obstructions

y
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FVM with dual meshes: Summary

The cells Ci, i = 1, . . . , M̃ = ♯M̃ of the dual mesh M̃ will be used as control volumes in the finite-

volume method. This gives us a one-to-one correspondence of nodes ofM and control volumes.

Moreover, for both type of dual meshes, Voronoi dual meshes and barycentric dual meshes, the

primal node pi plays the role of the “center” of the associated (dual) control volume Ci.

Remark 4.2.2.8 (FVM: Incorporation of Dirichlet boundary conditions) Assume that the control vol-

umes are obtained either from a Voronoi dual mesh for a Delaunay triangulation or a barycentric dual

mesh. In this case, the dual cell belonging to primal nodes on ∂Ω will completely cover ∂Ω and no part of

the boundary of any dual cell associated with an interior primal node will be contained in ∂Ω.

• Consider only control volumes (dual cells) located in the interior of Ω in (4.2.1.7),

• Fix µk = g(pk) for control volumes (dual cells) that abut ∂Ω. This makes sense,

because the centers pk of those control volumes will be located on ∂Ω, where u is

known.

This leads to a number of equations = number of unknowns equal to the number of interior nodes of the

primal mesh. y

Remark 4.2.2.9 (Treatment of Neumann boundary conditions in finite volume schemes) Consider a

finite volume method based on dual meshes for 2nd-order elliptic Neumann problem:

−div(κ(x) grad u) = f in Ω , (κ(x) grad u) · n = h on ∂Ω . (1.9.0.2)

We make the same assumptions on the control volumes as in Rem. 4.2.2.8. Now u on ∂Ω not known.

• Keep balance equations for control volumes associated with (primal) vertices on the

boundary ∂Ω.

• Remember (1.7.0.3): h = −j · n, that is, the Neumann data h ∈ L2(∂Ω) already

provide the flux!

Thus, taking for granted a numerical flux function Ψ, we find the following modified instance of (4.2.1.7) for

a control volume Ci adjacent to ∂Ω:

∑
k∈Ui

Ψ(µi, µk)−
∫

∂Ci∩∂Ω

h dS = |Ci| f (pi) , i = 1, . . . , M̃ .

The number of equations = number of unknowns agrees with the total number of nodes ofM. y

4.2.3 Relationship of FEM and FVM

Hardly surprising, finite volume methods and finite element Galerkin discretizations are closely related.

This will be explored in this section for a model problem.

Setting:

✦ We consider the homogeneous Dirichlet problem for the Laplacian ∆

−∆u = f in Ω , u = 0 on ∂Ω . (4.2.3.1)

✦ Discretization by finite volume method based on a triangular meshM and on Voronoi dual cells→
Fig. 265.

We assume thatM is a Delaunay triangulation of Ω, that is, the angle condition of Thm. 4.2.2.4 is

to be fulfilled.
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As explained in Rem. 4.2.2.8 that number of active control volumes in (4.2.1.7) is the number of

interior nodes ofM.

§4.2.3.2 (Numerical flux by interpolation) What is still missing is the specification of the numerical flux

function Ψ : R2 7→ R for each dual edge

Idea: Obtain the numerical flux from Fourier’s law

j(x) = −κ(x) grad u(x) , x ∈ Ω , (1.6.0.5)

applied to a (sufficiently smooth) uh : Ω 7→ R reconstructed from dual

cell values µi.

This is a natural approach, since µi can be viewed as an approximation of u(pi), where the “center”

pi of the dual cell Ci coincides with an interior node xi ∈ V(M) of the triangular mesh M: Recover

uh ∈ S0
1,0(M) as an element of the finite element space,

uh = I1~µ :=
N

∑
i=1

µib
i
h , (4.2.3.3)

where N = ♯V(M) = number of dual cells, size of vector~µ,

bi
h =̂ nodal basis function (“tent function”, Section 2.4.3) of S0

1,0(M) belonging to the node inside Ci.

uh =̂ piecewise linear interpolant of vertex values µi

Note that uh is not smooth across inner edges of M. However, we do not care when computing j :=
κ(x) grad uh, because this flux is only needed at edges of the dual mesh, which lie inside triangles ofM
(with the exception of single points that are irrelevant for the flux integrals).

Fig. 269
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Illustration of point evaluation

vertex values µi on V(M)

Fig. 270

p.w. linear interpolant uh := I1~µ ∈ S0
1,0(M)
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Fig. 271

pi

pj

Γij

Choice of numerical flux:

Jik := −
∫

Γik

κ grad I1~µ · nik dS , (4.2.3.4)

where Γij is the interface separating the control vol-

umes Ci and Cj.

Note the orthogonality Γij ⊥ pi − pj.

y

From now we restrict ourselves to the case κ ≡ 1. Using the numerical flux (4.2.3.4) in (4.2.1.7) we obtain

the following formula for the entries of one row of finite volume discretization matrix from the equations

∑
k∈Ui

∫

Γik

grad I1~µ · nik dS = µi

∫

∂Ci

grad bi
h dS

︸ ︷︷ ︸
= matrix entry −(A)ii

+ ∑
j∈Ui

µj

(
∑

k∈Ui

∫

Γik

grad b
j
h · nik dS

)

︸ ︷︷ ︸
= matrix entry −(A)ij

= −
∫

Ci

f (x)dx .

⇒ (A)ij = −
∫

∂Ci

grad b
j
h · ni dS , i, j ∈ {1, . . . , N} . (4.2.3.5)

where ni =̂ exterior unit normal vector to ∂Ci.

Fig. 272

pi

pj

ΓK
i

K1

K2 Notations used in the formulas be-

low:

pi, pj =̂ vertices of primal mesh (“lo-

cation of unknowns µi, µj)

K1, K2 =̂ triangles adjacent to edge

connecting pi and pj

Part of the boundary of the control

volume Ci:

ΓK
i := ∂Ci ∩ K .

Now, consider i 6= j↔ off-diagonal entries of A:

First, we recall that the intersection of the support of the “tent function” b
j
h with ∂Ci is located inside

K1 ∪ K2, see Fig. 272.

(A)ij
(4.2.3.5)
= −

∫

∂Ci

grad b
j
h · ni dS = −

∫

Γ
K1
i

grad b
j
h · ni dS−

∫

Γ
K2
i

grad b
j
h · ni dS .

↔ assembly of (A)ij from contributions of the two cells K1 and K2, cf. Section 2.4.5, page 2.4.5.

Next observe that grad b
j
h is piecewise constant, which implies

div grad b
j
h = 0 in K1 , div grad b

j
h = 0 in K2 . (4.2.3.6)
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Fig. 273

.

. .
.

.

.

pi

pj

Γij

K1

K2

e1

e2

eij

Now apply Gauss’ theorem

Thm. 1.5.2.4 to the domains Ci ∩ K1

and Ci ∩ K2 (shaded in figure).

Also use again that grad b
j
h ≡ const

on K1 and K2.

Another important observation; con-

clusion from grad λi-formula from

Section 2.4.5:

grad b
j
h ⊥ e1 in K1 ,

grad b
j
h ⊥ e2 in K2 .

(4.2.3.6) ⇒
∫

∂(Kℓ∩Ci)

grad b
j
h · n dS = 0 , ℓ = 1, 2 ,

(A)ij =
1

2

∫

e1

gradb
j
h |K1
· ne1

dS +
1

2

∫

eij

gradb
j
h |K1
· n1

eij
dS

+
1

2

∫

eij

gradb
j
h |K2
· n2

eij
dS +

1

2

∫

e2

gradb
j
h |K1
· ne2 dS . (4.2.3.7)

On the other hand, an entry of finite element Galerkin matrix Ã based on linear Lagrangian finite element

space S0
1 (M) can be computed as, see Section 2.4.5:

(Ã)ij =
∫

K1

grad b
j
h · grad bi

h dx +
∫

K2

grad b
j
h · grad bi

h dx .

Conduct local integration by parts using Green’s first formula from Thm. 1.5.2.7 and taking into account

(4.2.3.6) and the linearity of the local shape functions

(Ã)ij =
∫

∂K1

(gradb
j
h |K1
· n1)b

i
h dS +

∫

∂K2

(gradb
j
h |K2
· n2)b

i
h dS

= 1
2 |e1| gradb

j
h |K1
· ne1

+ 1
2 |eij| gradb

j
h |K1
· n1

eij
+

1
2 |e2| gradb

j
h |K2
· ne2 +

1
2 |eij| gradb

j
h |K2
· n2

eij
.

This is the same value as for (A)ij from (4.2.3.7)! Similar considerations apply to the diagonal entries

(A)ii and (Ã)ii.

The finite volume discretization and the finite element Galerkin discretization spawn the same system

matrix for the model problem (4.2.3.1).

Remark 4.2.3.8 (More general finite-volume methods) It must be emphasized that the construction

principle of finite volume methods as elaborated in Section 4.2.1 is very versatile and can be applied
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to many PDE-based models beyond second-order elliptic boundary value problems, because local flux

balance is a key feature of many (physical) systems. Finite-volume methods preserve such structure very

well.

An example is non-linear elliptic boundary value problems of the form

−div(α(x) grad u + f(x, u)) = f in Ω ⊂ Rd , u = 0 on ∂Ω , (4.2.3.9)

where f : Ω×R → Rd is continuous. In fact, Chapter 11 will be devoted to the construction and analysis

of finite-volume methods for a more general class of non-linear problems, known as conservation laws. y

Review question(s) 4.2.3.10 (Finite-volume methods)

(Q4.2.3.10.A) The equations arising from applying a finite-volume method for the discretization of a

second-order elliptic boundary value problem

−div(κ(x) grad u) = f in Ω ⊂ R2 , u = g on ∂Ω .

can be stated as

∑
k∈Ui

Ψ(µi, µk) =
∫

Ci

f dx ∀i = 1, . . . , M̃ . (4.2.1.7)

What are the Cis and Ψ?

(Q4.2.3.10.B)

For the “tensor-product” triangular mesh shown in Fig. 274 sketch

• the corresponding Voronoi dual mesh,

• and the associated barycentric dual mesh.

Fig. 274

△

4.3 Spectral Galerkin Methods

Video tutorial for Section 4.3: Spectral Galerkin Methods: (18 minutes) Download link,

tablet notes

Spectral Galerkin methods employ Galerkin discretization as introduced in Section 2.2 using finite-

dimensional trial and test spaces of globally C∞-smooth functions, equipped with globally supported basis

functions.

Ideas: Spectral Galerkin approach

✦ Trial/test spaces of globally C∞-smooth functions

✦ Globally supported basis functions
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This policy contrasts with the use of only piecewise smooth and locally supported basis functions in the

finite-element method of Section 2.5. As a consequence, whereas the FEM applied to second-order elliptic

BVPs will lead to sparse Galerkin matrices as discussed in § 2.5.3.3, those arising from spectral Galerkin

methods will usually be densely populated .

§4.3.0.1 (Polynomial spectral Galerkin method) The most natural and widely used trial and test spaces

for spectral Galerkin methods are global polynomials spaces.

For second-order elliptic boundary-value problems on the computational domain Ω ⊂ Rd with varia-

tional formulation posed over the unconstrained Sobolev space H1(Ω) (“natural boundary conditions”,

§ 1.9.0.1), for instance Neumann problems (→ Ex. 1.8.0.10),

u ∈ H1(Ω):
∫

Ω
κ(x) grad u · grad v dx =

∫

Ω
f v dx +

∫

∂Ω
h v dS ∀v ∈ H1(Ω) ,

with data f ∈ L2(Ω), h ∈ L2(∂Ω), there are easy choices for spectral polynomial trial and test spaces of

degree p ∈ N:

V0,h = Pp(R
2)
∣∣∣
Ω

or V0,h = Qp(R
2)
∣∣∣
Ω

, both ⊂ H1(Ω) , (4.3.0.2)

where Pp(R2) and Qp(R2) are the spaces of multi-variate degree-p polynomials introduced in

Def. 2.5.2.2 and Def. 2.5.2.7, respectively.

What about essential boundary conditions (→ § 1.9.0.1) as, for instance, we face them for second-order

elliptic Dirichlet BVPs with variational problems posed on H1
0(Ω)?

➊ d = 1: In one spatial dimension a polynomial spectral Galerkin discretization for Dirichlet BVPs is easy

to define and implement. For two-point second-order Dirichlet boundary-value problems on the interval

]a, b[, a < b, with variational formulation

u ∈ H1
0(]a, b[):

b∫

a

du

dx
(x)

dv

dx
(x)dx =

b∫

a

f (x)v(x)dx ∀v ∈ H1
0(]a, b[) , (2.3.0.1)

the following choice of globally polynomial discrete trial and test spaces V0,h ⊂ H1
0(]a, b[) is straightfor-

ward:

V0,h = Pp(R)
∣∣
[a,b]
∩ C0

0([a, b]) =
{

v ∈ Pp(R) : v(a) = v(b) = 0
}
⊂ H1

0(]a, b[) . (4.3.0.3)

Here, the discretization parameter is the polynomial degree p ∈ N and dim V0,h = p− 1.

➋ d > 1: In higher dimensions d > 1 we encounter much more difficulties when trying to enforce Dirichlet

(essential) boundary conditions on spectral polynomial trial/test spaces: there is no meaningful way to

define polynomial subspaces of H1
0(Ω) for a general computational domains Ω ⊂ Rd.

An exception are tensor-product domains like Ω =]a1, b1[×]a2, b2[ for d = 2. In this case we can choose

a tensor-product polynomial space of polynomial degree p + 2, p ∈ N:

V0,h =
{

v(x1, x2) = (x1 − a1)(b1 − x1)q1(x1) · (x2 − a2)(b2 − x2)q2(x2),

q1, q2 ∈ Pp(R),
[ x1

x2

]
∈ Ω

}
,

(4.3.0.4)

which clearly satisfies V0,h ⊂ H1
0(Ω), because the product of the green factors vanishes on ∂Ω. For the

special case Ω =]0, 1[2 and p = 1 we have

V0,h =
{

v(x1, x2) = x1(1− x1)(α1 + β1x1)·
x2(1− x2)(α2 + β2x2), αi, βi ∈ R

}
.
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y

Remark 4.3.0.5 (Choice of bases for polynomial spectral Galerkin methods) Remember from Sec-

tion 2.2.2 that a practical Galerkin method entails choosing a concrete basis Bh of the finite-dimensional

Galerkin trial/test space V0,h. We discuss this for the two-point Dirichlet boundary-value problem (2.3.0.1)

on ]−1, 1[ and its polynomial spectral Galerkin discretization based on (4.3.0.3):

V0,h := {v(x) = (1− x2)q(x) : q ∈ Pp−2(R)} , p ≥ 2 . (4.3.0.6)

➊ A tempting simple choice for Bh is the monomial-type basis

Bh = {1− x2, x(1− x2), x2(1− x2), . . . , xp−2(1− x2)} . (4.3.0.7)

Fig. 275
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✁ Monomial basis polynomials

“Visual instability”: for large degree the basis func-

tions look very much alike↔ “almost linearly depen-

dent”.

Monomial basis is ill-conditioned, see

Exp. 4.3.0.13 below.

Note: in the extreme case of linear dependence of

“basis” functions, we certainly lose uniqueness of so-

lutions of the linear system of equations arising from

Galerkin discretization.

➋ Alternative: Integrated Legendre polynomials

Bh :=

{
x 7→ Mn(x) :=

∫ x

−1
Pn(τ)dτ, n = 1, . . . , p− 1

}
, (4.3.0.8)

where Pn is the n-th Legendre polynomial according to the following definition.

Definition 4.3.0.9. Legendre polynomials cf. [NCSE]

The n-th Legendre polynomial Pn, n ∈ N0, is defined by the Rodriguez formula

Pn(x) :=
1

n!2n

dn

dxn
[(x2 − 1)n] . (4.3.0.10)

Since differentiation decreases the degree of a polynomial by one, from (4.3.0.10) we conclude that

Pn ∈ Pn.

The crucial property of the Legendre polynomials is the orthogonality relation,

∫ 1

−1
Pn(x)Pm(x)dx =

{
2

2n+1 , if m = n ,

0 else ,
(4.3.0.11)

that can be shown by integration by parts. For further information about Legendre polynomials refer to

[NCSE] and [NCSE].

A first consequence of (4.3.0.11) (, choose m = 0, ) is that the integrated Legendre polynomials satisfy

homogeneous Dirichlet boundary conditions for ]−1, 1[: Mn(−1) = Mn(1) = 0. We also infer that they
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are linearly independent. In combination, these properties render Bh as in (4.3.0.8) as basis of V0,h from

(4.3.0.6).

Fig. 276
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n=1
n=2
n=3
n=4
n=5 ✁ integrated Legendre polynomials M1, . . . , M5

The integrated Legendre polynomials enjoy “visual

stability”: the basis functions are very much distinct,

that is, “not nearly linearly dependent”.

We expect {Mn}p−1
n=1 to provide a well-

conditioned basis of V0,h.

For d > 1 and on tensor-product computational domains we can simply use products of integrated Leg-

endre polynomials as basis functions. For instance, in the case Ω =]a1, b1[×]a2, b2[, to obtain a basis

of

V0,h = {v(x1, x2) = (x1 − a1)(b1 − x1)q1(x1) · (x2 − a2)(b2 − x2)q2(x2), q1, q2 ∈ Pp(R)} ,
(4.3.0.4)

for p ∈ N0 we can choose

Bh =

{
x 7→ Mn

(
2

x1 − a1

b1 − a1
− 1

)
Mm

(
2

x2 − a2

b2 − a2
− 1

)
, 1 ≤ n, m ≤ p + 1

}
. (4.3.0.12)

Also note the affine pullback of the integrated Legendre polynomials to a general interval. y

EXPERIMENT 4.3.0.13 (Conditioning of polynomial spectral Galerkin matrices) We empirically in-

vestigate the Euclidean condition number of spectral polynomial Galerkin matrices spawned by the bilinear

form

a(u, v) =
∫ 1

−1

du
dx (x) dv

dx (x) dx , u, v ∈ H1
0(]−1, 1[) .

Definition [NCSE]. Condition (number) of a matrix

Condition (number) of a matrix A ∈ Rn,n: cond(A) :=
∥∥∥A−1

∥∥∥‖A‖

We employ the following bases of the Galerkin trial/test space V0,h = Pp ∩ H1
0(]−1, 1[): Either the mono-

mial basis (4.3.0.7) or the integrated Legendre polynomials (4.3.0.8).
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Condition number (w.r.t. Euclidean matrix norm) of

the Galerkin matrices ✄

We observe

• an exponential increase in the polynomial de-

gree p of the condition numbers for the mono-

mial basis,

• whereas only a moderate increase is seen for

the basis comprising integrated Legendre poly-

nomials.
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Finally, recall from [NCSE] that for a linear system of equations A~µ = ~ϕ a huge Euclidean condition

number of the coefficient matrix A means that

• small perturbations of the matrix A and the right-hand-side vector ~ϕ can massively be amplified in

the solution,

• and that round-off errors can also have a big impact on~µ.

Using a monomial-type basis of Pp for large p is perilous!

y

§4.3.0.14 (Convergence of polynomial spectral Galerkin solutions) The abstract Galerkin error es-

timates of Section 3.1 for variational problems with s.p.d. bilinear form, in particular Cea’s lemma of

Thm. 3.1.3.7 providing the “optimality of Galerkin solutions”, also apply to spectral Galerkin discretizations

and let us bound the energy norms of Galerkin discretization errors by those of the best approximation

errors.

The maximum norms of the errors incurred by the polynomial approximation of a function f : [a, b]→ R

were studied in detail in [NCSE] and are given in [NCSE] for functions of finite smoothness

( f (r) ∈ L∞(]a, b[), Case FS), and in [NCSE] for functions that possess an analytic extension to an el-

lipse ⊂ C enclosing [a, b] (Case A, [NCSE]). The asymptotic results can be summarized as follows

inf
q∈Pp

‖ f − q‖L∞(]a,b[) =

{
O(p−r) in Case FS ,

O(ρ−p) for some ρ > 1 in Case A .
(4.3.0.15)

Thus, in analogy to Def. 3.2.2.1, in Case FS we have found asymptotic algebraic convergence in the

polynomial degree, while in Case A the convergence is exponential.

Qualitatively, these results remain true for Sobolev norms, in particular the H1(]a, b[)-norm, and spaces

of uni-variate polynomials like (4.3.0.3) vanishing at the endpoints of an interval. The estimates can also

be lifted to the tensor product setting and then apply to trial/test spaces like those specified in (4.3.0.4).

A qualitative summary of the expected asymptotic convergence of polynomial spectral Galerkin approxi-

mation schemes for linear scalar second-order elliptic BVPs in one spatial dimension (d = 1) or on tensor-

product domains (d > 1) could read as follows.

Asymptotic convergence of polynomial spectral Galerkin schemes

With u ∈ H1(Ω) the exact solution of a linear scalar second-order elliptic BVP and up denoting the

polynomial spectral Galerkin solution produced by a using global polynomials of degree p ∈ N, we

can expect for p→ ∞
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• algebraic convergence O(p1−m), if u ∈ Hm(Ω),
• exponential convergence O(ρ−p) for some ρ > 1, if u has an analytic extension (in each

variable) to a Cd neighborhood of Ω.

y

EXPERIMENT 4.3.0.17 (Convergence of polynomial spectral Galerkin method in 1D) We consider

the linear 2-point Dirichlet boundary value problem − d2u
dx2 = g(x) on ]0, 1[, u(0) = u(1) = 0, with exact

solution u(x) = sin(2πx2). We employ Galerkin discretization with degree p polynomial trial and test

space V0,h according to (4.3.0.3).

We monitor the L∞(]0, 1[)-norm and L2(]0, 1[) of the

discretization error. Both norms are approximated by

“overkill” sampling/Gauss quadrature with 104 points.

We observe clear asymptotic exponential conver-

gence of both error norm for N := p− 1→ ∞, as

seen by almost affine linear error curves in a linear-

logarithmic plot, cf. § 3.2.2.5.
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In this example the exact solution u(x) = sin(2πx2) has an analytic extension to whole complex plane

C, it is an entire function. Thus, in light of the discussion of § 4.3.0.14, exponential convergence of the

polynomial spectral Galerkin solution is no surprise, y

§4.3.0.18 (Analytic solutions of elliptic BVPs) For d = 1, that is, two-point boundary value problems for

the differential equation

− d

dx

(
σ(x)

du

dx
(x)

)
= f (x) in ]a, b[ ,

endowed with any kind of boundary conditions (Dirichlet, Neumann, impedance, Section 1.7) the solution

u will possess an analytic extension to a C-neighborhood of [a, b], if this property is satisfied for the

uniformly positive function σ : [a, b]→ R and f : [a, b]→ R.

For elliptic boundary value problems in higher dimensions d > 1, analyticity of the data (right-hand-side

source function, boundary data, coefficients) is not enough to ensure analyticity of the solution: It is also

required that ∂Ω is an analytic curve or surface. For instance, even if f ∈ L2(Ω), Ω ⊂ Rd, has an analytic

extension beyond Ω, the solution of

−∆u = f in Ω , u = 0 on ∂Ω ,

may not be analytic in a neighborhood of Ω, if ∂Ω is not C∞-smooth. In particular, on polygonal com-

putational domains, we must not count on analyticity of solutions of of BVPs for the Poisson equation

−∆u = f . y
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§4.3.0.19 (Numerical quadrature for polynomial spectral Galerkin methods) When we apply a poly-

nomial spectral Galerkin method for the solution of the variational two-point boundary value problem

u ∈ H1
0(]a, b[):

b∫

a

σ(x)
du

dx
(x)

dv

dx
(x)dx =

b∫

a

f (x)v(x)dx ∀v ∈ H1
0(Ω)]a, b[ ,

we have to deal with the fact that the functions σ, f ∈ C0([a, b]) may be given only in procedural form,

accessible only through point evaluations, cf. Rem. 2.1.2.5. As discussed in § 2.3.3.10 this entails the

use of quadrature formulas for the approximate evaluation of the integrals
∫ b

a . . . in order to compute the

entries of the Galerkin matrix and the right-hand side vector.

This amounts to committing a variational crime. Recalling the discussion of Section 3.5 this is acceptable

as long as it does not interfere with the overall asymptotic convergence for polynomial degree p→ ∞:

Inevitably and quite naturally, the order (→ [NCSE]) of the quadrature formula has to be linked to p. We

already saw this for the FEM in Section 3.5.1 and a deeper analysis reveals that similar rules of thumb

also apply for polynomial spectral Galerkin methods:

The degree-p polynomial spectral Galerkin discretization of a general linear scalar elliptic two-point

BVP requires numerical quadrature of order 2p− 1.

From [NCSE] remember that an order of 2p− 1 can be achieved by using a Gauss-Legendre quadrature

formula with p− 1 points/nodes. This is the standard choice for polynomial spectral Galerkin methods in

one dimension. In higher dimensions d > 1 on tensor-product domains tensor-product Gauss-Legendre

quadrature rules as explained in Ex. 2.7.5.38 can be used. y

Remark 4.3.0.20 (The quadrature challenge on general domains) In § 4.3.0.1 variational problems

posed on the unconstrained space H1(Ω), that is, without essential boundary conditions, were said to

be amenable to spectral Galerkin discretization for general Ω ⊂ Rd even for d > 1, because the full

polynomial space Qp(Rd) could always be used as trial/test space.

This is an illusion, because implementation requires high-order quadrature rules on Ω and those are not

available apart from tensor-product domain and a few other special shapes like triangles or tetrahedra.

Thus, for d > 1 the spectral Galerkin method is confined to simple domains also for pure Neumann prob-

lems. y

Remark 4.3.0.21 (Fourier spectral Galerkin methods) Scalar second-order linear elliptic boundary value

problems for with periodic boundary conditions occur rather frequently in mathematical models. In one

dimension they read

− d

dx

(
σ(x)

du

dx
(x)

)
= f (x) in ]a, b[ ,

u(a) = u(b) ,

σ(a)
du

dx
(a) = σ(b)

du

dx
(b) ,

(4.3.0.22)

with uniformly positive σC0([a, b]) and f ∈ L2(]a, b[). As in Section 1.8 integration by parts in one dimen-

sion leads to the variational problem

u ∈ H1
per(]a, b[):

b∫

a

σ(x)
du

dx
(x)

dv

dx
(x)dx =

b∫

a

f (x)v(x)dx ∀v ∈ H1
per(]a, b[) , (4.3.0.23)

where we rely on the space of periodic H1-functions on ]a, b[:

H1
per(]a, b[) :=

{
v|]a,b[ : v ∈ H1(R), v(x + (b− a)) = v(x) ∀x ∈ R

}
. (4.3.0.24)

4. Beyond FEM: Alternative Discretizations, 4.3. Spectral Galerkin Methods 404



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

A very natural finite-dimensional subspace of H1
per(]a, b[) is the 2n + 1-dimensional space of b− a-

periodic trigonometric polynomials

V0,h := Span
{

x 7→ cos( 2π j
b−a x), x 7→ sin( 2π j

b−a x)
}n

j=0
, n ∈ N0 , (4.3.0.25)

for [a, b] = [0, 1] introduced in [NCSE], [NCSE]. The definition (4.3.0.25) already indicates a viable

choice of basis functions. For d > 1 and tensor-product domains a tensor-product construction based

on (4.3.0.25) can be employed, using a basis analogous to (4.3.0.12).

The general statements about the asymptotic convergence of polynomial spectral Galerkin methods made

in § 4.3.0.14 carry over to Fourier spectral Galerkin methods, with the parameter n in (4.3.0.25) playing

the role of the polynomial degree.

Parallel to the discussion in § 4.3.0.19 it is clear that usually the implementation of Fourier spectral Galerkin

methods cannot avoid using numerical quadrature. This time one prefers the n− 1-point equidistant

trapezoidal rule

∫ b

a
f (t)dt ≈ h

n−1

∑
k=0

f (kh) , h :=
b− a

n
, n ∈ N , [NCSE]

which in [NCSE] was identified as the “magic” numerical quadrature rule for periodic integrands, the coun-

terpart of Gauss-Legendre quadrature in that special case. y

§4.3.0.26 (Assessment of spectral Galerkin methods) Let us summarize the advantages and draw-

backs of the class of spectral Galerkin methods for elliptic boundary value problems:

Possibility to achieve exponential convergence, if the exact solution possesses an analytic

extension

✦ Mere algebraic convergence in case of limited smoothness of the solution

✦ Implementations confined to simple domains

✦ Densely populated Galerkin matrices
y

Review question(s) 4.3.0.27 (Spectral Galerkin Methods)

(Q4.3.0.27.A) Let Ω ⊂ R2 a bounded domain with a polygonal boundary. Explain, why, in general , it is

not possible to define a polynomial subspace of H1
0(Ω) as

V0,h := Pp(R
2)
∣∣∣
Ω
∩ H1

0(Ω) .

(Q4.3.0.27.B) What are the dimensions of the following spaces

V1 := Pp(R) ∩ H1
0(]0, 1[) ,

V2 :=
{

v ∈ Pp(R) : v(ℓ)(0) = v(ℓ)(1), ℓ ∈ {0, . . . , p}
}

?

(Q4.3.0.27.C) Consider the bilinear form

a(u, v) =
∫ 1

0

du
dx (x) dv

dx (x) dx , u, v ∈ H1(]−1, 1[) .
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In the framework of a polynomial spectral Galerkin discretization we use the basis

Bh :=

{
x 7→ Mn(x) :=

∫ x

−1
Pn(τ)dτ, n = 1, . . . , p− 1

}
, p ∈ N , (4.3.0.8)

of integrated Legendre polynomials. Compute the resulting Galerkin matrix.

Hint. You can use the orthogonality relation

∫ 1

−1
Pn(x)Pm(x)dx =

{
2

2n+1 , if m = n ,

0 else .
(4.3.0.11)

(Q4.3.0.27.D) We consider the Fourier spectral Galerkin discretization of the two-point BVP with periodic

boundary conditions

u ∈ H1
per(]a, b[):

b∫

a

σ(x)
du

dx
(x)

dv

dx
(x)dx =

b∫

a

f (x)v(x)dx ∀v ∈ H1
per(]a, b[) , (4.3.0.23)

using the trial and test space of trigonometric polynomials

V0,h := Span
{

x 7→ cos( 2π j
b−a x), x 7→ sin( 2π j

b−a x)
}n

j=0
, n ∈ N0 . (4.3.0.25)

Which formula for the entries of the right-hand-side vector (load vector) has be im-

plemented, if f ∈ C0([a, b]) is given only on procedural for as an object of type

std::function<double(double)>?

(Q4.3.0.27.E) For the Dirichlet problem

−∆u = f in Ω :=]0, 1[2 , u = 0 on ∂Ω

the right-hand side function f is chosen such that we obtain the exact solution

u(x1, x2) = sin(πx1) sin(πx2).

What kind of asymptotic convergence do you expect from a degree-p spectral polynomial discretization

as p→ ∞? Justify your answer.

(Q4.3.0.27.F) Let N denote the number of unknowns in a finite-element method (FEM) and a spectral

Galerkin method (SGM) for a second-order elliptic BVP.

• The FEM

– enjoys asymptotic algebraic convergence of the energy norm of the discretization error ac-

cording to O(N−r) for r ∈ N and N → ∞,

– and involves a computational effort of O(N) for computing the finite-element solution.

• The SGM

– displays exponential convergence O(ρ−N) of the energy norm of the discretization error for

some ρ > 1 and N → ∞,

– and incurs O(N3) cost for computing uh.

Compare the efficiency of both methods for large N.

△
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4.4 Collocation Methods

Video tutorial for Section 4.4: Collocation Methods: (16 minutes) Download link, tablet notes

§4.4.0.1 (Starting point: classical solution concept) At the outset of the derivation of the class of

collocation-type discretization methods for boundary value problems for second-order scalar boundary

value problem is the classical concept of solutions already mentioned in Rem. 1.5.3.10. For the Dirichlet

boundary value problem

−div(α(x) grad u) = f in Ω , u = g on ∂Ω (4.4.0.2)

this means that

• one assumes f ∈ C0(Ω), g ∈ C0(∂Ω), and α ∈ C1(Ω)3,3,

• and seeks a solution u ∈ C2(Ω) satisfying the PDE and the boundary conditions in pointwise sense.

y

§4.4.0.3 (Collocation principle) We can recast (4.4.0.2) in abstract form,

Lu = f in C0(Ω) , Bu = g in C0(∂Ω) , (4.4.0.4)

where L : C2(Ω)→ C0(Ω) is a linear differential operator, and B : C2(Ω)→ C0(∂Ω) a linear boundary

(differential) operator, e.g., the restriction to ∂Ω as in (4.4.0.2).

Idea of collocation discretization

➊ Seek an approximate solution uh of (4.4.0.4) in a finite-dimensional

trial space

V0,h ⊂ C2(Ω) , N := dim V0,h < ∞ . (4.4.0.6)

➋ Pick finitely many collocation nodes/points

x1, . . . , xn ∈ Ω , y1, . . . , ym ∈ ∂Ω , m, n ∈ N .

Impose collocation conditions:

uh ∈ V0,h:
(Luh)(xj) = f (xj) , j = 1, . . . , n ,

(Buh)(yℓ) = g(yℓ) , j = 1, . . . , m .
(4.4.0.7)

Sometimes boundary conditions can already be built into the trial space V0,h, which can also be an affine

space as for the “offset function trick” § 1.4.1.9. In this case no collocation points yℓ ∈ ∂Ω and collocation

conditions involving the boudary operator B are needed. y

§4.4.0.8 (Choice of collocation points) The collocation nodes have to fit the trial space in the following

sense.
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The trial space V0,h and the collocation nodes xj, j = 1, . . . , n, and yℓ, ℓ = 1, . . . , m have to satisfy:

For all f1, . . . , fn ∈ R, g1, . . . , gm ∈ R the interpolation problem

uh ∈ V0,h: u(xj) = f j, j = 1 . . . , n u(yℓ) = gℓ, ℓ = 1, . . . , m , (4.4.0.9)

has a unique solution.

By elementary linear algebra a necessary condition for the above requirement is

N := dim V0,h = m + n . (4.4.0.10)

We remark, that another criterion for a good choice of collocation nodes is that the induced interpolation

operator Rm+n → V0,h defined by (4.4.0.9) has a small ∞-norm, also known as Lebesgue constant, see

[NCSE]. This is motivated by the convergence theory of collocation methods [HAC89a], which is beyond

the scope of this section. y

§4.4.0.11 (From collocation conditions to systems of equations) As explained for the Galerkin method

in Section 2.2.2, also collocation methods involve a crucial second step after the collocation conditions

(4.4.0.7) have been established.

Collocation method: second step

Choose an ordered basis Bh = {b1
h, . . . , bN

h } of V0,h and plug the basis representation

uh = µ1b1
h + · · ·+ µNbN

h , µ1, . . . , µN ∈ R , (4.4.0.13)

into the collocation conditions (4.4.0.7), yielding the collocation equations

µ1(Lb1
h)(xj) + · · ·+ µN(LbN

h )(xj) = f (xj) , j = 1, . . . , n , (4.4.0.14a)

µ1(Bb1
h)(yℓ) + · · ·+ µN(BbN

h )(yℓ) = g(yℓ) , ℓ = 1, . . . , m . (4.4.0.14b)

The transition from (4.4.0.7) and (4.4.0.13) to (4.4.0.14) exploits the linearity of the operators L and B.

As in the case of the Galerkin method, if the trial space is an affine space contained in a larger vector

space V, one usually supplements (4.4.0.13) with an offset function u0 ∈ V, cf. § 1.2.3.12:

uh = u0 + µ1b1
h + · · ·+ µNbN

h , µ1, . . . , µN ∈ R . (4.4.0.15)

It is clear that the condition N = m + n from (4.4.0.10) ensures matching numbers of unknowns µk and

equations. If (4.4.0.10) is satisfied, then (4.4.0.14) is a square linear system of equations. y

4.4.1 Spectral Collocation Method

We have seen that the trial spaces for a collocation method for second-order elliptic BVPs have to fulfill

the rather stringent smoothness requirement V0,h ⊂ C2(Ω). Those are naturally satisfied for the globally

smooth trial/test spaces presented in Section 4.3 for the spectral Galerkin method, see, in particular,

§ 4.3.0.1 and Rem. 4.3.0.21. The considerations of Rem. 4.3.0.5 still apply.

EXAMPLE 4.4.1.1 (Spectral collocation on a square) We discuss the spectral collocation method for

the Dirichlet boundary value problem for the Poisson equation on a square

−∆u = f in Ω :=]−1, 1[2 , u = g on ∂Ω . (4.4.1.2)
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We require that f ∈ C0(Ω), g ∈ C0(∂Ω) are available in procedural form.

As trial space we choose the space of tensor product polynomials V0,h = Qp of degree p ∈ N, see

Def. 2.5.2.7, and have N := dim V0,h = (p + 1)2 by Lemma 2.5.2.8. A basis for V0,h is provided by the

(p + 1)2 tensor-product Legendre polynomials

Bh := {x = [x1, x2] 7→ Pr(x1)Ps(x2) : r, s ∈ {0, . . . , p}} , (4.4.1.3)

with the Legendre polynomials Pn as defined in Def. 4.3.0.9. The rationale behind (4.4.1.3) is the good

conditioning of this basis, remember Rem. 4.3.0.5. For convenience we label the basis expansion coeffi-

cients also with two indices and rewrite (4.4.0.13) as

uh(x) =
p

∑
r,s=0

µr,sPr(x1)Ps(x2) , x :=
[ x1

x2

]
∈ Ω . (4.4.1.4)

As collocation nodes we start from the stretched Chebychev nodes

ξ j := cos
(

π
p j
)
∈ [−1, 1] , j = 0, . . . , p . (4.4.1.5)

They arise from the regular Chebychev nodes by a slight dilation and inherit their small Lebesgue con-

stants for the induced polynomial Lagrangian interpolation scheme as discussed in [NCSE]. Note that

ξ0 = 1 and ξp = −1.

A tensor-product construction yields the

(p + 1)2 = N collocation nodes

{
xj

}n

j=1
∪ {yℓ}m

ℓ=1

=
{
[ξr, ξs]

⊤ ∈ Ω : r, s ∈ {0, . . . , p}
}

.
(4.4.1.6)

We have lumped together both types of nodes: we

call those in the interior of Ω the xjs, those on ∂Ω

the yℓs. Consequently, we have n = (p− 1)2 and

m = 4p.

Fig. 279
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With these specifications and owing to

∆{x 7→ Pr(x1)Ps(x2)} = P′′r (x1)Ps(x2) + Pr(x1)P′′s (x2) ,

the final (square) linear system of equations (4.4.0.14) becomes

−
p

∑
r,s=0

µr,s

(
P′′r (ξk)Ps(ξ j) + Pr(ξk)P′′s (ξ j)

)
= f

([
ξk
ξ j

])
, k, j ∈ {1, . . . , p− 1} ,

p

∑
r,s=0

µr,sPr(yℓ,1)Ps(yℓ,2) = g(yℓ), yℓ =
[

yℓ,1
yℓ,2

]
, ℓ = 1, . . . , m .

(4.4.1.7)

This is (p + 1)2 equations for the (p + 1)2 unknowns µr,s, r, s ∈ {0, . . . , p}. y

EXPERIMENT 4.4.1.8 (Convergence of spectral collocation in 1D) As in Exp. 4.3.0.17 we focus on the

linear 2-point boundary value problem − d2u
dx2 = f (x), u(0) = u(1) = 0 on Ω =]0, 1[, and impose the

exact solution u(x) = sin(2πx2) by a suitable function f .
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We employ the one-dimensional counterpart of the spectral collocation method presented in Ex. 4.4.1.1.

Again we track the L∞(]0, 1[)-norm and L2(]0, 1[) of the discretization error u− uh. We approximate

those norms as in Exp. 4.3.0.17. Besides, we also recorded a “discrete energy norm” of the error:

energy norm(error)2 :=
p

∑
j=1

hj

∣∣∣∣∣
uh(ξ j)− uh(ξ j−1)

ξ j − ξ j−1
− du

dx
(1

2(ξ j + ξ j−1))

∣∣∣∣∣

2

.

Fig. 280
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We conjecture asymptotic exponential convergence

of all error norms as p→ ∞.

✁ This is suggested by the approximate alignment of

the points in a linear-logarithmic plot of the error

versus N := p + 1.

Also in this case analyticity of the exact solution be-

yond [0, 1] seems to lead to exponential convergence

of the spectral collocation solution.

y

4.4.2 Spline Collocation Methods

First we consider d = 1, two-point linear scalar elliptic BVPs on an interval ]a, b[. We have seen that even

in this case the trial space V0,h for a collocation method has to satisfy V0,h ⊂ C2([a, b]).

The piecewise polynomial trial space S0
p(M) used in the finite-element method fall way short of offering

this smoothness. However, in one dimension we already know piecewise polynomial functions that are

twice continuously differentiable. Recall [NCSE], cf. [NCSE]:

Definition 4.4.2.1. Cubic spline

A function s : [a, b] 7→ R is a cubic spline function w.r.t. the ordered knot set T := {a = x0 <
x1 < x2 < . . . < xM−1 < xM = b}, if

(i) s ∈ C2([a, b]) (twice continuously differentiable),

(ii) s|]xj−1,xj[
∈ P3(R) (a piecewise cubic polynomial)

✎ notation: S3,T =̂ vector space of cubic splines on knot set T
We known from [NCSE] that

dimS3,T = ♯T + 2 = M + 3 ,

and in [NCSE] we learned that the knots xj are valid interpolation nodes provided that two extra con-

ditions are imposed on the spline s ∈ S3,T , like the conditions for natural cubic spline interpolation

s′′(a) = s′′(b) = 0, see [NCSE]. This suggests the following trial space for cubic spline collocation

based on a given knot set T := {a = x0 < x1 < x2 < . . . < xM−1 < xM = b}:

V0,h :=
{

s ∈ S3,T : s′′(a) = s′′(b) = 0
}

. (4.4.2.2)

We have dim V0,h = M + 1, which agrees with ♯T . Since the knots in T also serve as collocation points,

the dimension of the trial space matches the number of collocation points.
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In higher dimensions d > 1, if Ω is a tensor-product domain, the tensor product construction elaborated

above for global polynomial spaces can straightforwardly be adapted to spline spaces. Products of knot

sets will supply suitable collocation points in this case.

EXPERIMENT 4.4.2.3 () We revisit the two-point BVP from Exp. 4.3.0.17, Blue− d2u
dx2 = g(x) on ]0, 1[,

u(0) = u(1) = 0, f such that u(x) = sin(2πx2). We employ spline collocation on equidistant knot sets

using the trial space as in (4.4.2.2).

As in Exp. 4.3.0.17 we monitor approxi-

mate error norms ‖u− uh‖L∞(Ω)[]0, 1[] and

‖u− uh‖L2(Ω)[]0, 1[] as functions of the number M
of knots = collocation points. ✄

We observe a clear asymptotic algebraic conver-

gence O(M−2) for N → ∞, because the error

points lie on neat lines with slope 2 in a doubly loga-

rithmic plot, remember § 3.2.2.5.

Fig. 281
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Of course, since spline collocation relies on piecewise polynomials of fixed degree, we cannot expect

exponential convergence. However, in light of [NCSE], a convergence rate of 2 is a bit disappointing and

might be caused by the “nonphysical” boundary conditions u′′h (0) = u′′h (1) = 0 enforced in (4.4.2.2). y

§4.4.2.4 (Assessment: Collocation methods) Let us try to summarize the main advantages and draw-

backs of collocation methods also in comparison with the FEM:

✦ Numerical quadrature not required

✦ Implementations confined to simple domains

✦ Danger of “stupid choice” of collocation nodes

✦ Weaker theoretical guarantees
y

Review question(s) 4.4.2.5 (Collocation Methods)

(Q4.4.2.5.A) The collocation approach to the abstract boundary value problem

Lu = f in C0(Ω) , Bu = g in C0(∂Ω) , (4.4.0.4)

converts it into the system of equations

µ1(Lb1
h)(xj) + · · ·+ µN(LbN

h )(xj) = f (xj) , j = 1, . . . , m ,

µ1(Bb1
h)(yℓ) + · · ·+ µN(BbN

h )(yℓ) = g(yℓ) , ℓ = 1, . . . , m .

• What are the bk
h, xj, yℓ, and µks?

• Restate the above system of equations in matrix-vector form.
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(Q4.4.2.5.B) Sketch a polynomial spectral collocation method for the Neumann boundary value problem

on a square domain

−∆u = f in Ω :=]−1, 1[2 , grad u · n = 0 on ∂Ω .

△

Learning outcomes

The chapter aims to impart

• the gist of the “finite difference approach”: starting from strong form of a partial differential equation

replace derivatives by difference quotients anchored on a regular grid (finite lattice).

• awareness that finite difference schemes can usually be recovered as finite element discretization

(plus quadrature) on special (regular) meshes.

• the principles of the finite volume discretization of 2nd-order elliptic boundary value problems.

• the idea of using dual meshes as a tool to construct control volumes for a finite volume discretization.

• knowledge about spectral Galerkin discretizations based on globally smooth trial and test spaces

• awareness of the strengths and weaknesses and weaknesses of spectral Galerkin methods.

• the idea underlying collocation methods.
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Chapter 5

Non-Linear Elliptic Boundary Value Problems

In this chapter we go beyond the linear boundary value problems exclusively discussed so far in the

previous chapters. To begin with, the chapter revisits the problems of finding the equilibrium configuration

for a thin elastic membrane. It will turn out that a refined mathematical model will be inherently non-linear

and that model will serve as a starting point for the discussion of non-linear variational calculus. This

will yield non-linear variational problems, to which (finite-element) Galerkin discretization can be applied.

Finally, we will take a brief look at iterative schemes for the solution of the resulting non-linear systems of

equations.
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5.1 Non-linear Elastic Membrane Models

In this section we return to the elastic membrane stationary mechanical equilibrium problem already intro-

duced in Section 1.2.1.
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5.1.1 Thin Elastic String Model

5.1.1.1 Recalled: Configuration Space

As before in Section 1.2.1 we consider a thin elastic

string

• with its ends pinned to fixed positions,

• and a vertical time-independent force due to

gravity acting on it.

As in Section 1.2.1.1 and Section 1.2.1.2 we aim to

derive a mathematical model that yields the equilib-

rium shape of the elastic string.

Looking at Fig. 282, it is intuitively clear that in equi-

librium each vertical line intersects the elastic string

only once, cf. Ass. 1.2.1.4 Fig. 282

Gravity force

Elastic string

Fig. 283

force

x1

a b

[ a
ua ]

[
b

ub

]

u(x1)

x2 This had motivated us in § 1.2.1.3 to opt for a function

graph description of the shape of the string: Given a

real-valued continuous displacement function

u : [a, b]→ R , [u(x)] = 1m ,

defined on the finite interval [a, b], a < b, the point

locus of the string is

{[ x1
x2

]
∈ R2: x2 = u(x1), a ≤ x1 ≤ b

}
. (5.1.1.1)

All this assumes that we have chosen a two-dimensional Cartesian coordinate system, whose x2-axis is

parallel to the direction of gravity forces as displayed in Fig. 283.

Given the vertical (in x2-direction) displacements ua, ub ∈ R of the endpoints of the elastic string, the

pinning boundary conditions are enforced by setting u(a) := ua, u(b) := ub, cf. (1.2.1.5). This is sum-

marized by the main result of § 1.2.1.3 that we repeat here.

Basic configuration space for elastic string model

The configuration space for the elastic string model under vertical loading is the infinite-dimensional

affine function space

V̂S :=
{

u ∈ C0([a, b]), u(a) = ua, u(b) = ub

}
. (1.2.1.7)

5.1.1.2 Mass-Spring Model

As above, we will always take for granted a 2D Cartesian coordinate system in the “string plane” and

aligned with the direction of gravity as shown in Fig. 283. Based on it, we describe the string’s shape

through a function u : [a, b]→ R as in (5.1.1.1). Our goal is to derive formulas for the potential energy

of an elastic string under gravity loading based on a limiting process involving a family of “physics-based”

discrete models, refer to Def. 2.1.1.1 for the concept of a “discrete model”.
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Reduction to finite-dimensional configuration space

The idea is to approximate an elastic string as a system of finitely many point masses connected by

springs (mass-spring model).

Fig. 284

Rubber band

∞-dimensional: elastic string

=⇒

Fig. 285

m1

m2

m3 m4
m5

m6

m7

m8

n point masses connected with n + 1 springs

For the remainder of this section n ∈ N will always denote the number of point masses.

Fig. 286

u1

u2

m1

m2

m3 m4
m5

m6

m7

m8

a b

Assuming the pinning point positions

[
a

ua

]
and

[
b

ub

]
, a, b, ua, ub ∈ R ,

to be given, in our coordinate system the con-

figuration of the generic mass-spring model can

be described by the n position vectors ui ∈ R2,

i = 1, . . . , n, of the point masses. This model in-

volves 2n degrees of freedom.

§5.1.1.4 (“Equidistant” mass-spring model)

A more special mass-spring model is obtained

by imposing equidistant horizontal positions of the

masses, that is, the position vector of the i-th mass,

i = 1, . . . , n, is

[
x
(n)
i

µi

]
, x

(n)
i := a + hi , h :=

b− a

n + 1
,

where µi ∈ R now designates the vertical displace-

ments of the i-th mass with respect to an arbitrarily

chosen zero level.
Fig. 287 xx1 x2 x3 x4 x5 x6 x7 x8

u1

u2
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m1

ba

m2 m3 m4
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m6

m7

m8

µ1 µ2 µ3 µ4
µ5

µ6

µ7

µ8

This special version of the mass-spring model is a better fit for the graph description of the string shape in

Section 5.1.1.1. It simplifies the treatment of the limit n→ ∞ considered below.

With this assumption the configuration space of the equidistant mass spring model with n point masses

and n + 1 springs is Rn, the degrees of freedom being the vertical displacements µ1, . . . , µn, see Fig. 287.

Those can be collected in the column vector~µ = [µ1, . . . , µn]
⊤ ∈ Rn. y

Next, we work out formulas for the potential energy of the mass-spring system. As in § 1.2.1.17 it is the

sum of two contributions.

§5.1.1.5 (Elastic energy of mass-spring system) This is the energy stored in the springs. Thus we need

a physical law linking the length of a spring to its potential energy.
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Assumption 5.1.1.6. Hooke’s law

We assume that all springs are linear, expressed by Hooke’s law: the pulling/compressing force is

proportional to relative elongation

Force F(l) = σ

(
l

l0
− 1

)
(relative elongation) . (5.1.1.7)

σ =̂ spring constant (stiffness), [σ] = 1N, σ > 0,

l0 =̂ equilibrium length of (the relaxed) spring, [l0] = 1m, l0 > 0.

Recall that work can be computed by integrating a (tangential) force along a path. Hence, from (5.1.1.7)

we conclude that the elastic energy stored in a spring pulled/compressed to length l > 0 is

Eel =
∫ l

l0
F(τ)dτ =

1

2

σ

l0
(l − l0)

2 , [Eel] = 1J . (5.1.1.8)

The elastic energies stored in the individual springs of the mass-spring system can simply be summed

up, so that the total elastic energy E
(n)
el of the equidistant mass-spring system whose configuration is

described by the vertical displacements µ1, . . . , µn is

(5.1.1.8) ⇒ E
(n)
el = E

(n)
el (~µ) := 1

2

n

∑
i=0

σi

li
(
√

h2 + (µi+1 − µi)2 − li)
2

︸ ︷︷ ︸
elastic energy of i-th spring

, (5.1.1.9)

where h := b−a
n+1 is the “mesh-width”,

we set µ0 := ua, µn+1 := ub,

σi is the spring constant/stiffness of i-th spring, i = 0, . . . , n, see (5.1.1.7), and

li > 0 denotes the equilibrium length of the i-th spring.

Note that in (5.1.1.9) we have invoked Pythagoras’ theorem to compute the distance of two adjacent mass

points. y

§5.1.1.10 (Potential energy in force field) Let mi > 0 stand for the mass of the i-th point mass,

[mi] = 1kg. Then its potential energy in the (earth’s) gravity field is miµig, g := 9.81ms−2.

The sum yields the total “graviational energy” E
(n)
g of the mass-spring system in configuration

~µ = [µ1, . . . , µn]
⊤

:

E
(n)
g = E

(n)
g (~µ) :=

n

∑
i=1

gmiµi . (5.1.1.11)

y

The total potential energy E
(n)
S of a mass-spring system as introduced above is obtained by summing the

elastic contribution (5.1.1.9) and gravity field contribution (5.1.1.11):

E
(n)
S (~µ) := E

(n)
el (~µ) + E

(n)
g (~µ) = 1

2

n

∑
i=0

σi

li

(√
h2 + (µi+1 − µi)2 − li

)2

+
n

∑
i=1

miµig , (5.1.1.12)

with µ0 := ua, µn+1 := ub in order to take into account the pinning conditions.

As in Section 1.2.1.2 the total potential energy is key to formulating a selection criterium for the configura-

tion of a mass-spring system that will actually be attained in mechanical equilibrium.
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Equilibrium principle for mass-spring system

The global equilibrium configuration of the equidistant mass-spring system given by the vertical

displacements~µ∗ := [µ∗1 , . . . , µ∗n]
⊤ ∈ Rn satisfies

~µ∗ = argmin
~ν∈Rn

E
(n)
S (~ν) . (5.1.1.14)

Remark 5.1.1.15 (Non-unique minimizers) Consider the following special case of an equidistant mass-

spring system:

• A zero gravity setting g = 0, that is, J
(n)
g = 0

•
n

∑
i=0

li >
√
(b− a)2 + (ub − ua)2, a slack system.

Then there are infinitely many different configurations of the mass-spring system that attain the minimal

total potential energy E
(n)
S = 0. y

Obviously, we can only expect a unique minimal-energy configuration, if the mass-spring system is under

tension.

Assumption 5.1.1.16. Mass-spring system with tension

We assume that the summed equilibrium lengths of the springs are always smaller than the hori-

zontal distance of the pinning points:

L := ∑
n
i=0 li < b− a . (5.1.1.17)

This assumption can only be satisfied, if some of the springs are actively extended beyond their equilibrium

length, leading to a non-zero elastic energy.

5.1.1.3 Continuum Limit

As mentioned above our goal is to derive a truly “∞-dimensional” mathematical model of an elastic string

under external loading. The intuition is that an elastic string can be understood as a mass-spring system

with “infinitely many infinitesimal masses” and “infinitesimally short” springs. Then we find a potential

energy functional for the elastic string as the limit n→ ∞ of the potential energies J(n) of a sequence of

equidistant mass-spring models. However, these sequences have to chosen carefully in order to obtain a

meaningful limit.

Assumption 5.1.1.18. Uniform equilibrium lengths of springs

All equilibrium lengths of the springs are equal

li =
L

n + 1
, L > 0 , (5.1.1.19)

where L > 0 is a fixed equilibrium length of the elastic string satisfying L ≤ b− a.

Note that (5.1.1.19) also ensures (5.1.1.17); the target elastic string is also supposed to be under tension.
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§5.1.1.20 (Connecting configuration spaces) In order to interpret the limit for n→ ∞ of potential ener-

gies of mass-spring systems as potential energy for an elastic string, we have to embed

➊ the configuration spaces Rn for the equidistant mass-spring systems with n point masses

into

➋ the configuration space V̂S :=
{

u ∈ C0([a, b]), u(a) = ua, u(b) = ub

}
from (1.2.1.7) for the elas-

tic string model.

This is done by sampling a function u ∈ V̂S in equidistant points to obtain the mass displacements µi:

µi = u(x
(n)
i ) , x

(n)
i := a + hi , i = 1, . . . , n , h :=

b− a

n + 1
. (5.1.1.21)

Our limit arguments require extra smoothness of u:

Assumption 5.1.1.22.

The shape-defining function u must be twice continuously differentiable: u ∈ C2([a, b])

y

§5.1.1.23 (Limit-compatible choice of parameters in mass-spring model) In the mass-spring model

each spring has its own stiffness σi and every point mass its own mass mi. When considering the “limit”

of a sequence of mass-spring models, we have to detach stiffness and mass from springs and masses

and attach them to points on the x1-axis. In other words, stiffness σi and mass mi have to be induced by a

stiffness function σ : [a, b] → R+ and mass density function ρ : [a, b] → R. This linkage has to be done

in a way to allow for a meaningful limit n→ ∞ for the potential energies.

In detail, our choices for “limit-compatible” parameters are the following (x
(n)
i+1/2 := 1

2(x
(n)
i+1 + x

(n)
i ),

i = 0, . . . , n):

✦ We set σi = σ(x
(n)
i+1/2) with a stiffness function σ : [a, b] 7→ R+, which is continuous (string has a

well-defined stiffness at every point), and

✦ mi :=
∫ x

(n)
i+1/2

x
(n)
i−1/2

ρ(x)dx “lumped mass”, with an integrable mass density ρ : [0, 1] 7→ R (units

[ρ] = kg
m ). Note that for ρ ≡ 1 we get equal masses mi ≈ 1

n .

y

In light of the sampling rule (5.1.1.21) and choosing the parameters according to the recommendations

of § 5.1.1.23, the two contributions (5.1.1.9) and (5.1.1.11) to the mass-spring potential energy become

functions on V̂S and read

E
(n)
el (u) = 1

2

n

∑
i=0

n + 1

L
σ(x

(n)
i+1/2)

(√
h2 + (u(x

(n)
i+1)− u(x

(n)
i ))2 − L

n + 1

)2

,

E
(n)
g (u) = g ·

n

∑
i=1

x
(n)
i+1/2∫

x
(n)
i−1/2

ρ(x)dx · u(x
(n)
i ) .

(5.1.1.24)

(5.1.1.25)
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§5.1.1.26 (Limits n→ ∞ of contributions to potential energy) We derive expressions for lim
n→∞

E
(n)
g (u)

and lim
n→∞

E
(n)
el (u) for u ∈ V̂S satisfying Ass. 5.1.1.22.

➊ The limit for the gravitational potential energy (5.1.1.25) is straightforward

Jg(u) = lim
n→∞

E
(n)
g (u) = lim

n→∞
g ·

n

∑
i=1

x
(n)
i+1/2∫

x
(n)
i−1/2

ρ(x)dx · u(x
(n)
i ) = g

b∫

a

ρ(x)u(x)dx . (5.1.1.27)

➋ The limit for the elastic energy (5.1.1.26) is more complicated. As tool we employ Taylor’s formula (→
Thm. 0.3.2.2) for a twice continuous differentiable function f (with derivative f ′) in the form

f (x) = f (x0) + (x− x0) f ′(x) + O(|x− x0|2) for x→ x0 , (5.1.1.28)

Thanks to Ass. 5.1.1.22 we can apply this to the shape-defining function u to recast the root expression in

(5.1.1.26):

√
h2 + (u(x + 1

2 h)− u(x− 1
2 h))2 =

√
h2 + (u′(x)h + O(h2))2

=
√

h2 + |u′(x)|2h2 + O(h3)

= h
√

1 + |u′(x)|2
√

1 + O(h)

= h
√

1 + |u′(x)|2 + O(h2) for h→ 0 ,

(5.1.1.29)

where we have used

√
1 + τ = 1 +

1

2
τ + O(τ2) for τ → 0 . (5.1.1.30)

Insert (5.1.1.29) into (5.1.1.26) with x = x
(n)
i+1/2 and h := b−a

n+1 → 0 for n → ∞, using that the “O-terms”

vanish in the limit

E
(n)
el (u) = 1

2

n

∑
i=0

n + 1

L
σ(x

(n)
i+1/2)

(√
h2 + (u(x

(n)
i+1)− u(x

(n)
i ))2 − L

n + 1

)2

= 1
2

n

∑
i=0

n + 1

L
σ(x

(n)
i+1/2)

(
h

√
1 + |u′(x

(n)
i+1/2)|2 + O(h2)− L

n + 1

)2

=
1

2

b− a

L

b− a

n + 1

n

∑
i=0

σ(x
(n)
i+1/2)

(√
1 + |u′(x

(n)
i+1/2)|2 −

L

b− a
+ O

(
1

n

))2

.

Recall from [STRLN09] that an integral can be obtained as the limit of Riemann sums,

q ∈ C0([0, 1]): lim
n→∞

b− a

n + 1

n

∑
j=0

q(x
(n)
i+1/2) =

∫ b

a
q(x)dx , (5.1.1.31)

which immediately gives us the limit of the elastic energy as a functional depending on the shape-defining

function u:

Jel(u) = lim
n→∞

E
(n)
el (u) =

1

2

b− a

L

b∫

a

σ(x)

(√
1 + |u′(x)|2 − L

b− a

)2

dx . (5.1.1.32)

Adding (5.1.1.32) and (5.1.1.27), we postulate the following formula for the total potential energy of a thin

elastic string,
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✦ whose shape is given by the graph of u[a, b]→ R,

✦ whose relaxed length L > 0 satisfies L < b− a,

✦ whose stiffness distribution is described by a uniformly positive function σ : [a, b]→ R+, cf.

(1.2.1.20),

✦ and whose mass density is ρ : [a, b]→ R+
0 .

JS(u) := Jel(u) + Jg(u) =

b∫

a

1

2

b− a

L
σ(x)

(√
1 + |u′(x)|2 − L

b− a

)2

+ gρ(x)u(x)dx . (5.1.1.33)

y

§5.1.1.34 (Smoothness requirements for elastic string potential energy) In § 5.1.1.26 Ass. 5.1.1.22

was merely required for the derivation of the expression (5.1.1.33) for the total potential energy JS(u). As

we have done for quadratic minimization problems in Section 1.2.1.3 and, ultimately, in Section 1.3.1, we

proceed to relax the smoothness requirements and identify a “maximal” function space for u.

The key observation is that

(√
1 + t2 − c

)2
≤ (1 + 2c)t2 + (1 + c)2 ∀t, c ≥ 0 ,

⇒
∫ b

a

(√
1 + |u′(x)|2 − c

)2

dx ≤ (1 + c)2(b− a) + (1 + 2c)‖u‖2
H1(]a,b[) ,

which means that JS(u) remains well-defined for u ∈ H1(]a, b[).

As regards the smoothness of the coefficient functions ρ and σ we remind of Cor. 1.3.4.19 and Sec-

tion 1.4.2 and conclude that

✦ we need only ρ ∈ L2(]a, b[) or ρ ∈ C0
pw([a, b]), and

✦ σ ∈ C0
pw([a, b]) to render JS(u) well-defined for u ∈ H1(]a, b[).

y

§5.1.1.35 (Elastic string minimization problem) By the equilibrium condition of mechanics introduced in

Section 1.2.1.2 the potential energy of an elastic string is minimal for its equilibrium shape, cf. (1.2.1.24)

Equilibrium condition for elastic string model

The shape of an elastic string with uniformly positive stiffness σ ∈ C0
pw([a, b]), mass density

ρ ∈ C0
pw([a, b]), relaxed length L < b− a, and pinned at [ a

ua ],
[

b
ub

]
, a < b, is the graph of the

minimizer u∗ of J from (5.1.1.33) over the affine space

V̂S :=
{

v ∈ H1(]a, b[) : v(a) = ua and v(b) = ub

}
: (5.1.1.37)

u∗ = argmin
v∈V̂S

JS(v) . (5.1.1.38)

Above, we talked about “the minimizer”, tacitly assuming its existence and uniqueness. These can be

shown rigorously, based, among others, on two arguments:

➊ For the function ϕ(t) :=
√

1 + t2 we compute ϕ̈(t) = (1 + t2)−3/2 > 0, which implies that ϕ is

strictly convex on every bounded interval. Hence u 7→ J(u) is convex.
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➋ It turns out that for ρ, σ ∈ C0([a, b]) the derivative of any minimizer is bounded from above and

below pointwise.

y

EXAMPLE 5.1.1.39 (Tense string without external forcing) We pursue model validation of (5.1.1.38)

by making sure that its predictions agree with observations in simple situations.

Setting:

✦ zero-gravity setting: g = 0
✦ homogeneous string: σ ≡ σ0 > 0
✦ tense string: L ≤ b − a, which means the

elastic energy cannot vanish.

Fig. 288

(5.1.1.38) ⇔ u∗ = argmin
u∈V̂

1

2c

b∫

a

(√
1 + |u′(x)|2 − c

)2

dx for c :=
L

b− a
≤ 1 .

(5.1.1.40)

Note that u enters (5.1.1.40) only through |u′|. Setting w := |u′| and noticing

|ub − ua| = |u(b)− u(a)| =
∣∣∣∣
∫ b

a
u′(x)dx

∣∣∣∣ ≤
∫ b

a
|u′(x)|dx =

∫ b

a
w(x)dx ,

we can rewrite the minimization problem (5.1.1.40) as

w ∈ L2(]a, b[) ,
∫ b

a
w(x)dx ≥ |ub − ua| ,

b∫

a

(√
1 + w2(x)− c

)2

dx→ min (5.1.1.41)

The solution is the constant function w ≡ |ub−ua|
b−a , which leads to

u∗(x) = ua +
ub − ua

b− a
(x− a) , a ≤ x ≤ b ,

whose graph is the straight line connecting the pinning points [ a
ua ],

[
b

ub

]
. y

Review question(s) 5.1.1.42 (Elastic string model)

(Q5.1.1.42.A) Argue why in the case of zero gravity there cannot be a unique minimal energy configuration

of a (linear) mass-spring system, in case the sum of the relaxed lengths of the springs is larger than the

distance of the pinning points.

(Q5.1.1.42.B) Compute the limit

lim
n→∞

n

∑
j=1

√
n−2 + (sin(j/n)− sin(j−1/n))2 .
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(Q5.1.1.42.C)

Derive an expression for the length of the curve given

by the graph of a smooth function f : [a, b]→ R by

taking the limit n→ ∞ of the length of interpolating

polygons on the equidistant meshes, n ∈ N,

Mn :=

{
xi = a + hi, i = 0, . . . , n, h :=

b− a

n

}
.

p =̂ interpolating polygon for f ✄

Fig. 289

f

p

a b

(Q5.1.1.42.D) Some closed curves C winding around zero once can be written in polar coordinates (r, ϕ)
as

C = {(r, ϕ) : r(ϕ) = F(ϕ) , 0 ≤ ϕ ≤ 2π} , F(0) = F(2π) ,

where F : [0, 2π] → R+ is a continuous function. The area enclosed by C can be approximated by

summing up the areas of slender triangles and taking the limit

A = lim
n→∞

n

∑
j=1

1
2r(2π j/n)r(2π j−1/n) sin(2π/n) .

Compute an expression for the limit.

Hint. Recall that polar coordinates and Cartesian coordinates (x1, x2) are connected by the relation-

ships

x1 = r cos ϕ , x2 = r sin ϕ .

(Q5.1.1.42.E)

Fig. 290

x1

x2

m1

m2

m3 m4
m5

m6

m7

m8

a b

Again we consider a pinned mass-spring system

n point masses (mass mi) and n + 1 linear spr

(stiffness σi) under gravitational loading. The x
of the Cartesian coordinate system we use is par

to the direction of the gravitational forces.

However, in contrast to the model presented in

tion 5.1.1.1, the positions of the point masses are

constrained to vertical lines, but can be anywhere

the x1/x2-plane.

1. What is an appropriate configuration space for this model?

2. Derive an expression for the total potential energy of the mass-spring system.

Hint. The elastic energy stored in a spring with stiffness σ and relaxed length l0 that is extended/com-

pressed to length l is

Eel =
∫ l

l0
F(τ)dτ =

1

2

σ

l0
(l − l0)

2 , [Eel] = 1J . (5.1.1.8)

(Q5.1.1.42.F) [Discrete pole model]
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A discrete pole model comprises

• n + 1 perfectly rigid thin rods of lengths ℓi > 0
and masses mi > 0, i = 0, . . . , n, and

• n joints that allow rotation out of the straight

position.

The first rod is supposed to be vertical. The system is

exposed to a graviational force parallel to the vertical

direction.

The state of a joint is completely described by its an-

gle α, with α = π meaning a straight configuration.

Joints are fitted with springs and their stored (elastic)

potential energy can be computed according to

Ejoint(α) = σ(α− π)2 , α ∈]0, 2π[ , (5.1.1.43)

where σ > 0 is the stiffness coefficient.

Rod (—)-joint (•) system ✄
Fig. 291

gravity

1. What is a suitable configuration space for the discrete pole model?

2. give an expression for the total potential energy of a rod-joint system with equal rods and joints as

a function on its configuration space.

Hint. You can think of the mass of a rod as being concentrated in its center of gravity.

△

5.1.2 Thin Membrane Model

The two-dimensional counterparts of thin elastic strings, thin elastic membranes, have been introduced in

Section 1.2.1.

§5.1.2.1 (Graph model for membrane shape) Again we consider graviational loading perpendicular to

a planar base domain Ω ⊂ R2, a spatial domain in the sense of § 1.2.1.14. This paves the way for

describing the shape of the membrane as the graph of a function, as we recall from § 1.2.1.8:

Shape of membrane

m
Graph of u : Ω 7→ R

u(x) =̂ vertical displacement of the membrane

above the point x ∈ Ω.

Physical units: [u] = 1m

“membrane” on spatial domain Ω =]0, 1[2 ✄

(– – – =̂ rigid frame with known geometry)

Fig. 292
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The membrane is firmly attached to the frame

{[ x1
x2
x3

]
∈ R3: x :=

[ x1
x2

]
∈ ∂Ω, x3 = d(x)

}
, which
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amounts to the following boundary conditions for the displacement

u(x) = d(x) for all x ∈ ∂Ω ⇔ u|∂Ω = d on ∂Ω . (1.2.1.10)

Those have to be incorporated into the configuration space

Configuration space for membrane model

Under vertical loading the configuration space for membrane shapes over the base domain Ω ⊂ R2

is the infinite-dimensional affine function space

V̂M =
{

u ∈ C0(Ω), u|∂Ω = d
}

(1.2.1.12)

y

§5.1.2.3 (Two-dimensional mass-spring model) We introduce a discrete model for an elastic membrane

generalizing the mass-spring model of Section 5.1.1.2 to two dimensions. We confine ourselves to square

base planes Ω :=]a, b[2.

We consider a mass-spring lattice with n2 free

masses, n ∈ N. The projections of the point

mass locations onto the x1 − x2 plane agree

with the node positions of a regular square grid

with meshwidth h := 1/n+1. Masses sitting on

∂Ω are fixed.

“View from above” of the mass-spring lattice,

• =̂ point masses/joints. ✄

We write µi,j, i, j ∈ {1, . . . , n}, for the vertical

displacement of the point mass located above

the base point x
(n)
i,j :=

[
ih
jh

]
∈ Ω, h := b−a

n+1 .

Fig. 293 x1

x2

This 2D “equidistant” mass-spring model is a discrete model with n2 degrees of freedom µi,j. y

§5.1.2.4 (Potential energy of 2D mass-spring model) In order to express the elastic energy of the 2D

equidistant mass-spring model we reuse the linear spring model of § 5.1.1.5, and, in particular, the energy

formula

Eel =
∫ l

l0
F(τ)dτ =

1

2

σ

l0
(l − l0)

2 , [Eel] = 1J , (5.1.1.8)

with l0 standing for the length of a relaxed spring, and σ for its stiffness, [σ] = 1N.

Right from the beginning we assume that all springs have the same equilibrium length l0 and that

l0 =
L

n + 1
with L < b− a , (5.1.2.5)

which means l0 < h := b−a
n+1 . We also write σi+1/2,j for the stiffness of the spring between the point

masses above x
(n)
i,j and x

(n)
i+1,j. Similarly, we use the notation σi,j+1/2. Then the total elastic energy stored
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in all springs evaluates to

E
(n)
el (

(
µi,j

)
i,j
)=

n

∑
j=1

n

∑
i=0

σi+1/2,j

2l0

(√
h2 + (µi+1,j − µi,j)2 − l0

)2
+

n

∑
i=1

n

∑
j=0

σi,j+1/2

2l0

(√
h2 + (µi,j+1 − µi,j)2 − l0

)2
.

(5.1.2.6)

Here, we have to set µi,j := d(x
(n)
i,j ) for x

(n)
i,j ∈ ∂Ω in order to take into account the boundary conditions

(1.2.1.10).

To express the graviational energy we write mi,j for the mass (in kg) of the point mass above the base

point xi,j, i, j ∈ {1, . . . , n}. Using the same formula as in § 5.1.1.10 we get

E
(n)
g (

(
µi,j

)
i,j
) =

n

∑
i=1

n

∑
j=1

gmi,jµi,j . (5.1.2.7)

Finally, the total potential energy E
(n)
M is the sum of E

(n)
el and E

(n)
g :

E
(n)
M (
(
µi,j

)
i,j
)=

n

∑
j=1

n

∑
i=0

σi+1/2,j

2l0

(√
h2 + (µi+1,j − µi,j)2 − l0

)2
+

n

∑
i=1

n

∑
j=0

σi,j+1/2

2l0

(√
h2 + (µi,j+1 − µi,j)2 − l0

)2
+

n

∑
i=1

n

∑
j=1

gmi,jµi,j .

(5.1.2.8)

y

§5.1.2.9 (Membrane potential energy through n→ ∞ limit) We pursue the considerations of Sec-

tion 5.1.1.3 for the two-dimensional mass-spring model as an approximation of an elastic membrane. To

begin with, we link the point mass displacements µi,j to the displacement function u : Ω→ R through

sampling analogous to (5.1.1.21):

µi,j := u(xi,j) , xi,j :=
[

a+hi
a+hj

]
, i, j ∈ {1, . . . , n} , h :=

b− a

n + 1
. (5.1.2.10)

This will make the energies of the mass-spring model functionals on the configuration space C0(Ω).

In the spirit of § 5.1.1.23 we introduce a uniformly positive stiffness function σ : Ω→ R and a mass

density ρ : Ω→ R. They define the spring stiffness and masses through

σ∗ =
1

n
σ(x∗) , ∗ = i, j + 1/2 or ∗ = i + 1/2, j , (5.1.2.11)

mi,j =

(i+1/2)h∫

(i−1/2)h

(j+1/2)h∫

(j−1/2)h

ρ([ x
y ])dydx , i, j ∈ {1, . . . , n} . (5.1.2.12)

Why do we need the 1
n -factor in (5.1.2.11)? We have ∼ n2 springs and, if their stiffness did not depend

on n, for n→ ∞ their individual elastic energies would scale like O(n−1), which would lead to a blow-up

of the total elastic energy in the limit n→ ∞.
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Under theses assumptions we recover the following expression for the total potential energy of an equidis-

tant two-dimensional mass-spring system with n2 masses, cf. (5.1.1.26) and (5.1.1.25).

E
(n)
M (u) =

1

2L

n + 1

n

{ n

∑
j=1

n

∑
i=0

σ(xi+1/2,j)
(√

h2 + (u(xi+1,j)− u(xi,j))2 − l0

)2
+

n

∑
i=1

n

∑
j=0

σ(xi,j+1/2)
(√

h2 + (u(xi,j+1)− u(xi,j))2 − l0

)2}
+

n

∑
i=1

n

∑
j=1

g

(i+1/2)h∫

(i−1/2)h

(j+1/2)h∫

(j−1/2)h

ρ([ x
y ])dydx · u(xi,j) .

(5.1.2.13)

For this expression we compute the limit n→ ∞ in the same way as in § 5.1.1.26. For this we also have

to assume the extra smoothness u ∈ C2(Ω). The only new twist is that Taylor expansions now rely on

partial derivatives

u(xi+1,j)− u(xi,j) = h · ∂u

∂x1
(xi+1/2,j) + O(h2) for h→ 0 ,

u(xi,j+1)− u(xi,j) = h · ∂u

∂x2
(xi,j+1/2) + O(h2) for h→ 0 .

Skipping the technical details and referring the reader to § 5.1.1.26 instead, we end up with a formula

for the total potential energy of an elastic membrane described by the vertical displacement function

u : Ω→ R.

JM(u) := lim
n→∞

E
(n)
M (u) =

∫

Ω

1

2L
σ(x)

(

√

1 +

∣∣∣∣
∂u

∂x1
(x)

∣∣∣∣
2

− L

b− a




2

+



√

1 +

∣∣∣∣
∂u

∂x2
(x)

∣∣∣∣
2

− L

b− a




2)
+ g ρ(x)u(x)dx .

(5.1.2.14)

Note that for this formula to hold the domain Ω can be an arbitrary computational domain as defined in

§ 1.2.1.14. y

§5.1.2.15 (Elastic membrane energy minimization) In Section 1.2.1.2 we learned that an elastic mem-

brane attains a shape that corresponds to a (local) minimum of its potential energy.

Equilibrium condition for elastic membranemodel

Given a base planar domain Ω ⊂ R2, the shape of an elastic membrane with uniformly positive

stiffness σ ∈ C0
pw(Ω), mass density ρ ∈ C0

pw(Ω), relaxed length L < b− a, and boundary dis-

placement d ∈ C0(∂Ω) is the graph of the minimizer u∗ of J from (5.1.2.14) over the affine space

V̂M :=
{

v ∈ H1(Ω) : v|∂Ω = d
}

: (5.1.2.17)

u∗ = argmin
v∈V̂M

JM(v) . (5.1.2.18)

We point out that in this final formulation, the smoothness requirements on the displacement u and the

coefficient functions σ and ρ have been weakened as much as possible, invoking the same arguments as

in § 5.1.1.35. y
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5.1.3 Taut Membrane Limit

A string/membrane is called taut, when it is strongly pre-stretched only due to the boundary conditions, that

is, the elastic energy is large already without acting gravitational force. Quantitatively speaking, this means

that L≪ b− a for either the elastic string model of Section 5.1.1 or the two-dimensional membrane model

of Section 5.1.2. This also means that even a considerable force will only bring about a small deformation

of the elastic string/membrane. Hence, the situation considered in this section is also known as the small

displacement setting.

Formally the taut membrane limit consists of two steps targeting the expressions for the elastic energy:

➊ Replace the stiffness coefficient function σ = σ(x) with a renormalized stiffness σ̂ := (b− a)σ/L
(string), σ̂ := σ/L (membrane), and consider the latter independent of L.

➋ Set L← 0 in the formulas for the elastic energy.

The steps result in the following expressions for the total energy:

✦ For the elastic string model (5.1.1.33) the taut string limit total potential energy is

J̃S(u) =
1
2

b∫

a

σ̂(x)
(

1 + |u′(x)|2
)
+ gρ(x)u(x)dx . (5.1.3.1)

✦ In the case of the elastic membrane model the above steps lead to

J̃M(u) = 1
2

∫

Ω
σ̂(x)

(
1 + ‖grad u(x)‖2

)
+ gρ(x)u(x)dx . (5.1.3.2)

Note that the “1+”-term can be dropped when considering the minimization of J̃S and J̃M respectively,

because it just gives rise to a constant contribution to the functionals.

Thus, what we have obtained are potential energy expressions that, up to replacing σ̂→ σ and gρ→ f ,

are exactly those presented in § 1.2.1.17, (1.2.1.18), (1.2.1.19)! In Section 1.2.1 we have actually dis-

cussed taut strings and membranes, whose energy functionals are quadratic Def. 1.2.3.2 and give rise to

linear variational problems as explained in Section 1.4.1.

Review question(s) 5.1.3.3 (2D membranes and taut limit)

(Q5.1.3.3.A) Explain the “taut limit” for a single linear spring, whose elastic energy is given by the formula

Eel =
∫ l

l0
F(τ)dτ =

1

2

σ

l0
(l − l0)

2 , [Eel] = 1J . (5.1.1.8)

(Q5.1.3.3.B) Is the functional

JF(u) :=
∫

Ω

√
1 + ‖grad u(x)‖2 dx

well-defined on L2(Ω)? On H1(Ω)?

△

5.2 Calculus of Variations

Whereas in Section 1.4.1 we dealt with finding a minimizer for quadratic functional (→ Def. 1.2.3.2) on

an infinite-dimensional (function) space, we now face that task for a general functional . In this section

necessary conditions for the minimizer will formally be derived in the form of variational equations. This

idea is one of the cornerstone of a branch of analysis called calculus of variations. We will not dip into this

theory, but perform manipulations at a formal level. Yet, all considerations below can be justified rigorously.
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5.2.1 Calculus of Variations: Fundamental Idea

Let V̂ ⊂ V be an affine space contained in a vector space V with associated subspace V0 ⊂ V, that is,

for some (offset function) u0 ∈ V we can write V̂ = u0 + V0, cf. Def. 0.3.1.1. For a mapping

J : V̂ → R , (5.2.1.1)

also called a functional, we consider the minimization problem of finding

u∗ ∈ argmin
v∈V̂

J(v) . (5.2.1.2)

Assuming the existence of global minimizers u∗ and “sufficient smoothness” of J we want to identify

necessary conditions satisfied by every global minimizer u∗. In Section 1.4.1, Page 100, we did this

for the case of quadratic functionals J.

As in Section 1.4.1 assume that u∗ solves (5.2.1.2) and for arbitrary v ∈ V0 define the function.

ϕv : R → R , ϕv(t) = J(u∗ + tv) , t ∈ R . (1.4.1.3)

This auxiliary function paves the way for a reduction to the familiar setting of functions R → R.

Main “idea of calculus of variations”

u∗ ∈ V̂ solves (5.2.1.2) ⇒ J(u∗) ≤ J(u∗ + tv) ∀t ∈ R, v ∈ V0 . (5.2.1.4)

ϕv(t) := J(u∗ + tv) has global minimum for t = 0

If ϕv is differentiable, then
dϕv

dt
(0) = 0

What we stated as (5.2.1.4) expresses the fact that u∗ can only be a global minimizer of J, if no admissible

perturbation leads to a decrease of the value of J. This leads to a straightforward characterization of global

minimizers through a family of equations, in mechanics known as the virtual work principle.

Theorem 5.2.1.5. Characterization of global minimizers

Let J : V̂ → R a continuous functional and

u∗ ∈ argmin
v∈V̂

J(v)

a global minimizer of J over the affine space V̂ = u0 + V0 ⊂ V, u0 ∈ V. Then, if

ϕv(t) := J(u∗ + tv) is differentiable in t = 0,

dϕv

dt
(0) = 0 ∀v ∈ V0 . (5.2.1.6)

If dim V0 = ∞, then (5.2.1.6) encodes an infinite number of equations. This is nothing new to us, since in

Section 1.4.1 we have already seen the special case of Thm. 5.2.1.5 for a general quadratic functional J,
compare Thm. 1.4.1.8. In light of this connection, we may call (5.2.1.6) a (general) variational equation.

More details will be given in the following section.

EXAMPLE 5.2.1.7 (Section 1.4.1 revisted: Thm. 5.2.1.5 for quadratic J) We consider a quadratic

functional J : V → R (→ Def. 1.2.3.2)

J(v) = 1
2a(v, v)− ℓ(v) + c ,
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where a : V ×V → R is a symmetric bilinear form, ℓ : V → R a linear form, and c ∈ R.

Let u∗ ∈ V̂, V̂ = u0 + V0 ⊂ V, a global minimizer of J over the affine subspace V̂ and define ϕv as

above. Invoking the bilinearity and symmetry of a and the linearity of ℓ, we infer

ϕv(t) =
1
2 t2a(v, v) + ta(u∗, v) + 1

2a(u∗, u∗)− tℓ(v)− ℓ(u∗) + c , t ∈ R .

The function t 7→ ϕv(t) is a quadratic polynomial and differentiation with respect to t is straightforward

and yields the specialization of (5.2.1.6)

dϕv

dt
(0) = a(u∗, v)− ℓ(v) = 0 ∀v ∈ V0 . (1.4.1.4)

This is a linear variational problem according to Def. 1.4.1.6. y

EXAMPLE 5.2.1.8 (Necessary conditions for minimizers in finite-dimensional setting) Now V = Rn,

n ∈ N. From finite dimensional calculus we know that all partial/directional derivatives of a continuously

differentiable functional J : Rn → R vanish at a minimum:

x∗ ∈ argmin
x∈Rn

J(x) ⇒ grad J(x∗) = 0 ⇔ ∂J

∂xk
(x∗) = 0 , k = 1, . . . , n . (5.2.1.9)

We can view this from the angle of the “main idea of the calculus of variations”; we consider the auxiliary

section function ϕv(t) := J(x∗ + tv), v ∈ Rn. As stated above, if x∗ ∈ Rn is a minimizer of J, then ϕv

has a minimum at t = 0 for every v. Necessarily, the derivative of ϕv, d
dt ϕv(t) = grad J(x∗ + tv) · v will

be zero for t = 0 for every v:

d

dt
ϕv(0) = grad J(x∗) · v = 0 ∀v ∈ Rd . (5.2.1.10)

Hence, (5.2.1.9) boils down to the special case v = ek, ek =̂ k-th unit vector in Rn, k = 1, . . . , n.

We remind that, for obvious reasons, the expression grad J(x∗) · v is called a directional derivative of J
in the direction v. y

Inspired by the finite-dimensional setting, also the value
dϕv

dt (0) for ϕv according to (1.4.1.3) will be called

a directional derivative of J in the direction of v and it can be computed from the formulas

dϕv

dt
(0) = lim

t→0

ϕv(t)− ϕv(0)

t
= lim

t→0

J(u∗ + tv)− J(u∗)
t

. (5.2.1.11)

✎ Notation: For the directional derivative of a functional J : V̂ → R in u ∈ V̂ and in the direction v ∈ V0

we write

〈DJ(u), v〉 := lim
t→0

J(u∗ + tv)− J(u∗)
t

,

if the limit exists.

5.2.2 Non-Linear Variational Equations

EXAMPLE 5.2.2.1 (Directional derivatives for elastic string potential energy) We now focus on the

elastic string model of Section 5.1.1.3 where the role of J in Thm. 5.2.1.5 is played by the potential energy

functional

JS(u) := Jel(u) + Jg(u) =

b∫

a

1

2

b− a

L
σ(x)

(√
1 + |u′(x)|2 − L

b− a

)2

+ gρ(x)u(x)dx , (5.1.1.33)
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defined on

V̂S :=
{

v ∈ H1(]a, b[) : v(a) = ua and v(b) = ub

}
⊂ H1(]a, v[) , (5.1.1.37)

which means that in this case V = H1(]a, b[) and V0 = H1
0(]a, b[). We separately compute the directional

derivatives for Jel and Jg.

➊ Gravitational potential energy

Jg(u) =

b∫

a

gρ(x)u(x)dx . (5.1.1.27)

This is just a linear functional on V and as in Ex. 5.2.1.7 we compute

〈
DJg(u∗), v

〉
= lim

t→0

Jg(u∗ + tv)− Jg(u∗)
t

= Jg(v) ∀v ∈ V0 : H1
0(]a, b[) . (5.2.2.2)

This reflects the important rule that

the directional derivative of a linear functional is the very same functional evaluated for the perturbation

direction v.

➋ Elastic potential energy functional on V := H1(]a, b[):

Jel(u) =
1

2c

b∫

a

σ(x)

(√
1 + |u′(x)|2 − c

)2

dx , c :=
L

b− a
. (5.1.1.32)

Since u 7→ Jel(u) we conclude from the very definition of the derivative the “truncated Taylor expansion”

Jel(u∗ + tv)− Jel(u∗) = t · 〈DJel(u∗), v〉+ O(t2) for t→ 0 .

Hardly surprising, the main tool for the computation of directional derivatives in this case is Taylor’s formula

(→ Thm. 0.3.2.2), which we apply in a nested way: starting with

|(u∗ + tv)′(x)|2 = |u′∗(x)|2 + 2tu′∗(x)v′(x) + O(t2) for t→ 0 ,
√

1 + |(u∗ + tv)′(x)|2 =
√

1 + |u′∗(x)|2 + 2tu′∗(x)v′(x) + O(t2)

=
√

1 + |u′∗(x)|2 ·
√

1 +
2tu′∗(x)v′(x)

1 + |u′∗(x)|2 + O(t2)

=
√

1 + |u′∗(x)|2 ·
(

1 + t
u′∗(x)v′(x)

1 + |u′∗(x)|2 + O(t2)

)
for t→ 0 ,

where we used the Taylor expansion for x 7→
√

1 + x around 0,

√
1 + δ = 1 + 1

2 δ + O(δ2) for δ→ 0 . (5.2.2.3)

This gives the expansion of the integrand:

(√
1 + |(u∗ + tv)′(x)|2 − c

)2

=

(√
1 + |u′∗(x)|2 − c + t

u′∗(x)v′(x)√
1 + |u′∗(x)|2

+ O(t2)

)2
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=

(√
1 + |u′∗(x)|2 − c

)2

+ 2t

(√
1 + |u′∗(x)|2 − c

)
u′∗(x)v′(x)√
1 + |u′∗(x)|2

+ O(t2) .

This means that for all v ∈ H1
0(]a, b[)

Jel(u∗ + tv)− Jel(u∗) =
1

2c

b∫

a

σ(x)2t

(√
1 + |u′∗(x)|2 − c

)
u′∗(x)v′(x)√
1 + |u′∗(x)|2

dx + O(t2) ,

〈DJel(u∗), v〉 = lim
t→0

Jel(u∗ + tv)− Jel(u∗)
t

=
1

c

b∫

a

σ(x)

(√
1 + |u′∗(x)|2 − c

)
u′∗(x)v′(x)√
1 + |u′∗(x)|2

dx .

(5.2.2.4)

Combining the directional derivatives (5.2.2.2) and (5.2.2.4) gives us the variational equation to be sat-

isfied by every minimizer u∗ of JS:

〈DJel(u∗), v〉+
〈
DJg(u∗), v

〉
= 0 ∀v ∈ H1

0(]a, b[)

m
b∫

a

1

c
σ(x)

(√
1 + |u′∗(x)|2 − c

)
u′∗(x)v′(x)√
1 + |u′∗(x)|2

+ gρ(x)v(x)dx = 0 ∀v ∈ H1
0(]a, b[) . (5.2.2.5)

y

EXAMPLE 5.2.2.6 (Directional derivatives of integral functionals) The directional derivative of a real-

valued functional J : V → R defined on a vector space V is the plain and simple derivative of a function

(denoted by ϕv in Thm. 5.2.1.5) mapping R 7→ R. However, differentiating this function can be challenging

and usually involves multiple applications of chain rule and product rule [NCSE].

Yet, the easiest way to do formal directional differentiation of functionals on a function space may rely on

repeated use of Taylor’s expansion. Let us elaborate this for functional defined through integration, as is

the case for the potential energy functional of strings and membranes.

For a domain Ω ⊂ Rd we consider a functional of the form

J : C1
pw(Ω)→ R , J(u) :=

∫

Ω
F(x, grad u(x), u(x))dx , (5.2.2.7)

where F : Ω×Rd ×R → R is a twice continuously differentiable function. The following theorem from

analysis comes handy.

Theorem 5.2.2.8. Multi-dimensional truncated Tayler expansion → [STRLN09]

Let G : D ⊂ Rn → R, n ∈ N, a function that is twice continuously differentiable in x ∈ Rn. Then

G(x + h) = G(x) + grad G(x) · h + O(‖h‖2) for h→ 0 . (5.2.2.9)

Applied to F : Ω×Rd ×R → R this gives the expansion (u, δu ∈ Rd, v, δv ∈ R)

F(x, u + δu, v + δv) = F(x, u, v) +D2F(x, u, v)δu +D3F(x, u, v)δv + O(‖δu‖2) + O((δv)2)

for δu→ 0, δv→ 0. Here, D2F and D3F are the partial derivatives of F w.r.t the second and third

argument, respectively. Note that D2F(u, v) ∈ R1,d is a row vector, while D3F(u, v) ∈ R. We insert this
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into the integral (5.2.2.7) and get for any v ∈ C1
pw(Ω) and t→ 0

J(u + tv) =
∫

Ω
F(x, grad u(x) + t grad v(x), u(x) + tv(x))dx

=
∫

Ω

F(x, grad u(x), u(x)) + t
(
D2F(x, grad u(x), u(x)) grad v(x)+

D3F(x, grad u(x), u(x))v(x)
)
+ O(t2)dx

= J(u) + t
∫

Ω

D2F(x, grad u(x), u(x)) grad v(x)+

D3F(x, grad u(x), u(x))v(x)dx + O(t2) ,

which immediately implies

〈DJ(u), v〉 = lim
t→0

J(u + tv)− J(u)

t

=
∫

Ω
D2F(x, grad u(x), u(x)) grad v(x) +D3F(x, grad u(x), u(x))v(x)dx . (5.2.2.10)

y

Remark 5.2.2.11 (Function space frameworks for nonlinear variational equations) Be aware that for

non-linear variational problems simple Sobolev spaces may no longer be an adequate framework, because

the variational equation does not supply an energy bilinear form. Finding suitable function spaces for

non-linear variational problems is often a mathematical challenge and beyond the scope of this course.

Therefore, in the previous paragraph we relied on classical function spaces, acknowledging the fact that

those might not contain the “physical solutions”. y

EXAMPLE 5.2.2.12 (Variational equation for 2D membrane model) We can make use of the result of

Ex. 5.2.2.6 to compute the directional derivatives of the potential energy functional JM : H1(Ω)→ R for

a two-dimensional thin membrane:

JM(u) =
∫

Ω

1

2L
σ(x)

(

√

1 +

∣∣∣∣
∂u

∂x1
(x)

∣∣∣∣
2

− L

b− a




2

+



√

1 +

∣∣∣∣
∂u

∂x2
(x)

∣∣∣∣
2

− L

b− a




2)
+ g ρ(x)u(x)dx .

(5.1.2.14)

This functional is of the form (5.2.2.7) with F : Ω×R2 ×R → R given as (c := L
b−a )

F(x,

[
g1

g2

]
, u) :=

1

2L
σ(x)

{(√
1 + g2

1 − c

)2

+

(√
1 + g2

2 − c

)2
}
+ g ρ(x)u . (5.2.2.13)

The relevant partial derivatives can be computed by elementary calculus:

D2F(x,

[
g1

g2

]
, u) =

1

L
σ(x)

[(√
1 + g2

1 − c
) g1√

1 + g2
1

,
(√

1 + g2
2 − c

) g2√
1 + g2

2

]
∈ R1,2 ,

D3F(x,

[
g1

g2

]
, u) = g ρ(x) ∈ R .

Plugging them into (5.2.2.10) gives the directional derivative for u ∈ H1(Ω)

〈DJM(u), v〉 = lim
t→0

JM(u + tv)− JM(u)

t

=
∫

Ω
σ(x)A(grad u(x)) grad u(x) · grad v(x) + g ρ(x)v(x)dx ,

(5.2.2.14)
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with the 2× 2-matrix

A(

[
g1

g2

]
) :=

1

2L




(√
1 + g2

1 − c
) 1√

1 + g2
1

0

0
(√

1 + g2
2 − c

) 1√
1 + g2

2




, (5.2.2.15)

and v ∈ H1
0(Ω), because in this case, in terms of the notations of Thm. 5.2.1.5, V̂ = d̃ + H1

0(Ω), where

d̂ ∈ H1(Ω) is an extension of the boundary displacement d.

Elastic membrane variational equation

Find u ∈ H1(Ω), u|∂Ω = d, such that

∫

Ω
σ(x)A(grad u(x)) grad u(x) · grad v(x)dx = −

∫

Ω
g ρ(x)v(x)dx ∀v ∈ H1

0(Ω) ,

(5.2.2.17)

where A is defined in (5.2.2.15).

y

§5.2.2.18 (General variational equations) Looking at the directional derivatives computed so far, we

make a striking observation, namely that for all the functionals J : V̂ → R investigated so far, the map-

ping





V0 → R

v 7→ lim
t→0

J(u + tv)− J(u)

t

(5.2.2.19)

is linear , that is, it is a linear form on V0 in the sense of Def. 0.3.1.3. This is not a coincidence and holds for

all “nice” functionals J. It endows the variational equation (5.2.1.6) of Thm. 5.2.1.5 with a special structure,

which is captured in the next definition. It generalizes Def. 1.4.1.6.

Definition 5.2.2.20. (General) variational equation

An abstract (general, non-linear) variational equation reads

u ∈ V̂: a(u; v) = 0 ∀v ∈ V0 , (5.2.2.21)

where

✦ V0 =̂ is (real) vector space of functions,

✦ V̂ =̂ is an affine space of functions: V = u0 + V0, with an offset function u0 ∈ V,

✦ a =̂ a mapping V̂ ×V0 7→ R that is linear in the second argument v :

a(u; αv + βw) = αa(u; v) + βa(u; w) ∀u ∈ V , v, w ∈ V0 , α, β ∈ R . (5.2.2.22)

✎ Notation: If a is bilinear, we separate the arguments by a comma, a(u , v), if only linear in the second

argument, we write a semicolon, a(u ; v).

As for linear variational problems, we call V̂ the trial space and V0 the test space.

Explanation of terminology:
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• trial space =̂ the function space in which we seek the solution

• test space =̂ the space of eligible test functions v in a variational problem like (5.2.2.21) = space of

admissible variations/perturbations in (5.2.1.4).

The two spaces need not be the same: V 6= V0 is common and already indicated by the notation. For

many variational problem, which are not studied in this course, they may even comprise functions with

different smoothness properties. y

Remark 5.2.2.23 (Non-linear variational problem) Despite the fact that a in (5.2.2.21) is linear in the

second argument, the variational problem (5.2.2.21) is generically non-linear , because a need not be

linear in the first argument. y

EXAMPLE 5.2.2.24 (Minimal surface (Plateau) problem for graphs) Given a bounded planar base

domain Ω ⊂ R2 and a function d ∈ C0(∂Ω), we want to find a (sufficiently smooth) function u : Ω→ R

which agrees with d on the boundary ∂Ω and whose graph

Gu :=
{

x = [x1, x2, x3]
⊤ :

[ x1
x2

]
∈ Ω, x3 = u

([ x1
x2

])}
, (5.2.2.25)

which is a two-dimensional oriented surface has minimal area:

Find u : Ω→ R , u|∂Ω = d : J(u) := area(Gu)→ min . (5.2.2.26)

This is known as the Plateau problem for graphs.

First, we derive an expression for area(Gu). Consider a small “unit triangle”

T̂h := convex
{[

0
0

]
,
[

h
0

]
,
[

0
h

]}
⊂ Ω, h > 0, and assume u to be linear : u(x) = s⊤x, s =

[ s1
s2

]
∈ R2.

The image of T̂h on Gu is the triangle

Th = convex








0
0

u(
[

0
0

]
)


,




h
0

u(
[

h
0

]
)


,




0
h

u(
[

0
h

]
)





 = convex








0
0
0


,




h
0

hs1


,




0
h

hs2







with area (expressed by the cross-product formula)

area(Th) =
1

2

∥∥∥∥∥∥




h
0

hs1


×




0
h

hs2



∥∥∥∥∥∥

2

=
1

2

∥∥∥∥∥∥



−h2s1

−h2s2

h2



∥∥∥∥∥∥

2

=
1

2
h2
√

1 + s2
1 + s2

2 = area(T̂h) ·
√

1 + ‖s‖2
2 .

Returning to general u and assuming u to be smooth, it can locally, around x0 ∈ Ω, be approximated

by the affine linear function ũ(x) := u(x0) + grad u(x0)(x− x0). This local affine linear approximation

is sufficient to consider, if one wants to determine the change of area of infinitesimally small triangles at

x0 ∈ Ω when they are mapped to the graph. That area will increase by a factor

√
1 + ‖grad u(x0)‖2

2,

because grad u(x0) now plays the role of s in the definition of that linear u above. Covering Ω with

infinitesimally small triangles and summing the areas we arrive at

area(Gu) =
∫

Ω

√
1 + ‖grad u(x)‖2

2 dx , (5.2.2.27)

where u is assumed to be sufficiently smooth for the integral to exist.

Next, we formally derive the variational equation satisfied for solutions of (5.2.2.26) by the method of

nested Taylor expansions introduced in Ex. 5.2.2.1. For u ∈ C1
pw(Ω) and a perturbation function v of the
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same smoothness we find for t→ 0
√

1 + ‖grad u(x) + t grad v(x)‖2
2 =

√
1 + ‖grad u(x)‖2

2 + 2t grad u(x) · grad v(x) + O(t2)

=
√

1 + ‖grad u(x)‖2
2 ·
√

1 + 2t
grad u(x) · grad v(x)

1 + ‖grad u(x)‖2
2

+ O(t2)

=
√

1 + ‖grad u(x)‖2
2

(
1 + t

grad u(x) · grad v(x)

1 + ‖grad u(x)‖2
2

+ O(t2)

)
,

where in the last step we used

√
1 + δ = 1 + 1

2 δ + O(δ2) for δ→ 0 . (5.2.2.3)

The perturbation function v : Ω→ R must vanish on ∂Ω, where u is fixed. Thus we find the directional

derivative

〈DJ(u), v〉 = lim
t→0

J(u + tv)− J(u)

t
=
∫

Ω

grad u(x) · grad v(x)√
1 + ‖grad u(x)‖2

2

dx , v|∂Ω = 0 . (5.2.2.28)

From it we conclude the variational equation, here stated on classical function spaces

u ∈ C1
pw(Ω) ,

u|∂Ω = d
:
∫

Ω

grad u(x) · grad v(x)√
1 + ‖grad u(x)‖2

2

dx = 0 ∀v ∈ C1
pw,0(Ω) . (5.2.2.29)

A more rigorous derivation of (5.2.2.29) and a discussion of suitable function spaces is given in [CIA78].

y

EXAMPLE 5.2.2.30 (Quasi-linear second-order elliptic variational problems) A special class of varia-

tional problems generalizing the linear second-order elliptic variational problems of Section 1.8 are quasi-

linear second-order elliptic variational problems. On a domain Ω ⊂ Rd they can be stated as

u ∈ X ⊂ H1(Ω):
∫

Ω
A(x, u(x)) grad u(x) · grad v(x) + G(x, u(x))v(x)dx

=
∫

Ω
f (x)v(x)dx ∀v ∈ X0 ⊂ H1(Ω) . (5.2.2.31)

Here A : Ω×R → Rd,d is a spatially varying, u-dependent symmetric tensor coefficient, and

G : Ω×R → R a given function.

The spaces X is a “suitable” function space, which may agree with H1(Ω) (or an affine subspace thereof)

but need not, because in case of fast-growing (in the second argument) A or G the variational equation

(5.2.2.31) may not be well-defined for every u ∈ H1(Ω) and a smaller trial space has to be chosen.

Similar remarks apply to the test space X0, cf. Rem. 5.2.2.11.

Crucial for the classification as quasi-linear is the fact that neither A nor G may depend on grad u. y

EXAMPLE 5.2.2.32 (Semi-linear second-order elliptic variational problems) Semi-linear second-

order elliptic variational problems are a special case of the quasi-linear as introduced in Ex. 5.2.2.30.

They even drop the dependence of the tensorial coefficient A on u, which leads to the variational equation

u ∈ X ⊂ H1(Ω):
∫

Ω
A(x) grad u(x) · grad v(x) + G(x, u(x))v(x)dx
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=
∫

Ω
f (x)v(x)dx ∀v ∈ X0 ⊂ H1(Ω) , (5.2.2.33)

where x 7→ A(x) is a uniformly positive definite coefficient tensor field according to Def. 1.2.2.9. If G does

no grow faster than polynomially in u, then X = H1(Ω) or X = H1
0(Ω) is a possible choice.

We have already seen a special kind of semi-linear second-order elliptic variational problem in Ex. 1.8.0.6

as a model for heat conduction with general radiation conditions:

u ∈ H1(Ω):
∫

Ω
κ(x) grad u · grad v dx +

∫

∂Ω
Ψ(u) v dS =

∫

Ω
f v dx ∀v ∈ H1(Ω) , (1.8.0.8)

with a function Ψ : R → R. Also here the growth of Ψ has to be moderate in order to ensure that (1.8.0.8)

is well-defined. y

5.2.3 Non-Linear Boundary Value Problems

In Section 1.5 we started from linear variational problems that we had derived from quadratic minimization

problems, applied integration by parts and, thus, could extract PDEs and, in some cases, natural boundary

conditions satisfied by the solutions. This approach carries over to many general (non-linear) variational

equations, at least on the formal level. In this section we pursue it for the variational equations derived

before.

EXAMPLE 5.2.3.1 (Two-point boundary value problem for tense elastic string) We recall the varia-

tional equation satisfied by the function u ∈ H1(]a, b[), u(a) = ua, u(b) = ub, whose graph describes

the shape of an elastic string under gravity loading

b∫

a

1

c
σ(x)

(√
1 + |u′∗(x)|2 − c

)
u′∗(x)√

1 + |u′∗(x)|2
v′(x) + gρ(x)v(x)dx = 0 ∀v ∈ H1

0(]a, b[) .

(5.2.2.5)

As in Section 1.5.1, we have to assume extra smoothness of u, σ, and ρ. We take for granted that

u ∈ C2([a, b]) , σ ∈ C1([a, b]), and ρ ∈ C0([a, b]) . (5.2.3.2)

Recall the integration by parts formula in 1D

b∫

a

f (ξ)v′(ξ)dξ = −
b∫

a

f ′(ξ)v(ξ)dξ + ( f (b)v(b)− f (a)v(a))︸ ︷︷ ︸
boundary terms

∀ f , v ∈ C1
pw([a, b]) . (1.5.1.8)

Along the lines of § 1.5.1.9, we apply (1.5.1.8) to remove the derivative from the test function v in the

variational equation (5.2.2.5) and arrive at

b∫

a

− d

dx

{
1

c
σ(x)

(√
1 + |u′∗(x)|2 − c

)
u′∗(x)√

1 + |u′∗(x)|2

}
v(x) + gρ(x)v(x)dx = 0 (5.2.3.3)

for all v ∈ H1
0(]a, b[). No boundary terms emerge, because the test function v vanishes in the endpoints

x = a, b of the interval of integration. Next, we appeal to the fundamental lemma of the calculus of varia-

tions
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Lemma 1.5.1.13. fundamental lemma of the calculus of variations

Let f ∈ C0
pw([a, b]), −∞ < a < b < ∞, satisfy

∫ b

a
f (ξ)v(ξ)dξ = 0 ∀v ∈ C∞([a, b]), v(a) = v(b) = 0 .

Then f ≡ 0.

We let the term in curly brackets { } in the integral

b∫

a

{
− d

dx

(
1

c
σ(x)

(√
1 + |u′∗(x)|2 − c

)
u′∗(x)√

1 + |u′∗(x)|2

)
+ gρ(x)

}
v(x)dx = 0

play the role of f in Lemma 1.5.1.13 and conclude that u will satisfy the non-linear ordinary differential

equation

d

dx

(
1

c
σ(x)

(√
1 + |u′∗(x)|2 − c

)
u′∗(x)√

1 + |u′∗(x)|2

)
= gρ(x) in ]a, b[ . (5.2.3.4)

It has to be supplemented with the essential boundary conditions

u(a) = ua and u(b) = ub

and then it defines the two-point boundary value problem that the shape-defining function for a tense

elastic string in equilibrium solves. y

EXAMPLE 5.2.3.5 (BVP for shape of elastic membrane) In Ex. 5.2.2.12 we obtained that the function

u : Ω→ R whose graph over Ω ⊂ R2 gives the shape of an elastic membrane in equilibrium and fixed

over ∂Ω satisfies the variational equation

∫

Ω
σ(x)A(grad u(x)) grad u(x) · grad v(x)dx = −

∫

Ω
g ρ(x)v(x)dx ∀v ∈ H1

0(Ω) , (5.2.3.6)

where A ∈ R2,2 as defined in (5.2.2.15) is a smooth function of its vector argument. Now we take the cue

from the considerations pursued in Section 1.5.3 for linear variational equations. As in Ass. 1.5.3.1 we

impose extra smoothness and demand

u ∈ C2(Ω) , σ ∈ C1(Ω) , and ρ ∈ C0(Ω) . (5.2.3.7)

Thus, all the following derivatives can be understood in a classical pointwise sense. Then we use Green’s

first formula

Theorem 1.5.2.7. Green’s first formula

For all vector fields j ∈ (C1
pw(Ω))d and functions v ∈ C1

pw(Ω) holds

∫

Ω
j · grad v dx = −

∫

Ω
div j v dx +

∫

∂Ω
j · n v dS . (5.2.3.8)

to shift all derivatives off the test function v, turning grad into −div, which converts the variational equa-

tion from (5.2.3.7) into

∫

Ω
−div(σ(x)A(grad u(x) grad u(x))v(x)dx = −

∫

Ω
g ρ(x)v(x)dx ∀v ∈ H1

0(Ω) . (5.2.3.9)
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We do not incur boundary terms in the course of this “integration by parts”, because v|∂Ω = 0. The final

step is based on anoher “fundamental lemma of calculus of variations”.

Lemma 1.5.3.4. Fundamental lemma of calculus of variations in higher dimensions

If f ∈ L2(Ω) satisfies

∫

Ω
f (x)v(x)dx = 0 ∀v ∈ C∞

0 (Ω) ,

then f ≡ 0 can be concluded.

Applying it to (5.2.3.9) shows that u satisfies the partial differential equation

div(σ(x)A(grad u(x)) grad u(x)) = g ρ(x) in Ω , (5.2.3.10)

to which we add the essential boundary conditions u|∂Ω = d to obtain the complete boundary value

problem. y

EXAMPLE 5.2.3.11 (PDEs arising from the minimization of integral functionals) In Ex. 5.2.2.6 we

derived the variational equation for u ∈ C1
pw(Ω)

∫

Ω
D2F(x, grad u(x), u(x))grad v(x) +D3F(x, grad u(x), u(x))v(x)dx = 0 ∀v ∈ C1

pw(Ω) ,

(5.2.3.12)

with F : Ω×Rd ×R → R continuously differentiable and D2F, D3F its partial derivatives. The following

arguments rely on extra smoothness of u: u ∈ C2(Ω) is assumed.

Again, we use Thm. 1.5.2.7 to remove the grad from the test function v and convert it into a −div. This

time boundary terms will be introduced, because the test function does not vanish on ∂Ω:

∫

Ω
−div(D2F(x, grad u(x), u(x)))⊤v(x) +D3F(x, grad u(x), u(x))v(x)dx+

∫

∂Ω
D2F(x, grad u(x), u(x))n(x)v(x)dS(x) = 0 ∀v ∈ C1

pw(Ω) .

We follow the two-step method from Ex. 1.5.3.11.

➊ First we test with v ∈ C∞
0 (Ω), which permits us to ignore the boundary term and extract the partial

differential equation

−div(D2F(x, grad u(x), u(x)))⊤ = D3F(x, grad u(x), u(x)) in Ω . (5.2.3.13)

➋ Then we test with v ∈ C∞(Ω) ad take into account (5.2.3.13), which reveals the natural boundary

conditions, cf. Section 1.9,

D2F(x, grad u(x), u(x))n(x) = 0 on ∂Ω . (5.2.3.14)

y

EXAMPLE 5.2.3.15 (Minimal surface differential equation, Ex. 5.2.2.24 cnt’d) In Ex. 5.2.2.24 we

found the following variational problem that is solved by functions over Ω ⊂ R2 whose graph had min-

imal area:

u ∈ C1
pw(Ω) ,

u|∂Ω = d
:
∫

Ω

grad u(x) · grad v(x)√
1 + ‖grad u(x)‖2

2

dx = 0 ∀v ∈ C1
pw,0(Ω) . (5.2.2.29)
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As usual, to disclose the PDE connected with (5.2.2.29) we first assume extra smoothness, u ∈ C2(Ω),
and then resort to Thm. 1.5.2.7 to remove the grad from the test function v. Thus we get

∫

Ω

−div


 grad u(x)√

1 + ‖grad u(x)‖2
2


 v(x)dx = 0 ∀v ∈ C1

pw,0(Ω) . (5.2.3.16)

Boundary terms do not appear, because v|∂Ω = 0. Then Lemma 1.5.3.16 gives us the PDE

div


 grad u(x)√

1 + ‖grad u(x)‖2
2


 = 0 in Ω . (5.2.3.17)

The essential boundary conditions u|∂Ω = d are immediate from (5.2.2.29). y

Review question(s) 5.2.3.18 (General variational equations)

(Q5.2.3.18.A) As boundary value problem satisfied by a sufficiently smooth minimizer of

J(u) :=
∫

Ω
F(x, grad u(x), u(x))dx , F : Ω×R2 ×R → R smooth ,

we obtained

−div(D2F(x, grad u(x), u(x)))⊤ = D3F(x, grad u(x), u(x)) in Ω ⊂ R2 ,

D2F(x, grad u(x), u(x))n(x) = 0 on ∂Ω .

Jot down the boundary value problems resulting from the following choices for F:

1. F(x, g, v) := g⊤Ag for some s.p.d. A ∈ R2,2,

2. F(x, g, v) := ‖g‖2
2 + c(x)v2 for a uniformly positive continuous function c : Ω→ R,

3. F(x, g, v) = cosh(v),

4. F(x, g, v) :=
√

1 + ‖g‖4
2

(Q5.2.3.18.B) [p-Laplacian] For Ω ⊂ R2 a bounded domain and 1 < p < ∞ we consider the mini-

mization problem

u∗ = argmin
v∈C1

pw,0(Ω)

J(v) , J(v) :=
∫

Ω
‖grad v‖p dx . (5.2.3.19)

1. Argue, why (5.2.3.19) has a unique solution.

2. Derive a variational equation solved by u∗.

3. State the boundary value problem that has u∗ as a solution.

△

5.3 Galerkin Discretization of Non-Linear BVPs

5.3.1 Abstract Galerkin Discretization of Non-Linear Variational Problems

The idea of Galerkin discretization can directly be applied to general variational problems

u ∈ V̂: a(u; v) = 0 ∀v ∈ V0 . (5.2.2.21)
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as they are defined in Def. 5.2.2.20. Remember that V̂ is an affine space contained in an “hold-all” vector

space V and has the structure V̂ = u0 + V0 with an “offset function” u0 ∈ V.

➊ First step, cf. Section 2.2.1: Replace the test space V0 in (5.2.2.21) with a finite-dimensional subspace

V0,h ⊂ V0 and the trial space V̂ with V̂h := u0,h + V0,h, where u0,h ∈ V is an approximation of u0. This

yields the discrete variational problem

uh ∈ V̂h := u0,h + V0,h: a(uh; vh) = 0 ∀vh ∈ V0,h , (5.3.1.1)

or, equivalently, using the discrete offset function,

wh ∈ V0,h: a(uh,o + wh; vh) = 0 ∀vh ∈ V0,h ⇒ uh = uh,0 + wh . (5.3.1.2)

➋ Second step, cf. Section 2.2.2: Choose an ordered basis B :=
{

b1
h, . . . , bN

h

}
, N := dim V0,h, of V0,h,

and replace the

✦ trial function uh in the discrete variational problem (5.3.1.1) with a basis expansion:

uh = uh,0 + µ1b1
h + µ2b2

h + · · ·+ µNbN
h , µj ∈ R ,

✦ and the test function vh with individual basis functions bi
h, i = 1, . . . , N, which is justified by

Lemma 2.2.2.3, because a(·; ·) is linear in the second argument.

Second step of Galerkin discretization of variational problem

discrete variational problem

uh ∈ V̂h: a(uh; vh) = 0 ∀vh ∈ V0,h

Choosing basis Bh−−−−−−−−−→ (Non-linear) system of equations

F(~µ) = 0 ,

(5.3.1.4)

with coefficient vector: ~µ = [µ1, . . . , µh]
⊤ ∈ RN ,

(F(~µ))i = a(uo,h +
N

∑
j=1

µjb
j
h; bi

h) , i = 1, . . . , N .

(5.3.1.5)

EXAMPLE 5.3.1.6 (Lagrangian finite element method for 2nd-order non-linear variational equations)

For a polygonal Ω ⊂ R2 we consider the variational equation derived in Ex. 5.2.2.6:

u ∈ C1
pw(Ω:

a(u; v) :=
∫

Ω
D2F(x, grad u(x), u(x))grad v(x) +D3F(x, grad u(x), u(x))v(x)dx = 0

∀v ∈ C1
pw(Ω) , (5.3.1.7)

As discussed in Rem. 5.2.2.11, for “badly behaved” F : Ω×R2 ×R it may not be possible to pose this

variational equations on the Sobolev space H1(Ω). Therefore, the trial/test space V0 := C1
pw(Ω) is used

in (5.3.1.8).

The Lagrangian finite element spaces S0
p(M) (→ Def. 2.6.1.1) of polynomial degree p ∈ N,M a trian-

gulation of Ω, were introduced in Section 2.6 as finite-dimensional subspaces of H1(Ω). Yet, obviously,

the finite-element functions enjoy much more regularity and we have

S0
p(M) ⊂ C1

pw(Ω) .
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This makes possible using S0
p(M) for the Galerkin discretization of (5.3.1.8) even for “badly behaved”

functions F:

uh ∈ S0
p(M):
∫

Ω
D2F(x, grad uh(x), uh(x))grad vh(x) +D3F(x, grad uh(x), uh(x))vh(x)dx = 0

∀vh ∈ S0
p(M) , (5.3.1.8)

y

5.3.2 Iterative Methods in Function Space

The (non-linear) system of equations F(~µ) = 0 with F : D ⊂ RN → RN,~µ ∈ D, can be solved with the

iterative methods discussed in [NCSE]. However, in this section an alternative approach will be presented:

Idea: Design the iterative method for (5.2.2.21) before discretization!

Refer to [NCSE] for explanations concerning the concept and classification of iterative methods.

However, also in the current setting two caveats have to be raised:

! In many cases iterative method will only converge, if the initial guess is chosen “sufficiently”

close to the (desired) solution.

! Solutions of (general) discrete variational problems need not be unique: the (approximate)

solution computed by a convergent iterative method may depend on the initial guess.

5.3.2.1 Fixed-Point Iterations

One often faces general variational problem of the following structure, Ω ⊂ Rd a domain,

u ∈ V̂ ⊂ H1(Ω):
∫

Ω
A(x, grad u(x)) grad u(x) · grad v(x) + c(u(x))u(x)v(x)dx

=
∫

Ω
f (x)v(x)dx ∀v ∈ V0 ⊂ H1(Ω) . (5.3.2.1)

Examples are

• the thin tense elastic membrane variational equation: Find u ∈ H1(Ω), u|∂Ω = d, such that

∫

Ω
σ(x)A(grad u(x)) grad u(x) · grad v(x)dx = −

∫

Ω
g ρ(x)v(x)dx ∀v ∈ H1

0(Ω) ,

(5.2.2.17)

where A is defined in (5.2.2.15).

• the two-dimensional minimal surface graph variational equation

u ∈ C1
pw(Ω) ,

u|∂Ω = d
:
∫

Ω

1

1 + ‖grad u(x)‖2
2

grad u(x) · grad v(x)dx = 0 ∀v ∈ C1
pw,0(Ω) .

(5.2.2.29)
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Idea: Replace sufficiently many us with previous iterates to obtain a linear variational prob-

lem in every step of the iteration.

Elaborating this for (5.3.2.1) and writing u(k) ∈ V̂, k ∈ N0, for the iterates, we define a 1-point iteration

as follows:

Linearizing fixed-point iteration for (5.3.2.1)

Given u(k) compute u(k+1) as solution of the linear variational equation

u(k+1) ∈ V̂ ⊂ H1(Ω):
∫

Ω
A(x, grad u(k)(x)) grad u(k+1)(x) · grad v(x) + c(u(k)(x))u(k+1)(x)v(x)dx

=
∫

Ω
f (x)v(x)dx ∀v ∈ V0 ⊂ H1(Ω) . (5.3.2.3)

A unique solution of (5.3.2.3) will exist, if A(x, grad u(k)) is uniformly positive definite and c(u(k)) ≥ 0,

see Section 1.4.3.

5.3.2.2 Newton’s Method

We directly apply Newton’s method to the variational equation (5.2.2.21). In other words, we carry out the

following steps in this order:

1. Linearization of the variational equation (“Newton in function space”),

2. Galerkin discretization of linearized problems.

Recall the idea of Newton’s method [NCSE] for the iterative solution of F(~ξ) = 0, F : D ⊂ RN 7→ RN

smooth:

Idea: local linearization:

Given~ξ(k) ∈ D ➣ ~ξ(k+1) as zero of affine linear model function

F(~ξ) ≈ F̃(~ξ) := F(~ξ(k)) +DF(~ξ(k))(~ξ −~ξ(k)) .

Newton iteration:

~ξ(k+1) :=~ξ(k)−DF(~ξ(k))−1F(~ξ(k)) , [ if DF(~ξ(k)) regular ] (5.3.2.4)

Now we adapt this very idea to the general variational equation

u ∈ V̂ := u0 + V0: a(u; v) = 0 ∀v ∈ V0 , (5.2.2.21)
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Idea again: local linearization:

Given u(k) ∈ V̂ ➣ u(k+1) from

w ∈ V0: a(u(k); v) +Dua(u
(k); v)w = 0 ∀v ∈ V0 ,

u(k+1) := u(k) + w .
(5.3.2.5)

The meaning of DF(~ξ(k)) in (5.3.2.4) is clear: it stands for the Jacobian of F evaluated at~ξ(k). But what

is the meaning of Dua(u(k); v)w in (5.3.2.5)?

Remember the “definition” of the Jacobian (for sufficiently smooth F)

DF(~ξ)~µ = lim
t→0

F(~ξ + t~µ)− F(~ξ)

t
, ~ξ ∈ D, ~µ ∈ RN . (5.3.2.6)

Our policy is to try this “definition” in the spirit of directional derivatives as introduced in the calculus of

variations, see Section 5.2.1, (5.2.1.11),

Dua(u
(k); v)w = lim

t→0

a(u + tw; v)− a(u; v)

t
, u(k) ∈ V̂ , v, w ∈ V0 . (5.3.2.7)

We recall a fact that we have come across in a similar form when computing directional derivatives of

functionals in the calculus of variations approach in Section 5.2.1: For a sufficiently smooth mapping the

directional derivative is linear in the direction (variation), see § 5.2.2.18.

Thus, in the current context the mapping we need to “differentiate” is u 7→ {v 7→ a(u; v)}, that

is, a mapping from the trial space V̂ into the space of linear forms (→ Def. 0.3.1.4) on the test

space V0 . Thus, its partial derivative Dua in some u ∈ V can be expected to be a linear mapping

V0 → {linear forms on V0}:

Dua : V̂ → L(V0,L(V0, R)) ,

where we wrote L(X, Y) for the vector space of (bounded) linear mappings between vector spaces X and

Y. Nested linear mappings can be viewed as one bilinear mapping:

Directional derivative of a variational form

If (u, v) 7→ a(u; v) depends smoothly on u, then

(v, w) 7→ Dua(u
(k); v)w is a bilinear form V0 ×V0 7→ R.

As a consequence, the equation to be solved for the Newton update w ∈ V0,

w ∈ V0: Dua(u
(k); v)w = −a(u(k); v) ∀v ∈ V0 , (5.3.2.9)

is a linear variational equation in the sense of Def. 1.4.1.6.

EXAMPLE 5.3.2.10 (Derivative of a semi-linear u 7→ a(u; ·)) We revisit the non-linear variational prob-

lem (1.8.0.8) from Ex. 1.8.0.6, see also Ex. 5.2.2.32 with

a(u; v) :=
∫

Ω
κ(x) grad u · grad v dx

︸ ︷︷ ︸
=: b(u,v)

+
∫

∂Ω
Ψ(u) v dS

︸ ︷︷ ︸
=: c(u;v)

, u, v ∈ X ⊂ H1(Ω) . (5.3.2.11)
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This example demonstrates how to actually compute Dua(u(k); v)w needed in (5.3.2.5).

Evidently, the derivative Dua(u; v)w from (5.3.2.7) is linear in the sense that

Du(b(u, v) + c(u; v))w = Dub(u, v)w +Duc(u; v)w ∀v, w ∈ V0 .

Hence we can separately compute the derivative of the two terms contributing to a:

First, we tackle the bilinear term b(·, ·), for which the derivative is straightforward, because for every

bilinear form (→ Def. 0.3.1.4) b : V0 ×V0 7→ R holds

Dub(u, v)w = lim
t→0

b(u + tw, v)− b(u, v)

t
= b(v, w) , (5.3.2.12)

analogous the computations of Section 1.4.1 that yielded the linear variational problem associated with a

quadratic minimization problem. By the way, (5.3.2.12) can also be regarded as another incarnation of the

fact that the derivative of a linear mapping is constant: Dub(u, v)w does not depend on u!

Next, apply formula (5.3.2.7) to the non-linear boundary term c(·, ·) in (5.3.2.11), that is, here

c(u; v) :=
∫

∂Ω
Ψ(u)v dS , u, v ∈ X .

c(u + tw; v)− c(u; v) =
∫

∂Ω
(Ψ(u + tw)−Ψ(u))v dS , u, v ∈ X .

Assume Ψ : R 7→ R is smooth with derivative Ψ′ and employ Taylor expansion for fixed w ∈ X and

t→ 0

c(u + tw; v)− c(u; v) =
∫

∂Ω
tΨ′(u)wv dS + O(t2) .

Duc(u; v)w = lim
t→0

c(u + tw; v)− c(u; v)

t
=
∫

∂Ω
Ψ′(u)w v dS .

These manipulations rely on techniques already practiced in Section 5.2.2.

Adding the directional derivatives of b(·, ·) and c(·; ·) we obtain the final result

Dua(u; v)w =
∫

Ω
κ(x) grad w(x) · grad v(x)dx +

∫

∂Ω
Ψ′(u)w v dS .

We have obtained a continuous, symmetric bilinear form (w, v) 7→ Dua(u; v)w on H1(Ω)× H1(Ω)! y

EXAMPLE 5.3.2.13 (Linearization of elastic membrane variational equation) In Ex. 5.2.2.12 we de-

rived the variational equation (5.2.2.17) describing the equilibrium shape of an elastic membrane under

gravitational loading in the graph model: Seek u ∈ V̂ := { f ∈ H1(Ω) : f |∂Ω = d}, such that

∫

Ω
σ(x)A(grad u(x)) grad u(x) · grad v(x)dx = −

∫

Ω
g ρ(x)v(x)dx ∀v ∈ H1

0(Ω) , (5.2.2.17)

A(

[
g1

g2

]
) :=

1

2L




(√
1 + g2

1 − c
) 1√

1 + g2
1

0

0
(√

1 + g2
2 − c

) 1√
1 + g2

2




,
L > 0,
c > 0 .

(5.2.2.15)

Hence in this case we deal with

a(u; v) :=
∫

Ω
σ(x)A(grad u(x)) grad u(x) · grad v(x)dx +

∫

Ω
g ρ(x)v(x)dx . (5.3.2.14)
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The second summand in a(u; v) does not depend on u and, hence, can be neglected when computing

Dua(u; v)w. This means that we can focus on the reduced expression

ã(u; v) =
∫

Ω
σ(x)A(grad u(x)) grad u(x) · grad v(x)dx . (5.3.2.15)

As usual, we employ nested Taylor expansions, to expand

ã(u + tw; v) =
∫

Ω
σ(x)A(grad u(x) + t grad w(x))(grad u(x) + t grad w(x)) · grad v(x)dx

into powers of t up to O(t2) for t→ 0. We see that a Taylor expansion of A(grad u(x) + t grad w(x))
is needed. To that end we exploit the structure of A,

A

([
g1

g2

])
=

[
ψ(g1) 0

0 ψ(g2)

]
with ψ(ζ) :=

1

2L

(
1− c√

1 + ζ2

)
. (5.3.2.16)

Then the expansion of g 7→ A(g) is immediate: For t→ 0

A(g + tq) = A(g) + t

[
ψ′(g1)q1 0

0 ψ′(g2)q2

]

︸ ︷︷ ︸
=:DA(g)q

+O(t2) , g =
[ g1

g2

]
, q =

[ q1
q2

]
, (5.3.2.17)

where ψ′(ζ) = − cζ

2L(1 + ζ2)
3/2

.

This enters the expansion

a(u + tw; v) =
∫

Ω

σ(x)
(

A(grad u(x)) + tDA(grad u(x)) grad w(x) + O(t2)
)

(grad u(x) + t grad w(x)) · grad v(x)dx

(5.3.2.18)

= a(u; v) + t
∫

Ω

(DA(grad u(x)) grad w(x)) grad u(x) · grad v(x)+

A(grad u(x)) grad w(x) · grad v(x)dx + O(t2) for t→ 0 .

Using (5.3.2.17), we conclude that

Dua(u; v)w =
∫

Ω

σ(x)

([
ψ′( ∂u

∂x1
(x)) ∂w

∂x1
(x) 0

0 ψ′( ∂u
∂x2

(x)) ∂w
∂x2

(x)

]
grad u(x)+

A(grad u(x)) grad w(x)

)
· grad v(x)dx

=
∫

Ω

σ(x)

( [
ψ′( ∂u

∂x1
(x)) ∂u

∂x1
(x) 0

0 ψ′( ∂u
∂x2

(x)) ∂u
∂x2

(x)

]
+

A(grad u(x))

)
grad w(x) · grad v(x)dx

(5.3.2.19)

Obviously, this expression is linear both in v and w, in agreement with the general statement made above.

Also note that this expression has is a standard bilinear form for s second-order elliptic variational problem

with a u-dependent coefficient tensor marked with green. y
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5.3.3 Galerkin Discretization of Linearized Variational Equations

The iterative methods in function space presented in the previous Section 5.3.2 both entail the solution

of a (generalized) linear variational problem (→ Def. 1.4.1.6) in every step. Those are amenable to the

standard Galerkin discretization approach as introduced in Section 2.2. The formulation of the iterations

in the pre-discrete setting of function spaces offers additional freedom compared to applying the same

iterative solution method to the (non-linear) system of equations arising from the Galerkin discretization of

the variational equation.

Step-dependent (adaptive) choice of Galerkin trial/test spaces.

For iterative methods in function space different Galerkin trial/test spaces can be chosen differently

in every step.

For instance, we can exploit this freedom by increasing the resolution of the Galerkin spaces as the

iteration homes in on the solution. This can give a substantial gain in efficiency, because many steps are

carried out only with coarse Galerkin trial/test spaces of low dimension.

§5.3.3.2 (Galerkin discretization for fixed-point method) From Section 5.3.2.1 we resume the discus-

sion of the fixed-point iteration for (5.3.2.1), whose continuous version in function space is the 1-point

iteration defined as

u(k+1) ∈ V̂ ⊂ H1(Ω):
∫

Ω
A(x, grad u(k)(x)) grad u(k+1)(x) · grad v(x) + c(u(k)(x))u(k+1)(x)v(x)dx

=
∫

Ω
f (x)v(x)dx ∀v ∈ V0 ⊂ H1(Ω) . (5.3.2.3)

We choose Galerkin test spaces V
(k)
0,h ⊂ V := H1(Ω), k ∈ N0. The notation indicates that they may

depend on k. This may also hold for the offset function u
(k)
0,h ∈ V. A possible choice for V

(k)
0,h is degree p

Lagrangian finite element spaces S0
p(M(k)) built on a sequence of k-dependent meshes.

Thus in the k-th step of the iteration, based on the known previous iterate u
(k−1)
h we have to solve the

discrete variational problem

u
(k)
h ∈ u

(k)
0,h + V

(k)
0,h :

∫

Ω
A(x, grad u

(k−1)
h (x)) grad u

(k)
h (x) · grad vh(x) + c(u

(k−1)
h (x))u

(k)
h (x)vh(x)dx

=
∫

Ω
f (x)vh(x)dx ∀vh ∈ V

(k)
0,h . (5.3.3.3)

Choosing an ordered basis B
(k)
h =

{
b1

k , . . . , b
Nk
k

}
, Nk := dim V

(k)
0,h , of V

(k)
0,h , this becomes the linear

system of equations

M(~µ(k−1))~µ(k) = ~ϕ(~µ(k−1)) (5.3.3.4)
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with u
(k)
h = u

(k)
0,h +

Nk

∑
ℓ=1

(
~µ(k)

)
ℓ
bℓk , u

(k−1)
h = u

(k−1)
0,h +

Nk−1

∑
ℓ=1

(
~µ(k−1)

)
ℓ
bℓk−1 ,

M(~µ(k−1)) :=



∫

Ω

A(x, grad u
(k−1)
h (x)) grad b

j
k(x) · grad bi

k(x)+

c(u
(k−1)
h )b

j
k(x) bi

k(x)dx




Nk

i,j=1

∈ RNk,Nk ,

ϕ(~µ(k−1)) :=




∫

Ω
f (x)bi

k(x)dx−
∫

Ω

A(x, grad u
(k−1)
h (x)) grad u

(k)
0,h(x) · grad bi

k(x)+

c(u
(k−1)
h )u

(k)
0,h(x) bi

k(x)dx




Nk

i=1

∈ RNk .

y

§5.3.3.5 (Galerkin discretization for Newton’s method) Now we consider the discrete version of the

Newton method in function space presented in Section 5.3.2.2. Also in this case we can choose Galerkin

trial and test spaces V̂
(k)
h := u

(k)
0,h + V

(k)
0,h ⊂ V

(k)
h and V

(k)
0,h ⊂ V

(k)
h depending on the iteration number

k ∈ N. This yields the linear discrete variational equation for the Newton update wh ∈ V̂
(k)
h :

wh ∈ V
(k)
0,h : Dua(u

(k−1)
h ; vh)wh = −a(u(k−1)

h ; vh) ∀vh ∈ V
(k)
0,h , (5.3.3.6)

where u
(k−1)
h ∈ V̂

(k−1)
h is the known iterate from the previous step. Then the next iterate is computed

as

u
(k)
h := P

(k)
h u

(k−1)
h + wh . (5.3.3.7)

Note that owing to the fact that V̂
(k−1)
h 6⊂ V̂

(k)
h we may need an extra projection-type operator

P
(k)
h : V → V̂

(k)
h .

Choosing an ordered basis B
(k)
h :=

{
b1

k , . . . , b
Nk
k

}
, Nk := dim V

(k)
0,h , for each k, following Section 2.2.2

the linear discrete variational equation (5.3.3.6) can be converted into the equivalent linear system of

equations.

M(~µ(k−1))~ω = ~ϕ(~µ(k−1)) , (5.3.3.8)

with wh =
Nk

∑
ℓ=1

(~ω)ℓb
ℓ
k , u

(k−1)
h = u

(k−1)
0,h +

Nk−1

∑
ℓ=1

(
~µ(k−1)

)
ℓ
bℓk−1 ,

M(~µ(k−1)) :=
[
Dua(u

(k−1)
h ; bi

k)b
j
k

]Nk

i,j=1
∈ RNk,Nk , ~ϕ(~µ(k−1)) :=

[
−a(u(k−1)

h ; bi
k)
]Nk

i=1
∈ RNk .

The next iterate~µ(k) ∈ RNk is computed according to

Nk

∑
ℓ=1

(
~µ(k)

)
ℓ
bℓk = P

(k)
h u

(k−1)
h + wh − u

(k)
0,h . (5.3.3.9)

y

EXAMPLE 5.3.3.10 (Galerkin discretization and Newton’s method for elastic membrane model,

Ex. 5.3.2.13 cnt’d) The Galerkin discretization of the elastic membrane non-linear variational equation,

seek u ∈ V̂ :=
{

f ∈ H1(Ω) : f |∂Ω = d
}

such that
∫

Ω
σ(x)A(grad u(x)) grad u(x) · grad v(x)dx = −

∫

Ω
g ρ(x)v(x)dx ∀v ∈ H1

0(Ω) , (5.2.2.17)
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A defined in (5.2.2.15), naturally relies on Lagrangian finite element spaces. Given a family of meshes

(Mk)k∈N0
, in the k-th step of the Newton iteration we choose

V
(k)
h = S0

p(Mk) , V
(k)
h,0 := S0

p,0(Mk) , (5.3.3.11)

and the offset function u
(k)
0,h ∈ S0

p(Mk) with minimal support and based on interpolating d ∈ C0(∂Ω) on

∂Ω, generalizing the construction of Ex. 2.7.6.5.

As projection operator P
(k)
h in (5.3.3.7) we may choose the nodal interpolation operator Ip onto S0

p(Mk)

introduced in § 3.3.5.2, (3.3.5.3): P
(k)
h := Ip : C0(Ω)→ S0

p(Mk).

A special case is that of nested meshes as introduced in Ex. 3.1.4.3,

Mk is a refinement of Mk−1 =⇒ S0
p(Mk−1) ⊂ S0

p(Mk) .

In this case we can dispense with the operator P
(k)
h , that is, set it to the identity mapping. y

Review question(s) 5.3.3.12 (Galerkin discretization and iterative solution of non-linear variational

equations)

(Q5.3.3.12.A) For a bounded domain Ω ⊂ R2 and f ∈ L2(Ω) consider the following semi-linear varia-

tional equation with a cubic non-linearity.

u ∈ H1(Ω):
∫

Ω
grad u(x) · grad v(x) + u3(x)v(x)dx =

∫

Ω
f (x)v(x)dx ∀v ∈ H1(Ω) .

(i) Formulate a suitable fixed-point iteration in function space.

(ii) Derive the associated Newton iteration in function space.

(Q5.3.3.12.B) We opt for the direct Galerkin discretization of the variational equation

u ∈ V0: a(u; v) = 0 ∀v ∈ V0 ,

based on the discrete trial/test space V0,h ⊂ V0 equipped with an ordered basis Bh := {b1
h, . . . , bN

h },
N := dim V0,h.

State the Newton iteration for the resulting system of equations in RN.

(Q5.3.3.12.C) We perform a Newton iteration in function space with subsequent Galerkin discretization

for the variational equation

u ∈ H1
0(Ω) : a(u; v) = 0 ∀v ∈ H1

0(Ω) .

As Galerkin trial/test spaces we use S0
1,0(Mk) in the k-th step of the iteration, k ∈ N0, whereMk is a

mesh of Ω, which may depend on k. The standard nodal basis is used.

(i) State the discrete variational problems for the Newton updates.

(ii) Describe the complete Newton iteration for the basis expansion coefficient vectors. In particular,

make a proposal for the operators P
(k)
h in

u
(k)
h := P

(k)
h (u

(k−1)
h + wh) . (5.3.3.7)

△
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Chapter 6

Numerical Integration – Single Step Methods

In this chapter we are concerned with ordinary differential equations (ODEs), the special case of a

differential equation whose unknown is a function,

(i) which depends on a single independent variable often representing time in models,

(ii) and which takes values in a fixed finite-dimensional space.

Remember that second-order elliptic PDEs that we studied in Chapter 1 had to be supplemented with

boundary conditions in order to obtain a well-posed boundary-value problem. Similarly, ODEs have to

be supplied with with so-called initial values in order to arrive at meaningful (well-posed) initial-value

problem (IVP), for which we can expect existence and uniqueness of solutions. Hence, this chapter is

devoted to the derivation and analysis of numerical methods for the approximate solution of initial-value

problems for ordinary differential equations.

Remark 6.0.0.1 (Why “numerical integration”?) For historical reasons the approximate solution of initial

value problems for ordinary differential equations is called “Numerical Integration”, because solving on

ODE was often referred to as “integrating it”. y
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equations (ODEs) is indispensable for understanding the construction and properties of numerical

methods. Relevant information can be found in [STRLN09].

Books dedicated to numerical methods for ordinary differential equations:

• [DEB02] excellent textbook, but geared to the needs of students of mathematics.

• [HNW93] and [HAW91] : the standard reference.

• [HLW02]: wonderful book conveying deep insight, with emphasis on mathematical concepts.

6.1 Initial-Value Problems (IVPs) for Ordinary Differential Equations

(ODEs)

Video tutorial for Section 6.1: Initial-Value Problems (IVPs) for Ordinary Differential Equations

(ODEs): (63 minutes) Download link, tablet notes

In this section we introduce notations and fundamental concepts, present a few examples of models

involving ODEs and briefly review the relevant mathematical theory.

6.1.1 Ordinary Differential Equations (ODEs)

§6.1.1.1 (Terminology and notations related to ordinary differential equations) In our parlance, a

(first-order) ordinary differential equation (ODE) is an equation of the form

ẏ :=
dy

dt
(t) = f(t, y(t)) , (ODE)

with

☞ a (continuous) right hand side function (r.h.s) f : I × D→ RN of time t ∈ R and state y ∈ RN,

☞ defined on a (finite) time interval I ⊂ R, and state space D, which is some sub-set of RN:

D ⊂ RN, N ∈ N.

✎ Notation (due to Newton): dot ˙ =̂ (total) derivative with respect to time t

An ODE is called autonomous, if the right-hand-side function f does not depend on time: f = F(y).

In the context of mathematical modeling the state vector y ∈ RN is supposed to provide a complete (in

the sense of the model) description of a system. In a sense, “state space” is a synonym for “configu-

ration space” introduced in Notion 1.2.1.1. Then (ODE) models a finite-dimensional dynamical system.

Examples will be provided below, see Ex. 6.1.2.1, Ex. 6.1.2.5, and Ex. 6.1.2.7.

For N > 1 ẏ = f(t, y) can be viewed as a system of ordinary differential equations:

ẏ = f(t, y) ⇐⇒




ẏ1
...

ẏN


 =




f1(t, y1, . . . , yN)
...

fN(t, y1, . . . , yN)


 .
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Definition 6.1.1.2. Solution of an ordinary differential equation

A solution of the ODE ẏ = f(t, y) with continuous right hand side function f is a continuously

differentiable function “of time t” y : J ⊂ I → D, defined on an open interval J, for which ẏ(t) =
f(t, y(t)) holds for all t ∈ J (=̂ “pointwise”).

A solution describes a continuous trajectory in state space, a one-parameter family of states, parameter-

ized by time.

It goes without saying that smoothness of the right hand side function f is inherited by solutions of the

ODE:

Lemma 6.1.1.3. Smoothness of solutions of ODEs

Let y : I ⊂ R → D be a solution of the ODE ẏ = f(y) on the time interval I.

If f : D → RN is r-times continuously differentiable with respect to both arguments, r ∈ N0, then

the trajectory t 7→ y(t) is r + 1-times continuously differentiable in the interior of I.

y

§6.1.1.4 (Scalar autonomous ODE: Solution by principals) We consider scalar ODEs, namely (ODE)

in the case N = 1, and, in particular ẏ = f (y) with f : D ⊂ R → R, D an interval.

We embark on formal calculations. Assume that f is continuous and f (t) 6= 0 for all t ∈ D. Further,

suppose that we know a principal F : D→ R of 1
f , that is, a function y 7→ F(y) satisfying dF

dy = 1
f on D.

Then, by the chain rule, every solution y : I ⊂ R → R of ẏ = f (y) also solves

d

dt
F(y(t)) =

1

f (y(t))
ẏ(t) = 1 , t ∈ D . ⇔ F(y(t)) = t− t0 for some t0 ∈ R . (6.1.1.5)

We also know that F is monotonic and, thus, possesses an inverse function F−1. Integrating (6.1.1.5) and

applying the fundamental theorem of calculus, we find

y(t) = F−1(t− t0) for some t0 ∈ I . (6.1.1.6)

This formula describes a one-parameter family of functions (t0 is the parameter), all of which provide a

solution of ẏ = f (y) on a suitable interval.

A particularly simple case is f (y) = λy + c, λ, c ∈ R, the scalar ODE ẏ = λy + c. Following the steps

outlined above, we calculate the solution

[
F(y) =

1

λ
log(λy + x) ⇒

]
y(t) =

1

λ

(
eλ(t−t0) − c

)
, t ∈ R . (6.1.1.7)

y

§6.1.1.8 (Linear ordinary differential equations) Now we take a look at the simplest class of ODEs,

which is also the most important.

Definition 6.1.1.9. Linear first-order ODE

A first-order ordinary differential equation ẏ = f(t, y), as introduced in § 6.1.1.1 is linear, if

f(t, y) = A(t)y , A : I → RN,N a continuous function . (6.1.1.10)
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Lemma 6.1.1.11. Space of solutions of linear ODEs

The set of solutions y : I → RN of (6.1.1.10) is a vector space.

Proof. We have to show that, if y, z : I → RN are two solutions of (6.1.1.10), then so are y + z and αy
for all α ∈ R. This is an immediate consequence of the linearity of the operations of differentiation and

matrix×vector multiplication.
✷

For the scalar case N = 1 (6.1.1.10) can be written as ẏ = a(t)y with a continuous function a : I → R.

In this case, the chain rule immediately verifies that for fixed t0 ∈ I every function

y(t) = C exp

(∫ t

t0

a(τ)dτ

)
, C ∈ R , (6.1.1.12)

is a solution.

If the matrix A ∈ RN,N does not depend on time, (6.1.1.10) is known as a linear ODE with constant co-

efficients: ẏ = Ay. In this case we can choose I = R, and the ODE can be solved by a diagonalization

technique [STRLN09], [NIS02]: If

A = SDS−1 , S ∈ RN,N regular , D = diag(λ1, . . . , λN) ∈ RN,N , (6.1.1.13)

we can rewrite

ẏ = SDS−1y ⇒ ż = Dz with z(t) := S−1y(t) .

We get N decoupled scalar linear equations żℓ = λℓzℓ, ℓ = 1, . . . , N. Returning to y we find that every

solution y : R → RN of ẏ = Ay can be written as

y(t) = S




eλ1t

. . .

eλN t


S−1w for some w ∈ RN . (6.1.1.14)

y

6.1.2 Mathematical Modeling with Ordinary Differential Equations: Examples

Most models of physical systems and phenomena that are continuously changing with time involve ordi-

nary differential equations.

EXAMPLE 6.1.2.1 (Growth with limited resources [AMA83], [HAB02a]) This is an example from

population dynamics with a one-dimensional state space D = R+
0 , N = 1. The interpretation of y :

[0, T] 7→ R is that of the population density of bacteria as a function of time. A scaled, non-dimensional

model is assumed, cf. Rem. 1.2.1.25.

ODE-based model: autonomous logistic differential equations [STRLN09]

ẏ = f (y) := (α− βy) y (6.1.2.2)

✦ y =̂ population density, [y] = 1
m2

➣ ẏ =̂ instantaneous change (growth/decay) of population density

✦ growth rate α− βy with growth coefficients α, β > 0, [α] = 1
s , [β] = m2

s : decreases due to fiercer

competition as population density increases.
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Fig. 294
0 0.5 1 1.5

0

0.5

1

1.5

 t

 y

Solution for different y(0) (α, β = 5)

By the technique from § 6.1.1.4 we can compute a

family of solutions of (6.1.2.2) parameterized by the

initial value y(0) = y0 > 0:

y(t) =
αy0

βy0 + (α− βy0) exp(−αt)
, (6.1.2.3)

for all t ∈ R.

Note: f (y∗) = 0 for y∗ ∈ {0, α/β}, which are the

stationary points for the ODE (6.1.2.2). If y(0) = y∗

the solution will be constant in time.

Note that by fixing the initial value y(0) we can single out a unique representative from the family of

solutions. This will turn out to be a general principle, see Section 6.1.3. y

Definition 6.1.2.4. Autonomous ODE

An ODE of the form ẏ = f(y), that is, with a right hand side function that does not depend on time,

but only on state, is called autonomous.

For an autonomous ODE the right hand side function defines a vector field (“velocity field”) y 7→ f(y) on

state space.

EXAMPLE 6.1.2.5 (Predator-prey model [AMA83],[HLW02],[HAB02a], [DAR06]) We consider the

following model from population dynamics:

Predators and prey coexist in an ecosystem. Without predators the population of prey would be gov-

erned by a simple exponential growth law. However, the growth rate of prey will decrease with increasing

numbers of predators and, eventually, become negative. Similar considerations apply to the predator

population and lead to an ODE model.

ODE-based model: autonomous Lotka-Volterra ODE:

u̇ = (α− βv)u
v̇ = (δu− γ)v

↔ ẏ = f(y) with y =

[
u
v

]
, f(y) =

[
(α− βv)u
(δu− γ)v

]
, (6.1.2.6)

with positive model parameters α, β, γ, δ > 0.
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population densities:

u(t)→ density of prey at time t,
v(t)→ density of predators at time t

Right hand side vector field f for Lotka-Volterra ODE

✄

Solution curves are trajectories of particles carried

along by velocity field f.

(Parameter values for Fig. 295: α = 2, β = 1, δ =
1, γ = 1.)

Fig. 295  u

 v
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α/β

Fig. 296  t
1 2 3 4 5 6 7 8 9 10

 y

0

1

2

3

4

5

6
u = y

1

v = y
2

Solution

[
u(t)
v(t)

]
for y0 :=

[
u(0)
v(0)

]
=

[
4
2

] Fig. 297
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Solution curves for (6.1.2.6)

(Parameter values for Fig. 297, 296: α = 2, β = 1, δ = 1, γ = 1) stationary point
y

EXAMPLE 6.1.2.7 (Heartbeat model → [DEA80]) This example deals with a phenomenological

model from physiology. A model is called phenomenological, if it is entirely motivated by observations

without appealing to underlying mechanisms or first principles.

State of heart described by quantities:
l = l(t) =̂ length of muscle fiber

p = p(t) =̂ electro-chemical potential

Phenomenological model:
l̇ = −(l3 − αl + p) ,
ṗ = βl ,

(6.1.2.8)

with parameters: α =̂ pre-tension of muscle fiber

β =̂ (phenomenological) feedback parameter

This is the so-called Zeeman model: it is a phenomenological model entirely based on macroscopic

observations without relying on knowledge about the underlying molecular mechanisms.

Plots of vector fields for (6.1.2.8) and solutions for different choices of parameters are given next:
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Phase flow for Zeeman model (α = 3,β=1.000000e−01)

Fig. 299
0 10 20 30 40 50 60 70 80 90 100

−3

−2

−1

0

1

2

3
Heartbeat according to Zeeman model (α = 3,β=1.000000e−01)

 time  t

 l/
p

 

 
l(t)
p(t)

Fig. 300
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Fig. 301
0 10 20 30 40 50 60 70 80 90 100

−3

−2

−1

0

1

2

3
Heartbeat according to Zeeman model (α = 5.000000e−01,β=1.000000e−01)

 time  t

 l/
p

 

 
l(t)
p(t)

Observation: α≪ 1 (bottom plots) ➤ ventricular fibrillation, a life-threatening condition. y

EXAMPLE 6.1.2.9 (SIR model for spread of local epidemic [HET00]) The field of epidemiology tries to

understand the spread of contagious diseases in populations. It heavily relies on ODEs in its mathematical

modeling. This example presents a particularly simple model for an epidemic in a large, stable, isolated,

and vigorously mixing homogeneous population.

With respect to the disease we partition the population into three different groups and introduce time-

dependent variables for their fractions ∈ [0, 1]:

(I) S = S(t) =̂ fraction of susceptible persons, who can still contract the disease,

(II) I = I(t) =̂ fraction of infected/infectious persons, who can pass on the disease,

(III) R = R(t) =̂ fraction of recovered/removed persons, who are immune or have died.

These three quantities enter the SIR model named after the group it considers. Besides, the model

involves two crucial model parameters, which have to be determined from data:

1. A parameter β > 0, whose value expresses the probability of transmission, and

2. a parameter r > 0, taking into account how quickly sick people recover or die.

With these notation the ODE underlying the SIR model can be stated as

Ṡ(t) = −βS(t)I(t) , İ(t) = βS(t)I(t)− rI(t) , Ṙ(t) = rI(t) . (6.1.2.10)
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Fig. 302
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✁ Evolution of an epidemic according to the SIR

model (6.1.2.10) for

• β = 0.3, r = 0.1,

• S(0) = 0.99, I(0) = 0.01, R(0) = 0.0
(non-dimensionalized time)

Note that in this case not all people end up infected,

lim
t→∞

S(t) > 0!

y

EXAMPLE 6.1.2.11 (Transient circuit simulation [HAB02a]) [NCSE] and [NCSE] discuss circuit

analysis as a source of linear and non-linear systems of equations, see [NCSE] and [NCSE]. The former

example admitted time-dependent currents and potentials, but dependence on time was confined to be

“sinusoidal”. This enabled us to switch to frequency domain, see [NCSE], which gave us a complex linear

system of equations for the complex nodal potentials. Yet, this trick is only possible for linear circuits. In the

general case, circuits have to be modelled by ODEs connecting time-dependent potentials and currents.

This will be briefly explained now.

The approach is transient nodal analysis, cf. [NCSE], based on the Kirchhoff current law [NCSE], which

reads for the node • of the simple circuit drawn in Fig. 303

iR(t)− iL(t)− iC(t) = 0 . (6.1.2.12)

In addition we rely on known transient constitutive re-

lations for basic linear circuit elements:

resistor: iR(t) = R−1uR(t) , (6.1.2.13)

capacitor: iC(t) = C
duC

dt
(t) , (6.1.2.14)

coil: uL(t) = L
diL

dt
(t) . (6.1.2.15)

Fig. 303

Us(t)

u(t)

R

L

C

We assume that the source voltage Us(t) is given. To apply nodal analysis to the circuit of Fig. 303 we

differentiate (6.1.2.12) w.r.t. t

diR

dt
(t)− diL

dt
(t)− diC

dt
(t) = 0 ,

and plug in the above constitutive relations for circuit elements:

R−1 duR

dt
(t)− L−1uL(t)− C

d2uC

dt2
(t) = 0 .

We continue following the policy of nodal analysis and express all voltages by potential differences between

nodes of the circuit.

uR(t) = Us(t)− u(t) , uC(t) = u(t)− 0 , uL(t) = u(t)− 0 .

6. Numerical Integration – Single Step Methods, 6.1. Initial-Value Problems (IVPs) for Ordinary Differential

Equations (ODEs)

456



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

For this simple circuit there is only one node with unknown potential, see Fig. 303. Its time-dependent

potential will be denoted by u(t) and this is the unknown of the model, a function of time satisfying the

ordinary differential equation

R−1(U̇s(t)− u̇(t))− L−1u(t)− C
d2u

dt2
(t) = 0 .

This is an autonomous 2nd-order ordinary differential equation:

Cü + R−1u̇ + L−1u = R−1U̇s . (6.1.2.16)

The attribute “2nd-order” refers to the occurrence of a second derivative with respect to time.
y

6.1.3 Theory of Initial-Value-Problems (IVPs)

§6.1.3.1 (Initial value problems) We start with an abstract mathematical description that also introduces

key terminology:

A generic Initial value problem (IVP) for a first-order ordinary differential equation (ODE) (→
[STRLN09], [DAR06]) can be stated as: find a function y : I → D that satisfies, cf. Def. 6.1.1.2,

ẏ = f(t, y) , y(t0) = y0 . (6.1.3.2)

• f : I × D 7→ RN =̂ right hand side (r.h.s.) (N ∈ N),

• I ⊂ R =̂ (time)interval ↔ “time variable” t,
• D ⊂ RN =̂ state space/phase space ↔ “state variable” y,

• Ω := I × D =̂ extended state space (of tupels (t, y)),
• t0 ∈ I =̂ initial time, y0 ∈ D =̂ initial state ➣ initial conditions.

The time interval I may be finite or infinite. Frequently, the extended state space is not specified, but as-

sumed to coincide with the maximal domain of definition of f. Sometimes, the model suggests constraints

on D, for instance, positivity of certain components that represent a density. y

§6.1.3.3 (IVPs for autonomous ODEs) Recall Def. 6.1.2.4: For an autonomous ODE ẏ = f(y), that is

the right hand side f does not depend on time t.

Hence, for autonomous ODEs we have I = R and the right hand side function y 7→ f(y) can be regarded

as a stationary vector field (velocity field), see Fig. 295 or Fig. 298.

An important observation: If t 7→ y(t) is a solution of an autonomous ODE, then, for any τ ∈ R, also the

shifted function t 7→ y(t− τ) is a solution.

➣ For initial value problems for autonomous ODEs the initial time is irrelevant and therefore we can

always make the “canonical choice t0 = 0.

Autonomous ODEs naturally arise when modeling time-invariant systems or phenomena. All examples for

Section 6.1.2 belong to this class. y

§6.1.3.4 (Autonomization: Conversion into autonomous ODE) In fact, autonomous ODEs already

represent the general case, because every ODE can be converted into an autonomous one:
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The idea is to include time as an extra N + 1-st component of an extended state vector z(t). This solution

component has to grow linearly ⇔ its temporal derivative must be = 1

z(t) :=

[
y(t)

t

]
=

[
z′

zN+1

]
: ẏ = f(t, y) ↔ ż = g(z) , g(z) :=

[
f(zN+1, z′)

1

]
.

This means żN+1 = 1 and implies zN+1(t) = t + t0, if t0 stands for the initial time in the original non-

autonomous IVP.

➣ We restrict ourselves to autonomous ODEs in the remainder of this chapter. y

Remark 6.1.3.5 (From higher order ODEs to first order systems [DAR06])

An ordinary differential equation of order n ∈ N has the form

y(n) = f(t, y, ẏ, . . . , y(n−1)) . (6.1.3.6)

where, with notations from § 6.1.3.1, f : I × D× · · · × D→ RN is a function of time t and n state argu-

ments.

✎ Notation: superscript (n) =̂ n-th temporal derivative t: dn

dtn

No special treatment of higher order ODEs is necessary, because (6.1.3.6) can be turned into a 1st-order

ODE (a system of size nN) by adding all derivatives up to order n− 1 as additional components to the

state vector. This extended state vector z(t) ∈ Rnd is defined as

z(t) :=




y(t)

y(1)(t)
...

y(n−1)(t)


 =




z1

z2
...

zn


 ∈ RNn: (6.1.3.6) ↔ ż = g(z) , g(z) :=




z2

z3
...

zn

f(t, z1, . . . , zn)




.

(6.1.3.7)

Note that the extended system requires initial values y(t0), ẏ(t0), . . . , y(n−1)(t0):

For ODEs of order n ∈ N well-posed initial value problems need to specify initial values for the first

n− 1 derivatives.

y

§6.1.3.9 (Smoothness classes for right-hand side functions) Now we review results about existence

and uniqueness of solutions of initial value problems for first-order ODEs. These are surprisingly general

and do not impose severe constraints on right hand side functions. Some kind of smoothness of the

right-hand side function f is required, nevertheless and the following definitions describe it in detail.

Definition 6.1.3.10. Lipschitz continuous function (→ [STRLN09])

Let Θ := I ×D, I ⊂ R an interval, D ⊂ RN, N ∈ N, an open domain. A function f : Θ 7→ RN is

Lipschitz continuous (in the second argument) on Θ, if

∃L > 0: ‖f(t, w)− f(t, z)‖ ≤ L‖w− z‖ ∀(t, w), (t, z) ∈ Θ . (6.1.3.11)
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Definition 6.1.3.12. Local Lipschitz continuity (→ [STRLN09])

Let Ω := I × D, I ⊂ R an interval, D ⊂ RN, N ∈ N, an open domain. A functions f : Ω 7→ RN

is locally Lipschitz continuous, if for every (t, y) ∈ Ω there is a closed box B with (t, y) ∈ B such

that f is Lipschitz continuous on B:

∀(t, y) ∈ Ω: ∃δ > 0, L > 0:

‖f(τ, z)− f(τ, w)‖ ≤ L‖z−w‖
∀z, w ∈ D: ‖z− y‖ ≤ δ, ‖w− y‖ ≤ δ, ∀τ ∈ I: |t− τ| ≤ δ .

(6.1.3.13)

The property of local Lipschitz continuity means that the function (t, y) 7→ f(t, y) has “locally finite slope”

in y. y

EXAMPLE 6.1.3.14 (A function that is not locally Lipschitz continuous [STRLN09]) The meaning

of local Lipschitz continuity is best explained by giving an example of a function that fails to possess this

property.

Consider the square root function t 7→
√

t on the closed interval [0, 1]. Its slope in t = 0 is infinite and so

it is not locally Lipschitz continuous on [0, 1].

However, if we consider the square root on the open interval ]0, 1[, then it is locally Lipschitz continuous

there. y

The next lemma gives a simple criterion for local Lipschitz continuity, which can be proved by the mean

value theorem, cf. the proof of [NCSE].

Lemma 6.1.3.15. Criterion for local Liptschitz continuity

If f and Dyf are continuous on the extended state space Ω, then f is locally Lipschitz continuous

(→ Def. 6.1.3.12).

✎ Notation: Dyf =̂ the derivative of f w.r.t. the state variable y, a Jacobian matrix ∈ RN,N as

defined in (0.3.2.16).

The following is the the most important mathematical result in the theory of initial-value problems for ODEs:

Theorem 6.1.3.16. Theorem of Peano & Picard-Lindelöf [AMA83], [STRLN09], [DAR06],

[HAB02a]

If the right hand side function f : Ω 7→ RN is locally Lipschitz continuous (→ Def. 6.1.3.12) then

for all initial conditions (t0, y0) ∈ Ω the IVP

ẏ = f(t, y) , y(t0) = y0 . (6.1.3.2)

has a solution y ∈ C1(J(t0, y0), RN) with maximal (temporal) domain of definition J(t0, y0) ⊂ R.

In light of § 6.1.3.4 and Thm. 6.1.3.16 henceforth we mainly consider

autonomous IVPs: ẏ = f(y) , y(0) = y0 , (6.1.3.17)
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with locally Lipschitz continuous (→ Def. 6.1.3.12) right hand side f.

§6.1.3.18 (Domain of definition of solutions of IVPs) We emphasize a subtle message of

Thm. 6.1.3.16.

Solutions of an IVP have an intrinsic maximal domain of definition

!
Also not that the domain of definition/domain of existence J(t0, y0) of the solution usually depends

on the initial values (t0, y0) !

Terminology: if J(t0, y0) = I, I the maximal temporal domain of definition of f, we say that the solution

y : I 7→ RN is global.

Notation: for autonomous ODE we always have t0 = 0, and therefore we write J(y0) := J(0, y0). y

EXAMPLE 6.1.3.19 (“Explosion equation”: finite-time blow-up) Let us explain the still mysterious

“maximal domain of definition” in statement of Thm. 6.1.3.16. It is related to the fact that every solution

of an initial value problem (6.1.3.17) has its own largest possible time interval J(y0) ⊂ R on which it is

defined naturally.

As an example we consider the autonomous scalar (d = 1) initial value problem, modeling “explosive

growth” with a growth rate increasing linearly with the density:

ẏ = y2 , y(0) = y0 ∈ R . (6.1.3.20)

We choose I = D = R. Clearly, y 7→ y2 is locally Lipschitz-continuous, but only locally! Why not

globally?

We find the solutions

y(t) =

{
1

y−1
0 −t

, if y0 6= 0 ,

0 , if y0 = 0 ,
(6.1.3.21)

with domains of definition

J(y0) =





]−∞, y−1
0 [ , if y0 > 0 ,

R , if y0 = 0 ,

]y−1
0 , ∞[ , if y0 < 0 .

Fig. 304
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In this example, for y0 > 0 the solution experiences a blow-up in finite time and ceases to exists afterwards.

y

§6.1.3.22 (IVPs and BVPs for ODEs) In this course, we have seen ordinary differential equations already

in Section 1.5.1. There we derived the 2-point boundary value problem

− d

dx

(
σ(x)

du

dx
(x)

)
= f in ]a, b[ , u(a) = ua , u(b) = ub . (1.5.1.16)

Obviously, this involves a second-order ordinary differential equation − d
dx

(
σ(x) du

dx (x)
)
= f . Replacing

x → t and assuming some smoothness of the coefficient x 7→ σ(x), we can rewrite it in the form (6.1.3.6).
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Nevertheless, the considerations in this chapter do not include (1.5.1.16), and this does not have to do

with properties of the ODE, but with the context, in which it occurs.

In this chapter we are concerned with initial-value problems on intervals [t0, T], which imposes a clear

direction on time. If t0 < T, then the state solution at time t will depend only on the solution at earlier

times and the state at time t will influence the solution only at later times. This reflects causality.

Conversely, for a boundary value problem on [a, b] ⊂ R, the solution at any x ∈ [a, b] will both depend on

and influence the solution at any other point.

Fig. 305 a b

boundary-value problem (BVP)

Fig. 306 0 1

initial-value problem (IVP)
y

Supplementary literature. For other concise summaries of the theory of IVPs for ODEs refer

to [QSS00], [DAR06].

6.1.4 Evolution Operators

Now we examine a difficult but fundamental concept for time-dependent models stated by means of ODEs.

For the sake of simplicity we restrict the discussion to autonomous initial-value problems (IVPs)

ẏ = f(y) , y(0) = y0 , (6.1.3.17)

with locally Lipschitz continuous (→ Def. 6.1.3.12) right hand side f : D ⊂ RN → RN, N ∈ N, and make

the following assumption. A more general treatment is given in [DEB02].

Assumption 6.1.4.1. Global solutions

Solutions of (6.1.3.17) are global: J(y0) = R for all y0 ∈ D.

Now we return to the study of a generic ODE (ODE) instead of an IVP (6.1.3.2). We do this by temporarily

changing the perspective: we fix a “time of interest” t ∈ R \ {0} and follow all trajectories for the duration

t. This induces a mapping of points in state space:

➣ mapping Φ
t :

{
D 7→ D
y0 7→ y(t)

, t 7→ y(t) solution of IVP (6.1.3.17) , (6.1.4.2)

This is a well-defined mapping of the state space into itself, by Thm. 6.1.3.16 and Ass. 6.1.4.1.

Now, we may also let t vary, which spawns a family of mappings
{

Φ
t
}

t∈R
of the state space D into itself.

However, it can also be viewed as a mapping with two arguments, a duration t and an initial state value

y0!
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Definition 6.1.4.3. Evolution operator/mapping

Under Ass. 6.1.4.1 the mapping

Φ :

{
R× D 7→ D
(t, y0) 7→ Φ

ty0 := y(t)
,

where t 7→ y(t) ∈ C1(R, RN) is the unique (global) solution of the IVP ẏ = f(y), y(0) = y0, is

the evolution operator/mapping for the autonomous ODE ẏ = f(y).

Note that t 7→ Φ
ty0 describes the solution of ẏ = f(y) for y(0) = y0 (a trajectory). Therefore, by virtue

of definition, we have

∂Φ

∂t
(t, y) = f(Φty) . (6.1.4.4)

Let us repeat the different kinds of information contained in an evolution operator when viewed from differ-

ent angles:

t 7→ Φ
ty0 , y0 ∈ D fixed =̂ a trajectory = solution of an IVP ,

y 7→ Φ
ty , t ∈ R fixed =̂ a mapping of the state space onto itself .

EXAMPLE 6.1.4.5 (Evolution operator for Lotka-Volterra ODE (6.1.2.6)) For N = 2 the action of an

evolution operator can be visualized by tracking the movement of point sets in state space. Here this is

done for the Lotka-Volterra ODE

u̇ = (α− βv)u
v̇ = (δu− γ)v

↔ ẏ = f(y) with y =

[
u
v

]
, f(y) =

[
(α− βv)u
(δu− γ)v

]
, (6.1.2.6)

with positive model parameters α, β, γ, δ > 0.

Fig. 307
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state mapping y 7→ Φty

Think of y ∈ R2 7→ f(y) ∈ R2 as the velocity of the surface of a fluid. Specks of floating dust will be

carried along by the fluid, patches of dust covering parts of the surface will move and deform over time.

This can serve as a “mental image” of Φ. y

Given an evolution operator, we can recover the right-hand side function f of the underlying autonomous

ODE as f(y) = ∂Φ

∂t (0, y): There is a one-to-one relationship between ODEs and their evolution operators,

and those are the key objects behind an ODE.
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An ODE “encodes” an evolution operator.

Understanding the concept of evolution operators is indispensable for numerical integration, that the is the

construction of numerical methods for the solution of IVPs for ODEs:

Numerical integration is concerned with the approximation of evolution operators.

Remark 6.1.4.6 (Group property of autonomous evolutions) Under Ass. 6.1.4.1 the evolution operator

gives rise to a group of mappings D 7→ D:

Φ
s ◦Φ

t = Φ
s+t , Φ

−t ◦Φ
t = Id ∀t ∈ R . (6.1.4.7)

This is a consequence of the uniqueness theorem Thm. 6.1.3.16. It is also intuitive: following an evolution

up to time t and then for some more time s leads us to the same final state as observing it for the whole

time s + t. y

Review question(s) 6.1.4.8 (IVPs for ODEs)

(Q6.1.4.8.A) A simple model for the spread of a viral epidemic like SARS-Cov2 is the SIR model:

Ṡ(t) = −βI(t)S(t) , İ(t) = βI(t)S(t)− γI(t) , Ṙ(t) = γI(t) , (6.1.4.9)

with parameters β, γ > 0. Here t 7→ S(t) is the fraction of susceptible individuals, t 7→ I(t) that of

infected (and infectious) individuals, and t 7→ R(t) stands for the removed (immune or dead) individuals.

• Write (6.1.4.9) in the form ẏ = f(y).

• What is a meaningful state space for (6.1.4.9).

• Show that S(t) + I(t) + R(t) ≡ const.

• Show that t 7→ R(t) is non-decreasing.

(Q6.1.4.8.B) Determine the one-parameter family of solutions of the scalar autonomous ODE ẏ = 1 + y2.

Can you expect global solutions defined for all times t ∈ R?

Hint. d
dy{y 7→ arctan(y)} = 1

1+y2

(Q6.1.4.8.C) Consider the autonomous scalar ODE ẏ = cos2 y.

• What are the stationary states, that is the states y∗ that are zeros of the right-hand-side function?

• Compute the (analytic) )solution of a related initial-value problem with y(0) = y0 ∈ R.

• The evolution operator Φ belonging to ẏ = cos2 y will satisfy Φt ◦Φs = Φt+s. Verify this formula

based on what you found as analytic solution.

Hint. Remember that tan′ = cos−2.

(Q6.1.4.8.D) Show that that the scalar autonomous initial-value problem

ẏ =
√

y , y(0) = 0 ,

has at least two solutions in the state space R+
0 according to the following definition.

Definition Def. 6.1.1.2. Solution of an ordinary differential equation

A solution of the ODE ẏ = f(t, y) with continuous right hand side function f is a continuously

differentiable function “of time t” y : J ⊂ I → D, defined on an open interval J, for which

ẏ(t) = f(t, y(t)) holds for all t ∈ J (=̂ “pointwise”).
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How can this be reconciled with the assertion of the main theorem?

Theorem Thm. 6.1.3.16. Theorem of Peano & Picard-Lindelöf

If the right hand side function f : Ω̂ 7→ RN is locally Lipschitz continuous (→ Def. 6.1.3.12) then

for all initial conditions (t0, y0) ∈ Ω̂ the IVP

ẏ = f(t, y) , y(t0) = y0 . (6.1.3.2)

has a solution y ∈ C1(J(t0, y0), RN) with maximal (temporal) domain of definition J(t0, y0) ⊂ R.

Hint. Consider the function y(t) =
(

1
2 t
)2

.

(Q6.1.4.8.E) For the autonomous scalar ODE ẏ = sin 1
y − 2 answer the following questions

• What is the maximal state space?

• Which initial values for t0 = 0 will allow a solution on [0, ∞[,

• and for which will the solution be defined for a finite time interval only?

Hint. Make use of the geometrically intuitive statement: If a differentiable function f : [t0, T]→ R

satisfies ḟ (t) ≤ C for all t0 ≤ t ≤ T, then f (t) ≤ f (t0) + Ct.

(Q6.1.4.8.F) Rewrite the matrix differential equation Ẏ(t) = AY(t) for Y : R → Rn,n, n ∈ N, in the stan-

dard form ẏ = f(y) with right-hand-side function f : RN → RN and suitable N ∈ N.

△

6.2 Introduction: Polygonal Approximation Methods

Video tutorial for Section 6.2: Introduction: Polygonal Approximation Methods: (32 minutes)

Download link, tablet notes

In this section we will see the first simple methods for the numerical integration (= solution) of initial-value

problems (IVPs). We target an initial value problem (6.1.3.2) for a first-order ordinary differential equation

ẏ = f(t, y) , y(t0) = y0 . (6.1.3.2)

As usual, the right hand side function f : D ⊂ RN → RN, N ∈ N, may be given only in procedural form,

for instance, in a C++ code as an functor object providing an evaluation operator

Eigen::VectorXd opera tor () (double t, const Eigen::VectorXd &y)

const;

cf. Rem. 2.1.2.5. Occasionally the evaluation of f may involve costly computations.

§6.2.0.1 (Objectives of numerical integration) Two basic tasks can be identified in the field of numerical

integration = approximate solution of initial value problems for ODEs (Please distinguish from “numerical

quadrature”, see [NCSE].):
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(I) Given initial time t0, final time T, and initial state y0 compute an approximation of y(T), where

t 7→ y(t) is the solution of (6.1.3.2). A corresponding function in C++ could look like

State solveivp(double t0, double T, State y0);

Here State is a type providing a fixed size or variable size vector ∈ RN, e.g.,

using State = Eigen::Matrix<double, N, 1>;

(II) Output an approximate solution t → yh(t) of (6.1.3.2) on [t0, T] up to final time T 6= t0 for “all

times” t ∈ [t0, T] (in practice, of course, only for finitely many times t0 < t1 < t2 < · · · < tM−1 <
tM = T, M ∈ N, consecutively)

std::vector <State>

solveivp(State y0,const std::vector <double> &tvec);

This is the “plot solution” task, because we need to know y(t) for many times, if we want to create

a faithful plot of t 7→ y(t).

y

Fig. 309
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t 7→ y(t)

This section presents three methods that provide a

piecewise linear, that is, “polygonal” approximation

of solution trajectories t 7→ y(t).

✁ A piecewise linear function, aka a polygonal curve,

approximating a function t 7→ y(t) ∈ R in grid

points t0 < t1 < · · · < t4.

§6.2.0.2 (Temporal mesh) As in Section 2.3 the polygonal approximation in this section will be based on

a (temporal) mesh with M + 1 mesh points (→ § 2.3.1.3)

M := {t0 < t1 < t2 < · · · < tM−1 < tM := T} ⊂ [t0, T] , (6.2.0.3)

covering the time interval of interest between initial time t0 and final time T > t0. We assume that the

interval of interest is contained in the domain of definition of the solution of the IVP: [t0, T] ⊂ J(t0, y0). y

The next three sections will derive three simple mesh-based numerical integration methods, each in two

ways,

(i) based on geometric reasoning interpreting ẏ as the slope/direction of a tangent line,

(ii) in the spirit of finite difference methods introduced in § 4.1.2.3, we can replace the derivative ẏ with

a mesh-based difference quotient.

6.2.1 Explicit Euler method

EXAMPLE 6.2.1.1 (Tangent field and solution curves) For N = 1 polygonal methods can be con-

structed by geometric considerations in the t − y plane, a model for the extended state space. We

explain this for the Riccati differential equation, a scalar ODE:

ẏ = f (t, y) := y2 + t2
➤ N = 1, I, D = R+ . (6.2.1.2)
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solution curves

The solution curves run tangentially to the tangent field in each point of the extended state space. y

Idea: “follow the tangents over short periods of time”

➊ timestepping: successive approximation of evolution on mesh inter-

vals [tk−1, tk], k = 1, . . . , M, tM := T,

➋ approximation of solution on [tk−1, tk] by tangent line to solution tra-

jectory through (tk−1, yk−1).

Fig. 312
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explicit Euler method (Euler 1768)

✁ First step of explicit Euler method (N = 1):

Slope of tangent = f (t0, y0)

y1 serves as initial value for next step!

See also [HAB02a], [DAR06]

EXAMPLE 6.2.1.3 (Visualization of explicit Euler method)

We use the temporal mesh

M := {tj := j/5: j = 0, . . . , 5} ,

and solve an IVP for the Riccati differential equation,

see Ex. 6.2.1.1

ẏ = y2 + t2 . (6.2.1.2)

Here: y0 = 1
2 , t0 = 0, T = 1, ✄

— =̂ “Euler polygon” for uniform timestep h = 0.2

7→ =̂ tangent field of Riccati ODE
Fig. 313
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y

Formula: When applied to a general IVP of the from (6.1.3.2) the explicit Euler method generates a

sequence (yk)
N
k=0 by the recursion

yk+1 = yk + hkf(tk, yk) , k = 0, . . . , M− 1 , (6.2.1.4)

with local (size of) timestep (stepsize) hk := tk+1 − tk .

Remark 6.2.1.5 (Explicit Euler method as a difference scheme)

One can obtain (6.2.1.4) by approximating the derivative d
dt by a forward difference quotient on the (tem-

poral) meshM := {t0, t1, . . . , tM}:

ẏ(tk) ≈
y(tk + hk)− y(tk)

hk

ẏ = f(t, y) ←→ yk+1 − yk

hk
= f(tk, yh(tk)) , k = 0, . . . , M− 1 . (6.2.1.6)

Difference schemes follow a simple policy for the discretization of differential equations: replace all deriva-

tives by difference quotients connecting solution values on a set of discrete points (the mesh). y

Remark 6.2.1.7 (Output of explicit Euler method) To begin with, the explicit Euler recursion (6.2.1.4)

produces a sequence y0, . . . , yM of states. How does it deliver on the task (I) and (II) stated in § 6.2.0.1?

By “geometric insight” we expect

yk ≈ y(tk) .

(As usual, we use the notation t 7→ y(t) for the exact solution of an IVP.)

Task (I): Easy, because yM already provides an approximation of y(T).

Task (II): The trajectory t 7→ y(t) is approximated by the piecewise linear function (‘Euler polygon”)

yh : [t0, tN ]→ RN , yh(t) := yk
tk+1 − t

tk+1 − tk
+ yk+1

t− tk

tk+1 − tk
for t ∈ [tk, tk+1] , (6.2.1.8)

see Fig. 313. This function can easily be sampled on any grid of [t0, tM]. In fact, it is theM-piecewise

linear interpolant of the data points (tk, yk), k = 0, . . . , N, see [NCSE]).

The same considerations apply to the methods discussed in the next two sections and will not be repeated

there. y

6.2.2 Implicit Euler method

Why forward difference quotient and not backward difference quotient? Let’s try!
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On (temporal) meshM := {t0, t1, . . . , tM} we obtain

ẏ = f (t, y) ←→ yk+1 − yk

hk
= f (tk+1, yh(tk+1)) , k = 0, . . . , M− 1 . (6.2.2.1)

backward difference quotient

This leads to another simple timestepping scheme analoguous to (6.2.1.4):

yk+1 = yk + hkf(tk+1, yk+1) , k = 0, . . . , M− 1 , (6.2.2.2)

with local timestep (stepsize) hk := tk+1 − tk .

(6.2.2.2) = implicit Euler method

Note: (6.2.2.2) requires solving a (possibly non-linear) system of equations to obtain yk+1 !

(➤ Terminology “implicit”)

Fig. 314
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Geometry of implicit Euler method:

Approximate solution through (t0, y0) on [t0, t1] by

• straight line through (t0, y0)
• with slope f (t1, y1)

✁ — =̂ trajectory through (t0, y0),
— =̂ trajectory through (t1, y1),
— =̂ tangent at — in (t1, y1).

Remark 6.2.2.3 (Feasibility of implicit Euler timestepping) The issue is whether (6.2.2.2) well defined,

that is, whether we can solve it for yk+1 and whether this solution unique.

Intuition: For small timesteps h > 0 the right hand side of (6.2.2.2) is a “small perturbation of the identity”.

Formally: Consider an autonomous ODE ẏ = f(y), assume a continuously differentiable right hand

side function f, f ∈ C1(D, RN), and regard (6.2.2.2) as an h-dependent non-linear system of

equations:

yk+1 = yk + hkf(tk+1, yk+1) ⇔ G(h, yk+1) = 0 with G(h, z) := z− hf(tk+1, z)− yk .

To investigate the solvability of this non-linear equation we start with an observation about a partial deriva-

tive of G:

dG

dz
(h, z) = I− hDyf(tk+1, z) ⇒ dG

dz
(0, z) = I .

In addition, G(0, yk) = 0. Next, recall the implicit function theorem [STRLN09]:
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Theorem 6.2.2.4. Implicit function theorem

Let G = G(x, y) a continuously differentiable function of x ∈ Rk and y ∈ Rℓ, defined on the open

set Ω ⊂ Rk ×Rℓ with values in Rℓ: G : Ω ⊂ Rk ×Rℓ → Rℓ.

Assume that G has a zero in z0 :=

[
x0

y0

]
∈ Ω, x0 ∈ Rk, y0 ∈ Rℓ: G(z0) = 0.

If the Jacobian ∂G
∂y (p0) ∈ Rℓ,ℓ is invertible, then there is an open neighborhood U of x0 ∈ Rk and

a continuously differentiable function g : U → Rl such that

g(x0) = y0 and G(x, g(x)) = 0 ∀x ∈ U .

For sufficiently small |h| it permits us to conclude that the equation G(h, z) = 0 defines a continuous

function g = g(h) with g(0) = yk.

➣ for sufficiently small h > 0 the equation (6.2.2.2) has a unique solution yk+1. y

6.2.3 Implicit midpoint method

Beside using forward or backward difference quotients, the derivative ẏ can also be approximated by the

symmetric difference quotient, see also [NCSE],

ẏ(t) ≈ y(t + h)− y(t− h)

2h
, h > 0 . (6.2.3.1)

The idea is to apply this formula in t = 1
2(tk + tk+1) with h = hk/2, which transforms the ODE into

ẏ = f (t, y) ←→ yk+1 − yk

hk
= f

(
1
2(tk + tk+1), yh(

1
2(tk + tk+1))

)
, k = 0, . . . , M− 1 . (6.2.3.2)

The trouble is that the value yh(
1
2(tk+1 + tk+1)) does not seem to be available, unless we recall that the

approximate trajectory t 7→ yh(t) is supposed to be piecewise linear, which implies yh(
1
2(tk+1 + tk+1)) =

1
2(yh(tk) + yh(tk+1)). This gives the recursion formula for the implicit midpoint method in analogy to

(6.2.1.4) and (6.2.2.2):

yk+1 = yk + hkf
(

1
2(tk + tk+1),

1
2(yk + yk+1)

)
, k = 0, . . . , N − 1 , (6.2.3.3)

with local timestep (stepsize) hk := tk+1 − tk .

Fig. 315
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Implicit midpoint method, a geometric view:

Approximaate trajectory through (t0, y0) on [t0, t1]
by

• straight line through (t0, y0)
• with slope f (t∗, y∗), where

t∗ := 1
2(t0 + t1), y∗ = 1

2(y0 + y1)

✁ — =̂ trajectory through (t0, y0),
— =̂ trajectory through (t∗, y∗),
— =̂ tangent at — in (t∗, y∗).

As in the case of (6.2.2.2), also (6.2.3.3) entails solving a (non-linear) system of equations in order to

obtain yk+1. Rem. 6.2.2.3 also holds true in this case: for sufficiently small h (6.2.3.3) will have a unique

solution yk+1, which renders the recursion well defined.

Review question(s) 6.2.3.4 (Polygonal approximation methods)
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(Q6.2.3.4.A) We consider the scalar linear IVP

ẏ = λy , y(0) = 1

on the interval [0, 1]. We use M ∈ N equidistant steps of the explicit Euler method to compute an

approximation yM for y(1).

• Derive a formula for yM.

• Which known result from calculus is equivalent to the convergence yM → y(1) for M→ ∞?

(Q6.2.3.4.B) For an ODE

ẏ = f(y) , f :=




f1(y)
...

fN(y)


 : D ⊂ RN 7→ RN , (*)

we know that

N

∑
ℓ=1

fℓ(y) = 0 ∀y ∈ D .

• Show that the sum of the components of every solution t 7→ y(t) is constant in time.

• Show that the sums of the components of the vectors y0, y1, y2, . . . generated by either the explicit

Euler method, the implicit Euler method, or the implicit midpoint method, all applied to solve some

IVP for (*), are the same for all vectors yk.

(Q6.2.3.4.C) We consider the implicit Euler method for the scalar autonomous “explosion ODE” ẏ = y2.

Given an explicit formula for yk+1 in terms of yk and the timestep size hk > 0. Specify potentially

necessary constraints on the size of hk.

The defining equation for recursion of the implicit Euler method (on some temporal mesh) applied to the

ODE ẏ = f(t, y) is

yk+1: yk+1 = yk + hkf(tk+1, yk+1) . (6.2.2.2)

(Q6.2.3.4.D) The recursion of the implicit midpoint rule for the ODE ẏ = f(t, y) is

yk+1: yk+1 = yk + hkf
(1

2
(tk + tk+1),

1
2(yk + yk+1)

)
.

Give an explicit form of this recursion for the linear ODE ẏ = A(t)y, where A : R → RN,N is a matrix-

valued function. When will this recursion break down?

(Q6.2.3.4.E) For a twice continuously differentiable function f : I ⊂ R → RN we can use the second

symmetric difference quotient as an approximation of the second derivative f ′′(x), x ∈ I:

f (x + h)− 2 f (x) + f (x− h)

h2
≈ f ′′(x) for |h| ≪ 1 .

Based on this approximation propose an explicit finite-difference timstepping scheme on a uniform tem-

poral mesh for the second-order ODE ÿ = f(y).

△

6. Numerical Integration – Single Step Methods, 6.2. Introduction: Polygonal Approximation Methods 470



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

6.3 General Single-Step Methods

Video tutorial for Section 6.3: General Single-Step Methods: (31 minutes) Download link,

tablet notes

Now we fit the numerical schemes introduced in the previous section into a more general class of methods

for the solution of (autonomous) initial value problems (6.1.3.17) for ODEs. Throughout we assume that

all times considered belong to the domain of definition of the unique solution t → y(t) of (6.1.3.17), that

is, for T > 0 we take for granted [0, T] ⊂ J(y0) (temporal domain of definition of the solution of an IVP is

explained in § 6.1.3.18).

6.3.1 Definition

§6.3.1.1 (Discrete evolution operators) From Section 6.2.1 and Section 6.2.2 recall the two Euler meth-

ods for an autonomous ODE ẏ = f(y):

explicit Euler: yk+1 = yk + hkf(yk) ,

implicit Euler: yk+1: yk+1 = yk + hkf(yk+1) ,
hk := tk+1 − tk .

Both formulas, for sufficiently small hk (→ Rem. 6.2.2.3), provide a mapping

(yk, hk) 7→ Ψ(h, yk) := yk+1 . (6.3.1.2)

If y0 is the initial value, then y1 := Ψ(h, y0) can be regarded as an approximation of y(h), the value

returned by the evolution operator Φ (→ Def. 6.1.4.3) for ẏ = f(y) applied to y0 over the period h. y(tk):

y1 = Ψ(h, y0) ←→ y(h) = Φ
hy0 ➣ Ψ(h, y) ≈ Φ

hy , (6.3.1.3)

In a sense the polygonal approximation methods are based on approximations for the evolution operator

associated with the ODE.

This is what every single step method does: it tries to approximate the evolution operator Φ for an ODE

by a mapping Ψ of the kind as described in (6.3.1.2).

➙ A mapping Ψ as in (6.3.1.2) is called (a) discrete evolution operator.

✎ Notation: In analogy to Φ
h for discrete evolutions we often write Ψ

hy := Ψ(h, y) y

Above we identified the discrete evolutions underlying the polygonal approximation methods. Vice versa,

a mapping Ψ as given in (6.3.1.2) defines a single step method.

Definition 6.3.1.4. Single step method (for autonomous ODE) → [QSS00]

Given a discrete evolution Ψ : Ω ⊂ R × D 7→ RN, an initial state y0, and a temporal mesh

M := {0 =: t0 < t1 < · · · < tM := T}, M ∈ N, the recursion

yk+1 := Ψ(tk+1 − tk, yk) , k = 0, . . . , M− 1 , (6.3.1.5)

defines a single-step method (SSM) for the autonomous IVP ẏ = f(y), y(0) = y0 on the interval

[0, T].
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☞ In a sense, a single step method defined through its associated discrete evolution does not ap-

proximate a concrete initial value problem, but tries to approximate an ODE in the form of its

evolution operator.

In C++ a discrete evolution operator can be incarnated by a functor type offering an evaluation operator

State opera tor ()(double h, const State &y) const;

see § 6.2.0.1 for the State data type.

Remark 6.3.1.6 (Discrete evolutions for non-autonomous ODEs) The concept of single step method

according to Def. 6.3.1.4 can be generalized to non-autonomous ODEs, which leads to recursions of the

form:

yk+1 := Ψ(tk, tk+1, yk) , k = 0, . . . , M− 1 ,

for a discrete evolution operator Ψ defined on I × I × D. y

§6.3.1.7 (Consistent single step methods) Now we state a first quantification of the goal that the “dis-

crete evolution should be an approximation of the evolution operator”: Ψ ≈ Φ, cf. (6.3.1.3). We want the

discrete evolution Ψ to inherit key properties of the evolution operator Φ. One such property is

d

dt
Φ

ty

∣∣∣∣
t=0

= f(y) ∀y ∈ D . (6.3.1.8)

Compliance of Ψ with (6.3.1.8) is expressed through the property of consistency, which, roughly speaking,

demands that a viable discrete evolution operator methods is structurally similar to that for the explicit Euler

method (6.2.1.4).

Consistent discrete evolution

The discrete evolution Ψ defining a single step method according to Def. 6.3.1.4 and (6.3.1.5) for

the autonomous ODE ẏ = f(y) must be of the form

Ψ
hy = y + hψ(h, y) with

ψ : I × D→ RN continuous,

ψ(0, y) = f(y) .
(6.3.1.10)

Differentiating

(
h 7→ Ψ

hy
)

relying on the product rule confirms that (6.3.1.8) remains true for Ψ instead

of Φ.

Definition 6.3.1.11. Consistent single step methods

A single step method according to Def. 6.3.1.4 based on a discrete evolution of the form (6.3.1.10)

is called consistent with the ODE ẏ = f(y).

y

EXAMPLE 6.3.1.12 (Consistency of implicit midpoint method) The discrete evolution Ψ and, hence,

the function ψ = ψ(h, y) for the implicit midpoint method are defined only implicitly, of course. Thus,
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consistency cannot immediately be seen from a formula for ψ.

We examine consistency of the implicit midpoint method for the autonomous ODE ẏ = f(y). A single step

is defined by

yk+1 = yk + hf
(

1
2(yk + yk+1)

)
, k = 0, . . . , M− 1 . (6.3.1.13)

Assume that

• the right hand side function f : D ⊂ RN → RN is smooth, at least f ∈ C1(D),

• and that |h| is sufficiently small to guarantee the existence of a solution yk+1 of (6.3.1.13), see

Rem. 6.2.2.3.

The we infer from the implicit function theorem Thm. 6.2.2.4 that the solution yk+1 of (6.3.1.13) will depend

on h in a continuously differentiable way: h 7→ yk+1(h) ∈ C1(]−δ, δ[, RN) for small δ > 0. Knowing this,

we plug (6.3.1.13) into itself and obtain

yk+1 = yk + hf(1
2(yk + yk+1))

(6.3.1.13)
= yk + h f(yk +

1
2 hf(1

2(yk + yk+1)))︸ ︷︷ ︸
=ψ(h,yk)

.

We repeat that by the implicit function theorem Thm. 6.2.2.4 yk+1 depends continuously on h and yk. This

means that ψ(h, yk) has the desired properties, in particular ψ(0, y) = f(y) is clear. y

Remark 6.3.1.14 (Notation for single step methods) Many authors specify a single step method by

writing down the first step for a general stepsize h

y1 = (implicit) expression in y0, h and f ,

for instance, for the implicit midpoint rule

y1 = y0 + hf(1
2(y0 + y1)) .

Actually, this fixes the underlying discrete evolution. Also this course will sometimes adopt this practice. y

§6.3.1.15 (Output of single step methods) Here we resume and continue the discussion of Rem. 6.2.1.7

for general single step methods according to Def. 6.3.1.4. Assuming unique solvability of the systems of

equations faced in each step of an implicit method, every single step method based on a mesh M =
{0 = t0 < t1 < · · · < tM := T} produces a finite sequence (y0, y1, . . . , yM) of states, where the first

agrees with the initial state y0.

We expect that the states provide a pointwise approximation of the solution trajectory t→ y(t):

yk ≈ y(tk) , k = 1, . . . , M .

Thus task (I) from § 6.2.0.1, computing an approximation for y(T), is again easy: output yM as an

approximation of y(T).

Task (II) from § 6.2.0.1, computing the solution trajectory, requires interpolation of the data points (tk, yk)
using some of the techniques presented in [NCSE]. The natural option isM-piecewise polynomial inter-

polation, generalizing the polygonal approximation [NCSE] used in Section 6.2.

Note that from the ODE ẏ = f(y) the derivatives ẏh(tk) = f(yk) are available without any further

approximation. This facilitates cubic Hermite interpolation (→ [NCSE]), which yields

yh ∈ C1([0, T]): yh |[xk−1,xk]
∈ P3 , yh(tk) = yk ,

dyh

dt
(tk) = f(yk) .

Summing up, an approximate trajectory t 7→ yh(t) is built in two stages:
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(i) Compute sequence (yk)k by running the single step method.

(ii) Post-process the obtained sequence, usually by applying interpolation, to get yh.

y

Review question(s) 6.3.1.16 (General single-step methods)

(Q6.3.1.16.A) Explain the concepts

• evolution operator and

• discrete evolution operator

in connection with the numerical integration of initial-value problems for the ODE ẏ = f(y),
f : D ⊂ RN 7→ RN.

(Q6.3.1.16.B) [Single-step methods and numerical quadrature] There is a connection between numer-

ical integration (the design and analysis of numerical methods for the solution of initial-value problems

for ODEs) and numerical quadrature (study of numerical methods for the evaluation of integrals).

• Explain, how a class of single-step methods for the solution of scalar initial-value problems

ẏ = f (t, y) , y(t0) = y0 ∈ R ,

can be used for the approximate evaluation of integrals
∫ b

a ϕ(τ)dτ, ϕ : [a, b]→ R.

• If the considered single-step methods are of order p, what does this mean for the induced quadra-

ture method.

• Which quadrature formula does the implicit midpoint method yield?

(Q6.3.1.16.C) [Adjoint single-step method] Let a single-step method for the autonomous ODE

ẏ = f(y), f : D ⊂ RN → RN be defined by its discrete evolution operator Ψ : I × D 7→ D. Then

the adjoint single-step method is spawned by the discrete evolution operator Ψ̃ : I × D 7→ D defined

according to

Ψ̃
h
y :=

(
Ψ
−h
)−1

, y ∈ D, h ∈ R sufficiently small .

What is the adjoint of the explicit Euler method?

(Q6.3.1.16.D) We have seen three simple single-step methods for the autonomous ODE ẏ = f(y),
f : D ⊂ RN → RN, here defined by describing a the first step y0 → y1 with stepsize h ∈ R (“suffi-

ciently small”):

• The explicit Euler method:

y1 = y0 + hf(y0) .

• The implicit Euler method:

y1: y1 = y0 = hf(y1) .

• The implicit midpoint method:

y1: y1 = y0 + hf(1
2(y0 + y1)) .
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For which methods does the associated discrete evolution operator Ψ : [−δ, δ]× D→ D, δ > 0 suffi-

ciently small, satisfy

Ψ
h ◦Ψ

−h = Id ∀h ∈ [0, δ] ? (6.3.1.17)

Try to find a simple (scalar) counterexample, if you think that a method does not have property (6.3.1.17).

△

6.3.2 (Asymptotic) Convergence of Single-Step Methods

Video tutorial for Section 6.3.2:(Asymptotic) Convergence of Single-Step Methods: (39 min-

utes) Download link, tablet notes

Of course, the accuracy of the solution sequence (yk)k obtained by a particular single-step method (→
Def. 6.3.1.4) is a central concern. This motivates studying the dependence of suitable norms of the so-

called discretization error on the choice of temporal meshM.

§6.3.2.1 (Discretization error of single step methods) Approximation errors in numerical integration

are also called discretization errors, cf. Section 3.1.2.

Depending on the objective of numerical integration as stated in § 6.2.0.1 different (norms of) discretization

errors are of interest:

(I) If only the solution at final time T is sought, the relevant norm of the discretization error is

ǫM := ‖y(T)− yM‖ ,

where ‖·‖ is some vector norm on RN.

(II) If we want to approximate the solution trajectory for (6.1.3.17) the discretization error is the function

t 7→ e(t) , e(t) := y(t)− yh(t) ,

where t 7→ yh(t) is the approximate trajectory obtained by post-processing, see § 6.3.1.15. In

this case accuracy of the method is gauged by looking at norms of the function e, see [NCSE] for

examples.

(III) Between (I) and (II) is the pointwise discretization error, which is the sequence (grid function)

e :M→ D , ek := y(tk)− yk , k = 0, . . . , M . (6.3.2.2)

In this case one usually examines the maximum error in the mesh points

‖(e)‖∞ := max
k∈{1,...,N}

‖ek‖ ,

where ‖·‖ is a suitable vector norm on RN, customarily the Euclidean vector norm.

y

§6.3.2.3 (Asymptotic convergence of single step methods) Once the discrete evolution Ψ associated

with the ODE ẏ = f(y) is specified, the single step method according to Def. 6.3.1.4 is fixed:

yk+1 := Ψ(tk+1 − tk, yk) , k = 0, . . . , M− 1 , (6.3.1.5)

6. Numerical Integration – Single Step Methods, 6.3. General Single-Step Methods 475

https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_6.3.2.ConvergenceSSMs.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_6.3.2.ConvergenceSSMs.pdf


NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

The only way to control the accuracy of the solution yN or t 7→ yh(t) is through the selection of the mesh

M = {0 = t0 < t1 < · · · < tN = T}.

Hence we study convergence of single step methods for families of meshes {Mℓ} and track the decay

of (a norm) of the discretization error (→ § 6.3.2.1) as a function of the number N := ♯M of mesh

points. In other words, we examine h-convergence. Convergence through mesh refinement is discussed

for piecewise polynomial interpolation in [NCSE], for composite numerical quadrature in [NCSE], and was

studied for finite-element methods in Section 3.2.

When investigating asymptotic convergence of single step methods we often resort to families of equidis-

tant meshes of [0, T]:

MN := {tk :=
k

M
T: k = 0 . . . , M} . (6.3.2.4)

We also call this the use of uniform timesteps of size h := T
N . y

EXPERIMENT 6.3.2.5 (Speed of convergence of polygonal methods)

The setting for this experiment is a follows:

✦ We consider the following IVP for the logistic ODE, see Ex. 6.1.2.1

ẏ = λy(1− y) , y(0) = 0.01 .

✦ We apply explicit and implicit Euler methods (6.2.1.4)/(6.2.2.2) with uniform timestep h = 1/M,

M ∈ {5, 10, 20, 40, 80, 160, 320, 640}.
✦ Monitored: Error at final time E(h) := |y(1)− yM|
We are mainly interested in the qualitative nature of the asymptotic convergence as h→ 0 in the sense

of the types of convergence introduced in Def. 3.2.2.1 with N replaced with h−1. Abbreviating some error

norm with T = T(h), recall the classification of asynptotic convergence from Def. 3.2.2.1:

∃ p > 0: T(h) ≤ hp : algebraic convergence, with order/rate p > 0 ,

∃ 0 < q < 1: T(h) ≤ q1/h : exponential convergence ,
∀h > 0; .
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O(M−1) = O(h) algebraic convergence with order/rate 1 in both cases for h→ 0

Fig. 318
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However, polygonal approximation methods can do

better:

✁ We study the convergence of the implicit midpoint

method (6.2.3.3) in the above setting.

We observe algebraic convergence O(h2) (order

2) for h→ 0.

This matches expectations, because, as we see

from (6.2.1.6) and (6.2.2.1), both Euler methods

can be introduced via an approximation of ẏ by

a one-sided difference quotient , which offers an

O(h) approximation of the derivative as h→ 0.

Parlance: based on the observed rate of algebraic convergence, the two Euler methods are said to

“converge with first order”, whereas the implicit midpoint method is called “second-order con-

vergent”.
y

The observations made for polygonal timestepping methods reflect a general pattern:

Algebraic convergence of single step methods

Consider the numerical integration of an initial value problem

ẏ = f(t, y) , y(t0) = y0 , (6.1.3.2)

with sufficiently smooth right hand side function f : I × D→ RN.

Then conventional single step methods (→ Def. 6.3.1.4) will enjoy asymptotic algebraic conver-

gence in the meshwidth, more precisely, see [DAR06],

there is a p ∈ N such that the sequence (yk)k generated by the single step method

for ẏ = f(t, y) on a meshM := {t0 < t1 < · · · < tM = T} satisfies

max
k
‖yk − y(tk)‖ ≤ Chp for h := max

k=1,...,M
|tk − tk−1| → 0 , (6.3.2.7)

with C > 0 independent ofM

Definition 6.3.2.8. Order of a single step method

The maximal integer p ∈ N for which (6.3.2.7) holds for a single step method when applied to an

ODE with (sufficiently) smooth right hand side, is called the order of the method.

As in the case of quadrature rules (→ [NCSE]) their order is the principal intrinsic indicator for the “quality”

of a single step method.
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§6.3.2.9 (Convergence analysis for the explicit Euler method [HAB02a]) We consider the simplest

single-step method, namely the explicit Euler method (6.2.1.4) on a meshM := {0 = t0 < t1 < · · · <
tM = T} for a generic autonomous IVP

ẏ = f(y) , y(0) = y0 ∈ D ,

with sufficiently smooth and (globally ) Lipschitz continuous f : D ⊂ RN → RN, that is,

∃L > 0: ‖f(y)− f(z)‖ ≤ L‖y− z‖ ∀y, z ∈ D , (6.3.2.10)

cf. Def. 6.1.3.12, and C1 exact solution t 7→ y(t). Throughout we assume that solutions of ẏ = f(y) are

defined on [0, T] for all initial states y0 ∈ D.

Recall the recursion defining the explicit Euler method

yk+1 = yk + hkf(yk) , k = 1, . . . , M− 1 . (6.2.1.4)

tk−1 tk tk+1 tk+2

yk−1

yk

yk+1 yk+2

D

t

y(t)

Ψ

Ψ
Ψ

In numerical analysis one studies the

error sequence: ek := yk − y(tk) .

✁ — =̂ trajectory t 7→ y(t)
— =̂ Euler polygon,

• =̂ y(tk),
• =̂ yk,

−→ =̂ discrete evolution Ψ
tk+1−tk

The approach to estimate ‖ek‖ follows a fundamental policy that comprises three key steps. To explain

them we rely on the abstract concepts of the

• evolution operator Φ associated with the ODE ẏ = f(y) (→ Def. 6.1.4.3) and

• discrete evolution operator Ψ defining the explicit Euler single step method, see Def. 6.3.1.4:

(6.2.1.4) ⇒ Ψ
hy = y + hf(y) . (6.3.2.11)

We argue that in this context abstraction pays off, because it helps elucidate a general technique for the

convergence analysis of single step methods.

➀ Abstract splitting of error:

Fundamental error splitting:

ek+1 =Ψ
hk yk −Φ

hk y(tk)

= Ψ
hk yk −Ψ

hk y(tk)︸ ︷︷ ︸
propagated error

+ Ψ
hk y(tk)−Φ

hk y(tk)︸ ︷︷ ︸
one-step error

.

(6.3.2.12)

Fig. 319
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Fig. 320

Ψ
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tk tk+1

Φ
hy

y

τ(h, y)

A generic one-step error expressed through continu-

ous and discrete evolutions reads:

τ(h, y) := Ψ
hy−Φ

hy . (6.3.2.13)

✁ geometric visualisation of one-step error for ex-

plicit Euler method (6.2.1.4), cf. Fig. 312, h :=
tk+1 − tk

—: solution trajectory through (tk, y)

➁ Estimate for one-step error τ(hk, y(tk)):

Geometric considerations: distance of a smooth curve and its tangent shrinks as the square of the distance

to the intersection point (curve locally looks like a parabola in the ξ − η coordinate system, see Fig. 323).

Fig. 321
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The geometric considerations can be made rigorous by analysis: recall Taylor’s formula for the function

y ∈ CK+1 [STRLN09]:

y(t + h)− y(t) =
K

∑
j=1

y(j)(t)
hj

j!
+

t+h∫

t

y(K+1)(τ)
(t + h− τ)K

K!
dτ

︸ ︷︷ ︸

=
y(K+1)(ξ)

K!
hK+1

, (6.3.2.14)

for some ξ ∈ [t, t + h]. We conclude that, if y ∈ C2([0, T]), which is ensured for smooth f, see

Lemma 6.1.1.3, then

y(tk+1)− y(tk) = ẏ(tk)hk +
1
2 ÿ(ξk)h

2
k = f(y(tk))hk +

1
2 ÿ(ξk)h

2
k ,

for some tk ≤ ξk ≤ tk+1.This leads to an expression for the one-step error from (6.3.2.13)

τ(hk, y(tk))=Ψ
hk y(tk)− y(tk+1)

(6.3.2.11)
= y(tk) + hkf(y(tk))− y(tk)− f(y(tk))hk +

1
2 ÿ(ξk)h

2
k

= 1
2 ÿ(ξk)h

2
k .

(6.3.2.15)

Sloppily speaking, we observe τ(hk, y(tk)) = O(h2
k) uniformly for hk → 0.
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➂ Estimate for the propagated error from (6.3.2.12)

∥∥∥Ψ
hk yk −Ψ

hk y(tk)
∥∥∥ = ‖yk + hkf(yk)− y(tk)− hkf(y(tk))‖

(6.3.2.10)

≤ (1 + Lhk)‖yk − y(tk)‖ .

(6.3.2.16)

Thus we obtain recursion for error norms ǫk := ‖ek‖ by simply applying the△-inequality:

ǫk+1 ≤ (1 + hkL)ǫk + ρk , ρk := 1
2 h2

k max
tk≤τ≤tk+1

‖ÿ(τ)‖ . (6.3.2.17)

Taking into account ǫ0 = 0, this leads to

ǫk ≤
k

∑
l=1

l−1

∏
j=1

(1 + Lhj) ρl , k = 1, . . . , N . (6.3.2.18)

Use the elementary estimate (1 + Lhj) ≤ exp(Lhj) (by convexity of exponential function):

(6.3.2.18) ⇒ ǫk ≤
k

∑
l=1

l−1

∏
j=1

exp(Lhj) · ρl =
k

∑
l=1

exp(L ∑
l−1

j=1
hj)ρl .

Note:
l−1

∑
j=1

hj ≤ T for final time T and conclude

ǫk ≤ exp(LT)
k

∑
l=1

ρl ≤ exp(LT)max
k

ρk

hk

k

∑
l=1

hl ≤ T exp(LT) max
l=1,...,k

hl · max
t0≤τ≤tk

‖ÿ(τ)‖ .

‖yk − y(tk)‖ ≤ T exp(LT) max
l=1,...,k

hl · max
t0≤τ≤tk

‖ÿ(τ)‖ . (6.3.2.19)

We can summarize the insight gleaned through this theoretical analysis as follows:

Total error arises from accumulation of propagated one-step errors!

From (6.3.2.19) we can conclude

✦ an error bound = O(h), h := max
l

hl (➤ 1st-order algebraic convergence)

✦ and that the error bound grows exponentially with the length T of the integration interval.

y

§6.3.2.20 (One-step error and order of a single step method) In the analysis of the global discretization

error of the explicit Euler method in § 6.3.2.9 a one-step error of size O(h2
k) led to a total error of O(h)

through the effect of error accumulation over M ≈ h−1 steps. This relationship remains valid for almost

all single step methods [DEB02]:

Order of algebraic convergence of single-step methods

Consider an IVP (6.1.3.2) with solution t 7→ y(t) and a single step method defined by the

discrete evolution Ψ (→ Def. 6.3.1.4). If the one-step error along the solution trajectory satisfies
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(Φ is the evolution map associated with the ODE, see Def. 6.1.4.3)

∥∥∥Ψ
hy(t)−Φ

hy(t)
∥∥∥ ≤ Chp+1 ∀h sufficiently small, t ∈ [0, T] , (6.3.2.22)

for some p ∈ N and C > 0, then, usually,

max
k
‖yk − y(tk)‖ ≤ Ch

p
M ,

with C > 0 independent of the temporal meshM: The (pointwise) discretization error converges

algebraically with order/rate p.

A rigorous statement as a theorem would involve some particular assumptions on Ψ, which we do not

want to give here. These assumptions are satisfied, for instance, for all the methods presented in the

sequel. You may refer to [DEB02] for further information.

In fact, it is remarkable that a local condition like (6.3.2.22) permits us to make a quantitative prediction of

global convergence. This close relationship has made researchers introduce “order” also as a property of

discrete evolutions.

Definition 6.3.2.23. Order of a discrete evolution operator

Let Ψ : I × D 7→ RN be a discrete evolution for the autonomous ODE ẏ = f(y) (with associated

evolution operator Φ : I × D 7→ RN → Def. 6.1.4.3). The largest integer q ∈ N0 such that

∀y ∈ D ∃τ0 > 0: ‖Ψτy−Φ
τy‖ ≤ C(y)τq+1 ∀|τ| ≤ τ0 (6.3.2.24)

is called the order of the discrete evolution. .

This notion of “order of a discrete evolution" allows a concise summary:

A single-step method (SSM, Def. 6.3.1.4) based on the discrete evolution Ψ satisfies

Ψ of order q ∈ N SSM converges algebraically with order q.

y

EXAMPLE 6.3.2.25 (Orders of finite-difference single-step methods) Let us determine orders of the

discrete evolutions for the three simple single-step methods introduced in Section 6.2, here listed with

their corresponding discrete evolution operators Ψ (→ § 6.3.1.1) when applied to an autonomous ODE

ẏ = f(y): for y0 ∈ D ⊂ RN,

explicit (forward) Euler method (6.2.1.4): Ψ
τy0 := y0 + τf(y0) , (6.3.2.26)

implicit (backward) Euler method (6.2.2.2): Ψ
τy0 := w: w = y0 + τf(w) , (6.3.2.27)

implicit midpoint method (6.2.3.3): Ψ
τy0 := w: w = y0 + τf(1

2(y0 + w)) . (6.3.2.28)

The computation of their orders will rely on a fundamental technique for establishing (6.3.2.24) based on

Taylor expansion. It hinges on smoothness of the vectorfield f = f(y), which will ensure smoothness of

solutions of the associated ODE ẏ = f(y). Thus, we make the following simplifying assumption:

Assumption 6.3.2.29. Smoothness of right-hand side vectorfield

The vectorfield y 7→ f(y) is C∞ on RN
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Let Φ = Φ(t, y) denote the evolution operator (→ Def. 6.1.4.3) induced by ẏ = f(y), which, by definition,

satisfies

∂Φ

∂t
(t, y0) = f(Φty0) ∀y0 ∈ D, t ∈ J(y0) . (6.1.4.4)

Setting v(τ) := Φ
τy0, which is a solution of the initial-value problem ẏ = f(y), y(0) = y0, we find for

small τ, appealing to the one-dimensional chain rule and (6.1.4.4),

dv

dτ
(τ) = f(v(τ)) ,

d2v

dτ2
(τ) =

∂f

∂y
(v(τ))

dv

dτ
(τ) . (6.3.2.30)

This yields the following truncated Taylor expansion

Φ
τy0 = v(τ) = v(0) + τ

dv

dτ
(0) + 1

2 τ2 d2v

dτ2
(0) + O(τ3)

= y0 + τ f(y0) +
1
2 τ2 Df(y0)f(t, y0) + O(τ3)

(6.3.2.31)

for τ → 0. Note that the derivative Df(y0) is an N × N Jacobi matrix. Explicit expressions for the

remainder term involve second derivatives of f.

➊ For the explicit Euler method (6.3.2.26) we immediately have from (6.3.2.31)

Ψ
τy0 −Φ

τy0 = y0 + τf(y0)− y0 − τf(y0) + O(τ2) = O(τ2) for τ → 0 .

The explicit Euler method is of order 1.

➋ It is not as straightforward for the implicit Euler method

Ψ
τy0 := w(τ): w(τ) = y0 + τf(w(τ)) . (6.3.2.27)

First, we plug (6.3.2.27) into itself

w(τ) = y0 + τf(w(τ)) = y0 + τf(y0 + τf(w(τ))) ,

and then use the truncated Taylor expansion of f around y0

f(y0 + v) = f(y0) +Df(y0)v + O(‖v‖2) for v→ 0 . (6.3.2.32)

This gives

w(τ) = y0 + τ(f(y0) + τDf(y0)f(w(τ))) + O(τ3) for τ → 0 .

Since Ψ
τy0 = w(τ), matching terms with (6.3.2.31) we obtain

Ψ
τy0 −Φ

τy0 = τ2Df(y0)f(w(τ)) + O(τ3) = O(τ2) for τ → 0 .

Thanks to the smoothness of f the remainder terms will depend continuously on y0.

The implicit Euler method has order 1.

➌ For the implicit midpoint rule

Ψ
τy0 := w(τ): w(τ) = y0 + τf(1

2(y0 + w(τ))) , (6.3.2.28)

we follow the same idea and consider

w(τ) = y0 + τf(1
2(y0 + w(τ))) = y0 + τf(y0 +

1
2 τf(1

2(y0 + w(τ)))

= y0 + τf(y0 +
1
2 τf(y0 + O(τ))) for τ → 0 .
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Then we resort to the truncated Taylor expansion (6.3.2.32) and get for τ → 0

w(τ) = y0 + τ
(

f(y0) +Df(y0)
1
2 τf(y0 + O(τ))

)
+ O(τ3)

= y0 + τ
(

f(y0) +Df(y0)
1
2 τ(f(y0) + O(τ))

)
+ O(τ3) .

Matching with (9.2.6.10) shows w(τ)−Φ
τy0 = O(τ3) where the “O” just comprises continuous

higher order derivatives of f.

The implicit midpoint method is an order-2 method.

Hardly surprising, these analytic results match the orders of algebraic convergence observed in

Exp. 6.3.2.5. y

Review question(s) 6.3.2.33 (Asymptotic convergence of single-step methods)

(Q6.3.2.33.A) We consider an autonomous ODE ẏ = f(y) with smooth f : D ⊂ RN → Rn. Explain, why

the one-step error

τ(h, y) = Ψ
hy−Φ

hy , y ∈ , h “sufficiently small” ,

for a consistent single-step method defined by the discrete evolution operator Ψ satisfies

∀y ∈ D: τ(h, y) = O(h) for h→ 0 .

Definition 6.3.1.11. Consistent single step methods

A single step method according to Def. 6.3.1.4 based on a discrete evolution of the form

Ψ
hy = y + hψ(h, y) with

ψ : I × D→ RN continuous,

ψ(0, y) = f(y) .
(6.3.1.10)

is called consistent with the ODE ẏ = f(y).

(Q6.3.2.33.B) Let t ∈ I 7→ y(t), I ⊂ R an interval containing 0, denote the solution of the autonomous

IVP

ẏ = f(y) , y(0) = y0 .

Assume that f is continuously differentiable.

Use the chain rule to express ẏ(t∗) and ÿ(t∗) by means of f and its Jacobian.

(Q6.3.2.33.C) Based on the answer to Question (Q6.3.2.33.B), determine the order of a single-step

method for the autonomous ODE ẏ = f(y), f : D ⊂ RN → RN smooth, whose discrete evolution

operator is given by

Ψ
hy := y + hf(y) + 1

2 h2Dy(y)f(y) ,

where Df(y) ∈ RN,N is the Jacobian of f in y ∈ D.

△

6. Numerical Integration – Single Step Methods, 6.3. General Single-Step Methods 483



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

6.4 Explicit Runge-Kutta Single-Step Methods (RKSSMs)

Video tutorial for Section 6.4: Explicit Runge-Kutta Single-Step Methods (RKSSMs): (46

minutes) Download link, tablet notes

So far we only know first and second order methods from Section 6.2: the explicit and implicit Euler

method (6.2.1.4) and (6.2.2.2), respectively, are of first order, the implicit midpoint rule of second order. We

observed this in Exp. 6.3.2.5 and it can be proved rigorously for all three methods adapting the arguments

of § 6.3.2.9.

Thus, barring the impact of roundoff, the low-order polygonal approximation methods are guaranteed to

achieve any prescribed accuracy provided that the mesh is fine enough. Why should we need any other

timestepping schemes?

Remark 6.4.0.1 (Rationale for high-order single step methods cf. [DAR06]) We argue that the use

of higher-order timestepping methods is highly advisable for the sake of efficiency. The reasoning is very

similar to that of § 3.3.5.23 and Rem. 3.3.5.24, where we considered degree-p Lagrangian finite-element

methods. The reader is advised to study those paragraphs again.

As we saw in § 6.3.2.3 error bounds for single step methods for the solution of IVPs will inevitably feature

unknown constants “C > 0”. Thus they do not give useful information about the discretization error

for a concrete IVP and mesh. Hence, it is too ambitious to ask how many timesteps are needed so

that ‖y(T)− yN‖ stays below a prescribed bound, cf. the discussion in the context of asymptotic error

estimates for finite-element Galerkin methods in Section 3.3.5.

However, as already discussed in § 3.3.5.9 and § 3.3.5.12, an easier question can be answered by asymp-

totic estimates like (6.3.2.7):

What extra computational effort buys a prescribed reduction of the error?

The usual concept of “computational effort” for single step methods (→ Def. 6.3.1.4) is as follows

Computational effort ∼ total number of f-evaluations for approximately solving the IVP,

∼ number of timesteps, if evaluation of discete evolution Ψ
h (→ Def. 6.3.1.4) re-

quires fixed number of f-evaluations,

∼ h−1, in the case of uniform timestep size h > 0 (equidistant mesh (6.3.2.4)).

Now, let us consider a single step method of order p ∈ N, employed with a uniform timestep hold. We

focus on the maximal discretization error in the mesh points, see § 6.3.2.1. As in (3.3.5.23) we assume

that the asymptotic error bounds are sharp:

err(h) ≈ Chp for small meshwidth h > 0 ,

with a “generic constant” C > 0 independent of the mesh.

Goal:
err(hnew)

err(hold)
!
=

1

ρ
for reduction factor ρ > 1 .

(6.3.2.7) ⇒ h
p
new

h
p
old

!
=

1

ρ
⇔ hnew = ρ−1/phold .

For single step method of order p ∈ N

increase effort by factor ρ
1/p reduce error by factor ρ > 1
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Fig. 323
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✁ Plots of ρ1/p vs. ρ

☞ the larger the order p, the less effort for a prescribed reduction of the error!

We remark that another (minor) rationale for using higher-order methods is to curb impact of roundoff

errors (→ [NCSE]) accumulating during timestepping [DAR06]. y

§6.4.0.2 (Bootstrap construction of explicit single step methods) Now we will build a class of methods

that are explicit and achieve orders p > 2. The starting point is a simple integral equation satisfied by any

solution t 7→ y(t) of an initial value problems for the general ODE ẏ = f(t, y):

IVP:
ẏ(t) = f(t, y(t)) ,

y(t0) = y0
⇒ y(t1) = y0 +

∫ t1

t0

f(τ, y(τ))dτ

Idea: approximate the integral by means of s-point quadrature formula →
[NCSE], defined on the reference interval [0, 1]) with nodes c1, . . . , cs,

weights b1, . . . , bs.

y(t1) ≈ y1 = y0 + h
s

∑
i=1

bif(t0 + cih, y(t0 + cih) ) , h := t1 − t0 .

(6.4.0.3)

Obtain these values by bootstrapping

“Bootstrapping” = use the same idea in a simpler version to get y(t0 + cih), noting that these values

can be replaced by other approximations obtained by methods already constructed (this approach will be

elucidated in the next example).

What error can we afford in the approximation of y(t0 + cih) (under the assumption that f is Lipschitz

continuous)? We take the cue from the considerations in § 6.3.2.9.

Goal: aim for one-step error bound y(t1)− y1 = O(hp+1)

Note that there is a factor h in front of the quadrature sum in (6.4.0.3). Thus, our goal can already be

achieved, if only

y(t0 + cih) is approximated up to an error O(hp),
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again, because in (6.4.0.3) a factor of size h multiplies f(t0 + ci, y(t0 + cih)).

This is accomplished by a less accurate discrete evolution than the one we are about to build. Thus,

we can construct discrete evolutions of higher and higher order, in turns, starting with the explicit Euler

method. All these methods will be explicit, that is, y1 can be computed directly from point values of f. y

EXAMPLE 6.4.0.4 (Simple Runge-Kutta methods by quadrature & boostrapping) Now we apply the

boostrapping idea outlined above. We write kℓ ∈ RN for the approximations of y(t0 + cih).

• Quadrature formula = trapezoidal rule [NCSE]:

Q( f ) = 1
2( f (0) + f (1)) ↔ s = 2: c1 = 0, c2 = 1 , b1 = b2 =

1

2
, (6.4.0.5)

and y(t1) approximated by explicit Euler step (6.2.1.4)

k1 = f(t0, y0) , k2 = f(t0 + h, y0 + hk1) , y1 = y0 +
h
2 (k1 + k2) . (6.4.0.6)

(6.4.0.6) = explicit trapezoidal method (for numerical integration of ODEs).

• Quadrature formula → simplest Gauss quadrature formula = midpoint rule → [NCSE] &

y(1
2(t1 + t0)) approximated by explicit Euler step (6.2.1.4)

k1 = f(t0, y0) , k2 = f(t0 +
h
2 , y0 +

h
2 k1) , y1 = y0 + hk2 . (6.4.0.7)

(6.4.0.7) = explicit midpoint method (for numerical integration of ODEs) [DAR06].

y

EXAMPLE 6.4.0.8 (Convergence of simple Runge-Kutta methods) We perform an empiric study of the

order of the explicit single step methods constructed in Ex. 6.4.0.4.

✦ IVP: ẏ = 10y(1− y) (scalar logistic ODE (6.1.2.2)), initial value y(0) = 0.01, final time T = 1,

✦ Explicit single step methods, uniform timestep h.
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Observation: obvious algebraic convergence in meshwidth h with integer rates/orders:

explicit trapezoidal method (6.4.0.6) → order 2

explicit midpoint method (6.4.0.7) → order 2
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This is what one expects from the considerations in Ex. 6.4.0.4. y

The formulas that we have obtained follow a general pattern:

Definition 6.4.0.9. Explicit Runge-Kutta single-step method

For bi, aij ∈ R, ci := ∑
i−1
j=1 aij, i, j = 1, . . . , s, s ∈ N, an s-stage explicit Runge-Kutta single step

method (RK-SSM) for the ODE ẏ = f(t, y), f : Ω→ RN, is defined by (y0 ∈ D)

ki := f(t0 + cih, y0 + h
i−1

∑
j=1

aijkj) , i = 1, . . . , s , y1 := y0 + h
s

∑
i=1

biki .

The vectors ki ∈ RN, i = 1, . . . , s, are called increments, h > 0 is the size of the timestep.

Recall Rem. 6.3.1.14 to understand how the discrete evolution for an explicit Runge-Kutta method is spec-

ified in this definition by giving the formulas for the first step. This is a convention widely adopted in the

literature about numerical methods for ODEs. Of course, the increments ki have to be computed anew in

each timestep.

The implementation of an s-stage explicit Runge-Kutta single step method according to Def. 6.4.0.9 is

straightforward: The increments ki ∈ RN are computed successively, starting from k1 = f(t0 + c1h, y0).

Only s f-evaluations and AXPY operations (→ [NCSE]) are required to compute the next state vector

from the current.

In books and research articles a particular way to write down the coefficients characterizing RK-SSMs is

widely used:

Butcher scheme notation for explicit RK-SSM

Shorthand notation for (explicit) Runge-

Kutta methods [DAR06]

Butcher scheme ✄

(Note that A is a strictly lower triangular

s× s-matrix)

c A

bT :=

c1 0 · · · 0

c2 a21
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

cs as1 · · · as,s−1 0
b1 · · · bs−1 bs

.

(6.4.0.11)

Now we restrict ourselves to the case of an autonomous ODE ẏ = f(y). Matching Def. 6.4.0.9 and

Def. 6.3.1.4, we see that the discrete evolution induced by an explicit Runge-Kutta single-step method is

Ψ
hy = y + h

s

∑
i=1

biki , h ∈ R , y ∈ D , (6.4.0.12)
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where the increments ki are defined by the increment equations

ki := f
(
y + h

i−1

∑
j=1

aijkj

)
.

In line with (6.3.1.10), this discrete evolution can be written as

Ψ
hy = y + hψ(h, y) , ψ(h, y) =

s

∑
i=1

biki .

Is this discrete evolution consistent in the sense of § 6.3.1.7, that is, does ψ(0, y) = f(y) hold? If h = 0,

the increment equations yield

h = 0 ⇒ k1 = · · · = ks = f(y) . ψ(0, y) =
( s

∑
i=1

bi

)
f(y) .

Corollary 6.4.0.13. Consistent Runge-Kutta single step methods

A Runge-Kutta single step method according to Def. 6.4.0.9 is consistent (→ Def. 6.3.1.11) with the

ODE ẏ = f(t, y), if and only if

s

∑
i=1

bi = 1 .

Remark 6.4.0.14 (RK-SSM and quadrature rules) Note that in Def. 6.4.0.9 the coefficients Ci and bi,

1 ∈ {1, . . . , s}, can be regarded as nodes and weights of a quadrature formula (→ [NCSE]) on [0, 1]:
apply the explicit Runge-Kutta single step method to the “ODE” ẏ = f (t), f ∈ C0([0, 1]), on [[]0, 1] with

timestep h = 1 and initial value y(0), with exact solution

ẏ(t) = f (t) , y(0) = 0 ⇒ y(t) =
∫ t

0
f (τ)dτ .

Then the formulas of Def. 6.4.0.9 reduce to

y1 = 0 +
s

∑
i=1

bi f (ci) ≈
∫ 1

0
f (τ)dτ .

Recall that the quadrature rule with these weights and nodes cj will have order ≥ 1 (→ [NCSE]), if the

weights add up to 1! y

EXAMPLE 6.4.0.15 (Butcher schemes for some explicit RK-SSM [DAR06]) The following explicit

Runge-Kutta single step methods are often mentioned in literature.

• Explicit Euler method (6.2.1.4):
0 0

1
➣ order = 1

• explicit trapezoidal method (6.4.0.6):

0 0 0
1 1 0

1
2

1
2

➣ order = 2
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• explicit midpoint method (6.4.0.7):

0 0 0
1
2

1
2 0
0 1

➣ order = 2

• Classical 4th-order RK-SSM:

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

2
6

2
6

1
6

➣ order = 4

• Kutta’s 3/8-method:

0 0 0 0 0
1
3

1
3 0 0 0

2
3 − 1

3 1 0 0
1 1 −1 1 0

1
8

3
8

3
8

1
8

➣ order = 4

Hosts of (explicit) Runge-Kutta methods can be found in the literature, see for example the Wikipedia page.

They are stated in the form of Butcher schemes (6.4.0.11) most of the time. y

Remark 6.4.0.16 (Construction of higher order Runge-Kutta single step methods) Runge-Kutta single

step methods of order p > 2 are not found by bootstrapping as in Ex. 6.4.0.4, because the resulting

methods would have quite a lot of stages compared to their order.

Rather one derives order conditions yielding large non-linear systems of equations for the coefficients aij

and bi in Def. 6.4.0.9, see [DEB02] and [HLW02]. This approach is similar to the construction of a Gauss

quadrature rule in [NCSE]. Unfortunately, the systems of equations are very difficult to solve and no

universal recipe is available. Nevertheless, through massive use of symbolic computation, explicit Runge-

Kutta methods of order up to 19 have been constructed in this way. y

Remark 6.4.0.17 (“Butcher barriers” for explicit RK-SSM) The following table gives lower bounds for

the number of stages needed to achieve order p for an explicit Runge-Kutta method.

order p 1 2 3 4 5 6 7 8 ≥ 9
minimal no. s of stages 1 2 3 4 6 7 9 11 ≥ p + 3

No general formula is has been discovered. What is known is that for explicit Runge-Kutta single step

methods according to Def. 6.4.0.9

order p ≤ number s of stages of RK-SSM

y

Supplementary literature. Runge-Kutta methods are presented in every textbook covering

numerical integration: [DAR06], [HAB02a], [QSS00].

Review question(s) 6.4.0.18 (Explicit Runge-Kutta single-step methods)
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(Q6.4.0.18.A) How many parameters describe a consistent 2-stage explicit Runge-Kutta method for the

autonomous ODE ẏ = f(y)?

Definition 6.4.0.9. Explicit Runge-Kutta method

For bi, aij ∈ R, ci := ∑
i−1
j=1 aij, i, j = 1, . . . , s, s ∈ N, an s-stage explicit Runge-Kutta single

step method (RK-SSM) for the ODE ẏ = f(t, y), f : Ω→ RN, is defined by (y0 ∈ D)

ki := f(t0 + cih, y0 + h
i−1

∑
j=1

aijkj) , i = 1, . . . , s , y1 := y0 + h
s

∑
i=1

biki .

The vectors ki ∈ RN, i = 1, . . . , s, are called increments, h > 0 is the size of the timestep.

(Q6.4.0.18.B) Recall that by “autonomization” the initial value problem

ẏ = f(t, y) , y(t0) = y0 , (6.4.0.19)

with f : I × D→ RN can be converted into the equivalent IVP for the extended state

z = [z1, . . . , zN, zN+1]
⊤ := [y t]⊤ ∈ RN+1:

ż = g(z) , g(z) :=

[
f(z1, . . . , zN)

1

]
, z(0) =

[
y0

t0

]
. (6.4.0.20)

Let us apply the same 2-stage explicit Runge-Kutta method to (6.4.0.19) and (6.4.0.20). When will both

approaches produce the same sequence of states yk ∈ D?

(Q6.4.0.18.C) Formulate a generic 2-stage explicit Runge-Kutta method for the autonomous second-order

ODE ÿ = f(y), f : D ⊂ RN → RN.

Hint. Apply s standard 2-stage explicit Runge-Kutta method after transformation to an equivalent first-

order ODE.

△

6.5 Adaptive Stepsize Control

Video tutorial for Section 6.5: Adaptive Stepsize Control: (56 minutes) Download link,

tablet notes

[NCSE], in the context of numerical quadrature, teaches an a-posteriori way to adjust the mesh underlying

a composite quadrature rule to the integrand: During the computation we estimate the local quadrature

error by comparing the approximations obtained by using quadrature formulas of different order. The same

policy for adapting the integration mesh is very popular in the context of numerical integration, too. Since

the size hk := tk+1 − tk of the cells of the temporal mesh is also called the timestep size, this kind of

a-posteriori mesh adaptation is also known as stepsize control.

6.5.1 The Need for Timestep Adaptation

EXAMPLE 6.5.1.1 (Oregonator reaction) Chemical reaction kinetics is a field where ODE based models

are very common. This example presents a famous reaction with extremely abrupt dynamics. Refer to
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[HAB02a] for more information about the ODE-based modelling of kinetics of chemical reactions.

This is a apecial case of an “oscillating” Zhabotinski-Belousov reaction [GRA02a]:

BrO−3 + Br− 7→ HBrO2

HBrO2 + Br− 7→ Org
BrO−3 + HBrO2 7→ 2 HBrO2 + Ce(IV)

2 HBrO2 7→ Org
Ce(IV) 7→ Br−

(6.5.1.2)

By the laws of reaction kinetics of physical chemistry from (6.5.1.2) we can extract the following (system

of) ordinary differential equation(s) for the concentrations of the different compounds:

y1 := c(BrO−3 ): ẏ1 = −k1y1y2 − k3y1y3 ,
y2 := c(Br−): ẏ2 = −k1y1y2 − k2y2y3 + k5y5 ,
y3 := c(HBrO2): ẏ3 = k1y1y2 − k2y2y3 + k3y1y3 − 2k4y2

3 ,
y4 := c(Org): ẏ4 = k2y2y3 + k4y2

3 ,
y5 := c(Ce(IV)): ẏ5 = k3y1y3 − k5y5 ,

(6.5.1.3)

with (non-dimensionalized) reaction constants:

k1 = 1.34 , k2 = 1.6 · 109 , k3 = 8.0 · 103 , k4 = 4.0 · 107 , k5 = 1.0 .

periodic chemical reaction ➽ Video 1, Video 2

These are results from highly accurate simulations with initial state y1(0) = 0.06, y2(0) = 0.33 · 10−6,

y3(0) = 0.501 · 10−10, y4(0) = 0.03, y5(0) = 0.24 · 10−7:

Fig. 326
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We observe a strongly non-uniform behavior of the solution in time.

This is very common with evolutions arising from practical models (circuit models, chemical reaction mod-

els, mechanical systems)

y

EXAMPLE 6.5.1.4 (Blow-up)
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We return to the “explosion ODE” of Ex. 6.1.3.19 and

consider the scalar autonomous IVP:

ẏ = y2 , y(0) = y0 > 0 .

y(t) =
y0

1− y0t
, t < 1/y0 .

As we have seen a solution exists only for finite time

and then suffers a Blow-up, that is, lim
t→1/y0

y(t) = ∞

: J(y0) =]−∞, 1/y0]!

Fig. 328
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How to choose temporal mesh {t0 < t1 < · · · < tN−1 < tN} for single step method in case J(y0) is not

known, even worse, if it is not clear a priori that a blow up will happen?

Just imagine: what will result from equidistant explicit Euler integration (6.2.1.4) applied to the above IVP?

Fig. 329
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A preview: There are single-step methods that can

detect and resolve blow-ups!

✁ Simulations conducted with the numerical integra-

tor Ode45 introduced in § 6.5.3.3.

We observe that Ode45 manages to reduce stepsize

more and more as it approaches the singularity of the

solution! How can it accomplish this feat!

y

6.5.2 Local-in-Time Stepsize Control

We identify as key challenge (discussed for autonomous ODEs below):

How to choose a good temporal mesh {0 = t0 < t1 < · · · < tM−1 < tM}
for a given single step method applied to a concerete IVP?

What does “good” mean ?
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Be efficient! Be reliable!

Stepsize adaptation for single step methods

Objective: M as small as possible &
max

k=1,...,N
‖y(tk)− yk‖<TOL

or ‖y(T)− yM‖ < TOL
, TOL = tolerance

Policy: Try to curb/balance one-step error by

✦ adjusting current stepsize hk,

✦ predicting suitable next timestep hk+1

}
local-in-time

stepsize control

Tool: Local-in-time one-step error estimator (a posteriori, based on yk, hk−1)

Why do we embrace local-in-time timestep control (based on estimating only the one-step error)? One

could raise a serious objection: If a small time-local error in a single timestep leads to large error

‖yk − y(tk)‖ at later times, then local-in-time timestep control is powerless about it and will not even

notice!

Nevertheless, local-in-time timestep control is used almost exclusively,

☞ because we do not want to discard past timesteps, which could amount to tremendous waste of

computational resources,

☞ because it is inexpensive and it works for many practical problems,

☞ because there is no reliable method that can deliver guaranteed accuracy for general IVP.

§6.5.2.2 (Local-in-time error estimation) We “recycle” heuristics already employed for adaptive quadra-

ture, see [NCSE], [NCSE]. There we tried to get an idea of the local quadrature error by comparing two

approximations of different order. Now we pursue a similar idea over a single timestep.

Idea: Estimation of one-step error

Compare results for two discrete evolutions Ψ
h, Ψ̃

h
of different order over current

timestep h:

If Order(Ψ̃) > Order(Ψ), then we expect

If Order(Ψ̃) > Order(Ψ), then we expect

Φ
hyk −Ψ

hyk︸ ︷︷ ︸
one-step error

≈ ESTk := Ψ̃
h
yk −Ψ

hyk . (6.5.2.3)

Heuristics for concrete h > 0 A computable quantity!
y

§6.5.2.4 ((Crude) local timestep control) We take for granted the availability of a local error estimate

ESTk that we have computed for a current stepsize h. We specify target values ATOL > 0, RTOL > 0 of

absolute and relative tolerances to be met by the local error and implement the following policy:
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absolute tolerance

Compare
ESTk ↔ ATOL

ESTk ↔ RTOL‖yk‖ ➣ Reject/accept current step (6.5.2.5)

relative tolerance

Both tolerances RTOL > 0 and ATOL > 0 have to be supplied by the user of the adaptive algorithm. The

absolute tolerance is usually chosen significantly smaller than the relative tolerance and merely serves as

a safeguard against non-termination in case yk ≈ 0. For a similar use of absolute and relative tolerances

see [NCSE], which deals with termination criteria for iterations, in particular [NCSE].

☞ Simple accept/reject algorithm:

ESTk < max{ATOL, ‖yk‖RTOL}: Accept current step:

• Advance by one timestep (stepsize h),

• use larger stepsize (αh with some α > 1) for next step (∗)
ESTk > max{ATOL, ‖yk‖RTOL}: Reject current step:

• Repeat current timestep

• with smaller stepsize < h, e.g., 1
2 h

The rationale behind the adjustment of the timestep size in (∗) is the following: if the current stepsize

guarantees sufficiently small one-step error, then it might be possible to obtain a still acceptable one-

step error with a larger timestep, which would enhance efficiency (fewer timesteps for total numerical

integration). This should be tried, since timestep control will usually provide a safeguard against undue

loss of accuracy.

The following C++ code implements a wrapper function odeintadapt() for a general adaptive single-

step method according to the policy outlined above. The arguments are meant to pass the following

information:

• Psilow, Psihigh: functors passing discrete evolution operators for autonomous ODE of different

order, type @(y,h), expecting a state (usually a column vector) as first argument, and a stepsize

as second,

• T: final time T > 0,

• y0: initial state y0,

• h0: stepsize h0 for the first timestep

• reltol, abstol: relative and absolute tolerances, see (6.5.2.5),

• hmin: minimal stepsize, timestepping terminates when stepsize control hk < hmin, which is rele-

vant for detecting blow-ups or collapse of the solution.

C++11 code 6.5.2.6: Simple local stepsize control for single step methods ➺ GITHUB

2 // Auxiliary function: default norm for an EIGEN vector type

3 template <class State >

4 double _norm ( const State &y ) {

5 return y . norm ( ) ;

6 }

7

8 // Adaptive numerical integrator based on local-in-time stepsize control

9 template <class DiscEvolOp , class State ,

10 class NormFunc = decltype ( _norm<State >)>
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11 std : : vector <std : : pair <double , State >> odeintadapt (

12 DiscEvolOp &&Psilow , DiscEvolOp &&Psihigh , const State &y0 , double T ,

13 double h0 , double r e l t o l , double absto l , double hmin ,

14 NormFunc &norm = _norm<State >) {

15 double t = 0 ; // initial time t0 = 0
16 State y = y0 ; // current state

17 double h = h0 ; // timestep to start with

18 std : : vector <std : : pair <double , State >>

19 s ta tes ; // vector of times/computed states:

20 // (tk, yk)k
21 s ta tes . push_back ( { t , y } ) ; // initial time and state

22

23 while ( ( s ta tes . back ( ) . f i r s t < T) &&

24 ( h >= hmin ) ) { //

25 State yh = Psihigh (

26 h , y ) ; // high order discrete evolution Ψ̃
h

27 //

28 State yH = Psilow ( h , y ) ; // low order discrete evolution

29 // Ψ
h

30 double est =

31 norm ( yH − yh ) ; // local error estimate

32 // ESTk
33

34 i f ( es t <

35 std : : max(

36 r e l t o l * norm ( y ) ,

37 abs to l ) ) { // step accepted

38 y = yh ; // use high order approximation

39 t = t + std : : min (T − t , h ) ; // next time tk
40 s ta tes . push_back ( { t , y } ) ; //

41 h = 1.1 * h ; // try with increased stepsize

42 } else { // step rejected

43 h = h / 2 ; // try with half the stepsize

44 }

45 // Numerical integration has ground to a halt !

46 i f ( h < hmin ) {

47 std : : ce r r << "Warning : Fai lure at t=" << s ta tes . back ( ) . f i r s t

48 << " . Unable to meet in tegrat ion tolerances without reducing "
49 " the step "
50 << " size below the smallest value allowed ( " << hmin

51 << " ) at time t . " << std : : endl ;

52 }

53 }

54 return s ta tes ;

55 }

Comments on Code 6.5.2.6:

• line 24: check whether final time is reached or timestepping has ground to a halt (hk < hmin).

• line 27, 29: advance state by low and high order integrator.

• line 32: compute norm of estimated error, see (6.5.2.3).

• line 37: make comparison (6.5.2.5) to decide whether to accept or reject local step.

• line 40, 41: step accepted, update state and current time and suggest 1.1 times the current stepsize

for next step.

• line 43 step rejected, try again with half the stepsize.
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• Return value is a vector of pairs consisting of

– times t ↔ temporal mesh t0 < t1 < t2 < . . . < tN < T, where tN < T indicated

premature termination (collapse, blow-up),

– states y ↔ sequence (yk)
N
k=0.

y

Remark 6.5.2.7 (Estimation of “wrong” error?) We face the same conundrum as in the case of adaptive

numerical quadrature, see [NCSE]:

!
By the heuristic considerations, see (6.5.2.3) it seems that ESTk measures the one-step error for

the low-order method Ψ and that we should use yk+1 = Ψ
hk yk, if the timestep is accepted.

However, it would be foolish not to use the better value yk+1 = Ψ̃
hk yk, since it is available for free. This

is what is done in every implementation of adaptive methods, also in Code 6.5.2.6, and this choice can be

justified by control theoretic arguments [DEB02]. y

EXPERIMENT 6.5.2.8 (Simple adaptive stepsize control) We test adaptive timestepping routine from

Code 6.5.2.6 for a scalar IVP and compare the estimated local error and true local error.

✦ IVP for ODE ẏ = cos(αy)2, α > 0, solution y(t) = arctan(α(t− c))/α for y(0) ∈]− π/2, π/2[

✦ Simple adaptive timestepping based on explicit Euler (6.2.1.4) and explicit trapezoidal rule (6.4.0.6)

Fig. 330
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Statistics: 66 timesteps, 131 rejected timesteps

Observations:

☞ Adaptive timestepping well resolves local features of solution y(t) at t = 1

☞ Estimated error (an estimate for the one-step error) and true error are not related! To understand

this recall Rem. 6.5.2.7.

y

EXPERIMENT 6.5.2.9 (Gain through adaptivity → Exp. 6.5.2.8) In this experiment we want to ex-

plore whether adaptive timestepping is worth while, as regards reduction of computational effort without

sacrificing accuracy.
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We retain the simple adaptive timestepping from previous experiment Exp. 6.5.2.8 and also study the

same IVP.

New: initial state y(0) = 0!

Now we examine the dependence of the maximal discretization error in mesh points on the computational

effort. The latter is proportional to the number of timesteps.

Fig. 332
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Observations:

☞ Adaptive timestepping achieves much better accuracy for a fixed computational effort.

y

EXPERIMENT 6.5.2.10 (“Failure” of adaptive timestepping → Exp. 6.5.2.9)

Same ODE and simple adaptive timestepping as in previous experiment Exp. 6.5.2.9.

ẏ = cos2(αy) ⇒ y(t) = arctan(α(t− c))/α ,y(0) ∈]− π

2α
,− π

2α
[ ,

for α = 40.

Now: initial state y(0) = −0.0386 ≈ π
2α as in Exp. 6.5.2.8

Fig. 334
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☞ Adaptive timestepping leads to larger errors at the same computational cost as uniform timestepping

!

Explanation: the position of the steep step of the solution has a sensitive dependence on an initial value,

if y(0) ≈ π
2α :

y(t) = 1
α arctan(α(t + tan(y0/α))) , step at ≈ − tan(y0/α) .

Hence, small local errors in the initial timesteps will lead to large errors at around time t ≈ 1. The stepsize

control is mistaken in condoning these small one-step errors in the first few steps and, therefore, incurs

huge errors later.

However, the perspective of backward error analysis (→ [NCSE]) rehabilitates adaptive stepsize control

in this case: it gives us a numerical solution that is very close to the exact solution of the ODE with slightly

perturbed initial state y0. y

§6.5.2.11 (Refined local stepsize control → [DAR06]) The above algorithm (Code 6.5.2.6) is simple,

but the rule for increasing/shrinking of timestep “squanders” the information contained in ESTk : TOL:

More ambitious goal ! When ESTk > TOL : stepsize adjustment better hk = ?

When ESTk < TOL : stepsize prediction good hk+1 = ?

Assumption: At our disposal are two discrete evolutions:

✦ Ψ with order(Ψ) = p (➙ “low order” single step method)

✦ Ψ̃ with order(Ψ̃)>p (➙ “higher order” single step method)

These are the same building blocks as for the simple adaptive strategy employed in Code 6.5.2.6 (passed

as arguments Psilow, Psihigh there).

According to (6.3.2.22) we can expect the following asymptotic decay of the one-step errors for h → 0:

Ψ
hk y(tk)−Φ

hk y(tk) = chp+1 + O(h
p+2
k ) ,

Ψ̃
hk y(tk)−Φ

hk y(tk) = O(h
p+2
k ) ,

(6.5.2.12)

with some (unknown) constant c > 0. Why hp+1? Remember the estimate (6.3.2.15) from the error

analysis of the explicit Euler method: we also found O(h2
k) there for the one-step error of a single step

method of order 1.

Heuristic reasoning: The timestep hk is small ➣ “higher order terms” O(h
p+2
k ) can be ignored.

Ψ
hk y(tk)−Φ

hk y(tk)
.
= ch

p+1
k + O(h

p+2
k ) ,

Ψ̃
hk y(tk)−Φ

hk y(tk)
.
= O(h

p+2
k ) .

⇒ ESTk
.
= ch

p+1
k . (6.5.2.13)

✎ notation:
.
= equality up to higher order terms in hk

ESTk
.
= ch

p+1
k ⇒ c

.
=

ESTk

h
p+1
k

. (6.5.2.14)

Available in algorithm, see (6.5.2.3)
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For the sake of accuracy (demands “ESTk < TOL”) & efficiency (favors “>”) we aim for

ESTk
!
= TOL := max{ATOL, ‖yk‖RTOL} . (6.5.2.15)

What timestep h∗ can actually achieve (6.5.2.15), if we “believe” (heuristics!) in (6.5.2.13) (and, therefore,

in (6.5.2.14))?

(6.5.2.14) & (6.5.2.15) ⇒ TOL =
ESTk

h
p+1
k

h
p+1
∗ . (6.5.2.16)

"‘Optimal timestep”:
(stepsize prediction)

h∗ = h p+1

√
TOL

ESTk
. (6.5.2.17)

The proposed timestep size h∗ will be used in both cases:

(Rejection of current timestep): In case ESTk > TOL ➣ repeat step with stepsize h∗.

(Acceptance of current timstep): If ESTk ≤ TOL ➣ use h∗ as stepsize for next step.

C++11 code 6.5.2.18: Refined local stepsize control for single step methods

➺ GITHUB

2 // Auxiliary function: default norm for an EIGEN vector type

3 template <class State >

4 double _norm ( const State &y ) {

5 return y . norm ( ) ;

6 }

7 // Adaptive single-step integrator

8 template <class DiscEvolOp , class State ,

9 class NormFunc = decltype ( _norm<State >)>

10 std : : vector <std : : pair <double , State >> odeintssctr l (

11 DiscEvolOp &&Psilow , unsigned i n t p , DiscEvolOp &&Psihigh , const State &y0 ,

12 double T , double h0 , double r e l t o l , double absto l , double hmin ,

13 NormFunc &norm = _norm<State >) {

14 double t = 0 ; // initial time t0 = 0
15 State y = y0 ; // current state, initialized here

16 double h = h0 ; // timestep to start with

17 std : : vector <std : : pair <double , State >>

18 s ta tes ; // vector (tk, yk)k
19 s ta tes . push_back ( { t , y } ) ;

20

21 // Main timestepping loop

22 while ( ( s ta tes . back ( ) . f i r s t < T) && ( h >= hmin ) ) { //

23 State yh =

24 Psihigh ( h , y ) ; // high order discrete evolution

25 // Ψ̃
h

26 State yH = Psilow ( h , y ) ; // low order discrete evolution

27 // Ψ
h

28 double est = norm (

29 yH −

30 yh ) ; // ↔ ESTk
31 double t o l =

32 std : : max( r e l t o l * norm ( y ) ,

33 abs to l ) ; // effective tolerance

34

35 // Optimal stepsize according to (6.5.2.17)
36 i f ( es t < t o l ) { // step accepted
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37 //

38 s ta tes . push_back ( { t = t + std : : min (T − t , h ) ,

39 y = yh } ) ; // store next approximate state

40 }

41 h *= std : : max(

42 0.5 ,

43 std : : min ( 2 . , 0.9 * std : : pow( t o l / est ,

44 1. / ( p + 1) ) ) ) ; //

45 i f ( h < hmin ) {

46 std : : ce r r

47 << "Warning : Fai lure at t=" << s ta tes . back ( ) . f i r s t

48 << " . Unable to meet in tegrat ion tolerances without reducing the step "
49 << " size below the smallest value allowed ( " << hmin

50 << " ) at time t . " << std : : endl ;

51 }

52 }

53 return s ta tes ;

54 }

Comments on Code 6.5.2.18 (see comments on Code 6.5.2.6 for more explanations):

• Input arguments as for Code 6.5.2.6, except for p =̂ order of lower order discrete evolution.

• line 44: compute presumably better local stepsize according to (6.5.2.17),

• line 37: decide whether to repeat the step or advance,

• line 37: extend output arrays if current step has not been rejected.

y

6.5.3 Embedded Runge-Kutta Methods

For higher order RK-SSM with a considerable number of stages computing different sets of increments

(→ Def. 6.4.0.9) for two methods of different order just for the sake of local-in-time stepsize control would

mean undue effort. This makes the following embedding idea attractive:

Embedding idea for RK-SSM

Use two RK-SSMs based on the same increments, that is, built with the same coefficients aij, but

different weights bi, see Def. 6.4.0.9 for the formulas, and different orders p and p + 1.

Augmented Butcher scheme for embedded explicit

Runge-Kutta methods ✄

(The lower-order scheme has weights b̂i.)

c A

bT

b̂T

:=

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass

b1 · · · bs

b̂1 · · · b̂s

.

EXAMPLE 6.5.3.2 (Commonly used embedded explicit Runge-Kutta methods) The following two em-

bedded RK-SSM, presented in the form of their extended Butcher schemes, provided single step methods

of orders 4 & 5.
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§6.5.3.3 (EIGEN-compatible adaptive explicit embedded Runge-Kutta integrator) An implementation

of an explicit embedded Runge-Kutta single-step method with adaptive stepsize control for solving an

autonomous IVP is provided by the utility class Ode45 ➺ GitLab: The class name already indicates the

orders of the pair of single step methods used for adaptive stepsize control:

Ψ =̂ RK-method of order 4 Ψ̃ =̂ RK-method of order 5

Ode45

Refer to the class implementation ➺ GitLab and the data members Ode45::_mA, Ode45::_vb4,

Ode45::_vb5 for the underlying coefficients in A, b, and b̂, as introduced in Section 6.5.3.

The class is templated with two type parameters:

template <c lass StateType,

c lass RhsType = std::function<StateType(const StateType &)>>

c lass Ode45 { ... };

(i) StateType: type for vectors in state space V, e.g. a fixed size vector type of EIGEN:

Eigen::Matrix<double,N,1>, where N is an integer constant § 6.2.0.1.

(ii) RhsType: a functor type, see [NCSE], for the right hand side function f; must match StateType,

default type provided.

The functor for the right hand side f : D ⊂ V → V of the ODE ẏ = f(y) is specified as an argument of

the constructor. The single-step numerical integrator is invoked by the templated method

template <c lass NormFunc = dec l type(_norm<StateType>)>

std::vector < std::pair<StateType, double>>

solve(const StateType & y0,double T,const NormFunc & norm =

_norm<StateType>);

The following arguments have to be supplied:

1. y0: the initial value y0

2. T: the final time T, initial time t0 = 0 is assumed, because the class can deal with autonomous

ODEs only, recall § 6.1.3.3.

3. norm: a functor returning a suitable norm for a state vector. Defaults to EIGEN’s maximum vector

norm.
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The method returns a vector of 2-tuples (yk, tk) (note the order!), k = 0, . . . , N, of temporal mesh points

tk, t0 = 0, tN = T, see § 6.2.0.2, and approximate states yk ≈ y(tk), where t 7→ y(t) stands for the

exact solution of the initial value problem.

The arguments of solve() are not sufficient to control the behavior of the adaptive integrator. In addition,

one can set data members of the data structure Ode45.options to configure an instance ode45obj of

Ode45:

ode45obj.options.<option_you_want_to_set> = <value>;

In particular, the key data fields for adaptive timestepping are

• rtol: relative tolerance for error control (default is 10−6)

• atol: absolute tolerance for error control (default is 10−8)

For complete information about all control parameters and their default values see the Ode45 class defi-

nition ➺ GitLab.

The following self-explanatory code snippet uses the numerical integrator class Ode45 for solving a scalar

autonomous ODE.

C++11 code 6.5.3.4: Invocation of adaptive embedded Runge-Kutta-Fehlberg integrator

➺ GitLab

2 i n t main ( i n t /*argc*/ , char * * /*argv*/) {

3 // Types to be used for a scalar ODE with state space R
4 using StateType = double ;

5 using RhsType = std : : f unc t i on <StateType ( StateType ) >;

6 // Logistic differential equation (6.1.2.2)
7 RhsType f = [ ] ( StateType y ) { return 5 * y * (1 − y ) ; } ;

8 StateType y0 = 0 . 2 ; // Initial value

9 // Exact solution of IVP, see (6.1.2.3)
10 auto y = [ y0 ] ( double t ) { return y0 / ( y0 + (1 − y0 ) * std : : exp(−5 * t ) ) ; } ;

11 // State space R, simple modulus supplies norm

12 auto normFunc = [ ] ( StateType x ) { return std : : fabs ( x ) ; } ;

13

14 // Invoke explicit Runge-Kutta method with stepsize control

15 Ode45<StateType , RhsType> in tegrator ( f ) ;

16 // Do the timestepping with adaptive strategy of Section 6.5

17 std : : vector <std : : pair <StateType , double>> s ta tes =

18 in tegrator . solve ( y0 , 1 .0 , normFunc ) ;

19 // Output information accumulation during numerical integration

20 in tegrator . op t ions . d o _ s t a t i s t i c s = true ;

21 in tegrator . pr in t ( ) ;

22 // Output norm of discretization error in nodes of adaptively
generated

23 // temporal mesh

24 for ( auto s ta te : s ta tes ) {

25 std : : cout << " t = " << s ta te . second << " , y = " << s ta te . f i r s t

26 << " , | err | = " << fabs ( s ta te . f i r s t − y ( s t a te . second ) )

27 << std : : endl ;

28 }

29 return 0;

30 }

y

Remark 6.5.3.5 (Tolerances and accuracy) As we have learned in § 6.5.3.3 for objects of the class

Ode45 tolerances for the refined local stepsize control of § 6.5.2.11 can be specified by setting the member
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variables options.rtol and options.atol.

The possibility to pass tolerances to numerical integrators based on adaptive timestepping may tempt

the user into believing that they allow to control the accuracy of the solutions. However, as is clear from

§ 6.5.2.11, these tolerances are solely applied to local error estimates and, inherently, have nothing to do

with global discretization errors, see Exp. 6.5.2.8.

No global error control through local-in-time adaptive timestepping

The absolute/relative tolerances imposed for local-in-time adaptive timestepping do not allow to

predict accuracy of solution!

y

EXAMPLE 6.5.3.7 (Adaptive timestepping for mechanical problem) We test the effect of adaptive

stepsize control in MATLAB for the equations of motion describing the planar movement of a point mass in

a conservative force field x ∈ R2 7→ F(x) ∈ R2: Let t 7→ y(t) ∈ R2 be the trajectory of point mass (in

the plane).

From Newton’s law: ÿ = F(y) := − 2y

‖y‖2
2

. (6.5.3.8)

acceleration force

As in Rem. 6.1.3.5 we can convert the second-order ODE (6.5.3.8) into an equivalent 1st-order ODE by

introducing the velocity v := ẏ as an extra solution component:

(6.5.3.8) ⇒
[

ẏ
v̇

]
=

[
v

− 2y

‖y‖2
2

]
. (6.5.3.9)

The following initial values used in the experiment:

y(0) :=

[−1
0

]
, v(0) :=

[
0.1
−0.1

]

Adaptive numerical integration with adaptive numerical integrator Ode45 (to § 6.5.3.3) with

➊ options.rtol = 0.001, options.atol = 1.0E-5,

➋ options.rtol = 0.01, options.atol = 1.0E-3,
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Observations:

☞ Fast changes in solution components captured by adaptive approach through very small timesteps.

☞ Completely wrong solution, if tolerance reduced slightly.

In this example we face a rather sensitive dependence of the trajectories on initial states or intermediate

states. Small perturbations at one instance in time can be have a massive impact on the solution at later

times. Local stepsize control is powerless about preventing this. y

Review question(s) 6.5.3.10 (Adaptive timestep control)

(Q6.5.3.10.A) Explain how the blow-up of solutions of an initial-value problem can be captured by a single-

step numerical integrator with adaptive stepsize control.

(Q6.5.3.10.B) Code 6.5.2.18 contains the line

h = h * std::max(0.5, std::min(2.0, std::pow(tol/est, 1.0/(p+1))));

Explain all parts and variables occurring in this expression.

△
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Chapter 7

Single-Step Methods for Stiff Initial-Value

Problems

Explicit Runge-Kutta methods with stepsize control (→ Section 6.5) seem to be able to provide approxi-

mate solutions for any IVP with good accuracy provided that tolerances are set appropriately. Does this

mean that everything is settled about numerical integration?

EXAMPLE 7.0.0.1 (Explicit adaptive RK-SSM for stiff IVP) In this example we will witness the near

failure of a high-order adaptive explicit Runge-Kutta method for a simple scalar autonomous ODE.

IVP considered: ẏ = λy2(1− y) , λ := 500 , y(0) = 1
100 . (7.0.0.2)

This is a logistic ODE as introduced in Ex. 6.1.2.1. We try to solve it by means of an explicit adaptive

embedded Runge-Kutta-Fehlberg method (→ Section 6.5.3) using the embedded Runge-Kutta single-

step method offered by Ode45 as explained in § 6.5.3.3 (Preprocessor switch MATLABCOEFF activated).

C++11 code 7.0.0.3: Solving (7.0.0.2) with Ode45 numerical integrator ➺ GITHUB

2 // Types to be used for a scalar ODE with state space R
3 using StateType = double ;

4 using RhsType = std : : f unc t i on <StateType ( StateType ) >;

5 // Logistic differential equation (6.1.2.2)
6 double lambda = 500.0 ;

7 RhsType f = [ lambda ] ( StateType y ) { return lambda * y * y * (1 − y ) ; } ;

8 StateType y0 = 0 .01 ; // Initial value, will create a STIFF IVP

9 // State space R, simple modulus supplies norm

10 auto normFunc = [ ] ( StateType x ) { return fabs ( x ) ; } ;

11

12 // Invoke explicit Runge-Kutta method with stepsize control

13 Ode45<StateType , RhsType> in tegrator ( f ) ;

14 // Set rather loose tolerances

15 in tegrator . op t ions . r t o l = 0 . 1 ;

16 in tegrator . op t ions . ato l = 0.001;

17 in tegrator . op t ions . min_dt = 1E−18;

18 std : : vector <std : : pair <StateType , double>> s ta tes =

19 in tegrator . solve ( y0 , 1 .0 , normFunc ) ;

20 // Output information accumulation during numerical integration

21 in tegrator . op t ions . d o _ s t a t i s t i c s = true ;

22 in tegrator . pr in t ( ) ;
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Statistics of the integrator run✄

1 − number o f steps : 183

2 − number o f r e j ec ted steps : 185

3 − f u n c t i o n c a l l s : 1302

Fig. 336
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Stepsize control of Ode45 running amok!

?
The solution is virtually constant from t > 0.2 and, nevertheless, the integrator uses tiny timesteps

until the end of the integration interval. Why this crazy behavior?
y
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7.1 Model Problem Analysis

Video tutorial for Section 7.1:Model Problem Analysis: (68 minutes) Download link,

tablet notes

Fortunately, full insight into the observations made in Ex. 7.0.0.1 can already be gleaned from a scalar

linear model problem that is extremely easy to analyze.

EXPERIMENT 7.1.0.1 (Adaptive explicit RK-SSM for scalar linear decay ODE) To rule out that what

we observed in Ex. 7.0.0.1 might have been a quirk of the IVP (7.0.0.2) we conduct the same investigations

for the simple linear, scalar (N = 1), autonomous IVP

ẏ = λy , λ := −80 , y(0) = 1 . (7.1.0.2)
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We use the adaptive integrator of Ode45 (→
§ 6.5.3.3) to solve (7.1.0.2) with the same parame-

ters as in Code 6.5.3.4. ✄

1 − number o f steps : 33

2 − number o f r e j ec ted steps : 32

3 − f u n c t i o n c a l l s : 231
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Observation: Though y(t) ≈ 0 for t > 0.1, the integrator keeps on using “unreasonably small” timesteps

even then. y

In this section we will discover a simple explanation for the startling behavior of the adaptive timestepping

Ode45 in Ex. 7.0.0.1.

EXAMPLE 7.1.0.3 (Blow-up of explicit Euler method) The simplest explicit RK-SSM is the explicit

Euler method, see Section 6.2.1. We know that it should converge like O(h) for meshwidth h→ 0. In this

example we will see that this may be true only for sufficiently small h, which may be extremely small.

✦ We consider the IVP for the scalar linear decay ODE:

ẏ = f (y) := λy , λ≪ 0 , y(0) = 1 .

✦ We apply the explicit Euler method (6.2.1.4) with uniform timestep h = 1/N, N ∈
{5, 10, 20, 40, 80, 160, 320, 640}.

Fig. 340
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λ≪ 0: blow-up of yk for large timestep h
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λ = 20: — =̂ y(t), — =̂ Euler polygon

Explanation: From Fig. 342 we draw the geometric conclusion that, if h is “large in comparison with λ−1”,

then the approximations yk way miss the stationary point y = 0 due to overshooting.
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This leads to a sequence (yk)k with exponentially increasing oscillations.

✦ Now we look at an IVP for the logistic ODE, see Ex. 6.1.2.1:

ẏ = f (y) := λy(1− y) , y(0) = 0.01 .

✦ As before, we apply the explicit Euler method (6.2.1.4) with uniform timestep h = 1/N, N ∈
{5, 10, 20, 40, 80, 160, 320, 640}.

Fig. 342
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λ = 10.000000
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λ = 90.000000

λ large: blow-up of yk for large timestep h

Fig. 343
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For large timesteps h we also observe oscillatory blow-up of the sequence (yk)k.

Deeper analysis:

For y ≈ 1: f (y) ≈ λ(1− y) ➣ If y(t0) ≈ 1, then the solution of the IVP will behave like the solution

of ẏ = λ(1− y), which is a linear ODE. Similary, z(t) := 1− y(t) will behave like the solution of the

“decay equation” ż = −λz. Thus, around the stationary point y = 1 the explicit Euler method behaves

like it did for ẏ = λy in the vicinity of the stationary point y = 0; it grossly overshoots. y

§7.1.0.4 (Linear model problem analysis: explicit Euler method) The phenomenon observed in the

two previous examples is accessible to a remarkably simple rigorous analysis: Motivated by the consider-

ations in Ex. 7.1.0.3 we study the explicit Euler method (6.2.1.4) for the

linear model problem: ẏ = λy , y(0) = y0 , with λ≪ 0 , (7.1.0.5)

which has an exponentially decaying exact solution

y(t) = y0 exp(λt)→ 0 for t→ ∞ .

Recall the recursion for the explicit Euler with uniform timestep h > 0 method for (7.1.0.5):

(6.2.1.4) for f (y) = λy: yk+1 = yk(1 + λh) . (7.1.0.6)

We easily get a closed form expression for the approximations yk:

yk = y0(1 + λh)k ⇒ |yk| →
{

0 , if λh > −2 (qualitatively correct) ,

∞ , if λh < −2 (qualitatively wrong) .
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Observed: stability-induced timestep constraint

Only if |λ|h < 2 we obtain a decaying solution by the explicit Euler method!

y

Could it be that the timestep control is desperately trying to enforce the qualitatively correct behavior of the

numerical solution in Ex. 7.1.0.3? Let us examine how the simple stepsize control of Code 6.5.2.6 fares

for model problem (7.1.0.5):

EXPERIMENT 7.1.0.8 (Simple adaptive timestepping for fast decay) In this example we let a trans-

parent adaptive timestep struggle with “overshooting”:

✦ “Linear model problem IVP”: ẏ = λy, y(0) = 1, λ = −100

✦ Simple adaptive timestepping method as in Exp. 6.5.2.8, see Code 6.5.2.6. Timestep control based

on the pair of 1st-order explicit Euler method and 2nd-order explicit trapezoidal method.

Fig. 344
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Observation: in fact, stepsize control enforces small timesteps even if y(t) ≈ 0 and persistently triggers

rejections of timesteps. This is necessary to prevent overshooting in the Euler method, which contributes

to the estimate of the one-step error.

We see the purpose of stepsize control thwarted, because after only a very short time the solution is

almost zero and then, in fact, large timesteps should be chosen. y

Are these observations a particular “flaw” of the explicit Euler method? Let us study the behavior of another

simple explicit Runge-Kutta method applied to the linear model problem.

EXAMPLE 7.1.0.9 (Explicit trapzoidal method for decay equation → [DAR06])

The explicit trapezoidal method is a 2-stage explicit Ruge-Kutta method, whose Butcher scheme is given

in Ex. 6.4.0.15 and which was derived in Ex. 6.4.0.4. We state its recursion for the ODE ẏ = f(t, y) in

terms of the first step y0 → y1:

k1 = f(t0, y0) , k2 = f(t0 + h, y0 + hk1) , y1 = y0 +
h
2 (k1 + k2) . (6.4.0.6)

Apply it to the model problem (7.1.0.5), that is, the scalar autonomous ODE with right hand side function

f(y) = f (y) = λy, λ < 0:

k1 = λy0 , k2 = λ(y0 + hk1) ⇒ y1 = (1 + λh + 1
2(λh)2)︸ ︷︷ ︸

=:S(hλ)

y0 . (7.1.0.10)
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The sequence of approximations generated by the explicit trapezoidal rule can be expressed in

closed form as

yk = S(hλ)ky0 , k = 0, . . . , N . (7.1.0.11)

Fig. 346
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Stability polynomial for explicit trapezoidal rule

 S
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)

z 7→ 1− z + 1
2 z2

Clearly, blow-up can be avoided only if |S(hλ)| ≤ 1:

|S(hλ)| < 1 ⇔ − 2 < hλ < 0 .

Qualitatively correct decay behavior of (yk)k only un-

der timestep constraint

h ≤ |2/λ| . (7.1.0.12)

✁ the stability function for the explicit trapezoidal

method

y

§7.1.0.13 (Model problem analysis for general explicit Runge-Kutta single step methods) We gener-

alize the approach taken in Ex. 7.1.0.9 and apply an explicit s-stage Runge-Kutta method (→ Def. 6.4.0.9)

encoded by the Butcher scheme
c A

bT , A ∈ Rs,s strictly lower-triangular, to the autonomous scalar lin-

ear ODE (7.1.0.5) (ẏ = λy). We write down the equations for the increments and y1 from Def. 6.4.0.9 for

f (y) := λy and then convert the resulting system of equations into matrix form:

ki = λ(y0 + h
i−1

∑
j=1

aijk j) ,

y1 = y0 + h
s

∑
i=1

biki

⇒
[

I− zA 0

−zb⊤ 1

][
k
y1

]
= y0

[
1
1

]
, (7.1.0.14)

where k ∈ Rs =̂ denotes the vector [k1, . . . , ks]⊤/λ of increments, and z := λh. Next we apply block

Gaussian elimination (→ [NCSE]) to solve for y1 and obtain

y1 = S(z)y0 with S(z) := 1 + zbT(I− zA)−11 . (7.1.0.15)

Alternatively we can express y1 through determinants appealing to Cramer’s rule,

y1 = y0

det

[
I− zA 1

−zb⊤ 1

]

det

[
I− zA 0

−zb⊤ 1

] ⇒ S(z) = det(I− zA+ z1bT) , (7.1.0.16)

and note that A is a strictly lower triangular matrix, which means that det(I− zA) = 1. Thus we have

proved the following theorem.
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Theorem 7.1.0.17. Stability function of some explicit Runge-Kutta methods → [HAB02a],

[QSS00]

The discrete evolution Ψh
λ of an explicit s-stage Runge-Kutta single step method (→ Def. 6.4.0.9)

with Butcher scheme
c A

bT (see (6.4.0.11)) for the ODE ẏ = λy amounts to a multiplication with

the number

Ψh
λ = S(λh) ⇔ y1 = S(λh)y0 ,

where S is the stability function (SF)

S(z) := 1 + zbT(I− zA)−11 = det(I− zA+ z1bT) , 1 := [1, . . . , 1]⊤ ∈ Rs . (7.1.0.18)

y

EXAMPLE 7.1.0.19 (Stability functions of explicit Runge-Kutta single step methods) From

Thm. 7.1.0.17 and their Butcher schemes we can instantly compute the stability functions of explicit RK-

SSM. We do this for a few methods whose Butcher schemes were listed in Ex. 6.4.0.15

• Explicit Euler method (6.2.1.4):
0 0

1
➣ S(z) = 1 + z .

• Expl. trapezoidal method (6.4.0.6):

0 0 0
1 1 0

1
2

1
2

➣ S(z) = 1 + z + 1
2 z2 .

• Classical RK4 method:

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

2
6

2
6

1
6

➣ S(z) = 1 + z + 1
2 z2 + 1

6 z3 + 1
24 z4 .

These examples confirm an immediate consequence of the determinant formula for the stability function

S(z).

Corollary 7.1.0.20. Polynomial stability function of explicit RK-SSM

For a consistent (→ Def. 6.3.1.11) s-stage explicit Runge-Kutta single step method according to

Def. 6.4.0.9 the stability function S defined by (7.1.0.18) is a non-constant polynomial of degree

≤ s, that is, S ∈ Ps.

y

Remark 7.1.0.21 (Stability function and exponential function) Let us compare the two evolution oper-

ators:

• Φ =̂ evolution operator (→ Def. 6.1.4.3) for ẏ = λy,
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• Ψ =̂ discrete evolution operator (→ § 6.3.1.1) for an s-stage Runge-Kutta single step method.

Φhy = eλhy ←→ Ψhy = S(λh)y .

In light of that Ψ is supposed to be an approximation for Φ, Ψ ≈ Φ, see (6.3.1.3), we expect that

S(z) ≈ exp(z) for small |z| . (7.1.0.22)

A more precise statement is made by the following lemma:

Lemma 7.1.0.23. Stability function as approximation of exp for small arguments

Let S denote the stability function of an s-stage explicit Runge-Kutta single step method of order

q ∈ N. Then

|S(z)− exp(z)| = O(|z|q+1) for |z| → 0 . (7.1.0.24)

This means that the lowest q + 1 coefficients of S(z) must be equal to the first coefficients of the expo-

nential series:

S(z) =
q

∑
j=0

1

j!
zj + zq+1 p(z) with some p ∈ Ps−q−1 .

In order to match the first q terms of the exponential series, we need at least S ∈ Pq, which entails a

minimum of q stages.

Corollary 7.1.0.25. Stages limit order of explicit RK-SSM

An explicit s-stage RK-SSM has maximal order q ≤ s.

y

§7.1.0.26 (Stability induced timestep constraint) In § 7.1.0.13 we established that for the sequence

(yk)
∞
k=0 produced by an explicit Runge-Kutta single step method applied to the linear scalar model ODE

ẏ = λy, λ ∈ R, with uniform timestep h > 0 holds

yk+1 = S(λh)yk ⇒ yk = S(λhky0 .

(yk)
∞
k=0 non-increasing ⇔ |S(λh)| ≤ 1 ,

(yk)
∞
k=0 exponentially increasing ⇔ |S(λh)| > 1 .

(7.1.0.27)

where S = S(z) is the stability function of the RK-SSM as defined in (7.1.0.18).

Invariably polynomials tend to ±∞ for large (in modulus) arguments:

∀S ∈ Ps, S 6= const : lim
|z|→∞

S(z) = ∞ uniformly . (7.1.0.28)

So, for any λ 6= 0 there will be a threshold hmax > 0 so that |yk| → ∞ as |h| > hmax.

Reversing the argument we arrive at a timestep constraint, as already observed for the explicit Euler

methods in § 7.1.0.4.
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Only if one ensures that |λh| is sufficiently small, one can avoid exponentially increasing approxi-

mations yk (qualitatively wrong for λ < 0) when applying an explicit RK-SSM to the model problem

(7.1.0.5) with uniform timestep h > 0,

For λ ≪ 0 this stability induced timestep constraint may force h to be much smaller than required by

demands on accuracy : in this case timestepping becomes inefficient. y

Remark 7.1.0.29 (Stepsize control detects instability) Ex. 7.0.0.1, Exp. 7.1.0.8 send the message that

local-in-time stepsize control as discussed in Section 6.5 selects timesteps that avoid blow-up, with a hefty

price tag however in terms of computational cost and poor accuracy. y

Objection: simple linear scalar IVP (7.1.0.5) may be an oddity rather than a model problem: the weakness

of explicit Runge-Kutta methods discussed above may be just a peculiar response to an unusual situation.

Let us extend our investigations to systems of linear ODEs, N > 1.

§7.1.0.30 (Systems of linear ordinary differential equations, § 6.1.1.8 revisited) A generic linear

ordinary differential equation with constant coefficients on the state space RN has the form

ẏ = My with a matrix M ∈ RN,N . (7.1.0.31)

As explained in [NIS02], (7.1.0.31) can be solved by diagonalization: If we can find a regular matrix

V ∈ CN,N such that

MV = VD with diagonal matrix D =




λ1 0
. . .

0 λN


 ∈ CN,N , (7.1.0.32)

then the 1-parameter family of global solutions of (7.1.0.31) is given by

y(t) = V




exp(λ1t) 0
. . .

0 exp(λNt)


V−1y0 , y0 ∈ RN . (7.1.0.33)

The columns of V are a basis of eigenvectors of M, the λj∈ C, j = 1, . . . , N are the associated eigen-

values of M, see [NCSE].

The idea behind diagonalization is the transformation of (7.1.0.31) into N decoupled scalar linear

ODEs:

ẏ = My
z(t):=V−1y(t)−−−−−−−−→ ż = Dz ↔

ż1 = λ1z1
...

żN = λNzN

, since M = VDV−1 .

The formula (7.1.0.33) can be generalized to

y(t) = exp(Mt)y0 with the matrix exponential exp(B) :=
∞

∑
k=0

1

k!
Bk , B ∈ CN,N . (7.1.0.34)

y

EXAMPLE 7.1.0.35 (Transient simulation of RLC-circuit) This example demonstrates the diagonaliza-

tion of a linear system of ODEs.
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Consider circuit from Ex. 6.1.2.11 ✄

Transient nodal analysis leads to the second-order

linear ODE

ü + αu̇ + βu = g(t) ,

with coefficients α := (RC)−1, β = (LC)−1, g(t) =
αU̇s(t).

Fig. 347

Us(t)

u(t)

R

L

C

We transform it to a linear 1st-order ODE as in Rem. 6.1.3.5 by introducing v := u̇ as additional solution

component:
[

u̇
v̇

]

︸︷︷︸
=:ẏ

=

[
0 1
−β −α

][
u
v

]
−
[

0
g(t)

]

︸ ︷︷ ︸
=:f(t,y)

,
with β≫ α≫ 1
in usual settings.

We integrate IVPs for this ODE by means of the adaptive integrator Ode45 from § 6.5.3.3.

Fig. 348
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u(t)
v(t)/100 R = 100Ω, L = 1H, C = 1µF, Us(t) = 1V sin(t),

u(0) = v(0) = 0 (“switch on”)

Ode45 statistics:

17897 successful steps

1090 failed attempts

113923 function evaluations

Inefficient: way more timesteps than required for re-

solving smooth solution, cf. remark in the end of

§ 9.3.5.6.

Maybe the time-dependent right hand side due to the time-harmonic excitation severly affects ode45? Let

us try a constant exciting voltage:

Fig. 349
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RCL−circuit: R=100.000000, L=1.000000, C=0.000001

 

 
u(t)
v(t)/100

R = 100Ω, L = 1H, C = 1µF, Us(t) = 1V,

u(0) = v(0) = 0 (“switch on”)

Ode45 statistics:

17901 successful steps

1210 failed attempts

114667 function evaluations

Tiny timesteps despite virtually constant solution!

We make the same observation as in Ex. 7.0.0.1, Exp. 7.1.0.8: the local-in-time stepsize control of ode45
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(→ Section 6.5) enforces extremely small timesteps though the solution almost constant except at t = 0.

To understand the structure of the solutions for this transient circuit example, let us apply the diagonaliza-

tion technique from § 7.1.0.30 to the linear ODE

ẏ =

[
0 1
−β −α

]

︸ ︷︷ ︸
=:M

y , y(0) = y0 ∈ R2 . (7.1.0.36)

Above we face the situation β≫ 1
4 α2 ≫ 1.

We can obtain the general solution of ẏ = My, M ∈ R2,2, by diagonalization of M (if possible):

MV = M(v1, v2) = (v1, v2)

[
λ1

λ2

]
. (7.1.0.37)

where v1, v2 ∈ R2 \ {0} are the the eigenvectors of M, λ1, λ2 are the eigenvalues of M, see [NCSE].

The latter are the roots of the characteristic polynomial t 7→ χ(t) := t2 + αt + β in C, and we find

λ1/2 = 1
2(−α± D) , D :=

{√
α2 − 4β , if α2 ≥ 4β ,

ı
√

4β− α2 , if α2 < 4β .

Note that the eigenvalues have a large (in modulus) negative real part and a non-vanishing imaginary part

in the setting of the experiment.

Then we transform ẏ = My into decoupled scalar linear ODEs:

ẏ = My ⇔ V−1ẏ = V−1MV(V−1y)
z(t):=V−1y(t)⇔ ż =

[
λ1

λ2

]
z . (7.1.0.38)

This yields the general solution of the ODE ẏ = My, see also [STRLN09]:

y(t) = Av1 exp(λ1t) + Bv2 exp(λ2t) , A, B ∈ R . (7.1.0.39)

Note: t 7→ exp(λit) is general solution of the ODE żi = λizi. y

§7.1.0.40 (“Diagonalization” of explicit Euler method) Recall the discrete evolution of the explicit

Euler method (6.2.1.4) for the linear ODE ẏ = My, M ∈ RN,N:

Ψ
hy = y + hMy ↔ yk+1 = yk + hMyk .

As in § 7.1.0.30 we assume that M can be diagonalized, that is (7.1.0.32) holds: V−1MV = D with a

diagonal matrix D ∈ CN,N containing the eigenvalues of M on its diagonal. Next, apply the decoupling

by diagonalization idea to the recursion of the explicit Euler method.

V−1yk+1 = V−1yk + hV−1MV(V−1yk)
zk :=V−1yk⇔ (zk+1)i = (zk)i + hλi(zk)i︸ ︷︷ ︸

=̂ explicit Euler step for żi = λizi

, (7.1.0.41)

with i ∈ {1, . . . , N}. This gives us a crucial insight:

The explicit Euler method generates uniformly bounded solution sequences (yk)
∞
k=0 for ẏ = My with

diagonalizable matrix M ∈ RN,N with eigenvalues λ1, . . . , λN, if and only if it generates uniformly

bounded sequences for all the scalar ODEs ż = λiz, i = 1, . . . , N.

y
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So far we conducted the model problem analysis under the premises λ < 0.

However, in Ex. 7.1.0.35 we face λ1/2 = − 1
2

(
α ± i

√
4β− α2

)
(complex eigenvalues!). Let us now

examine how the explicit Euler method and even general explicit RK-methods respond to them.

Remark 7.1.0.42 (Explicit Euler method for damped oscillations) Consider linear model IVP (7.1.0.5)

for λ ∈ C:

Re λ < 0 ⇒ exponentially decaying solution y(t) = y0 exp(λt) ,

because | exp(λt)| = exp(Re λ · t).

The model problem analysis from Ex. 7.1.0.3, Ex. 7.1.0.9 can be extended verbatim to the case of λ ∈ C.

It yields the following insight for the for the explicit Euler method and λ ∈ C:

The sequence generated by the explicit Euler method (6.2.1.4) for the model problem (7.1.0.5) satisfies

yk+1 = yk(1 + hλ) lim
k→∞

yk = 0 ⇔ |1 + hλ| < 1 . (7.1.0.6)

timestep constraint to get decaying (discrete) solution !

Fig. 350
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The green region of the complex plane marks values

for λh, for which the explicit Euler method will pro-

duce exponentially decaying solutions.

Now we can conjecture what happens in Ex. 7.1.0.35: the eigenvalues λ1/2 = − 1
2 α ± i

√
β− 1

4 α2 of

M have a very large (in modulus) negative real part. Since the integrator of Ode45 can be expected to

behave as if it integrates ż = λ2z, it faces a severe timestep constraint, if exponential blow-up is to be

avoided, see Ex. 7.1.0.3. Thus stepsize control must resort to tiny timesteps. y

§7.1.0.43 (Extended model problem analysis for explicit Runge-Kutta single step methods) Recall

the definition of a generic explicit RK-SSM for the ODE ẏ = f(t, y):

Definition 6.4.0.9. Explicit Runge-Kutta method

For bi, aij ∈ R, ci := ∑
i−1
j=1 aij, i, j = 1, . . . , s, s ∈ N, an s-stage explicit Runge-Kutta single step

method (RK-SSM) for the ODE ẏ = f(t, y), f : Ω→ RN, is defined by (y0 ∈ D)

ki := f(t0 + cih, y0 + h
i−1

∑
j=1

aijkj) , i = 1, . . . , s , y1 := y0 + h
s

∑
i=1

biki .

The vectors ki ∈ RN, i = 1, . . . , s, are called increments, h > 0 is the size of the timestep.
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We apply such an explicit s-stage RK-SSM described by the Butcher scheme
c A

bT to the autonomous

linear ODE ẏ = My, M ∈ CN,N, and obtain (for the first step with timestep size h > 0)

kℓ = M(y0 + h
ℓ−1

∑
j=1

aℓjkj) , ℓ = 1, . . . , s , y1 = y0 + h
s

∑
ℓ=1

bikℓ . (7.1.0.44)

Now assume that M can be diagonalized, that is (7.1.0.32) holds: V−1MV = D with a diagonal matrix

D ∈ CN,N containing the eigenvalues λ1, . . . , λN ∈ C of M on its diagonal. Then apply the substitu-

tions

k̂ℓ := V−1kℓ , ℓ = 1, . . . , s , ŷk := V−1yk , k = 0, 1 ,

to (7.1.0.44), which yield

k̂ℓ = D(ŷ0 + h
s−1

∑
j=1

aℓjk̂j) , ℓ = 1, . . . , s , ŷ1 = ŷ0 + h
s

∑
ℓ=1

bik̂ℓ . (7.1.0.45)

m
(

k̂ℓ

)
i
= λi((y0)i + h

s−1

∑
j=1

aℓj

(
k̂j

)
i
) , (ŷ1)i = (ŷ0)i + h

s

∑
ℓ=1

bi

(
k̂ℓ

)
i

, i = 1, . . . , N . (7.1.0.46)

We infer that, if (yk)k is the sequence produced by an explicit RK-SSM applied to ẏ = My, then

yk = V




y
[1]
k 0

. . .

0 y
[d]
k


V−1 ,

where

(
y
[i]
k

)
k

is the sequence generated by the same RK-SSM with the same sequence of timesteps for

the IVP ẏ = λiy, y(0) =
(
V−1y0

)
i
.✗

✖

✔

✕
The RK-SSM generates uniformly bounded solution sequences (yk)

∞
k=0 for the ODE ẏ = My with

diagonalizable matrix M ∈ RN,N with eigenvalues λ1, . . . , λN, if and only if it generates uniformly

bounded sequences for all the scalar ODEs ż = λi ż, i = 1, . . . , N.

Stability analysis: reduction to scalar case

Understanding the behavior of RK-SSM for autonomous scalar linear ODEs ẏ = λy with λ ∈ C is

enough to predict their behavior for general autonomous linear systems of ODEs.

From the considerations of § 9.3.5.6 we deduce the following fundamental result.

Theorem 7.1.0.48. (Absolute) stability of explicit RK-SSM for linear systems of ODEs

The sequence (yk)k of approximations generated by an explicit RK-SSM (→ Def. 6.4.0.9) with

stability function S (defined in (7.1.0.18)) applied to the linear autonomous ODE ẏ = My, M ∈
CN,N, with uniform timestep h > 0 decays exponentially for every initial state y0 ∈ CN, if and only

if |S(λih)| < 1 for all eigenvalues λi of M.
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Please note that

Re λi < 0 ∀i ∈ {1, . . . , N} =⇒ ‖y(t)‖ → 0 for t→ ∞ ,

for any solution of ẏ = My. This is obvious from the representation formula (7.1.0.33). y

§7.1.0.49 (Region of (absolute) stability of explicit RK-SSM) We consider an explicit Runge-Kutta

single step method with stability function S for the model linear scalar IVP ẏ = λy, y(0) = y0, λ ∈ C.

From Thm. 7.1.0.17 we learn that for uniform stepsize h > 0 we have yk = S(λh)ky0 and conclude

that

yk → 0 for k→ ∞ ⇔ |S(λh)| < 1 . (7.1.0.50)

Hence, the modulus |S(λh)| tells us for which combinations of λ and stepsize h we achieve exponential

decay yk → ∞ for k→ ∞, which is the desirable behavior of the approximations for Re λ < 0.

Definition 7.1.0.51. Region of (absolute) stability

Let the discrete evolution Ψ for a single step method applied to the scalar linear ODE ẏ = λy,

λ ∈ C, be of the form

Ψ
hy = S(z)y , y ∈ C, h > 0 with z := hλ (7.1.0.52)

and a function S : C → C. Then the region of (absolute) stability of the single step method is

given by

SΨ := {z ∈ C: |S(z)| < 1} ⊂ C .

Of course, by Thm. 7.1.0.17, in the case of explicit RK-SSM the function S will coincide with their

stability function from (7.1.0.18).

We can easily combine the statement of Thm. 7.1.0.48 with the concept of a region of stability and con-

clude that an explicit RK-SSM will generate expoentially decaying solutions for the linear ODE ẏ = My,

M ∈ CN,N, for every initial state y0 ∈ CN, if and only if λih ∈ SΨ for all eigenvalues λi of M.

Adopting the arguments of § 9.3.5.6 we conclude from Cor. 7.1.0.20 that

✦ the regions of (absolute) stability of explicit RK-SSM are bounded,

✦ a timestep constraint depending on the eigenvalues of M is necessary to have a guaranteed expo-

nential decay RK-solutions for ẏ = My.

y

EXAMPLE 7.1.0.53 (Regions of stability of some explicit RK-SSM) The green domains ⊂ C depict

the bounded regions of stability for some RK-SSM from Ex. 6.4.0.15.
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SΨ: classical RK4 method

In general we have for a consistent RK-SSM (→ Def. 6.3.1.11) that their stability functions staidfy S(z) =
1 + z + O(z2) for z→ 0. Therefore, SΨ 6= ∅ and the imaginary axis will be tangent to SΨ in z = 0. y

Supplementary literature. Related to this section are [HAB02a] and [QSS00].

7.2 Stiff Initial-Value Problems

Video tutorial for Section 7.2: Stiff Initial-Value Problems: (39 minutes) Download link,

tablet notes

This section will reveal that the behavior observed in Ex. 7.0.0.1 and Ex. 7.1.0.3 is typical for a large class

of problems and that the model problem (7.1.0.5) really represents a “generic case”. This justifies the

attention paid to linear model problem analysis in Section 7.1.

EXAMPLE 7.2.0.1 (Kinetics of chemical reactions → [HAB02a]) In Ex. 6.5.1.1 we already saw an

ODE model for the dynamics of a chemical reaction. Now we study an abstract reaction.

reaction: A + B
k2←−−→
k1

C

︸ ︷︷ ︸
fast reaction

, A + C
k4←−−→
k3

D

︸ ︷︷ ︸
slow reaction

(7.2.0.2)

Vastly different reaction constants: k1, k2 ≫ k3, k4

If cA(0) > cB(0) ➢ 2nd reaction determines overall long-term reaction dynamics

Mathematical model: non-linear ODE involving concentrations y(t) = [cA(t), cB(t), cC(t), cD(t)]
⊤

ẏ :=
d

dt




cA

cB

cC

cD


 = f(y) :=




−k1cAcB + k2cC − k3cAcC + k4cD

−k1cAcB + k2cC

k1cAcB − k2cC − k3cAcC + k4cD

k3cAcC − k4cD


 . (7.2.0.3)

Concrete choice of parameters: t0 = 0, T = 1, k1 = 104, k2 = 103, k3 = 10, k4 = 1, initial value

y0 = [1, 1, 10, 0]⊤.

7. Single-Step Methods for Stiff Initial-Value Problems, 7.2. Stiff Initial-Value Problems 519

https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/Videos/NPDEVideo_7.2.StiffIVPs.mp4
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/TabletNotes/NPDEVideo_7.2.StiffIVPs.pdf


NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

Fig. 351
0 0.2 0.4 0.6 0.8 1

−2

0

2

4

6

8

10

12

 t

 c
on

ce
nt

ra
tio

ns
Chemical reaction: concentrations

 

 
c

A
(t)

c
C

(t)

c
A,k

, ode45

c
C,k

, ode45

Fig. 352
0 0.2 0.4 0.6 0.8 1

3

4

5

6

7

8

9

10

t

c C
(t

)

Chemical reaction: stepsize

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

−5

tim
es

te
p

Observations: After a fast initial transient phase, the solution shows only slow dynamics. Nevertheless,

the explicit adaptive integrator used for this simulation insists on using a tiny timestep. It behaves very

much like Ode45 in Ex. 7.0.0.1. y

EXAMPLE 7.2.0.4 (Strongly attractive limit cycle) We consider the non-linear Autonomous ODE ẏ =
f(y) with

f(y) :=

[
0 −1
1 0

]
y + λ(1− ‖y‖2) y , (7.2.0.5)

on the state space D = R2 \ {0}.

For λ = 0, the initial value problem ẏ = f(y), y(0) =
[

cos ϕ
sin ϕ

]
, ϕ ∈ R has the solution

y(t) =

[
cos(t− ϕ)
sin(t− ϕ)

]
, t ∈ R . (7.2.0.6)

For this solution we have ‖y(t)‖2 = 1 for all times.

(7.2.0.6) provides a solution even for λ 6= 0, if ‖y(0)‖2 = 1, because in this case the term

λ(1− ‖y‖2) y will never become non-zero on the solution trajectory.

Fig. 353
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We study the response of Ode45 introduced in § 6.5.3.3 to different choice of λ with initial state y0 =

[
1
0

]
.

According to the above considerations this initial state should completely “hide the impact of λ from our

view”.
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Confusing observation: we have ‖y0‖ = 1, which implies ‖y(t)‖ = 1 ∀t!

Thus, the term of the right hand side, which is multiplied by λ will always vanish on the exact solution

trajectory, which stays on the unit circle.

Nevertheless, Ode45 is forced to use tiny timesteps by the mere presence of this term! y

We want to find criteria that allow to predict the massive problems haunting explicit single step methods

in the case of the non-linear IVP of Ex. 7.0.0.1, Ex. 7.2.0.1, and Ex. 7.2.0.4. Recall that for linear IVPs of

the form ẏ = My, y(0) = y0, the model problem analysis of Section 7.1 tells us that, given knowledge

of the region of stability of the timestepping scheme, the eigenvalues of the matrix M ∈ CN,N provide full

information about timestep constraint we are going to face. Refer to Thm. 7.1.0.48 and § 7.1.0.49.

The ODEs we saw in Ex. 7.2.0.1 and Ex. 7.2.0.4 are non-linear . Yet, the entire stability analysis of

Section 7.1 was based on linear ODEs. Thus, we need to extend the stability analysis to non-linear ODEs.

We start with a “phenomenological notion”, just a keyword to refer to the kind of difficulties presented by

the IVPs of Ex. 7.0.0.1, Ex. 7.2.0.1, Exp. 7.1.0.8, and Ex. 7.2.0.4.

Notion 7.2.0.7. Stiff IVP

An initial value problem is called stiff, if stability imposes much tighter timestep constraints on explicit

single step methods than the accuracy requirements.

§7.2.0.8 (Linearization of ODEs) Linear ODEs, though very special, are highly relevant as “local model”

for general ODEs:

We consider a general autonomous ODE

ẏ = f(y) , f : D ⊂ RN → RN .

As usual, we assume f to be C2-smooth and that it enjoys local Lipschitz continuity (→ Def. 6.1.3.12) on

D so that unique solvability of IVPs is guaranteed by Thm. 6.1.3.16.
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We fix a state y∗ ∈ D, D the state space, write t 7→ y(t) for the solution with y(0) = y∗. We set

z(t) = y(t)− y∗, which satisfies

z(0) = 0 , ż = f(y∗ + z) = f(y∗) +Df(y∗)z + R(y∗, z) , with ‖R(y∗, z)‖ = O(‖z‖2) .

This is obtained by Taylor expansion of f at y∗, see [STRLN09]. Hence, in a neighborhood of a state y∗

on a solution trajectory t 7→ y(t), the deviation z(t) = y(t)− y∗ satisfies

ż ≈ f(y∗) +Df(y∗)z . (7.2.0.9)

The short-time evolution of y with y(0) = y∗ is approximately governed by the affine-linear ODE

ẏ = M(y− y∗) + b , M := Df(y∗) ∈ RN,N , b := f(y∗) ∈ RN . (7.2.0.10)

In the scalar case we have come across this linearization already in Ex. 7.1.0.3. y

§7.2.0.11 (Linearization of explicit Runge-Kutta single step methods) We consider one step a

general s-stage RK-SSM according to Def. 6.4.0.9 for the autonomous ODE ẏ = f(y), with smooth right

hand side function f : D ⊂ RN → RN:

ki = f(y0 + h
i−1

∑
j=1

aijkj) , i = 1, . . . , s , y1 = y0 + h
s

∑
i=1

biki .

We perform linearization at y∗ := y0 and ignore all terms at least quadratic in the timestep size h (this

is indicated by the ≈ symbol):

ki ≈ f(y∗) +Df(y∗)h
i−1

∑
j=1

aijkj , i = 1, . . . , s , y1 = y0 + h
s

∑
i=1

biki .

The defining equations for the same RK-SSM applied to

ż = Mz + b , M := Df(y∗) ∈ RN,N , b := f(y∗) ,

which agrees with (7.2.0.10) after substitution z(t)− y(t)− y∗, are

ki ≈ b + Mh
i−1

∑
j=1

aijkj , i = 1, . . . , s , y1 = y0 + h
s

∑
i=1

biki .

We find that for small timesteps

the discrete evolution of the RK-SSM for ẏ = f(y) in the state y∗ is close to the discrete

evolution of the same RK-SSM applied to the linearization (7.2.0.10) of the ODE in y∗.

By straightforward manipulations of the defining equations of an explicit RK-SSM we find that, if

• (yk)k is the sequence of states generated by the RK-SSM applied to the affine-linear ODE ẏ =
M(y− y0) + b, M ∈ CN,N regular,

• (wk)k is the sequence of states generated by the same RK-SSM applied to the linear ODE ẇ =
Mw and w0 := M−1b, then

wk = yk − y0 + M−1b .
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➣ The analysis of the behavior of an RK-SSM for an affine-linear ODE can be reduces to understanding

its behavior for a linear ODE with the same matrix.

Combined with the insights from § 7.1.0.43 this means that

the behavior of an explicit Runge-Kutta single-step method applied to ẏ = f(y) close to the

state y∗ is determined by the eigenvalues of the Jacobian Df(y∗).

In particular, if Df(y∗) has at least one eigenvalue whose modulus is large, then an exponential drift-off

of the approximate states yk away from y∗ can only be avoided for sufficiently small timestep, again a

timestep constraint.

How to distinguish stiff initial value problems

An initial value problem for an autonomous ODE ẏ = f(y) will probably be stiff, if, for substantial

periods of time,

min{Re λ : λ ∈ σ(Df(y(t)))} ≪ 0 , (7.2.0.13)

and max{Re λ : λ ∈ σ(Df(y(t)))} . 0 , (7.2.0.14)

where t 7→ y(t) is the solution trajectory and σ(M) is the spectrum of the matrix M, see [NCSE].

The condition (7.2.0.14) has to be read as “the real parts of all eigenvalues are below a bound with small

modulus”. If this is not the case, then the exact solution will experience blow-up. It will change drastically

over very short periods of time and small timesteps will be required anyway in order to resolve this. y

EXAMPLE 7.2.0.15 (Predicting stiffness of non-linear IVPs)

➊ We consider the IVP from Ex. 7.0.0.1:

IVP considered: ẏ = f (y) := λy2(1− y) , λ := 500 , y(0) = 1
100 .

We find

f ′(y) = λ(2y− 3y2) ⇒ f ′(1) = −λ .

Hence, in case λ ≫ 1 as in Fig. 338, we face a stiff problem close to the stationary state y = 1.

The observations made in Fig. 338 exactly match this prediction.

➋ The solution of the IVP from Ex. 7.2.0.4

ẏ = f(y) :=

[
0 −1
1 0

]
y + λ(1− ‖y‖2) y , ‖y0‖2 = 1 . (7.2.0.5)

satisfies ‖y(t)‖2 = 1 for all times. Using the product rule [NCSE] of multi-dimensional differential

calculus, we find

Df(y) =

[
0 −1
1 0

]
+ λ

(
−2yy⊤ + (1− ‖y‖2

2I)
)

.

σ(Df(y)) =
{
−λ−

√
λ2 − 1,−λ +

√
λ2 − 1

}
, if ‖y‖2 = 1 .

Thus, for λ ≫ 1, Df(y(t)) will always have an eigenvalue with large negative real part, whereas

the other eigenvalue is close to zero: the IVP is stiff.
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y

Remark 7.2.0.16 (Characteristics of stiff IVPs) Often one can already tell from the expected behavior of

the solution of an IVP, which is often clear from the modeling context, that one has to brace for stiffness.

Typical features of stiff IVPs:

✦ Presence of fast transients in the solution, see Ex. 7.1.0.3, Ex. 7.1.0.35,

✦ Occurrence of strongly attractive fixed points/limit cycles, see Ex. 7.2.0.4

y

7.3 Implicit Runge-Kutta Single-Step Methods

Video tutorial for Section 7.3: Implicit Runge-Kutta Single-Step Methods: (78 minutes)

Download link, tablet notes

Explicit Runge-Kutta single step method cannot escape tight timestep constraints for stiff IVPs that may

render them inefficient, see § 7.1.0.49. In this section we are going to augment the class of Runge-Kutta

methods by timestepping schemes that can cope well with stiff IVPs.

7.3.1 The Implicit Euler Method for Stiff IVPs

EXPERIMENT 7.3.1.1 (Euler methods for stiff decay IVP) We revisit the setting of Ex. 7.1.0.3 and again

consider Euler methods for the decay IVP

ẏ = λy , y(0) = 1 , λ < 0 .

We apply both the explicit Euler method (6.2.1.4) and the implicit Euler method (6.2.2.2) with uniform

timesteps h = 1/N, N ∈ {5, 10, 20, 40, 80, 160, 320, 640} and monitor the error at final time T = 1 for

different values of λ.

Explicit Euler method (6.2.1.4)

Fig. 357
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Explicit Euler method for saalar model problem
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λ large: blow-up of yk for large timestep h

Implicit Euler method (6.2.2.2)

Fig. 358
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λ large: stable for all timesteps h > 0 !

We observe onset of convergence of the implicit Euler method already for large timesteps h. y
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§7.3.1.2 (Linear model problem analysis: implicit Euler method) We follow the considerations of

§ 7.1.0.4 and consider the implicit Euler method (6.2.2.2) for the

linear model problem: ẏ = λy , y(0) = y0 , with Re λ≪ 0 , (7.1.0.5)

with exponentially decaying (maybe osscillatory for Im λ 6= 0) exact solution

y(t) = y0 exp(λt)→ 0 for t→ ∞ .

The recursion of the implicit Euler method for (7.1.0.5) is defined by

(6.2.2.2) for f (y) = λy ⇒ yk+1 = yk + λhyk+1 , k ∈ N0 . (7.3.1.3)

generated sequence yk :=

(
1

1− λh

)k

y0 . (7.3.1.4)

Re λ < 0 ⇒ lim
k→∞

yk = 0 ∀h > 0 ! (7.3.1.5)

Without any timestep constraint we obtain the qualitatively correct behavior of (yk)k for Re λ < 0 and any

h > 0!

As in § 7.1.0.40 this analysis can be extended to linear systems of ODEs ẏ = My, M ∈ CN,N, by means

of diagonalization.

As in § 7.1.0.30 and § 7.1.0.40 we assume that M can be diagonalized, that is (7.1.0.32) holds:

V−1MV = D with a regular matrix V ∈ CN,N and a diagonal matrix D ∈ CN,N containing the eigenval-

ues λ1, . . . , λN of M on its diagonal. Next, apply the decoupling by diagonalization idea to the recursion

of the implicit Euler method.

V−1yk+1 = V−1yk + h V−1MV︸ ︷︷ ︸
=D

(V−1yk+1)
zk :=V−1yk⇔ (zk+1)i =

1

1− λih
(zk)i

︸ ︷︷ ︸
=̂ implicit Euler step for żi = λizi

. (7.3.1.6)

Crucial insight:

For any timestep, the implicit Euler method generates exponentially decaying solution sequences

(yk)
∞
k=0 for ẏ = My with diagonalizable matrix M ∈ RN,N with eigenvalues λ1, . . . , λN, if Re λi < 0

for all i = 1, . . . , N.

Thus we expect that the implicit Euler method will not face stability induced timestep constraints for stiff

problems (→ Notion 7.2.0.7). y

7.3.2 Collocation Single-Step Methods

Unfortunately the implicit Euler method is of first order only, see Exp. 6.3.2.5. This section presents an

algorithm for designing higher order single step methods generalizing the implicit Euler method.

Setting: We consider the general ordinary differential equation ẏ = f(t, y), f : I × D → RN locally

Lipschitz continuous, which guarantees the local existence of unique solutions of initial value problems,

see Thm. 6.1.3.16.

We define the single step method through specifying the first step y0 = y(t0) → y1 ≈ y(t1), where

y0 ∈ D is the initial step at initial time t0 ∈ I. We assume that the exact solution trajectory t 7→ y(t)
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exists on [t0, t1]. Use as a timestepping scheme on a temporal mesh (→ § 6.2.0.2) in the sense of

Def. 6.3.1.4 is straightforward.

§7.3.2.1 (Collocation approach)

Abstract collocation idea

Collocation is a paradigm for the discretization (→ Section 2.1.1) of differential equations:

(I) Write the discrete solution uh, a function, as linear combination of N ∈ N sufficiently smooth

(basis) functions ➣ N unknown coefficients.

(II) Demand that uh satisfies the differential equation at N points/times ➣ N equations.

We apply this policy to the differential equation ẏ = f(t, y) on [t0, t1]:

Idea: ➊ Approximate t 7→ y(t), t ∈ [t0, t1], by a function t 7→ yh(t) ∈ V,

V an N · (s + 1)-dimensional trial space V
comprising functions [t0, t1] 7→ RN, cf. Item (I).

➋ Fix yh ∈ V by imposing collocation conditions

yh(t0) = y0 ,

ẏh(τj) = f(τj, yh(τj)) , j = 1, . . . , s ,
(7.3.2.3)

for collocation points t0 ≤ τ1 < . . . < τs ≤ t1 → Item (II).

➌ Choose y1 := yh(t1).
y

§7.3.2.4 (Polynomial collocation) Existence of the function yh : [t0, t1]→ RN satisfying (7.3.2.3) and

the possibility to compute it efficiently will crucially depend on the choice of the trial space V.

Our choice (the “standard option”):

☛
✡

✟
✠(Componentwise) polynomial trial space V = (Ps)

N

Recalling dimPs = s + 1 from [NCSE], Lemma 2.5.2.5, we see that our choice makes the number

= N(s + 1) of collocation conditions matches the dimension of the trial space V.

Now we want to derive a concrete representation for the polynomial yh. We draw on concepts introduced

in [NCSE]. We define the collocation points as

τj := t0 + cjh , j = 1, . . . , s , for 0 ≤ c1 < c2 < . . . < cs ≤ 1 , h := t1 − t0 .

Let {Lj}s
j=1
⊂ Ps−1 denote the set of Lagrange polynomials of degree s− 1 associated with the node set

{
cj

}s

j=1
, see [NCSE]. They satisfy Lj(ci) = δij, i, j = 1, . . . , s and form a basis of Ps−1.

In each of its N components, the derivative ẏh is a polynomial of degree s− 1: ẏ ∈ (Ps−1)
N. Hence, it

has the following representation, compare [NCSE].

ẏh(t0 + ξh) =
s

∑
j=1

ẏh(t0 + cjh)Lj(ξ) , 0 ≤ ξ ≤ 1. (7.3.2.5)

As τj = t0 + cjh, the collocation conditions (7.3.2.3) make it possible to replace ẏh(cjh) with an expression
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in the right hand side function f:

(7.3.2.3)

ẏh(t0 + ξh) =
s

∑
j=1

kjLj(ξ) with “coefficients” kj := f (t0 + cjh, yh(t0 + cjh)) .

Next we integrate and use yh(t0) = y0

yh(t0 + ξh) = y0 + h
s

∑
j=1

kj

∫ ξ

0
Lj(ζ)dζ .

This yields the following formulas for the computation of y1, which characterize the s-stage collocation

single step method induced by the (normalized) collocation points cj ∈ [0, 1], j = 1, . . . , s.

ki = f (t0 + cih, y0 + h
s

∑
j=1

aijkj) ,

y1 := yh(t1) = y0 + h
s

∑
i=1

biki .

where

aij :=
∫ ci

0
Lj(τ)dτ ,

bi :=
∫ 1

0
Li(τ)dτ .

(7.3.2.6)

Note that, since arbitrary y0 ∈ D, t0, t1 ∈ I were admitted, this defines a discrete evolution Ψ : I × I ×
D → RN by Ψ

t0,t1y0 := yh(t1). y

Remark 7.3.2.7 (Implicit nature of collocation single step methods) Note that (7.3.2.6) represents a

generically non-linear system of s · N equations for the s · N components of the vectors ki, i = 1, . . . , s.

Usually, it will not be possible to obtain the increments ki ∈ RN by a fixed number of evaluations of f. For

this reason the single step methods defined by (7.3.2.6) are called implicit.

With similar arguments as in Rem. 6.2.2.3 one can prove that for sufficiently small |t1 − t0| a unique set

of solution vectors k1, . . . , ks can be found. y

§7.3.2.8 (Collocation single step methods and quadrature) Clearly, in the case N = 1, f (t, y) = f (t),
y0 = 0 the computation of y1 boils down to the evaluation of a quadrature formula on [t0, t1], because

from (7.3.2.6) we get

y1 = h
s

∑
i=1

bi f (t0 + cih) , bi :=
∫ 1

0
Li(τ)dτ , (7.3.2.9)

which is a polynomial quadrature formula [NCSE] on [0, 1] with nodes cj transformed to [t0, t1] according

to [NCSE]. y

EXPERIMENT 7.3.2.10 (Empiric Convergence of collocation single step methods) We consider the

initial value problem for the scalar logistic ODE

ẏ = λy(1− y) , y(0) = 0.01 , λ = 100 ,

which is mildly stiff, over the time interval [0, 1]

We perform numerical integration by timestepping with uniform timestep h based on a collocation single
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step method (7.3.2.6).

➊ Equidistant collocation points, cj =
j

s+1 ,

j = 1, · · · , s.

We observe algebraic convergence with the empiric

rates

s = 1 : p = 1.96
s = 2 : p = 2.03
s = 3 : p = 4.00
s = 4 : p = 4.04

Fig. 359
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In this case we conclude the following (empiric) order (→ Def. 6.3.2.8) of the collocation single step

method:

(empiric) order =

{
s for even s ,

s + 1 for odd s .

Next, we recall from [NCSE] an exceptional set of quadrature points, the Gauss points, provided by the

zeros of the L2([−1, 1])-orthogonal Legendre polynomials, see Fig. 146.

➊ Gauss points in [0, 1]
as normalized collocation points cj , j = 1, . . . , s.

We observe algebraic convergence with the empiric

rates

s = 1 : p = 1.96
s = 2 : p = 4.01
s = 3 : p = 6.00
s = 4 : p = 8.02

Fig. 360
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Obviously, for the (empiric) order (→ Def. 6.3.2.8) of the Gauss collocation single step method holds

(empiric) order = 2s .

Note that the 1-stage Gauss collocation single step method is the implicit midpoint method from Sec-

tion 6.2.3. y

§7.3.2.11 (Order of collocation single step method) What we have observed in Exp. 9.2.6.27 reflects
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a fundamental result on collocation single step methods as defined in (7.3.2.6).

Theorem 7.3.2.12. Order of collocation single step method [DEB02]

Provided that f ∈ Cp(I × D), the order (→ Def. 6.3.2.8) of an s-stage collocation single step

method according to (7.3.2.6) agrees with the order (→ Def. 2.7.5.29) of the quadrature formula on

[0, 1] with nodes cj and weights bj, j = 1, . . . , s.

This also explains the surprisingly high order of the Gauss collocation single-step method, because for

s-point Gauss-Legendre numerical quadrature, the family of quadrature rules based on Gauss points as

nodes, [NCSE] derived the order 2s.

➣ By [NCSE] the s-stage Gauss collocation single step method whose nodes cj are chosen as the s
Gauss points on [0, 1] is of order 2s.

y

7.3.3 General Implicit Runge-Kutta Single-Step Methods (RK-SSMs)

The notations in (7.3.2.6) have deliberately been chosen to allude to Def. 6.4.0.9. In that definition it takes

only letting the sum in the formula for the increments run up to s to capture (7.3.2.6).

Definition 7.3.3.1. General Runge-Kutta single step method (cf. Def. 6.4.0.9)

For bi, aij ∈ R, ci := ∑
s
j=1 aij, i, j = 1, . . . , s, s ∈ N, a single step of size h > 0 of an s-stage

Runge-Kutta single step method (RK-SSM) for the IVP (6.1.3.2) is defined by

ki := f(t0 + cih, y0 + h
s

∑
j=1

aijkj) , i = 1, . . . , s , y1 := y0 + h
s

∑
i=1

biki .

As before, the vectors ki ∈ RN are called increments.

Note that the computation of the increments ki may now require the solution of (non-linear) systems of

equations of size s · N. In this case we speak about an “implicit” method, cf. Rem. 7.3.2.7.

The Butcher schenme notation introduced in (6.4.0.11) can easily be adapted to the the case of general

RK-SSMs by dropping the requirement that the Butcher matrix be strictly lower triangular.

General Butcher scheme notation for RK-SSM

Shorthand notation for Runge-Kutta methods

Butcher scheme ✄

Note that now, in contrast to (6.4.0.11), A can be

a general s× s-matrix.

c A

bT :=

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass

b1 · · · bs

.

(7.3.3.3)
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Summary: terminology for Runge-Kutta single step methods:

A strict lower triangular matrix ➤ explicit Runge-Kutta method, Def. 6.4.0.9

A lower triangular matrix ➤ diagonally-implicit Runge-Kutta method (DIRK)

Many of the techniques and much of the theory discussed for explicit RK-SSMs carry over to general

(implicit) Runge-Kutta single step methods:

• Sufficient condition for consistence from Cor. 6.4.0.13

• Algebraic convergence for meshwidth h→ 0 and the related concept of order (→ Def. 6.3.2.8)

• Embedded methods and algorithms for adaptive stepsize control from Section 6.5

§7.3.3.4 (Butcher schemes for Gauss collocation RK-SSMs) As in (6.4.0.11) we can arrange the coef-

ficients of Gauss collocation single-step methods in the form of a Butcher scheme and get

for s = 1:
1
2

1
2

1
, (7.3.3.5a)

for s = 2:

1
2 − 1

6

√
3 1

4
1
4 − 1

6

√
3

1
2 +

1
6

√
3 1

4 +
1
6

√
3 1

4
1
2

1
2

, (7.3.3.5b)

for s = 3:

1
2 − 1

10

√
15 5

36
2
9 − 1

15

√
15 5

36 − 1
30

√
15

1
2

5
36 +

1
24

√
15 2

9
5
36 − 1

24

√
15

1
2 +

1
10

√
15 5

36 +
1

30

√
15 2

9 +
1

15

√
15 5

36
5
18

4
9

5
18

. (7.3.3.5c)

y

Remark 7.3.3.6 (Stage form equations for increments) In Def. 7.3.3.1 instead of the increments we

can consider as unknowns the so-called stages

gi := h
s

∑
j=1

aijkj , i = 1, . . . , s , ⇔ ki = f(t0 + cih, y0 + gi) . (7.3.3.7)

This leads to the equivalent defining equations in “stage form” for an implicit RK-SSM

ki := f(t0 + cih, y0 + h
s

∑
j=1

aijkj) , i = 1, . . . , s ,

⇓

gi = h
s

∑
j=1

aijf(t0 + cih, y0 + gj) , y1 = y0 + h
s

∑
i=1

bif(t0 + cjh, y0 + gi) . (7.3.3.8)

In terms of implementation there is no difference: Also the stage equations (7.3.3.8) are usually solved

by means of Newton’s method, see next remark. y

Remark 7.3.3.9 (Solving the stage equations for implicit RK-SSMs) We reformulate the increment

equations in stage form (7.3.3.8) as a non-linear system of equations in standard form F(x) = 0.
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Unknowns are the total s · N components of the stage vectors gi ∈ RN, i = 1, . . . , s as defined in

(7.3.3.7).

g = [g1, . . . , gs]⊤ ∈ Rs·N ,

gi := h
s

∑
j=1

aijf(t0 + cjh, y0 + gj)
F(g) = g− h(A⊗ IN)




f(t0 + c1h, y0 + g1)
...

f(t0 + csh, y0 + gs)


 !
= 0 ,

where IN is the N × N identity matrix and ⊗ designates the Kronecker product introduced in [NCSE].

We compute an approximate solution of F(g) = 0 iteratively by means of the simplified Newton method

presented in [NCSE]. This is a Newton method with “frozen Jacobian”. As g → 0 for h → 0, we choose

zero as initial guess:

g(k+1) = g(k) −DF(0)−1F(g(k)) k = 0, 1, 2, . . . , g(0) = 0 . (7.3.3.10)

with the Jacobian

DF(0) =




I− ha11
∂f
∂y (t0, y0) · · · −ha1s

∂f
∂y (t0, y0)

...
. . .

...

−has1
∂f
∂y (t0, y0) · · · I− hass

∂f
∂y (t0, y0)


 ∈ RsN,sN . (7.3.3.11)

Obviously, DF(0)→ I for h→ 0. Thus, DF(0) will be regular for sufficiently small h.

In each step of the simplified Newton method we have to solve a linear system of equations with coefficient

matrix DF(0). If s · N is large, an efficient implementation has to reuse the LU-decomposition of DF(0),
see [NCSE] and [NCSE]. y

7.3.4 Model Problem Analysis for Implicit Runge-Kutta Single-Step Methods

(IRK-SSMs)

Model problem analysis for general Runge-Kutta single step methods (→ Def. 7.3.3.1) runs parallel to

that for explicit RK-methods as elaborated in Section 7.1, § 7.1.0.13. Familiarity with the techniques and

results of this section is assumed. The reader is asked to recall the concept of stability function from

Thm. 7.1.0.17, the diagonalization technique from § 7.1.0.43, and the definition of region of (absolute)

stability from Def. 7.1.0.51.

We apply the implicit RK-SSM according to Def. 7.3.3.1 to the autonomous linear scalar ODE ẏ = λy,

λ ∈ C, and utterly parallel to the considerations in § 7.1.0.13, (7.1.0.14) we obtain

ki = λ(y0 + h
s

∑
j=1

aijk j) ,

y1 = y0 + h
s

∑
i=1

biki

⇒
[

I− zA 0

−zb⊤ 1

][
k
y1

]
= y0

[
1
1

]
, (7.3.4.1)

where k ∈ Rs =̂ denotes the vector [k1, . . . , ks]⊤/λ of increments, and z := λh. As in § 7.1.0.13 we can

eliminate the increments and obtain an expression for y1:

y1 = S(z)y0 with S(z) := 1 + zbT(I− zA)−11 . (7.3.4.2)
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Alternatively, Cramer’s rule supplies a formula for y1 in terms of determinants:

y1 = y0

det

[
I− zA 1

−zb⊤ 1

]

det

[
I− zA 0

−zb⊤ 1

] ⇒ S(z) =
det(I− zA+ z1bT)

det(I− zA)
. (7.3.4.3)

The next theorem summarizes these findings:

Theorem 7.3.4.4. Stability function of Runge-Kutta methods, cf. Thm. 7.1.0.17

The discrete evolution Ψh
λ of an s-stage Runge-Kutta single step method (→ Def. 7.3.3.1) with

Butcher scheme
c A

bT (see (7.3.3.3)) for the ODE ẏ = λy is given by a multiplication with

S(z) := 1 + zbT(I− zA)−11︸ ︷︷ ︸
stability function

=
det(I− zA+ z1bT)

det(I− zA)
, z := λh , 1 = [1, . . . , 1]T ∈ Rs .

EXAMPLE 7.3.4.5 (Regions of stability for simple implicit RK-SSM) We determine the Butcher

schemes (7.3.3.3) for simple implicit RK-SSM and apply the formula from Thm. 7.3.4.4 to compute their

stability functions.

• Implicit Euler method:
1 1

1
➣ S(z) =

1

1− z
.

• Implicit midpoint method:
1
2

1
2
1

➣ S(z) =
1 + 1

2 z

1− 1
2 z

.

Their regions of stability SΨ as defined in Def. 7.1.0.51,

SΨ := {z ∈ C: |S(z)| < 1} ⊂ C ,

can easily found from the respective stability functions:
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Fig. 361
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SΨ: implicit Euler method (6.2.2.2)

Fig. 362
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SΨ: implicit midpoint method (6.2.3.3)

We see that in both cases |S(z)| < 1, if Re z < 0. y

From the determinant formula for the stability function S(z) we can conclude a generalization of

Cor. 7.1.0.20.

Corollary 7.3.4.6. Rational stability function of general RK-SSM

For a consistent (→ Def. 6.3.1.11) s-stage general Runge-Kutta single step method according to

Def. 7.3.3.1 the stability function S is a non-constant rational function of the form S(z) =
P(z)

Q(z)
with

polynomials P ∈ Ps, Q ∈ Ps.

Of course, a rational function z 7→ S(z) can satisfy lim|z|→∞ |S(z)| < 1 as we habe seen in Ex. 7.3.4.5.

As a consequence, the region of stability for implicit RK-SSM need not be bounded.

§7.3.4.7 (A-stability) A general RK-SSM with stability function S applied to the scalar linear IVP ẏ = λy,

y(0) = y0 ∈ C, λ ∈ C, with uniform timestep h > 0 will yield the sequence (yk)
∞
k=0 defined by

yk = S(z)ky0 , z = λh . (7.3.4.8)

Hence, the next property of a RK-SSM guarantees that the sequence of approximations decays exponen-

tially whenever the exact solution of the model problem IVP (7.1.0.5) does so.

Definition 7.3.4.9. A-stability of a Runge-Kutta single step method

A Runge-Kutta single step method with stability function S is A-stable, if

C− := {z ∈ C: Re z < 0} ⊂ SΨ . (SΨ =̂ region of stability Def. 7.1.0.51)

From Ex. 7.3.4.5 we conclude that both the implicit Euler method and the implicit midpoint method are
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A-stable.

A-stable Runge-Kutta single step methods will not be affected by stability induced timestep constraints

when applied to stiff IVP (→ Notion 7.2.0.7).

y

§7.3.4.10 (“Ideal” region of stability) In order to reproduce the qualitative behavior of the exact solution,

a single step method when applied to the scalar linear IVP ẏ = λy, y(0) = y0 ∈ C, λ ∈ C, with uniform

timestep h > 0,

• should yield an exponentially decaying sequence (yk)
∞
k=0, whenever Re λ < 0,

• should produce an exponentially increasing sequence sequence (yk)
∞
k=0, whenever Re λ > 0.

Thus, in light of (7.3.4.8), we agree that the stability if

“ideal” region of stability is SΨ = C− . (7.3.4.11)

Are there RK-SSMs that can boast of an ideal region of stability?

Regions of stability of Gauss collocation single step methods, see Exp. 9.2.6.27:
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Level lines for |S(z)| for Gauss collocation methods

Theorem 7.3.4.12. Region of stability of Gauss collocation single step methods [DEB02]

s-stage Gauss collocation single step methods defined by (7.3.2.6) with the nodes cs given by the s
Gauss points on [0, 1], feature the “ideal” stability domain:

SΨ = C− . (7.3.4.11)

In particular, all Gauss collocation single step methods are A-stable.

y

EXPERIMENT 7.3.4.13 (Implicit RK-SSMs for stiff IVP) We consider the stiff IVP

ẏ = −λy + β sin(2πt) , λ = 106, β = 106 , y(0) = 1 ,

whose solution essentially is the smooth function t 7→ sin(2πt). Applying the criteria (7.2.0.13) and

(7.2.0.14) we immediately see that this IVP is extremely stiff.

We solve it with different implicit RK-SSM on [0, 1] with large uniform timestep h = 1
20 .
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Stability functions on R−

We observe that Gauss collocation RK-SSMs incur a huge discretization error, whereas the simple implicit

Euler method provides a perfect approximation!

Explanation: The stability functions for Gauss collocation RK-SSMs satisfy

lim
|z|→∞

|S(z)| = 1 .

Hence, when they are applied to ẏ = λy with extremely large (in modulus) λ < 0, they will produce

sequences that decay only very slowly or even oscillate, which misses the very rapid decay of the ex-

act solution. The stability function for the implicity Euler method is S(z) = (1 − z)−1 and satisfies

lim|z|→∞ S(z) = 0, which will mean a fast exponential decay of the yk. y

§7.3.4.14 (L-stability) In light of what we learned in the previous experiment we can now state what we

expect from the stability function of a Runge-Kutta method that is suitable for stiff IVP (→ Notion 7.2.0.7):

Definition 7.3.4.15. L-stable Runge-Kutta method → [HAB02a]

A Runge-Kutta method (→ Def. 7.3.3.1) is L-stable/asymptotically stable, if its stability function (→
Thm. 7.3.4.4) satisfies

(i) Re z < 0 ⇒ |S(z)| < 1 , (7.3.4.16)

(ii) lim
Re z→−∞

S(z) = 0 . (7.3.4.17)

Remember: L-stable :⇔ A-stable & “S(−∞) = 0’ ’ y

Remark 7.3.4.18 (Necessary condition for L-stability of Runge-Kutta methods)

Consider a Runge-Kutta single step method (→ Def. 7.3.3.1) described by the Butcher scheme
c A

bT .

Assume that A ∈ Rs,s is regular, which can be fulfilled only for an implicit RK-SSM.

For a rational function S(z) = P(z)
Q(z)

the limit for |z| → ∞ exists and can easily be expressed by the leading

coefficients of the polynomials P and Q:

Thm. 7.3.4.4 ⇒ S(−∞) = 1− bTA−11 . (7.3.4.19)
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If bT = (A)T
:,j (row of A) ⇒ S(−∞) = 0 . (7.3.4.20)

Butcher scheme (7.3.3.3) for L-stable RK-

methods, see Def. 9.2.7.46
✄

c A

bT :=

c1 a11 · · · a1s
...

...
...

cs−1 as−1,1 · · · as−1,s

1 b1 · · · bs

b1 · · · bs

.

A closer look at the coefficient formulas of (7.3.2.6) reveals that the algebraic condition (9.2.7.48) will

automatically satisfied for a collocation single step method with cs = 1! y

EXAMPLE 7.3.4.21 (L-stable implicit Runge-Kutta methods) There is a family of s-point quadrature for-

mulas on [0, 1] with a node located in 1 and (maximal) order 2s− 1: Gauss-Radau formulas. They induce

the L-stable Gauss-Radau collocation single step methods of order 2s− 1 according to Thm. 9.2.6.29.
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The stability functions of s-stage Gauss-Radau collo-

cation SSMs are rational functions of the form

S(z) =
P(z)

Q(z)
, P ∈ Ps−1, Q ∈ Ps .

Beware that also "‘S(∞) = 0”, which means that

Gauss-Radau methods when applied to problems

with fast exponential blow-up may produce a spuri-

ous decaying solution.
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Further information about Radau-Runge-Kutta single step methods can be found in [HAB02a]. y

EXPERIMENT 7.3.4.22 (Gauss-Radau collocation SSM for stiff IVP) We revisit the stiff IVP from

Ex. 7.0.0.1

ẏ(t) = λy2(1− y) , λ = 500 , y(0) = 1
100 .

We compare the sequences generated by 1-stage and 2-stage Gauss collocation and Gauss-Radau col-

location SSMs, respectively (uniform timestep).
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The 2nd-order Gauss collocation SSM (implicit midpoint method) suffers from spurious oscillations when

homing in on the stable stationary state y = 1. The explanation from Exp. 7.3.4.13 also applies to this

example.

The fourth-order Gauss method is already so accurate that potential overshoots when approaching y = 1
are damped fast enough. y

Review question(s) 7.3.4.23 (Implicit Runge-Kutta single-step methods)

△

7.4 Semi-Implicit Runge-Kutta Methods

Video tutorial for Section 7.5: Splitting Methods: (34 minutes) Download link, tablet notes

From Section 7.3.3 recall the formulas for general/implicit Runge-Kutta single-step methods for the ODE

ẏ = f(t, y):

Definition 7.3.3.1. General Runge-Kutta single-step method

For bi, aij ∈ R, ci := ∑
s
j=1 aij, i, j = 1, . . . , s, s ∈ N, an s-stage Runge-Kutta single step method

(RK-SSM) for the IVP (6.1.3.2) is defined by

ki := f(t0 + cih, y0 + h
s

∑
j=1

aijkj) , i = 1, . . . , s , y1 := y0 + h
s

∑
i=1

biki .

As before, the vectors ki ∈ RN are called increments.
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The equations fixing the increments ki ∈ RN, i = 1, . . . , s, for an s-stage implicit RK-method

constitute a (Non-)linear system of equations with s · N unknowns.

Several expensive (Newton) iterations needed to find ki ?

Remember that we compute approximate solutions anyway, and the increments are weighted with the

stepsize h≪ 1, see Def. 7.3.3.1. So there is no point in determining them with high accuracy!

Idea: Use only a fixed small number of Newton steps to solve for the ki, i = 1, . . . , s.

Extreme case: use only a single Newton step! Let’s try.

EXAMPLE 7.4.0.1 (Semi-implicit Euler single-step method) We above the above idea to the implicit

Euler method introduced in Section 6.2.2. For the sake of simplicity we consider the autonomous ODE

ẏ = f(y), f : D ⊂ RN → RN.

The recursion for the implicit Euler method with (local) stepsize h > 0 is

yk+1: yk+1 = yk + hf(yk+1) . (6.2.2.2)

We recast it as a non-linear system of N equations in “standard form F(x) = 0”:

yk+1 = yk + hf(yk+1) ⇔ F(yk+1) := yk+1 − hf(yk+1)− yk = 0 .

A single Newton step [NCSE] applied to F(y) = 0 with the natural initial guess yk yields

yk+1 = yk −Df(yk)
−1F(yk) = yk + (I− hDf(yk))

−1hf(yk) . (7.4.0.2)

This defines the recursion for the semi-implicit Euler method.

Note that for a linear ODE with f(y) = My, M ∈ RN,N, we recover the original implicit Euler method! y

EXPERIMENT 7.4.0.3 (Empiric convergence of semi-implicit Euler single-step method)

✦ We consider an Initial value problem for logistic ODE, see Ex. 6.1.2.1

ẏ = λy(1− y) , y(0) = 0.1 , λ = 5 .

✦ We run the implicit Euler method (6.2.2.2) and

the semi-implicit Euler method (7.4.0.2) with

uniform timestep h = 1/n,

n ∈ {5, 8, 11, 17, 25, 38, 57, 85, 128, 192, 288,

, 432, 649, 973, 1460, 2189, 3284, 4926, 7389}.
✦ Measured error err = max

j=1,...,n
|yj − y(tj)|

Fig. 372
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We observe that the approximate solution of the defining equation for yk+1 by a single Newton step pre-

serves the 1st-order convergence of the implicit Newton method. Also the semi-implicit Euler methods

seems to be of first order. y

EXPERIMENT 7.4.0.4 (Convergence of semi-implicit midpoint method) Again, we tackle the IVP from

Exp. 7.4.0.3.

✦ Now, implicit midpoint method (6.2.3.3), uni-

form timesteps h = 1/n as above

& approximate computation of yk+1 by 1 New-

ton step, initial guess yk

✦ Measured error err = max
j=1,...,n

|yj − y(tj)|

Fig. 373
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We still observe second-order convergence! y

?

Try: Use linearized increment equations for implicit RK-SSM

ki := f(y0 + h
s

∑
j=1

aijkj) , i = 1, . . . , s

ki = f(y0) + hDf(y0)

(
s

∑
j=1

aijkj

)
, i = 1, . . . , s . (7.4.0.5)

The good news is that all results about stability derived from model problem analysis (→ Section 7.1)

remain valid despite linearization of the increment equations:✞
✝

☎
✆Linearization does nothing for linear ODEs ➢ stability function (→ Thm. 7.3.4.4) not affected!

The bad news is that the preservation of the order observed in Exp. 7.4.0.3 will no longer hold in the

general case.

EXPERIMENT 7.4.0.6 (Convergence of naive semi-implicit Radau method)

✦ We consider an IVP for the logistic ODE from Ex. 6.1.2.1:

ẏ = λy(1− y) , y(0) = 0.1 , λ = 5 .
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✦
2-stage Radau RK-SSM, Butcher scheme

1
3

5
12 − 1

12
1 3

4
1
4

3
4

1
4

, (7.4.0.7)

order = 3, see Ex. 7.3.4.21.

✦
Increments from linearized equations (7.4.0.5)

✦ We monitor the error through err =
max

j=1,...,n
|yj − y(tj)|

Fig. 374
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Loss of order due to linearization ! y

§7.4.0.8 (Rosenbrock-Wanner methods) We have just seen that the simple linearization according to

(7.4.0.5) will degrade the order of implicit RK-SSMs and leads to a substantial loss of accuracy. This is not

an option.

Yet, the idea behind (7.4.0.5) has been refined. One does not start from a known RK-SSM, but introduces

general coefficients for structurally linear increment equations.

Class of s-stage semi-implicit (linearly implicit) Runge-Kutta methods (Rosenbrock-Wanner (ROW)

methods):

(I− haiiJ)ki = f(y0 + h
i−1

∑
j=1

(aij + dij)kj)− hJ
i−1

∑
j=1

dijkj , J = Df(y0) ,

y1 := y0 + h
s

∑
j=1

bjkj .

(7.4.0.9)

Then the coefficients aij, dij, and bi are determined from order conditions by solving large non-linear

systems of equations.

In each step s linear systems with coefficient matrices I− haiiJ have to be solved. For methods used in

practice one often demands that aii = γ for all i = 1, . . . , s. As a consequence, we have to solve s linear

systems with the same coefficient matrix I− hγJ ∈ RN,N, which permits us to reuse LU-factorizations,

see [NCSE]. y

Supplementary literature. A related discussion can be found in [HAB02a].

Review question(s) 7.4.0.10 (Semi-implicit Runge-Kutta single-step methods)

(Q7.4.0.10.A) [Semi-implicit midpoint method] The implicit midpoint single-step method applied to the

autonomous ODE ẏ = f(y) and with timestep h leads to the recursion

yk+1: yk+1 = yk + hf(1
2(yk + yk+1)) .

Derive the defining equation of the semi-implicit variant, which arises from solving the defining equation

for yk+1 by a single Newton step with initial guess yk.
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(Q7.4.0.10.B) [Stability function of ROW-SSM] A Rosenbrock-Wanner (ROW) single-step method for

the autonomous ODE ẏ = f(y) can be defined by

(I− haiiJ)ki = f(y0 + h
i−1

∑
j=1

(aij + dij)kj)− hJ
i−1

∑
j=1

dijkj , J = Df(y0) ,

y1 := y0 + h
s

∑
j=1

bjkj .

(7.4.0.9)

Derive its stability functions for s = 2.

△

7.5 Splitting Methods

Video tutorial for Section 7.5: Splitting Methods: (34 minutes) Download link, tablet notes

§7.5.0.1 (Splitting idea: composition of partial evolutions) Many relevant ordinary differential equa-

tions feature a right hand side function that is the sum to two (or more) terms. Consider an autonomous

IVP with a right hand side function that can be split in an additive fashion:

ẏ = f(y) + g(y) , y(0) = y0 , (7.5.0.2)

with f : D ⊂ RN 7→ RN, g : D ⊂ RN 7→ RN “sufficiently smooth”, locally Lipschitz continuous (→
Def. 6.1.3.12).

Let us introduce the evolution operators (→ Def. 6.1.4.3) for both summands:

(Continuous) evolution maps:
Φ

t
f ↔ ODE ẏ = f(y) ,

Φ
t
g ↔ ODE ẏ = g(y) .

Temporarily we assume that both Φ
t
f , Φ

t
g are available in the form of analytic formulas or highly accurate

approximations.

Idea: Build single step methods (→ Def. 6.3.1.4) based on the following

discrete evolutions

Lie-Trotter splitting: Ψ
h = Φ

h
g ◦Φ

h
f , (7.5.0.3)

Strang splitting: Ψ
h = Φ

h/2

f ◦Φ
h
g ◦Φ

h/2

f . (7.5.0.4)

These splittings are easily remembered in graphical form:

(7.5.0.3) ↔

Fig. 375

Ψ
h

Φ
h
f

Φ
h
g

y0

y1

(7.5.0.4) ↔

Fig. 376
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Note that over many timesteps the Strang splitting approach is not more expensive than Lie-Trotter split-

ting, because the actual implementation of (7.5.0.4) should be done as follows:

y1/2 := Φ
h/2

f , y1 := Φ
h
gy1/2 ,

y3/2 := Φ
h
f y1 , y2 := Φ

h
gy3/2 ,

y5/2 := Φ
h
f y2 , y3 := Φ

h
gy5/2 ,

...
...,

because Φ
h/2

f ◦Φ
h/2

f = Φ
h
f . This means that a Strang splitting SSM differs from a Lie-Trotter splitting SSM

in the first and the last step only. y

EXPERIMENT 7.5.0.5 (Convergence of simple splitting methods) We consider the following IVP

whose right hand side function is the sum of two functions for which the ODEs can be solved analyti-

cally:

ẏ = λy(1− y)︸ ︷︷ ︸
=: f (y)

+
√

1− y2

︸ ︷︷ ︸
=:g(y)

, y(0) = 0 .

Φ
t
f y =

1

1 + (y−1 − 1)e−λt
, t > 0, y ∈]0, 1] (logistic ODE (6.1.2.2))

Φ
t
gy =

{
sin(t + arcsin(y)) , if t + arcsin(y) < π

2 ,

1 , else,
t > 0, y ∈ [0, 1] .

Fig. 377
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Numerical experiment:

For T = 1, λ = 1, we compare the two splitting

methods for uniform timesteps with a very accurate

reference solution obtained in MATLAB by

f=@(t,x) λ*x*(1-x)+sqrt(1-x^2);

options=odeset(’reltol’,1.0e-10,...

’abstol’,1.0e-12);

[t,yex]=ode45(f,[0,1],y0,options);

✁ Error at final time T = 1

We observe algebraic convergence of the two splitting methods, order 1 for (7.5.0.3), oder 2 for (7.5.0.4).

y

The observation made in Exp. 7.5.0.5 reflects a general truth:

Theorem 7.5.0.6. Order of simple splitting methods

Die single step methods defined by (7.5.0.3) or (7.5.0.4) are of order (→ Def. 6.3.2.8) 1 and 2,

respetively.
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§7.5.0.7 (Inexact splitting methods) Of course, the assumption that ẏ = f(y) and ẏ = g(y) can be

solved exactly will hardly ever be met. However, it should be clear that a “sufficiently accurate” approxima-

tion of the evolution maps Φh
g and Φ

h
f is all we need

Idea: In (7.5.0.3)/(7.5.0.4) replace

exact evolutions −→ discrete evolutions

Φ
h
g, Φ

h
f −→ Ψ

h
g, Ψ

h
f

.

EXPERIMENT 7.5.0.8 (Convergence of inexact simple splitting methods) Again we consider the

IVP of Exp. 7.5.0.5 and inexact splitting methods based on different single step methods for the two ODE

corresponding to the summands.

Fig. 378
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LTS-Eul explicit Euler method (6.2.1.4) → Ψ
h
h,g,

Ψ
h
h, f + Lie-Trotter splitting (7.5.0.3)

SS-Eul explicit Euler method (6.2.1.4) → Ψ
h
h,g,

Ψ
h
h, f + Strang splitting (7.5.0.4)

SS-EuEI Strang splitting (7.5.0.4): explicit Euler

method (6.2.1.4) ◦ exact evolution Φ
h
g ◦

implicit Euler method (6.2.2.2)

LTS-EMP explicit midpoint method (6.2.3.3)→ Ψ
h
h,g,

Ψ
h
h, f + Lie-Trotter splitting (7.5.0.3)

SS-EMP explicit midpoint method (6.4.0.7)→ Ψ
h
h,g,

Ψ
h
h, f + Strang splitting (7.5.0.4)

☞ The order of splitting methods may be (but need not be) limited by the order of the SSMs used for

Φ
h
f , Φ

h
g.

y

§7.5.0.9 (Application of splitting methods) In the following situation the use splitting methods seems

advisable:

“Splittable” ODEs

ẏ = f (y) + g(y) "‘difficult”

(e.g., stiff→ Section 7.2)
:

ẏ = f (y)→ stiff, but with an analytic solution

ẏ = g(y) "‘easy”, amenable to explicit integration.

EXPERIMENT 7.5.0.11 (Splitting off stiff components) Recall Ex. 7.0.0.1 and the IVP studied there:

IVP ẏ = λy(1− y) + α sin(y) , λ = 100 , α = 1 , y(0) = 10−4 .

small perturbation
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Fig. 379
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Solution by ode45, see Ex. 7.0.0.1

Fig. 380
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LT−Eulex, h=0.04
LT−Eulex, h=0.02
ST−MPRexpl, h=0.05

inexact splitting method: solution (yk)

Total number of timesteps

ode45: 152

LT-Eulex, h = 0.04: 25

LT-Eulex, h = 0.02: 50

ST-MPRexpl, h = 0.05: 20

Details of the methods:

LT-Eulex: ẏ = λy(1 − y) → exact evolution, ẏ = α sin y → expl. Euler (6.2.1.4) & Lie-Trotter

splitting (7.5.0.3)

ST-MPRexpl: ẏ = λy(1− y)→ exacte evolution, ẏ = α sin y→ expl. midpoint rule (6.4.0.7) & Strang

splitting (7.5.0.4)

We observe that this splitting scheme can cope well with the stiffness of the problem, because the stiff

term on the right hand side is integrated exactly. y

EXAMPLE 7.5.0.12 (Splitting linear and decoupling terms) In the numerical treatment of partial differ-

ential equation one commonly encounters ODEs of the form

ẏ = f(y) := −Ay +




g(y1)
...

g(yN)


 , A = A⊤ ∈ RN,N positive definite (→ [NCSE]) , (7.5.0.13)

with state space D = RN, where λmin(A) ≈ 1, λmax(A) ≈ N2, and the derivative of g : R → R is

bounded. Then IVPs for (7.5.0.13) will be stiff, since the Jacobian

Df(y) = −A +




g′(y1)
. . .

g′(yN)


 ∈ RN,N

will have eigenvalues “close to zero” and others that are large (in modulus) and negative. Hence, Df(y)
will satisfy the criteria (7.2.0.13) and (7.2.0.14) for any state y ∈ RN.

The natural splitting is

f(y) = g(y) + q(y) with g(y) := −Ay , q(y) :=




g(y1)
...

g(yN)


 .
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• For the linear ODE ẏ = g(y) we have to use and L-stable (→ Def. 9.2.7.46) single step method,

for instance a second-order implicit Runge-Kutta method. Its increments can be obtained by solving

a linear system of equations, whose coefficient matrix will be the same for every step, if uniform

timesteps are used.

• The ODE ẏ = q(y) boils down to decoupled scalar ODEs ẏj = g(yj), j = 1, . . . , N. For them we

can use an inexpensive explicit RK-SSM like the explicit trapezoidal method (6.4.0.6). According to

our assumptions on g these ODEs are not haunted by stiffness.

y

Review question(s) 7.5.0.14 (Splitting single-step methods)

△
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Chapter 9

Second-Order Linear Evolution Problems

9.1 Time-Dependent Boundary Value Problems

§9.1.0.1 (Introduction) This chapter is devoted to the discretization of boundary value problems for a

class of time-dependent partial differential equations. They are specimens of evolution problems.

Prerequisite knowledge is

• the theory and variational formulation of 2nd-order elliptic BVP from Chapter 1,

• basic concepts and algorithms for finite elements, Section 2.2, Section 2.5, Section 2.6,

• knowledge about single step methods for ODEs from § 10.2.2.7 and Chapter 7, briefly recapitulated

in Section 9.2.6, in case those chapters were not covered in the course.

In particular, we study scalar linear partial differential equations for which one coordinate direction is

special and identified with time and denoted by the independent variable t. The other coordinates are

regarded as spatial coordinates and designated by x = (x1, . . . , xd)
T.

Why is time special? It seems to be just another dimension.

! In contrast to space, time has a direction from past to future and this makes the temporal direction

special. There is causality: the state at a paricular time may depend only on the past.
y

§9.1.0.2 (Outline)

Contents
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9.3.1 Models for Vibrating Membrane . . . . . . . . . . . . . . . . . . . . . . . . . 625
9.3.2 Wave Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
9.3.3 Method of Lines for Wave Propagation . . . . . . . . . . . . . . . . . . . . . 635
9.3.4 Timestepping for Semi-Discrete Wave Equations . . . . . . . . . . . . . . . . 637
9.3.5 The Courant-Friedrichs-Levy (CFL) Condition . . . . . . . . . . . . . . . . . 644

This chapter exclusively deals with linear evolution problems. We can distinguish two fundamental classes,

dissipative and conservative evolutions. This is reflected by he structure of the chapter, which comprises

two sections, Section 9.2 devoted to dissipative (parabolic) evolutions, Section 9.3 addressing conservative

(hyperbolic) evolutions. Each section first develops variational formulations, then discretization in space,

and, finally, discretization in time. Results on convergence are reviewed and discussed. y

§9.1.0.3 (Space-time domains) For time-dependent PDEs (x↔ spatial variable, t↔ time variable)

➣ a/the solution will be a “function of space and time”: u = u(x, t)

The domain for such PDEs will have tensor product structure (tensor product of spatial domain and a

bounded time interval):

Computational domain:

Ω̃ := Ω×]0, T[⊂ Rd+1 .

Ω̃ is a space-time cylinder

Ω ⊂ Rd =̂ spatial domain (satisfying assump-

tions of § 1.2.1.14)

T > 0 =̂ final time

(Setting the initial time to zero is a convention

adopted throughout this chapter.)

Data prescribed for u on ∂Ω̃ have different names:

On Ω× {0} → initial conditions,

on ∂Ω×]0, T[→ (spatial) boundary conditions.

Fig. 381

Ω
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T
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y

Remark 9.1.0.4 (Temporally varying spatial domains) The spatial sections of a space-time domain Ω̃

need not be constant, that is, Ω̃ can also be of arbitrary shape. However, the mathematical and numerical

treatment of this situation is a challenge; even the distinction between initial conditions and boundary

conditions becomes blurred. Thus we confine ourselves to space-time cylinders. y

§9.1.0.5 (Terminology for time-dependent problems) Extending the notion of a “boundary value prob-

lem”:

PDE for u(x, t) + initial conditions + boundary conditions

︸ ︷︷ ︸
= evolution problem for u : Ω̃→ R
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Note: No boundary conditions are prescribed on Ω× {T}, that is there are no “final conditions”. This

is an immediate consequence of causality: time is supposed to have a “direction” that governs the flow of

information in the evolution problem, cf. § 9.1.0.1.

evolution problems (on bounded spatial domains) are also known as

initial-boundary value problems (IBVP).
y

Remark 9.1.0.6 (Initial time) Why do we always pick initial time t = 0 in this chapter?

The modelled physical systems will usually be time-invariant, so that we are free to shift time. Remember

the analogous situation with autonomous ODE discussed in § 6.1.3.3. y

Review question(s) 9.1.0.7 (Time-dependent boundary value problems)

(Q9.1.0.7.A) [Space-time cylinder] Draw a space-time cylinder and mark where initial conditions and

(spatial) boundary conditions are imposed.

(Q9.1.0.7.B) [Time-dependent spatial domain] Evolution problems can also be posed on time-

dependent spatial domains. For d = 2 sketch a generalization of the space-time cylinder for that case.

Outline a “mapping approach” that can convert an evolution problem posed on a time-dependent spatial

domain into one living on a space-time cylinder.

(Q9.1.0.7.C) [Revsersible physical system] You can think of a reversible physical systems as those for

which you could not tell whether a video recording of them is played forward or backward.

Give examples of reversible and irreversible physical systems in our everyday world.

△

9.2 Parabolic Initial-Boundary Value Problems

9.2.1 Heat Equation

Video tutorial for Section 9.2.1: Heat Equation: (18 minutes) Download link, tablet notes

Section 1.6 treated stationary heat conduction: no change of temperature with time (temporal equilibrium).

For this situation we derived a mathematical model that boils down to a second order scalar linear elliptic

boundary value problem for the temperature u = u(x) as a function of the spatial variable x ∈ Ω, see

§ 1.6.0.7 and Section 1.7 for a discussion of boundary conditions.

Now we consider the evolution (change in time) of a temperature distribution u = u(x, t) in a solid body

occupying a bounded region of space Ω ⊂ Rd over a finite time period [0, T].

§9.2.1.1 (Notations for heat conduction modelling) We use the following symbols in connection with

mathematical modelling of transient heat conduction:
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Ω ⊂ Rd : space occupied by solid body (bounded spatial computational domain),

x ∈ Ω : spatial independent variable

: (differential operators acting in space are sometimes tagged with subscript x)

t : time variable, ∂
∂t /

d
dt =̂ partial/total derivative w.r.t. time,

κ = κ(x) : (spatially varying) heat conductivity ([κ] = W
Km ),

T > 0 : final time for “observation period” [0, T],
u0 : Ω 7→ R : initial temperature distribution in Ω,

g : ∂Ω× [0, T] 7→ R : surface temperature, varying in space and time: g = g(x, t),
f : Ω× [0, T] 7→ R : time-dependent heat source/sink ([ f ] = W

md ): f = f (x, t).

y

Our goal is to derive a PDE governing transient heat conduction, a PDE satisfied by the time-dependent

temperatur distribution u = u(x, t), on the space-time cylinder Ω̃ := Ω×]0, T[. Of course, the tools and

concepts from Section 1.6 will be used again: Heat flux (→ § 1.6.0.1), energy conservation, and a flux law

(→ § 1.6.0.4).

§9.2.1.2 (Derivation of heat equation) For transient heat conduction the energy balance law (1.6.0.3)

has to be supplemented by a storage term reflecting the fact that heat can accumulate:✬

✫

✩

✪

Conservation of energy :

d

dt

∫

V
ρu dx +

∫

∂V
j · n dS =

∫

V
f dx for all “control volumes” V . (9.2.1.3)

energy stored in V power flux through ∂V heat generation in V

ρ = ρ(x): (spatially varying) heat capacity ([ρ] = JK−1), uniformly positive, cf. (1.6.0.6).

As in § 1.6.0.7, now apply Gauss’ Theorem (→ Thm. 1.5.2.4)

∫

V
div j(x)dx =

∫

∂V
j(x) · n(x)dS(x) , j : Ω→Rd ,

to the power flux integral in (9.2.1.3). This converts the surface integral to a volume integral over div j and

we get

d

dt

∫

V
ρu dx +

∫

V
div j dx =

∫

V
f dx for all “control volumes” V

We make the casual assumption that all functions are “sufficiently smooth”. Then we appeal to another

version of the fundamental lemma of the calculus of variations, see Lemma 1.5.3.4, this time involving

piecewise constant test functions:

ϕ ∈ C0(Ω) and

∫

V
ϕ(x)dx = 0 ∀V ⊂ Ω ⇒ ϕ ≡ 0 . (9.2.1.4)

This permits us to drop integration over control volumes altogether.

Local form of energy balance law (➣ heat equation)

∂

∂t
(ρu)(x, t) + (divx j)(x, t) = f (x, t) in Ω̃ . (9.2.1.5)

For standard materials the heat flux is linked to temperature variations by Fourier’s law (→ § 1.6.0.4):

j(x) = −κ(x) grad u(x) , x ∈ Ω . (1.6.0.5)
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From here we let all differential operators like grad and div act on the spatial independent variable

x. As earlier, the independent variables x and t will be omitted frequently. Watch out!

Now, plug Fourier’s law

j(x) = −κ(x) grad u(x) , x ∈ Ω , (1.6.0.5)

into the local form of the energy balance law (9.2.1.5).

∂

∂t
(ρu)− div(κ(x) grad u) = f in Ω̃ := Ω×]0, T[ . (9.2.1.6)

y

§9.2.1.7 (Evolution problem for heat conduction) A pointed out in § 9.1.0.5 the PDE (9.2.1.6) has to be

supplemented with initial conditions for (x, t) ∈ Ω×{0} and boundary conditions for (x, t) ∈ ∂Ω×]0, T[.
A simple and intuitive choice is

Dirichlet boundary conditions (fixed surface temperatur) on ∂Ω×]0, T[:

u(x, t) = g(x, t) for (x, t) ∈ ∂Ω×]0, T[ . (9.2.1.8)

+ initial conditions for t = 0:

u(x, 0) = u0(x) for all x ∈ Ω . (9.2.1.9)

Terminology: (9.2.1.6) & (9.2.1.8) & (9.2.1.9) is a specimen of a

2nd-order parabolic initial-boundary value problem (IBVP)
y

§9.2.1.10 ((Spatial) boundary conditions for 2nd-order parabolic IBVPs) As in Section 1.7 we appeal

to physical intuition about heat conduction to justify that all of the following spatial boundary conditions

make sense for the heat equation (9.2.1.6).

On ∂Ω×]0, T[ we can impose any of the boundary conditions discussed in Section 1.7:

• Dirichlet boundary conditions u(x, t) = g(x, t), see (9.2.1.8) (fixed surface temperature),

• Neumann boundary conditions j(x, t) · n = −h(x, t) (fixed heat flux through surface),

• radiation boundary conditions j(x, t) · n = Ψ(u(x, t)),
and any combination of these as discussed in Ex. 1.7.0.10, yet, only one of them at any part of

∂Ω×]0, T[, see Rem. 1.7.0.9.

For second order parabolic evolutions we can/must use the same spatial boundary conditions as for

stationary second order elliptic boundary value problems.

y

Remark 9.2.1.11 (Compatible boundary and initial data) We consider spatial

Dirichlet boundary conditions (9.2.1.8) for the heat equation (9.2.1.6). A physically motivated regu-

larity requirements for the temperature u and the Dirichlet data g we postulate that

u and g are continuous in time and space
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➣ Natural compatibility requirement at initial time for u0 ∈ C0(Ω)

g(x, 0) = u0(x) ∀x ∈ ∂Ω . (9.2.1.12)

y

Remark 9.2.1.13 (Evolution problems for PDEs and ODEs) Compare the parabolic evolution PDE

∂u

∂t
(x, t) = divx(κ(x) gradx u(x, t)) + f (x, t) in Ω̃ := Ω×]0, T[ ,

with a “standard” autonomous ordinary differential equations as introduced in Section 6.1.1

d

dt
y(t) = f(y) , f : D ⊂ RN → RN .

Actually, we can regard the evolution PDE as an ODE, whose state space D is no longer a subset of RN,

but an infinite-dimensional space of functions Ω→ R.

Evolution PDEs can be viewed as ODEs in infinite-dimensional spaces of functions.

y

Review question(s) 9.2.1.14 (Heat equation)

(Q9.2.1.14.A) Cast the statement

“The change in thermal energy stored in a body is balanced by the heat flow through its

surface”

into a mathematical formula and show that it holds for the linear heat equation with pure Neumann

spatial boundary conditions.

(Q9.2.1.14.B) In a model for linear transient heat conduction in a homogeneous body let

u = u(x, t) : Ω× [0, T]→ R designated the temperature distribution. What is the physical meaning

of the following spatial boundary conditions, here written in non-dimensional form:

1. u(x, t) = g(x, t), (x, y) ∈ ∂Ω× [0, T] (Dirichlet b.c.),

2. grad u(x, t) · n(x) = 0, (x, y) ∈ ∂Ω× [0, T], (homogeneous Neumann b.c.),

3. grad u(x, t) · n(x) = u(x, t), (x, y) ∈ ∂Ω× [0, T], (impedance b.c.)?

△

9.2.2 Heat Equation: Spatial Variational Formulation

Video tutorial for Section 9.2.2: Heat Equation: Spatial Variational Formulation: (15 minutes)

Download link, tablet notes

§9.2.2.1 (Model second-order linear parabolic evolution problem) Now we study the linear 2nd-order

parabolic initial-boundary value problem with pure Dirichlet boundary conditions, introduced in the preced-

ing section:

∂

∂t
(ρ(x)u)− div(κ(x) grad u) = f in Ω̃ := Ω×]0, T[ , (9.2.1.6)

u(x, t) = g(x, t) for (x, t) ∈ ∂Ω×]0, T[ , (9.2.1.8)
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u(x, 0) = u0(x) for all x ∈ Ω . (9.2.1.9)

Here ρ and κ are uniformly positive (→ Def. 1.2.2.9) and bounded integrable functions on Ω. The source

function f = f (x, t) may depend on space an time and fulfills f (·, t) ∈ L2(Ω).

A special case if that of homogeneous Dirichlet boundary conditions g ≡ 0. The general case can

be reduced to this by using the offset function trick, see Section 2.7.6, and solve the parabolic initial-

boundary value problem for w(x, t) := u(x, t)− g̃(x, t), where g̃(·, t) is an extension of the Dirichlet data

g ∈ C0([0, T]× ∂Ω) to Ω̃. Then w will satisfy homogeneous Dirichlet boundary conditions and solve an

evolution equation with a modified source function f̃ (x, t). y

§9.2.2.2 (Derivation of spatial variational formulation) Now we pursue the formal derivation of the

spatial variational formulation of (9.2.1.6)–(9.2.1.8).

The steps completely mirror those discussed in Section 1.8, § 1.8.0.1. This paragraph should be reviewed

again.

STEP 1: test PDE with functions v ∈ H1
0(Ω)

(Rule: do not test, where the solution is known, that is, on the boundary ∂Ω )

Note: test function does not depend on time: v = v(x)!

STEP 2: integrate over domain Ω

∫

Ω

(
d

dt
(ρu)− div(κ(x) grad u)

)
v(x)dx =

∫

Ω

f (x)v(x)dx ∀v : Ω→ R , v|∂Ω = 0 .

STEP 3: perform integration by parts in space

(by using Green’s first formula, Thm. 1.5.2.7)

∫

Ω

d

dt
(ρu)(x) v(x) + κ(x)grad u(x) · grad v(x)dx−

∫

∂Ω

κ(x) grad u(x) · n(x) v(x)︸︷︷︸
=0

dS(x) =
∫

Ω

f (x)v(x)dx ∀v : Ω→ R , v|∂Ω = 0 .

Remark 9.2.2.3. For the concrete PDE (9.2.1.6) and boundary conditions (9.2.1.8) refer to Ex. 1.8.0.2

for a discussion of these steps in the stationary context. For more general boundary conditions study

Ex. 1.8.0.6 to refresh yourself on how to obtain variational formulations. The derivation will include another

STEP 4, which recasts boundary terms using the spatial boundary conditions. y

The final step is the selection of an appropriate Sobolev space with respect to the dependence on the

spatial variable. Following the guideline from Section 1.3.1 we pick the largest space, for which both
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left and right hand side of the formal variational problem are still well defined for every time t. With the

arguments from Section 1.3.4 we find the space H1
0(Ω). y

Since the coefficient ρ must not depend on time, we arrive at the following variational problem:

✬

✫

✩

✪

Spatial variational form of (9.2.1.6)–(9.2.1.8): seek t ∈]0, T[ 7→ u(t) ∈ H1
0(Ω)

∫

Ω

ρ(x)u̇(t)v dx +
∫

Ω

κ(x) grad u(t) · grad v dx =
∫

Ω

f (x, t)v(x)dx ∀v ∈ H1
0(Ω) , (9.2.2.4)

u(0) = u0 ∈ H1
0(Ω) . (9.2.2.5)

Remark 9.2.2.6 (Function space valued functions) What does it mean, when we write u(t)? Be aware

that t 7→ u(t) describes a function space valued function on ]0, T[, here assigning to every instance of

time a function in H1
0(Ω):

u :]0, T[→ H1
0(Ω) .

Also note that grad = gradx acts on the spatial independent variables that are suppressed in the notation

u(t). Hence t 7→ gradx u(t) is a function space valued function, too, with values in (L2(Ω))d.

✎ Notation: u̇(t) = ∂u
∂t (t) =̂ (partial) derivative w.r.t. time: ∂u

∂t (t) ∈ H1
0(Ω) y

§9.2.2.7 (Abstract linear parabolic evolution problems) We use the following shorthand abstract nota-

tion for (9.2.2.4) (with obvious correspondences):

t ∈]0, T[ 7→ u(t) ∈ V0 :

{
m(u̇(t), v) + a(u(t), v) = ℓ(t)(v) ∀v ∈ V0 ,

u(0) = u0 ∈ V0 .
(9.2.2.8)

Again, here ℓ(t) =̂ linear form valued function on ]0, T[.

Concretely for evolution problem (9.2.1.6), (9.2.1.8), (9.2.1.9):

m(u̇(t), v) :=
∫

Ω

ρ(x)u̇(t)v dx , u, v ∈ H1
0(Ω) ,

a(u(t), v) :=
∫

Ω

κ(x) grad u(t) · grad v dx , u, v ∈ H1
0(Ω) ,

ℓ(t)(v) :=
∫

Ω

f (x, t)v(x)dx , v ∈ H1
0(Ω) .

Note that both m and a are symmetric, positive definite bilinear forms (→ Def. 1.2.3.26).

➣ Both m and a induce related energy norms ‖·‖
a

and ‖·‖
m

(→ Def. 1.2.3.34)

Since the bilinear form m does not depend on time, we conclude

m(u̇, v) =
∫

Ω

ρ(x)u̇(t)v dx =
d

dt

∫

Ω

ρ(x)u(t)v dx =
d

dt
m(u, v) ,
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and we can rewrite (9.2.2.8) equivalently as follows:

t ∈]0, T[ 7→ u(t) ∈ V0 :





d

dt
m(u(t), v) + a(u(t), v) = ℓ(t)(v) ∀v ∈ V0 ,

u(0) = u0 ∈ V0 .
(9.2.2.9)

This is a linear evolution problem in the sense that the mapping that associates the solution u = u(x, t)
to the data (ℓ, u0) is linear. y

Review question(s) 9.2.2.10 (Heat equation: spatial variational formulations)

(Q9.2.2.10.A) Give the spatial variational formulation of the following evolution problem with Neumann

boundary conditions:

∂

∂t
(ρ(x)u)− ∆u = 0 in Ω̃ := Ω×]0, T[ ,

grad u(x, t) · n(x) = h(x, t) for (x, t) ∈ ∂Ω×]0, T[ ,

u(x, 0) = 1 for all x ∈ Ω ,

where the Neumann data h : ∂Ω× [0, t]→ R and the (uniformly positive) coefficient function

ρ : Ω→ R are given. Does the solution linearly depend on h?

At one step use Green’s first formula:

Theorem 1.5.2.7. Green’s first formula

For all vector fields j ∈ (C1
pw(Ω))d and functions v ∈ C1

pw(Ω) holds

∫

Ω
j · grad v dx = −

∫

Ω
div j v dx +

∫

∂Ω
j · n v dS . (12.2.3.2)

(Q9.2.2.10.B) Let Ω ⊂ R2 be a bounded domain and ρ, κ : Ω→ R uniformly positive coefficient func-

tions. Derive the spatial variational formulation for the parabolic initial value problem

∂

∂t
(ρ(x)u)− div(κ(x) grad u) = 0 in Ω̃ := Ω×]0, T[ ,

grad u(x, t) · n(x) +
∂u

∂t
(x, t) = 0 for (x, t) ∈ ∂Ω×]0, T[ ,

u(x, 0) = u0(x) for all x ∈ Ω ,

for given initial data u ∈ H1(Ω).

(Q9.2.2.10.C) Let Ω ⊂ R2 be a bounded domain and ρ, κ : Ω×]0, T[→ R be uniformly positive time-

dependent coefficient functions. Derive the correct spatial variational formulation for the parabolic initial

value problem

∂

∂t
(ρ(x, t)u)− div(κ(x, t) grad u) = 0 in Ω̃ := Ω×]0, T[ ,

u(x, t) = 0 for (x, t) ∈ ∂Ω×]0, T[ ,

u(x, 0) = u0(x) for all x ∈ Ω ,

for given initial data u ∈ H1(Ω).

△
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9.2.3 Stability of Parabolic Evolution Problems

Video tutorial for Section 9.2.3: Stability of Parabolic Evolution Problems: (20 minutes)

Download link, tablet notes

Now we are concerned with the stability of linear parabolic evolution problems, the question to what extent

the size of their solutions, measured in “relevant norms” can be bounded by suitable norms of the data

u0, f (and g for Dirichlet boundary conditions (9.2.1.8)). Similar considerations for (stationary) abstract

variational problems can be found in Section 1.4.3.

We investigate only whether ‖u(t)‖H1(Ω) depends continuously on u0 for all times t in the case f ≡ 0.

This will also reveal fundamental structural properties of solutions of linear parabolic evolution problems.

For the sake of simplicity we restrict ourselves to constant coefficients ρ ≡ 1 and κ ≡ 1. (The general case

of spatially varying coefficients is not more difficult, if both ρ and κ are bounded and uniformly positive,

see (1.6.0.6).)

§9.2.3.1 (Solution of heat equation in one dimension) In 1D the homogeneous Dirichlet problem for the

constant-coefficient heat equation on the spatial domain Ω =]0, 1[,

∂u

∂t
(x, t)− ∂2u

∂x2
= 0 in ]0, 1[×[0, T] ,

u(0, t) = u(1, t) = 0 for all 0 < t < T ,

u(x, 0) = u0(x) for all 0 < x < 1 .

can be solved by separation of variables starting from the trial expression

u(x, t) = ϕ(x)ψ(t) , 0 < x < 1 , 0 < t < T . (9.2.3.2)

Plugging this into the PDE ∂u
∂t (x, t)− ∂2u

∂x2 = 0 we end up with (′ =̂ derivative w.r.t x, ˙=̂ derivative w.r.t. t)

ϕ(x)ψ̇(t)− ϕ′′(x)ψ(t) = 0 ⇒ ϕ′′(x)

ϕ(x)
=

ψ̇(t)

ψ(t)
≡ C ∈ R ,

which gives us the ordinary differential equations

ϕ′′ = Cϕ and ψ̇ = Cψ (9.2.3.3)

The Dirichlet boundary conditions imply ϕ(0) = ϕ(1) = 0 and, together with (9.2.3.3), this fixes the con-

stant C to a discrete set of values with associated solutions for ϕ:

ϕk(x) = sin(πkx) , C = −π2k2 ⇒ ψk(t) = α exp(−π2k2t) , k ∈ N , α ∈ R . (9.2.3.4)

Hence, we obtain a general series formula for u = u(x, t) as a superposition

u(x, t) =
∞

∑
k=1

αk sin(πkx) exp(−π2k2t) . (9.2.3.5)

The coefficients αk ∈ R are given as Fourier coefficients of the initial data

u0(x) =
∞

∑
k=1

αk sin(πkx) ⇒ αk = 2
∫ 1

0
u0(x) sin(πkx)dx .

By the orthogonality of the Fourier modes x 7→ sin kπx in L2(]0, 1[) we have Bessel’s formula

∥∥∥∥∥
{

x 7→
∞

∑
k=1

γk sin(πkx)
}
∥∥∥∥∥

2

L2(]0,1[)

= 1
2

∞

∑
k=1

γ2
k .
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As a consequence, from (9.2.3.5) we get

∥∥{x 7→ u(x, t)
∥∥2

L2(]0,1[)
=

∞

∑
k=1

αk exp(−2π2k2t) .

This expresses an exponential decay of the L2(]0, 1[)-norm of the solution as a function of time t. y

To tackle more general parabolic evolution problems we use that by the first Poincaré-Friedrichs inequality

from

Theorem 1.3.4.17. Poincaré-Friedrichs inequality

If Ω ⊂ Rd, d ∈ N, is bounded, then

‖u‖0 ≤ diam(Ω) ‖grad u‖0 ∀u ∈ H1
0(Ω) .

we can conclude that

∃γ > 0: |v|2H1(Ω) ≥ γ‖v‖2
L2(Ω) ∀v ∈ H1

0(Ω) . (9.2.3.6)

In fact, Thm. 1.3.4.17 reveals γ = diam(Ω)−2, but the numerical value of γ is not important for our

considerations.

Remark 9.2.3.7 (Differentiating bilinear forms with time-dependent arguments) Consider (temporally)

smooth u : [0, T] 7→ V0, v : [0, T] 7→ V0 and a symmetric bilinear form b : V0 × V0 7→ R. We are

concerned with computing the temporal derivative d
dtb(u(t), v(t)), because this will be a key step in the

proof of stability estimates.

Perform formal Taylor expansion:

b(u(t + τ), v(t + τ)) = b(u(t) + u̇(t)τ + O(τ2), v(t) + v̇(t)τ + O(τ2))

= b(u(t), v(t)) + τ(b(u̇(t), v(t)) + b(u(t), v̇(t))) + O(τ2) .

d

dt
b(u(t), v(t)) = lim

τ→0

b(u(t + τ), v(t + τ))− b(u(t), v(t))

τ

= b(u̇(t), v(t)) + b(u(t), v̇(t)) .

This is a general product rule, see [NCSE]. y

The next result connects with the observation made in § 9.2.3.1 in the 1D case.

Lemma 9.2.3.8. Decay of solutions of parabolic evolutions

For f ≡ 0 the solution u(t) of (9.2.2.4) satisfies

‖u(t)‖
m
≤ e−γt‖u0‖m , ‖u(t)‖

a
≤ e−γt‖u0‖a ∀t ∈]0, T[ ,

where γ > 0 is the constant from (9.2.3.6), and ‖·‖
a
, ‖·‖

m
stand for the energy norms induced by

a(·, ·) and m(·, ·), respectively.

Proof. Multiply the solution of the parabolic IBVP with an exponential weight function:

w(t) := exp(γt)u(t) ∈ H1
0(Ω) ⇒ ẇ := dw

dt (t) = γw(t) + exp(γt) du
dt (t) , (9.2.3.9)
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solves the parabolic IBVP

m(ẇ, v) + ã(w, v) = 0 ∀v ∈ V ,

w(0) = u0 ,
(9.2.3.10)

with ã(w, v) = a(w, v) − γm(w, v), γ from (9.2.3.6). To see this, use that u(t) solves (9.2.2.9) with

f ≡ 0 (elementary calculation).

Note: (9.2.3.6) ⇒ ã(v, v) ≥ 0 ∀v ∈ V

We show the exponential decay of ‖·‖
m

-norm of solutions:

d
dt

1
2‖w‖

2
m
= d

dt
1
2m(w, w)

Rem. 9.2.3.7
= m(ẇ, w) = −ã(w, w) ≤ 0 (9.2.3.11)

This confirms that t 7→ ‖w(t)‖
m

is a decreasing function, which involves

(9.2.3.11) ⇒ ‖w(t)‖
m
≤ ‖w(0)‖

m
,

and the first assertion of the Lemma is evident. Next, we verify the exponential decay of |·|H1(Ω)-norm of

solution by a similar trick:

1
2

d
dt‖w‖

2
ã

Rem. 9.2.3.7
= ã( d

dt w, w) = −m( d
dt w, d

dt w) ≤ 0 ⇒ ‖w(t)‖
ã
≤ ‖w(0)‖

ã
,

‖w(t)‖2
a
≤ ‖w(0)‖2

a
− γ(‖w(0)‖2

m
− ‖w(t)‖2

m︸ ︷︷ ︸
≥0 by (9.2.3.11)

) .

Reverting the transformation (9.2.3.9) gives the estimates for |u|H1(Ω).
✷

Dissipation of energy in parabolic evolutions

Exponential decay of energy during parabolic evolution without excitation

(“Parabolic evolutions dissipate energy”)

Note that if the source term f does not depend on time, then the lemma asserts exponential convergence

(in time) of u = u(t) solution of (9.2.2.4) to the solution u∗ = u∗(x) ∈ of the stationary boundary value

problem

∫

Ω

κ(x) grad u∗(x) · grad v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0(Ω) .

Exponential convergence (in time) to “equilibrium solution” in the case of time-independent

excitation

Review question(s) 9.2.3.13 (Stability of parabolic evolution problems)

(Q9.2.3.13.A) Compute the solution of the 1D parabolic evolution problem

∂u

∂t
(x, t)− ∂2u

∂x2
= 0 in ]0, 1[×[0, T] ,

u(0, t) = u(1, t) = 0 for all 0 < t < T ,

u(x, 0)= {x 7→ sin(πx)} for all 0 < x < 1 .

Hint. Use the separation of variables approach with u(x, t) = sin(πx)ψ(t) and determine the function

ψ.
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(Q9.2.3.13.B) For a sufficiently smooth function u = u(x, t) compute the partial derivative ∂w
∂t (x, t) for

w(x, t) := exp(γt)u(x, t) in terms of partial derivatives of u.

(Q9.2.3.13.C) For a domain Ω ⊂ R2 and a vector c ∈ R2 we consider the bilinear form

b(u, v) :=
∫

Ω
grad u(x) · c v(x)dx , u, v ∈ H1(Ω) .

Express d
dt b(u, u) for a sufficiently smooth function u : Ω× [0, T]→ R using partial derivatives of u.

(Q9.2.3.13.D) For a bounded domain Ω ⊂ R2 consider the parabolic evolution problem

∂

∂t
(ρ(x)u)− ∆u = 0 in Ω̃ := Ω×]0, T[ ,

grad u(x, t) · n(x) = 0 for (x, t) ∈ ∂Ω×]0, T[ ,

u(x, 0) = u0(x) for all x ∈ Ω ,

with (uniformly positive) coefficient function ρ : Ω→ R and given initial data u0 ∈ H1(Ω).

Can we expect u(x, T)→ 0 for T → ∞? What kind of exponential decay can we observe in this case?

△

9.2.4 Spatial Semi-Discretization: Method of Lines

Video tutorial for Section 9.2.4: Spatial Semi-Discretization: Method of Lines: (13 minutes)

Download link, tablet notes

We embark on a half-way discretization of a parabolic evolution problem in variational form (9.2.2.9). It will

result in an initial value problem for an ordinary differential equation (→ § 6.1.3.1) on a finite dimensional

state space.

Idea: Apply Galerkin discretization (→ Section 2.2) to abstract linear parabolic variational

problem (9.2.2.9).

Recall from Section 2.2 that the fundamental ideas behind Galerkin discretization are

(I) the use of finite dimensional subspaces of the function spaces as trial and test spaces

➣ discrete variational problem,

(II) the choice of ordered bases in order to convert the discrete variational problem into a system of

equations for unknown expansion coefficients.

We pursue this steps for the following abstract linear parabolic evolution problem posed over a vector

space V0:

t ∈]0, T[ 7→ u(t) ∈ V0 :

{
m(u̇(t), v) + a(u(t), v) = ℓ(t)(v) ∀v ∈ V0 ,

u(0) = u0 ∈ V0 .
(9.2.2.9)

1st step: replace V0 with a finite dimensional subspace V0,h, N := dim V0,h < ∞

(Spatially) discrete parabolic evolution problem

t ∈]0, T[ 7→ uh(t) ∈ V0,h :

{
m(u̇h(t), vh) + a(uh(t), vh) = ℓ(t)(vh) ∀vh ∈ V0,h ,

uh(0) = projection/interpolant of u0 in V0,h .
(9.2.4.1)
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2nd step: introduce (ordered) basis Bh := {b1
h, . . . , bN

h } of V0,h

Next plug in basis expansion of uh(t) with time-dependent coefficients µi:

uh(t) =
N

∑
i=1

µi(t)b
i
h . (9.2.4.2)

Note that the basis functions themselves do not depend on time, of course.

Method-of-lines ordinary differential equation

Combining (9.2.4.1) and (9.2.4.2) we obtain

(9.2.4.1) ⇒





M
{

d
dt~µ(t)

}
+ A~µ(t) = ~ϕ(t) for 0 < t < T ,

~µ(0) = ~µ0 .
(9.2.4.4)

with

✄ s.p.d. stiffness matrix A ∈ RN,N, (A)ij := a(b
j
h, bi

h) (independent of time),

✄ s.p.d. mass matrix M ∈ RN,N, (M)ij := m(b
j
h, bi

h) (independent of time),

✄ source (load) vector~ϕ(t) ∈ RN, (~ϕ(t))i := ℓ(t)(bi
h) (time-dependent),

✄ ~µ0 =̂ coefficient vector of a projection of u0 onto V0,h.

Note:

(9.2.4.4) is an ordinary differential equation (ODE) for t 7→ ~µ(t) ∈ RN

Conversion (9.2.2.9) ➙ (9.2.4.4) through Galerkin discretization in space only is known as

method of lines.

(9.2.4.4) =̂ a semi-discrete evolution problem

Discretized in space ←→ but still continuous in time

§9.2.4.5 (Galerkin matrices in the method of lines ODE) For the concrete linear parabolic evolution

problem (9.2.2.4)–(9.2.2.5) and spatial finite element discretization based on a finite element trial/test

space V0,h ⊂ H1(Ω) we can compute

• the mass matrix M as the Galerkin matrix for the bilinear form (u, v) 7→
∫

Ω
ρ(x)u(x)v(x)dx,

u, v ∈ L2(Ω),

• the stiffness matrix A as Galerkin matrix arising from the bilinear form (u, v) 7→∫
Ω

κ(x) grad u(x) · grad v(x)dx, u, v ∈ H1(Ω).

The calculations are explained in Section 2.7.4 and Section 2.7.5 and may involve numerical quadrature.

y

Remark 9.2.4.6 (Spatial discretization options) Beside the Galerkin approach any other method for

spatial discretization of 2nd-order elliptic BVPs can be used in the context of the method of lines: the

matrices A, M may also be generated by finite differences (→ Section 4.1), finite volume methods (→
Section 4.2), or collocation methods (→ Section 4.4). y

Review question(s) 9.2.4.7 (Method of lines)

9. Second-Order Linear Evolution Problems, 9.2. Parabolic Initial-Boundary Value Problems 560

http://en.wikipedia.org/wiki/Method_of_lines


NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

(Q9.2.4.7.A) The method-of-lines spatial Galerkin discretization of the linear evolution problem in varia-

tional form

t ∈]0, T[ 7→ u(t) ∈ V0: m(u̇(t), v) + a(u(t), v) = ℓ(t)(v) ∀v ∈ V0 ,

leads to the ordinary differential equation

M
d~µ

dt
(t) + A~µ(t) = ~ϕ(t)

for the basis expansion coefficient vector~µ ∈ RN of the time-dependent semi-discrete Galerkin solution

uh ∈ V0,h.

Give formulas for the entries of the matrices M, A and of the vector~ϕ.

(Q9.2.4.7.B) Verify the following result by direct computation.

Theorem 9.2.4.8. Variation-of-constants formula

For a fixed matrix A ∈ RN,N, N ∈ N, and a Lipschitz continuous function g : [0, ∞[→ RN, the

initial-value problem

ẏ = Ay + g(t) , y(0) = y0 ∈ RN ,

has the unique solution

y(t) = exp(At)
(
y0 +

∫ t

0
exp(−Aτ) g(τ) dτ

)
t ≥ 0 .

In this theorem exp(·) denotes the matrix exponential defined by the exponential series in the very

same way as ez for any z ∈ C.

(Q9.2.4.7.C) Use Thm. 9.2.4.8 to write down the solution of the method-of-lines initial-value problem




M
{

d
dt~µ(t)

}
+ A~µ(t) = ~ϕ(t) for 0 < t < T ,

~µ(0) = ~µ0 .

(Q9.2.4.7.D) For s.p.d. matrices A, M ∈ RN,N, N ∈ N, consider the initial value problem




M
{

d
dt~µ(t)

}
+ A~µ(t) = ~ϕ(t) for 0 < t < T ,

~µ(0) = ~µ0 .
(9.2.4.4)

We replace the initial value~µ0 ∈ RN with ~̃µ0 ∈ RN and, thus, obtain the perturbed solution t 7→ ~̃µ(t).

Estimate (~µ(t)− ~̃µ(t))⊤A(~µ(t)− ~̃µ(t)).

Hint. Invoke the following lemma.

Lemma 9.2.3.8. Decay of solutions of parabolic evolutions

For f ≡ 0 the solution u(t) of (9.2.2.4) satisfies

‖u(t)‖
m
≤ e−γt‖u0‖m , ‖u(t)‖

a
≤ e−γt‖u0‖a ∀t ∈]0, T[ ,

where γ > 0 is the constant from (9.2.3.6), and ‖·‖
a
, ‖·‖

m
stand for the energy norms induced

by a(·, ·) and m(·, ·), respectively.
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(Q9.2.4.7.E) The spatial Galerkin semi-discretization of the evolution problem

t ∈]0, T[ 7→ u(t) ∈ V0 :





d

dt
m(u(t), v) + a(u(t), v) = ℓ(t)(v) ∀v ∈ V0 ,

u(0) = u0 ∈ V0 .

leads to an ordinary differential equation, which can be written in the form d
dt~µ = F(~µ). Give an

expression for F with detailed formulas for all terms.

△

9.2.5 Recalled from Section 6.1: Ordinary Differential Equations

[ Supplementary material. Skip, if § 10.2.2.7 has been treated in the course or if you were given an

introduction to numerical methods for ordinary differential equations earlier. More details in Section 6.1. ]

Video tutorial for Section 9.2.5: Ordinary Differential Equations: (20 minutes) Download link,

tablet notes

The method of lines from Section 9.2.4 yields an initial value problem for an ordinary differential equation

(ODE). These should have been covered in any reasonable analysis course. For the sake of completeness

some central concepts and results are refreshed in this section.

§9.2.5.1 (Notion of ordinary differential equation (ODE)) To define an ordinary differential equation we

need the following ingredients:

✦ A state space D ⊂ V0, a subset of the finite-diemnsional “coordinate/coefficient space” RN,

N ∈ N,

✦ a finite time interval I ⊂ R,

✦ and a continuous right-hand side vectorfield, f : I × D → RN, a function of time t and state u:

f = f(t, u).

ordinary differential equations (ODE): u̇(t) = f(t, u(t))

✎ Notation: ˙ =̂ differentiation with respect to time t

In terms of vector components of u = [u1, . . . , uN]
⊤

and f = [ f1, . . . , fN ]
⊤ the ODE reads

u̇ = f(t, u) ↔




u̇1(t)
...

u̇N(t)


 =




f1(t, u1(t), . . . , uN(t))
...

fN(t, u1, . . . , uN(t))


 . (9.2.5.2)

For the ODE (9.2.4.4) arising from the method of lines applied to (9.2.2.9) we have

• D = RN, u(t)↔~µ(t), the time-dependent vector of basis expansion coefficients,

• right-hand side vectorfield (t, u) 7→ f(t, u) given by (t,~µ) 7→ ~ϕ(t)−A~µ(t).
(This right-hand side vectorfield is smooth in the state argument.)

For other examples of ODEs refer to Section 6.1.2. y

§9.2.5.3 (Solutions of ODEs → Def. 6.1.1.2)

Given an ODE u̇ = f(t, u) as introduced in § 9.2.5.1, we call u : J ⊂ I → D a (local) solution on the

(open) interval J, if
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• u is differentiable in every t ∈ J, and

• if u̇(t) = f(t, u(t)) holds in every point t ∈ J.

Obviously, smoothness of f will imply smoothness of any solution t 7→ u of the ODE u̇ = f(t, u): If f ∈ Cq,

then u ∈ Cq+1, q ∈ N0, see Lemma 6.1.1.3. y

Most ODEs have many solutions, even if we consider these on the maximal intervals on which they are

defined. In order to single out a unique one, we have to impose initial conditions, and, thus, we arrive at

initial-value problems for an ODE, cf. Eq. (6.1.3.2).✛

✚

✘

✙
Initial-value problem (IVP)

Given an ODE u̇ = f(t, u) as introduced in § 9.2.5.1 and (t0, y0) ∈ Ω̃ := I × D find an open interval

J ⊂ I and a solution u : J ⊂ I → D of the ODE such that t0 ∈ J and u(t0) = y0.

In order to skirt technical difficulties we make the following assumption. Less restrictive is the setting of

Section 6.1.3.

Assumption 9.2.5.4. Global Lipschitz continuity of vectorfield

Using the notations of § 9.2.5.1, in the sequel we take for granted that D = RN, N ∈ N, and that

f is Lipschitz continuous (→ Def. 6.1.3.10)

∃L > 0: ‖f(t, u)− f(s, v)‖ ≤ L{|t− s|+ ‖u− v‖} ∀s, t ∈ I, u, v ∈ V0 . (9.2.5.5)

Then all initial value problems have unique solutions defined on the whole time interval, cf. Thm. 6.1.3.16.

Theorem 9.2.5.6. Existence and uniqueness of solutions of IVPs → Thm. 6.1.3.16

Under Ass. 9.2.5.4 the initial-value problem

seek u : I → V0: u̇(t) = f(t, u(t)) ∀t ∈ I , u(t0) = u0 , (9.2.5.7)

has a solution u : I → RNfor every t0 ∈ I and u0 ∈ RN.

§9.2.5.8 (Evolution operator Section 6.1.4) Ass. 9.2.5.4 for the ODE u̇ = f(t, u) renders the associ-

ated evolution operator well-defined. It is the mapping

Φ :

{
I × I ×RN → RN

(t0, t, u0) 7→ Φ
t0,tu0 := Φ(t0, t, u0) := u(t) ,

(9.2.5.9)

where t 7→ u(t) is the (unique) solution of the non-autonomous initial-value problem

u̇ = f(t, u) , u(t0) = u0 .

Note that the underlying ODE can be recovered from the evolution operator:

∂Φ

∂t
(t0, t, u) = f(t, u) ∀t0, t ∈ I , u ∈ V0 . (9.2.5.10)

The following facts are a consequence of Thm. 9.2.5.6:

1. If Φ is an evolution operator, for fixed t0 ∈ I and u0 ∈ RN the so-called trajectory t 7→ Φ supplies

the solution for the initial value problem (9.2.5.7).
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2. If Φ is an evolution operator, for fixed s, t ∈ I the mappping u 7→ Φ
s,tu is bijective and in terms of

self-mappings of RN we have

Φ
t,t = Id|RN ∀t ∈ I , Φ

r,t ◦Φ
s,r = Φ

s,t ∀s, r, t ∈ I . (9.2.5.11)

y

§9.2.5.12 (Linear ordinary differential equations → § 6.1.1.8)

Definition 6.1.1.9. Linear first-order ODE

A first-order ordinary differential equation ẏ = f(t, y), as introduced in § 6.1.1.1 is linear, if

f(t, y) = A(t)y , A : I → RN,N a continuous function . (6.1.1.10)

If t 7→ u(t) solves u̇ = A(t)u , u(t0) = u0,

t 7→ w(t) solves ẇ = A(t)w , w(t0) = w0,

then t 7→ v(t) := u(t) + w(t) solves v̇ = A(t)v , v(t0) = w0 + w0.

Hence, if Φ is the evolution operator belonging to a linear ODE, then

u 7→ Φ
t0,tu is a linear bijective mapping RN → RN for all t0, t ∈ I .

A special case is the linear ODE u̇ = Au for a given fixed matrix A ∈ RN,N. This linear ODE with constant

coefficients can be solved by a diagonalization technique: If

A = SDS−1 , S ∈ RN,N regular , D = diag(λ1, . . . , λN) ∈ RN,N , (9.2.5.13)

then then solution of the IVP u̇ = Au, u(t0) = u0 ∈ RN, is given by

u(t) = S




eλ1(t−t0)

. . .

eλN(t−t0)


S−1u0 . (9.2.5.14)

y

Review question(s) 9.2.5.15 (Ordinary Differential Equations)

(Q9.2.5.15.A) [Fluid flow] Let Ω ⊂ R3 be the volume of space occupied by a container filled with a

fluid. Let v : Ω→ R3 be a stationary velocity field describing the movement of the fluid.

• Which property of v ensures that the fluid stays in the container?

• What is the physical interpretation of the solutions of the ODE ẏ = v(y)?

(Q9.2.5.15.B) [Evolution operator] Determine the evolution operator Φ : R×R× D for the scalar

ODE ẏ = cos2 y on the state space D :=]−π/2, π/2[.

Hint. tan′ = cos−2.

(Q9.2.5.15.C) [From evolution operator to ODE] The evolution of operator for an ODE on the state

space R2 is given by

Φ(s, t, y) =

[
cos(t− s) sin(t− s)
− sin(t− s) cos(t− s)

]
y , s, t6 ∈ R , y ∈ R2 .
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• Verify the so-called flow properties Φ(t, t, y) = y and Φ(s, t, Φ(r, s, y)) = Φ(r, t, y) for all

s, r, t ∈ R, y ∈ R2.

• Find the associated ODE.

△

9.2.6 Recalled from § 10.2.2.7: Single-Step Methods for Numerical Integration

[ This is supplementary material to be read only if § 10.2.2.7 and Chapter 7 were not covered in the course

or you never had an introduction to numerical methods for ordinary differential equations. ]

Video tutorial for Section 9.2.6: Single-Step Methods for Numerical Integration: (48 minutes)

Download link, tablet notes

§9.2.6.1 (Numerical integration of ordinary differential equations: Key concepts) In this section we

refresh central concepts from numerical integration of initial value problems for ODEs, see § 10.2.2.7,

Chapter 7 for more details:

• single step methods of order p, see Def. 6.3.1.4 and Section 6.3.2, defined as recursions in state

space based on discrete evolution operators.

• explicit and implicit Runge-Kutta single step methods, see Section 6.4, Section 7.3, encoded by

Butcher schemes (6.4.0.11), (7.3.3.3).

• the notion of a stiff initial value problem (→ Notion 7.2.0.7),

• the definition of the stability function of a single step method, see Thm. 7.3.4.4,

• the concept of L-stability Def. 9.2.7.46 and how to verify it for Runge-Kutta methods.

y

9.2.6.1 Abstract Single-Step Methods for ODEs

Throughout this section we consider an ODE u̇ = f(t, u) on I ×RN according to § 9.2.5.1. We will

assume that f = f(t, u) depends smoothly on both the time variable t and the state variable u. Also

Ass. 9.2.5.4 will be made throughout.

Recall from § 9.2.5.8 the concept of the evolution operator Φ : I × I ×V0 → V0 associated with the ODE

u̇ = f(t, u):

Φ = Φ(s, t, u) ⇒ ∂Φ

∂t
(t0, t, u) = f(t, u) ∀t0, t ∈ I , u ∈ RN . (9.2.5.10)

Basically, every single step method employs an approximation of the evolution operator in the form of a

discrete evolution operator:
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Definition 9.2.6.2. Discrete evolution operator → Section 6.3.1, § 6.3.1.1

A discrete evolution operator belonging to an ODE on I ×RN is a mapping

Ψ : I × I ×RN → RN such that for all t ∈ I and u ∈ RN

∃q ∈ N0 , τ0 > 0:
∥∥Ψ

t,t+τu−Φt,t+τu
∥∥ ≤ C(t, u)τq+1 ∀|τ| < τ0 , (9.2.6.3)

with C = C(t, u) depending on t, u continuously, and Φ the evolution operator (→ § 9.2.5.8) asso-

ciated with the ODE.

Terminology: The largest possible q in (9.2.6.3) is called the order of the discrete evolution.

The function τ 7→ Ψ
t,t+τu−Φt,t+τu is called the consistency error or one-step error of the discrete

evolution.

9.2.6.2 Simple Single-Step Methods

EXAMPLE 9.2.6.4 (Finite difference single-step methods → Section 6.2) Simple single-step meth-

ods arise from difference quotient approximation of the derivative in the ODE u̇ = f(t, u) (posed on

I ×RN).

➊ We may use a forward difference quotient with width τ > 0,

u̇ = f(t, u) ⇒ u(t + τ)− u(t)

τ
≈ f(t, u(t)) .

Reading ≈ as =, this induces the discrete evolution operator of the

explicit (forward) Euler method: Ψ
t,t+τu := u + τf(t, u) . (9.2.6.5)

➋ We can also rely on a backward difference quotient with width τ > 0,

u̇ = f(t, u) ⇒ u(t + τ)− u(t)

τ
≈ f(t+τ, u(t+τ)) .

This induces the discrete evolution operator of the

implicit (backward) Euler method: Ψ
t,t+τu := w: w = u + τf(t + τ, w) . (9.2.6.6)

This method is called implicit, because the action of the discrete evolution operator is defined

implicitly as solution of an equation.

➌ Finally, we can use a symmetric difference quotient of width τ > 0 anchored at the midpoint between

t and t + τ,

u̇ = f(t, u) ⇒ u(t + τ)− u(t)

τ
≈ f(t+ 1

2 τ, 1
2(u(t) + u(t+τ))) .

This induces the discrete evolution operator of the

implicit midpoint method: Ψ
t,t+τu := w: w = u + τf(t + 1

2 τ, 1
2(w + u)) . (9.2.6.7)
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y

EXAMPLE 9.2.6.8 (Orders of finite-difference single-step methods) Def. 9.2.6.2 also introduced the

notion of the order of a discrete evolution. Now we compute the order of the three finite-difference

single-step methods derived in Ex. 9.2.6.4. We will demonstrate a fundamental technique for establish-

ing (9.2.6.3) based on Taylor expansion. It hinges on smoothness of the vectorfield f = f(t, u) in both

arguments, which will ensure smoothness of solutions of the associated ODE u̇ = f(t, u).

Assumption 9.2.6.9. Smoothness of right-hand side vectorfield

The vectorfield (t, u) 7→ f(t, u) is C∞ on I ×RN.

The Taylor expansion of τ 7→ Φ
t,t+τu0, t ∈ I, u0 ∈ V0, can be deduced from from (9.2.5.10). Setting

v(τ) := Φ
t,t+τu0, which is a solution of the ODE, we find, using the one-dimensional chain rule,

dv

dτ
(τ) = f(t + τ, v(τ)) ,

d2v

dτ2
(τ) =

∂f

∂t
(t + τ, v(τ)) +

∂f

∂u
(t + τ, v(τ))

dv

dτ
(τ) .

This yields the following truncated Taylor expansion

Φ
t,t+τu0 = v(τ) = v(0) + τ

dv

dτ
(0) + 1

2 τ2 d2v

dτ2
(0) + O(τ3)

= u0 + τf(t, u0) +
1
2 τ2

(
∂f

∂t
(t, u0) +

∂f

∂u
(t, u0)f(t, u0)

)
+ O(τ3)

(9.2.6.10)

for τ → 0. Note that the partial derivative ∂f
∂u (t, u0) is a Jacobi matrix. Explicit expressions for the remain-

der term involve second derivatives of f.

➊ For the explicit Euler method (9.2.6.5) we immediately have from (9.2.6.10)

Ψ
t,t+τu0 −Φ

t,t+τu0 = u0 + τf(t, u0)− u0 − τf(t, u0) + O(τ2) = O(τ2) for τ → 0 .

The explicit Euler method is of order 1.

➋ It is not as straightforward for the implicit Euler method (9.2.6.6). First, we plug (9.2.6.6) into itself

w(τ) = u0 + τf(t + τ, w(τ)) = u0 + τf(t + τ, u0 + τf(t + τ, w(τ))) ,

and then use the multi-dimensional truncated Taylor expansion of f around (t, u0)

f(t + δ, u0 + v) = f(t, u0) + δ
∂f

∂t
(t, u0) +

∂f

∂u
(t, u0)v + O(δ2 + ‖v‖2) (9.2.6.11)

for δ→ 0, v→ 0. This gives

w(τ) = u0 + τ

(
f(t, u0) + τ

∂f

∂t
(t, u0) + τ

∂f

∂u
(t, u0)f(t + τ, w(τ))

)
+ O(τ3)

for τ → 0. Since Ψ
t,t+τu0 = w(τ), matching terms with (9.2.6.10) we obtain

Ψ
t,t+τu0 −Φ

t,t+τu0 = τ2 ∂f

∂t
(t, u0) + τ2 ∂f

∂u
(t, u0)f(t + τ, w(τ)) + O(τ3) = O(τ2)

for τ → 0. Thanks to the smoothness of f the remainder terms will depend continuously on t and

u0.

The implicit Euler method has order 1.
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➌ For the implicit midpoint rule (9.2.6.7) we follow the same idea and consider

w(τ) = u0 + τf(t + 1
2 τ, 1

2(u0 + w(τ)))

= u0 + τf(t + 1
2 τ, u0 + τf(t + 1

2 τ, 1
2(u0 + w(τ)))

= u0 + τf(t + 1
2 τ, u0 + τf(t + 1

2 τ, 1
2(u0 + u0 + τf(t + 1

2 τ, 1
2(u0 + w(τ)))))) .

Then we repeatedly insert the truncated Taylor expansion (9.2.6.11) and get for τ → 0

w(τ) = u0 + τ

(
f(t, u0) +

1
2 τ

∂ f

∂t
(t, u0) +

∂f

∂u
(t, u0)

1
2 τf(t + 1

2 τ, u0 + O(τ))

)
+ O(τ3)

= u0 + τ

(
f(t, u0) +

1
2 τ

∂ f

∂t
(t, u0) +

∂f

∂u
(t, u0)

1
2 τ(f(t, u0) + O(τ))

)
+ O(τ3) .

Matching with (9.2.6.10) shows w(τ)−Φ
t,t+τu0 = O(τ3) where the “O” just comprises continu-

ous higher order derivatives of f.

The implicit midpoint rules features order 2.

y

9.2.6.3 Single-Step Method for Initial-Value Problems

Now we want to use a single-step method based on the discrete evolution Ψ = Ψ
t0,t,u, s, t ∈ I, u ∈ RN

(→ Def. 9.2.6.2), to solve an initial-value problem

u̇ = f(t, u) , u(t0) = u0 , t0 ∈ I , u0 ∈ RN .

on the interval [t0, T]. We write t 7→ u(t) for its unique solution.

As for 2-point boundary value problems treated in Section 2.3 we rely on a (temporal) mesh with nodes

t0 < t1 < . . . < tM−1 < tM = T , M ∈ N .

We call τj := tj − tj−1 the local timestep size. An equidistant temporal mesh has a uniform timestep

τj = T−t0/M.

Then we compute a sequence

(
u(j)
)M

j=0
of approximations u(j) ≈ u(tj) to the solution of (9.2.4.4) at the

nodes of the temporal mesh according to, cf. Def. 6.3.1.4,

u(0) := u0 , u(j) := Ψ
tj−1,tj u(j−1) , j = 1, . . . , M . (9.2.6.12)

A key issue is the convergence of a single-step method on sequences of temporal meshes with M→ ∞

and max
j

τj → 0. To quantify it, one usually considers

• the error at final time ǫM :=
∥∥∥u(M) − u(T)

∥∥∥, or

• the maximal error in the nodes of the temporal mesh

ǫ∞ := max
j=1,...,M

∥∥∥uj − u(tj)
∥∥∥ .

The next numerical experiments demonstrate the rather typical behavior of these errors for single-step

methods applied to solve initial value problems with smooth solutions.
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EXAMPLE 9.2.6.13 (Convergence of finite-difference single-step methods → Exp. 6.3.2.5) We em-

pirically investigate the h-convergence of our simple single-step methods, that is, we study the dependence

of errors/error norms on the meshwidth of uniform/equidistant temporal meshes.

✦ We consider the following IVP for the so-called logistic ODE, a scalar ODE with analytically known

smooth solution, see Ex. 6.1.2.1

u̇ = λu(1− u) , u(0) = 0.01 .

✦ We apply explicit and implicit Euler methods (9.2.6.5)/(9.2.6.6), and the implicit midpoint rule (9.2.6.7)

on [0, 1] with uniform timestep τ = 1/M, M ∈ {5, 10, 20, 40, 80, 160, 320, 640}.
✦ We monitor te error at final time ǫM(τ) := |u(1)− u(M)|

Fig. 382
10

−3
10

−2
10

−1
10

0
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

 timestep h

 e
rr

or
 (

E
uc

lid
ea

n 
no

rm
)

 

 
λ = 1.000000
λ = 3.000000
λ = 6.000000
λ = 9.000000
O(h)

explicit Euler method

Fig. 383
10

−3
10

−2
10

−1
10

0
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

 timestep h

 e
rr

or
 (

E
uc

lid
ea

n 
no

rm
)

 

 
λ = 1.000000
λ = 3.000000
λ = 6.000000
λ = 9.000000
O(h)

implicit Euler method

O(M−1) = O(τ) algebraic convergence in both cases for τ → 0

Fig. 384
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However, finite-difference single-step methods can

do better:

✁ Convergence of the implicit midpoint method in

the above setting.

We observe algebraic convergence O(τ2) for

τ → 0.

Moreover, the observed rates of algebraic convergence match the orders of the single-step methods ac-

cording to Def. 9.2.6.2. y

What we have seen in Ex. 9.2.6.13 is the manifestation of a general truth, which is discussed in more

detail in Section 6.3.2.
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Theorem 9.2.6.14. Convergence of single-step methods

Let u(j) ∈ RN, j = 1, . . . , M, be the sequence of pointwise approximations of the solution of the

initial value problem

seek u : I → V0: u̇(t) = f(t, u(t)) ∀t ∈ I , u(t0) = u0 , (9.2.5.7)

on a time interval [t0, T] with fixed final time T > t0 generated by a single step method of order

q ∈ N on a temporal mesh t0 < t1 < t2 < . . . < tM = T.

If f ∈ Cq+1(I ×RN), then

max
j=1,...,M

∥∥∥u(j) − u(tj)
∥∥∥ ≤ Cτq for τ := max

j−1,...,M
|tj − tj−1| , (9.2.6.15)

with C > 0 independent of the tj.

Algebraic convergence of single-step methods

For initial value problems with smooth (in time) solutions, a single-step method converges alge-

braically in the meshwidth with a rate equal to its order.

9.2.6.4 Collocation Single-Step Methods

Repeating the developments of Section 7.3.2, this section elucidates a general approach for the construc-

tion of discrete evolution operators Ψ (→ Def. 9.2.6.2) for an ordinary differential equation u̇ = f(t, u). It

is based on interpolation onto spaces of polynomials and the resulting order in the sense of Def. 9.2.6.2

is easy to predict.

✎ Notation: Following Def. 2.5.2.2 we write P s(R), s ∈ N0, for the N(s + 1)-dimensional space of

vector-valued uni-variate polynomials of degree ≤ s on R with values in RN.

We fix p ∈ N and arbitrary t ∈ I, τ > 0 such that t + τ ∈ I and aim to define the action of the discrete

evolution operator Ψ
t,t+τu0 for any u0 ∈ RN.

§9.2.6.17 (Collocation for ODEs)

Idea: Polynomial approximation of the solution of u̇ = f(t, u), u(t0) = u0, on [t, t + τ].
↔ piecewise polynomial approximation underlying the finite element method, cf. § 2.3.1.4.

Write ξ 7→ u(ξ), t ≤ ξ ≤ t + τ, for the unique solution of the initial-value problem u̇ = f(t, u),
u(t0) = u0. Thus we

seek ũs ∈ P s(R): ũs ≈ u on [t, t + τ] .

It is natural to demand, ũs(t) = u(t) = u0. However, we cannot expect ξ 7→ f(ξ, ũs(ξ)) to be polyno-

mial. Consequently, in general ũs cannot be a solution of the ODE.

Idea: Demand that ũs solves ODE with modified right-hand side vectorfield Is ◦ f, where

Is−1 is a Lagrangian interpolation operator onto P s−1(R) based on nodes t + cjτ,

cj ∈ [0, 1], j = 1, . . . , s:

˙̃us(σ) = Is−1({ξ 7→ f(ξ, ũs(ξ))})(σ) on [t, t + τ] . (9.2.6.18)

Note that interpolation into the space of polynomials of degree≤ s− 1 is required, because differentiation

reduces the degree by one.
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Equivalently, invoking the uniqueness of interpolating polynomials, we can (9.2.6.18) rewrite as

˙̃us(t + cjτ) = f(t + cjτ, ũs(t + cjτ)) , j = 1, . . . , s . (9.2.6.19)

Thus, the polynomial trial function ũs satisfies the ODE only at s points.

In general, the approach of seeking a solution in an s-dimensional trial space and then obtaining s equa-

tions for s basis expansion coefficients by imposing exact satisfaction of the equation in s isolated collo-

cation points, is known as collocation. In (9.2.6.19) the collocation points are t + cjτ.

Discrete evolution operator by polynomial collocation

Given t ∈ I, τ ∈ R with t + τ ∈ I, u0 ∈ RN, s ∈ N, and interpolation nodes

0 ≤ c1 < c2 < · · · < cs ≤ 1, we set

Ψ
t,t+τu0 = ũs(t + τ) ,

where ũs ∈ P s(R) satisfies

ũs(t) = u0 , (9.2.6.21)

˙̃us(t + cjτ) = f(t + cjτ, ũs(t + cjτ)) , j = 1, . . . , s . (9.2.6.22)

The equations (9.2.6.22) are called collocation conditions.

The N(s + 1) conditions (9.2.6.21) and (9.2.6.22) match dimP s(R) = N(s + 1). However, note that

this is a tentative definition, because there might not exists any polynomial satifying the collocation condi-

tions. Fortunately for small timestep this cannot happen.

Lemma 9.2.6.23. Existence of solutions of collocation equations [DEB02]

There is a threshold τ0 > 0 depending only on f and the interpolation nodes cj ∈ [0, 1], j− 1, . . . , s,

such that for any t ∈ I, u0 ∈ RN, and 0 ≤ τ ≤ τ0 (t + τ ∈ I) the conditions (9.2.6.21) and

(9.2.6.22) determine a unique ũs ∈ P(R).

y

§9.2.6.24 (Explicit collocation equations) As in Section 7.3.2 we derive a concrete representation for the

polynomial ũs. We draw on concepts related to Lagrange polynomial interpolation introduced in [NCSE].

Recall that in (9.2.6.22) we had used the collocation points

τj := t + cjτ , j = 1, . . . , s , for 0 ≤ c1 < c2 < . . . < cs ≤ 1 .

Let {Lj}s
j=1
⊂ Ps−1 denote the set of Lagrange polynomials of degree s− 1 associated with the node set

{
cj

}s

j=1
, see [NCSE]:

Lj ∈ Ps−1(R): Lj(ck) = δkj =

{
1 , if k = j ,

0 else,
1 ≤ k, j ≤ s .

In each of its N components, the derivative ˙̃us is a polynomial of degree s− 1: ˙̃us ∈ P s−1. Since the Lj,

j = 1, . . . , s, form a basis of Ps−1(R), we have following representation:

˙̃us(t + ξτ) =
s

∑
j=1

˙̃us(t + cjτ)Lj(ξ) , 0 ≤ ξ ≤ 1 . (9.2.6.25)
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Thanks to the collocation conditions (9.2.6.22) we can replace ˙̃us(t + cjτ) with an expression involving

the right-hand side vectorfield f:

(9.2.6.22)

˙̃us(t + ξτ) =
s

∑
j=1

kjLj(ξ) with increments kj := f (t + cjτ, ũs(t + cjτ)) .

Next we integrate and use ũs(t) = u0:

ũs(t + ξτ) = u0 + τ
s

∑
j=1

kj

∫ ξ

0
Lj(ζ)dζ , 0 ≤ ξ ≤ 1 .

This yields the following formulas for the computation of Ψ
t,t+τu0, which characterize the s-stage colloca-

tion single step method induced by the (normalized) interpolation nodes cj ∈ [0, 1], j = 1, . . . , s.

ki = f (t + ciτ, u0 + τ
s

∑
j=1

aijkj) ,

Ψ
t,t+τu0 := ũs(t + τ) = u0 + τ

s

∑
i=1

biki .

where

aij :=
∫ ci

0
Lj(ξ)dξ ,

bi :=
∫ 1

0
Li(ξ)dξ .

(7.3.2.6)

Note that, generically, (7.3.2.6) represents is a non-linear system of s · N equations for the s · N com-

ponents of the vectors ki, i = 1, . . . , s. Usually, it will not be possible to obtain ki by a fixed number of

evaluations of f. For this reason the single step methods defined by (7.3.2.6) are called implicit.

By Lemma 9.2.6.23 a unique increments ki, i = 1, . . . , s, can be found provided that the timestep τ is

sufficiently small. y

Remark 9.2.6.26 (Simple collocation single-step methods) It turns out that we recover all finite-

difference single-step methods found in Ex. 9.2.6.4 as particular collocation single step methods:

➊ For the explicit Euler method (9.2.6.5) we have

s = 1 , c1 = 0 .

➋ The implicit Euler method (9.2.6.6) is obtained for

s = 1 , c1 = 1 .

➌ The implicit midpoint rule (9.2.6.7) arises from choosing

s = 1 , c1 = 1
2 .

y

EXPERIMENT 9.2.6.27 (Empiric Convergence of collocation single step methods Exp. 9.2.6.27)

We consider the scalar logistic ODE u̇ = λ(1− u)u with parameter λ = 10 , initial state y0 = 0.01,

T = 1.

Numerical integration by timestepping with uniform timestep τ based on collocation single step method
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(7.3.2.6).

➊

Equidistant collocation points, cj = j
s+1 , j =

1, · · · , s.

We observe algebraic convergence with the empiric

rates
s = 1 : rate = 1.96
s = 2 : rate = 2.03
s = 3 : rate = 4.00
s = 4 : rate = 4.04

Fig. 385
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In this case, in light of Thm. 9.2.6.14, we conjecture the following order (→ Def. 9.2.6.2) of the collocation

single step method:

(empiric) order =

{
s for even s ,

s + 1 for odd s .

➊
Gauss points in [0, 1] as normalized collocation

points cj , j = 1, . . . , s.

We observe algebraic convergence with the empiric

rates
s = 1 : rate = 1.96
s = 2 : rate = 4.01
s = 3 : rate = 6.00
s = 4 : rate = 8.02

Fig. 386
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Obviously, for the (empiric) order (→ Def. 9.2.6.2) of the Gauss collocation single step method holds

(empiric) order = 2s .

Note that the 1-stage Gauss collocation single step method is the implicit midpoint method from

Eq. (9.2.6.7). y

§9.2.6.28 (Order of collocation single-step methods) What we have observed in Exp. 9.2.6.27 reflects

a fundamental result on collocation single step methods as defined in (7.3.2.6).

Theorem 9.2.6.29. Order of collocation single step method [DEB02]

Provided that f ∈ Cp(I × RN), the order (→ Def. 9.2.6.2) of an s-stage collocation single step

method according to (7.3.2.6) agrees with the order (→ [NCSE]) of the quadrature formula on [0, 1]
with nodes cj and weights bj, j = 1, . . . , s.
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➣ By the known fact that s-point Gauss quadrature has the (maximal) order 2s (→ [NCSE]) the s-stage

Gauss collocation single step method whose nodes cj are chosen as the s Gauss points on [0, 1] is of

order 2s.

In light of Rem. 9.2.6.26, Thm. 9.2.6.29 immediately gives the results of Ex. 9.2.6.13 without any effort:

➊ The one-point quadrature rule with node c1 = 0, weight b1 = 1 is exact only for constants and,

hence, of order 1 (like the exlicit Euler method).

➋ The same applies to the rule with c1 = 1 and weight 1 (and gives the order of the implicit Euler

method).

➌ The 1-point Gauss rule with c1 = 1, b1 = 1 has order 2 (= order of implicit midpoint rule).

y

9.2.6.5 Runge-Kutta Single-Step Methods

The formulas of (7.3.2.6) reveal that collocation single-step methods belong to a famous class of single

step methods, the Runge-Kutta single step methods, see also Section 6.4, Section 7.3.

Definition 7.3.3.1. General Runge-Kutta single-step method

For coefficients bi, aij ∈ R, ci := ∑
s
j=1 aij, i, j = 1, . . . , s, s ∈ N, the discrete evolution Ψ

s,t of an

s-stage Runge-Kutta single step method (RK-SSM) for the ODE u̇ = f(t, u), is defined by

ki := f(t + ciτ, u + τ
s

∑
j=1

aijkj) , i = 1, . . . , s , Ψ
t,t+τu := u + τ

s

∑
i=1

biki .

The ki ∈ V0 are called increments.

§9.2.6.30 (Butcher-scheme notation) A compact way to write down s-stage Runge-Kutta methods is

Butcher schemes:

c A

bT =̂

c1 a11 a12 . . . . . . a1s

c2 a21
. . . a2s

...
...

. . .
...

cs as1 . . . ass

b1 b2 . . . . . . bs

, c, b ∈ Rs, A ∈ Rs,s . (7.3.3.3)

The Butcher schemes for the finite-difference single-step methods from Ex. 9.2.6.4 are

0 0
1

Explicit Euler (9.2.6.5)

1 1
1

Implicit Euler (9.2.6.6)

1
2

1
2
1

Implicit midpoint rule (9.2.6.7)

The following Butcher schemes characterize the Gauss collocation methods for s = 2, 3 [DEB02]:
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4 +
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1
4

1
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2-stage Gauss SSM, order 4

1
2 −

√
15/10

5
36

2
9 −

√
15/15

5
36 −

√
15/30

1
2

5
36 +

√
15/24

2
9

5
36 −

√
15/24

1
2 +

√
15/10

5
36 +

√
15/30

2
9 +

√
15/15

5
36

5
18

4
9

5
18

3-stage Gauss SSM, order 6
y

Review question(s) 9.2.6.31 (Single-step methods)

(Q9.2.6.31.A) Explain, why the condition ∑
s
i=1 bi = 1 has to be satisfied for the coefficient for a general

Runge-Kutta method according to Def. 7.3.3.1.

Definition 7.3.3.1. General Runge-Kutta method

For coefficients bi, aij ∈ R, ci := ∑
s
j=1 aij, i, j = 1, . . . , s, s ∈ N, the discrete evolution Ψ

s,t of

an s-stage Runge-Kutta single step method (RK-SSM) for the ODE u̇ = f(t, u), is defined by

ki := f(t + ciτ, u + τ
s

∑
j=1

aijkj) , i = 1, . . . , s , Ψ
t,t+τu := u + τ

s

∑
i=1

biki .

The ki ∈ V0 are called increments.

△

9.2.7 Timestepping for Method-of-Lines ODE

Video tutorial for Section 9.2.7: Timestepping for Method-of-Lines ODE: (57 minutes)

Download link, tablet notes

From the method of lines (MOL) presented in Section 9.2.4 we get only a semi-discrete problem in the

form of an ODE. However, for implementation we need a fully discrete evolution problem. This requires

additional discretization in time:

semi-discrete evolution problem (9.2.4.4) + timestepping fully discrete evolution problem

An attractive feature of the method of lines is that we can apply already known integrators for initial value

problems for ODEs to (9.2.4.4). Chapters 10.2.2.7 and 7 provide a rich selection of single-step timestep-

ping methods for the approximate solution of initial-value problems for ordinary differential equations. In

this section we will look at their concrete application in the method-of-lines context and establish criteria

for the selection of suitable timestepping schemes.

9.2.7.1 Single-Step Methods Applied to MOL ODE

EXAMPLE 9.2.7.1 (Euler timestepping → Ex. 9.2.6.4, Section 6.2) The two Euler single-step meth-

ods that were introduced in Section 6.2.1 and Section 6.2.2 are the simplest conceivable timestepping

schemes. Now we apply them to the ODE arising from method-of-lines Galerkin spatial semi-discretization

M
{

d
dt~µ(t)

}
+ A~µ(t) = ~ϕ(t) for 0 < t < T ,

~µ(0) = ~µ0 .
(9.2.4.4)
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The gist of the explicit Euler method (6.2.1.4) is to replace d
dt in (9.2.4.4) with a forward difference

quotient, see Ex. 9.2.6.4 or Rem. 6.2.1.5:

(9.2.4.4) M~µ(j) = M ~µ(j−1) − τj

(
A~µ(j−1) −~ϕ(tj−1)

)
, j = 1, . . . , M− 1 . (9.2.7.2)

Conversely, the implicit Euler method (6.2.2.2) replaces d
dt in (9.2.4.4) with a backward difference quotient:

(9.2.4.4) M~µ(j) = M ~µ(j−1) − τj

(
A~µ(j) −~ϕ(tj)

)
, j = 1, . . . , M− 1 . (9.2.7.3)

Note that both (9.2.7.2) and (9.2.7.3) require the solution of a linear system of equations in each step

(9.2.7.2): ~µ(j) = ~µ(j−1) + τjM
−1(~ϕ(tj−1)−A~µ(j−1)) ,

(9.2.7.3): ~µ(j) = (τjA + M)−1
(

M~µ(j−1) + τj~ϕ(tj)
)

.

Recall from Section 6.3.2 or Ex. 9.2.6.8 that both Euler methods are merely of first order. y

EXAMPLE 9.2.7.4 (Crank-Nicolson timestepping) In Section 6.2.3/Rem. 9.2.6.26 we have learned

about the implicit midpoint method (6.2.3.2)/(9.2.6.7). When applied to the method-of-lines ODE (9.2.4.4)

this method is known as the Crank-Nicolson method. It can be derived by replacing d
dt in (9.2.4.4) with a

symmetric difference quotient and average right hand side:

M
{

d
dt~µ(t)

}
+ A~µ(t) = ~ϕ(t)

⇓

M
~µ(j) −~µ(j−1)

τ
= − 1

2 A
(
~µ(j) +~µ(j−1)

)
+ 1

2(~ϕ(tj) +~ϕ(tj−1)) . (9.2.7.5)

This yields a method that is of order 2, as we have seen in Exp. 6.3.2.5. This order can also be inferred

from Thm. 9.2.6.29, since the implicit midpoint method is a collocation single-step method induced by the

midpoint quadrature rule of second order. y

§9.2.7.6 (Application of general Runge-Kutta timestepping to method of lines ODE) Concretely, for

linear parabolic evolution after spatial semi-discretization: Application of s-stage Runge-Kutta method to

the method of lines ODE

M
{

d
dt~µ(t)

}
+ A~µ(t) = ~ϕ(t) ⇔ ~̇µ = M−1(~ϕ(t)−A~µ(t))︸ ︷︷ ︸

=f(t,~µ)

. (9.2.4.4)

Then simply plug this into the formulas of Def. 7.3.3.1.

Definition 7.3.3.1. General Runge-Kutta single-step method

For coefficients bi, aij ∈ R, ci := ∑
s
j=1 aij, i, j = 1, . . . , s, s ∈ N, the discrete evolution Ψ

s,t of an

s-stage Runge-Kutta single step method (RK-SSM) for the ODE u̇ = f(t, u), is defined by

ki := f(t + ciτ, u + τ
s

∑
j=1

aijkj) , i = 1, . . . , s , Ψ
t,t+τu := u + τ

s

∑
i=1

biki .

The ki ∈ V0 are called increments.
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What applied to (9.2.4.4) this results in the following timestepping scheme: compute ~µ(j+1)
from ~µ(j)

through

~κi ∈ RN : M~κi +
s

∑
m=1

τaimA~κm = ~ϕ(tj + ciτ)−A~µ(j) , i = 1, . . . , s , (9.2.7.7)

~µ(j+1) = ~µ(j) + τ
s

∑
m=1

~κmbm . (9.2.7.8)

Note that in the case of a general (implicit) Runge-Kutta single-step method the equations (9.2.7.7)

represent a linear system of equations of size N · s. Using the Kronecker product of matrices for A ∈ Km,n

and B ∈ Kl,k, m, n, l, k ∈ N, defined as (→ [NCSE])

A⊗ B :=




(A)11B (A)1,2B . . . . . . (A)1,nB

(A)2,1B (A)2,2B
...

...
...

...
...

...
...

(A)m,1B (A)m,2B . . . . . . (A)m,nB



∈ Knl,nk ,

this linear system of equations can be recast into the following form:

(9.2.7.7) ⇔ (Is ⊗M + τA⊗A)



~κ1
...

~κs


 =



~ϕ(tj + c1τ)−A~µ(j)

...

~ϕ(tj + csτ)−A~µ(j)


 . (9.2.7.9)

y

9.2.7.2 Stability

In Section 9.2.3 we have seen that the energy norm and L2-norm of solutions of linear parabolic evolution

problems remain bounded for all times. The same arguments confirm that this remains true for the solution

~µ(t) of the semi-discrete evolution (9.2.4.4). However, some well-established single step methods applied

to (9.2.4.4) may not preserve this stability property.

EXPERIMENT 9.2.7.10 (Convergence of Euler timestepping for MOL ODE) We consider a parabolic

evolution problem in one spatial dimension (IBVP):

∂u

∂t
=

∂2u

∂x2
in [0, 1]×]0, 1[ ,

u(t, 0) = u(t, 1) = 0 for 0 ≤ t ≤ 1 ,

u(0, x) = sin(πx) for 0 < x < 1 .

exact solution u(t, x) = exp(−π2t) sin(πx) .

(9.2.7.11)

This means that as exact solution we obtain

u(t, x) = exp(−π2t) sin(πx) , 0 < x < 1 , 0 < t < 1 .

Details of the numerical experiment:

✦ Spatial finite element Galerkin discretization by means of linear finite elements (V0,h = S0
1,0(M))

on equidistant meshM with meshwidth h := 1
N+1 → Section 2.3.

✦ uN,0 := I1u0 by linear interpolation onM, see Section 3.3.1.

✦ Timestepping by explicit and implicit Euler method (9.2.7.2), (9.2.7.3) with uniform timestep τ := 1
M .
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We obtain tridiagonal N × N Galerkin matrices, see (2.3.3.2):

A =
1

h




2 −1 0 0
−1 2 −1

0
. . .

. . .
. . .

. . .
. . .

. . . 0
−1 2 −1

0 0 −1 2




, M =
h

6




4 1 0 0
1 4 1

0
. . .

. . .
. . .

. . .
. . .

. . . 0
1 4 1

0 0 1 4




.

We monitor the an approximate space-time L2-norm of the discretization error

err2 := hτ ·
M

∑
j=1

N

∑
i=1

|u(tj, xi)− µ
(j)
i |2 . (9.2.7.12)

Here N is the number of equidistant mesh nodes xi in space, M the number of timesteps. In fact, this

formula can be viewed as a 2D trapezoidal rule on the space-time cylinder ]0, 1[×]0, 1[.

Space-time (discrete) L2-norm of error for explicit Euler timestepping:

N\M 50 100 200 400 800 1600 3200

5 Inf 0.009479 0.006523 0.005080 0.004366 0.004011 0.003834

10 Inf Inf Inf Inf 0.001623 0.001272 0.001097

20 Inf Inf Inf Inf Inf Inf 0.000405

40 Inf Inf Inf Inf Inf Inf Inf

80 Inf Inf Inf Inf Inf Inf Inf

160 Inf Inf Inf Inf Inf Inf Inf

320 Inf Inf Inf Inf Inf Inf Inf

Here Inf indicates that the method suffered an exponential blow-up.

Space-time (discrete) L2-norm of error for implicit Euler timestepping:

N\M 50 100 200 400 800 1600 3200

5 0.007025 0.001828 0.000876 0.002257 0.002955 0.003306 0.003482

10 0.009641 0.004500 0.001826 0.000461 0.000228 0.000575 0.000749

20 0.010303 0.005175 0.002509 0.001149 0.000461 0.000116 0.000058

40 0.010469 0.005345 0.002681 0.001321 0.000634 0.000289 0.000116

80 0.010511 0.005387 0.002724 0.001364 0.000677 0.000332 0.000159

160 0.010521 0.005398 0.002734 0.001375 0.000688 0.000343 0.000170

320 0.010524 0.005400 0.002737 0.001378 0.000691 0.000346 0.000172

Summary:

For explicit Euler timestepping we observe a glaring instability (exponential blow-up) in case of large

timestep combined with fine mesh.

Implicit Euler timestepping incurs no blow-up for any combination of spatial and temporal mesh

width.

Please compare the observations made in this experiment with what we saw in Exp. 7.3.1.1 and notice

the striking similarity. y

The instability observed in the previous experiment could be a quirk of the explicit Euler single-step method

investigated there. In Section 6.4 many more so-called explicit Runge-Kutta methods have been pre-

sented, whose increments can be computed one after the other, which entails inverting only the mass
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matrix M in the case of the method-of-lines ODE (9.2.4.4). By means of suitable numerical quadrature it

is often possible to obtain diagonal mass matrices, a trick called mass lumping. Then the increments can

be computed with asymptotic effort O(Ns) for N → ∞!

Conversely, general Runge-Kutta methods applied to (9.2.4.4) invariably lead to big sparse linear systems

for the Ns components of the increments, recall § 9.2.7.6. Thus, explicit RK-SSM present an apparently

attractive option, more so, as high-order adaptive variants are readily available in libraries Section 6.5.

However, the next experiments dashes all hopes, because stability problems also haunt adaptive explicit

RK-SSMs.

EXPERIMENT 9.2.7.13 (Adaptive explicit high-order Runge-Kutta method for discrete parabolic

evolution) We consider the same IBVP and spatial discretization as in Exp. 9.2.7.10

This time we perform timestepping by means of an adaptive explicit Runge-Kutta single-step method using

the Ode45 auxiliary class presented in § 6.5.3.3. It relies on an embedded RK-SSM of order 5 and 4.

We watch ✦ the number of timesteps as a function of spatial meshwidth h,

✦ the discrete L2-error (9.2.7.12).

Fig. 387
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ode45
impl Euler, 100 steps

Observations:

✦ Ode45 suffers a dramatic increase of no. of timesteps for hM → 0 without gain in accuracy.

✦ The implicit Euler achieves better accuracy with only 100 equidistant timesteps!

This is not a new observation. A similar failure of Ode45 was manifest in Ex. 7.0.0.1, Exp. 7.1.0.1,

Ex. 7.1.0.35. y

This reminds us of the stiff initial value problems studied in Section 7.2:

Notion 7.2.0.7. Stiff IVP

An initial value problem is called stiff, if stability imposes much tighter timestep constraints on explicit

single step methods than the accuracy requirements.

The previous Exp. 9.2.7.13 suggests the following conjecture:

Stiffness of parabolic evolution problems

The spatially semi-discrete parabolic evolution problem (9.2.4.4) arising from the method-of-lines

spatial Galerkin finite-element discretization of a second-order parabolic IBVP (9.2.2.9) is stiff in

the sense of Notion 7.2.0.7.
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Admittedly, “stiffness” remains a fuzzy notion. It cannot be made more precise on the abstract level, but

has to be discussed for concrete evolution problem, which is done next.

Let us try to understand, why semi-discrete parabolic evolutions (9.2.4.4) arising from the method of lines

lead to stiff initial value problems.

§9.2.7.15 (Diagonalization of method-of-lines ODE) We employ the analysis technique of Diagonal-

ization, cf. (6.1.1.14) and Eq. (7.1.0.38). Diagonalization (also called spectral decomposition) is a very

versatile technique for decomposing a big problem into decoupled small, even one-dimensional, problems.

Here we discuss it for the method-of-lines ODE (9.2.4.4):

M
{

d
dt~µ(t)

}
+ A~µ(t) = ~ϕ(t) . (9.2.4.4)

Let ~ψ1, . . . ,~ψN ∈ RN denote the N linearly independent generalized eigenvectors satisfying

A~ψi = λiM~ψi , ~ψ
⊤
j M~ψi = δij , 1 ≤ i, j ≤ N . (9.2.7.16)

with positive eigenvalues λi > 0. Introducing the regular square matrices

T =
[
~ψ1, . . . ,~ψN

]
∈ RN,N , (9.2.7.17)

D := diag(λ1. . . . , λN) ∈ RN,N , (9.2.7.18)

we can rewrite (9.2.7.16) as

AT = MTD , T⊤MT = I . (9.2.7.19)

Supplement 9.2.7.20. The existence of eigenvectors ~ϕi with positive associated eigenvalues is guaran-

teed, since both A and M are positive definite: Thus, the generalized eigenvalue problem (9.2.7.16) can

be transformed to a standard eigenvalue problem for a symmetric matrix by multiplying from left and right

with the inverse of the “square root” M1/2 of M, see [NCSE]:

A~ψi = λiM~ψi =⇒ M−1/2AM−1/2

︸ ︷︷ ︸
s.p.d. matrix

~ρi = λi~ρi with ~ρi := M
1/2~ψi .

Then apply the result that every symmetric matrix can be diagonalized by means of an orthogonal trans-

formation [NCSE].
y

We can use the generalized eigenvalue problems in different ways to achieve the diagonalization of the

method-of-lines ODE. Of course, the resulting small evolution problems will be the same.

Diagonalization approach ➊: Expand ~µ(t) in the eigenvectors ~ψi (with time-dependent expansion coeffi-

cients)

~µ(t) =
N

∑
k=1

ηk(t)~ψk , (9.2.7.21)

and plug this expansion into

M
{

d
dt~µ(t)

}
+ A~µ(t) = ~ϕ(t) . (9.2.4.4)

Using (9.2.7.16) this yields

N

∑
k=1

d
dt ηk(t)M~ψk + ηk(t)λkM~ψk = ~ϕ(t) .
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Multiply from left with ~ψ
⊤
i , i = 1, . . . , N, and use (9.2.7.16) again:

d
dt ηi(t) + λiηi(t) = ~ψ

⊤
i ~ϕ(t) .

We have ended up with N decoupled scalar linear ODEs.

Diagonalization approach ➋: Using compact matrix notations, set

~µ(t) = T~η(t) ⇔ T⊤M~µ(t) =~η(t) .

Substitute this in (9.2.4.4) and invoke (9.2.7.19):

MT d
dt~η(t) + MTD~η(t) = ~ϕ(t) .

Then multiply this equation from left with T⊤ and use (9.2.7.19) again:

d
dt~η(t) + D~η(t) = T⊤~ϕ(t) .

Through both approaches, setting ~η = (η1, . . . , ηN)
⊤ ∈ RN, we have thus arrived at the transformed

ODE

(9.2.4.4)
~η:=T⊤M~µ
=⇒ d

dt~η(t) + D~η = T⊤~ϕ(t) . (9.2.7.22)

(Note that, thanks to the M-orthogonality of the ψi stated in (9.2.7.16), (9.2.7.21) is equivalent to ~η =

T⊤M~µ.)

➤ Since D is diagonal, (9.2.7.22) amounts to N decoupled scalar ODEs (for eigencomponents ηi of

~µ).

Note: for~ϕ≡ 0, λ > 0 : ηi(t) = exp(−λit)ηi(0)→ 0 for t→ ∞

y

§9.2.7.23 (Diagonalization applied to explicit Euler timestepping) As in § 7.1.0.40 the above diag-

onalizing transformation can be applied to the explicit Euler timestepping (9.2.7.2) (for ~ϕ ≡ 0, uniform

timestep τ > 0)

~µ(j) = ~µ(j−1) − τM−1A~µ(j−1)
~η:=T⊤M~µ

~η(j) =~η(j−1) − τD~η(j−1) ,

that is, the decoupling of eigencomponents carries over to the explicit Euler method: for i = 1, . . . , N

η
(j)
i = η

(j−1)
i − τλiη

(j−1) ⇒ η
(j)
i = (1− τλi)

jη
(0)
i . (9.2.7.24)

|1− τλi| < 1 ⇔ lim
j→∞

η
(j)
i = 0 .

The condition |1− τλi| < 1 enforces a

timestep size constraint: τ <
2

λi
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in order to achieve the qualitatively correct behavior lim
j→∞

η
(j)
i = 0 and to avoid blow-up lim

j→∞
|η(j)

i | = ∞:

the timestep size constraint (9.2.7.23) is necessary only for the sake of stability (not in order to guarantee

a prescribed accuracy).

This accounts to the observed blow-ups in Exp. 9.2.7.10. From Exp. 9.2.7.13 we conclude that adaptive

stepsize control as introduced in Section 6.5 manages to enforce the timestep constraint, but a the expense

of prohibitively small timesteps that render the method grossly inefficient, if some of the λi are large. y

Remark 9.2.7.25 (von Neumann stability analysis) The diagonalization approach to the stability analy-

sis of timestepping methods for fully discrete linear evolution problems is a generalization of the classical

von Neumann stability analysis, which applies to cases, where the eigenfunctions of the generalized eigen-

value problem (9.2.7.16) are Fourier harmonics (sines/cosines). This special version of stability analysis

will be covered in Section 11.4.3. y

The next numerical demonstrations and Lemma show that λmax := maxi λi will inevitably become huge

for finite element discretization on fine meshes.

EXPERIMENT 9.2.7.26 (Behavior of generalized eigenvalues of A~µ = λM~µ) Bilinear forms

associated with parabolic IBVP and homogeneous Dirichlet boundary conditions

a(u, v) =
∫

Ω

grad u · grad v dx , m(u, v) =
∫

Ω

u(x)v(x)dx , u, v ∈ H1
0(Ω) .

Linear finite element Galerkin discretization, see Section 2.3 for 1D, and Section 2.4 for 2D.

Numerical experiments in 1D & 2D:

• Ω =]0, 1[, equidistant meshes→ Exp. 9.2.7.10

• “disk domain” Ω = {x ∈ R2: ‖x‖ < 1}, sequence of regularly refined meshes.

Monitored: largest and smallest generalized eigenvalue

Fig. 389
10

−3
10

−2
10

−1
10

0
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 spatial mesh width h

 g
en

er
al

iz
ed

 e
ig

en
va

lu
es

Linear FE in 1D: lambda
i

 

 
λ

min
λ

max

O(h−2)

Ω =]0, 1[

Fig. 390
10

−3
10

−2
10

−1
10

0
10

0

10
1

10
2

10
3

10
4

10
5

10
6

 Eigenvalues of Laplacian on unit disc

 mesh width h

 g
en

er
al

iz
ed

 e
ig

en
va

lu
es

 

 

p = −2.00

λ
min

λ
max

Ω = {x ∈ R2: ‖x‖ < 1}

Observation:

✦ λmin := mini λi does hardly depend on the mesh width.

✦ λmax := maxi λi displays a O(h−2
M) growth as hM → 0
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y

Remark 9.2.7.27 (Spectrum of elliptic operators) The observation made in Exp. 9.2.7.26 is not surpris-

ing! Now we establish them as general property of finite element Galerkin matrices for second-order linear

scalar variational problems.

To do so, let us translate the generalized eigenproblem “back to the ODE/PDE level”:

A~µ = λM~µ (9.2.7.28)

m
uh ∈ V0,h: a(uh, vh) = λm(uh, vh) ∀vh ∈ V0,h .

← “undo Galerkin discretization”

u ∈ H1
0(Ω):

∫

Ω
grad u · grad v dx = λ

∫

Ω
u · v dx ∀v ∈ H1

0(Ω) .

⇓
−∆u = λu in Ω , u = 0 on ∂Ω , (9.2.7.29)

which is a so-called elliptic eigenvalue problem.

It is easily solved in 1D on Ω =]0, 1[:

(9.2.7.29) =̂
d2u

dx2
(x) = λu(x) , 0 < x < 1 , u(0) = u(1) = 0 .

⇒ uk(x) = sin(kπx) ↔ λk = (πk)2 , k ∈ N .

Note that we find an infinite number of eigenfunctions and eigenvalues, parameterized by k ∈ N. Assum-

ing that the λk are sorted, the eigenvalues tend to ∞ for k→ ∞:

λk = O(k2) for k→ ∞ .

Of course, the matrix eigenvalue problem (9.2.7.28) can have a finite number of eigenvectors only. Crudely

speaking, they correspond to those eigenfunctions uk(x) = sin(kπx) that can be resolved by the mesh

(if uk “oscillates too much”, then it cannot be represented on a grid). These are the first N so that we find

in 1D for an equidistant mesh

λmax = O(N2) = O(h−2
M) .

This is heuristics, but the following Lemma will a precise statement. y

Lemma 9.2.7.30. Behavior of of generalized eigenvalues

LetM be a simplicial mesh and A, M denote the Galerkin matrices for the bilinear forms a(u, v) =∫
Ω

grad u · grad v dx and m(u, v) =
∫

Ω
u(x)v(x)dx, respectively, and V0,h := S0

p,0(M). Then

the smallest and largest generalized eigenvalues of A~µ = λM~µ, denoted by λmin and λmax, satisfy

1

diam(Ω)2
≤ λmin ≤ C , λmax ≥ Ch−2

M ,

where the “generic constants” (→ Rem. 3.3.5.8) depend only on the polynomial degree p, the

domain Ω, and the shape regularity measure ρM.
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Proof. (partial) We rely on the Courant-Fischer min-max theorem [NCSE] that, among other conse-

quencees, expresses the boundaries of the spectrum of a symmetric matrix through the extrema of its

Rayleigh quotient

T = TT ∈ RN,N ⇒ λmin(T) = min
~ξ∈RN\{0}

~ξ
T

T~ξ

~ξ
T~ξ

, λmax(T) = max
~ξ∈RN\{0}

~ξ
T

T~ξ

~ξ
T~ξ

.

Apply this to the generalized eigenvalue problem (Recall the concept of a “square root” M1/2 of an s.p.d.

matrix M, see [NCSE])

A~µ = λM~µ
~ζ:=M

1/2~µ⇔ M−1/2AM−1/2

︸ ︷︷ ︸
=:T

~ζ = λ~ζ .

λmin = min
~µ 6=0

~µTA~µ

~µTM~µ
, λmax = max

~µ 6=0

~µTA~µ

~µTM~µ
. (9.2.7.31)

As a consequence we only have to find bounds for the extrema of a generalized Rayleigh quotient, cf.

[NCSE]. This generalized Rayleigh quotient can be expressed as

~µTA~µ

~µTM~µ
=

a(uh, uh)

m(uh, uh)
, ~µ=̂ coefficient vector for uh . (9.2.7.32)

Now we discuss a lower bound for λmax, which can be obtained by inserting a suitable candidate function

into (9.2.7.32).

Discussion for special setting: V0,h = S0
1 (M) on triangular meshM

Candidate function: “tent function” uh = bi
h (→ Section 2.4.3) for some node xi ∈ V(M) of the mesh!

By elementary computations as in Section 2.4.5 we find

a(bi
h, bi

h) ≈ C , m(bi
h, bi

h) ≤ C max
K∈U (xi)

h2
K , (9.2.7.33)

where the generic constants C > 0 depend on the shape regularity measure ρM only.

(9.2.7.31) & (9.2.7.33) ⇒ λmax ≥ Ch−2
M .

This provides the estimate (from below) for the largest eigenvalue.
✷

Lemma 9.2.7.30 & (9.2.7.23) imply concrete timestep constraint for explicit Euler method in the case of

spatial Galerkin discretization by means of Lagrangian finite elements

τ < Ch2
M , (9.2.7.34)

with C > 0 depending only on the polynomial degree and the shape regularity measure ρM.

From Section 7.3 and also Exp. 9.2.7.10 we already know that some implicit single step methods are not

affected by stability induced timestep constraints. This can be confirmed by rigorous analysis.

§9.2.7.35 (Diagonalization applied to implicit Euler timestepping) Recall § 7.3.1.2 and apply the

diagonalization technique, see (9.2.7.22), to implicit Euler timestepping with uniform timestep τ > 0

~µ(j) = ~µ(j−1) − τM−1A~µ(j)
~η:=T⊤M~µ

~η(j) =~η(j−1) − τD~η(j) ,
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that is, the decoupling of eigencomponents carries over to the implicit Euler method: for i = 1, . . . , N

η
(j)
i = η

(j−1)
i − τλiη

(j) ⇒ η
(j)
i =

(
1

1+τλi

)j
η
(0)
i . (9.2.7.36)

[ ∣∣∣∣
1

1 + τλi

∣∣∣∣ < 1 and λi > 0 ⇒
]

lim
j→∞

η
(j)
i = 0 ∀τ > 0 . (9.2.7.37)

☞ The implicit Euler method for (9.2.4.4) will never suffer blow-up regardless of timestep size; it is un-

conditionally stable.
y

§9.2.7.38 (Diagonalization applied to general Runge-Kutta timestepping) As in § 7.1.0.43 the

diagonalization trick from § 9.2.7.15 can be applied to general Runge-Kutta single step methods (RKSSM,

→ Def. 7.3.3.1). We can start from the increment equations

~κi ∈ RN : M~κi +
s

∑
m=1

τaimA~κm = ~ϕ(tj + ciτ)−A~µ(j) , i = 1, . . . , s , (9.2.7.7)

~µ(j+1) = ~µ(j) + τ
s

∑
m=1

~κmbm . (9.2.7.8)

and apply diagonalization using

AT = MTD , D =




λ1
. . .

. . .

λN


 , T⊤MT = I , (9.2.7.19)

and the transformed coefficient and increment vectors:

~µ(j) = T~η(j) ,

~κi = T~ζi .
⇔ T⊤M~µ(j) = ~η(j) ,

T⊤M~κi = ~ζi .

We multiply the increment equations (9.2.7.7) with T⊤ from the left and rewrite them in terms of ~ζi and

~η(j)
:

T⊤MT︸ ︷︷ ︸
=I

~ζi +
s

∑
m=1

τaim T⊤AT︸ ︷︷ ︸
=D

~ζm = T⊤~ϕ(tj + ciτ)− T⊤AT︸ ︷︷ ︸
=D

~η(j) , i = 1, . . . , s ,

~η(j+1) =~η(j) + τ
s

∑
m=1

~ζmbm .

We can write these equations in components taking into account that D is diagonal with diagonal entries

λj, j = 1, . . . , N.

(
~ζi

)
k
+

s

∑
m=1

τaimλk

(
~ζm

)
k
=
(

T⊤~ϕ(tj + ciτ)
)

k
− λk

(
~η(j)

)
k

,
i = 1, . . . , s ,
k = 1, . . . , N ,

(
~η(j+1)

)
k
=
(
~η(j)

)
k
+ τ

s

∑
m=1

(
~ζm

)
k
bm .

(9.2.7.39)
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Compare this with the formulas arising when applying the same Runge-Kutta single step method to the

scalar ODE η̇ = −λη + ψ(t):

κi = −λ(η(j) + τ
s

∑
m=1

aimκm) + ψ(tj + ciτ) i = 1, . . . , s ,

η(j+1) = η(j) + τ
s

∑
m=1

bmκm .

(9.2.7.40)

Obviously, (9.2.7.39) for fixed k and λk = λ and (9.2.7.40) describe the same recursion. Summing up, we

have found that the following diagram commutes

M d
dt~µ + Aµ = 0

transformation~η = TTM~µ−−−−−−−−−−−−−→ d
dt ηi = −λiηi , i = 1, . . . , N

RK-SSM

y
yRK-SSM

~µ(j) = Ψ
t,t+τ~µ(j−1) transformation~η(j) = TTM~µ(j)

−−−−−−−−−−−−−−−→ η
(j)
i = Ψ̃

t,t+τ
i η

(j−1)
i , i = 1, . . . , N .

(9.2.7.41)

The bottom line is

that we have to study the behavior of the RK-SSM only for linear scalar ODEs ẏ = −λy, λ > 0.

This is the gist of the model problem analysis discussed in Section 7.3.

There we saw that everything boils down to inspecting the modulus of a rational stability function on C,

see Thm. 7.3.4.4. This gave rise to the concept of L-stability, see Def. 9.2.7.46. Here, we will not delve

into a study of stability functions. y

Unconditional stability of single step methods

Necessary condition for universal unconditional stability of a single step method for semi-discrete

parabolic evolution problem (9.2.4.4)(“method of lines”):

The discrete evolution Ψτ
λ : R 7→ R of the single step method applied to the scalar ODE u̇ = −λu

satisfies

λ > 0 ⇒ lim
j→∞

(Ψτ
λ)

ju0 = 0 ∀u0 ∈ R, ∀τ > 0 . (9.2.7.43)

§9.2.7.44 (Stability functions →Section 7.3.4) It is straightforward to elaborate the discrete evolution

Ψλ for a general Runge-Kutta single-step method according to Def. 7.3.3.1 applied to the scalar linear

autonomous ODE u̇ = −λu. For a method characterized by the Butcher scheme
c A

bT (see (7.3.3.3))

we obtain [NCSE]

Ψ
t,t+τ
λ u = S(−λτ)u , (9.2.7.45a)

with rational stability function

S(z) = 1 + zb⊤(I− zA)−11 =
det(I− zA+ z1b⊤)

det(I− zA)
, 1 = [1, . . . , 1]⊤ ∈ Rs . (9.2.7.45b)

The next definition connects (9.2.7.43) with properties of the stability function.
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Definition 9.2.7.46. L(π)-stability

A Runge-Kutta single-step method satisfying (9.2.7.43) is called L(π)-stable, if its stability function

S(z) according to (9.2.7.45b) satisfies

(i) |S(z)| < 1 for all z < 0, and

(ii) “S(−∞)” := lim
z∈R→−∞

S(z) = 0.

L(π)-stability can be checked by inspecting the stability function, which always is a rational function,

S(z) = P(z)
Q(z)

with polynomials P, Q ∈ Ps(R) Cor. 7.3.4.6. We can directly compute the limit of S for

z→ ∞, which features in Item (ii):

(9.2.7.45b) ⇒ S(−∞) = 1− b⊤A−11 . (9.2.7.47)

This yields a sufficent condition for Item (ii) Rem. 7.3.4.18:

If bT = (A)T
:,j (row of A) ⇒ S(−∞) = 0 . (9.2.7.48)

This condition can be read off the Butcher scheme of a RK-SSM

c A

bT :=

c1 a11 · · · a1s
...

...
...

cs−1 as−1,1 · · · as−1,s

1 b1 · · · bs

b1 · · · bs

⇛ S(−∞) = 0 .

y

EXAMPLE 9.2.7.49 (L(π)-stable Runge-Kutta single step methods) Simplest L(π)-stable Runge-Kutta

single step method = implicit Euler timestepping (9.2.7.3).

Next we list two commonly used higher order L(π)-stable Runge-Kutta methods, specified through their

Butcher schemes, see (7.3.3.3):

1
3

5
12 − 1

12
1 3

4
1
4

3
4

1
4

(9.2.7.50)

RADAU-3 scheme (order 3)

λ λ 0
1 1− λ λ

1− λ λ
, λ := 1− 1

2

√
2 , (9.2.7.51)

SDIRK-2 scheme (order 2)

More examples are given in Ex. 7.3.4.21. This introduces the class of RADAU RK-SSMs, which provides

L(π)-stable Runge-Kutta methods up to arbitrary order. y

Review question(s) 9.2.7.52 (Timestepping for method-of-lines ODE)

(Q9.2.7.52.A) The implicit 2-stage Gauss-Radau Runge-Kutta single-step method is described by the

Butcher scheme

1
3

5
12 − 1

12
1 3

4
1
4

3
4

1
4

.

Describe the implementation of a single step of this method for the method-of-lines ODE (A ∈ RN,N,

~ϕ(t) ∈ RN)

d
dt~µ(t) + A~µ(t) = ~ϕ(t) . (9.2.4.4)
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Definition 7.3.3.1. General Runge-Kutta method

For coefficients bi, aij ∈ R, ci := ∑
s
j=1 aij, i, j = 1, . . . , s, s ∈ N, the discrete evolution Ψ

s,t of

an s-stage Runge-Kutta single step method (RK-SSM) for the ODE u̇ = f(t, u), is defined by

ki := f(t + ciτ, u + τ
s

∑
j=1

aijkj) , i = 1, . . . , s , Ψ
t,t+τu := u + τ

s

∑
i=1

biki .

The ki ∈ V0 are called increments.

Widely used is the Butcher-scheme notation introduced in Section 7.3.3:

c A

bT =̂

c1 a11 a12 . . . . . . a1s

c2 a21
. . . a2s

...
...

. . .
...

cs as1 . . . ass

b1 b2 . . . . . . bs

, c, b ∈ Rs, A ∈ Rs,s . (7.3.3.3)

(Q9.2.7.52.B) [Reduction to scalar model problem] How does blow-up of a timestepping scheme for

the method-of-lines ODE (9.2.4.4) manifest itself.

(Q9.2.7.52.C) Explain, why it is enough to understand the behavior of a Runge-Kutta single-step method

for the scalar IVP

ẏ = λy , y(0) = 1 , λ ∈ R ,

in order to predict its stability properties when applied to the method-of-lines ODE (9.2.4.4).

(Q9.2.7.52.D) [Timestep constraint] We discretize the parabolic initial-value problem

∂u

∂t
− div(α(x) grad u) = 0 in Ω× [0, T] ,

u = 0 on ∂Ω× [0, T] ,

u(x, 0) = u0(x) on Ω ,

in space by means of quadratic Lagrangian finite elements on sequencies of triangular meshes created

by uniform regular refinement. Method-of-lines timestepping relies on an explicit Runge-Kutta single-

step method with uniform timestep τ > 0.

What relationship between timestep τ and meshwidth hM has to be imposed in order to ensure stability

of the resulting fully discrete evolution?

(Q9.2.7.52.E) Consider the evolution problem

t ∈]0, T[ 7→ u(t) ∈ H1(Ω) :
d

dt

∫

∂Ω

u(t)v dS +
∫

Ω

grad u(t) · grad v dx = 0 ∀v ∈ H1(Ω) .

We perform spatial finite element Galerkin semi-discretization based on S0
1 (M) in the spirit of the

method of lines.

1. Which problem does the application of explicit Runge-Kutta timestepping face?

2. Show that implicit Euler timestepping is feasible.
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(Q9.2.7.52.F) Show that Crank-Nicolson timestepping

M
{

d
dt~µ(t)

}
+ A~µ(t) = ~ϕ(t)

⇓

M
~µ(j) −~µ(j−1)

τ
= − 1

4 A
(
~µ(j) + 2~µ(j) +~µ(j−1)

)
+ 1

2(~ϕ(tj) +~ϕ(tj−1)) , (9.2.7.5)

for the method-of-lines ODE for a standard parabolic evolution problem with s.p.d. bilinear forms m(·, ·)
and a(·, ·) is unconditionally stable.

△

9.2.8 Fully Discrete Method of Lines: Convergence

Video tutorial for Section 9.2.8: Fully Discrete Method of Lines: Convergence: (35 minutes)

Download link, tablet notes

Now we investigate the asymptotic algebraic convergence for fully discretized second-order linear

parabolic evolution problems, when Lagrangian finite elements in space are used together with some

Runge-Kutta single step method. Here we have two natural discretization parameters, namely the

mesh width (→ Def. 3.2.1.4) of the finite element mesh, and the size τ of the (uniform) timestep.

For general considerations about asymptotic convergence and its meaning refer to § 3.3.5.9 and

§ 3.3.5.12.

We start with a question: Why should one prefer complicated implicit L(π)-stable Runge-Kutta single step

methods (→ Ex. 9.2.7.49) to the simple implicit Euler method?

Silly question! Because these “higher-order” methods deliver “better accuracy”!

However, we need some clearer idea of what is meant by this. To this end, we now study the dependence

of (a norm of) the discretization error for a parabolic IBVP on the parameters of the spatial and temporal

discretization.

EXPERIMENT 9.2.8.1 (Convergence of fully discrete timestepping in one spatial dimension)

✦ 1D parabolic evolution problem: d
dt u− u′′ = f (t, x) on ]0, 1[×]0, 1[

✦ exact solution u(x, t) = (1 + t2)e−π2t sin(πx), source term accordingly

✦ Linear finite element Galerkin discretization equidistant mesh, see Section 2.3, V0,h = S0
1,0(M), ✦

piecewise linear spatial approximation of source term f (x, t)
✦ implicit Euler timestepping (→ Ex. 9.2.7.1) with uniform timestep τ > 0

Monitored: error norm

(
τ

M

∑
j=1

|u− uh(τ j)|2H1(Ω)

) 1
2
.

The norms |u− uh(τ j)|H1(Ω) were approximated by high order local quadrature rules, whose impact can

be neglected.
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✁ hM- and τ-dependence of error norm

Obervation:

τ small: error norm ≈ hM
hM small: error norm ≈ τ

The error seems to behave like

error norm ≈ C1hM+C2τ . (9.2.8.2)

Recall from Section 3.3.5, Thm. 3.1.3.7, Thm. 3.3.5.6:

energy norm of spatial finite element discretization error O(hM) for hM → 0

Since the implicit Euler method is first order consistent we expect

temporal timestepping error O(τ)

(9.2.8.2) ➣ conjecture: total error is sum of spatial and temporal discretization error.

From Fig. 392 we draw the compelling conclusion:

• for big mesh width hM (spatial error dominates) further reduction of timestep size τ is useless,

• if timestep τ is large (temporal error dominates), refinement of the finite element space does not

yield a reduction of the total error.

y

EXPERIMENT 9.2.8.3 (Higher order timestepping for 1D heat equation)

✦ same IBVP as in Exp. 9.2.8.1,

✦ spatial discretization on equidistant grid, very small meshwidth h = 0.5 · 10−4, V0,h = S0
1,0(M).

Various timestepping methods

(➣ different orders of consistency)

• implicit Euler timestepping (9.2.7.3), first order

• Crank-Nicolson-method (9.2.7.5), order 2

• SDIRK-2 timestepping (→ Ex. 9.2.7.49), order

2

• Gauss-Radau-Runge-Kutta collocation meth-

ods with s stages, order 2s− 1
Note: all methods L(π)-stable (→ Def. 9.2.7.46),

except for Crank-Nicolson-method.

Fig. 392
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 Discretization error for heat equation

Implicit Euler
Crank−Nicolson
SDIRK2
Radau, s=2
Radau, s=3
Radau, s=4

Monitored: max
j

∥∥∥u(tj)− u
(j)
h

∥∥∥
L2(]0,1[)

(evaluated by high order quadrature)

We observe that higher-order L(π)-stable Runge-Kutta timestepping leads to a faster algebraic decay of

the temporal discretization error, the rate matching the theoretical order of the methods. This can be
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observed until we reach the spatial discretization error which is ≈ 10−9 in Fig. 393. y

§9.2.8.4 (Spatial and temporal error contributions) Theoretical results confirm the conjecture sug-

gested from observation (9.2.8.2) in Exp. 9.2.8.1:

“Meta-theorem” 9.2.8.5. Convergence of solutions of fully discrete parabolic evolution prob-

lems

Assume that

✦ the solution of the parabolic IBVP (9.2.1.6)–(9.2.1.9) is “sufficiently smooth” (both in space

and time),

✦ its spatial Galerkin finite element discretization relies on degree p Lagrangian finite elements

(→ Section 2.6) on uniformly shape-regular families of meshes,

✦ timestepping is based on an L(π)-stable single step method of order q with uniform timestep

τ > 0.

Then we can expect an asymptotic behavior of the total discretization error according to

(
τ

M

∑
j=1

∣∣∣u(τ j)− u
(j)
h

∣∣∣
2

H1(Ω)

) 1
2 ≤ C(h

p
M+τq) , (9.2.8.6)

where C > 0 must not depend on hM, τ.

This has been dubbed a “meta-theorem”, because quite a few technical assumptions on the exact solu-

tion and the methods have been omitted in its statement. Therefore it is not a mathematically rigorous

statement of facts. More details in [KNA03].

A message contained in (9.2.8.6):

total discretization error = spatial error + temporal error

§ 3.3.5.9 still applies: (9.2.8.6) does not give information about actual error, but only about the trend of

the error, when discretization parameters hM and τ are varied.

Nevertheless, as in the case of the a priori error estimates of Section 3.3.5, we can draw conclusions

about optimal refinement strategies in order to achieve prescribed error reduction.

As in Section 3.3.5 we make the assumption that the estimates (9.2.8.6) are sharp for all contributions to

the total error and that the constants are the same (!)

contribution of spatial error ≈ Ch
p
M , hM =̂ mesh width (→ Def. 3.2.1.4) ,

contribution of temporal error ≈ Cτq , τ =̂ timestep size .
(9.2.8.7)

This suggests the following change of hM, τ in order to achieve error reduction by a factor of ρ > 1:

reduce mesh width by factor ρ
1/p

reduce timestep by factor ρ
1/q

(9.2.8.7)
=⇒ error reduction by ρ > 1 . (9.2.8.8)

Refinement for fully discrete parabolic evolution problems

Guideline: spatial and temporal resolution have to be adjusted in tandem
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y

Remark 9.2.8.10 (Potential inefficiency of conditionally stable single step methods)

Terminology: A timestepping scheme is labelled conditionally stable, if blow-up can be avoided by us-

ing sufficient small timesteps (timestep constraint). Examples: all explicit Runge-Kutta

methods

Now we can answer the question, why a stability induced timestep constraint like (9.2.7.34), that is,

τ ≤ O(h2
M) (9.2.8.11)

can render a single step method grossly inefficient for integrating semi-discrete parabolic IBVPs.

(9.2.8.8) ➣ in order to reduce the error by a fixed factor ρ one has to reduce both timestep and mesh-

width by some other fixed factors (asymptotically). More concretely, for the timestep τ:

(9.2.8.8) ➣ accuracy requires reduction of τ by a factor ρ1/q

(9.2.8.11) ➣ stability entails reduction of τ by a factor (ρ1/p)2 = ρ2/p.

1

q
<

2

p
⇒ stability enforces smaller timestep than required by accuracy

⇒ timestepping is inefficient!

When faced with conditional stability (9.2.8.11), for the sake of efficiency

use high-order spatial discretization combined with low order timestepping.

However, this may not be easy to achieve

✦ because high-order timestepping is much simpler than high-order spatial discretization,

✦ because limited spatial smoothness of exact solution (→ results of Section 3.4 apply!) may impose

a limit on q in (9.2.8.6).

Concretely: 5th-order timestepping (q = 5) with Ode45

1
q=

2
p

➣ use degree-10 Lagrangian FEM!

Moreover, high-order convergence of spatial discretization error is conditional on sufficient smoothness of

the solution u(t) for all times, remember (3.3.5.21). y

Remark 9.2.8.12 (Guessing timestep constraint) Even if the timestep constraint τ < O(h−2
M) does not

thwart the efficiency of the full discretization (finite elements in space & Runge-Kutta timestepping), the

actual stability threshold for τ may not be easy to guess, because precise estimates for the spectrum of

the generalized eigenvalue problem (9.2.7.28) are difficult to obtain for general domains and meshes. y

EXPERIMENT 9.2.8.13 (Convergence for conditionally stable Runge-Kutta timestepping)

Parabolic IBVP of Exp. 9.2.8.1:

✦
d
dt u− u′′ = f (t, x) on ]0, 1[×]0, 1[

✦ exact solution u(x, t) = (1 + t2)e−π2t sin(πx), source term accordingly

✦ Linear finite element Galerkin discretization equidistant mesh, see Section 2.3, V0,h = S0
1,0(M),

✦ piecewise linear spatial approximation of source term f (x, t)
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✦ explicit Euler timestepping (9.2.7.2) with uniform timestep τ ∼ h2 close to the stability limit.

Monitored: error norms

(
τ

M

∑
j=1

|u− uh(τ j)|2H1(]0,1[)

) 1
2

,

(
τ

M

∑
j=1

‖u− uh(τ j)‖2
L2(]0,1[)

) 1
2
.

Fig. 393
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In comparison with Exp. 9.2.8.1: degraded rate of convergence O(
√

τ) for L2-H1 space-time norm, be-

cause conditional stability prevents us from employing sufficient refinement in space. y

Review question(s) 9.2.8.14 (Parabolic evolution problems)

(Q9.2.8.14.A) How will the assertion of Thm. 9.2.8.5 will probably have to be altered in case we face

u(t) ∈ Hm(Ω), m ≥ 2, but u(t) 6∈ Hm+1(Ω) for all times t.

Theorem 9.2.8.5. Convergence of solutions of fully discrete parabolic evolution problems

Assume that

✦ the solution of the parabolic IBVP (9.2.1.6)–(9.2.1.9) is “sufficiently smooth” (both in

space and time),

✦ its spatial Galerkin finite element discretization relies on degree p Lagrangian finite ele-

ments (→ Section 2.6) on uniformly shape-regular families of meshes,

✦ timestepping is based on an L(π)-stable single step method of order q with uniform

timestep τ > 0.

Then we can expect an asymptotic behavior of the total discretization error according to

(
τ

M

∑
j=1

|u− uh(τ j)|2H1(Ω)

) 1
2 ≤ C(h

p
M+τq) , (9.2.8.6)

where C > 0 must not depend on hM, τ.

(Q9.2.8.14.B) Comment on the statement

For the temporal discretization of the MOL-ODE arising from the spatial finite-element dis-

cretization of an IBVP for the heat equation one must use implicit timestepping schemes.

△

9.3 Linear Wave Equations

This section is dedicated to a class of initial-boundary value problems (IBVP) that have the same structure

as (abstract) parabolic IBVP (→ § 9.2.2.7) except for the occurrence of second derivatives in time. This
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will have profound consequences as regards properties of solutions and choice of timestepping schemes.

§9.3.0.1 (A conservative evolution) In the case of transient heat conduction Lemma 9.2.3.8 teaches

that in the absence of time-dependent sources the rate of change of temperature will decay exponentially

Now we will encounter a class of evolution problems where temporal and spatial fluctuations will not be

damped and will persist for good:

This will be the class of linear conservative wave propagation problems

As before these initial-boundary value problems (IBVP) will be posed on a space time cylinder Ω̃ :=
Ω×]0, T[⊂ Rd+1 (→ Fig. 382), where Ω ⊂ Rd, d = 2, 3, is a bounded spatial domain as introduced in

the context of elliptic boundary value problems, see § 1.2.1.14.

The unknown will be a function depending on space and time: u = (x, t) : Ω̃ 7→ R. y

9.3.1 Models for Vibrating Membrane

Video tutorial for Section 9.3.1: Models for Vibrating Membranes: (24 minutes)

Download link, tablet notes

§9.3.1.1 (Repetition: linear elastic string and membrane models) Recall the stationary simplified

(linearized) models for taut string (1D) and membrane (2D):

✦ For the tense elastic string model (→ § 1.2.1.3) the shape of the string is described by a continuous

displacement function u : Ω := [a, b] 7→ R, u ∈ H1([a, b]).

✦ For the taut membrane model (→ § 1.2.1.8), for which the shape of membrane is given by a con-

tinuous displacement function u : Ω 7→ R, u ∈ H1(Ω), defined on the bounded base domain

Ω ⊂ R2.

Fig. 395

Force f (x)

x
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Tense string↔ u : [a, b] 7→ R
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Taut membrane↔ u : Ω 7→ R

In Section 1.2.3 we introduced the general variational (weak) formulation of membrane models based on

an energy minimization principle: with Dirichlet data (elevation of frame/pinning conditions) given by a

continuous function g ∈ C0(∂Ω),

V := {v ∈ H1(Ω): v|∂Ω = g}
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we seek

u ∈ V:
∫

Ω

σ(x) grad u · grad v dx =
∫

Ω

f (x)v(x)dx , ∀v ∈ H1
0(Ω) , (9.3.1.2)

where f : Ω 7→ R =̂ density of vertical force,

σ : Ω 7→ R =̂ uniformly positive stiffness coefficient (characteristic of material of the mem-

brane).
y

§9.3.1.3 (Transient membrane model with inertial forces) Now we switch to a dynamic setting: we

allow variation of displacement with time, u = u(x, t), the membrane is allowed to vibrate.

Recall (secondary school): Newton’s second law of motion (law of inertia)

F = m a (9.3.1.4)

force = mass · acceleration (9.3.1.5)

Apply this in a local version (stated for densities) to the membrane model and get the

force density f (x, t) = ρ(x) · ∂2u

∂t2
(x, t) , (9.3.1.6)

where
✦ ρ : Ω 7→ R+ =̂ uniformly positive mass density of membrane, [ρ] = kg m−2,

✦ ü :=
∂2u

∂t2
=̂ vertical aceleration (second temporal derivative of position).

Now, we assume that the force f in (1.4.2.2) is due to inertia forces only and express these using (9.3.1.6):

(1.4.2.2)

(9.3.1.6) ∫

Ω

σ(x) grad u(x, t) · grad v(x)dx = −
∫

Ω

ρ(x)
∂2u

∂t2
(x, t)v(x)dx ∀v ∈ H1

0(Ω) .

Why the “−”-sign? Because, here the inertia force enters as a reaction force.

What we have arrived at is a homogeneous linear wave equation in (spatial) variational form and with

(possibly inhomogeneous) Dirichlet boundary conditions:

u(t) ∈ V(t):
∫

Ω

mass density

ρ(x) · ∂2u

∂t2
(x, t) v(x)dx +

∫

Ω
stiffness

σ(x) grad u(x, t) · grad v(x)dx = 0 ∀v ∈ H1
0(Ω)

(9.3.1.7)

l

u(t) ∈ V(t): m(ü, v) + a(u, v) = 0 ∀v ∈ V0 . (9.3.1.8)

where V(t) := {v :]0, T[ 7→ H1(Ω): v(x, t) = g(x, t) for x ∈ ∂Ω, 0 < t < T}
(with continuous time-dependent Dirichlet data g : ∂Ω×]0, T[ 7→ R.)

The bilinear forms a and m (→ Def. 1.2.3.26) in (9.3.1.8) are the same as those in (9.2.2.8), § 9.2.2.7
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(except for the notation for the coefficient σ):

m(u, v) =
∫

Ω

ρ(x)u(x)v(x)dx , u, v ∈ L2(Ω) ,

a(u, v) =
∫

Ω

σ(x) grad u(x) · grad v(x)dx , u, v ∈ H1(Ω) .

In particular, both a and m are symmetric and positive definite (→ Def. 1.2.3.26). Thus they induce energy

norms ‖·‖
a

and ‖·‖
m

(→ Def. 1.2.3.34):

‖v‖2
a

:= a(v, v) , ‖v‖2
m

:= m(v, v) .

y

§9.3.1.9 (Wave equation) Undo integration by parts by reverse application of Green’s first formula

Theorem 1.5.2.7. Green’s first formula

For all vector fields j ∈ (C1
pw(Ω))d and functions v ∈ C1

pw(Ω) holds

∫

Ω
j · grad v dx = −

∫

Ω
div j v dx +

∫

∂Ω
j · n v dS . (12.2.3.2)

we obtain from (9.3.1.7)

∫

Ω

{
ρ(x)

∂2u

∂t2
(x, t)− divx(σ(x)(gradx u)(x, t))

}
v(x)dx = 0 ∀v ∈ H1

0(Ω) . (9.3.1.10)

Here it is indicated that the differential operators grad and div act on the spatial independent variable x
only. As in the case of the heat equation (→ § 9.2.1.2) this will tacitly be assumed below.

Now appeal to the fundamental lemma of calculus of variations in higher dimensions.

Lemma 1.5.3.4. Fundamental lemma of calculus of variations in higher dimensions

If f ∈ L2(Ω) satisfies

∫

Ω
f (x)v(x)dx = 0 ∀v ∈ C∞

0 (Ω) ,

then f ≡ 0 can be concluded.

This gives a PDE on the space-time cylinder Ω̃ := Ω×]0, T[, T > 0 =̂ “final time”, see § 9.1.0.3.

(9.3.1.10)
Lemma 1.5.3.4

=⇒ ρ(x)
∂2u

∂t2
− div(σ(x) grad u) = 0 in Ω̃ . (9.3.1.11)

(9.3.1.11) is called a (homogeneous, linear) wave equation. A general wave equation is obtained, when

an additional exciting vertical force density f = f (x, t) comes into play:

ρ(x)
∂2u

∂t2
− div(σ(x) grad u) = f (x, t) in Ω̃ . (9.3.1.12)

y

§9.3.1.13 (Initial and boundary conditions) The wave equations (9.3.1.11), (9.3.1.12) have to be sup-

plemented by
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• spatial (Dirichlet) boundary conditions: v(x, t) = g(x, t) for x ∈ ∂Ω, 0 < t < T,

• two initial conditions

u(x, 0) = u0(x) ,
∂u

∂t
(x, 0) = v0 for x ∈ Ω ,

with initial data u0, v0 ∈ H1(Ω), satisfying the compatibility conditions u0(x) = g(x, 0) for x ∈ ∂Ω.

(9.3.1.11) & boundary conditions & initial conditions = (linear) hyperbolic evolution problem

Excuse me, why do we need two initial conditions in contrast to the heat equation?

Remember that

• (9.3.1.11) is a second-order equation also in time (whereas the heat equation is merely first-order),

• and that for second order ODEs ü = f(u), f : Rn → Rn, we need two initial conditions

u(0) = u0 and u̇(0) = v0 , (9.3.1.14)

in order to get a well-posed initial value problem, see Rem. 6.1.3.5.

The physical meaning of the initial conditions (9.3.1.14) in the case of the membrane model is

• u0 =̂ initial displacement of membrane, u0 ∈ H1(Ω) “continuous”,

• v0 =̂ initial vertical velocity of membrane.

y

Remark 9.3.1.15 (Boundary conditions for wave equation) The message of § 9.2.1.10 also applies to

the wave equation (9.3.1.11):

On ∂Ω×]0, T[ we can impose any of the spatial boundary conditions discussed in Section 1.7:

• Dirichlet boundary conditions u(x, t) = g(x, t) (membrane attached to frame),

• Neumann boundary conditions j(x, t) · n = 0 (free boundary, Ex. 1.5.3.11)

• radiation boundary conditions j(x, t) · n = Ψ(u(x, t)),
and any combination of these as discussed in Ex. 1.7.0.10, yet, only one of them at any part of

∂Ω×]0, T[, see Rem. 1.7.0.9.

In the aboce formulas recall from § 1.6.0.1 the definition of the flux j = −σ(x) grad u for linear diffusion

models. y

§9.3.1.16 (Wave equation as first order system in time) We recall a fundamental transformation in the

theory of ordinary differential equations from Rem. 6.1.3.5: any higher-order ODE can be converted into

first-order ODEs by introducing derivatives as additional solution components. In the concrete case of a

second-order ODE on state space V we obtain

ü(t) = g(t, u)
v:=u̇−−−→

[
u̇(t)
v̇(t)

]
=

[
v(t)

g(t, u(t))

]
⇔ ẏ = f(t, y) , y =

[
u
v

]
. (9.3.1.17)

This approach also works for the second-order (in time) wave equation (9.3.1.11):

We introduce an additional unknown: velocity v(x, t) =
∂u

∂t
(x, t)

ρ(x)
∂2u

∂t2
− div(σ(x) grad u) = 0

{
u̇ = v ,

ρ(x)v̇ = div(σ(x) grad u)
in Ω̃ (9.3.1.18)
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with initial conditions

u(x, 0) = u0(x) , v(x, 0) = v0(x) for x ∈ Ω . (9.3.1.19)

y

Review question(s) 9.3.1.20 (Models for vibrating membranes)

(Q9.3.1.20.A) The movement of a taut membrane also subject to friction can be modeled by an additional

vertical force density proportional to the local velocity:

f (x) = −ρ(x)
∂2u

∂t2
− η(x)

∂u

∂t
,

with uniformly positive friction coefficient η = η(x). Give the spatial variational formulation for a mem-

brance model with friction (membrane attached to a flat frame everywhere on its edge).

Hint. The dynamic membrane model with a generic force density f = f (x) is:

u ∈ V:
∫

Ω

σ(x) grad u · grad v dx =
∫

Ω

f (x)v(x)dx , ∀v ∈ H1
0(Ω) . (9.3.1.2)

(Q9.3.1.20.B) Which initial-boundary value problem describes the frictionless movement of a membrane

clamped to a flat and level frame on three sides of a square, but free on the fourth side under the

influence of gravity?

(Q9.3.1.20.C) The proagation of sound in space can be described by the following first-order system of

linear partial differential equations:

∂v

∂t
+

1

ρ0
grad p = 0 ,

∂ρ

∂t
+ ρ0 div v = 0 ,

∂ρ

∂t
− 1

c2

∂p

∂t
= 0 .

Here v = v(x, t) is the velocity field ([v] = ms−1), p = p(x, t) the pressure field ([p] = Nm−2),

ρ0 = ρ0(x) a uniformly positive density ([ρ0] = krm−3), and c = c(x) the local speed of sound

([c] = ms−1).

1. Derive a second-order PDE governing the evolution of the pressure field.

2. At hard walls we have v · n = 0, where n is a unit vector normal to the wall. Which spatial boundary

conditions does this entail for the second-order PDE?

(Q9.3.1.20.D) For symmetric positive definite matrices M, A, B ∈ Rn,n convert the second-order ODE for

~µ : [0, T]→ Rn

M
∂2~µ

∂t2
+ B

∂~µ

∂t
+ A~µ = 0

into an equivalent first-order ODE in the standard form u̇ = f(u).

△

9.3.2 Wave Propagation

Video tutorial for Section 9.3.2: Wave Propagation: (33 minutes) Download link, tablet notes
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Now we study properties of solutions of initial-boundary value problems (IBVPs) for the wave equation

(9.3.1.11):

ρ(x)
∂2u

∂t2
− div(σ(x) grad u) = 0 in Ω̃ := Ω×]0, T[ (9.3.1.11)

+ spatial boundary conditions & in initial conditions

{
u(x, 0) = u0(x) ,

∂u
∂t (x, 0) = v0(x) ,

x ∈ Ω .

§9.3.2.1 (Cauchy problem) We first look at a particularly simple setting: We consider the constant-

coefficient wave equation (ρ ≡ 1) for d = 1 on the whole real line, Ω = R, the so-called Cauchy

problem for the wave equation:

c > 0:
∂2u

∂t2
− c2 ∂2u

∂x2
= 0 , u(x, 0) = u0(x) ,

∂u

∂t
(x, 0) = v0(x) , x ∈ R . (9.3.2.2)

For this we perform a change of variables into characteristic coordinates:

ξ = x + ct , τ = x− ct: ũ(ξ, τ) := u(
ξ + τ

2
,

ξ − τ

2c
) . (9.3.2.3)

Applying the chain rule we immediately see

∂2u

∂t2
− c2 ∂2u

∂x2
= 0

∂2ũ

∂ξ∂τ
= 0 ⇒ ũ(ξ, τ) = F(ξ) + G(τ) ,

for any F, G ∈ C2(R)! This means that we can write the solution of the Cauchy problem (9.3.2.2) as

u(x, t) = F(x + ct) + G(x− ct) ,

that is, as a sum of a function F “traveling to the left” and a function G “traveling to the right”. Obviously,

the initial conditions from (9.3.2.2)

u(x, 0) = u0(x) ,
∂u

∂t
(x, 0) = v0(x) , x ∈ R ,

already fix those functions F and G, because for all x ∈ R

u(x, 0) = F(x) + G(x) = u0(x) ,

∂u

∂t
(x, 0) = c

∂ũ

∂ξ
(x, x)− c

∂ũ

∂τ
(x, x) = cF′(x)− cG′(x) = v0(x) .

We assume that v0 has compact support and integrate the second equation from −∞ to x, which yields

F(x) + G(x) = u0(x) , F(x)− G(x) = 1
c

∫ x

−∞
v0(x)ds .

Solving for F and G is straightforward now and we end up with

u(x, t) = 1
2(u0(x + ct) + u0(x− ct)) + 1

2c

x+ct∫

x−ct

v0(s)ds . (9.3.2.4)

The formula (11.6.1.23) in known as d’Alembert solution of the Cauchy problem (9.3.2.2). y
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Remark 9.3.2.5 (Non-smooth d’Alembert solutions) Obviously, the formula (11.6.1.23) even makes

sense for discontinuous functions u0 and v0, which will render u = u(x, t) discontinuous in space and

time.

This will not be compatible with the notion of solutions of the wave equation adopted in this section, but will

comply with a weaker solution concept introduced in the context of conservation laws in Section 11.2.3,

Def. 11.2.3.4. y

§9.3.2.6 (Finite speed of propagation) We point out a simple consequence of the solution formula

(11.6.1.23) for the Cauchy problem for the wave equation with constant coefficients:

Fig. 397 x

u(x, tj)

0

t1

t2

t3

t4

t5

t6

v0 = 0 ➤ initial data u0 travel with speed c in op-

posite directions

Finite speed of propagation is a typical feature

of solutions of wave equations

Note: (11.6.1.23) meaningful even for discontinu-

ous u0, v0, cf. Rem. 9.3.2.5!

➡ “generalized solutions” !

finite speed of propagation
“point value” u(x̄, t̄), (x̄, t̄) ∈ Ω̃, may not depend on initial values

outside proper subdomain of Ω !

y

EXAMPLE 9.3.2.7 (Domain of dependence/influence for 1D wave equation, constant coefficient

case) Consider d = 1 and the initial-boundary value problem (9.3.2.2) for wave equation:

c > 0:
∂2u

∂t2
− c2 ∂2u

∂x2
= 0 , u(x, 0) = u0(x) ,

∂u

∂t
(x, 0) = v0(x) , x ∈ R . (9.3.2.2)

Intuitively we conclude from D’Alembert’s formula (11.6.1.23) the following maximal domains of depen-

dence and influence:

Fig. 398 x

c

1

t

(x̄, t̄)

D−(x̄, t̄)

domain of dependence of (x̄, t̄) ∈ Ω̃

Fig. 399 x

t

I0

D+(I0)

c

1

domain of influence of I0 ⊂ R
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Domain of dependence: the value of the solution in (x̄, t̄) (•) will depend only on data

in the yellow triangle in Fig. 399.

Domain of influence: initial data in I0 will be relevant for the solution

only in the yellow triangle in Fig. 400.

y

The rigorous statement in any dimension is made in the following theorem.

Theorem 9.3.2.8. Domain of dependence for isotropic wave equation →[EVA98]

Let u : Ω̃ 7→ R be a (classical) solution of ∂2u
∂t2 − c∆u = 0. Then

(
|x− x0| ≥ R ⇒ u(x, 0) = 0 ,

∂u
∂t (x, 0) = 0

)
⇒ u(x, t) = 0 , if |x− x0| ≥ R + ct .

It tells us that, if a solution of ∂2u
∂t2 − c∆u = 0 vanishes outside a ball of radius R < 0 around x0 ∈ Ω at

time t ∈ [0, T], then u(t + τ) vanishes outside a ball with radius R + cτ around x0, provided that this

larger ball is still contained in Ω. The maximal domain of influence is a cone in the space-time cylinder Ω̃.

§9.3.2.9 (Reflective boundary conditions) We study the d’Alembert solution (11.6.1.23) of the 1D

Cauchy problem (9.3.2.2) for the linear wave equation for special initial data

u0(x) = w(d + x)− w(d− x) , v0(x) = 0 , x ∈ R , (9.3.2.10)

where w ∈ C0(R) and d > 0. This case (11.6.1.23) yields

u(x, t) = 1
2(w(d + x + ct)− w(d− x− ct) + w(d + x− ct)− w(d− x + ct)) , x ∈ R , t ≥ 0 .

For compactly supported w, this solution has the following structure:

Fig. 400

t0

t6

t1

t2

t3

t4

t5

x

u

0

u(x, t) satisfies homogeneous Dirichlet boundary conditions at x = 0 and, thus solves the following

half-space IBVP for the 1D wave equation:

∂2u

∂t2
− c2 ∂2u

∂x2
= 0 on R− × [0, T] ,

u(x, 0) = u0(x) ,
∂u

∂t
(x, 0) = 0 , x ≤ 0 ,

u(0, t) = 0 for t ≥ 0 (Dirichlet b.c.) .

(9.3.2.11)
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Reflection at boundaries

Homogeneous Dirichlet or Neumann boundary conditions on (parts of) ∂Ω model the reflection of

waves (at those parts of ∂Ω).

y

§9.3.2.13 (Wave propagation: conservation of energy) The solution formula (11.6.1.23) clearly indi-

cates that in 1D and in the absence of boundary conditions the solution of the wave equation will persist

undamped for all times.

This absence of damping corresponds to a conservation of total energy, which is a distinguishing fea-

ture of conservative wave propagation phenomena.

Now, we examine this for the following model problem, already cast in spatial variational formulation:

u : [0, T]→ H1
0(Ω):

∫

Ω

ρ(x) · ∂2u

∂t2
v dx +

∫

Ω

σ(x) grad u · grad v dx = 0 ∀v ∈ H1
0(Ω) (9.3.2.14)

l

u ∈ V0: m(ü, v) + a(u, v) = 0 ∀v ∈ V0 , (9.3.2.15)

where the bilinear forms m(·, ·) and a(·, ·) are clear from (9.3.2.14), see also (9.3.1.8).

Here we do not include the case of non-homogeneous spatial Dirichlet boundary conditions through an

affine trial space. This can always be taken into account by offset functions, see the remark after (9.2.1.9).

Theorem 9.3.2.16. Energy conservation in wave propagation

If u : Ω̃ 7→ R solves (9.3.2.15), then we have conservation of total energy in the sense that

t 7→ 1
2m(

∂u

∂t
,

∂u

∂t
) + 1

2a(u, u) ≡ const .

kinetic energy elastic (potential) energy, see (1.2.1.19)

Proof. The “formal proof” (*) boils down to a straightforward application of the product rule (→
Rem. 9.2.3.7) together with the symmetry of the bilinear forms m and a.

Introduce the total energy and apply the product rule from Rem. 9.2.3.7

E(t) := 1
2m(

∂u

∂t
,

∂u

∂t
) + 1

2a(u, u) .

dE

dt
(t) = m(ü, u̇) + a(u̇, u) = 0 for solution u of (9.3.2.15) ,

because this is what we conclude from (9.3.2.15) for the special test function v(x) = u̇(x, t) for any

t ∈]0, T[.

(*) This proof is formal, because u̇ ∈ V0 may not hold. A much for complicated rigorous mathematical

treatment is given in [RER04].
✷

Of course, conservation of total energy rules out the decaying of the waves as t→ ∞: wave phenomena

will continue unabated for all times. y
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Review question(s) 9.3.2.17 (Wave propagation)

(Q9.3.2.17.A) We consider the Cauchy problem for the constant-coefficient linear wave equation in Rd:

∂2u

∂t2
− ∆u = 0 in Rd ×R+ . (9.3.2.18)

For k ∈ Rd, ‖k‖ = 1, a solution of (9.3.2.18) of the form

u(x, t) = Re exp(i(k · x−ωt)) , ω ∈ R , (9.3.2.19)

is called a plane-wave solution. Find ω as a function of k.

(Q9.3.2.17.B) Consider the Cauchy problem for the 1D wave equation

c > 0:
∂2u

∂t2
− c2 ∂2u

∂x2
= 0 , u(x, 0) = u0(x) ,

∂u

∂t
(x, 0) = v0(x) , x ∈ R , (9.3.2.2)

and recall the d’Alembert solution

u(x, t) = 1
2(u0(x + ct) + u0(x− ct)) + 1

2c

x+ct∫

x−ct

v0(s)ds . (11.6.1.23)

Which relationship must be satisfied for the initial data u0 and v0 such that you obtain a solution that

propagates only to the right?

(Q9.3.2.17.C) We study the following initial-boundary value problem for the 1D linear constant-coefficeint

wave equation

∂2u

∂t2
− ∂2u

∂x2
= 0 in ]0, 1[×R+ ,

u(0, t) = u(1, t) = 0 ∀t > 0 ,

u(x, 0) = u0(x) ,
∂u

∂t
(x, 0) = v0(x) , 0 < x < 1 .

(9.3.2.20)

1. In the x− t-plane sketch the precise domain of influence of the interval [ 1
4 , 3

4 ].

2. What is the domain of dependence for the point

[
0.5
1

]
?

Hint. Remember that homogeneous Dirichlet boundary conditions for the 1D wave equation model a

reflection of the wave at the boundary.

(Q9.3.2.17.D) Consider the abstract variational wave equation

u = u(t) ∈ V0: m(ü, v) + b(u̇, v) + a(u, v) = 0 ∀v ∈ V0 , (9.3.2.21)

where V0 is a vector space and m, a are symmetric positive definite bilinear forms on V0. Which

properties of the bilinear form b ensure an exponential decay of the energy

E(t) := 1
2m(u̇(t), u̇(t)) + 1

2a(u(t), u(t))

when t 7→ u(t) solves (9.3.2.21).

(Q9.3.2.17.E) Based on the d’Alembert solution (11.6.1.23) and guided by the “refelection construction”

in § 9.3.2.9, construct a solution of the 1D half-space IBVP:

∂2u

∂t2
− c2 ∂2u

∂x2
= 0 on R− × [0, T] ,

u(x, 0) = u0(x) ,
∂u

∂t
(x, 0) = 0 , x ≤ 0 ,

∂u

∂x
(0, t) = 0 for t ≥ 0 (Homogeneous Neumann b.c.) .

△
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9.3.3 Method of Lines for Wave Propagation

Video tutorial for Section 9.3.3: Method of Lines for Wave Propagation: (13 minutes)

Download link, tablet notes

As we have seen in (9.3.2.14)/(9.3.1.8) the wave equation on the space-time cylinder Ω̃ : [0, T]×Ω can

be expressed through a spatial variational formulation. With V(t) ⊂ H1(Ω) a Sobolev space adapted to

the boundary conditions, we found

u ∈ V(t):
∫

Ω

ρ(x) · ∂2u

∂t2
(x, t) v(x)dx +

∫

Ω

σ(x) grad u(x, t) · grad v(x)dx = 0 ∀v ∈ H1
0(Ω)

(9.3.1.7)

l

u ∈ V(t): m(ü, v) + a(u, v) = 0 ∀v ∈ V0 . (9.3.1.8)

As explained in § 9.3.1.13, this has to be supplemented with initial conditions u(0) = u0 and u̇(0) = v0.

The bilinear forms m and a are continuous,symmetric, and positive (semi-)definite.

Except for the second temporal derivative the structure is the same as for the abstract linear parabolic

evolution equation

t ∈]0, T[ 7→ u(t) ∈ V0 :

{
m(u̇(t), v) + a(u(t), v) = ℓ(t)(v) ∀v ∈ V0 ,

u(0) = u0 ∈ V0 .
(9.2.2.8)

Therefore, it is not surprising that spatial Galerkin discretization can be applied to (9.3.1.8) in the very

same method-of-lines fashion as it was applied to (9.2.2.8) in Section 9.2.4. We elaborate the details now.

§9.3.3.1 (Spatial Galerkin semi-discretization) The method of lines approach to the wave equation

(9.3.2.14), (9.3.2.15) is exactly the same as for the heat equation, see Section 9.2.4.

Idea: Apply Galerkin discretization (→ Section 2.2) in space to abstract linear hyperbolic variational

problem (9.3.1.8).

t ∈]0, T[ 7→ u(t) ∈ V0 :





m(
d2u

dt2
(t), v) + a(u(t), v) = ℓ(t)(v) ∀v ∈ V0 ,

u(0) = u0 ∈ V0 ,
du

dt
(0) = v0 ∈ V0 .

(9.3.3.2)

1st step: replace V0 with a finite dimensional subspace V0,h, N := dim V0,h < ∞

Spatially discrete linear wave equation/hyperbolic evolution problem

t ∈]0, T[ 7→ u(t) ∈ V0,h :





m(
d2uh

dt2
(t), vh) + a(uh(t), vh) = ℓ(t)(vh) ∀vh ∈ V0,h ,

uh(0) = projection/interpolant of u0 in V0,h ,

duh

dt
(0) = projection/interpolant of v0 in V0,h .

(9.3.3.3)

2nd step: introduce (ordered) basis Bh := {b1
h, . . . , bN

h } of trial/test space V0,h

(9.3.3.3) ⇒





M
{

d2

dt2~µ(t)
}
+ A~µ(t) = ~ϕ(t) for 0 < t < T ,

~µ(0) = ~µ0 ,
d~µ
dt (0) = ~ν0 .

(9.3.3.4)
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✄ s.p.d. stiffness matrix A ∈ RN,N, (A)ij := a(b
j
h, bi

h) (independent of time),

✄ s.p.d. mass matrix M ∈ RN,N, (M)ij := m(b
j
h, bi

h) (independent of time),

✄ source (load) vector~ϕ(t) ∈ RN, (~ϕ(t))i := ℓ(t)(bi
h) (time-dependent),

✄ ~µ0 =̂ coefficient vector of a projection of u0 onto V0,h.

✄ ~ν0 =̂ coefficient vector of a projection of v0 onto V0,h.

y

Note:

(9.3.3.4) is a 2nd-order ordinary differential equation (ODE) for the time-dependent vector of

basis expansion coefficients t 7→ ~µ(t) ∈ RN.

Remark 9.3.3.5 (First-order semidiscrete hyperbolic evolution problem) Completely analoguous to

§ 9.3.1.16 we can introduce a separate unknown function for the velocity and thus arrive at a first-order

ordinary differential equation in time.

M
{

d2

dt2~µ(t)
}
+ A~µ(t) = 0

← auxiliary unknown~ν = ~̇µ




d

dt
~µ(t) = ~ν(t) ,

M
d

dt
~ν(t) = −A~µ(t) ,

, 0 < t < T . (9.3.3.6)

with initial conditions

~µ(0) = ~µ0 , ~ν(0) = ~ν0 . (9.3.3.7)

Note that (9.3.3.6) can easily be rewritten as a (first-order) ordinary differential equation in canonical form

u̇(t) = f(t, u(t)) by identifying

u ↔
[
~µ
~ν

]
, f(t, u) ↔

(
t,

[
~µ
~ν

])
7→
[

~ν

−M−1A~µ

]
. (9.3.3.8)

Based on (9.3.3.8) it is straightforward how to apply any Runge-Kutta single step method according to

Def. 7.3.3.1 to the semi-discrete wave equation. y

Review question(s) 9.3.3.9 (Method of lines for wave propagation)

(Q9.3.3.9.A) The method-of-lines semi-discretization of the variatonal evolution equation

t ∈ [0, T] 7→ u(t) ∈ V0: m(
∂2u

∂t2
(t), v) + a(u(t), v) = ℓ(t)(v) ∀v ∈ V0 ,

V0 a vector space, leads to an ordinary differential equation of the form

M
d2~µ

dt2
(t) + A~µ(t) = ~ϕ(t) ,

with t 7→ ~µ(t) ∈ RN, t 7→ ~ϕ(t) ∈ RN, and matrices A, M ∈ RN,N.

1. Give formulas for the entries of A, M, and~ϕ(t).

2. What is the meaning of t 7→ ~µ(t)?

(Q9.3.3.9.B) In order to convert a variational evolution problem into an ordinary differential equation fol-

lowing the policy of the method of lines, we have to choose a basis of the discrete trial and test space

V0,h ⊂ V0. How does the solution t 7→ uh(t) ∈ V0,h of the semi-discrete evolution problem depend on

the choice of basis?
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(Q9.3.3.9.C) We consider the hyperbolic linear evolution problem

u(t) ∈ H1
0(Ω):

∫

Ω
ρ(x, t)

∂2u

∂t2
(x, t)v(x) + σ(x, t) grad u(x) · grad v(x)dx = 0 ∀v ∈ H1

0(Ω) ,

u(x, 0) = u0(x) ,
∂u

∂t
(x, 0) = v0(x) , x ∈ Ω ,

where ρ : [0, T]×Ω→ R and σ : [0, T]×Ω→ R are uniformly positive coefficient functions.

We perform a method of lines spatial semi-discretization based on V0,h ⊂ H1
0(Ω) equipped with a basis

{b1
h, . . . , bN

h }, N := dim V0,h.

1. Write down the resulting ordinary differential equation (ODE) and characterize its building blocks.

2. Describe how one can obtain the initial values for the method-of-lines ODE, if V0,h is a Lagrangian

finite element space.

△

9.3.4 Timestepping for Semi-Discrete Wave Equations

Video tutorial for Section 9.3.4: Timestepping for Semi-Discrete Wave Equations: (43 min-

utes) Download link, tablet notes

We still have to discrtize the initial value problem (9.3.3.4) for the method-of-lines ODE in time to arrive at

a scheme that can be implemented on a computer.

§9.3.4.1 (Method-of-lines ODE) We recall that the method of lines approach gives us the semi-discrete

hyperbolic evolution problem in the form of the 2nd-order ODE

M
{

d2

dt2~µ(t)
}
+ A~µ(t) = 0 , ~µ(0) = ~µ0 ,

d~µ

dt
(0) = ~η0 . (9.3.4.2)

Key features of (9.3.4.2) are

✦ reversibility: (9.3.4.2) invariant under time-reversal t← −t

✦ energy conservation, cf. Thm. 9.3.2.16: Eh(t) := 1
2

d~µ

dt
·M d~µ

dt
+ 1

2~µ ·A~µ = const

It is highly desirable that the timestepping method respects this properties of the evolution problem, at

least approximately. Timestepping schemes that achieve this are called structure-preserving. y

EXPERIMENT 9.3.4.3 (Euler timestepping for 1st-order form of semi-discrete wave equation) In this

numerical experiment we investigate to what extent explicit and implicit Euler timestepping schemes as

introduced in Ex. 9.2.6.4 and applied to the first-order form (9.3.3.6) of the semi-discrete wave equation

respect the conservation of energy.
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Model problem: wave propagation on a square

membrane

∂2u

∂t2
− ∆u = 0 on ]0, 1[2×]0, 1[ ,

u(x, t) = 0 on ∂Ω×]0, T[ ,

u(x, 0) = u0(x) ,
∂u

∂t
(x, 0) = 0 .

(membrane in flat frame, displaced, but at rest at ini-

tial time)

✦ Initial data u0(x) = max{0, 1
5 − ‖x‖}, v0(x) = 0,

✦ M =̂ “structured triangular tensor product mesh”, see Fig. 257, n squares in each direction,

✦ linear finite element space VN,0 = S0
1,0(M), N := dimS0

1,0(M) = (n− 1)2,

✦ All local computations (→ Section 2.7.5) rely on 3-point vertex based local quadrature formula “2D

trapezoidal rule” (2.4.6.10). More explanations will be given in Rem. 9.3.4.18 below.

✦ A = N × N Poisson matrix, see (4.1.2.8), scaled with h := n−1,

✦ “lumped” diagonal mass matrix M = hI, thanks to quadrature formula, see Rem. 9.3.4.18.

Timestepping: implicit and explicit Euler method (→ Ex. 9.2.7.1, Section 6.2) for 1st-order ODE (9.3.3.6),

timestep τ > 0:

~µ(j) −~µ(j−1) = τ~ν(j−1) ,

M(~ν(j) −~ν(j−1)) = −τA~µ(j−1) .

explicit Euler

~µ(j) −~µ(j−1) = τ~ν(j) ,

M(~ν(j) −~ν(j−1)) = −τA~µ(j) .

implicit Euler

Monitored: behavior of (discrete) kinetic, potential, and total energy

E
(j)
kin = 1

2(~ν
(j))TM~ν(j) , E

(j)
pot =

1
2(~µ

(j))TA~µ(j) , E
(j)
h = E

(j)
kin + E

(j)
pot . (9.3.4.4)

for all timesteps j = 0, 1, . . . ,.

Results for explicit Euler timestepping:
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Implcit Euler timestepping:

Fig. 404 0
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Observation: neither method conserves the total energy energy,

☞ explicit Euler timestepping ➣ steady increase of total energy, solution “blows up”.

☞ implicit Euler timestepping ➣ steady decrease of total energy, solution “decays”. y

Remark 9.3.4.5. What we have observed for the explicit/implicit Euler method in the previous numerical

experiment is true of all explicit Runge-Kutta methods, which lead to an increase of the total energy over

time, and L(π)-stable implicit Runge-Kutta methods, which make the total energy decay. y

EXPERIMENT 9.3.4.6 (Implicit midpoint rule for semi-discrete wave equation) We adopt the exact

setting of Exp. 9.3.4.3, except for employing timestepping based on the implicit midpoint rule (9.2.6.7) with

uniform timestep.
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Implicit midpoint rule: spatial resolution n = 30, 3000 timesteps

kinetic energy

potential energy

total energy

✁ We observe exact conservation of the total energy

for the fully discrete evolution.

It seems that then implicit midpoint rule enjoys excel-

lent structure-preserving properties.

(An analysis will be given in the next paragraph.)

y

§9.3.4.7 (Crank-Nicolson timestepping) We apply the implicit midpoint single-step method, whose dis-

crete evolution for the ODE u̇ = f(t, u) is given by

Ψ
t,t+τu := w: w = u + τf(t + 1

2 τ, 1
2(w + u)) , (9.2.6.7)

to the first-order semi-discrete linear wave equation

u̇ ↔
[
~̇µ(t)
~̇ν(t)

]
=

[
~ν(t)

−M−1A~µ(t)

]
+

[
0

M−1~ϕ(t)

]
↔ f(t, u) , (9.3.4.8)
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which arises from Galerkin semi-discretization of (9.3.3.2) and subsequent conversion into a first-order

ODE according to (9.3.3.6). The mass matrix M ∈ RN,.N is symmetric, positive definite, the stiffness

matrix A ∈ RN,N at least symmetric and positive semi-definite, cf. (9.3.3.4).

For the update of the states ~µj−1 → ~µ(j)
, ~ν(j−1) → ~ν(j)

in a single timestep t− τ → t, τ > 0, by com-

bining (9.2.6.7) and (9.3.4.8) we obtain the implicit equations

[
~µ(j)

~ν(j)

]
=

[
~µ(j−1)

~ν(j−1)

]
+ τ

[
1
2(~ν

(j−1) +~ν(j))

− 1
2 M−1A(~µ(j−1) +~µ(j))

]
+ τ

[
0

M−1~ϕ(tj − 1
2 τ)

]
. (9.3.4.9)

This amounts to a linear system of equations for the new states

[
I − 1

2 τI
1
2 τA M

][
~µ(j)

~ν(j)

]
=

[
I 1

2 τI

− 1
2 τA M

][
~µ(j−1)

~ν(j−1)

]
+ τ

[
0

~ϕ(tj − 1
2 τ)

]
, (9.3.4.10)

m
~µ(j) −~µ(j−1) = 1

2 τ(~ν(j−1) +~ν(j))

M(~ν(j) −~ν(j−1)) = − 1
2 τA(~µ(j−1) +~µ(j)) + τ~ϕ(tj − 1

2 τ) .
(9.3.4.11)

We left multiply the first equation of (9.3.4.11) with (~µ(j−1) +~µ(j))⊤A⊤

and the second equation with (~ν(j−1) +~ν(j))⊤, use “(a + b)(a− b) = a2 − b2”, and then add both equa-

tions:

(~µ(j))⊤A(~µ(j))− (~µ(j−1))⊤A(~µ(j−1)) + (~ν(j))⊤M(~ν(j))− (~ν(j−1))⊤M(~ν(j−1))

=
1

2
τ
(
(~µ(j) +~µ(j−1))⊤A(~ν(j) +~ν(j−1))− (~ν(j) +~ν(j−1))⊤A(~µ(j) +~µ(j−1))

)
+

τ(~µ(j) +~µ(j−1))⊤~ϕ(tj − 1
2 τ)

=τ(~µ(j) +~µ(j−1))⊤~ϕ(tj − 1
2 τ) ,

because A is symmetric. If~ϕ(t) ≡ 0, then

(~µ(j))⊤A(~µ(j)) + (~ν(j))⊤M(~ν(j)) = (~µ(j−1))⊤A(~µ(j−1)) + (~ν(j−1))⊤M(~ν(j−1)) ,

which is conservation of total energy in a single timestep, in perfect agreement with the observations from

Exp. 9.3.4.6.

Let us eliminate the auxiliary vectors ~ν(j)
. Therefore subtract the first equation of (9.3.4.11) for two con-

secutive timesteps and left multiply them with the mass matrix M:

M(~µ(j+1) − 2~µ(j) +~µ(j−1))= 1
2 τM(~ν(j) −~ν(j−1) +~ν(j+1) −~ν(j))

=− 1
4 τ2A(~µ(j+1) + 2~µ(j) +~µ(j−1)) + 1

2 τ2(~ϕ(tj − 1
2 τ) +~ϕ(tj +

1
2 τ))) .

Dividing by τ2, we can view the resulting 2-step method as a symmetric finite-difference approximation of

the second time derivative combined with an averaging of the right hand side in (9.3.3.4):

M
{

d2

dt2~µ(t)
}
+ A~µ(t) = ~ϕ(t) (9.3.4.2)

⇓

M
~µ(j+1) − 2~µ(j) +~µ(j−1)

τ2
=− 1

4 A(~µ(j−1) + 2~µ(j) +~µ(j+1))+
1
2(~ϕ(tj − 1

2 τ) +~ϕ(tj +
1
2 τ)) , j = 1, 2, . . .

. (9.3.4.12)
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This is called the Crank-Nicolson timestepping scheme for the semi-discrete wave equation.

The left-hand side of (9.3.4.12) is the well-known symmetric finite difference quotient for the second deriva-

tive, cf. Rem. 4.1.1.11:

d2~µ

dt2 (tj) ≈
~µ(j+1) − 2~µ(j) +~µ(j−1)

τ2
.

We have seen in Ex. 9.2.6.8 that the implicit midpoint rule is a second-order timestepping scheme and

also conclude that the Crank-Nicolson method is a 2nd-order method. y

§9.3.4.13 (Störmer-Verlet timestepping) In the case of Crank-Nicolson timestepping (9.3.4.12) we rely

on an average on the right-hand side, because the second difference quotient on the left-hand side is

centered at time t corresponding to timestep j.

It is natural to replace the average with a simple evaluation of the right-hand side at time t↔ timestep j,
which leads to

M
{

d2

dt2~µ(t)
}
+ A~µ(t) = 0 (9.3.4.2)

⇓

M
~µ(j+1) − 2~µ(j) +~µ(j−1)

τ2
= −A~µ(j) , j = 1, 2, . . . . (9.3.4.14)

This is a two-step method, the Störmer scheme/explicit trapezoidal rule

By Taylor expansion, see Ex. 9.2.6.8: Störmer scheme is a 2nd-order method

However, from where do we get~µ(−1)
? Two-step methods need to be kick-started by a special initial step:

This is constructed by approximating the second initial condition by a symmetric difference quotient:

d

dt
~µ(0) = ~ν0

~µ(1) −~µ(−1)

2τ
= ~ν0 . (9.3.4.15)

y

§9.3.4.16 (Leapfrog timestepping) In the case of the Crank-Nicolson timestepping we could give alge-

braically equivalent formulations in both the two vectors~µ(j)
,~ν(j)

and in~µ(k)
alone. Now we do this for the

explicit trapezoidal rule/Störmer scheme (9.3.4.14) applied to the semi-discrete wave equation:

M
~µ(j+1) − 2~µ(j) +~µ(j−1)

τ2
= −A~µ(j) , j = 1, . . . . (9.3.4.14)

Inspired by Rem. 9.3.3.5 we introduce the auxiliary variable

~ν(j+1/2) :=
~µ(j+1) −~µ(j)

τ
,

which can be read as an approximation of the velocity v := u̇ at a “half timestep”.

This leads to a timestepping scheme, which is algebraically equivalent to the explicit trapezoidal rule:

leapfrog timestepping (with uniform timestep τ > 0):

M
~ν(j+ 1

2 ) −~ν(j− 1
2 )

τ
= −A~µ(j) ,

~µ(j+1) −~µ(j)

τ
= ~ν(j+ 1

2 ) ,

j = 0, 1, . . . , (9.3.4.17)
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+ initial step ~ν(− 1
2 ) +~ν( 1

2 ) = 2~ν0 .

~µ(j−1) ~µ(j) ~µ(j+1)
~ν(j− 1

2 ) ~ν(j+ 1
2 )

t

work per step:

1× evaluation A×vector,

1× solution of linear system for M

y

Remark 9.3.4.18 (Mass lumping) Required in each step of leapfrog timestepping: solution of linear

system of equations with (large sparse) system matrix M ∈ RN,N
➣ expensive!

Trick for (bi-)linear finite element Galerkin discretization: V0,h ⊂ S0
1 (M):

use vertex based local quadrature rule

(e.g. “2D trapezoidal rule” (2.4.6.10) on triangular mesh)

∫

K
f (x)dx ≈ |K|

♯V(K) ∑
p∈V(K)

f (p) , V(K) := set of vertices of K .

(For a comprehensive discussion of local quadrature rules see Section 2.7.5)

Mass matrix M will become a diagonal matrix (due to defining equation (2.4.3.5) for nodal basis

functions, which are associated with nodes of the mesh).

We point out that this so-called mass lumping trick was was used in the finite element discretization of

Exp. 9.3.4.3.

Leapfrog vs. Crank-Nicolson

Given the possibility of mass lumping, the computational effort for leapfrog timestepping (9.3.4.17)

becomes substantially smaller than that for the Crank-Nicolson scheme (9.3.4.12), because the

latter will always involve the solution of a N × N sparse linear system of equations.

y

We cannot expect exact conservation of the total energy for leapfrog timestepping. Will it be as disap-

pointing as the Euler single-step methods in this respect?

EXPERIMENT 9.3.4.20 (Energy conservation for leapfrog) We rely on the same model problem and

spatial discretization as in Exp. 9.3.4.3. We employ leapfrog timestepping with constant timestep size

τ = 0.01 as introduced in § 9.3.4.16.

The EIGEN-based C++ codes used to conduct this experiments can be found in ➺ GitLab.
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Leapfrog is (nearly) energy conserving

(no energy drift, only small oscillations)

This behavior is explained by the deep mathemtical

theory of symplectic integrators, see [HLW02].

y

Review question(s) 9.3.4.21 (Timestepping for Semi-Discrete Wave Equations)

(Q9.3.4.21.A) Remember that Crank-Nicolson timestepping for the linear ODE

M
d2~µ

dt2
(t) + A~µ(t) = ~ϕ(t)

gives rise to the recursion

M
~µ(j+1) − 2~µ(j) +~µ(j−1)

τ2
=− 1

4 A(~µ(j−1) + 2~µ(j) +~µ(j+1))+
1
2(~ϕ(tj − 1

2 τ) +~ϕ(tj +
1
2 τ)) , j = 1, 2, . . . ,

while the Störmer-Verlet timestepping yields

M
~µ(j+1) − 2~µ(j) +~µ(j−1)

τ2
= −A~µ(j) +~ϕ(tj) .

Generalize these timestepping schemes to the second-order ODE

ü(t) = f(t, u(t)) , f : R×Rn → Rn , j = 1, 2, 3, . . . .

(Q9.3.4.21.B) We consider the linear non-autonomous ODE

d~µ

dt
(t) = A(t)~µ(t) [ ~µ(t) ∈ RN ] , (9.3.4.22)

with a skew-symmetric matrix-valued function t 7→ A(t) ∈ RN,N, that is, A(t)⊤ = −A(t). We apply

the implicit midpoint method with uniform timestep τ > 0 to discretize (9.3.4.22) in time, which produces

the sequence~µ(j)
, j = 0, 1, 2, . . .. Show that

∥∥∥~µ(j)
∥∥∥ =

∥∥∥~µ(0)
∥∥∥ for all j.

Hint. The discrete evolution operator of the implicit midpoint rule when applied to the ODE u̇ = f(t, u)
is

Ψ
t,t+τu := w: w = u + τf(t + 1

2 τ, 1
2(w + u)) .

(Q9.3.4.21.C) What is mass laumping and why is it important in the context of the leapfrog timestepping

scheme

M
~ν(j+ 1

2 ) −~ν(j− 1
2 )

τ
= −A~µ(j) ,

~µ(j+1) −~µ(j)

τ
= ~ν(j+ 1

2 ) ,

j = 0, 1, . . .

9. Second-Order Linear Evolution Problems, 9.3. Linear Wave Equations 612



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

for the method-of-lines ODE

M
{

d2

dt2~µ(t)
}
+ A~µ(t) = 0 ?

(Q9.3.4.21.D) Explain the statement

There is no drift of total energy when using leapfrog timestepping for the method-of-lines

ODE for a linear wave equation.

△

9.3.5 The Courant-Friedrichs-Levy (CFL) Condition

Video tutorial for Section 9.3.5: The Courant-Friedrichs-Levy (CFL) Condition: (46 minutes)

Download link, tablet notes

Crank-Nicolson timestepping will conserve the total energy regardless of the size τ > 0 of the timestep

and, thus, is unconditionally stable. Excellent approximate energy conservation was observed in

Exp. 9.3.4.20 for the leapfrog method. Does it also enjoy unconditional stability?

EXPERIMENT 9.3.5.1 (Blow-up for leapfrog timestepping)

Fig. 408
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✁ Exp. 9.3.4.20 repeated with τ = 0.04
Observation:

Leapfrog suffers a blow-up: exponential increase of

energies!

A similar behavior is observed with the explicit Eu-

ler scheme for the semi-discrete heat equation, in

case the timestep constraint is violated, see Sec-

tion 9.2.7.2.

y

§9.3.5.2 (Diagonalization of method-of-lines ODE → § 9.2.7.15) As in Section 9.2.7.2 the stability

analysis of leapfrog timestepping can be based on diagonalization. Recall that we can find N linearly

independent generalized eigenvectors ~ψ1, . . . ,~ψN ∈ RN solving the generalized eigenvalue problem

A~ψi = λiM~ψi , ~ψ
⊤
j M~ψi = δij , 1 ≤ i, j ≤ N , (9.2.7.16)

with positive eigenvalues λi > 0. By means of the regular square matrices

T =
[
~ψ1, . . . ,~ψN

]
∈ RN,N , (9.2.7.17)

D := diag(λ1. . . . , λN) ∈ RN,N , (9.2.7.18)

we can rewrite (9.2.7.16) as

AT = MTD , T⊤MT = I . (9.2.7.19)

where the λi > 0 are generalized eigenvalues for A~ξ = λM~ξ ➤ λi ≥ γ for all i (γ is the constant

introduced in (9.2.3.6)).
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Now, analogous to § 9.2.7.23, we recast the 2-step formulation (9.3.4.14) in terms of the transformed

coefficient vector

~η(j) = T⊤M~µ(j) ⇔ ~µ(j) = T~η(j) , j ∈ N0 : (9.3.5.3)

M
~µ(j+1) − 2~µ(j) +~µ(j−1)

τ2
= −A~µ(j) ~η:=T⊤M~µ

=⇒ ~η(j+1) − 2~η(j) +~η(j−1) = −τ2D~η(j) .

Again, we have achieved a complete decoupling of the timestepping for the eigencomponents.

η
(j+1)
i − 2η

(j)
i + η

(j−1)
i = −τ2λiη

(j)
i , i = 1, . . . , N , j = 1, 2, . . . . (9.3.5.4)

In fact, (9.3.5.4) is what we end up with then applying Störmers scheme to the scalar linear 2nd-order

ODE η̈i = −λiηi. In a sense, the commuting diagram (9.2.7.41) remains true for 2-step methods and

second-order ODEs.

(9.3.5.4) is a linear two-step recurrence formula for the sequences (η
(j)
i )

j
.

Try: η
(j)
i = ξ j for some ξ ∈ C \ {0}

Plug this into (9.3.5.4)

ξ2 − 2ξ + 1 = −τ2λiξ ⇔ ξ2 − (2− τ2λi)ξ + 1 = 0 .

⇒ two solutions ξ± = 1
2

(
2− τ2λi ±

√
(2− τ2λi)2 − 4

)
.

We can get a blow-up of some solutions of (9.3.5.4), if |ξ+| > 1 or |ξ−| > 1. From secondary school we

know Vieta’s formula

ξ+ · ξ− = 1 ⇒

{
ξ± ∈ R and ξ+ 6= ξ− ⇒ |ξ+| > 1 or |ξ−| > 1

}
,

{
ξ− = ξ∗+ ⇒ |ξ−| = |ξ+| = 1

}
,

where ξ∗+ designates complex conjugation. So the recurrence (9.3.5.4) has only bounded solution, if and

only if

discriminant D := (2− τ2λi)
2 − 4 ≤ 0 ⇔ τ ≤ 2√

λi
. (9.3.5.5)

←→ stability induced timestep constraint for leapfrog timestepping y

§9.3.5.6 (The CFL-condition)

Special setting: spatial finite element Galerkin discretization based on fixed degree Lagrangian finite ele-

ment spaces (→ Section 2.6), meshes created by uniform regular refinement.

Under these conditions a generalization of Lemma 9.2.7.30, which predicts maxi λi = O(h−2
M),
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Lemma 9.2.7.30. Behavior of generalized eigenvalues

LetM be a simplicial mesh and A, M denote the Galerkin matrices for the bilinear forms a(u, v) =∫
Ω

grad u · grad v dx and m(u, v) =
∫

Ω
u(x)v(x)dx, respectively, and V0,h := S0

p,0(M). Then

the smallest and largest generalized eigenvalues of A~µ = λM~µ, denoted by λmin and λmax, satisfy

1

diam(Ω)2
≤ λmin ≤ C , λmax ≥ Ch−2

M ,

where the “generic constants” (→ Rem. 3.3.5.8) depend only on the polynomial degree p, the

domain Ω, and the shape regularity measure ρM.

combined with (9.3.5.5) implies the following timestep constraint:

Stability of leapfrog timestepping entails τ ≤ O(hM) for hM → 0

This is known as Courant-Friedrichs-Lewy (CFL) condition y

Remark 9.3.5.7 (Geometric interpretation of CFL condition in 1D) The CFL-condition is intimately

connected with the finite speed of information propagation when viewed from a geometric angle. We

elaborate this in the following setting:

✦ 1D wave equation, (spatial) boundary conditions ignored (“Cauchy problem”),

c > 0:
∂2u

∂t2
− c2 ∂2u

∂x2
= 0 , u(x, 0) = u0(x) ,

∂u

∂t
(x, 0) = v0(x) , x ∈ R . (9.3.2.2)

✦ Linear finite element Galerkin discretization on an infinite equidistant spatial mesh M :=
{[xj−1, xj]: j ∈ Z}, xj := hj (meshwidth h), see Section 2.3.

✦ Mass lumping for computation of mass matrix, which will become h · I, see Rem. 9.3.4.18.

✦ Timestepping by Störmer scheme (9.3.4.14) with constant timestep τ > 0.

The considerations will all be local, which relieves us from worrying about the infinite mesh and the infinitely

long basis expansion vectors~µ(j) ∈ RZ for which we have the linear recursion

M
~µ(j+1) − 2~µ(j) +~µ(j−1)

τ2
= −A~µ(j) , j = 1, . . . . (9.3.4.14)

In the current setting: ☛ M = h · I by mass lumping,

☛ A is tri-diagonal , compare (2.3.3.4).

Thus, the equations for single components µ
(j)
i , i ∈ Z, of~µ(j)

can easily be extracted from (9.3.4.14):

h
µ
(j+1)
i − 2µ

(j)
i + µ

(j−1)
i

τ2
= −(A)i,i−1µ

(j)
i−1 − (A)i,iµ

(j)
i − (A)i,i+1µ

(j)
i+1 , i ∈ Z . (9.3.5.8)
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Fig. 409
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Störmer/leapfrog scheme (9.3.5.8) in stencil notation

on space-time grid
{
(xi, tj)

}
i∈Z,j∈N0

.

✁ flow of information in one step of Störmer

scheme: µ
(j+1)
i from µ

(j)
i , µ

(j)
i−1, µ

(j)
i+1, µ

(j−1)
i .

Since the method is a two-step method, information

from time-slices tj and tj−1 is needed.

Below: yellow region =̂ domain of dependence (d.o.d.) of (x̄, t̄)

Fig. 410

t

x

(x̄, t̄)

h

τ

cτ < h: numerical domain of dependence

(marked with —) contains d.o.d. �
➪ CFL-condition fulfilled

Fig. 411
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Fig. 412
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(x̄, t̄)
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τ

u0

(• =̂ coarse grid, ■ =̂ fine grid, =̂ d.o.d)

✁ 1D consideration:

sequence of equidistant space-time grids of Ω̃ with

τ = γh (τ/h = meshwidth in time/space)

If γ > CFL-constraint (here γ > c−1), then

analytical domain

of dependence
6⊂ numerical domain

of dependence

▲ initial data u0 outside numerical domain of dependence cannot influence approximation at grid point

(x̄, t̄) on any mesh no convergence !✞
✝

☎
✆CFL-condition ⇔ analytical domain of dependence ⊂ numerical domain of dependence

y

§9.3.5.9 (Gauging CFL-condition) Will the CFL-condition thwart the efficient use of leapfrog, see

Rem. 9.2.8.10? To this end we need an idea about the convergence of the solutions of the fully discrete

method:
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“Meta-theorem” 9.3.5.10. Convergene of fully discrete solutions of the wave equation

Assume that

✦ the solution of the IBVP for the wave equation (9.3.2.14) is “sufficiently smooth”,

✦ its spatial Galerkin finite element discretization relies on degree p Lagrangian finite elements

(→ Section 2.6) on uniformly shape-regular families of meshes,

✦ timestepping is based on the leapfrog method (9.3.4.17) with uniform timestep τ > 0 satisfy-

ing (9.3.5.5).

Then we can expect an asymptotic behavior of the total discretization error according to

(
τ

M

∑
j=1

‖u− uh(τ j)‖2
H1(Ω)

) 1
2 ≤C(h

p
M+τ2) , (9.3.5.11)

(
τ

M

∑
j=1

‖u− uh(τ j)‖2
L2(Ω)

) 1
2 ≤ C(h

p+1
M +τ2) , (9.3.5.12)

where C > 0 must not depend on hM, τ. L.F. is 2nd-order !

“expect”: unless lack of regularity of the solution u interferes, cf. Section 3.4, § 3.4.0.12.

As in the case of Thm. 9.2.8.5 (☞ nothing new!) we find:

total discretization error = spatial error + temporal error

§ 3.3.5.9 still applies: (9.3.5.11) does not give information about actual error, but only about the trend

of the error, when discretization parameters hM and τ are varied.

Nevertheless, as in the case of the a priori error estimates of Section 3.3.5, we can draw conclusions

about optimal refinement strategies in order to achieve prescribed error reduction.

As in Section 3.3.5 we make the assumption that the estimates (9.3.5.11) are sharp for all contributions

to the total error and that the constants are the same (!)

contribution of spatial (energy) error ≈ Ch
p
M , hM =̂ mesh width (→ Def. 3.2.1.4) ,

contribution of temporal error ≈ Cτ2 , τ =̂ timestep size .
(9.3.5.13)

This suggests the following change of hM, τ in order to achieve error reduction by a factor of ρ > 1:

reduce mesh width by factor ρ
1/p

reduce timestep by factor ρ
1/2

(9.2.8.7)
=⇒ (energy) error reduction by ρ > 1 . (9.3.5.14)

Guideline: spatial and temporal resolution have to be adjusted in tandem

Parallel zu Rem. 9.2.8.10 we may wonder whether the timestep constraint τ < O(hM) (asymptotically)

enforces small timesteps not required for accuracy:

When interested in error in energy norm (↔ H1(Ω)-norm):

Only for p = 1 (linear Lagrangian finite elements) the requirement τ < O(hM) stipulates the

use of a smaller timestep than accuracy balancing according to (9.3.5.14).
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When interested in L2(Ω)-norm:

No undue timestep constraint enforced by CFL-conditon for any (h-version) of Lagrangian

finite element Galerkin discretization.✎
✍

☞
✌

The leapfrog timestep constraint τ ≤ O(hM) does not compromise (asymptotic) efficiency, if

p ≥ 2 (p =̂ degree of spatial Lagrangian finite elements).

y

Review question(s) 9.3.5.15 (CFL-condition)

(Q9.3.5.15.A) In Rem. 9.3.5.7 you have seen the following drawing and caption

Fig. 413

t

x

(x̄, t̄)

h

τ

u0

(• =̂ coarse grid, ■ =̂ fine grid, =̂ d.o.d)

✁ 1D consideration:

sequence of equidistant space-time grids of Ω̃ with

τ = γh (τ/h = meshwidth in time/space)

If γ > CFL-constraint (here γ > c−1), then

analytical domain

of dependence
6⊂ numerical domain

of dependence

Explain with your own words all elements of the drawing and the statement

analytical domain of dependence 6⊂ numerical domain of dependence

(Q9.3.5.15.B) In the spirit of the methods of lines we perform the spatial semi-discretization of a linear

wave equation on a 2D spatial domain by means of piecewise linear Lagrangian finite elements, trial/test

space S0
1 (M), on a sequence of meshes generated by uniform regular refinement.

We convert the resulting method-of-lines ODE

M
d2~µ

dt2
(t) + A~µ(t) = 0

into a first-order form by introducing the auxiliary coefficient vector~ν(t) := M−1~̇µ(t).

Describe the stability-induced timestep constraints we face when applying explicit and implicit Euler

timestepping with uniform timestep τ > 0 for the temporal discretization of that first-order ODE. Give a

bound for the timestep τ in terms of the meshwidth hM of the finite-element mesh.

(Q9.3.5.15.C) Explain the following statement:

Leapfrog timestepping for the linear wave equation discretized in space by means of linear

finite elements is efficient despite the CFL-condition.
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“Meta-theorem” 9.3.5.10. Convergene of fully discrete solutions of the wave equation

Assume that

✦ the solution of the IBVP for the wave equation (9.3.2.14) is “sufficiently smooth”,

✦ its spatial Galerkin finite element discretization relies on degree p Lagrangian finite ele-

ments (→ Section 2.6) on uniformly shape-regular families of meshes,

✦ timestepping is based on the leapfrog method (9.3.4.17) with uniform timestep τ > 0
satisfying (9.3.5.5).

Then we can expect an asymptotic behavior of the total discretization error according to

(
τ

M

∑
j=1

‖u− uh(τ j)‖2
H1(Ω)

) 1
2 ≤C(h

p
M+τ2) , (9.3.5.11)

(
τ

M

∑
j=1

‖u− uh(τ j)‖2
L2(Ω)

) 1
2 ≤ C(h

p+1
M +τ2) ,

where C > 0 must not depend on hM, τ. L.F. is 2nd-order !

△

Learning Outcomes

After having studied this section you should

• know the transient heat equation along with suitable initial and boundary conditions for it.

• know the wave equation governing the movement of a taut elastic membrane.

• be able to state the spatial variational formulation of given second-order linear parabolic and hyper-

bolic IBVPs.

• understand the principle of the method of lines and how to apply it to convert a second-order linear

parabolic/hyperbolic IBVP into an ordinary differential equation.

• be able to apply a Runge-Kutta timestepping scheme to a spatially semi-discrete linear IBVP.

• why semi-discrete second-order linear parabolic IBVP are “stiff” and why this calls for implicit

timestepping based on efficiency considerations.

• be able to predict the convergence of a full discretization of a second-order linear parabolic/hyper-

bolic IBVP.

• know Störmer/leapfrog timestepping scheme for the linear wave equation.
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Chapter 10

Convection-Diffusion Problems

As a new aspect this chapter introduces linear transport into the stationary and time-dependent scalar

boundary value problems that we have have seen in Chapter 1 and Chapter 9. Transport is due to a given

velocity field. Again, as in Section 1.6 and Section 9.2.1 heat conduction phenomena provide palpable

model problems.

Contents
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10.1.2 Heat Convection and Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 655
10.1.3 Incompressible Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
10.1.4 Time-Dependent (Transient) Heat Flow in a Fluid . . . . . . . . . . . . . . . 661

10.2 Stationary Convection-Diffusion Problems: Numerical Treatment . . . . . . . . . 663

10.2.1 Singular Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
10.2.2 Upwinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

10.3 Discretization of Time-Dependent (Transient) Convection-Diffusion IBVPs . . . 685

10.3.1 Convection-Diffusion IBVPs: Method of Lines . . . . . . . . . . . . . . . . . 685
10.3.2 Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
10.3.3 Lagrangian Split-Step Method . . . . . . . . . . . . . . . . . . . . . . . . . . 691
10.3.4 Semi-Lagrangian Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700

§10.0.0.1 (Prerequisites for this chapter) To be able to absorb the contents of this chapter easily you

should be familiar with the following subjects:

• The derivation and theory behind the variational formulation of 2nd-order elliptic BVP from Chapter 1,

• the basics of Galerkin discretization and its use for the finite-element discretization of elliptis BVPs,

as covered in Section 2.2, Section 2.5, and Section 2.6,

• in particular the finite-element method in one spatial dimension from Section 2.3 and its interpreta-

tion as a finite-difference method, see Section 4.1.1,

• the method-of-lines policy for the full discretization of evolution problems as introduced in Sec-

tion 9.2.4 and Section 9.2.7.

y

10.1 Heat conduction in a fluid

In the sequel denote by Ω ⊂ Rd a bounded computational domain, d = 1, 2, 3, cf. the discussion in

§ 1.2.1.14.
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To begin with we develop a mathematical model for stationary fluid flow, for instance, the steady streaming

of water.

10.1.1 Modeling Fluid Flow

Video tutorial for 10.1.1: Modeling Fluid Flow: (13 minutes) Download link, tablet notes

§10.1.1.1 (Flow fields and streamlines)

The key quantity is a flow field:

v : Ω 7→ Rd

A natural assumption is that

v is continuous, v ∈ (C0(Ω))d

In fact, we will require that v is uniformly Lipschitz

continuous according to Ass. 9.2.5.4, but this is a

mere technical requirement.

Visualization of a flow field as a vector field ✄

Fig. 414

Interpretation of point values of flow field: v(x) =̂ fluid velocity at point x ∈ Ω

➣ v corresponds to a velocity field!

Fig. 415

Given a flow field v ∈ (C0(Ω))d we can consider the

autonomous initial value problems

ẏ = v(y) , y(0) = x0 . (10.1.1.2)

Its solution t 7→ y(t) defines the path travelled by a

particle carried along by the fluid, a particle trajec-

tory, also called a streamline.

✁ particle trajectories (streamlines) in flow field of

Fig. 415.

(∗ =̂ initial particle positions)

y

§10.1.1.3 (Flow map) Via the ordinary differential equation (10.1.1.2) every flow field spawns an as-

sociated evolution operator according to § 9.2.5.8/[NCSE]. Thus a flow field induces a transformation

(mapping) of space! To explain this, let us temporarily for this § make the following assumption.

Assumption 10.1.1.4. No in/outflow

The flow does neither enter nor leave Ω.
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This assumption holds for fluid flow in a closed con-

tainer. Mathematically, it can be expressed as

v(x) · n(x) = 0 ∀x ∈ ∂Ω , (10.1.1.5)

that is, the flow is always parallel to the wall (= bound-

ary) of the “container” Ω.

All particle trajectories stay inside Ω and they ex-

ist for all times!

Flow field satisfying (10.1.1.5) ✄

Fig. 416

x0

Φ
tx0

Now we fix some “time of interest” t ∈ R and, adopting the notations used when dealing with evolution

operators in § 9.2.5.8, we write

Φ
t :

{
Ω 7→ Ω

x0 7→ y(t)
, t 7→ y(t) solution of IVP (10.1.1.2) , (10.1.1.6)

For fixed time t this is a well-defined mapping of Ω to itself. This one-parameter family of mappings(
Φ

t
)

t∈R
is known as flow map. It is a special instance of an evolution operator and inherits its basic

properties like (9.2.5.11), which read in the current setting

Φ
0x0 = x0 , Φ

s(Φtx0) = Φ
s+tx0 ∀x0 ∈ Ω , ∀s, t ∈ R . (10.1.1.7)

Flow maps can be visualized through their effect on “control volumes”, which are subsets of Ω.

Fig. 417
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snapshots of Φ
t(V) for control volume V

Φ
τ(V) =̂ volume occupied at time t = τ by particles that occupied V ⊂ Ω at time t = 0. y

Review question(s) 10.1.1.8 (Modeling fluid flow)

(Q10.1.1.8.A) Assume that a flow map Φ : [0, T]×Ω→ Ω, Ω ⊂ Rd, is given, of which we know that

it is induced by a continuous differentiable stationary velocity field v : Ω→ Rn. Give a formula that

recovers v from Φ.
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(Q10.1.1.8.B) Argue why a particle trajectory that starts inside the bounded computational domain

Ω ⊂ Rd can never leave Ω, if the driving (continuously differentiable) velocity field satisfies

v · n = 0 on ∂Ω ,

where n : ∂Ω→ Rd is the exterior unit normal vector field.

(Q10.1.1.8.C) Consider the unit disk domain Ω := {x ∈ R2 : ‖x‖2 < 1} and the velocity field

v : Ω→ R2 , v(x) = f (‖x‖2)

[−x2

x1

]
, x =

[ x1
x2

]
∈ Ω ,

for a smooth positive function f : [0, 1]→ R+. Draw the induced streamlines.

△

10.1.2 Heat Convection and Diffusion

Video tutorial for Section 10.1.2: Heat Convection and Diffusion: (10 minutes) Download link,

tablet notes

We develop a mathematical description of heatflow in a stationary flow of a homogeneous fluid described

by a given flow/velocity field v : Ω ⊂ Rd 7→ Rd assumed to be Lipschitz continuous. As in Section 1.6 the

configuration space will a function space of temperature distributions on Ω. Hence the principal unknown

in our PDE model will be a function u : Ω 7→ R, which describes the stationary temperature distribution

in a fluid moving according to a given stationary (= independent of time) flow field v : Ω 7→ Rd.

Our goal is to derive PDE-based continuum models in the form of boundary value problems whose solu-

tions provide the temperature distribution u. The considerations will run parallel to those of Section 1.6,

which deals with heat conduction in a solid.

§10.1.2.1 (Energy balance law) We adapt the considerations of Section 1.6 that led to the stationary heat

equation. Write j : Ω→ Rd for the heat flux (→ § 1.6.0.1) and recall a fundamental physical principle

governing heat flow:★

✧

✥

✦

Conservation of energy

∫

∂V
j · n dS =

∫

V
f dx for all “control volumes” V . (1.6.0.3)

power flux through surface of V heat production inside V

We follow exactly the same steps as in § 1.6.0.7. From (1.6.0.3) by Gauss’ theorem Thm. 1.5.2.4 we

find
∫

V

div j(x)dx =
∫

V

f (x)dx for all “control volumes” V ⊂ Ω . (10.1.2.2)

Now appeal to another version of the fundamental lemma of the calculus of variations, see Lemma 1.5.3.4,

this time employing piecewise constant test functions. This yields the local form of energy conservation:

div j = f in Ω . (1.6.0.8)

y
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§10.1.2.3 (Heat flux law) In a moving fluid a power flux through a fixed surface is already caused by

the sheer fluid flow carrying along stored thermal energy (heat), which, for simple materials, is roughly

proportional to the temperature. This is reflected in a modified Fourier’s law (1.6.0.5):★

✧

✥

✦

Fourier’s law in moving fluid

j(x) = −κ grad u(x) + v(x)ρu(x) , x ∈ Ω . (10.1.2.4)

diffusive heat flux

(due to spatial variation of temperature)

convective heat flux

(due to fluid flow)

with ✦ κ > 0 =̂ heat conductivity ([κ] = 1 W
Km ),

✦ ρ > 0 =̂ volumetric heat capacity ([ρ] = J
K m3 ),

both assumed to be constant (in contrast to the models of Section 1.6 and Section 9.2.1). y

Remark 10.1.2.5. Unlike in (1.6.0.5), adding a constant offset to the temperature in (10.1.2.4) now has

an impact on the heat flux. Therefore, (10.1.2.4) should be written as

j(x) = −κ grad u(x) + v(x)
(
ρu(x) + U∗) , (10.1.2.6)

with U∗ > 0, [U∗] = J
m3 , the internal energy of the fluid at temperature u ≡ 0. If u is the absolute tem-

perature, we can set U∗ := 0. y

§10.1.2.7 (Convection-diffusion equation for temperature) Next, as in § 1.6.0.7, combine the conser-

vation law (1.6.0.8) and the local flux law (10.1.2.4):

div j = f + j(x) = −κ grad u(x) + v(x)ρu(x)

−div(κ grad u) + div(ρv(x)u) = f in Ω . (10.1.2.8)

=̂ Linear scalar convection-diffusion equation (CDE) (for unknown temperature u = u(x))

Terminology :

−div(κ grad u) + div(ρv(x)u) = f .
↓ ↓

diffusive term convective term

(2nd-order) (1st-order)

The partial differential equation (10.1.2.8) is still belongs to the class of scalar linear second-order elliptic

PDEs. y

§10.1.2.9 (Boundary conditions) The 2nd-order elliptic PDE (10.1.2.8) has to be supplemented with

exactly one boundary condition on any part of ∂Ω, see Sect. 1.7, Ex. 1.7.0.10. This can be any of the

(“elliptic”) boundary conditions introduced in Sect. 1.7:

✦ Dirichlet boundary conditions: u = g ∈ C0(∂Ω) on ∂Ω (fixed surface temperatur),

✦ Neumann boundary conditions: j · n = −h on ∂Ω (fixed heat flux, j as in (10.1.2.4)),
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✦ (non-linear) radiation boundary conditions: j · n = Ψ(u) on ∂Ω (temperature dependent heat flux,

radiative heat flux).

In fact, it is worth remembering the following guideline:

Suitable boundary conditions fitting a PDE are determined by the highest-order term.

In the case of the convection-diffusion equation the highest-order term is the second-order diffusion oper-

ator. y

Review question(s) 10.1.2.10 (Heat conduction in a fluid)

(Q10.1.2.10.A) The heat flux in a fluid moving with the stationary velocity v is given by

j(x) = −κ grad u(x) + v(x)ρu(x) , x ∈ Ω . (10.1.2.4)

• Explain the meaning of κ, ρ, and u.

• Why can there be a heat flux even for u ≡ const?

(Q10.1.2.10.B) Write down the scalar linear convection-diffusion equation

−div(κ grad u) + div(ρv(x)u) = f in Ω ⊂ Rd , (10.1.2.8)

for the special case d = 1, Ω =]a, b[, a < b.

△

10.1.3 Incompressible Fluids

Video tutorial for Section 10.1.3: Incompressible Fluids: (20 minutes) Download link,

tablet notes

For the sake of simplicity we will mainly consider incompressible fluids.

Definition 10.1.3.1. Incompressible flow field

A fluid flow is called incompressible, if the associated flow map Φ
t is volume preserving,

|Φt(V)| = |Φ0(V)| = |V| for all sufficiently small t > 0, and for all control volumes V .

§10.1.3.2 (A criterion for incompressibility) Can incompressibility be read off the velocity field v of the

flow?

To investigate this issue, again assume the “no flow through the boundary condition” of Ass. 10.1.1.4 and

recall that the flow map Φ
t from (10.1.1.6) satisfies

∂

∂t
Φ(t, x) = v(Φ(t, x)) , x ∈ Ω , t > 0 . (10.1.3.3)

Here, in order to make clear the dependence on independent variables, time occurs as an argument of Φ

in brackets, on par with x.
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Next, formal differentiation w.r.t. x and change of order of differentiation yields a differential equation for

the Jacobian DxΦ
t,

(10.1.3.3) ⇒ ∂

∂t
(

Jacobian of Φ ∈ Rd,d

DxΦ)(t, x) =

Jacobian of v ∈ Rd,d

Dv(Φ(t, x))(DxΦ)(t, x) . (10.1.3.4)

Second strand of thought: apply transformation formula for integrals (0.3.2.32), [STRLN09]: for fixed t > 0

|Φ(t, V)| =
∫

Φ(t,V)
1 dx =

∫

V
|det(DxΦ)(t, x̂)|dx̂ . (10.1.3.5)

Volume preservation by the flow map is equivalent to

t 7→ |Φ(t, V)| = const. ⇐⇒ d

dt
|Φ(t, V)| = 0 ,

for any control volume V ⊂ Ω.

(10.1.3.5) ⇒ d

dt
|Φ(t, V)| =

∫

V

∂

∂t
|det(DxΦ)(t, x̂)|dx̂ . (10.1.3.6)

The next theorem is a “chain rule for determinants”.

Theorem 10.1.3.7. Differentiation formula for determinants

Let S : I ⊂ R 7→ Rn,n be a smooth matrix-valued function. If S(t0) is regular for some t0 ∈ I, then

d

dt
(det ◦S)(t0) = det(S(t0)) tr(

dS

dt
(t0)S

−1(t0)) ,

where det : Rn,n → R is the matrix determinant and tr stands for the trace of a matrix.

Proof. We start the rather formal “proof” from the Taylor expansion of t 7→ S(t) around t = t0;

S(t0 + τ) = S(t0) + τṠ(t0) + O(τ2) for τ → 0 , Ṡ(t0) :=
dS

dt
(t0) .

As S(t0) is invertible, we can thus recast

det(S(t0 + τ)) = det(S(t0)) det(I + τS(t0)
−1Ṡ(t0) + O(τ2)) .

For a fixed matrix M = [m1, . . . , mn] ∈ Rn,n with columns mj ∈ Rn we now study the expression

det(I + τM + O(τ2)) = det(e1 + τm1, . . . , en + τmn) + O(τ2)

(∗)
= 1 +

n

∑
j=1

τ det(e1, . . . , ej−1, mj, ej+1, . . . , en) + O(τ2)

= 1 + τ
n

∑
j=1

(M)j,j + O(τ2) for τ → 0 .

Here, in step (∗), we exploited that the determinant is linear in each argument.
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We apply the formula of the theorem with S(t) := DxΦ(t, x̂), x̂ ∈ Ω:

∂

∂t
det(DxΦ)(t, x̂) = det

(
(DxΦ)(t, x̂)

)
tr(

∂

∂t
DxΦ(t, x̂)DxΦ(t, x̂)−1)

(10.1.3.4)
= det(DxΦ)(t, x̂) tr(Dv(Φ(t, x̂)) (DxΦ)(t, x̂)(DxΦ)−1(t, x̂)︸ ︷︷ ︸

=I

)

= det(DxΦ)(t, x̂) div v(Φ(t, x̂)) ,

because the divergence of a vector field v is just the trace of its Jacobian Dv! From (10.1.1.7) we know

that for small t > 0 the Jacobian DxΦ(t, x̂) will be close to I and, therefore, det(DxΦ)(t, x̂) 6= 0 for

t ≈ 0. Thus, for small t > 0 we conclude

d

dt
|Φ(t, V)| = 0 ⇔ div v(Φ(t, x̂)) = 0 ∀x̂ ∈ V .

Since this is to hold for any control volume V, the final equivalence is

d

dt
|Φ(t, V)| = 0 ∀ control volumes V ⇔ div v = 0 in Ω .

Theorem 10.1.3.8. Divergence-free velocity fields for incompressible flows

A stationary fluid flow in Ω ⊂ Rd is incompressible (→ Def. 10.1.3.1), if and only if its associated

velocity field v = [v1, . . . , vd]
⊤ : Ω→ Rd satisfies div v = ∑

d
j=1

∂vj

∂xj
= 0 everywhere in Ω.

y

§10.1.3.9 (Stationary heat equation in an incompressible fluid) Now let us assume the incompressibil-

ity condition div v = 0. Note that for d = 1 this boils down to dv
dx = 0 and implies v = const. Let us see

how the linear scalar convection-diffusion equation

−div(κ grad u) + div(ρv(x)u) = f in Ω , (10.1.2.8)

can be transformed in this case.

We we can use the product rule in higher dimensions of Lemma 1.5.2.1:

div(ρv u)
Lemma 1.5.2.1

= ρ(u div v + v · grad u)
div v=0
= ρv · grad u . (10.1.3.10)

Therefore, we can rewrite the scalar convection-diffusion equation (10.1.2.8) for an incompressible flow

field as

−div(κ grad u) + div(ρv(x)u) = f in Ω

← use div v = 0

−κ∆u + ρv · grad u = f in Ω . (10.1.3.11)

y

Supplement 10.1.3.12 (Maximum principle for convection-diffusion equations)When carried along

by the flow of an incompressible fluid, the temperature cannot be increased by local compression, the
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effect that you can witness when pumping air. Hence, only sources/sinks can lead to local extrema of the

temperature.

Now recall the discussion of the physical intuition behind the maximum principle of Thm. 3.7.1.2. These

considerations still apply to stationary heat flow in a moving incompressible fluid.

Theorem 10.1.3.13. Maximum principle for scalar 2nd-order convection diffusion equations

→ [EVA98]

Let v : Ω 7→ Rd be a continuously differentiable vector field and u ∈ C0(Ω) ∩ C2(Ω). Then there

holds the maximum principle

−∆u + v · grad u ≥ 0 =⇒ min
x∈∂Ω

u(x) = min
x∈Ω

u(x) ,

−∆u + v · grad u ≤ 0 =⇒ max
x∈∂Ω

u(x) = max
x∈Ω

u(x) .

y

Review question(s) 10.1.3.14 (Incompressible fluids)

(Q10.1.3.14.A) Again, consider the unit disk domain Ω := {x ∈ R2 : ‖x‖2 < 1} and the velocity field

v : Ω→ R2 , v(x) = f (‖x‖2)

[−x2

x1

]
, x =

[ x1
x2

]
∈ Ω ,

for a smooth positive function f : [0, 1]→ R+. For what f does v satisfy the incompressibility condition

div v = 0?

Hint: Use div v = ∂v1
∂x1

+ ∂v2
∂x2

and

grad{x 7→ ‖x‖2} =
x

‖x‖2

, x 6= 0 .

(Q10.1.3.14.B) Show that for an incompressible, homogeneous (none of the material coefficients depends

on x) fluid whose temperature is constant in Ω, the heat flowing into Ω is equal to the heat flowing out

of Ω.

△

10.1.4 Time-Dependent (Transient) Heat Flow in a Fluid

Video tutorial for Section 10.1.4: Time-Dependent (Transient) Heat Flow in a Fluid: (8 min-

utes) Download link, tablet notes

In Section 9.2.1 we generalized the laws of stationary heat conduction derived in Section 1.6 to time-

dependent temperature distributions u = u(x, t) sought on a space-time cylinder Ω̃ := Ω×]0, T[. The

same ideas apply to heat conduction in a fluid, whose motion is given by a time-dependent velocity field

v = v(x, t).

• Start from energy balance law
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✬

✫

✩

✪

Conservation of energy :

d

dt

∫

V
ρu dx +

∫

∂V
j · n dS =

∫

V
f dx for all “control volumes” V . (9.2.1.3)

energy stored in V power flux through ∂V heat generation in V

and convert it into local form

∂

∂t
(ρu)(x, t) + (divx j)(x, t) = f (x, t) in Ω̃ . (9.2.1.5)

• Combine it with the extended Fourier’s law

j(x, t) = −κ grad u(x, t) + v(x, t)ρu(x, t) , x ∈ Ω . (10.1.2.4)

Note that the velocity field is allowed to change with time: v = v(x, t).

∂

∂t
(ρu)− div(κ grad u) + div(ρv(x, t)u) = f (x, t) in Ω̃ := Ω×]0, T[ . (10.1.4.1)

For details and notations refer to Section 9.2.1.

This PDE has to be supplemented with

• boundary conditions (as in the stationary case, see Sect. 1.7),

• the initial condition u(x, 0) = u0(x), x ∈ Ω, (same as for pure diffusion, see Sect. 9.2.1).

Under the assumption divx v(x, t) = 0 of incompressibilty (→ Def. 10.1.3.1 and Thm. 10.1.3.8) and in

the case of constant (in space) coefficients (10.1.4.1) is equivalent to, cf. (10.1.3.10),

∂
∂t (ρu)− κ∆u + ρv(x, t) · grad u = f (x, t) in Ω̃ := Ω×]0, T[ . (10.1.4.2)

Remark 10.1.4.3 (Conversion into non-dimensional form by scaling → Rem. 1.2.1.25) Let us elab-

orate how to cast (10.1.4.2) into non-dimensional form, a procedure known as scaling. The first step

consists of fixing reference quantities:

• reference length l0, [l0] = 1m,

• reference time span t0, [t0] = 1s,

• reference temperature T0, [T0] = 1K,

• reference volumetric heat capacity ρ0, [ρ0] =
J

Km3

Here we choose l0 and t0 such that vmax =
l0
t0

, vmax := max
x,t
‖v(x, t)‖.

A hint on how many reference quantities are at our disposal is offered by considering the number of

different basic SI units relevant for the model. Here those are 1K, 1m, 1s, 1J.

Then we introduce the dimensionless temperature

ũ(ξ, τ) := u(l0ξ, t0τ) , ξ ∈ R3, τ ∈ R (“pure numbers”) .
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By the chain rule we obtain

gradξ ũ =
l0
u0

gradx u(x, t) ,

∆ξ ũ =
l2
0

u0
∆xu(x, t) ,

∂

∂τ
ũ =

t0

u0

∂

∂t
u(x, t) .

These expressions can be inserted into (10.1.4.2). In the case of constant coefficients ρ, κ, and ρ0 := ρ,

after division by ρ0 and u0 we arrive at

∂

∂τ
ũ− t0κ

l2
0ρ0

∆ξ ũ +
v

vmax
gradξ ũ =

t0

l0ρ0
f .

Check that
t0κ
l2
0ρ0

and
t0

l0ρ0
f really are dimensionless! y

Review question(s) 10.1.4.4 (Transient heat flow in a fluid)

(Q10.1.4.4.A) Write down the scalar linear transient heat equation describing the evolution of a tempera-

ture distribution in a moving incompressible, homogeneous fluid in one spatial dimension, d = 1.

△

10.2 Stationary Convection-Diffusion Problems: Numerical Treat-

ment

As model problems we use boundary value problems for the PDEs (10.1.3.11) modelling stationary heat

flow in an incompressible fluid with prescribed temperature at “walls of the container” (↔ Dirichlet bound-

ary conditions):

−κ∆u + ρv(x) · grad u = f in Ω , u = 0 on ∂Ω .

We first perform scaling equivalent to a choice of physical units. This makes the equation non-dimensional

by fixing “reference length”, “reference time interval”. “reference temperature”, “reference power”, see

Rem. 10.1.4.3 on page 662. As elaborated in that remark, scaling produces the following boundary value

problem for non-dimensional quantities, where ‖v‖L∞(Ω) ≤ 1, and ǫ := t0κ
l2
0ρ0

, see Rem. 10.1.4.3 for the

choice of reference quantities t0, l0, ρ0:

−ǫ∆u + v(x) · grad u = f in Ω , u = 0 on ∂Ω . (10.2.0.1)

diffusive term

(2nd-order term)

convective term

(1st-order term)

Here, ǫ > 0, ‖v‖L∞(Ω) = 1, and div v = 0 → incompressible fluid, see Def. 10.1.3.1 .

§10.2.0.2 (Variational formulation for convection-diffusion BVP) The standard “4-step approach” of

Sect. 1.8 can be directly applied to BVP (10.2.0.1) with one new twist:

10. Convection-Diffusion Problems, 10.2. Stationary Convection-Diffusion Problems: Numerical Treatment 630



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

Do not use integration by parts (Green’s formula, Thm. 1.5.2.7) on convective terms!

variational formulation for BVP (10.2.0.1):

u ∈ H1
0(Ω): ǫ

∫

Ω

grad u · grad w dx +
∫

Ω

(v · grad u)w dx

︸ ︷︷ ︸
bilinear form a(u,w)

=
∫

Ω

f (x)w(x)dx

︸ ︷︷ ︸
linear form ℓ(w)

∀w ∈ H1
0(Ω) .

(10.2.0.3)

This is a linear variational problem of the form (1.4.1.7), see Section 1.4.1.

Obviously, the bilinear form a is not symmetric, see (1.2.3.4).

➥ a does not induce an energy norm (→ Def. 1.2.3.34)

As replacement for the energy norm we use the H1(Ω)-(semi)norm (→ Def. 1.3.4.3)

In this case we have to make sure that a fits the chosen norm in the sense that it satisfies

∃C > 0: |a(u, v)| ≤ C|u|H1(Ω)|v|H1(Ω) ∀u, v ∈ H1
0(Ω) . (10.2.0.4)

This property is phrased as follows: (10.2.0.4) =̂ a is continuous on H1(Ω), cf. (2.2.0.3).

It is not difficult to establish continuity for the concrete bilinear form [a] from (10.2.0.3). By the

Cauchy-Schwarz inequality for integrals (1.3.4.15) we find for all u, v ∈ H1
0(Ω)

|a(u, v)| ≤ ‖v‖L∞(Ω)|u|H1(Ω)‖v‖L2(Ω)

Thm. 1.3.4.17

≤ diam(Ω)‖v‖L∞(Ω)|u|H1(Ω)|v|H1(Ω) ,

which confirms (10.2.0.4). Next we report a surprising observation: the bilinear form a from (10.2.0.3) is

positive definite (→ Def. 1.2.3.26)! This can be verified by integration by parts

∫

Ω

(v · grad u) u dx =
∫

Ω

(v u) · grad u dx

Green’s formula
= −

∫

Ω

div(v u) u dx +
∫

∂Ω

u2
︸︷︷︸
=0

v · n dS

(1.5.2.2) & div v=0
= −

∫

Ω

(v · grad u) u dx .

a(u, u) = ǫ
∫

Ω
‖grad u‖2 dx > 0 ∀u ∈ H1

0(Ω) \ {0} . (10.2.0.5)

From this and (10.2.0.4) we can conclude existence and uniqueness of solutions of the BVP (10.2.0.1)

in the Sobolev space H1
0(Ω). This is a consequence of a generalization of the theory presented in

Rem. 1.3.3.9 known as inf-sup condition, see [BRA07]. y

Review question(s) 10.2.0.6 (Stationary convection-diffusion problems)

(Q10.2.0.6.A) State a weak formulation of the boundary value problem

−∆u + div(v(x)u) = f in Ω , u = 0 on ∂Ω .
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(Q10.2.0.6.B) For a bounded computational domain Ω ⊂ Rd, d = 2, 3, state the boundary value problem

in strong (PDE) form induced by the variational problem

u ∈ H1(Ω): ǫ
∫

Ω

grad u · grad w dx +
∫

Ω

(v · grad u)w dx

︸ ︷︷ ︸
bilinear form a(u,w)

=
∫

Ω

f (x)w(x)dx

︸ ︷︷ ︸
linear form ℓ(w)

∀w ∈ H1(Ω) .

Here, f ∈ C0(Ω) and v ∈ (C1(Ω))d.

Hint. Through the customary two-step approach first extract the PDE by testing with compactly sup-

ported smooth functions and then the boundary conditions by testing with general w.

(Q10.2.0.6.C) Let Ω ⊂ Rd, d = 2, 3, be a bounded computational domain. For f ∈ C0(Ω) and

v ∈ (C1(Ω))d find the boundary value problem in strong (PDE) form induced by the variational prob-

lem

u ∈ H1
0(Ω): ǫ

∫

Ω

grad u · grad w dx +
∫

Ω

u(v · grad w)dx =
∫

Ω

f (x)w(x)dx ∀w ∈ H1
0(Ω) .

Hint. Here we face essential boundary conditions.

△

10.2.1 Singular Perturbation

Video tutorial for Section 10.2.1: Singular Perturbation: (32 minutes) Download link,

tablet notes

We imagine a “fast-moving” incompressible fluid such that heat transport by convection dominates heat

diffusion. This amounts to the situtation ǫ≪ ‖v‖L∞(Ω) in the dimensionless stationary heat equation

−ǫ∆u + v(x) · grad u = f in Ω , u = 0 on ∂Ω . (10.2.0.1)

EXAMPLE 10.2.1.1 (1D convection-diffusion boundary value problem) We study the solution of

(10.2.0.1) in one spatial dimension, d = 1.

−ǫ
d2uǫ

dx2
+

duǫ

dx
= 1 in Ω , (10.2.1.2)

uǫ(0) = 0 , uǫ(1) = 0 ,

uǫ(x) = x +
exp(−x/ǫ)− 1

1− exp(−1/ǫ)
. (10.2.1.3)

For ǫ≪ 1 we encounter a boundary layer at x = 1.

Pointwise limit:

lim
ǫ→0

uǫ(x)→ x ∀0 < x < 1 .

Fig. 419
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Obviously, the pointwise limit u0(x) = x for ǫ → 0 solves the differential equation
du0
dx = 1 (“limit equa-

tion”), which can be obtained from (10.2.1.2) by simply setting ǫ := 0.
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y

“Limit problem” for (10.2.0.1) and fast flow: ignore diffusion ➣ set ǫ = 0:

(10.2.0.1)

ǫ=0

v(x) · grad u = f (x) in Ω . (10.2.1.4)

Case d = 1 (Ω =]0, 1[, v = 1)

(10.2.1.4)

d=1 du

dx
(x) = f (x) ⇒ u(x) =

∫
f dx + C . (10.2.1.5)

What about this constant C?

If v = 1↔ fluid flows “from left to right”, so we should integrate the source from 0 to x:

u(x) = u(0) +

x∫

0

f (s)ds =

x∫

0

f (s)ds , (10.2.1.6)

because u(0) = 0 by the boundary condition u = 0 on ∂Ω. If v = −1 we start the integration at x = 1.

Note that this makes the maximum principle of Thm. 10.1.3.13 hold.

§10.2.1.7 (The method of characteristics) For d > 1 we can solve (10.2.1.4) by

the method of characteristics:

To motivate it, be aware that (10.2.1.4) describes the pure transport of a temperature distribution in the

velocity field v, that is, the heat/temperature is just carried along particle trajectories and changes only

under the influence of heat sources/sinks along that trajectory.

Denote by u the solution of (10.2.1.4) and recall the differential equation (10.1.1.2) for a particle trajectory,

streamline ODE:
dy

dt
(t) = v(y(t)) , y(0) = x0 . (10.1.1.2)

d

dt
u(y(t)) = grad u(y(t)) · d

dt
y(t) = grad u · v(y(t)) (10.2.1.4)

= f (y(t)) .

➣ Compute u(y(t)) by integrating source f along particle trajectory/streamline!

u(y(t)) = u(x0) +
∫ t

0
f (y(s)) ds (10.2.1.8)

A rule for choosing the “starting point” x0 on the boundary of Ω will be given below in § 10.2.1.10.

Return to case d = 1. In general, a solution u(x) from (10.2.1.5) will not satisfy the boundary condition

u(1) = 0! Also for u(x) from (10.2.1.8) the homogeneous boundary conditions may be violated where

the particle trajectory leaves Ω!

In the limit case ǫ = 0 not all boundary conditions of (10.2.0.1) can be satisfied.

Notion 10.2.1.9. Singularly perturbed problem

A boundary value problem depending on a parameter ǫ ≈ ǫ0 is called singularly perturbed, if the

limit problem for ǫ→ ǫ0 is not compatible with the boundary conditions.
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Especially in the case of 2nd-order elliptic boundary value problems:

Singular perturbation = 1st-order terms become dominant for ǫ→ ǫ0

In mathematical terms, singular perturbation for boundary values for PDEs is defined as a change of

type of the PDE for ǫ = 0: in the case of (10.2.0.1) the type changes from elliptic to hyperbolic, see

Suppl. 1.1.0.1.

§10.2.1.10 (Respecting the flow of information) How can we pick the subsets of boundary data which

remain relevant for the pure transport limit problem?

The direction of the flow field v : Ω→ Rd determines the direction of flow of information

This is clear in the context of heat conduction in a moving fluid: the temperature of fluid particles entering

the domain Ω can be set, but not the temperature of those leaving Ω. We rephrase this as a general rule.

For the pure transport problem v · grad u = f Dirichlet boundary conditions can be imposed only on

the inflow boundary part

Γin := {x ∈ ∂Ω: v(x) · n(x) < 0} . (10.2.1.11)

but not on its complement in ∂Ω, the outflow boundary part

Γout := {x ∈ ∂Ω: v(x) · n(x) > 0} . (10.2.1.12)

We point out that this rule has already been applied in (10.2.1.6) for d = 1.

Fig. 420 Γin

Γin Γout

Γout

Illustration for d = 2:

✁ Inflow and outflow boundary parts Γin and Γout for

a particular flow field.

ǫ > 0: Dirichlet boundary conditions can be imposed

everywhere on ∂Ω

ǫ = 0: Dirichlet boundary conditions can be imposed

only on the inflow boundary Γin.

y

Remark 10.2.1.13 (Closed streamlines)
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A special situation ✄

→ velocity field

—: Streamline connecting Γin and Γout

—: Closed streamline

(recirculating flow)

On a closed streamline we cannot find a point

x0 ∈ Γin, which renders the solution formula

(10.2.1.8) meaningless.

Fig. 421
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In the case of closed streamlines the stationary pure transport problem fails to have a unique solution:

on a closed streamline and for f ≡ 0 the solution u can attain “any” value, because there is no boundary

value to fix u. y

Review question(s) 10.2.1.14.

(Q10.2.1.14.A) What is meant by the statement that a parameter-dependent boundary value problem is

singularly perturbed?

(Q10.2.1.14.B) Discuss to what extent the boundary value problem

−ǫ∆u + u = f in Ω , u = 0 on ∂Ω ,

is singularly perturbed in the limit ǫ→ 0.

(Q10.2.1.14.C) We consider the pure transport problem

[
1
1

]
· grad u = 0 in Ω :=]0, 1[2 .

with Dirichlet boundary conditions on the inflow boundary part Γin.

• Describe Γin.

• Which solution does the method of characteristics yield, if we prescribed Dirichlet boundary con-

ditions

u = 0 on ]0, 1[×{0} , u = 1 on {0}×]0, 1[ ?

△

10.2.2 Upwinding

Video tutorial for Section 10.2.2: Upwinding: (25 minutes) Download link, tablet notes

Now we tackle the discretization of stationary convection-diffusion boundary value problems. We start with

examining the linear finite element Galerkin discretization for 1D model problem analytically investigated

in Ex. 10.2.1.1.

−ǫ
d2u

dx2
+

du

dx
= f (x) in Ω :=]0, 1[ , u(0) = 0 , u(1) = 0 . (10.2.2.1)
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Its variational formulation is, see § 10.2.0.2:

u ∈ H1
0(]0, 1[): ǫ

1∫

0

du

dx
(x)

dv

dx
(x)dx +

1∫

0

du

dx
(x) v(x)dx

︸ ︷︷ ︸
=:a(u,v)

=

1∫

0

f (x)v(x)dx

︸ ︷︷ ︸
=:ℓ(v)

∀v ∈ H1
0(]0, 1[) .

As in Section 2.3 we use an equidistant meshM (mesh width h > 0), the composite trapezoidal rule

(2.3.3.8) for the right hand side linear form, and the standard “tent function basis”, see (2.3.2.1).

We obtain the following linear system of equations for the basis expansion coefficients µi, i =
1, . . . , M− 1, providing approximations for point values u(ih) of exact solution u.

(
− ǫ

h
− 1

2

)
µi−1 +

2ǫ

h
µi +

(
− ǫ

h
+

1

2

)
µi+1 = h f (ih) , i = 1, . . . , M− 1 , (10.2.2.2)

where the homogeneous Dirichlet boundary conditions are taken into account by setting µ0 = µM = 0.

Remark 10.2.2.3 (Finite differences for convection-diffusion equation in 1D) As in Section 4.1.1 on

the finite difference method in 1D, we can also obtain (10.2.2.2) by replacing the derivatives by suitable

difference quotients:

−ǫ
d2u

dx2
+

du

dx
= f (x)

l l l

ǫ
−µi+1 + 2µi − µi−1

h2︸ ︷︷ ︸
difference quotient for d2u

dx2

+
µi+1 − µi−1

2h︸ ︷︷ ︸
symmetric d.q. for du

dx

= f (ih) .

(10.2.2.2)

y

EXPERIMENT 10.2.2.4 (Linear FE discretization of 1D convection-diffusion problem) In this numer-

ical test we qualitatively examine the behavior of approximate solutions of the 1D convection-diffusion

boundary value problem (10.2.2.1) obtain by Galerkin finite element discretization.

✦ Model boundary value problem (10.2.2.1)

✦ linear finite element Galerkin discretization as described above

✦ As in Ex. 10.2.1.1: f ≡ 1
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exact solutions
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FE solutions

For very small ǫ we observe spurious oscillations of the FE Galerkin solution.

y

In order to understand the observation made in Exp. 10.2.2.4, we study the linear finite element Galerkin

discretization in the limit case ǫ = 0

(10.2.2.2)

ǫ=0

µi+1 − µi−1 = 2h f (ih) , i = 1, . . . , M− 1 . (10.2.2.5)

(10.2.2.5) =̂ Linear system of equations with, for even M, singular system matrix!

Explanation: the difference equations (10.2.2.5) do not couple grid nodes with even and odd indices.

Hence, for even M, an arbitrary constant can be added to µi, i odd, whereas the linear systems for the µj,

j even, is overdetermined. The “even-odd decoupling” inherent in (10.2.2.5) causes the glaring spurious

oscillations in the numerical solutions in Ex. 10.2.2.4 for very small ǫ.

For ǫ > 0 the Galerkin matrix will always be regular due to (10.2.0.5), but the linear relationship (10.2.2.5)

will become more and more dominant as ǫ > 0 becomes smaller and smaller. In particular, (10.2.2.5)

sends the message that values at even and odd numbered nodes will become decoupled, which accounts

for the oscillations.

Robust discretization in the singular perturbation limit

We desire a robust discretization of (10.2.2.1)

= discretization that produces qualitatively correct (∗) solutions for any ǫ > 0

(∗): “qualitatively correct”, e.g., satisfaction of maximum principle, Thm. 10.1.3.13]

Guideline:

Numerical methods for singularly perturbed problems must “work” for the limit problem

§10.2.2.7 (Discretization of 1D limit problem) What is a meaningful scheme for the limit problem u′ = f
on an equidistant mesh of Ω :=]0, 1[? The limit problem is an ordinary differential equation and for those
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taught us many methods for discretization. Let us examine the simplest introduced in Section 6.2.1 and

Section 6.2.2:

Explicit Euler method: µi+1 − µi = h f (ξi) i = 0, . . . , M− 1 ,

Implicit Euler method: µi+1 − µi = h f (ξi+1) i = 0, . . . , M− 1 .

Both Euler methods can be regarded as finite difference discretizations of u′ = f based on one-sided

difference quotients, recall Ex. 9.2.6.4

Explicit Euler:
du

dx
(xi) ≈

u(xi+1)− u(xi)

h
, Implicit Euler:

du

dx
(xi) ≈

u(xi)− u(xi−1)

h
.

Conversely, (10.2.2.5) can be obtained by relying on a symmetric difference quotient:

(10.2.2.5) by approximating
du

dx
(xi) ≈

u(xi+1)− u(xi−1)

2h
.

Apparently, the use of a symmetric difference quotient for discretizing the convective term incurs spurious

oscillations, see Exp. 10.2.2.4.

Conclusion: use one-sided difference quotients for discretization of convective term!

Which type ? (Explicit or implicit Euler ?) Let us look at the resulting equations.

1. Linear system arising from use of backward difference quotient
du

dx |x=xi

=
µi − µi−1

h
:

(
− ǫ

h
−1
)

µi−1 +

(
2ǫ

h
+1

)
µi +−

ǫ

h
µi+1 = h f (ih) , i = 1, . . . , M− 1 , (10.2.2.8)

2. Linear system arising from use of forward difference quotient
du

dx |x=xi

=
µi+1 − µi

h
:

− ǫ

h
µi−1 +

(
2ǫ

h
−1

)
µi +

(
− ǫ

h
+1
)

µi+1 = h f (ih) , i = 1, . . . , M− 1 , (10.2.2.9)

y

EXPERIMENT 10.2.2.10 (One-sided difference approximation of convective terms)

Fig. 424
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 x

 u
(x

)

 

 

ε = 1
ε = 1.000000e−01
ε = 1.000000e−02
ε = 1.000000e−03

We revisit the model problem of Exp. 10.2.2.4.

✁ exact solutions for different values of ǫ

We study the solutions obtained by the

discretizations (10.2.2.8) and (10.2.2.9).
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backward difference quotient
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forward difference quotient

Only the discretization of du
dx based on the backward difference quotient generates qualitatively correct

(piecewise linear) discrete solutions (a “good method”).

If the forward difference quotient is used, the discrete solutions may violate the maximum principle of

Thm. 10.1.3.13 (a “bad method”). y

§10.2.2.11 (Selection criterion: Discrete maximum principle) How can we tell a good method from a

bad method by merely examining the system matrix?

Heuristic criterion for ǫ → 0-robust stability of nodal finite element Galerkin discretization/finite

difference discretization of singularly perturbed scalar linear convection-diffusion BVP (10.2.0.1)

(with Dirichlet b.c.):

(Linearly interpolated) discrete solution satisfies maximum principle (3.7.2.1).

m
System matrix complies with sign-conditions (3.7.2.8)–(3.7.2.10).

We focus on nodal finite element Galerkin discretization for which the basis expansion coefficients µi of

the Galerkin solution uh ∈ Vh double as point values of uh at interpolation nodes. This is satisfied for

Lagrangian finite element methods (→ Section 2.6) when standard nodal basis functions according to

(2.6.1.4) are used.

Recall the sign-conditions (3.7.2.8)–(3.7.2.10) for the system matrix A arising from nodal finite element

Galerkin discretization or finite difference discretization in order to be able to conclude a discrete maximum

principle:

✦ (3.7.2.8): positive diagonal entries, (A)ii > 0 ,

✦ (3.7.2.9): non-positive off-diagonal entries, (A)ij ≤ 0, if i 6= j ,

✦ “(3.7.2.10)”: diagonal dominance, ∑j
(A)ij ≥ 0 .

These conditions are met for equidistant meshes in 1D
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✦ for the standard S0
1 (M)-Galerkin discretization (10.2.2.2), provided that |ǫh−1| ≥ 1

2 ,

✦ when using backward difference quotients for the convective term (10.2.2.8) for any choice of ǫ ≥ 0,

h > 0,

✦ when using forward difference quotients for the convective term (10.2.2.9), provided that

|ǫh−1| ≥ 1.

Only the use of a backward difference quotient for the convective term guarantees the (discrete)

maximum principle in an ǫ→ 0-robust fashion!

Terminology: The approximation of du
dx by backward difference quotients is called upwinding y

EXPERIMENT 10.2.2.12 (Spurious Galerkin solution for 2D convection-diffusion BVP) So far all

consideration were set in one spatial dimension. Are they relevant for higher dimensions? In this example

we explore the danger of spurious oscillations for a 2D model problem.

✦ Triangle domain Ω = {(x, y) : 0 ≤ x ≤ 1,−x ≤ y ≤ x}.
✦ Velocity v(x) = (1

0) ➣ (10.2.0.1) becomes −ǫ∆u + ux = 1.

✦ Exact solution: uǫ(x1, x2) = x − 1
1−e−1/ǫ (e

−(1−x1)/ǫ − e−1/ǫ), Dirichlet boundary conditions set

accordingly

✦ Standard Galerkin discretization by means of linear finite elements on sequence of triangular mesh

created by regular refinement.
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Exact solution

(ǫ = 10−10)

Fig. 429
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As expected: spurious oscillations mar Galerkin solution

➣ Difficulty observed in 1D also haunts discretization in higher dimensions. y

Review question(s) 10.2.2.13 (Upwinding)

(Q10.2.2.13.A) We have seen the variational formulation

u ∈ H1
0(Ω): ǫ

∫

Ω

grad u · grad w dx +
∫

Ω

(v · grad u)w dx

︸ ︷︷ ︸
bilinear form a(u,w)

=
∫

Ω

f (x)w(x)dx

︸ ︷︷ ︸
linear form ℓ(w)

∀w ∈ H1
0(Ω) ,

(10.2.0.3)
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of the homogeneous Dirichlet problem for a convection diffusion equation. In (10.2.0.5) we have estab-

lished the estimate

a(u, u) = ǫ
∫

Ω
‖grad u‖2 dx > 0 ∀u ∈ H1

0(Ω) \ {0} , (10.2.0.5)

and we also found

∃C > 0: |a(u, v)| ≤ C|u|H1(Ω)|v|H1(Ω) ∀u, v ∈ H1
0(Ω) . (10.2.0.4)

Derive an a prior error estimate for |u− uh|H1(Ω), where uh ∈ S0
1 (M) is the finite-element solution of

(10.2.0.3) based on a triangular mesh M of Ω ⊂ R2. The best-approximation error for u in S0
1 (M)

may enter your bound, which should be explicit in ǫ.

Hint. Start from (10.2.0.5) and then use Galerkin orthogonality.

△

10.2.2.1 Upwind Quadrature

Video tutorial for Section 10.2.2.1: Upwind Quadrature: (35 minutes) Download link,

tablet notes

In one spatial dimension upwinding was easily motivated by choosing the “right” one-sided difference

quotient. For d = 2, 3 and unstructured meshes this is no longer a viable recipe. How can we extend the

upwinding idea to d > 1?

At second glance, we may think of upwinding as “respecting the flow of information” in the sense of

§ 10.2.1.10. This turns out to be a fruitful perspective.

§10.2.2.14 (Upwind quadrature in one spatial dimension) Let us revisit 1D model problem

−ǫ
d2u

dx2
+

du

dx
= f (x) in Ω , u(0) = 0 , u(1) = 0 , (10.2.2.1)

with variational formulation, see § 10.2.0.2: convective term

u ∈ H1
0(]0, 1[): ǫ

1∫

0

du

dx
(x)

dw

dx
(x)dx +

1∫

0

du

dx
(x)w(x)dx

︸ ︷︷ ︸
=:a(u,w)

=

1∫

0

f (x)w(x)dx

︸ ︷︷ ︸
=:ℓ(w)

∀w ∈ H1
0(]0, 1[) .

We consider linear finite element Galerkin discretization on an equidistant meshM with M cells, mesh-

width h = 1
M , cf. Sect. 2.3.

We opt for the global composite trapezoidal rule

∫ 1

0
ψ(x)dx ≈ h

M−1

∑
j=1

ψ(jh) , for ψ ∈ C0(]0, 1[), ψ(0) = ψ(1) = 0 ,

for the evaluation of the convective term in bilinear form a:

1∫

0

duh

dx
(x)wh(x)dx ≈ h

M−1

∑
j=1

duh

dx
(jh)wh(hj) , wh ∈ S0

1,0(M) . (10.2.2.15)
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Note that this is not a valid formula, because
duh
dx (jh) is ambiguous, since

duh
dx is discontinuous at nodes

of the mesh for uh ∈ S0
1,0(M)!

Up to now we have resolved this ambiguity by the policy of local quadrature, see Section 2.7.5: quadrature

rule applied locally on each cell with all information taken from that cell.

However:

✞
✝

☎
✆Convection transports information in the direction of v!

Idea:
Use upstream/upwind information to evaluate

duh
dx (jh) in (10.2.2.15)

duh

dx
(jh) := lim

δ→0

duh

dx
(jh−δ) =

duh

dx |]xj−1,xj[
(jh) .

=̂ upwind quadrature

Fig. 430 x7x0 x1 x2 x3 x4 x5 x6

v

x

Upwind quadrature based on (10.2.2.15) (summation variable j) yields the following contribution of the dis-

cretized convective term to the linear system using the basis expansion uh = ∑
M−1
l=1 µlb

l
h into locally sup-

ported nodal basis functions (“tent functions” b
j
h) and for the test function bi

h for some i ∈ {1, . . . , M− 1}:

1∫

0

M−1

∑
l=1

µl

dbl
h

dx
(x)bi

h(x)dx
(10.2.2.15)≈ h

M−1

∑
j=1

M−1

∑
l=1

µl

dbl
h

dx

∣∣∣∣∣
|]xj−1,xj[

(jh) bi
h(jh) = h

µi − µi−1

h
,

where we used the facts

• supp bi
h = [xi−1, xi+1] and bi

h(jh) = δij, see (2.3.2.2),

•
db

j
h

dx |]xj−1,xj[
=

1

h
and

db
j−1
h

dx |]xj−1,xj[
= −1

h
, easily concluded from (2.3.2.6).

Linear system from upwind quadrature:

(
− ǫ

h
− 1
)

µi−1 +

(
2ǫ

h
+ 1

)
µi −

ǫ

h
µi+1 = h f (ih) , i = 1, . . . , M− 1 , (10.2.2.8)

which is the same as that obtained from a backward finite difference discretization of du
dx ! y

§10.2.2.16 (Multi-dimensional upwind quadrature) The idea of upwind quadrature can be generalized

to d > 1: we consider d = 2 and linear Lagrangian finite element Galerkin discretization of

u ∈ H1
0(Ω): ǫ

∫

Ω

grad u · grad w dx +
∫

Ω

(v · grad u)w dx =
∫

Ω

f (x)w(x)dx ∀w ∈ H1
0(Ω) .

(10.2.0.3)

on a triangular meshM, see Section 2.4; we use the finite element space S0
1,0(M).
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➊ Approximation of contribution of convective terms to bilinear form by means of the global trapezoidal

rule:

For a continuous function ψ : Ω 7→ R the (global) trapezoidal rule can easily be derived from the 2D

composite trapezoidal rule based on

∫

K
ψ(x)dx ≈ |K|

3
(ψ(a1) + ψ(a2) + ψ(a3)) , (2.4.6.10)

where the ai, i = 1, 2, 3, are the vertices of the triangle K.

∫

Ω

ψ(x)dx = ∑
K∈M

∫

K

ψ(x)dx ≈ ∑
K∈M

|K|
3
(ψ(a1

K) + ψ(a2
K) + ψ(a3

K))

≈ ∑
p∈V(M)

(
1
3 ∑

K∈Up

|K|
)

ψ(p) ,

(10.2.2.17)

by changing the order of summation. This formula is the global trapezoidal rule in 2D on a triangular

mesh, which we now apply to the convective term in the discrete variational formulation of the convection-

diffusion problem (10.2.0.3). For uh, wh ∈ S0
1,0(M) we get

∫

Ω

(v · grad uh)wh dx ≈ ∑
p∈V(M)

(
1
3 ∑

K∈Up

|K|
)
·

ambiguous for uh ∈ S0
1 (M) !

v(p) · grad uh(p)wh(p) . (10.2.2.18)

✎ notation: Up := {K ∈ M: p ∈ K}, p ∈ V(M)

➋ Again we resolve the ambiguity of grad uh(p)
by using the value of grad uh “from where the

flow comes”.

This means that we fix the ambiguous value of

v(p) · grad uh(p), uh ∈ S0
1 (M), by taking the

gradient from the triangle upstream to the node

p:

Fig. 431

upstream triangle

p

v(p)

Idea: Use upstream/upwind information to evaluate grad uh(p) in (10.2.2.18)

v(p) · grad uh(p) := lim
δ→0

v(p) · grad uh(p− δv(p)) . (10.2.2.19)

=̂ general upwind quadrature.

Note that by (10.1.1.2) the vector v(p) supplies the direction of the streamline through p. Hence, −v(p)
is the direction from which information is “carried into p” by the flow.
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This is the contribution of convective term to the i-
th row of the final linear system of equations (test

function = tent function bi
h):

(
1
3 ∑

K∈Ui

|K|
)

︸ ︷︷ ︸
=:Ui

v(xi) · grad uh |Ku
,

where Ku is the upstream triangle of p. ✄

Fig. 432

ei

ek ej

Ku
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xk

v(xi)
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ni

nj

Using the expressions for the gradients of barycentric coordinate functions from Section 2.4.5

grad λ∗ = −
|ei|

2|K| n∗ , ∗ = i, j, k , see Fig. 433 ,

and the nodal basis expansion of uh, we obtain for the convective contribution to the i-th line of the final

linear system

Ui

2|Ku|


−

∥∥∥xj − xk
∥∥∥ni · v(xi)

︸ ︷︷ ︸
↔ diagonal entry

µi −
∥∥∥xi − xj

∥∥∥nk · v(xi)µk −
∥∥∥xi − xk

∥∥∥nj · v(xi)µj




By the very definition of the upstream triangle Ku we find

ni · v(xi) ≤ 0 , nk · v(xi) ≥ 0 , nj · v(xi) ≥ 0 .

That the sign conditions (3.7.2.8), (3.7.2.9) are satisfied for the discretized convective term,

(3.7.2.10) is obvious from λi + λj + λk = 1, which means grad(λi + λj + λk) = 0.

Usually, the upwind quadrature discretization of the convective term will be combined with a standard finite

element Galerkin discretization of the diffusive term. In this case the finite element solution of (10.2.0.1)

will satisfy the maximum principle, if this is true for the discretization of the diffusive term. Criteria for this

have been established in Section 3.7, see Thm. 3.7.2.20 and Rem. 3.7.2.21, page 390. y

EXPERIMENT 10.2.2.20 (Upwind quadrature discretization)

From the above theoretical considerations we expect that the upwind quadrature finite element Galerkin

discretization is immune to spurious oscillations for ǫ→ 0. This is confirmed in this numerical experiment.

✦ Computational domain: unit square Ω = [0, 1]2

✦ −ǫ∆u + (1
1) · grad u = 0

✦ Dirichlet boundary conditions: u(x, y) = 1 for x > y and u(x, y) = 0 for x ≤ y
✦ Limiting case (ǫ→ 0): u(x, y) = 1 for x > y and u(x, y) = 0 for x ≤ y

✦ layer along the diagonal from (0
1) to (1

0) in the limit ǫ→ 0
✦ 2D triangular Delaunay triangulation, see Rem. 4.2.2.3

✦ linear finite element upwind quadrature discretization
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Monitored: discrete solutions along diagonal from (0
1) to (1

0) for ǫ = 10−10.

Fig. 433
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Fig. 434
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We observe that the upwind quadrature scheme respects the maximum principle, whereas the standard

Galerkin solution is rendered useless by spurious oscillations. y

Review question(s) 10.2.2.21 (Upwind quadrature)

(Q10.2.2.21.A) [Two trapezoidal quadrature rules] Assume that you are given a meshM of a compu-

tational domain Ω ⊂ R2. Explain the difference between the global and the local composite trapezoidal

rule onM.

(Q10.2.2.21.B) [Finding upwind triangle] How would you implement a C++ function based on

LEHRFEM++

lf::mesh::utils::CodimMeshDataSet<const lf::mesh::Entity *>

findUpwindTriangle(

const lf::mesh::Mesh &mesh,

const lf::mesh::MeshFunction<Eigen::Vector2d> &v);

that creates a data structure which contains a pointer to the upwind triangle for every node of a 2D

triangular mesh passed in the argument mesh. The other argument v provides the velocity field v,

which is supposed to be continuous.

△

10.2.2.2 Streamline Diffusion

Video tutorial for Section 10.2.2.2: Streamline Diffusion: (35 minutes) Download link,

tablet notes

§10.2.2.22 (Artificial viscosity in 1D) To motivate a completely different way to achieve ǫ→ 0-

robustness, we take another look at the 1D upwind discretization of

−ǫ
d2u

dx2
+

du

dx
= f (x) in Ω :=]0, 1[ , u(0) = 0 , u(1) = 0 . (10.2.2.1)

and view it from a different perspective.

Recall the 1D upwind (finite difference) discretization of (10.2.2.1):
(
− ǫ

h
− 1
)

µi−1 +

(
2ǫ

h
+ 1

)
µi +−

ǫ

h
µi+1 = h f (ih) , i = 1, . . . , M− 1 . (10.2.2.8)
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m

(ǫ+h/2)
−µi−1 + 2µi − µi+1

h2︸ ︷︷ ︸
=̂ difference quotient for d2u

dx2

+
−µi−1 + µi+1

2h︸ ︷︷ ︸
=̂ difference quotient for du

dx

= f (ih) ,

for i = 1, . . . , M− 1. This suggests a new interpretation of the stabilization achieved through upwinding:✎
✍

☞
✌

Upwinding = h-dependent enhancement of diffusive term

(This is widely known as artificial diffusion/viscosity)

We also observe that the upwinding strategy just adds the minimal amount of diffusion to make the result-

ing system matrix comply with the conditions (3.7.2.8)–(3.7.2.10), which ensure that the discrete solution

satisfies the maximum principle.

? Question: How to extend the trick of adding artificial diffusion to d > 1 ?

Well, just add an extra h-dependent multiple of −∆! Let’s try. y

EXAMPLE 10.2.2.23 (Effect of added diffusion) We consider the convection-diffusion boundary value

problem ((10.2.0.1) with v = (1
0))

−ǫ∆u +
∂u

∂x1
= 0 in Ω =]0, 1[2 , u = g on ∂Ω .

Here, the Dirichlet data are g(x) = 1− 2|x2 − 1
2 | (“roof function”).

Thus, for ǫ ≈ 0 we expect u ≈ g, because the Dirichlet data are just transported in x1-direction and there

are no boundary layers.
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We observe that stronger diffusion leads to “smearing” of features that the flow field transports into the

interior of the domain. y
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!
(Too much) artificial diffusion ➣ smearing of internal layers

(We are no longer solving the right problem!)

Remark 10.2.2.24 (Internal layers)

Fig. 435 u = 0

u = 1 (u = 0)

(u = 1)

u = 0

u = 1

Internal layer

v

We consider the pure transport problem with con-

stant velocity:

v · grad u = 0 in Ω ,

where Ω =]0, 1[2, v = (2
1), ǫ = 10−4, and the

boundary condition are given in Fig. 436.

The Dirchlet b.c. that can only be satisfied on

inflow boundary: u = 1 on {x1 = 0} ∪ {x2 = 1},
u = 0 on {x1 = 1} ∪ {x2 = 0}.
✁ Boundary conditions in brackets cannot be im-

posed for the limit problem.

We see that solutions of pure transport problem with discontinuous boundary data

• display a discontinuity across the streamline emanating from the point of discontinuity on ∂Ω,

• are smooth along streamlines.

Now let us add a little diffusion. Then we can again

impose Dirichlet boundary conditions everywhere:

This is how the solution of

−δ∆ + v · grad u = 0 in Ω ,

with δ > 0 and the same boundary data looks

qualitatively ✄

➣ Observe the smearing of the internal layer !

As in Ex. 10.2.1.1, we would also find a boundary

layer which is marked in gold in the figure. Inside this

boundary layer the solution drops to zero abruptly.Fig. 436

u = 0

u = 0

u = 1

u = 1

u ≈ 0

u ≈ 1

Internal layer

v

y

Remark 10.2.2.25. Note that the above boundary conditions actually do not supply valid Dirichlet data

for a second-order elliptic boundary value problem, because they jump at the corners, cf. Remark 1.9.0.6,

page 133. However, they make sense for the limit problem and a finite element discretization can also be

applied in this case. y
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Heuristics of streamline upwinding (SU)

Since the solution is smooth along streamlines, then adding diffusion in the direction of streamlines

cannot do much harm.

§10.2.2.27 (Anisotropic diffusion) What does “diffusion in a direction” mean?

☞ Think of a generalized Fourier’s law (1.6.0.5) for d = 2, e.g„

j(x) = −
[

1 0
0 0

]
grad u(x) . (10.2.2.28)

This means, only a temperature variation in x1-direction triggers a heat flow, which is called an anisotropic

heat conduction phenomenon. In the case of (10.2.2.28) we witness “diffusion in x1-direction”.

We conclude that diffusion in a general direction v ∈ R2 amounts to a flux law

j(x) = −v(x)v(x)⊤ grad u(x) (10.2.2.29)

Such an extended Fourier’s law is an example of anisotropic diffusion.

Anisotropic diffusion can simply be taken into account in variational formulations and Galerkin discretiza-

tion by replacing the heat conductivity κ/stiffness σ with a symmetric, positive (semi-)definite d× d-matrix,

the diffusion tensor. In (10.2.2.29) the diffusion tensor is the rank-1 matrix v(x)v(x)⊤. y

Armed with a concept of diffusion in direction v, we can now cast the heuristics of the streamline diffusion

approach into formulas.

Idea: Anisotropic artificial diffusion in streamline direction

On cell K replace: ǫ ← ǫI + δKvKvT
K︸ ︷︷ ︸

new diffusion tensor

∈ R2,2 .

vK =̂ local velocity (e.g., obtained by averaging)

δK > 0 =̂ method parameter controlling the strength of anisotropic diffusion

This idea spawns the class of streamline diffusion methods for convection-diffusion BVPs.

Thus, (for the model problem) Galerkin discretization may target the variational problem
∫

Ω

(
ǫI + δKvKvT

K

)
grad u · grad w + v(x) · grad u w dx =

∫

Ω

f w dx ∀w ∈ H1
0(Ω) . (10.2.2.30)

!
This tampering affects the solution u

(solution of (10.2.2.30) 6= solution of (10.2.0.1))

Desirable: Maintain consistency of variational problem!

Definition 10.2.2.31. Consistent modifications of variational problems

A variational problem is called a consistent modification of another, if both possess the same

(unique) solution(s).
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From an abstract point of view we start from a linear variational problem (→ Def. 1.4.1.6)

u ∈ V: a(u, v) = ℓ(v) ∀v ∈ V0 . (1.4.1.7)

For an (affine) trial space Vh ⊂ V and test space V0,h ⊂ V0 we consider a discrete variational problem

with a modified bilinear form denoted by ã(·, ·):

uh ∈ Vh: ã(uh, vh) = ℓ(vh) ∀vh ∈ V0,h . (10.2.2.32)

Then (10.2.2.32) is consistent with (1.4.1.7) according to Def. 10.2.2.31, if

u ∈ V , a(u, v) = ℓ(v) ∀v ∈ V0 ⇒ ã(u, vh) = ℓ(vh) ∀vh ∈ V0,h , (10.2.2.33)

Of course, inserting u into ã must result in well-defined numbers ã(u, vh) for every vh ∈ V0,h.

Remark 10.2.2.34. We point out that the variational crimes investigated in Sect. 3.5 represent non-

consistent modifications: they introduce a consistency error. y

With the following trick we can ensure the consistency for streamline upwind variational problem:

Idea: Add anisotropic diffusion through a residual term that vanishes for the exact

solution u
Natural candidate −ǫ∆u + v · grad u− f

Streamline upwind variational problem: given meshM seek u ∈ H1
0(Ω) ∩ H2(M)

∫

Ω

ǫ grad u · grad w + (v(x) · grad u)w dx

+ ∑
K∈M

δK

∫

K

(−ǫ∆u + v · grad u− f ) · (v · grad w)dx

︸ ︷︷ ︸
stabilization term

=
∫

Ω

f w dx ∀w ∈ H1
0(Ω) . (10.2.2.35)

The colored terms are new in (10.2.2.35) compared to (10.2.2.30). They ensure that (10.2.2.35) is a

consistent variational formulation in the sense of Def. 10.2.2.31.

Remark 10.2.2.36. Note that enhanced smoothness of u, namely in addition u ∈ H2(K) for all K ∈ M,

is required to render (10.2.2.35) meaningful. Often authors use the notation H2(M) to designate the

Sobolev space of functions that belongM-piecewise to H2. y

Note: In the case of Galerkin discretization based on VN,0 = S0
1 (M), we even find ∆uh = 0 in each

K ∈ M.

For the Galerkin discretization of (10.2.2.35) by means of linear Lagrangian finite elements, the local

control parameters δK are usually chosen according to the rule

δK :=





ǫ−1h2
K , if

‖v‖K,∞hK

2ǫ
≤ 1 ,

hK , if
‖v‖K,∞hK

2ǫ
> 1 .
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which is suggested by theoretical investigations and practical experience, cf. 1D artificial diffusion

(10.2.2.8) for a reason why to choose δK ∼ hK for small ǫ.

EXPERIMENT 10.2.2.37 (Streamline-diffusion discretization: Internal layer) Exactly the same setting

as in Ex. 10.2.2.20 with the upwind quadrature approach replaced with the streamline diffusion method.

Fig. 437
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Observations:

• The streamline upwind method does not exactly respect the maximum principle, but offers a better

resolution of the internal layer compared with upwind quadrature (Parlance: streamline diffusion

method is “less diffusive”).

y

EXPERIMENT 10.2.2.38 (Convergence of streamline-diffusion and upwind quadrature FEM)

✦ Ω =]0, 1[2, model problem (10.2.0.1), v(x) = (2
3), right hand side f such that

uε(x, y) = xy2 − y2e2 x−1
ǫ − xe3

y−1
ǫ + e2 x−1

ǫ +3
y−1

ǫ .

✦ Finite element discretization, V0,h = S0
1 (M) und sequence of unstructured triangular “uniform”

meshes, with

• upwind quadrature stabilization from Sect. 10.2.2.1,

• SUPG stabilization according to (10.2.2.35).

✦ Monitored: (Approximate) L2(Ω)-norm of discretization error (computed with high-order local

quadrature)
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Fig. 439
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Convergence for ǫ = 1

Observation: SUPG stabilization does not affect O(h2
M)-convergence of ‖u− uh‖L2(Ω) for h-refinement

and hM → 0, whereas upwind quadrature leads to worse O(hM) convergence of the L2-error norm.

y

Review question(s) 10.2.2.39 (Streamline diffusion)

(Q10.2.2.39.A) Write down a second-order differential operator that describes diffusion only in radial di-

rection on the unit disk domain Ω := {x ∈ R2 : ‖x‖2 < 1}.
△

10.3 Discretization of Time-Dependent (Transient) Convection-

Diffusion IBVPs

Section 10.1.4 introduced a model for transient heat conduction in a fluid, whose motion is described by a

non-stationary velocity field (→ Section 10.1.1) v : Ω×]0, T[ 7→ Rd

∂

∂t
(ρu)− div(κ grad u) + div(ρv(x, t)u) = f (x, t) in Ω̃ := Ω×]0, T[ , (10.1.4.1)

where u = u(x, t) : Ω̃ 7→ R is the unknown temperature. Highlighted is the convective term. As usual,

the differential operators grad and div act only on the spatial variable x.

Assuming the incompressibility condition div v(x, t) = 0, as in Section 10.2, by scaling (→ Rem. 1.2.1.25,

Rem. 10.1.4.3) we arrive at the non-dimensional model equation for transient convection-diffusion.

∂u

∂t
− ǫ∆u + v(x, t) · grad u = f in Ω̃ := Ω×]0, T[ , (10.3.0.1)

to be supplemented with,

✦ for instance, Dirichlet boundary conditions: u(x, t) = g(x, t) ∀x ∈ ∂Ω , 0 < t < T
or other valid boundary conditions for scalar second-order BVPs, see § 10.1.2.9),

✦ initial conditions: u(x, 0) = u0(x) ∀x ∈ Ω.
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As explained in Section 10.1.2 other types of boundary conditions can be imposed; all boundary conditions

appropriate for scalar second-order elliptic BVPs make sense for (10.3.0.1).

Of course, our goal is to devise a discretization of the initial-boundary value problem for (10.3.0.1) that

performs well regardless of the local size of ǫ and v. In other words, the schemes should be robust with

respect to ǫ and v.

10.3.1 Convection-Diffusion IBVPs: Method of Lines

Video tutorial for Section 10.3.1: Convection-Diffusion IBVPs: Method of Lines : (25 minutes)

Download link, tablet notes

For the solution of the IBVP (10.3.0.1) we follow the general method-of-lines policy introduced in Sec-

tion 9.2.4:

➊ (Finite element) discretization in space on a fixed mesh ➣ initial value problem for ODE

➋ Discretization in time (by suitable numerical integrator = timestepping)

Spatial discretization treats time t as a parameter and can rely on any of the methods discussed in Sec-

tion 10.2. The need for upwinding will be addressed below. For instance, in the case of Dirichlet boundary

conditions,





∂u

∂t
− ǫ∆u + v(x, t) · grad u = f in Ω̃ := Ω×]0, T[ ,

u(x, t) = g(x, t) ∀x ∈ ∂Ω, 0 < t < T , u(x, 0) = u0(x) ∀x ∈ Ω .
(10.3.1.1)

← spatial discretization

M
d~µ

dt
(t) + ǫA~µ(t) + B(t)~µ(t) = ~ϕ(t) , (10.3.1.2)

where
✦~µ = ~µ(t) :]0, T[ 7→ RN =̂ coefficient vector describing approximation uh(t) of u(·, t),

✦ A ∈ RN,N =̂ s.p.d. matrix of discretized −∆, e.g., (finite element) Galerkin matrix,

✦ M ∈ RN,N =̂ (lumped→ Rem. 9.3.4.18) mass matrix

✦ B ∈ RN,N =̂ possibly time-dependent matrix for discretized convective term, e.g.,

Galerkin matrix, upwind quadrature matrix (→ Sect. 10.2.2.1), streamline diffusion matrix (→
Sect. 10.2.2.2).

✦~ϕ(t) =̂ r.h.s. vector taking into account the source function f and the boundary data g.

The following numerical test investigates in one spatial dimension we want to obtain evidence, which

spatial discretizations and timestepping methods may be suitable for the transient convection diffusion

problem.

EXPERIMENT 10.3.1.3 (Implicit Euler method of lines for transient convection-diffusion) We con-

sider the 1D convection-diffusion IBVP:

∂u

∂t
− ǫ

∂2u

∂x2
+

∂u

∂x
= 0 in ]0, 1[×[0, 1] ,

u(x, 0) = max(1− 3|x− 1
3 |, 0) , 0 < x < 1 , u(0, t) = u(1, t) = 0 , 0 ≤ t ≤ 1 .

(10.3.1.4)
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✦ Spatial discretization on equidistant mesh with meshwidth h = 1/N:

1. central finite difference scheme, see (10.2.2.2) (↔ linear FE Galerkin discretization),

2. upwind finite difference discretization, see (10.2.2.8),

✦ M = hI (“lumped” mass matrix, see Rem. 9.3.4.18),

✦ Temporal discretization with uniform timestep τ > 0:

1. implicit Euler method, see (9.2.7.3),

2. explicit Euler method, see (9.2.7.2),

Computations with ǫ = 10−5, implicit Euler discretization, h = 0.01, τ = 0.00125:
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Observation:

• Central finite differences display spurious oscillations as in Ex. 10.2.2.4.

• Upwinding suppresses spurious oscillations, but introduces spurious damping.

Test of different 1st-order timestepping schemes in transport-dominated case; computations with ǫ =
10−5, spatial upwind discretization, h = 0.01, τ = 0.005:
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Observation: implicit Euler timestepping causes stronger spurious damping than explicit Euler timestep-

ping.

However, explicit Euler is subject to tight stability induced timestep constraint for larger values of ǫ, see

Section 9.2.7.2. y

Also in the transient setting we will face a singular perturbation situation (→ Notion 10.2.1.9), if

ǫ≪ ‖v(x, t)‖ for some (x, t) ∈ Ω̃. As we have seen in Exp. 10.3.1.3, this restricts the choice of spatial

discretization options.

For the spatial discretization for method of lines approach to singularly perturbed transient

convection-diffusion IBVPs use ǫ-robustly stable spatial discretization of convective term.

Remark 10.3.1.5 (Choice of timestepping for m.o.l. for transient convection-diffusion) If ǫ-

robustness for all ǫ > 0 (including ǫ > 1) desired ➣ Arguments of Section 9.2.7.2 stipulate use of
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L(π)-stable (→ Def. 9.2.7.46) timestepping methods (implicit Euler (9.2.7.3), RADAU-3 (9.2.7.50), SDIRK-

2 (9.2.7.51))

In the singularly perturbed case 0 < ǫ ≪ 1 conditionally stable explicit timestepping is an option, due to

a timestep constraint of the form “τ < O(hM)”, which does not interfere with efficiency, cf. the discussion

in Section 9.2.8. y

Review question(s) 10.3.1.6 (Method of Lines for transient convection-diffusion problems)

(Q10.3.1.6.A) We consider the initial-boundary value problem

∂u

∂t
− ǫ

∂2u

∂x2
+

∂u

∂x
= 0 in ]0, 1[×[0, 1] ,

u(x, 0) = u0(x) , 0 < x < 1 , u(0, t) = u(1, t) = 0 , 0 ≤ t ≤ 1 ,

with u0 ∈ C0
0([0, 1]), u0(0) = u0(1) = 0. We perform a full discretization on an equidistant mesh with

spatial meshwidth h > 0 and timestep size τ > 0,

• relying on piecewise linear finite-element Galerkin discretization with upwind quadrature and mass

lumping in space,

• and implicit Euler timestepping in time.

Elaborate the discrete evolution for the basis expansion coefficient vectors using the standard tent func-

tion basis.

Hint. For the transport term the spatial discretization is equivalent to a simple upwind finite difference

scheme, for the diffusion term to a simple symmetric second difference quotient.

△

10.3.2 Transport Equation

Video tutorial for Section 10.3.2: Transport Equation: (14 minutes) Download link,

tablet notes

We assume ‖v‖(x, t) ≈ 1 and focus on the situation of singular perturbation (→ Notion 10.2.1.9): 0 <
ǫ≪ 1. As in Section 10.2.1 the key idea is to study and understand the limit problem, obtained by setting

ǫ := 0.

∂u

∂t
− ǫ∆u + v(x, t) · grad u = f in Ω̃ := Ω×]0, T[ ,

← ǫ = 0

∂u

∂t
+ v(x, t) · grad u = f in Ω̃ := Ω×]0, T[ . (10.3.2.1)

The limit problem (10.3.2.1) is called the (pure) transport equation.

Recall that in Section 10.2.1 for the stationary pure tranport problem

v(x) · grad u = f (x) in Ω , (10.2.1.4)

we found solutions by the method of characteristics, by integrating the source term along streamlines

(following the flow direction). This leads us to study the behavior of a C1-solution u = u(x, t) of (10.3.2.1)
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“as seen from a moving fluid particle” (Lagrangian view). In Section 10.1.1 we have learned that particle

trajectories can be found as solutions of the streamline ODE ẏ(t) = v(y, t). Therefore, we examine the

function

t 7→ u(y(t), t) , where y(t) solves
dy

dt
(t) = v(y(t), t) , see (10.1.1.2) .

By the chain rule we see that, like in the stationary case, the change of u along streamlines is entirely

due to sources:

d

dt
u(y(t), t) = grad u(y(t), t) · dy

dt
(t) +

∂u

∂t
(y(t), t)

= grad u(y(t), t) · v(y(t), t) +
∂u

∂t
(y(t), t)

(10.3.2.1)
= f (y(t), t) .

(10.3.2.2)

§10.3.2.3 (Solution formula for sourceless transport) Temporarily, we focus on the case f ≡ 0 (no

sources) and let u = u(x, t) be a C1-solution of the pure transport equation

∂u

∂t
+ v(x, t) · grad u = 0 in Ω̃ := Ω×]0, T[ . (10.3.2.4)

From (10.3.2.2) we conclude that

If f ≡ 0, then a fluid particle “sees” a constant temperature!

We also restrict ourselves to the situation of no inflow/outflow (e.g., fluid in a container), which is charac-

terized by velocity fields that are tangential to ∂Ω:

v(x, t) · n(x) = 0 ∀x ∈ ∂Ω , 0 < t < T . (10.1.1.5)

➣ all streamlines will “stay inside Ω”, flow map Φ
t (10.1.1.6) defined for all times t ∈ R as we saw in

§ 10.1.1.3.

Next, we recall (10.3.2.2) and its message that u is constant on streamlines. This gives a method-of-

characteristics (MOC) solution formula for (10.3.2.4).

For the initial value problem:

∂u

∂t
(x, t) + v(x, t) · grad u(x, t) = 0 in Ω̃ ,

u(x, 0) = u0(x) ∀x ∈ Ω ,

we find the exact solution

u(x, t) = u0(x0(x, t)) , (10.3.2.5)

where x0(x, t) is the position at time 0 of the fluid

particle that is located at x at time t. We construct u
by backtracking along streamlines.

Fig. 443

x0(x, t)

x

y

§10.3.2.6 (Method-of-characteristics solution formula for transport equation) The solution formula

(10.3.2.5) can be generalized to any velocity field v : Ω 7→ Rd and f 6= 0. The new aspect is that stream-

lines can enter and leave the domain Ω. Therefore we have to impose Dirichlet boundary conditions on

the inflow boundary

u(x, t) = g(x, t) for x ∈ Γin := {x ∈ ∂Ω : v(x) · n(x) < 0} , cf. (10.2.1.11).

10. Convection-Diffusion Problems, 10.3. Discretization of Time-Dependent (Transient) Convection-Diffusion IBVPs655



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

Thus, for some parts of Ω̃ := Ω×]0, T[ the solution values u(x, t) are given by “transported Dirichlet

data”, if the starting point of the streamline lies on Γin:

d

dt
u(y(t)) = f (y(t), t) where ẏ(t) = v(y(t), t) .

u(x, t) =





u0(x0) +
t∫

0

f (y(s), s)ds , if y(s) ∈ Ω ∀0 < s < t ,

g(y(s0), s0) +
t∫

s0

f (y(s), s)ds , if y(s0) ∈ ∂Ω, y(s) ∈ Ω ∀s0 < s < t ,

(10.3.2.7)

for (x, t) ∈ Ω̃.

We make the typical observation for a singularly perturbed problem as discussed in Section 10.2.1:

Whereas for ǫ > 0 Dirichlet boundary conditions can be imposed everywhere on ∂Ω, they have to con-

fined to the inflow boundary for ǫ = 0. y

Review question(s) 10.3.2.8 (Transport equation)

(Q10.3.2.8.A) We consider the following initial-boundary value problem for the pure advection equation in

one spatial dimension:

∂u

∂t
(x, t) +

∂u

∂x
(x, t) = 0 on ]0, 1[×]0, 1[ ,

u(0, t) = 0 ∀0 < t < 1 , u(x, 0) = sin(πx) ∀0 < x < 1 .

Using the method of characteristics give a formula for the solution. Note that boundary conditions are

imposed only on the inflow boundary x = 0.

Hint. We face a situation with constant transport velocity v = 1.

(Q10.3.2.8.B) Let Ω := {x ∈ R2 : ‖x‖2 < 1} denote the unit disk, on which the following transient ad-

vection problem is posed:

∂u

∂t
+ v(x) · grad u = 0 on Ω×]0, 1[ ,

u(x, 0) = u0(x) on Ω ,

with

v(x) :=

[−x2

x1

]
, x :=

[ x1
x2

]
,

and u0 a continuous function compactly supported in Ω.

• Why can we dispense with specifying boundary values?

• Rely on the method of characteristics to find an explicit formula for the solution of this initial-value

problem.

(Q10.3.2.8.C) Let Ω ⊂ Rd stand for a bounded computational domain. Formulate a maximum principle

for the solutions of the IBVP:

∂u

∂t
+ v · grad u = f in Ω̃×]0, T[ , (10.3.2.9)

10. Convection-Diffusion Problems, 10.3. Discretization of Time-Dependent (Transient) Convection-Diffusion IBVPs656



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

u(x, t) = 0 on Γin := {x ∈ ∂Ω : v(x) · n(x) < 0} , (10.3.2.10)

where the velocity field v : Ω̃→ Rd, v ∈ C1(Ω) and the Dirichlet data g ∈ C0(Γin) are given.

Hint. Remember that (10.3.2.9) is a mathematical model for heat transport in a moving fluid and that

u = u(x, t) can be viewed as a time-dependent temperature field.

(Q10.3.2.8.D) Let u = u(x, t) be a classical solution of a sourceless ( f ≡ 0) transient pure transport

problem on the rectangular domain Ω draw below.

Fig. 444
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The blue arrows indicate the involved velocity field

v : Ω→ R2.

You want to use the method-of-characteristics solu-

tion formula to find u(x, t) for

• x on the closed red curve,

• x on the magenta curve.

Write down the formula for u(x, t). You may have to

distinguish several cases.

△

10.3.3 Lagrangian Split-Step Method

Video tutorial for Section 10.3.3: Lagrangian Split-Step Method: (40 minutes) Download link,

tablet notes

In this section we develop an alternative to the method-of-lines approach, which belongs to the class of

Lagrangian discretization schemes. Lagrangian discretization schemes for the IBVP (10.3.1.1) are inspired

by the method-of-characteristics solution formulas (10.3.2.5) and (10.3.2.7).

The variant that we are going to study separates the transient convection-diffusion problem into a pure dif-

fusion problem (heat equation→ Section 9.2.1) and a pure transport problem (10.3.2.1). This is achieved

by means of a particular approach to timestepping that will be introduced next.

10.3.3.1 Split-Step Timestepping, cf. Section 7.5

Unfortunately, the method-of-characteristics solution formulas (10.3.2.5) and (10.3.2.7) are available only

for the pure transport problem. If ǫ > 0, split-step timestepping offers a technique for dissecting a

convection-diffusion evolution problem into a pure diffusion and a pure transport problem.

We first develop the method for an abstract ODE, whose right hand side is the sum of two (smooth)

functions

ẏ = g(t, y) + r(t, y) , g, r : [0, T]×Rm 7→ Rm . (10.3.3.1)

Idea: In turns solve
(1) ẏ(t) = g(t, y),
(2) ẏ(t) = r(t, y),

over small timesteps.
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This idea offers great benefits, if one has efficient methods or even analytic formulas to solve initial value

problems for both ODEs ż = g(t, z) and ẇ = r(t, w). The details of a particular variant are as follows,

using a temporal mesh {0 = t0 < t1 < · · · < tM := T}:

Strang splitting single step method for (10.3.3.1), timestep τ := tj − tj−1 > 0:

compute y(j) ≈ y(tj) from y(j−1) ≈ y(tj−1) according to

ỹ := z(tj−1 +
1
2 τ) , where z(t) solves ż = g(t, z) , z(tj−1) = y(j−1) , (10.3.3.2)

ŷ := w(tj) where w(t) solves ẇ = r(t, w) , w(tj−1) = ỹ , (10.3.3.3)

y(j) := z(tj) , where z(t) solves ż = g(t, z) , z(tj−1 +
1
2 τ) = ŷ . (10.3.3.4)

One timestep of the split-step method of size τ := tj − tj−1 in-

volves three sub-steps:

➀ Solve ż = g(t, z) over period [tj−1, tj−1 +
1
2 τ] using

the result of the previous timestep as initial value ↔
(10.3.3.2).

➁ Solve ẇ = r(t, w) over time period [tj−1, tj] using the

result of ➀ as initial value ↔ (10.3.3.3).

➂ Solve ż = g(t, z) over time [tj−1 +
1
2 τ, tj] using the result

of ➁ as initial value ↔ (10.3.3.4).

Fig. 445
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In Section 7.5 we have already learned about the following result:

Theorem 10.3.3.5. Order of Strang splitting single step method

Assuming exact solution of the initial value problems of the sub-steps, the Strang splitting single

step method for (10.3.3.1) is of second order.

This result applies to Strang splitting timestepping for initial value problems for ODEs. Now we boldly

regard (10.3.1.1) as an “ODE in function space” for the unknown “function space valued function” u =
u(t) : [0, T] 7→ H1(Ω).

∂u

∂t
= ǫ∆u + f − v · grad u

l l l
ẏ = g(y) + r(y)

Formally, we arrive at the following “timestepping scheme in function space” for (10.3.0.1) on a temporal

mesh 0 = t0 < t1 < · · · < tM := T :

We look at a single timestep and assume that we are given approximation u(j−1) ≈ u(tj−1). Then the

concrete steps of the Strang split-step method for the IBVP




∂u

∂t
− ǫ∆u + v(x, t) · grad u = f in Ω̃ := Ω×]0, T[ ,

u(x, t) = g(x, t) ∀x ∈ ∂Ω, 0 < t < T , u(x, 0) = u0(x) ∀x ∈ Ω ,
(10.3.1.1)

are:
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➀ Solve (autonomous) parabolic IBVP for pure diffusion from tj−1 to tj−1 +
1
2 τ

(10.3.3.2) ↔

∂w

∂t
− ǫ∆w = 0 in Ω×]tj−1, tj−1 +

1
2 τ[ ,

w(x, t) = g(x, t) ∀x ∈ ∂Ω, tj−1 < t < tj−1 +
1
2 τ ,

w(x, tj−1) = u(j−1)(x) ∀x ∈ Ω .

(10.3.3.6)

➁ Solve IBVP for pure transport (= advection), see Sect. 10.3.2,

(10.3.3.3) ↔

∂z

∂t
+ v(x, t) · grad z = f (x, t) in Ω×]tj−1, tj[ ,

z(x, t) = g(x, t) on inflow boundary Γin , tj−1 < t < tj ,

z(x, tj−1) = w(x, tj−1 +
1
2 τ) ∀x ∈ Ω .

(10.3.3.7)

➂ Solve (autonomous) parabolic IBVP for pure diffusion from tj−1 +
1
2 τ to tj

(10.3.3.4) ↔

∂w

∂t
− ǫ∆w = 0 in Ω×]tj−1 +

1
2 τ, tj[ ,

w(x, t) = g(x, t) ∀x ∈ ∂Ω , tj−1 +
1
2 τ < t < tj ,

w(x, tj−1 +
1
2 τ) = z(x, tj) ∀x ∈ Ω .

(10.3.3.8)

Then set u(j)(x) := w(x, tj), x ∈ Ω.

Remark 10.3.3.9 (Leap-frog implementation of Strang splitting)

An efficient “implementation” of Strang splitting timestepping can merge sub-steps belonging to different

timesteps. If g = g(y) we can

combine the last sub-step ➂ with the first sub-step ➀ of the next timestep

Fig. 446 t0 t1 t2 t3 t4

—: sub-step ➁, —: sub-step ➀ & ➂
y

Remark 10.3.3.10 (Approximate sub-steps for Strang splitting time) The solutions of the initial value

problems in the sub-steps of Strang splitting timestepping may be computed only approximately .

If this is done by one step of a 2nd-order timestepping method in each case, then the resulting approximate

Strang splitting timestepping will still be of second order, cf. Thm. 10.3.3.5. y

10.3.3.2 Particle Method for Pure Transport (Advection)

We recall the method of characteristics for IBVPs for the pure transport (= advection) equation from Sec-

tion 10.3.2

∂u

∂t
+ v(x, t) · grad u = f in Ω̃ := Ω×]0, T[ ,

u(x, t) = g(x, t) on Γin×]0, T[ , u(x, 0) = u0(x) in Ω ,
(10.3.3.11)
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where the inflow boundary is defined as

Γin := {x ∈ ∂Ω: v(x) · n(x) < 0} . (10.2.1.11)

Case f ≡ 0: a travelling fluid particle sees a constant solution, see (10.3.2.2)

u(x, t) =

{
u0(x0) , if y(s) ∈ Ω ∀0 < s < t ,

g(y(s0), s0) , if y(s0) ∈ ∂Ω, y(s) ∈ Ω ∀s0 < s < t ,
(10.3.3.12)

for (x, t) ∈ Ω̃, where s 7→ y(s) solves the initial value problem for the streamline ODE

dy

ds
(s) = v(y(s), s) , y(t) = x , (10.3.3.13)

and, thus, defines a “backward particle trajectory”.

Case of general f , see § 10.3.2.3: Since d
dt u(y(t)) = f (y(t), t) we can obtain the solution by integrating

the source along a particle trajectory:

u(x, t) =





u0(x0) +
t∫

0

f (y(s), s)ds , if y(s) ∈ Ω ∀0 < s < t ,

g(y(s0), s0) +
t∫

s0

f (y(s), s)ds , if y(s0) ∈ ∂Ω, y(s) ∈ Ω ∀s0 < s < t .

(10.3.2.7)

The solution formula (10.3.2.7) suggests an approach for solving (10.3.3.11) approximately by following

particles in the flow. This is the idea underlying particle methods.

We first consider the simple situation of no inflow/outflow (e.g., fluid in a container, see § 10.3.2.3)

v(x, t) · n(x) = 0 ∀x ∈ ∂Ω , 0 < t < T . (10.1.1.5)

In this case boundary conditions become irrelevant when solving a pure transport problem.

Then the particle method for the solution of the pure transport initial value problem proceeds as follows:

➀ Pick suitable interpolation nodes {pi}N
i=1 ⊂ Ω (initial ‘particle positions”)

➁ “Particle pushing”: Solve initial value problems (cf. ODE (10.3.3.13) for particle trajectories)

ẏ(t) = v(y(t), t) , y(0) = pi , i = 1, . . . , N ,

by means of a suitable single-step method with uniform timestep τ := T/M, M ∈ N.

➣ sequencies of solution points p
(j)
i , j = 0, . . . , M, i = 1, . . . , N

➂ Reconstruct approximation u
(j)
h ≈ u(·, tj), tj := jτ, by interpolation: we demand

u
(j)
h (p

(j)
i ) := u0(pi) + τ

j−1

∑
l=1

f (1
2(p

(l)
i + p

(l−1)
i ), 1

2(tl + tl−1)) , i = 1, . . . , N .

In the third step the equidistant composite midpoint quadrature rule was used to approximate the source

integral in (10.3.2.7).

Remark 10.3.3.14. This method falls into the class of
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• particle methods, because the interpolation nodes can be regarded fluid particles tracked by the

method,

• Lagrangian methods, which treat the IBVP in coordinate systems moving with the flow,

• characteristic methods, which reconstruct the solution from knowledge about its behavior along

streamlines.

y

Remark 10.3.3.15 (Particle method adapted to inflow/outflow) General velocity fields v : Ω 7→ Rd that

penetrate ∂Ω can be dealt with by the following modifications of the particle method:

✦ Stop tracking i-th trajectory as soon as an interpolation nodes p
(j)
i lies outside spatial domain Ω.

✦ In each timestep start new trajectories from fixed locations on inflow boundary Γin (“particle injec-

tion”). These interpolation nodes will carry the boundary value.

y

EXPERIMENT 10.3.3.16 (Point particle method for pure advection) In this experiment we take a qual-

itative look at the ability of particle methods to simulate a rotating flow.

✦ IBVP (10.3.3.11) on Ω =]0, 1[2, T = 2, with f ≡ 0, g ≡ 0.

✦ Initial locally supported bump u0(x) = max{0, 1− 4
∥∥∥x−

[
1/2
1/4

]∥∥∥}.

✦ Two stationary divergence-free velocity fields

• v1(x) =

[− sin(πx1) cos(πx2)
cos(πx1) sin(πx2)

]
satisfying (10.1.1.5),

• v2(x) =

[−x2

x1

]
.

✦ Initial positions of interpolation points on regular tensor product grid with meshwidth h = 1
40 .

✦ Approximation of trajectories by means of explicit trapezoidal rule [NCSE] (method of Heun).

Fig. 447

velocity field v1 (circvel)

Fig. 448

velocity field v2 (rotvel)

y
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10.3.3.3 Particle Mesh Method (PMM)

The method introduced in the previous section, can be used to tackle the pure advection problem (10.3.3.7)

that we face in 2nd sub-step (10.3.3.7) of the Strang splitting timestepping.

Issue: How to combine Lagrangian advection with a method for the pure diffusion problem (10.3.3.6)

faced in the other sub-steps of the Strang splitting timestepping?

Idea: two views

“particle temperatures” u(p
(j)
i )

l

Nodal values of finite element function u
(j)
h ∈ S0

1 (M)

We give the outline of an algorithm for one timestep of size τ > 0 of Strang splitting timestepping

for the transient convection-diffusion problem with zero Dirichlet boundary conditions





∂u

∂t
− ǫ∆u + v(x) · grad u = f in Ω̃ := Ω×]0, T[ ,

u(x, t) = 0 ∀x ∈ ∂Ω, 0 < t < T , u(x, 0) = u0(x) ∀x ∈ Ω .
(10.3.1.1)

Note that for the sake of simplicity we assume a stationary velocity field. At the beginning of the timestep

we are given

✦ A triangular meshM(j−1) of Ω,

✦ a finite element approximation u
(j−1)
h ∈ S0

1,0(M(j−1))↔ coefficient vector~µ(j−1) ∈ RNj−1 ,

➊ Diffusion step, “method-of-lines half step” for

∂w

∂t
− ǫ∆w = 0 in Ω×]tj−1, tj−1 +

1
2 τ[ ,

w(x, t) = 0 ∀x ∈ ∂Ω, tj−1 < t < tj−1 +
1
2 τ ,

w(x, tj−1) = u(j−1)(x) ∀x ∈ Ω .

(10.3.3.6)

We approximately solve (10.3.3.6) by finite element Galerkin discretization utilizing lowest order La-

grangian finite elements onM(j−1) and a single step of the implicit Euler method (9.2.7.3) (timestep

size 1
2 τ)

~ν = (M + 1
2 τǫA)−1~µ(j−1) , (10.3.3.17)

where A ∈ RNj−1,Nj−1 =̂ S0
1,0(M)-Galerkin matrix for −∆, M =̂ (possibly lumped) S0

1,0(M)-
mass matrix. Then~ν contains the tent function basis expansion coefficients of an approximation of

w(tj−1 +
1
2 τ).

In general, in the context of a Strang splitting scheme it is advisable to employ 2nd-order timestep-

ping: use a 2nd-order L(π)-stable single step method,e.g., SDIRK-2 (9.2.7.51).

➋ Advection step: use the particle method of Section 10.3.3.2 for

∂z

∂t
+ v(x, t) · grad z = f (x, t) in Ω×]tj−1, tj[ ,

z(x, t) = 0 on inflow boundary Γin , tj−1 < t < tj ,

z(x, tj−1) = wh(x, tj−1 +
1
2 τ) ∀x ∈ Ω .

(10.3.3.7)
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We carry out a Lagrangian advection step (of size τ) as introduced in Section 10.3.3.2 for (10.3.3.7)

with

• initial “particle positions” pi given by nodes ofM(j−1), i = 1, . . . , Nj,

• initial “particle temperatures” given by corresponding coefficients νi, the components of

~ν ∈ RNj−1 obtained from (10.3.3.17).

➌ Remeshing, required, because the advection step has moved nodes to new positions p̃i (and,

maybe, introduced new nodes by “particle injection”, deleted nodes by “particle removal”).

➣ Create new triangular meshM(j) with nodes p̃i (+ boundary nodes), i = 1, . . . , Nj

➍ Repeat diffusion step ➊ starting with wh ∈ S0
1,0(M(j)) = linear interpolant (→ Def. 3.3.2.1) of

“particle temperatures” onM(j). This yields the new approximate solution u
(j)
h

Of course, ➊+➌ and ➋ can be interleaved in leapfrog fashion, as explained in Rem. 10.3.3.9.

EXAMPLE 10.3.3.18 (Delaunay-remeshing in 2D)

Delaunay algorithm for creating a 2D triangular mesh

with prescribed nodes:

① Compute Voronoi cells, see (4.2.2.2) &

http://www.qhull.org/.

② Connect two nodes, if their associated Voronoi

dual cells have an edge in common.

Remark 10.3.3.19. In MATLAB the Delaunay al-

gorithm is available via the built-in function TRI =

delaunay(x,y). y

Fig. 449

y

EXPERIMENT 10.3.3.20 (Lagrangian method for convection-diffusion in 1D)
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Same IBVP (10.3.1.4) as in Exp. 10.3.1.3:

∂u

∂t
− ǫ

∂2u

∂x2
+

∂u

∂x
= 0 ,

u(x, 0) = max(1− 3|x− 1
3 |, 0) ,

u(0) = u(1) = 0 .

✦ Linear finite element Galerkin discretization

with mass lumping in space

✦ Strang splitting applied to diffusive and convec-

tive terms

✦ (Sub-optimal) implicit Euler timestepping for

diffusive partial timestep

x 7→ u0(x) ✄
Fig. 450
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“Reference solution” computed by method of lines, see Exp. 10.3.1.3, with h = 10−3, τ = 5 · 10−5

(“overkill resolution”):
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y

EXPERIMENT 10.3.3.21 (Lagrangian method for convection-diffusion in 2D)

✦ IBVP (10.3.1.1) on Ω =]0, 1[2, T = 1,

✦ Particle mesh method based on Delaunay remeshing, see Ex. 10.3.3.18, and linear finite element

Galerkin discretizatin for diffusion step.
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We qualitatively examine the obtained solution.

y

Let us summarize the pros and cons of Lagrangian particle methods:

Advantage of Lagrangian (particle) methods for convection diffusion:

✦ No artificial diffusion required (no “smearing”)

No stability induced timestep constraint

Drawback of Lagrangian (particle) methods for convection diffusion:

✦✦ Remeshing (may be) expensive and difficult.

Point advection may produce “voids” in point set.

Review question(s) 10.3.3.22 (Lagrangian split-step method)

✦(Q10.3.3.22.A) [Strang splitting] Explain the Strang-splitting single-step method for the IVP

ẏ = g(y) + r(y) , y(0) = y0 .

(Q10.3.3.22.B) [Particle method for pure transport]

Fig. 454

We consider the initial value problem

∂u

∂t
(x, t) + v(x, t) · grad u(x, t) = 0 in Ω̃ ,

u(x, 0) = u0(x) ∀x ∈ Ω ,

with a velocity field v as plotted beside.

What kind of difficulty can be encountered when using the particle method for pure transport with the

explicit Euler single-step method for “particle pushing”?

△

10.3.4 Semi-Lagrangian Method

Video tutorial for Section 10.3.4: Semi-Lagrangian Method: (35 minutes) Download link,

tablet notes

Now we study a family of methods for transient convection-diffusion that takes into account transport along

streamlines, but, in constrast to genuine Lagrangian methods, relies on a fixed mesh.
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To begin, we recall the flow map Φ
t induced by a (stationary) velocity field v ∈ C0(Ω), see (10.1.1.6).

Since we admit time-dependent velocity fields, now the flow map takes two time arguments and agrees

with the evolution operator (→ § 9.2.5.8) for the flow equation ẏ(t) = v(y(t), t). Therefore, we reuse the

notation Φ
t0,t for the flow map.

§10.3.4.1 (The material derivative) Now we introduce the Lagrangian concept of the “rate of change of

a function seen by an observer moving with the flow”:

Definition 10.3.4.2. Material derivative

Given a velocity field v : Ω×]0, T[ 7→ Rd, the material derivative of a function f = f (x, t) :
Ω×]0, T[ 7→ R at (x, t0) ∈ Ω×]0, T[ is (0 < t0 < T)

D f

Dv
(x, t0) = lim

τ→0

f (x, t0)− f (Φt0,t0−τx, t0 − τ)

τ
=

d

dτ
{τ 7→ f (Φτx, τ)}

∣∣∣∣
τ=t0

, x ∈ Ω ,

with Φ
t0,t the flow map (at time t0) associated with v, that is, cf. (10.1.1.6), (10.1.1.7),

d{t 7→ Φ
t0,tx}

dt
(t) = v(Φt0,tx, t) , Φ

t0,t0 x = x . (10.3.4.3)

The material derivative
D f
Dv is the

rate of change of f experienced by a particle carried along by the flow

because t 7→ Φ
t0,tx describes the trajectory of a particle located at x at time t0 (↔ t = 0).

§10.3.4.4 (Convection-diffusion equation via material derivative) By a straightforward application of

the chain rule for smooth f we find

D f

Dv
(x, t) = gradx f (x, t) · v(x, t) +

∂ f

∂t
(x, t) . (10.3.4.5)

Thus, the transient convection-diffusion equation (10.3.0.1) can be rewritten by means of the material

derivative:

∂u

∂t
− ǫ∆u + v(x, t) · grad u = f in Ω̃ := Ω×]0, T[ ,

m ← (10.3.4.5)

Du

Dv
− ǫ∆u = f in Ω̃ := Ω×]0, T[ . (10.3.4.6)

§10.3.4.7 (Semi-Lagrangian temporal semi-discretization) The formulation (10.3.4.6) serves as start-

ing point.
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Idea: Employ a backward difference (“implicit Euler”) discretization of the material

derivative

Du

Dv |(x,t)=(x,t0)
≈ u(x, t0)− u(Φt0,t0−τx, t0 − τ)

τ
, (10.3.4.8)

with timestep τ > 0, where the trajectory t 7→ Φ
t0,tx solves the initial value

problem

d{t 7→ Φ
t0,tx}

dt
(t) = v(Φt0,tx, t) , Φ

t0,t0 x = x . (10.3.4.3)

Obviously, in (10.3.4.8) Φ is the flow map associated with v.

This idea yields a semi-discretization of (10.3.4.6) in time (with fixed timestep τ > 0)

u(j)(x)− u(j−1)(Φtj,tj−τx)

τ
− ǫ∆u(j)(x) = f (x, tj) in Ω ,

+ initial conditions at t = tj , boundary conditions on ∂Ω ,

(10.3.4.9)

where u(j) : Ω 7→ R is an approximation for u(·, tj), tj := jτ, j ∈ N. Note the difference to the method

of lines (→ Section 9.2.4, Section 9.3.3, and Section 10.3.1): in (10.3.4.9) semidiscretization in time was

carried out first, now followed by discretization in space, which reverses the order adopted in the method

of lines. y

§10.3.4.10 (Finite element spatial discretization) Cast (10.3.4.9) into variational form according to the

recipe of Section 1.8

u(j) ∈ H1
0(Ω):

∫

Ω

(u(j)(x)− u(j−1)(Φtj,tj−τx))w(x) + τǫ grad u(j) · grad w dx

= τ
∫

Ω

f (x, tj)w(x)dx ∀w ∈ H1
0(Ω) , (10.3.4.11)

and apply Galerkin discretization (here discussed for piecewise linear finite elements, homogeneous

Dirichlet boundary conditions u = 0 on ∂Ω).

This yields one timestep (size τ) for the semi-Lagrangian method: the approximation u
(j)
h for u(jτ)

(equidistant timesteps) is computed from the previous timestep according to

u
(j)
h ∈ S0

1,0(M):
∫

Ω

u
(j)
h (x)− u

(j−1)
h (Φtj,tj−τx)

τ
wh(x)dx + ǫ

∫

Ω

grad u
(j)
h · grad wh dx

=
∫

Ω

f (x, tj)wh(x)dx ∀wh ∈ S0
1,0(M) . (10.3.4.12)

Here,M is supposed to be a fixed triangular mesh of Ω. y

§10.3.4.13 (Interpolatory fully discrete semi-Lagrangian method) However, (10.3.4.12) cannot be

implemented, because the function

x 7→ u
(j−1)
h (Φtj,tj−τx) ∈ H1(Ω)
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is a former finite element function that has been “transported with the (reversed) flow” (in the sense of

pullback, see Def. 2.8.1.2)

Fig. 455

✁ - - - =̂ image ofM (—) under the mapping

Φ
tj,tj−τ

The pullback x 7→ vh(Φ
tj,tj−τx) of some

vh ∈ S0
1,0(M) is piecewise smooth w.r.t. the

mapped mesh drawn with - - -. Hence, it is not

smooth inside the cells ofM.

In general the transported function x 7→
u
(j−1)
h (Φtj,tj−τx) will not be a finite ele-

ment function onM,

As a consequence, the direct “analytic” computation of entries of Galerkin matrices arising from (10.3.4.12)

is not possible.

Idea:

✦ replace the transported finite element function x 7→ u
(j−1)
h (Φtj,tj−τx)

with its linear interpolant (→ Def. 3.3.2.1)

I1
(
u
(j−1)
h ◦Φ

tj,tj−τ
)
∈ S0

1,0(M),

✦ approximate Φ
tj,tj−τx by x − τv(x, tj), which amounts to the

use of a single explicit Euler step.

This second approximation is called streamline backtracking, because we follow the streamline through

(x, tj) backward in time. This yields the following definition of a single timestep tj−1 → tj of the semi-

Lagrangian scheme for the convection-diffusion IBVP (10.3.1.1):

u
(j)
h ∈ S0

1,0(M):
∫

Ω

u
(j)
h (x)− I1(u

(j−1)
h (· − τv(·, tj)))(x)

τ
wh(x)dx + ǫ

∫

Ω

grad u
(j)
h · grad wh dx

=
∫

Ω

f (x, tj)wh(x)dx ∀wh ∈ S0
1,0(M) .

Then apply local vertex based numerical quadrature (2D trapezoidal rule (2.4.6.10) = global trapezoidal

rule) to the first integral. This amounts to using mass lumping, see Rem. 9.3.4.18.

Implementable version of (10.3.4.12) (on a 2D triangular meshM)

u
(j)
h ∈ S0

1,0(M): 1
3 |Up|(µ(j)

p − u
(j−1)
h (p− τv(p, tj)) + τ

∫

Ω

grad u
(j)
h · grad b

p
h dx

= 1
3 τ|Up| f (p) , p ∈ N (M) ∩Ω , (10.3.4.14)

where µ
(j)
p are the nodal values of u

(j)
h ∈ S0

1,0(M) associated with the interior nodes of the meshM,

b
p
h is the “tent function” belonging to node p, |Up| is the sum of the areas of all triangles adjacent to p. y
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EXPERIMENT 10.3.4.15 (Semi-Lagrangian method for convection-diffusion in 1D) We perform a

qualitative study of the semi-Lagrangian scheme in one spatial dimension:

Same IBVP as in Ex. 10.3.3.20

✦ Linear finite element Galerkin discretization

with mass lumping in space

✦ Semi-Lagrangian method: 1D version of

(10.3.4.12)

✦ Explicit Euler streamline backtracking

We give snapshots of the solution for times

t = 0.124 ∗ j, j = 1, 2, 3, 4.

Fig. 456
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Semi−Lagrangian method: M = 100.000000, τ = 0.005000, t=0.130000
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We observe rapid smearing of the sharp kink in the initial data: the semi-Lagrangian method is rather

diffusive due to repeated interpolation.

ǫ = 0.1, τ = 0.01, h = 0.01:
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“Reference solution” computed by method of lines, see Exp. 10.3.1.3, with “overkil resolution” h = 10−3,

τ = 5 · 10−5:
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EXPERIMENT 10.3.4.16 (Semi-Lagrangian method for convection-diffusion in 2D) We qualitatively

study the solutions produced by the semi-Lagrangian scheme in 2D.

✦ 2nd-order scalar convection diffusion problem (10.3.1.1), Ω :=]0, 1[2, f = 0, g = 0,

✦ velocity field

v(x) :=

[− sin(πx1) cos(πx2)
sin(πx2) cos(πx1)

]
.

✦ Initial condition: “compactly supported cone shape”

u0(x) := max{0, 1− 4

∥∥∥∥x−
[

0.5

0.25

]∥∥∥∥} .

✦ semi-Lagrangian finite element Galerkin discretization according to (10.3.4.12) on regual triangular

meshes of square domain Ω, see Fig. 257.
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We observe smearing of initial data due to numerical diffusion inherent in the interpolation step of the

semi-Lagrangian method. y

Review question(s) 10.3.4.17 (Semi-Lagrangian methods)

(Q10.3.4.17.A) We consider the pure transport IBVP on ]0, 1[×]0, 1[

∂u

∂t
+

∂u

∂x
= 0 , u(0, t) = 0 , u(x, 0) = max{(1− 3|x− 1

3 |, 0} .

Under what sufficient conditions will an interpolation-based semi-Lagrangian method that

• relies on uniform timesteps of size τ > 0 and an equidistant meshM with meshwidth h > 0,

• uses S0
1 (M) as trial and test space,

• employs an explicit Euler approximation of the flow map,

produce snapshots of the exact solution.
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(Q10.3.4.17.B) For a given smooth velocity field v ∈ (C1(Ω))2 and a continuous source function

f ∈ C0(Ω) on a computational domain Ω ⊂ R2 we want to solve the convection-diffusion Dirichlet

IBVP

−ǫ∆u + v(x) · grad u = f (x, t) in Ω×]0, T[

u(x, t) = 0 on ∂Ω×]0, T[ , u(x, 0) = u0(x) .

We use the semi-Lagrangian method with uniform timestep τ > 0:

u
(j)
h ∈ S0

1,0(M):
∫

Ω

u
(j)
h (x)− I1(u

(j−1)
h (· − τv(·)))(x)

τ
wh(x)dx + ǫ

∫

Ω

grad u
(j)
h · grad wh dx

=
∫

Ω

f (x, tj)wh(x)dx ∀wh ∈ S0
1,0(M) .

Selecting a basis B := {b1
h, . . . , .bN

h } of S0
1,0(M), N := dimS0

1,0(M), this leads to the linear recur-

sion

M~µ(j) + B~µ(j−1) + ǫτA~µ(j) = τ~ϕ(j)

for the basis expansion coefficient vectors~µ(j)
of u

(j)
h , j = 0, . . . , M.

Give concrete formulas for the entries of the matrices M, B, A ∈ RN.N.

△

Learning outcomes

After having digested the contents of this chapter you should

• know the mathematical model (“convection-diffusion equation”) for stationary and transient heat con-

duction in a moving (incompressible) fluid,

• understand the notion of singular perturbation and when convection-diffusion boundary value prob-

lems are singularly perturbed.

• know that standard Galerkin finite element discretization of convection-diffusion boundary value

problem runs risk of spurious oscillations of the numerical solution in the case of singular perturba-

tion.

• be familiar with the idea of upwind quadrature for a stable discretization of singularly perturbed

convection-diffusion problems.

• know stabilization through artificial diffusion/viscosity and how it is used in the streamline diffusion

method.

• remember that the method of lines approach for singularly perturbed transient convection-diffusion

problems requires a stable discretization in space.

• comprehend the main idea of Lagrangian particle methods for transient advection.

• be familiar with the principle of semi-Lagrangian finite element methods for transient advection-

diffusion boundary value problems.
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Chapter 11

Numerical Methods for Conservation Laws

Conservation laws describe physical phenomena governed by

✦ conservation laws for certain physical quantities (e.g., mass momentum, energy, etc.),

✦ transport of conserved physical quantities.

We have already examined problems of this type in connection with transient heat conduction in Sec-

tion 10.1.4. There thermal energy was the conserved quantity and a prescribed external velocity field v
determined the transport. Familiarity with Chapter 10 is advantageous, but not essential for understanding

this chapter.

A new aspect emerging for general conservation laws is that the transport velocity itself may depend on

the conserved quantities themselves, which gives rise to non-linear models.
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11.5.2 Slope Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
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11.1 Conservation Laws: Examples

In this section we will study a few important examples of linear and non-linear conservation laws. In the

process we will discover key properties of their solutions. The focus here and throughout this chapter is

on Cauchy problems, evolution problems posed on the unbounded spatial domain Ω = Rd.

➤ Cauchy problems are pure initial value problems (no boundary values).

Why do we restrict ourselves to Cauchy problems? Mainly for two reasons:

➊ Finite speed of propagation typical of conservation laws → Thm. 11.2.7.3

(This means that potential spatial boundaries will not affect the solution for some time in the case of com-

pactly supported initial data, cf. situation for wave equation, where we also examined the Cauchy problem,

see (9.3.2.2).)

➋ No spatial boundary ➣ need not worry about (spatial) boundary conditions!

(The issues arising for spatial boundary conditions can be very intricate for conservation laws, cf.

Rem. 11.2.1.8. We would like to avoid these complications.)

11.1.1 Linear Advection

The phenomena modeled by conservation laws are usually transport-dominated. The simplest case are

models where the transport is due to a given velocity field v : Ω× [0, T]→ Rd, cf. Section 10.1.1, which

leads to linear advection/convection evolution problems as discussed in detail in Section 10.3.

§11.1.1.1 (Heat transport in a moving fluid) Let the movement of a fluid occupying the spatial domain

Ω ⊂ Rd be described by a time-dependent continuous velocity field v : Ω× [0, T]→ Rd, T > 0 =̂ final

time. If u = u(x, t), x ∈ Ω, 0 ≤ t ≤ T, denotes the temperature of the fluid, then the total heat flux is

j(x, t) = −κ grad u(x, t) + v(x, t)ρu(x, t) , (x, t) ∈ Ω× [0, T] , (11.1.1.2)

diffusive heat flux

(due to spatial variation of temperature)

convective heat flux

(due to fluid flow)

In (11.1.1.2), ρ > 0 stands for the heat capacity of the fluid and κ > 0 for its heat conductivity, see Sec-

tion 9.2.1. The convective heat flux reflects the simple fact the moving hot material amounts to transporting

thermal energy. The conservation law

∂

∂t
(ρu)(x, t) + (divx j)(x, t) = f (x, t) in Ω̃ . (9.2.1.5)

for thermal energy in arbitrary is not affected by the movement of the fluid. As in § 9.2.1.2 we can

simply plug j(x, t) from (11.1.1.2) into (9.2.1.5) and end up with the convection-diffusion equation for
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the temperature distribution in a fluid flowing with velocity v = v(x, t)

∂

∂t
(ρu)− div(κ grad u) + div(ρv(x, t)u) = f (x, t) in Ω̃ := Ω×]0, T[ , (10.1.4.1)

where f = f (x, t) models a heat source.

Next we assume that the fluid moves fast and conducts heat only poorly, which makes it possible to neglect

the diffusive heat flux, formally achieved by setting κ := 0, which results in the linear advection equation

→ Section 10.1.4

∂

∂t
(ρu) + div(ρv(x, t)u) = f (x, t) in Ω̃ := Ω×]0, T[ .

Switching to Ω = Rd this leads us to consider the the following Cauchy problem for the linear advection

equation

∂

∂t
(ρu) + div(v(x, t)(ρu)) = f (x, t) in Ω̃ := Rd×]0, T[ , (11.1.1.3)

u(x, 0) = u0(x) for all x ∈ Rd (initial conditions) . (11.1.1.4)

with u = u(x, t) =̂ temperature, ρ > 0 =̂ heat capacity, v = v(x, t) =̂ prescribed locally Lipschitz-

continuous velocity field, v : Rd × [0, T]→ Rd.

Terminology: (11.1.1.3) is an instance of a linear scalar conservation law.

Why “conservation law”? Because the derivation of the mathematical model invoked the conservation of

the thermal energy (density) ρu as a key principle. We elaborate this further below.

Why “linear”? Because the flux j from (11.1.1.2) depends linearly on u. In particular, the convective flux

depends linearly on the value of value of u in a single space-time point.

In the sequel we study a much simplfied problem and assume constant heat capacity, ρ ≡ 1 after scaling,

the absence of heat sources, f ≡ 0, and a stationary velocity field v = v(x). Thus we end up with the

following rescaled initial value problem, here written in conserved variables:

∂u

∂t
+ div(v(x)u) = 0 in Ω̃ := Rd×]0, T[ ,

u(x, 0) = u0(x) for all x ∈ Rd (initial conditions) .

(11.1.1.5)

Convention: differential operator div acts on spatial independent variable only,

(div f)(x, t) :=
∂ f1

∂x1
+ · · ·+ ∂ fd

∂xd
, f(x, t) =




f1(x, t)
...

fd(x, t)


 .

A general solution formula exists for (11.1.1.5), based on the notion of the flow map induced by the

velocity field v = v(x, t), see also (10.1.1.6). The flow map Φ = Φ(x, t), x ∈ Rd, t ∈ R is a mapping

Φ : Rd ×R → Rd defined by

∂Φ

∂t
(x, t) = v(Φ(x, t), t) in Rd ×R ,

Φ(x, 0) = x for all x ∈ Rd .

(11.1.1.6)

See Fig. 417, Fig. 418, and Fig. 419 for visualizations. By existence and uniqueness theorems for initial

value problems for ordinary differential equations [NCSE] the flow map Φ is well defined by (11.1.1.6), if

v is (locally) Lipschitz continuous, which we take for granted. The flow map satisfies

Φ(Φ(x, t),−t) = x for all x ∈ Rd . (11.1.1.7)
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Theorem 11.1.1.8. Solution of linear advection problem

The solution of (11.1.1.5) is given by

u(x, t) = |det(DxΦ)(x̂, t)|−1u0(x̂) , (x̂, t) ∈ Rd ×R , x = Φ(x̂, t) , (11.1.1.9)

where DxΦ : Rd ×R → Rd,d is the Jacobian of the flow map w.r.t. x.

y

EXAMPLE 11.1.1.10 (Constant advection in 1D) We examine the simplest incarnation of the Cauchy

problem (11.1.1.5), namely the special case of advection in a single spatial direction, d = 1 and Ω = R,

and with a constant velocity v = const. This leads to

∂u

∂t
+

∂

∂x
(vu) = 0 in Ω̃ = R×]0, T[ , u(x, 0) = u0(x) ∀x ∈ R . (11.1.1.11)

This is the 1D version of the transport equation (10.3.2.1) and its solution is given by formula (10.3.2.5),

which is a special case of the result stated in Thm. 11.1.1.8.

(10.3.2.5)

u(x, t) = u0(x− vt) , x ∈ R , 0 ≤ t < T . (11.1.1.12)

The solution u = u(x, t) boils down to the initial data u0 “travelling” with velocity v. For differentiable u0

the solution property of u(x, t) from (11.1.1.12) can be verified by direct computation. y

Remark 11.1.1.13 (Discontinuous solutions of advection equations) To verify that (11.1.1.12) solves

(11.1.1.11) in the sense of classical calculus we need u0 ∈ C1(R). However, (11.1.1.11) remains mean-

ingful even without this smoothness assumption.

The solution formula from Thm. 11.1.1.8 makes perfect sense even for discontinuous initial data u0!

➥ We should not expect u = u(x, t) to be differentiable in space or time.

A “weaker” concept of solution is required, see Section 11.2.3 below.

This consideration should be familiar: for second order elliptic boundary value problems, for which classical

solutions are to be twice continuously differentiable, the concept of a variational solution made it possible

to give a meaning to solutions ∈ H1(Ω) that are merely continuous and piecwise differentiable, see

Rem. 1.5.3.9.

Related to (11.1.1.12) is the d’Alembert solution formula (11.6.1.23) for 1D wave equation (9.3.2.2), which

can also accommodate discontinuous solutions. y

Proof. (of Thm. 11.1.1.8) We assume that the velocity field v : Rd ×R → Rd is continuously differen-

tiable. Then, simply swaping differentiation in space and time, we see that the Jacobian of the flow map

DxΦ solves the following initial value problem for the so-called variational equation, a differential equation

for d× d-matrices:





∂

∂t
DxΦ(x̂, t) = Dxv(x, t)DxΦ(x̂, t) ,

DxΦ(x̂, 0) =I ,
x̂ ∈ Rd , t ∈ R , x = Φ(x̂, t) . (11.1.1.14)

The initial condition is due to the fact that Φ(x̂, 0) = x̂ for all x̂ ∈ Rd.

Next, we recall the derivative of a determinant:
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Theorem 10.1.3.7. Differentiation formula for determinants

Let S : I ⊂ R 7→ Rn,n be a smooth matrix-valued function. If S(t0) is regular for some t0 ∈ I,

then

d

dt
(det ◦S)(t0) = det(S(t0)) tr(

dS

dt
(t0)S

−1(t0)) ,

where tr stands for the trace of a matrix.

We apply it to the determinant of the Jacobian of the flow map (S(t) := DxΦ(x̂, t), x̂ regarded as param-

eter)

∂

∂t
detDxΦ(x̂, t) = detDx(x̂, t) tr(

∂

∂t
DxΦ(x̂, t) ·DxΦ(x̂, t))

(11.1.1.14)
= detDxΦ(x̂, t) div v(Φ(x̂, t), t) ,

because div v(x, t) = trDxv(x, t). Thus the determinant ρ(x̂, t) := detDxΦ(x̂, t) solves the initial-

value problem





∂

∂t
ρ(x̂, t) = div v(Φ(x̂, t), t) ρ(x̂, t) ,

ρ(x̂, 0) = 1 ,
(x̂, t) ∈ Rd ×R . (11.1.1.15)

By the uniqueness of solutions of initial-value problems for ODEs we infer that ρ(x̂, t) > 0 for all

(x̂, t) ∈ Rd ×R. Hence, we have the equivalence

u(x, t) = |det(DxΦ)(x̂, t)|−1u0(x̂)

m
ρ(x̂, t)u(x, t) = u0(x̂)

(x̂, t) ∈ Rd ×R , x = Φ(x̂, t) .

We differentiate the second equation with respect to time. By the product rule and the chain rule we get

∂ρ

∂t
(x̂, t)u(x, t) + ρ(x̂, t)

(
grad u(x, t) · ∂Φ

∂t
(x̂, t) +

∂u

∂t
(x, t)

)
= 0 .

Then plug in (11.1.1.15) and divide by ρ(x̂, t) 6= 0:

div v(x, t)u(x, t) + grad u(x, t) · ∂Φ

∂t
(x̂, t) +

∂u

∂t
(x, t) = 0 .

The flow equation

∂Φ

∂t
(x̂, t) = v(Φ(x̂, t), t) , (x̂, t) ∈ Rd ×R ,

along with the general product rule from Lemma 1.5.2.1 finish the proof.
✷

Remark 11.1.1.16 (Conservation of volume content) Let the function u : Rd ×R → R be defined as

in the previous theorem

u(x, t) = |det(DxΦ)(x̂, t)|−1u0(x̂) , (x̂, t) ∈ Rd ×R , x = Φ(x̂, t) , (11.1.1.9)

where u0 : Rd → R and Φ : Rd ×R → Rd is the flow induced by the continuously differentiable velocity

field v : Rd ×R → Rd according to (11.1.1.6).
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Recall the transformation formula for multi-dimensional integrals

Theorem 0.3.2.31. Transformation formula for integrals

Given two domains Ω̂, Ω ⊂ Rd and a continuously differentiable mapping Φ : Ω̂→ Ω, then

∫

Ω
f (x)dx =

∫

Ω̂
f (Φ(x̂)) |detDΦ(x̂)|dx̂ (0.3.2.32)

for any integrable function f : Ω→ R.

it shows that for any bounded “control volume” V ⊂ Rd and time t ∈ R
∫

Φ(V,t)

u(x, t)dx =
∫

V

u(Φ(x̂, t), t) |detDxΦ(x̂, t)|dx̂
(11.1.1.9)

=
∫

V

u0(x̂)dx̂ ∀t ∈ R .

Thus, when u = u(x, t) solves (11.1.1.5),

the “content of a control volumne V” given by the integral of u over V does not change as V moves

with the flow.

y

Remark 11.1.1.17 (Boundary conditions for linear advection) Recall the discussion in Section 10.2.1

and Section 10.3.2, cf. solution formula (10.3.2.7):

For the scalar linear advection initial boundary value problem

∂u

∂t
+ div(v(x, t)u) = f (x, t) in Ω̃ := Ω×]0, T[ , (11.1.1.18)

u(x, 0) = u0(x) for all x ∈ Ω , (11.1.1.19)

on a bounded domain Ω ⊂ Rd, boundary conditions (e.g., prescribed temperature)

u(x, t) = g(x, t) on Γin(t)×]0, T[ ,

can be imposed only on the inflow boundary

Γin(t) := {x ∈ ∂Ω: v(x, t) · n(x) < 0} , 0 < t < T . (11.1.1.20)

Note: Γin can change with time!

Bottom line:✎
✍

☞
✌

Knowledge of local and current direction of transport

is needed to impose meaningful boundary conditions!

y

11.1.2 Traffic Modeling [BED11]

We design simple mathematical models for non-stationary traffic flow on a single long highway lane. This

situation often occurs, for instance, at bypasses of long highway construction sites.

We make simplifying modeling assumptions (not quite matching reality):

✦ Identical cars and behavior of drivers (11.1.2.1)
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✦ Uniformity of road conditions (11.1.2.2)

✦ Speed of a car determined only by (its distance from) the car in front (11.1.2.3)

11.1.2.1 Particle Model

The gist of a particle model or agent based model for traffic flow is to track a finite number of individual

cars over a period of time [0, T]. Hence, the particle model is semi-discrete (still continuous in time). The

key state parameter of a car is its position on the road:

xi(t) =̂ position of i-th car at time t, i = 1, . . . , N (N =̂ total number of cars), hence the configuration

space is RN.

We will always take for granted ordering: xi(t) < xi+1(t)

The curve t 7→ xi(t) in the x− t-plane is the trajectory of the i-th car.

§11.1.2.4 (Velocity model) In order to describe the dynamics of the moving cars we need a velocity

model.

Here: optimal velocity model

ẋi(t) = vopt(∆xi) , ∆xi(t) = xi+1(t)− xi(t) > 0 , i = 1, . . . , N − 1 . (11.1.2.5)

↔ relies on Assumptions (11.1.2.1)–(11.1.2.3) above, in particular (11.1.2.3).

The function ∆x 7→ vopt(∆x) is deduced from the assumption that

each car drives as fast as possible under safety constraints.

(drive more slowly if the you are close to the car in front)

vopt(∆x) = vmax(1−
∆0

∆x
) , (11.1.2.6)

with ∆0 =̂ length of a car = distance of cars in bumper to bumper traffic jam.

(11.1.2.5) + (11.1.2.6): ordinary differential equation (ODE) on state space RN y

In order to get a well-posed initial value problem, the ODE has to be supplemented with initial conditions

xi(0) = xi,0 ∈ R , xi,0 ≤ xi+1,0 − ∆0 . (11.1.2.7)

Obviously (why?): the solution of (11.1.2.5), (11.1.2.6), (11.1.2.7) satisfies xi(t) ≤ xi+1(t)− ∆0.

Remark 11.1.2.8 (Acceleration based traffic modeling) The speed of a car is a consequence of drivers

accelerating and breaking.

➣ acceleration based modeling of car dynamics under Assumptions (11.1.2.1)–(11.1.2.3)

ẍi(t) = F(∆xi(t), ∆vi(t)) , ∆vi(t) = ẋi+1(t)− ẋi(t) . (11.1.2.9)

Models of this type are popular in practice. y

EXPERIMENT 11.1.2.10 (Particle simulation of traffic flow) Usually one sets vmax = 1 by rescaling of

spatial/temporal units, cf. Rem. 1.2.1.25.
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Fig. 460
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We chose the following initial positions of cars:

• 26 cars equidistributed in [0, 1],
• 51 cars at equidistant positions in [2, 3].

This corresponds to two clusters of evenly spaced

cars at different sections of the road.

✁ Simulation based on optimal velocity model

(11.1.2.6) with (dimensionless) ∆0 = 0.0180.

When we launch the simulation we observe that the two clusters merge and dissolve as cars “escape” to

the right. Fan-shaped patterns emerge, see Fig. 461. y

§11.1.2.11 (Extraction of macroscopic quantities) Our goal is to pass from the semi-discrete particle

model to a continuum model, where the state of traffic is described by functions.

These correspond to “macroscopic quantities” =̂ quantities describing the traffic flow detached from the

existence of individual cars.✞
✝

☎
✆Macroscopic quantities can be obtained by averaging from the microscopic particle description.

Key macroscopic quantity: (normalized) density of cars

uδ(x, t) :=
∆0

2δ
♯{i ∈ {1, . . . , N} : x− δ ≤ xi(t) < x + δ} , (11.1.2.12)

where δ > 0 is the spatial averaging length. (The density defined in (11.1.2.12) is “normalized”

because it is the ratio of the number density of cars and the maximal density ∆−1
0 . Hence, invariably,

0 ≤ uδ(x, t) ≤ 1.)

Note: uδ will crucially depend on δ y

EXPERIMENT 11.1.2.13 (Particle simulation of traffic flow, cnt’d → Exp. 11.1.2.10)

We use initial car distribution

• k/2 cars equidistributed in [0, 1],
• k cars at equidistant positions in [2, 3].

with k=50,200,800, ∆0 = 0.9/k, see

(11.1.2.6), δ = 3.33/k in (11.1.2.12), simula-

tion using explicit Runge-Kutta timestepping of

order 5.

Initial density x 7→ uδ(x, 0) ✄
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Striking observation:

For N → ∞, ∆0 ∼ N−1, δ ∼ N−1 the normalized car densities uδ(x, t) seem to approach a limit density .

What is it? Can it be obtained as a solution of a “limit model”. These issues will be addressed next. y

Note: We have made similar observation in the case of the mass-spring model of Section 5.1.1.2 in the

limit n→ ∞.

11.1.2.2 Continuum Traffic Model

In Exp. 11.1.2.13 we observed the emergence of a stable limit density in the microscopic particle model

of traffic flow according to (11.1.2.5) and (11.1.2.6), when the number of cars and their maximum density

tended to ∞ in tandem, while the spatial averaging length tends to zero.

Now we derive a macroscopic continuum model describing this limit. This macroscopic model will be

stated in terms of macroscopic quantities, which are functions of position along the road x and time t.

Note: There are many parallels with derivation of continuum elastic string model in Section 5.1.1.

Remark 11.1.2.14 (Suitability of macroscopic models for traffic flow) The limit N → ∞ in traffic

modeling is commonly denounced as dubious, because the number of cars on a road is way too small to

render the limit a good approximation of actual traffic flow, see [BED11].

Nevertheless, here we introduce a limit model, because

✦ it yields at least a qualitatively correct representation of patterns observed in real traffic flow,

✦ it provides an important model problem for scalar non-linear conservation laws, see Section 11.1.3.

y
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Ingredients of macroscopic (continuum) traffic model:

• spatial domain Ω = R =̂ infinitely long single highway lane (→ Cauchy problem),

• traffic flow described by the macroscopic quantity

normalized density of cars u : Ω× [0, T] 7→ [0, 1] according to

uδ(x, t) :=
∆0

δ
♯{i ∈ {1, . . . , N} : x− δ ≤ xi(t) < x + δ} , (11.1.2.12)

• optimal velocity speed model (11.1.2.6) (vopt(∆x) = vmax(1−
∆0

∆x
)).

§11.1.2.15 (Macroscopic balance laws for traffic model) However, (11.1.2.6) and (11.1.2.5) do not fit

the spirit of macroscopic modeling: neither ∆xi nor ẋi(t) is a macroscopic quantity!

Required: concept of a macroscopic velocity

Idea: spatial averaging of velocities of cars

vδ(x, t) =
∑i∈Uδ(x) ẋi(t)

♯Uδ
, (11.1.2.16)

Uδ(x) := {i ∈ {1, . . . , N} : x− δ ≤ xi(t) < x + δ} .

From density and velocity we derive another macroscopic quantity:

(normalized) flux of cars: qδ(x, t) = uδ(x, t)vδ(x, t) . (11.1.2.17)

Interpretation: qδ(x, t) ≈ no. of cars passing site x in unit time around instance t in time.

approximate balance law

(“conservation of cars” in a “space-time box”)

Fig. 462

x

t

x0

t0

x1

t1

x1∫

x0

uδ(x, t1)dx−
x1∫

x1

uδ(x, t0)dx

︸ ︷︷ ︸
change of no. of cars on [x0, x1] in [t0, t1]

≈
t1∫

t0

qδ(x0, t)dx−
t1∫

t0

qδ(x1, t)dx

︸ ︷︷ ︸
no. of cars entering/leaving [x0, x1] in [t0, t1]

. (11.1.2.18)

y
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§11.1.2.19 (Traffic flow: continuum limit of particle model) Now we consider N → ∞ (many cars)

and δ ∼ N−1 → 0 and drop the subscript δ, which hints at the averaging.

The balance law (11.1.2.20) will remain valid in the limit and will even become exact !

x1∫

x0

u(x, t1)dt−
x1∫

x1

u(x, t0)dt

︸ ︷︷ ︸
change of no. of cars on [x0, x1] in [t0, t1]

=

t1∫

t0

q(x0, t)dx−
t1∫

t0

q(x1, t)dx

︸ ︷︷ ︸
no. of cars entering/leaving [x0, x1] in [t0, t1]

. (11.1.2.20)

In the “infinitely many cars” limit u(x, t), v(x, t), and q(x, t) can be expected to become (piecewise)

smooth functions. This justifies the transition to a differential (PDE) macroscopic model:

Temporarily assume that u = u(x, t) is smooth in both x and t and set x1 = x0 + h, t1 = t0 + τ. First

approximate the integrals in (11.1.2.20).

x1∫

x0

u(x, t1)− u(x, t0)dx = h(u(x0, t1)− u(x0, t0)) + O(h2) for h→ 0 ,

t1∫

t0

q(x1, t)− q(x0, t)dt = τ(q(x1, t0)− q(x0, t0)) + O(τ2) for τ → 0 .

Then employ Taylor expansion for the differences:

u(x0, t1)− u(x0, t0) =
∂u

∂t
(x0, t0)τ + O(τ2) for τ → 0 ,

q(x1, t0)− q(x0, t0) =
∂q

∂x
(x0, t0)h + O(h2) for h→ 0 .

Finally, divide by h and τ and take the limit τ → 0, h→ 0:

∂u

∂t
(x, t) +

∂q

∂x
(x, t) = 0 in Ω×]0, T[ . (11.1.2.21)

This is a first-order partial differential equation.

We still need to link u and q: From (11.1.2.6) (with vmax = 1 after rescaling) we deduce the macroscopic

constitutive relationship between the (averaged and normalized) density (→ (11.1.2.12)) of cars and their

averaged speed (→ (11.1.2.16)):

v(x, t) = 1− u(x, t)
(11.1.2.17)⇒ q(x, t) = u(x, t)(1− u(x, t)) . (11.1.2.22)

(11.1.2.21) & (11.1.2.22) & (11.1.2.17)
∂u

∂t
+

∂

∂x
(u(1− u)) = 0 in Ω×]0, T[ .

(11.1.2.23)

+ macroscopic counterpart of initial conditions (11.1.2.7):

u(x, 0) = u0(x) , x ∈ R . (11.1.2.24)

y
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11.1.3 Inviscid Gas Flow

Introduction. In this section we study modeling in fluid mechanics, a special field of continuum mechanics.

In spirit this is close to the modeling of traffic flow in Section 11.1.2, because the macroscopic behavior of

fluids also results from the interaction of many small particles (molecules). However, in fluid mechanics the

limit model for infinitely many particles enjoys a much more solid foundation than that for traffic, because

the number of particles involved is tremendous (≈ 1020 − 1030).

Fig. 463

Gas

x

Frictionless gas flow in (infinitely) long pipe

Terminology: frictionless =̂ inviscid

Assumption: variation of gas density negligible (“near incompressibility”)

motion of fluid driven by inertia ↔ conservation of linear momentum

§11.1.3.1 (Inviscid gas flow: balance law) We derive a continuum model for inviscid, nearly incom-

pressible fluid in a straight infinitely long pipe↔ Ω = R (Cauchy problem).

This simple model will be based on conservation of linear momentum, whereas conservation of mass and

energy will be neglected (and violated). Hence, the crucial conserved quantity will be the momentum.

by near incompressibility

Unknown: u = u(x, t) = momentum density ∼ local velocity v = v(x, t) of fluid

☛
✡

✟
✠Conserved quantity: (linear) momentum of fluid u = u(x, t)

➣ flux of linear momentum f ∼ v · u (after scaling: f (u) = 1
2 u · u)

(“momentum u advected by velocity u”)

Conservation of linear momentum (∼ u): for all control volumes V :=]x0, x1[⊂ Ω:

x1∫

x0

u(x, t1)− u(x, t0)dx

︸ ︷︷ ︸
change of momentum in V

+

t1∫

t0

1
2 u2(x1, t)− 1

2 u2(x0, t)dt

︸ ︷︷ ︸
outflow of momentum

= 0 ∀0 < t0 < t1 < T . (11.1.3.2)

y

§11.1.3.3 (Burgers equation modelling inviscid gas flow) Temporarily assume that u = u(x, t) is

smooth in both x and t and set x1 = x0 + h, t1 = t0 + τ. First approximate the integrals in (11.1.3.2).

x1∫

x0

u(x, t1)− u(x, t0)dx = h(u(x0, t1)− u(x0, t0)) + O(h2) for h→ 0 ,

t1∫

t0

1
2 u2(x1, t)− 1

2 u2(x0, t)dt = τ(1
2 u2(x1, t0)− 1

2 u2(x0, t0)) + O(τ2) for τ → 0 .

Then employ Taylor expansion for the differences:

u(x0, t1)− u(x0, t0) =
∂u

∂t
(x0, t0)τ + O(τ2) for τ → 0 ,
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1
2 u2(x1, t0)− 1

2 u2(x0, t0) =
∂

∂x
(1

2 u2)(x0, t0)h + O(h2) for h→ 0 .

Finally, divide by h and τ and take the limit τ → 0, h→ 0:

∂u

∂t
+

∂

∂x

(
1
2 u2
)
= 0 in Ω×]0, T[ . (11.1.3.4)

(11.1.3.4) = Burgers equation: a one-dimensional scalar conservation law (without sources) y

Remark 11.1.3.5 (Euler equations) The above gas model blatantly ignores the fundamental laws of

conservation of mass and of energy. These are taken into account in a famous more elaborate model of

inviscid fluid flow:

The (compressible) Euler equations [LEV02], [CHD07], a more refined model for inviscid gas flow in an

infinite pipe

∂

∂t




ρ
ρu
E


+

∂

∂x




ρu
ρu2 + p
(E + p)u


 = 0 in R×]0, T[ , (11.1.3.6)

u(x, 0) = u0(x) , ρ(x, 0) = ρ0(x) , E(x, 0) = E0(x) for x ∈ R ,

where ✦ ρ = ρ(x, t) =̂ fluid density, [ρ] = kg m−1,

✦ u = u(x, t) =̂ fluid velocity, [u] = m s−1,

✦ p = p(x, t) =̂ fluid pressure, [p] = N,

✦ E = E(x, t) =̂ total energy density, [E] = J m−1.

+ state equation (material specific constitutive equations), e.g., for ideal gas [LEV02]

p = (γ− 1)(E− 1
2 ρu2) , with adiabatic index 1 < γ < 2 .

Conserved quantities (densities):

ρ ↔ mass density , ρu ↔ momentum density , E ↔ energy density.

Underlying physical conservation principles for individual densities:

• First equation :
∂ρ

∂t
+

∂

∂x
(ρu) = 0 ↔ conservation of mass,

• Second equation:
∂(ρu)

∂t
+

∂

∂x
(ρu2 + p) = 0 ↔ conservation of momentum,

• Third equation :
∂E

∂t
+

∂

∂x
((E + p)u) = 0 ↔ conservation of energy .

The Euler equations (11.1.3.6) are a non-linear system of conservation laws (in 1D).

As is typical of non-linear systems of conservations laws, the analysis of the Euler equations is intrinsically

difficult: hitherto not even existence and uniqueness of solutions for general initial values could be estab-

lished. Moreover, solutions display a wealth of complicated structures. Therefore, this course is confined

to scalar conservation laws, for which there is only one unknown real-valued function of space and time.

y

Review question(s) 11.1.3.7 (Conservation laws: Examples)
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(Q11.1.3.7.A) Consider the Cauchy problem

∂u

∂t
+ div(v(x)u) = 0 in Ω̃ := Rd×]0, T[ ,

u(x, 0) = u0(x) for all x ∈ Rd (initial conditions) .

(11.1.1.5)

for linear advection for d = 2 and the velocity field v(x) =
[
−x2
x1

]
. Write down the solution u = u(x, t)

in terms of the initial data u0 = u0(x).

(Q11.1.3.7.B) Let Φ : Rd ×R → Rd be the flow induced by a smooth velocity field v : Rd → Rd. Which

partial differential equations does the function

u(x, t) := u0(x̂) , x = Φ(x̂, t) , x̂ ∈ Rd

satisfy. Here u0 : Rd → R is a given differentiable function with bounded support.

(Q11.1.3.7.C) In an x− t diagram sketch the trajectory of a car starting at t = 0, x = 0 and moving with

constant acceleration to right.

(Q11.1.3.7.D) Which traffic flow conservation law arises, when the speed law

vopt(∆x) = vmax

(
1− ∆0

∆x

)

is replaced with

vopt(∆x) = vmax cos(
π

2

∆0

∆x
) .

△

11.2 Scalar Conservation Laws in 1D

This section will give a brief introduction to the mathematics of an important class of mathematical models

leading to scalar conservation laws in one spatial dimension. We will first present the general form of the

underlying partial differential equation, and then define a suitable notion of “solution”, the weak solutions,

which can even be discontinuous. Their properties will be discussed in the remaining sub-sections, in

order to understand, what features approximate numerical solutions should possess.

11.2.1 Integral and Differential Form

In Section 11.1 we have derived the following evolution equations for the real-valued unknown function

u = u(x, t) for phenomena with dominant transport and an underlying conservation principle.

linear advection:
∂

∂t
(ρu) + div(v(x, t)(ρu)) = f (x, t) in Ω×]0, T[ , (Ω ⊂ Rd) , (11.1.1.3)

Burgers equation:
∂u

∂t
+

∂

∂x

(
1
2 u2
)
= 0 in Ω×]0, T[ , (Ω ⊂ R) , (11.1.3.4)

traffic flow equation:
∂u

∂t
+

∂

∂x
(u(1− u)) = 0 in Ω×]0, T[ , (Ω ⊂ R) . (11.1.2.23)

Now, we learn about a class of evolution problems to which these three belong, namely the class of con-

servation laws. In order to introduce the general concept we first need some notations and terminology:

✦ Ω ⊂ Rd =̂ fixed (bounded/unbounded) spatial domain. In the case Ω = Rd we deal with a

Cauchy problem on an unbounded spatial domain without boundary.
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✦ The computational domain is the space-time cylinder Ω̃ := Ω×]0, T[, T > 0 final time

✦ U ⊂ Rm (m ∈ N) =̂ phase space (state space) for the conserved quantitities ui (usually U = Rm).

A vector ∈ U is often called a state.

In most of this chapter our focus will be on the scalar case m = 1.

The following relationship gives the integral form of a general scalar conservation law.

Conservation law for transient state distribution u : Ω̃ 7→ R: u = u(x, t), for 0 ≤ t ≤ T:

d

dt

∫

V

u dx +
∫

∂V

f(u, x) · n dS(x) =
∫

V

s(u, x, t)dx ∀ “control volumes” V ⊂ Ω . (11.2.1.1)

change of amount in V inflow/outflow production term

Terminology: ✄ flux function f : U ×Ω 7→ Rd

✄ source function s : U ×Ω×]0, T[ 7→ R (here usually s = 0)

Remark 11.2.1.2 (Conservation law and flux for transient heat conduction) Note that (11.2.1.1) has

the same structure as the “conservation of energy law” (9.2.1.3) for heat conduction that we recall here. If

u = u(x, t) denotes the temperature, ρ > 0 the heat capacity, and f models heat sources, then conser-

vation of energy can be expressed as

d

dt

∫

V
ρu dx +

∫

∂V
j · n dS =

∫

V
f dx for all “control volumes” V (9.2.1.3)

energy stored in V power flux through ∂V heat generation in V

In this case the heat flux was given by

Fourier’s law j(x) = −κ(x) grad u(x) , x ∈ Ω , (1.6.0.5)

or its extended version (10.1.2.4). In Fourier’s law (1.6.0.5) the flux is a linear function of first-order

derivatives of u. y

In contrast to Fourier’s law (1.6.0.5), for the flux function f : U ×Ω 7→ Rd in (11.2.1.1) we assume

f depends on the local state u, not on derivatives of u: f (u, x) = f (u(x), x).

In another respect we go far beyond Fourier’s law, since

f will, in general, be a non-linear function of u!

Remark 11.2.1.3 (Diffusive flux) Taking into account the relationship with heat “diffusion”, a flux function

of the form of Fourier’s law (1.6.0.5)

f(u) = −κ(x) grad u ,

is called a diffusive flux. y
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We can recast (11.2.1.1) in two ways. On one hand, we can integrate (11.2.1.1) over the time period

[t0, t1] ⊂ [0, T] and use the fundamental theorem of calculus in the time direction:

Space-time integral form of (11.2.1.1), cf. (11.1.3.2),

∫

V

u(x, t1)dx−
∫

V

u(x, t0)dx +

t1∫

t0

∫

∂V

f(u, x) · n dS(x)dt =

t1∫

t0

∫

V

s(u, x, t)dxdt (11.2.1.4)

for all V ⊂ Ω, 0 < t0 < t1 < T, n =̂ exterior unit normal at ∂V

On the other hand we can apply Gauss’ theorem Thm. 1.5.2.4 in space.

(local) differential form of (11.2.1.1):

∂

∂t
u + divxf(u, x) = s(u, x, t) in Ω̃ . (11.2.1.5)

div acting on spatial variable x only

In the special case d = 1 the differential form (11.2.1.5) of a one-dimensional scalar conservation law for

the “density” u : Ω̃ 7→ R is

∂u

∂t
(x, t) +

∂

∂x
( f (u(x, t), x)) = s(u(x, t), x, t) in ]α, β[×]0, T[, α, β ∈ R ∪ {±∞} . (11.2.1.6)

In any case, these evolution equations have to be supplemented with initial conditions u(x, 0) = u0(x),
x ∈ Ω

EXAMPLE 11.2.1.7 (Flux functions for simple scalar conservation laws) The examples given above,

linear advection:
∂

∂t
(ρu) + div(v(x, t)(ρu)) = f (x, t) in Ω×]0, T[ , (Ω ⊂ Rd) , (11.1.1.3)

Burgers equation:
∂u

∂t
+

∂

∂x

(
1
2 u2
)
= 0 in Ω×]0, T[ , (Ω ⊂ R) , (11.1.3.4)

traffic flow equation:
∂u

∂t
+

∂

∂x
(u(1− u)) = 0 in Ω×]0, T[ , (Ω ⊂ R) , (11.1.2.23)

are all written in the form (11.2.1.5) and, thus, the corresponding flux functions are easily found:

✦ For Burgers equation (11.1.3.4): f (u, x) = f (u) = 1
2 u2, s = 0,

✦ For traffic flow equation (11.1.2.23): f (u, x) = f (u) = u(1− u), s = 0,

✦ For linear advection (11.1.1.3): f(u, x) = v(x, t)u, s = f (x, t)
(Note: in this case the conserved quantity is actually ρu, which was again denoted by u)

y

Remark 11.2.1.8 (Boundary values for conservation laws) What are suitable boundary values on

∂Ω×]0, T[ ?. Usually this is a tricky question and the answer can be very different for different flux

functions.

To see why, remember the discussion in Rem. 11.1.1.17: meaningful boundary conditions hinge on knowl-

edge of local (in space and time) transport directions, which, in a non-linear conservation law, will usually

depend on the unknown solution u = u(x, t).
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This obviously compounds difficulties and to avoid these murky issues we consider only Cauchy problems

in this chapter. y

Review question(s) 11.2.1.9 (Integral and differential forms of scalar conservation laws)

(Q11.2.1.9.A) The differential form of a generic scalar conservation law is

∂

∂t
u + divxf(u, x) = s(u, x, t) in Ω̃ := Ω× [0, T] , (11.2.1.5)

with flux function f : U ×Ω→ Rd and source function s. What is the integral form of (11.2.1.5)?

(Q11.2.1.9.B) Identify the flux functions and source functions for the following scalar conservation laws:

linear advection:
∂

∂t
(ρu) + div(v(x, t)(ρu)) = f (x, t) in Ω×]0, T[ , (Ω ⊂ Rd) ,

(11.1.1.3)

Burgers equation:
∂u

∂t
+ u

∂u

∂x
= 0 in Ω×]0, T[ , (Ω ⊂ R) , (11.1.3.4)

traffic flow equation:
∂u

∂t
+

∂

∂x
(u(1− u)) = 0 in Ω×]0, T[ , (Ω ⊂ R) . (11.1.2.23)

(Q11.2.1.9.C) The heat equation ∂u
∂t − ∆u = 0 also fits (11.2.1.5) when the flux function is chosen appro-

priately. What is this so-called diffusive flux?

△

11.2.2 Characteristics

In this section we will come across a surprising ostensible solution formula for non-linear scalar conser-

vation laws in one spatial dimension. Yet, at second glance, we will see that this formula has problem.

Its breakdown will teach us that discontinuous solutions are meaningful and very common in the case of

conservation laws.

We consider Cauchy problem (Ω = R) for one-dimensional scalar conservation law (11.2.1.6):

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ ,

u(x, 0) = u0(x) in R .
(11.2.2.1)

by chain rule: (11.2.2.1) ⇔ ∂u

∂t
+ f ′(u)

∂u

∂x
= 0 ,

l
relate with linear advection (11.1.1.11)

∂u

∂t
+ v

∂u

∂x
= 0 .

➣ The derivative f ′(u) plays the role of a u-dependent velocity of transport.

If this dependence was not there, the formula (11.1.1.12) would give us the solution. Now we will see how

this formula can be generalized.

Assumption 11.2.2.2. Monotonicity of f ′

The flux function f : R 7→ R is smooth ( f ∈ C2), and convex or concave [STRLN09].

11. Numerical Methods for Conservation Laws, 11.2. Scalar Conservation Laws in 1D 688



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

Recall [STRLN09]: f convex ⇒ derivative f ′ increasing

f concave ⇒ derivative f ′ decreasing

flux function for Burgers’ equation (11.1.3.4)

Fig. 464
−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

 u

 (
de

riv
at

iv
e 

of
) 

flu
x 

fu
nc

tio
n

Flux function for Burgers equation, f(u) = 1/2u2

 

 

f(u)

f‘(u)

f convex

flux function for traffic flow equation (11.1.2.23)

Fig. 465
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Burgers’ equation (11.1.3.4) and the traffic flow equation (11.1.2.23) will serve as main examples for scalar

conservation laws in one spatial dimension. The opposite curvatures of their flux functions will be reflected

by a “mirror symmetric” behavior of their solutions in many cases. Below most examples will be discussed

for both model problems in order to elucidate these differences, but the reader may focus on only one

model problem.

Definition 11.2.2.3. Characteristic curve for one-dimensional scalar conservation law

A curve Γ := (γ(τ), τ) : [0, T] 7→ R×]0, T[ in the (x, t)-plane is a characteristic curve for the

conservation law (11.2.2.1), if

d

dτ
γ(τ) = f ′(u(γ(τ), τ)) , 0 ≤ τ ≤ T , (11.2.2.4)

where u is a continuously differentiable solution of (11.2.2.1).

Fig. 466 x

t

δx

δt

γ

← slow

fast→
✁ curves in an x − t-diagram, described by a func-

tion x = γ(t)
↔ movement of a point on the real axis.

✁ x− t-diagram

d

dτ
γ(τ) = speed of interface γ.

EXAMPLE 11.2.2.5 (Characteristics for advection)
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Constant linear advection (11.1.1.11): f (u) = vu

➸ characteristics γ(τ) = vτ + c, c ∈ R.

✄

solution (11.1.1.12) u(x, t) = u0(x− vt)

meaningful for any u0 ! (cf. Section 10.3.2)

Fig. 467
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Ex. 11.2.2.5 reveals a close relationship between streamlines (→ Section 10.1.1) and characteristic

curves. That the latter are a true generalization of the former is also reflected by the following simple

observation, which generalizes the considerations in Section 10.3.2, (10.3.2.2).

Lemma 11.2.2.6. Classical solutions and characteristic curves

Smooth solutions of

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ ,

u(x, 0) = u0(x) in R .
(11.2.2.1)

are constant along characteristic curves.

Proof. Apply the chain rule twice, cf. (10.3.2.2),

(I) to τ 7→ (u ◦Ψ)(τ) with u : R2 → R, u = u(x, t), Ψ : R → R2, Ψ(τ) :=
[

γ(τ)
τ

]
:

d

dτ
(u ◦Ψ)(τ) = Du(Ψ(τ))

dΨ

dτ
(τ) =

[
∂u

∂x
(Ψ(τ))

∂u

∂t
(Ψ(τ))

][
dγ
dτ (τ)

1

]
.

(II) to x 7→ ( f ◦ u)(x, y) with f : R → R, f = f (u), and u : R2 → R, u = u(x, t):

∂

∂x
{x 7→ f (u(x, t))} = f ′(u(x, t))

∂u

∂x
(x, t) .

In between we use the defining equation (11.2.2.4) for a characteristic curve:

d

dτ
u(γ(τ), τ)

chain rule (I)
=

∂u

∂x
(γ(τ), τ)

d

dτ
γ(τ) +

∂u

∂t
(γ(τ), τ)

(11.2.2.4)
=

∂u

∂x
(γ(τ), τ) · f ′(u(γ(τ), τ)) +

∂u

∂t
(γ(τ), τ)

chain rule (II)
=

( ∂

∂x
f (u)

)
(γ(τ), τ) +

∂u

∂t
(γ(τ), τ) = 0 .

✷

✎ notation: f ′ =̂ derivative of flux function f : U ⊂ R 7→ R

An implication of the fact that u is constant on a characteristic curve γ is that t 7→ f ′(u(γ(t), t)) is

constant on a characteristic curve γ! Hence from (11.2.2.4) we conclude that the slope of a characteristic

curve is constant!
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The characteristic curve through (x0, 0) is a straight line (x0 + f ′(u0(x0))τ, τ), 0 ≤ τ ≤ T !

Doesn’t this provide an implicit solution formula for (11.2.2.1) in particular since f ′ is monotone?

u(x, t) = u0(x− f ′(u(x, t))t) . (11.2.2.7)

This is obviously a non-linear equation for u(x, t). Will it have a solution for all (x, t)?

§11.2.2.8 (Breakdown of characteristic solution formula) The key problem of formula (11.2.2.7) is that

it may have multiple solutions:

Fig. 468
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For Burger’s equation (11.1.3.4):

( f (u) = 1
2 u2 smooth and strictly convex)

✄ f ′(u) = u (increasing)

✁ if u0 smooth and decreasing.

➤ characteristic curves intersect !

➤ solution formula (11.2.2.7) becomes

invalid
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t < 1.3: solution by (11.2.2.7)
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For traffic flow equation (11.1.2.23):

( f (u) = u(1− u) smooth and strictly concave)

✄ f ′(u) = 1− 2u (decreasing)

✁ if u0 smooth and increasing.

➤ characteristic curves intersect !

➤ solution formula (11.2.2.7) becomes

invalid
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Fig. 472
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the wave breaks: “multivalued solution”
y

What we have observed is a breakdown of classical solutions after some time. Also recall

Ex. 11.2.2.5 and Rem. 11.1.1.13 which suggest that even discontinuous solutions can make perfect

sense for scalar conservation laws. We conclude that we need a new “weak ” concept of solutions

of (11.2.2.1), similar to the situation for second-order elliptic boundary value problems, for which

physically meaningful solutions with kinks are valid weak solutions, cf. Section 1.2.1.3.

Remark 11.2.2.9 (Meaning of characteristics) Concerning the interpretation of characteristics in the

case of the traffic flow model (11.1.2.23) with f (u) = u(1− u) we find

Equation for characteristics γ̇(t) = −2u(γ(t), t) + 1 ,

Equation for car trajectories ẋ(t) = 1− u(x(t), t).

Hence, characteristics do not give the paths of cars; cars always drive to the right, while characteristics

may be slanted to the left!

Yet, Lemma 11.2.2.6 tells us that for a smooth solution of a non-linear scalar conservation law, the char-

acteristic running through (x∗, t∗) ∈ R×]0, T[ gives the locus of space-time points (x, t) ∈ R×]0, T[, on

which the solution value u(x∗, t∗) depends (for t < t∗) or on which it will have an influence (for t > t∗).

For a scalar conservation law information “flows” along characteristic curves.

y

EXAMPLE 11.2.2.10 (Traffic flow: Evolution of smooth initial density) For the traffic flow model

we should always expect a unique car density for all times. Thus, in order to see the consequences of

the breakdown of the solution formula, we return to the particle model for single lane traffic flow from

Section 11.1.2.1. For a large number of cars it should give us a hint how the density will be affected by the

intersection of characteristics.

We approximately solve the particle model, that is the evolution according to ODE (11.1.2.5), (11.1.2.6).

for N = 3000 cars.

The initial car positions derived from a smooth car density u0

xi(0) = Φ−1

(
i− 1

N − 1

)
, i = 1, . . . , N , Φ(ξ) =

∫ ξ

0
u0(x)dx , u0(x) := 2 sin2(πx) .
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After some time a discontinuity in the density of cars crops up (“breaking wave”, see Fig. 474). This

suggests that the emergence of discontinuities despite smooth initial data is an intrinsic feature of the

traffic flow model, which reflects “physical reality”. y

Review question(s) 11.2.2.11 (Characteristics)

(Q11.2.2.11.A) In the x− t-plane sketch the characteristics for the Cauchy problem for the scalar conser-

vation law

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ ,

u(x, 0) = u0(x) in R .
(11.2.2.1)

with flux function f (u) = u2 and initial data

u0(x) =





1 + x for − 1 < x ≤ 0 ,

1− x for 0 < x ≤ 1 ,

0 elsewhere.

Definition 11.2.2.3. Characteristic curve for one-dimensional scalar conservation law

A curve Γ := (γ(τ), τ) : [0, T] 7→ R×]0, T[ in the (x, t)-plane is a characteristic curve for the

conservation law (11.2.2.1), if

d

dτ
γ(τ) = f ′(u(γ(τ), τ)) , 0 ≤ τ ≤ T , (11.2.2.4)

where u is a continuously differentiable solution of (11.2.2.1).

(Q11.2.2.11.B) For a scalar 1D conservation law with flux functions

1. f (u) = u2,

2. f (u) = sin(πu),

3. f (u) = cos(πu)

and initial data u0(x) = 1 for −1 ≤ x ≤ 1, u0(x) = 0 elsewhere, sketch the family of characteristic

curves in an x− t diagram.

(Q11.2.2.11.C) Directly verify that, if well-defined, the implicitly defined function

u(x, t) = u0(x− f ′(u(x, t))t) , (x, t) ∈ R× [0, T] , (11.2.2.7)

with a strictly convex and smooth flux function f : R → R provides a solution of (11.2.2.1).

△
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11.2.3 Weak Solutions

Of course, discontinuous solutions of (11.2.2.1) cannot be solutions in the sense of classical calculus.

Yet, the fact that physically meaningful solutions fail to meet the smoothness requirements for classical

solutions is familiar to us: we saw this already for the elastic string model, where we had to admit solutions

with a kink in Ex. 1.2.1.26. This forced us to develop weak concepts of solutions. For the elastic string

models these were solutions of the associated variational equation. In the case of conservation laws a

similar concept of weak solutions will turn out to capture all physically meaningful solutions.

The integral form of a conservation law that we have already seen in (11.2.1.4) points the way. Let us link

it with Gauss’ theorem.

Theorem 1.5.2.4. Gauss’ theorem

With n : ∂Ω 7→ Rd denoting the exterior unit normal vectorfield on ∂Ω and dS indicating integration

over a surface, we have

∫

Ω
div j(x)dx =

∫

∂Ω
j(x) · n(x)dS(x) ∀j ∈ (C1

pw(Ω))d . (12.2.1.19)

“Space-time Gauss theorem”

∂u

∂t
+

∂

∂x
f (u) = 0 (11.2.3.1)

m

div(x,t)

[
f (u)

u

]
= 0 in Ω̃ . (11.2.3.2)

∀ “space-time control volumes” Ṽ ⊂ Ω̃:

∫

∂Ṽ

[
f (u(x̃))

u(x̃)

]
·
[

nx(x̃)
nt(x̃)

]
dS(x̃) = 0 ,

ñ := (nx, nt)T =̂ space-time unit normal

Ṽ

ñ

x

t

(11.2.3.2) for space-time rectangle Ṽ =]x0, x1[×]t0, t1[ ➤ integral form of (11.2.3.1), cf. (11.2.1.4):

x1∫

x0

u(x, t1)dx−
x1∫

x0

u(x, t0)dx =

t1∫

t0

f (u(x0, t))dt−
t1∫

t0

f (u(x1, t))dt . (11.2.3.3)

Still, (11.2.3.3) encounters problems, if a discontinuity of u coincides with an edge of the space-time

rectangle.

The idea is similar to that behind the derivation of the weak form for 2nd-order

elliptic BVPs in Section 1.8. For the Cauchy problem

I: test the conservation law PDE with a smooth function,

II: integrate by parts one in space & time,

III: take into account the initial conditions.
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STEP I: Test (11.2.3.2) with compactly supported smooth function Φ : Ω̃ 7→ R, Φ(·, T) = 0, and

integrate over space-time cylinder Ω̃ = R× [0, T]:

(11.2.3.2)

∫

Ω̃

div(x,t)

[
f (u)

u

]
Φ(x, t)dx dt = 0 .

STEP II: Perform integration by parts using Green’s first formula Thm. 1.5.2.7 on Ω̃:

Theorem 1.5.2.7. Green’s first formula

For all vector fields j ∈ (C1
pw(Ω))d and functions v ∈ C1

pw(Ω) holds

∫

Ω
j · grad v dx = −

∫

Ω
div j v dx +

∫

∂Ω
j · n v dS . (12.2.3.2)

∫

Ω̃

div(x,t)

[
f (u)

u

]
Φ(x, t)dx dt = 0

Thm. 1.5.2.7⇒ −
∫

Ω̃

[
f (u)

u

]
· grad(x,t) Φ dx dt +

∞∫

−∞

u(x, 0)Φ(x, 0)dx = 0 ,

because ∂Ω̃ = R× {0} ∪R× {T} with “normals” n =
[

0
−1

]
(t = 0 boundary) and n =

[
0
1

]
(t = T

boundary), which has to be taken into account in the boundary term in Green’s formula. The “t = T
boundary part” does not enter as Φ(·, T) = 0.

Note that u(x, 0) is fixed by the initial condition: u(x, 0) = u0(x).

Definition 11.2.3.4. Weak solution of Cauchy problem for scalar conservation law

For u0 ∈ L∞(R), u : R×]0, T[ 7→ R is a weak solution of the Cauchy problem (11.2.2.1), if

u ∈ L∞(R×]0, T[) ∧
∞∫

−∞

T∫

0

{
u

∂Φ

∂t
+ f (u)

∂Φ

∂x

}
dtdx−

∞∫

−∞

u0(x)Φ(x, 0)dx = 0 ,

for all Φ ∈ C∞
0 (R× [0, T[), Φ(·, T) = 0.

Be aware that if we did not impose Φ(·, T) = 0 on the test function, this would amount to enforcing

u(·, T) = 0, which does not make any sense for a forward evolution problem.

Remark 11.2.3.5 (Properties of weak solutions) By reversing integration by parts, it is easy to see that☛
✡

✟
✠u weak solution of (11.2.2.1) & u ∈ C1 ⇐⇒ u classical solution of (11.2.2.1).

Arguments from mathematical integration theory confirm

u ∈ L∞
loc(R×]0, T[) weak solution of (11.2.2.1) ⇒ u satisfies integral form (11.2.3.3)

for “almost all” x0 < x1, 0 < t0 < t1 < T.

y
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11.2.4 Jump Conditions

Now we want to explore the discontinuities compatible with our concept of a weak solution from

Def. 11.2.3.4.

For piecewise smooth divergence-free vectorfield j :
Ω ⊂ R2 we find by a “pillbox thought experiment”:

“div j = 0”

m
∫

∂V

j · n dS = 0 ∀ control volumes V ⊂ Ω

Necessary condition:✎
✍

☞
✌Continuity of normal components

across discontinuities

discontinuous divergence-free vectorfield ✄

Fig. 474

To see this, consider a slender tiny rectangle B
aligned with a line of discontinuity Γ of j:

div j = 0 ⇒
∫

∂B

j · nB dS = 0 .

In the absence of normal continuity a net flux through

its boundary will result, provided that the rectangle is

thin enough (“pillbox argument”).

Fig. 475

B

Γ

Apply this insight to vectorfield on space-time domain Ω̃ = R×]0, T[:

∂u

∂t
+

∂

∂x
f (u) = 0 ⇔ div(x,t)

[
f (u)

u

]

︸ ︷︷ ︸
=:j

= 0 in Ω̃ . (11.2.3.2)

Normal at C1-curve Γ := τ 7→ (γ(τ), τ) in (γ(τ), τ)

ñ =
1√

1 + |ṡ|2
[

1
−ṡ

]
, ṡ :=

dγ

dτ
(τ) “speed of curve” .

To see this, recall that the normal is orthogonal to the tangent vector ( ṡ
1) and that in 2D the direction

orthogonal to (x1
x2
) is given by (−x2

x1
).

In the interest of concise notation, we adopt the special notation J·KΓ for the jump of a function w across a

C1-curve Γ ⊂ R2 with pre-defined unit normal vector field n : Γ→ R2:

JwKΓ(x) := lim
ξ
>→0

w(x+ξn(x))− lim
ξ
>→0

w(x−ξn(x)) , x ∈ Γ ,

where the limits are assumed to exist.
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“normal continuity” of

piecewise smooth vectorfield ( f (u), u)T

across curve γ

m
[

1

− dγ
dτ

]
·
[
J f (u)KΓ

JuKΓ

]
= 0 , (11.2.4.1)

where J·KΓ =̂ jump across Γ (“from right to left”, e.g.

JuKΓ = ur − ul, where subscripts ’l’ and ’l’ desig-

nates values in Ω̃l, Ω̃r).
Fig. 476

Γ := (γ(τ), τ)

ñ ‖
[

1
−ṡ

]

Ω̃l

Ω̃r

x

t

Terminology: (11.2.4.1) = Rankine-Hugoniot (jump) condition, shorthand notation:

ṡ(ur − ul) = f (ur)− f (ul) , ṡ :=
dγ

dτ
“propagation speed of discontinuity” (11.2.4.2)

§11.2.4.3 (Discontinuity connecting constant states) The simplest situtation compliant with Rankine-

Hugoniot jump condition: constant states to the left and right of the curve of discontinuity (11.2.4.1):

Fig. 477 x

t

ul

ur

ṡ

1

0

u(x, t) =

{
ul ∈ R , for x < ṡt ,

ur ∈ R , for x < ṡt ,
(11.2.4.4)

with constant speed ṡ of discontinuity, according to

(11.2.4.2) given by (for ul 6= ur)

ṡ =
f (ul)− f (ur)

ul − ur
.

y

11.2.5 Riemann Problem

The situation of locally constant states discussed in § 11.2.4.3 is particularly easy.

Consider: Cauchy-problem (11.2.2.1) for piecewise constant initial data u0.

Definition 11.2.5.1. Riemann problem

u0(x) =

{
ul ∈ R , if x < 0 ,

ur ∈ R , if x > 0 .
=̂ Riemann problem for (11.2.2.1)

Setting, cf. Section 11.2.2: flux function f : R 7→ R smooth & convex

f ′ non-decreasing ➤ pattern of characteristic curves for Riemann problem:
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Setting, cf. Section 11.2.2: flux function f : R 7→ R smooth & concave

f ′ non-increasing ➤ pattern of characteristic curves for Riemann problem:

Fig. 480
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Definition 11.2.5.2. Shock

If Γ is a smooth curve in the (x, t)-plane and u a weak solution of (11.2.2.1), a discontinuity of u
across Γ is called a shock.

By § 11.2.4.3 ➤ the shock speed s is given by the Rankine-Hugoniot jump conditions:

(x0, t0) ∈ Γ: ṡ =
f (ul)− f (ur)

ul − ur
,

ul := limǫ→0 u(x0 − ǫ, t0) ,
ur := limǫ→0 u(x0 + ǫ, t0) .

(11.2.5.3)
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Lemma 11.2.5.4. Shock solution of Riemann problem

For any two states ul, ul ∈ R the piecewise constant function

u(x, t) :=

{
ul for x < ṡt ,

ur for x > ṡt ,
ṡ :=

f (ul)− f (ur)

ul − ur
, x ∈ R, 0 < t < T ,

is a weak solution (→ Def. 11.2.3.4) of the related Riemann problem (→ Section 11.2.5) for the 1D

scalar conservation law (11.2.2.1).

Now we study the dependence of shock solutions on the initial states ul and ur. We take a close look at

the connection between characteristics and shocks. In the following x − t diagrams, shocks are marked

with —, characteristics with — and u0 is indicated by —.
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EXAMPLE 11.2.5.5 (Actual shock patterns in traffic flow) In order to tell the physical relevance of

shock solutions for the car density we try to obtain them approximately from the particle model of traffic

flow using many cars.

We conduct a simulation of microscopic particle model of traffic flow as in Exp. 11.1.2.13, with initial car

distribution

x0 = [(0:0.01:4),(4.005:0.005:10)] (MATLAB syntax),

∆0 = 0.002, normalized car density by averaging.

Situation: column of fast going cars approaches a zone of dense traffic.
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Observation: abrupt changes of car density (= shocks) present in initial conditions persist throughout the

evolution. Sites of discontinuity travel with constant speed close to the speed predicted by

the jump conditions (11.2.4.2).

y

EXAMPLE 11.2.5.6 (Fan patterns in traffic flow) Simulation of microscopic particle model of traffic flow

as in Exp. 11.1.2.13, initial car distribution

x0 = [(0:0.002:4),(4.05:0.05:10)] (MATLAB syntax),

∆0 = 0.002, normalized car density by averaging.

Situation: front end of a traffic jam
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Observation: abrupt changes of car density present in initial conditions disappear and are replaced with a

zone of linearly decreasing car density, whose edges move with constant speed in opposite

direction.

No shock solution! y

EXAMPLE 11.2.5.7 (Vanishing viscosity for Burgers equation) Recall the modeling approach ex-

plained in Section 11.1.3. There is no such material as an “invsicid” fluid in nature, because in any physical

system there will be a tiny amount of friction. This leads us to the very general understanding that conser-

vation laws can usually be regarded as limit problems ǫ = 0 for singularly perturbed transport-diffusion

problems with an “ǫ-amount” of diffusion.

In 1D, for any ǫ > 0 these transport-diffusion problems will possess a unique smooth solution. Studying

its behavior for ǫ→ 0 will tell us, what are “physically meaningful” solutions for the conservation law. This

consideration is called the vanishing viscosity method to define solutions for conservation laws.

Here we pursue this idea for Burgers equation, see Section 11.1.3.

Viscous Burgers equation:
∂u

∂t
+

∂

∂x

(
1
2 u2
)
=

dissipative (viscous) term

ǫ
∂2u

∂x2
. (11.2.5.8)

Travelling wave solution of Riemann problem for (11.2.5.8) via Cole-Hopf transform → [EVA98]

uǫ(x, t) = w(x− ṡt) , w(ξ) = ur +
1
2(ul − ur)

(
1− tanh

(
ξ(ul − ur)

4ǫ

))
, ṡ = 1

2(ul + ur) .

Fig. 494
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uǫ(x, t) = classical solution of (11.2.5.8) for all t > 0,

x ∈ R (only for ul > ur !).

✁ ul > ur, t = 0.5

emerging shock for ǫ→ 0

uǫ → u from Lemma 11.2.5.4 in L∞(R).

Highly accurate numerical solution of

Riemann problem for (11.2.5.8)

ul < ur uǫ(x, 0.5) ✄

no shock as ǫ→ 0 !

uǫ → a piecewise linear function!

Fig. 495
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y

§11.2.5.9 (Similarity solution) Let us try to derive a (weak) solution of the homogeneous scalar conser-

vation law (11.2.3.1) with the structure observed in Ex. 11.2.5.6 and Ex. 11.2.5.7.

Idea: conservation law (11.2.3.1) homogeneous in spatial/temporal derivatives:

∂u

∂t
+

∂

∂x
f (u) = 0 in R×R+ ⇒ ∂uλ

∂t
+

∂

∂x
f (uλ) = 0 in R×R+ ,

where uλ(x, t) := u(λx, λt), λ > 0.

In addition, for the Riemann problem (→ Section 11.2.5) the initial condition also satisfies u0(λx) =
u0(x).

This suggests that we look for solutions of the Riemann problem that are constant on all straight lines in

the x− t-plane that cross (0, 0)T.

try similarity solution: u(x, t) = ψ(x/t)

← insert in ∂u
∂t +

∂
∂x f (u) = 0

f ′(ψ(x/t))ψ′(x/t) = (x/t)ψ′(x/t) ∀x ∈ R, 0 < t < T .

ψ′ ≡ 0 ∨ f ′(ψ(w)) = w

f ′ strictly monotone !

⇔ ψ(w) = ( f ′)−1(w) .

y

We can apply the formula for a similarity solution to the situation of a Riemann problem, because the initial

data a compatible with it. Assuming monotonicity of the derivative of the (smooth) flux function f , we

obtain the following similarity solutions:

Fig. 496
x

t

ṡ = f ′(ul) ṡ = f ′(ur)

f (u) strictly convex, ul < ur

Fig. 497
x

t

ṡ = f ′(ul) ṡ = f ′(ur)

f (u) strictly concave, ur < ul
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Lemma 11.2.5.10. Rarefaction solution of Riemann problem

If f ∈ C2(R) is strictly

{
convex and ul < ur,

concave and ur < ul,
then

u(x, t) :=





ul for x < min{ f ′(ul), f ′(ur)} · t ,

g( x
t ) for min{ f ′(ul), f ′(ur)} < x

t < max{ f ′(ul), f ′(ur)} ,

ur for x > max{ f ′(ul), f ′(ur)} · t ,

g := ( f ′)−1, is a continuous weak solution of the Riemann problem (→ Section 11.2.5).

Proof. We show that the rarefaction solution is a weak solution according to Def. 11.2.3.4 ➣ for Φ ∈
C∞

0 (R× ]0, T[)

T∫

0





f ′(ul)t∫

−∞

ul
∂Φ

∂t
+ f (ul)

∂Φ

∂x
dx +

f ′(urt)∫

f ′(ul)t

g( x
t )

∂Φ

∂t
+ f (g( x

t ))
∂Φ

∂x
dx +

∞∫

f (ur)t

ur
∂Φ

∂t
+ F(ur)

∂Φ

∂x
dx





dt

=

T∫

0

f ′(ur)t∫

f ′(ul)t

g′( x
t )

x
t2 Φ− f ′(g( x

t ))
1
t g′( x

t )Φ dx dt = 0 ,

because ( f ′ ◦ g)(x/t) = x/t and by fundamental theorem of calculus. ✷

Terminology: solution of Lemma 11.2.5.10 = rarefaction wave: continuous solution !

Fig. 498
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Burger flux function f (u) = 1
2 u2, ul < ur: rarefaction wave solutions
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Fig. 500
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Traffic flow flux function f (u) = 1
2 u(1− u), ul > ur: rarefaction wave solutions

Review question(s) 11.2.5.11 (Scalar conservation laws: weak solutions and Riemann problems)

(Q11.2.5.11.A) Given a continuous, compactly supported function u0 ∈ C0
0(R) show that

u(x, t) := u0(x− vt) is a weak solution of the Cauchy problem (T > 0)

∂u

∂t
+ v

∂u

∂x
= 0 in R× [0, T] , u(x, 0) = u0(x) , x ∈ R .

Definition 11.2.3.4. Weak solution of Cauchy problem for scalar conservation law

For u0 ∈ L∞(R), u : R×]0, T[ 7→ R is a weak solution of the Cauchy problem

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ ,

u(x, 0) = u0(x) in R ,
(11.2.2.1)

if

u ∈ L∞(R×]0, T[) ∧
∞∫

−∞

T∫

0

{
u

∂Φ

∂t
+ f (u)

∂Φ

∂x

}
dtdx +

∞∫

−∞

u0(x)Φ(x, 0)dx = 0 ,

for all Φ ∈ C∞
0 (R× [0, T[), Φ(·, T) = 0.

(Q11.2.5.11.B) [Rankine-Hugoniot jump condition] Explain what the Rankine-Hugoniot jump condi-

tion

ṡ(ul − ur) = f (ul)− f (ur) , ṡ :=
dγ

dτ
“propagation speed of discontinuity” (11.2.4.2)

has to do with the normal continuity of a vectorfield R2 7→ R2.

(Q11.2.5.11.C) [Shock solutions] We consider the traffic flow equation

∂u

∂t
+

∂

∂x

(
u(1− u)

)
= 0 in R×R+ .

Formulate a sufficient and necessary condition on the left and right states ul and ur of a Riemann

problem such that it has a right-moving shock as a weak solution (not necessarily an entropy solution).
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(Q11.2.5.11.D) [Shock speed] Give an example of a scalar 1D conservation law

∂u

∂t
+

∂

∂x
f (u) = 0 in R×R+

with a strictly convex smooth flux function f : R → R for which every Riemann problem has a right-

moving shock as a weak solution.

(Q11.2.5.11.E) [Rarefaction wave] We consider the Riemann problem for the traffic flow equation

∂u

∂t
+

∂

∂x

(
u(1− u)

)
= 0 in R×R+ .

with left state ul = 1 and right state ur = 0. Give the expressions for the resulting rarefaction solution.

Lemma 11.2.5.10. Rarefaction solution of Riemann problem

If f ∈ C2(R) is strictly

{
convex and ul < ur,

concave and ur < ul,
then

u(x, t) :=





ul for x < min{ f ′(ul), f ′(ur)} · t ,

g( x
t ) for min{ f ′(ul), f ′(ur)} < x

t < max{ f ′(ul), f ′(ur)} ,

ur for x > max{ f ′(ul), f ′(ur)} · t ,

g := ( f ′)−1, is a continuous weak solution of the Riemann problem.

△

11.2.6 Entropy Condition

In Section 11.2.5 we discovered that weak solutions of a scalar conservation law need not be unique. If f ′

is decreasing as in the traffic flow equation (11.1.2.23) and ul > ur both a shock and a rarefaction wave

provide valid weak solutions.

Fig. 502
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Riemann solution: shock

?
←→

Fig. 503
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Riemann solution: rarefaction wave

How to select “physically meaningful” = admissible solution ?

➊ Comparison with results from microscopic models, see Ex. 11.2.5.6 for the case of traffic flow.

➋ Vanishing viscosity technique (→ Ex. 11.2.5.7 for Burgers’ equation): add an “ǫ-amount” of diffu-

sion (“friction”) and study solution for ǫ→ 0.

However, desirable: simple selection criteria (entropy conditions)
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Definition 11.2.6.1. Lax entropy condition

u =̂ weak solution of (11.2.2.1), piecewise classical solution in a neigborhood of C2-curve Γ :=
(γ(τ), τ), 0 ≤ τ ≤ T, discontinuous across Γ.

u satisfies the Lax entropy

condition in (x0, t0) ∈ Γ
:⇔ f ′(ul) > ṡ :=

f (ul)− f (ur)

ul − ur
> f ′(ur) .

m✞
✝

☎
✆Characteristic curves must not emanate from shock ↔ no “generation of information”

The expansion shocks from Fig. 486–Fig. 488, Fig. 492-Fig. 494 are not allowed.

Parlance: shock satisfying Lax entropy condition = physical shock

Note: f ′
increasing

decreasing
➤ by Def. 11.2.6.1 necessary for physical shock

ul > ur

ul < ur

Physically meaningful weak solution of conservation law = entropy solution

For scalar conservation laws with locally Lipschitz-continuous flux function f [EVA98]:

Existence & uniqueness of entropy solutions

Remark 11.2.6.2 (General entropy solution for 1D scalar Riemann problem → [OSH84]) In fact

there is a general formula for the entropy solution of the Riemann problem (→ Section 11.2.5) for (11.2.2.1)

with arbitrary f ∈ C1(R):

u(x, t) = ψ(x/t) , ψ(ξ) :=





argmin
ul≤u≤ur

( f (u)− ξu) , if ul < ur ,

argmax
ur≤u≤ul

( f (u)− ξu) , if ul ≥ ur .
(11.2.6.3)

y

EXAMPLE 11.2.6.4 (Entropy solution of Burgers equation) An analytic solution is available for Burgers

eqution (11.1.3.4) with intial data, see [EVA98]

u0(x) =

{
0 , if x < 0 or x > 1 ,

1 , if 0 ≤ x ≤ 1 .
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Fig. 504
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Vector field in x− t-plane

[
f (u(x, t))

u(x, t)

]

for entropy solution u = u(x, t) ✄

Observe the normal continuity across the shock: the

vector field is tangential to the shock curve.

Fig. 506
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EXAMPLE 11.2.6.5 (Entropy solution of Traffic Flow equation) An analytic solution is also available

for the traffic flow eqution (11.1.2.23) with intial data, see [EVA98]

u0(x) =

{
0.5 , if x < 0 or x > 1 ,

1 , if 0 ≤ x ≤ 1 .

Fig. 507
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Vector field in x− t-plane

[
f (u(x, t))

u(x, t)

]

for entropy solution u = u(x, t) ✄.

Observe the normal continuity across the shock!

Fig. 509
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11.2.7 Properties of Entropy Solutions

Existence and uniqueness of entropy solutions for 1D scalar conservation laws is guaranteed by theory.

Setting: u ∈ L∞(R×]0, T[) weak (→ Def. 11.2.3.4) entropy solution of Cauchy problem

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ , u(x, 0) = u0(x) , x ∈ R . (11.2.2.1)

with flux function f ∈ C1(R) (not necessarily convex/concave).

Notation: ū ∈ L∞(R×]0, T[) =̂ entropy solution w.r.t. initial data ū0 ∈ L∞(R).

Theorem 11.2.7.1. Comparison principle for scalar conservation laws

If u0 ≤ ū0 a.e. on R ⇒ u ≤ ū a.e. on R×]0, T[

With obvious consequences, because we get constant solutions for constant initial values:

u0(x) ∈ [α, β] on R ⇒ u(x, t) ∈ [α, β] on R×]0, T[

Note: this guarantees the normalization condition 0 ≤ u(x, t) ≤ 1 for the traffic flow model, if it is satisfied

for the initial data u0.

L∞-stability (➣ no blow-up can occur!)

∀0 ≤ t ≤ T: ‖u(·, t)‖L∞(R) ≤ ‖u0‖L∞(R) . (11.2.7.2)
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Theorem 11.2.7.3. L1-contractivity of evolution for scalar conservation law

∀t ∈]0, T[, R > 0:
∫

|x|<R

|u(x, t)|dx ≤
∫

|x|<R+ṡt

|u0(x)|dx ,

with maximal speed of propagation

ṡ := max{| f ′(ξ)|: inf
x∈R

u0(x) ≤ ξ ≤ sup
x∈R

u0(x)} . (11.2.7.4)

Thm. 11.2.7.3 ➤ finite speed of propagation in conservation law, bounded by ṡ from (11.2.7.4):

As in the case of the wave equation→ Section 9.3.2:

Fig. 510 x

ṡ

1

t

(x̄, t̄)

D−(x̄, t̄)

✁ maximal domain of dependence of (x̄, t̄) ∈ Ω̃

D−(x̄, t̄) :=
{
(x, t) ∈ R×R+ : x̄− ṡt ≤ x ≤ x̄ + ṡt

}
.

(Characteristics through a point outside D−(x̄, t̄) can

never hit (x̄, t̄) ∈ Ω̃.)

maximal domain of influence of I0 ⊂ R ✄

For I0 = [a, b]

D+([a, b]) :=
{
(x, t) ∈ R×R+ : a− ṡt ≤ x ≤ b + ṡt

}
.

(Characteristics starting in I0 will always remain in

D+(I0).)

Fig. 511
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ṡ

Analoguous to Thm. 9.3.2.8:

Corollary 11.2.7.5. Domain of dependence for scalar conservation law → [DAF00]

The value of the entropy solution at (x̄, t̄) ∈ Ω̃ depends only on the restriction of the initial data to

{x ∈ R: |x− x̄| < ṡt̄}, where ṡ is defined in (11.2.7.4).

Another strand of theoretical results asserts that the solution of a 1D scalar conservation law cannot

develop oscillations:
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☛
✡

✟
✠u solves (11.2.2.1) ➤ No. of local extrema (in space) of u(·, t) decreasing with time

Review question(s) 11.2.7.6 (1D conservation laws: entropy solutions and their properties)

(Q11.2.7.6.A) [Lax entropy condition] Explain the “meaning” of the Lax entropy condition relying on

the following two figures:

Fig. 512
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t

0
Fig. 513

x

t

0

(Q11.2.7.6.B) [Entropy solutions of Riemann problems] For u0(x) = 0 for x < 0, u0(x) = 1 for x ≥ 0
give the formulas for the entropy solutions of the Riemann problems for the scalar 1D conservation laws

with flux functions

1. f (u) = u4, u ∈ R,

2. f (u) = log(1 + u), u > −1,

3. f (u) = 1− eu, u ∈ R,

4. f (u) = 1
1+u , u > −1.

(Q11.2.7.6.C) [Domains of dependence and influence] We consider a 1D scalar conservation law with

smooth flux function f : R → R and compactly supported initial data u0 satisfying α ≤ u0(x) ≤ β for

almost all x ∈ R.

Explain the concepts of

• (maximal) domain of dependence of a point (x, t)

• (maximal) domain of influence of an interval I0 ⊂ R

and how they can be computed based on the following two results about entropy solutions:

Theorem 11.2.7.1. Comparison principle for scalar conservation laws

If u0 ≤ ū0 a.e. on R ⇒ u ≤ ū a.e. on R×]0, T[
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Theorem 11.2.7.3. L1-contractivity of evolution for scalar conservation law

∀t ∈]0, T[, R > 0:
∫

|x|<R

|u(x, t)|dx ≤
∫

|x|<R+ṡt

|u0(x)|dx ,

with maximal speed of propagation

ṡ := max{| f ′(ξ)|: inf
x∈R

u0(x) ≤ ξ ≤ sup
x∈R

u0(x)} . (11.2.7.4)

(Q11.2.7.6.D) We consider the Cauchy problem for a one-dimensional scalar conservation law

∂u

∂t
+

∂ f (u)

∂x
= 0 in R×R+ , u(x, 0) = u0(x) ∀x ∈ R . (11.2.2.1)

Formulate most general conditions on the flux function f : R → R such that

u solves (11.2.2.1) ⇒ u + c solves (11.2.2.1) for all c ∈ R.

Here, “solves” is to be read in the sense of weak solutions.

△

11.3 Conservative Finite Volume (FV) Discretization

After we have some understanding of solutions of scalar conservation laws and of their properties, we

can tackle the issue of how to discretize the Cauchy problems. Parallel to the approach to linear evo-

lution problems of Chapter 9 we first deal with discretization in space and focus on a mesh/grid-based

approach.We pay particular attention to the capability of the spatial discretization to capture essential

qualitative properties of the solutions.

11.3.1 Prologue: Finite-Difference Method (FDM)

A temptingly simple way to discretize partial differential in a single spatial dimension is the finite difference

approach. It is based on the strong (PDE) form of the boundary value problem/evolution problem, cf.

Section 4.1.

All finite difference methods (FDMs) rely on spatial grids (meshes), for the finite one-dimensional domain

Ω =]a, b[, a < b, defined through the sets of its nodes

V(M) := {a = x0 < x1 < · · · < xM−1 < xM = b} , M ∈ N ,

grid/mesh M := {]xi−1, xi[, i = 1, . . . , M} .

A grid is called equidistant with meshwidth hM := b−a
M , if xi = a + ih, i = 0, . . . , M.

The finite difference method is inspired by the definition of derivatives through limits of difference quotients,

for instance, for u ∈ C1([a, b])

d f

dx
(x0) := lim

h→0

f (x0 + h)− f (x0)

h
, x0 ∈]a, b[ .

This suggests that for small width/span h > 0 a difference quotient supplies a good approximation for the

derivative. This idea is widely exploited for numerical differentiation, see, e.g., [NCSE].
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Idea: Construction of finite-difference discretization

(I) : Replace derivatives in PDE with difference quotients.

(II): Anchor the difference quotients at the nodes of a mesh and choose their

widths so that they connect the values of a function at the nodes (“nodal

values”).

There are several options for choosing difference quotients that approximate a first derivative:

✦ The symmetric difference quotient at the anchor point x0

d f

dx
(x0) ≈

f (x0 + h)− f (x0 − h)

2h
, with span/width h > 0 . (11.3.1.2)

✦ The backward difference quotient at the anchor point x0

d f

dx
(x0) ≈

f (x0)− f (x0 − h)

h
, with span/width h > 0 . (11.3.1.3)

✦ The forward difference quotient at the anchor point x0

d f

dx
(x0) ≈

f (x0 + h)− f (x0)

h
, with span/width h > 0 . (11.3.1.4)

§11.3.1.5 (Spatial finite-difference scheme for 1D linear advection) From Ex. 11.1.1.10 we know the

linear advection evolution problem in one spatial dimension described by the PDE

∂u

∂t
+

∂

∂x
(v(x)u) = 0 in Ω̃ := Ω×]0, T[ , (11.3.1.6)

where v = v(x) : Ω→ R is a continuous velocity field.

We consider the Cauchy problem, that is, Ω = R, over a finite time interval [0, T], T > 0. We equip

Ω = R with an infinite equidistant grid with nodes xi := ih, i ∈ Z, and meshwidth h := hM > 0. The

unknowns will be the values µi(t) ≈ u(xi, t), i ∈ Z, collected in the infinite time-dependend vector

~µ : [0, T]→ RZ.

Then we approximate the spatial derivative ∂
∂x by difference quotients and we end up with one of the

following spatially semi-discrete evolution problems, ordinary differential equations with state space RZ.

✦ If we use a backward finite difference quotient, we obtain

∂u

∂t
+

∂

∂x
(v(x)u) = 0 −→ ∂u

∂t
(xi) +

v(xi)u(xi, t)− v(xi−1)u(xi−1, t)

h
= 0 ,

−→ µ̇i(t) +
v(xi)µi(t)− v(xi−1)µi−1(t)

h
= 0 . (11.3.1.7)

✦ Using centered difference quotients we get

∂u

∂t
+

∂

∂x
(v(x)u) = 0 −→ ∂u

∂t
(xi) +

v(xi+1)u(xi+1, t)− v(xi−1)u(xi−1, t)

2h
= 0 ,

−→ µ̇i(t) +
v(xi+1)µi+1(t)− v(xi−1)µi−1(t)

2h
= 0 . (11.3.1.8)
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✦ Forward difference quotients yield

∂u

∂t
+

∂

∂x
(v(x)u) = 0 −→ ∂u

∂t
(xi) +

v(xi+1)u(xi+1, t)− v(xi)u(xi, t)

h
= 0 ,

−→ µ̇i(t) +
v(xi+1)µi+1(t)− v(xi−1)µi−1(t)

h
. (11.3.1.9)

For the Cauchy problem we have to specify an initial condition u(x, 0) = u0(x), x ∈ R. This helps us

define the initial vector for the spatially semi-discrete evolution problem

~µ(0) = [u0(xi)]i∈]Z .

y

EXPERIMENT 11.3.1.10 (Finite-difference discretization of 1D linear advection with constant ve-

locity) We use finite-difference discretization in space to compute an approximate solution of a Cauchy

problem for the linear advection equation ∂u
∂t +

∂
∂x (v(x)u) = 0 for constant velocity v ≡ 1. We consider

the temporal interval [0, 1] and initial data u0 supported in [0, 1].

From Ex. 11.1.1.10 we recall that the exact solution of the present Cauchy problem is given by

u(x, t) = u0(x− t), (x, t) ∈]R× [0, 1]: the solution is the initial distribution traveling in positive direc-

tion with speed 1. In particular, the space-times support of the solution u = u(x, t) is contained in

[0, 2]× [0, 1]. This makes possible the truncation of the spatial domain to Ω∗ :=]−1, 3[.

We rely on an equidistant spatial mesh with node set

V(M) := {xi := ih, i = −n, . . . , 3n} , h :=
1

n
, n := 100 .

For the nodal values µi we impose

µi(t) := 0 for i ≤ −n or i ≥ 3n , 0 ≤ t ≤ 1 .

This leaves µ−n+1(t), . . . , µ3n−1(t) as the 4n− 1 unknowns to be evolved according to the ODEs

(11.3.1.7), (11.3.1.8), and (11.3.1.9). For spatial discretization we use a 5th-order explicit Runge-Kutta

with adaptive timestep control, Ode45 from § 6.5.3.3.

The initial distribution was given by a discontinuous box function

u0(x) =

{
1 for 0 ≤ x ≤ 1 ,

0 elsewhere.

We plot the solutions obtained at final time T = 1, rendering uses piecewise linear interpolation.

Fig. 514
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Backward difference quotient, (11.3.1.7)

Fig. 515
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Symmetric difference quotient, (11.3.1.8)
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If we use the forward difference quotient as in (11.3.1.9), we observe blow-up. No meaningful plot can be

produced.

We observe, a qualitatively correct solution for (11.3.1.7), the finite difference method based on back-

ward difference quotients. Spurious oscillations arise when symmetric difference quotients are used as in

(11.3.1.8).

The same observations were made in Section 10.2 and Section 10.3 for both stationary and transient

one-dimensional linear convection-diffusion diffusion problems, see Exp. 10.2.2.4 and Exp. 10.2.2.10 for

stationary transport problems, and Exp. 10.3.1.3 for the time-dependent case. This can be expected,

because the transport equation (10.3.2.1) boils down to (11.3.1.6) for d = 1 and constant velocity. y

§11.3.1.11 (Fully discrete finite-difference method for linear advection) As in Exp. 11.3.1.10 for a

constant velocity v > 0 we consider the Cauchy problem

∂u

∂t
+ v

∂

∂x
(u) = 0 in R×]0, T[ , u(x, 0) = u0(x) , x ∈ R , (11.3.1.12)

with exact solution u(x, t) = u0(x− vt) , (x, t) ∈ R×]0, T[ .

The characteristics are parallel lines in the x− t-plane with slope v, see Ex. 11.2.2.5. Thus, according

to the interpretation given in Rem. 11.2.2.9, information in the model propagates with speed v in positive

x-direction.

We combine spatial finite-difference semi-discretization on an (infinite) equidistant grid as introduced in

§ 11.3.1.5 with meshwidth h > 0 with explicit Euler timestepping (9.2.6.5) with uniform timestep τ > 0

and, thus, arrive at a fully discrete evolution problems defining sequences of vectors

(
~µ(j)

)m

j=1
, m = T/τ,

~µ(j) ∈ RZ,~µ(0) = ~µ(0):

✦ If ∂
∂x is approximated by a backward difference quotient as in (11.3.1.7), we get

µ
(j+1)
i = µ

(j)
i − v

τ

h

(
µ
(j)
i − µ

(j)
i−1

)
, i ∈ Z, j = 0, . . . , m− 1 . (11.3.1.13)

Note that in the case of the “magic timestep” τ = h
v , the recursion simplifies to

µ
(j+1)
i = µ

(j)
i−1 .

In this case the fully discrete evolution exactly captures transport with velocity v and we have

µ
(j)
i = u(ih, jτ)!

✦ From (11.3.1.8), which arose from symmetric difference quotients, we get

µ
(j+1)
i = µ

(j)
i − v

τ

2h

(
µ
(j)
i+1 − µ

(j)
i−1

)
, i ∈ Z, j = 0, . . . , m− 1 . (11.3.1.14)

The choice τ = h
v leads to the simpler evolution

µ
(j+1)
i = 1

2

(
µ
(j)
i−1 + 2µ

(j)
i − µ

(j)
i+1

)

⇔ µ
(j+1)
i − µ

(j)
i−1 = 1

2

(
−µ

(j)
i−1 + 2µ

(j)
i − µ

(j)
i+1

)
, i ∈ Z, j = 0, . . . , m− 1 .

We observe that the exact advection of the initial value is perturbed by another difference quotient

that corresponds to a discretization of d2

dx2 , cf. (2.3.3.4) and Rem. 10.2.2.3. Thus, this term will

introduce large errors, once the solution develops oscillations.
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✦ If we use forward difference quotients to approximate ∂
∂x as in (11.3.1.9) we end up with

µ
(j+1)
i = µ

(j)
i − v

τ

h

(
µ
(j)
i+1 − µ

(j)
i

)
, i ∈ Z, j = 0, . . . , m− 1 . (11.3.1.15)

This scheme is completely wrong about the direction of propagation of information for v > 0. Blow-

up is an inevitable consequence.

y

EXAMPLE 11.3.1.16 (Naive finite difference scheme for Burgers equation) Now we tackle the Cauchy

Problem for a non-linear conservation law, namely Burgers equation (11.1.3.4), with a simple finite-

difference method.

! This will present a warning example that simply replacing derivatives with difference quo-

tients to discretize conservation laws may yield spurious schemes.

We rewrite Burgers equation (11.1.3.4) using the product rule:

∂u

∂t
(x, t) + u(x, t)

∂u

∂x
(x, t) = 0 in R×]0, T[ .

Now this looks like a linear advection equation with velocity v(x, t) = u(x, t):

Burgers’ equation:
∂u

∂t
(x, t) + u(x, t)

∂u

∂x
(x, t) = 0 in R×]0, T[ .

l l

linear advection:
∂u

∂t
(x, t) + v(x, t)

∂u

∂x
(x, t) = 0 in R×]0, T[ .

We assume u0(x) ≥ 0. Then, by Thm. 11.2.7.1, u(x, t) ≥ 0 for all 0 < t < T, that is, transport is always

going in positive x-direction. In this first part of this section we have learned that in this case we should

approximate ∂u
∂x by means of a backward difference quotient (11.3.1.3). This also heeds the advice from

Section 10.3.1 because it yields an upwind discretization in space.

Thus, on an (infinite) equidistant spatial grid with meshwidth h > 0, that is, xj := hj, j ∈ Z, we obtain a

semi-discrete evolution problem for the nodal values µj = µj(t) ≈ u(xj, t).

∂u

∂t
(x, t) + u(x, t) ∂u

∂x (x, t) = 0 in R×]0, T[ .

l l

µ̇j(t) + µj

µj − µj−1

h
= 0 , j ∈ Z , 0 < t < T .

(11.3.1.17)

Our numerical experiment tackles the Cauchy problem from Ex. 11.2.6.4, “box shaped” initial data u0,

h = 0.08, integration of (11.3.1.17) with adaptive explicit Runge-Kutta method ode45.
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Observation from numerical experiment: OK for rarefaction wave, but scheme cannot capture speed of

shock correctly !

To understand the behavior of the scheme, we consider the Riemann problem with u0(x) = 1 for x <
0− ǫ, and u0(x) = 0 for x > 0− ǫ, ǫ ≪ 1. Accordingly, we choose as initial value for the semidiscrete

evolution

µj(0) =

{
1 , if j < 0 ,

0 , if j ≥ 0 ,

Then, it is easy to see that µ̇j = 0 for all j ∈ Z.

Entropy solution (for this u0) = travelling

shock (→ Lemma 11.2.5.4), speed

ṡ = 1
2 > 0

✁✄

Numerical solution:

~µ(t) = ~µ0 for all t > 0 !

➤ 3-point FDM (11.3.1.17) “converges” to wrong solution !

y

In the next section we will learn an approach to the discretization of 1D conservation laws that has some

built-in safeguards against failures as confronted in the above example.

11.3.2 Spatially Semi-Discrete Conservation Form

Objective: spatial semi-discretization of a Cauchy problem for a general scalar conservation law in one

spatial dimension:

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ , u(x, 0) = u0(x) , x ∈ R . (11.2.2.1)

on an (infinite) equidistant spatial mesh with mesh width h > 0.

Remember: We have already seen spatial semi-discretization in the context of the method of lines, see

Section 9.2.4. In a sense, our treatment of conservation laws follows a method of lines approach.

M := {]xj−1, xj[: xj := jh, j ∈ Z} . (11.3.2.1)

mesh cells and dual cells ✄
Fig. 517 xjxj−1 xj+1 xj+2

The time-dependent unknowns of the semi-discrete scheme will be denoted by µj = µj(t), j ∈ Z. They

play a similar role as the time-dependent basis expansion coefficients occurring as components of the

vector~µ = ~µ(t) in the method of lines ODE Eq. (9.2.4.4).

We adopt a finite volume interpretation of the coefficients/unknowns µj(t), j ∈ Z):

µj ↔ conserved quantities in dual cells ]xj−1/2, xj+1/2[, midpoints xj−1/2 := 1
2(xj + xj−1):
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µj(t) ≈
1

h

xj+1/2∫

xj−1/2

u(x, t)dx . (11.3.2.2)

Relate ~µ(t) :=
(
µj(t)

)
j∈Z
∈ RZ ←→

a function !

uN(x, t) = ∑
j∈Z

µj(t) χ]xj−1/2,xj+1/2[
(x) . (11.3.2.3)

✎ notation: characteristic function χ]xj−1/2,xj+1/2[
(x) =

{
1 , if xj−1/2 < x ≤ xj+1/2 ,

0 elsewhere.

➥
(
µj(t)

)
j∈Z

←→ piecewise constant approximation uN(t) ≈ u(·, t)

Note:

uN(t) is discontinuous at dual cell

boundaries xj+1/2!

Fig. 518

uN(·, t)

xj
xj−1/2 xj+1/2 xj+3/2

µj−1

µj+1

µj

µj+2

xj−1 xj+1 xj+2

By spatial integration over dual cells, which now play the role of the control volumes in (11.2.1.1), and

applying the fundamental theorem of calculus, we obtain

∂u

∂t
(x, t) +

∂

∂x

(
f (u(x, t))

)
= 0 , x ∈ R ,

d

dt

xj+1/2∫

xj−1/2

u(x, t)dx + f (u(xj+1/2, t))− f (u(xj−1/2, t)) = 0 , j ∈ Z , (11.3.2.4)

(11.3.2.2) dµj

dt
(t) +

1

h

(
f (uN(xj+1/2, t))
︸ ︷︷ ︸

?

− f (uN(xj−1/2, t))
︸ ︷︷ ︸

?

)
= 0 , j ∈ Z . (11.3.2.5)

Problem: owing to the jumps of uN(t) we face the ambiguity of the values uN(xj+1/2, t), uN(xj−1/2, t).
(We encountered a similar situation it in the context of upwind quadrature in Section 10.2.2.1.)

Abstract “solution”:

Approximation f (uN(xj+1/2, t)) ≈ f j+1/2(t) := F(µj−ml+1(t), . . . , µj+mr
(t)) , j ∈ Z ,

with numerical flux function F : Rml+mr 7→ R, ml, mr ∈ N0.

Note: If f = f (u), then the same numerical flux function is usually used for all dual cells!

When we plug this approximation into (11.3.2.5) we end up with the following (formally infinite) system of

ODEs:
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Finite volume semi-discrete evolution for (11.2.2.1) in conservation form

dµj

dt
(t) = −1

h

(
F(µj−ml+1(t), . . . , µj+mr

(t))− F(µj−ml
(t), . . . , µj+mr−1(t))

)
, j ∈ Z .

(11.3.2.7)

numerical flux (function) F : Rml+mr 7→ R

Special case: 2-point numerical flux (ml = mr = 1): F = F(v, w)
(v =̂ left state, w =̂ right state)

(11.3.2.7)
dµj

dt
(t) = −1

h

(
F(µj(t), µj+1(t))− F(µj−1(t), µj(t))

)
, j ∈ Z . (11.3.2.8)

Assumption on numerical flux functions: F Lipschitz-continuous in each argument.

The following code implements the right-hand-side of (11.3.2.8) for a generic 2-point numerical flux func-

tion passed through a functor object. Of course, it can deal with finite-size vectors~µ ∈ RN, N ∈ N, only.

Therefore, it assumes

µj = (~µ)1 for j < 1 and µℓ = (~µ)N for j > N ,

and computes the right-hand-side values only for the indices j = 1, . . . , N.

C++ & EIGEN code 11.3.2.9: Right hand side function for MOL-ODE (11.3.2.8) ➺ GitLab

2 // arguments: (Finite) state vector µ of cell averages, see

3 // (11.3.2.2)
4 // Functor F : R×R 7→ R, 2-point

5 // numerical flux

6 // return value: Vector with differences of numerical fluxes, which
provides

7 // the right hand side of (11.3.2.8)
8 template <typename FunctionF >

9 VectorXd f l u x d i f f ( const VectorXd &mu, Funct ionF &&F ) {

10 unsigned n = mu. size ( ) ; // length of state vector

11 VectorXd fd = VectorXd : : Zero ( n ) ; // return vector

12

13 // constant continuation of data for x ≤ a!
14 fd [ 0 ] = F (mu[ 0 ] , mu [ 1 ] ) − F (mu[ 0 ] , mu [ 0 ] ) ;

15 for ( unsigned j = 1 ; j < n − 1; ++ j ) {

16 fd [ j ] = F (mu[ j ] , mu[ j + 1 ] ) − F (mu[ j − 1 ] , mu[ j ] ) ; // see (11.3.2.8)
17 }

18 // constant continuation of data for x ≥ b!
19 fd [ n − 1] = F (mu[ n − 1 ] , mu[ n − 1 ] ) − F (mu[ n − 2 ] , mu[ n − 1 ] ) ;

20 // Efficient thanks to return value optimization (RVO)

21 return fd ;

22 }

The next code demonstrates the use of an explicit Runge-Kutta single-step method for solving (11.3.2.8)

after truncation to a finite spatial interval [a, b].

C++ & EIGEN code 11.3.2.10: Wrapper code for finite volume evolution with 2-point flux

➺ GitLab

2 // arguments:
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3 // Real numbers a, b, the boundaries of the interval,

4 // unsigned int N, the number of cells,

5 // Functor u0 : R 7→ R, initial value,

6 // Final time T > 0,
7 // Functor F = F(v, w) for 2-point numerical flux function.

8 //

9 // return value:

10 // Vector with cell values at final time T
11 //

12 // Finite volume discrete evolution in conservation form with 2-point

13 // flux, see (11.3.2.8); Cauchy problem over time [0, T],
14 // timestepping with adaptive explicit Runge-Kutta single-step method

15 // of order 5(4).

16 template <typename FunctionU0 , typename FunctionF >

17 VectorXd consformevl ( double a , double b , unsigned N, FunctionU0 u0 , double T ,

18 Funct ionF &&F) {

19 double h = ( b − a ) / N; // meshwidth

20 // centers of dual cells

21 VectorXd x = VectorXd : : LinSpaced (N, a + 0.5 * h , b − 0.5 * h ) ;

22

23 // vector ~µ0 of initial cell averages

24 // obtained by point sampling of u0 in cell centers

25 VectorXd mu0 = x . unaryExpr ( u0 ) ;

26

27 // right hand side function for ode solver

28 auto odefun = [ & ] ( const VectorXd &mu, VectorXd &dmdt , double t ) {

29 dmdt = −1. / h * f l u x d i f f <FunctionF >(mu, F) ;

30 } ;

31

32 // Method of lines approach, c.f. Sect. 9.2.4: timestepping by

33 // Boost integrator (adaptive explicit embedded Runge-Kutta method

34 // of order 5, see also Def. 7.3.3.1)

35 double abs to l = 1E−8 , r e l t o l = 1E−6; // integration control parameters

36 // std::vector<double> t; Returns temporal grid

37 // std::vector<Eigen::VectorXd> MU; Returns states ~µ(k)

38 // Use this C++17 syntax only, if you are well aware of the return
types

39 auto [ t , MU] =

40 ode45 ( odefun , 0 , T , mu0, absto l , r e l t o l ) ; //

41 // Retrieve approximate state at final time.

42 return MU. back ( ) ;

43 }

Note that in Code 11.3.2.10, Line 40, we rely on high-order explicit Runge-Kutta timestepping in order to

solve (11.3.2.7) approximately.

11.3.3 Discrete Conservation Property

We consider a Cauchy problem for a scalar conservation law

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ , u(x, 0) = u0(x) , x ∈ R . (11.2.2.1)

and its conservative finite volume discretization on an (infinite) equidistant spatial mesh with mesh width

h > 0:

dµj

dt
(t) = −1

h

(
F(µj−ml+1(t), . . . , µj+mr

(t))− F(µj−ml
(t), . . . , µj+mr−1(t))

)
, j ∈ Z . (11.3.2.7)
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We abbreviate f j+1/2(t) := F(µj−ml+1(t), . . . , µj+mr
(t)).

§11.3.3.1 (Preservation of constant data) An evident first property of finite volume methods in conser-

vation form:

µj(0) = µ0 ∈ R ∀j ∈ Z ⇒ µj(t) = µ0 ∀j ∈ Z , ∀t > 0 . (11.3.3.2)

that is, constant solutions are preserved by the method. Such methods are called well-balanced discretiza-

tions. y

§11.3.3.3 (Discrete flux balance) For conservation laws we found the fundamental local balance relation,

see (9.2.1.3):

d

dt

∫ b

a
u(x, t)dx = −( f (u(b, t))− f (u(a, t))) . (11.3.3.4)

A “telescopic sum argument” combined with the interpretation (11.3.2.3) shows that the conservation form

(11.3.2.7) of the semi-discrete conservation law implies

d

dt

xm+1/2∫

xk−1/2

uN(x, t)dx = h
m

∑
l=k

dµj

dt
(t) = −

(
fm+1/2(t)− fk−1/2(t)

)
∀k, m ∈ Z .

m

d

dt

xm+1/2∫

xk−1/2

u(x, t)dx = −
(

f (u(xm+1/2, t))− f (u(xk−1/2, t))
)

,

With respect to unions of dual cells and numerical fluxes, the semidiscrete solution uN(t) satisfies

a balance law of the same structure as a (weak) solution of (11.2.2.1).
y

Of course, the numerical flux function F has to fit the flux function f of the conservation law; the following

is a minimal requirement for a viable numerical flux function.

Definition 11.3.3.5. Consistent numerical flux function

A numerical flux function F : Rml+mr 7→ R is consistent with the flux function f : R 7→ R, if

F(u, . . . , u) = f (u) ∀u ∈ R .

§11.3.3.6 (Discrete shock speed) Focus: solution of Riemann problem (→ Section 11.2.5) by finite

volume method in conservation form (11.3.2.7):

Initial data “constant at ±∞”: µ−j(0) = ul , µj(0) = ur for large j.

Consistency of the numerical flux function implies for large m≫ 1

d

dt

xm+1/2∫

−x−m−1/2

uN(x, t)dx = −
(

F(ur, . . . , ur)− F(ul, . . . , ul)
)
= −( f (ur)− f (ul)) . (11.3.3.7)

Exactly the same balance law holds for any weak solutions of the Riemann problem!
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Situation : ur > ul ➣ shock in traffic flow, discrete solution uN(t) increasing & supposed to approx-

imate a shock; we cannot expect that uN will also feature a sharp discontinuity, rather we

may see a “smeared” transition from ul to ur.

Write x∗(t) ∈ R for the approximate location of the

shock at time t, defined as

x∗(t)∫

−∞

uN(x, t)− ul dx =

∞∫

x∗(t)

ur − uN(x, t)dx

equality of yellow areas ✄

Fig. 519

ur

ul
x

u

x∗
∫ xm+1/2

x−m−1/2

uN(x, t)dx = (x∗(t) + x−m−1/2)ul + (xm+1/2 − x∗(t))ur .

(11.3.3.7)
=⇒ dx∗

dt
(t) =

1

ul − ur
∑
j∈Z

dµj

dt
(t) =

f (ul)− f (ur)

ul − ur

(11.2.4.2)
= ṡ .

Conservation form with consistent numerical flux yields correct “discrete shock speed”

(immune to spurious shock speeds as observed in Ex. 11.3.1.16)

y

Review question(s) 11.3.3.8 (Spatial semi-discretization of 1D conservation laws)

(Q11.3.3.8.A) [Finite difference method for linear advection] We discretize the linear advection equa-

tion

∂u

∂t
+

∂u

∂x
= 0 on R×R+

in space using finite differences on an equidistant mesh. What is the domain of dependence of the

solution component µ0(t) ≈ u(0, t) if ∂
∂x is approximated by

1. the forward difference quotient,

2. the backward difference quotient,

3. or a symmetric difference quotient.

(Q11.3.3.8.B) [Semi-discrete conservative evolution] State the semi-discrete evolution (“FV-MOL

ODE”) that arises from the spatial conservative finite-volume discretization of the 1D scalar conserva-

tion law ∂u
∂t +

∂
∂x f (u) = 0, if we use a two-point numerical flux. What is the state space of the resulting

“infinite ODE” and what is the meaning of the components of its state vector?

(Q11.3.3.8.C) [Finite-volume semi-discretization with periodic boundary conditions] We consider the

Cauchy problems for a 1D scalar conservation law ∂u
∂t +

∂
∂x f (u) = 0 with 1-periodic initial data u0, that

is, u0(x) = u0(x− 1) for all x ∈ R, which leads to a 1-periodic entropy solution.

Sketch then implemenation of a C++ function
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template <typename NumFlux>

Eigen::VectorXd fluxdiff_per(const Eigen::VectorXd &mu,

NumFlux &&F);

that provides the right-hand-side functional (up to scaling with h−1) for the conservative finite-volume

method-of-lines ODE, an equidistant spatial mesh with mesh width h > 0, and adjusted to the 1-periodic

setting. The argument mu passes the vector of cell averages, whereas the functor F provides a two-point

numerical flux.

△

11.3.4 Numerical Flux Functions

In this section concrete choices of consistent (→ Def. 11.3.3.5) numerical flux functions will be presented

and discussed. We restrict ourselves to 2-point numerical fluxes F = F(v, w), v =̂ “left state”, w =̂ “right

state”, see page 755.

It will turn out that finding appropriate numerical flux functions is by no means straightforward, because

both instability and numerical solutions that violate the entropy condition (to Section 11.2.6) have to be

avoided.

11.3.4.1 Central Flux

A very simple choice for numerical flux functions relies on arithmetic averaging and yields the two central

numerical fluxes

F1(v, w) := 1
2

(
f (v) + f (w)) , F2(v, w) := f

(
1
2(v + w)

)
. (11.3.4.1)

Obviously the 2-point numerical fluxes F1 and F2 are consistent according to Def. 11.3.3.5. The resulting

spatially semi-discrete schemes are given by, see (11.3.2.8),

F1:
dµj

dt
(t) = − 1

2h
( f (µj+1(t))− f (µj−1(t))) ,

F2:
dµj

dt
(t) = −1

h
( f (1

2(µj(t) + µj+1(t)))− f (1
2(µj(t) + µj−1(t)))) .

EXPERIMENT 11.3.4.2 (Central flux for Burgers equation)

✦ Cauchy problem for Burgers equation (11.1.3.4) (flux function f (u) = 1
2 u2) from Ex. 11.2.6.4 (“box”

intial data)

✦ Spatial finite volume discretization in conservation form (11.3.2.7) with central numerical fluxes ac-

cording to (11.3.4.1).

✦ timestepping based on adaptive explicit Runge-Kutta method ode45, see [NCSE] (with absolute

tolerance atol=10−7, relative tolerance reltol=10−6)

Fully discrete evolution for central numerical flux F1: h = 0.03
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Fully discrete evolution for central numerical flux F2: h = 0.017
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We observe massive spurious oscillations utterly pollute numerical solution. y

EXPERIMENT 11.3.4.3 (Central flux for Traffic Flow equation)

✦ Cauchy problem for Traffic Flow equation (11.1.2.23) (flux function f (u) = u(1 − u)) from

Ex. 11.2.6.5 (“box” intial data, u0 = χ[0,1])

✦ Spatial finite volume discretization in conservation form (11.3.2.7) with central numerical fluxes ac-

cording tp (11.3.4.1).

✦ timestepping based on adaptive explicit Runge-Kutta method ode45 with absolute tolerance 10−7

and relative tolerance 10−6.
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Fully discrete evolution for central numerical flux F1: h = 0.03
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Fully discrete evolution for central numerical flux F2: h = 0.017
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Observation: massive spurious oscillations utterly pollute numerical solution y
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EXPERIMENT 11.3.4.4 (Central flux for linear advection) In order to see whether the emergence

of spurious oscillations is an inherent weakness of central fluxes we apply them to the simplest scalar

conservation law, linear advection Section 11.1.1 with constant velocity.

We consider the Cauchy problem (11.1.1.11): constant velocity scalar linear advection, c = 1, flux function

f (u) = cu

∂u

∂t
+ c

∂u

∂x
= 0 in Ω̃ = R×]0, T[ , u(x, 0) = u0(x) ∀x ∈ R . (11.1.1.11)

Finite volume spatial discretization in conservation form (11.3.2.7) with central numerical fluxes from

(11.3.4.1):

F1(v, w) := 1
2

(
f (v) + f (w))

F2(v, w) := f
(

1
2(v + w)

) ⇒ dµj

dt
(t) = − c

2h
(µj+1(t)− µj−1(t)) , j ∈ Z . (11.3.4.5)

For the numerical experiment we use “box shaped” initial data u0 = χ[0,1], an equidistant spatial mesh

with meshwidth h = 0.083, ode45 adaptive explicit Runge-Kutta timestepping.

Fig. 524
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Again, we observe tremendous spurious oscillations that render the computed solution completely use-

less. y

Remark 11.3.4.6 (Connection with convection-diffusion IBVPs→ Chapter 10) Note that the Cauchy

problem (11.1.1.11) is an initial value problem for the 1D transport equation (10.3.2.1)!

From Section 10.2.2, (10.2.2.2) we see that the semi-discrete evolution

dµj

dt
(t) = − c

2h
(µj+1(t)− µj−1(t)) , j ∈ Z , (11.3.4.5)

agrees with what we obtain from straightforward spatial linear finite element Galerkin semi-discretization.

In Section 10.3.1 we learned that this method is prone to spurious oscillations, see Exp. 10.3.1.3. This

offers an explanation also for its failure for Burgers equation/traffic flow equation, see Exp. 11.3.4.2. y

11.3.4.2 Lax-Friedrichs/Rusanov Flux

§11.3.4.7 (Fighting oscillations with diffusion) According to § 11.1.1.1 the simple linear advection

Cauchy problem

∂u

∂t
+ c

∂u

∂x
= 0 in Ω̃ = R×]0, T[ , u(x, 0) = u0(x) ∀x ∈ R . (11.1.1.11)

models heat transport in a fluid moving with constant velocity c > 0.

If u0 is oscillatory (many local extrema), then these will just be carried along. However, if there is a non-zero

heat conductivity κ > 0, then local extrema of the temperature can be expected to decay exponentially,
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while they are moving with the flow. For instance, for c = κ = 1 (dimensionless equations), we get

∂u
∂t +

∂u
∂x− ∂2u

∂x2 = 0 ,

u0(x) = sin(x)
u(x, t) = e−t sin(x− t) , x ∈ R, t ≥ 0 . (11.3.4.8)

diffusive term

Hence, let us consider the advection equation with extra added diffusion, whose strength can be controlled

by the diffusion coefficient κ > 0,

∂u

∂t
+ c

∂u

∂x
−κ

∂2u

∂x2
= 0 , (11.3.4.9)

which amounts to a 1D scalar conservation law with the flux function (→ Rem. 11.2.1.3)

f (u) = cu−κ
∂u

∂x
. (11.3.4.10)

A related numerical flux on an equidistant mesh with meshwidth h > 0 can rely on a central flux (11.3.4.1)

for the advective part, and on a simple difference quotient approximation for the derivative

f (u) = cu − κ ∂u
∂x ,

↓ ↓ ↓
F(v, w) = c

2(v + w) − κ w−v
h .

central numerical flux diffusive numerical flux

With this choice of numerical flux the semi-discrete evolution (11.3.2.8) becomes:

µ̇j(t) + c
µj+1(t)− µj−1(t)

2h
+ κ
−µj+1(t) + 2µj(t)− µj−1(t)

h2
= 0 . (11.3.4.11)

The computations of (10.2.2.2) show that (11.3.4.11) agrees with the method-of-lines ODE obtained from

the standard linear finite element Galerkin discretization of (11.3.4.9) on an equidistant mesh!

Caution: the extra diffusion amounts to a perturbation of the Cauchy problem that must be kept as small

as possible and, in any case, vanish for h→ 0, which entails κ = κ(h).

Guideline: prevent diffusive flux from dominating central flux ➣ κ =
ch

2
(11.3.4.12)

y

Remark 11.3.4.13 (Connection with artificial viscosity→ Section 10.2.2.2) As already pointed out in

Rem. 11.3.4.6, the developments in this section are closely connected with similar considerations in Sec-

tion 10.2.2, Section 10.3.1 in the context of stable spatial discretization of convection-diffusion problems

(11.3.4.9).
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In Section 10.2.2.2 we saw that artificial diffusion cures instability of central difference quotients. In

(10.2.2.8) we found a new interpretation of the upwind discretization based on one-sided difference quo-

tients:

∂u

∂t
+ c ∂u

∂x = 0 in R×]0, T[ ,

l l
∂u

∂t
+ (ch/2)

−µj−1 + 2µj − µj+1

h2︸ ︷︷ ︸
=̂ difference quotient for d2u

dx2

+ c
µj+1 − µj−1

2h︸ ︷︷ ︸
=̂ difference quotient for c du

dx

= 0 , j ∈ Z .

Can this be rewritten in conservation form (11.3.2.7)? YES!

(ch/2)
−µj−1 + 2µj − µj+1

h2
+ c

µj+1 − µj−1

2h
=

1

h

(
F(µj, µj+1)− F(µj−1, µj)) ,

with F(v, w) := c
2(v + w)− c

2(w− v) . (11.3.4.14)

central numerical flux h-weighted diffusive/viscous numerical flux

Recall from Rem. 11.2.1.3: the flux function f (u) = − ∂u
∂x models diffusion. Hence, the diffusive numerical

flux amounts to a central finite difference discretization of the partial derivative in space:

−∂u

∂x
(x, t)

|x=xj+1/2

≈ −1

h

(
u(xj+1, t)− u(xj, t)

)
.

Thus, starting from upwind discretization, we also arrive at the scheme heuristically derived in § 11.3.4.7.

y

How to adapt the idea of extra diffusion to general scalar conservation laws? A simple manipulation

connects these with linear advection:

∂u

∂t
+

∂

∂x
f (u) =

∂u

∂t
+ f ′(u)

∂u

∂x
= 0 (11.3.4.15)

local speed of transport↔ c

However, the speed f ′(u) of transport will depend on x, which suggests that the strength of artificial

diffusion should vary. We choose it according to (11.3.4.12), but large enough to fit the maximal local

velocity: we set k = h
2 max{| f ′(u)| : min{v, w} ≤ u ≤ max{v, w}} in the diffusive part of the

numerical flux.

(local) Lax-Friedrichs/Rusanov flux

FLF(v, w) = 1
2( f (v) + f (w))− 1

2(w− v) · max
min{v,w}≤u≤max{v,w}

| f ′(u)| . (11.3.4.16)

The next two experiments investigate the performance of the (local) Lax-Friedrichs/Rusanov numerical

flux for our model non-linear scalar conservation laws.

EXPERIMENT 11.3.4.17 (Lax-Friedrichs flux for Burgers equation)
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☞ Same setting and conservative discretization as in Exp. 11.3.4.2

☞ Numerical flux function: Lax-Friedrichs flux (11.3.4.16)
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Observation: spurious oscillations are suppressed completely, qualitatively good resolution of both shock

and rarefaction.

However, an undesirable effect of artificial diffusion is also evident. It leads to a smearing of the shock,

cf. the discussion in Ex. 10.2.2.23. Instead of a jump the numerical solution suggests a smooth transition

between two states. y

EXPERIMENT 11.3.4.18 (Lax-Friedrichs flux for traffic flow equation) ☞ same setting and conser-

vative discretization as in Exp. 11.3.4.2

☞ Numerical flux function: Lax-Friedrichs flux (11.3.4.16)
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Same observations as in Exp. 11.3.4.17: no spurious oscillations, qualitatively correct solution, but strong

smearing of shock. y

11.3.4.3 Upwind Flux

Another idea for stable spatial discretization of stationary transport in Section 10.2.2.1 (“upwind quadra-

ture”):

“upwinding” = obtain information from where transport brings it

☞ remedy for ambiguity of evaluation of discontinuous gradient in upwind quadrature

Owing to the discontinuity of uN at xk+1/2, ambiguity is also faced in the evaluation of the fluxes

f (uN(xj+1/2), t), f (uN(xj−1/2), t), see (11.3.2.5), which forced us to introduce numerical flux functions in

(11.3.2.7). We may also seek to select the value of uN from that side of xk+1/2 where information comes

from. In light of Rem. 11.2.2.9 we should examine the direction of the characteristic running through

(xk+1/2,t).

Def. 11.2.2.3, (11.3.4.15) ➣ The local slope of the characteristic curve (velocity of transport) at (x, t) ∈
Ω̃ is given by f ′(u(x, t)).

local velocity of transport f ′(uN(xk+1/2, t)) is ambiguous too!

Idea: There is a “velocity of propagation” even at discontinuities of u!

Deduce it from Rankine-Hugoniot jump condition (11.2.4.2).

local velocity of transport =

{
f ′(u) for unique state, u = ul = ur
f (ur)− f (ul)

ur−ul
at discontinuity.

(ul, ur =̂ states to left and right of discontinuity)

upwind numerical flux for scalar conservation law with flux function f :

Fuw(v, w) =

{
f (v) , if ṡ ≥ 0 ,

f (w) , if ṡ < 0 ,
ṡ :=

{
f (w)− f (v)

w−v for v 6= w ,

f ′(v) for v = w .
(11.3.4.19)
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Now we investigate empirically the performance of the upwind numerical flux for our model non-linear

scalar conservation laws.

EXPERIMENT 11.3.4.20 (Upwind flux for Burgers equation) ☞ same setting and conservative dis-

cretization as in Exp. 11.3.4.2

☞ Numerical flux function: upwind flux (11.3.4.19)
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y

EXPERIMENT 11.3.4.21 (Upwind flux for traffic flow simulation)

☞ Conservative finite volume discretization of Cauchy problem for traffic flow equation (11.1.2.23), flux

function f (u) = u(1− u)

☞ Equidistant spatial mesh with meshwidth h = 0.03, adaptive explicit Runge-Kutta timestepping

(MATLAB ode45)

☞ Numerical flux function: upwind flux (11.3.4.19)

☞ “Box shaped” initial data u0(x) =

{
1 for 0 ≤ x ≤ 1 ,

0.5 elsewhere.

The solution will comprise a stationary shock and a rarefaction fan, which will merge eventually.
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We observe a satisfactory resolution of the shock and the rarefaction fan. y

EXAMPLE 11.3.4.22 (Upwind flux and transsonic rarefaction) In this example we will witness a situa-

tion in which the use of the upwind numerical flux function produces a non-physical shock.

We consider the Cauchy problem (11.2.2.1) for Burgers equation (11.1.3.4), i.e., f (u) = 1
2 u2 and initial

data

u0(x) =

{
−1 for x < 0 or x > 1 ,

1 for 0 < x < 1 .
(11.3.4.23)

The analytic solution for this Cauchy problem is given in Ex. 11.2.6.4.

Fig. 529
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u = −1

u = −1

u = 1

u(x, t) = x/t

There is a related Cauchy problem (11.2.2.1) for the traffic flow equation (11.1.2.23), i.e., f (u) = u(1− u)
and initial data

u0(x) =

{
0 for x < 0 or x > 1 ,

1 for 0 < x < 1 .
(11.3.4.24)

Its analytic solution is plotted in Fig. 532 and given in Fig. 533.
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Fig. 531
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u(x, t) = 1
2(1−

(x−1)
t )

u = 0.0

u = 0.0

u = 1.0

The entropy solution (→ Section 11.2.6) of these Cauchy problems features a transsonic rarefaction fan

at x = 1: this is a rarefaction solution (→ Lemma 11.2.5.10) whose “edges” move in opposite directions.

Burgers’ equation, initial density (11.3.4.23): numerical solution with finite volume method with upwind flux

(11.3.4.19).
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Traffic flow equation, initial data (11.3.4.24): numerical solution with finite volume method with upwind flux

(11.3.4.19).
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Conservative finite volume discretization with upwind flux produces (stationary) expansion shock instead

of transonic rarefaction!

Section 11.2.6: this is a weak solution, but it violates the entropy condition, “non-physical shock”. y

EXAMPLE 11.3.4.25 (Upwind flux: Convergence to expansion shock) In Ex. 11.3.4.22 we have seen

that the use of the upwind flux can make a conservative finite volume discretization converge to non-

physical expansion shocks. In this example simple computations will show how this can happen. The

setting is the following:

✦ Cauchy problem (11.2.2.1) for Burgers equation (11.1.3.4), i.e., f (u) = 1
2 u2

✦ u0(x) = 1 for x > 0, u0(x) = −1 for x < 0
➤ entropy solution = rarefaction wave (→ Lemma 11.2.5.10)

✦ FV in conservation form, upwind flux (11.3.4.19), on equidistant grid, xj = (j + 1
2)h, meshwidth h > 0

➤ initial nodal values µj(0) =

{
−1 for j < 0 ,

1 for j ≥ 0 .

➤ Semi-discrete evolution equation:

dµj

dt
(t) = − 1

2h
·
{

µ2
j+1(t)− µ2

j (t) for j ≥ 0 ,

µ2
j (t)− µ2

j−1(t) for j < 0 .

µj(t) = µj(0) for all t ➤ for h→ 0, convergence to entropy violating expansion shock !

conservative finite volume method may converge to non-physical weak solutions ! y

11.3.4.4 Godunov Flux

Ex. 11.3.4.22 strikingly illustrated the failure of the conservative finite volume discretization based on

upwind flux to deal with transsonic rarefactions. In this section a different perspective on upwind fluxes will

suggest a remedy.

(The following discussion is for convex flux functions only, that occur, for instance in Burgers equation

(11.1.3.4). The reader is encouraged to figure out the modifications necessary if the flux function is

concave, as in the traffic flow equation (11.1.2.23).)
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The upwind flux (11.3.4.19) is a numerical flux of the form

F(v, w) = f (u↓(v, w)) with an intermediate state u↓(v, w) ∈ R .

For the upwind flux the intermediate state is not really “intermediate”, but coincides with one of the states

v, w depending on the sign of the “local shock speed” ṡ := f (w)− f (v)
w−v .

§11.3.4.26 (Local Riemann problems) We note that the intermediate state for the upwind numerical flux

at the dual cell boundary xj+1/2 agrees with the state produced for short times at xj+1/2 by an all-shock

solution of the conservation law with initial data uN(·, t), with uN the M-piecewise constant function

defined by the dual cell averages according to (11.3.2.3). This solution may feature non-physical (expan-

sion) shocks, while rarefaction waves are missing. For this reason the simple upwind flux fails to capture

rarefaction waves as we have witnessed in Ex. 11.3.4.22.

Idea: obtain suitable intermediate state as

u↓(v, w) = ψ(0) , (11.3.4.27)

where u(x, t) = ψ(x/t) solves the Riemann problem (→ Section 11.2.5)

∂u

∂t
+

∂

∂x
f (u) = 0 , u(x, 0) =

{
v , for x < 0 ,

w , for x ≥ 0 .
(11.3.4.28)

Remember Lemma 11.2.5.4, Lemma 11.2.5.10, and the reasons why we can count on the entropy solution

of the Riemann problem to be a similarity solution of the form u(x, t) = ψ(x/t), see page 739.

We focus on f : R 7→ R strictly convex & smooth (e.g. Burgers equations (11.1.3.4))

➤ Riemann problem (11.3.4.28) (→ Section 11.2.5) has the entropy solution (→ Section 11.2.6):

➊ If v > w ➤ discontinuous solution, shock (→ Lemma 11.2.5.4)

u(t, x) =

{
v if x < ṡt ,

w if x > ṡt ,
ṡ =

f (v)− f (w)

v− w
. (11.3.4.29)

➋ If v ≤ w ➤ continuous solution, rarefaction wave (→ Lemma 11.2.5.10)

u(t, x) =





v if x < f ′(v)t ,

g(x/t) if f ′(v) ≤ x/t ≤ f ′(w) ,

w if x > f ′(w)t ,

g := ( f ′)−1 . (11.3.4.30)

➣ Also from these formulas we see that all weak solutions of a Riemann problem are of the form

u(x, t) = ψ(x/t) (similarity solution) with a suitable function ψ, which is

✦ piecewise constant with a jump at ṡ := f (w)− f (v)
w−v for a shock solution (11.3.4.29),
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✦ the continuous function (in the case of strictly convex flux function f )

ψ(ξ) :=





v , if ξ < f ′(v) ,

( f ′)−1(ξ) , if f ′(v) < ξ < f ′(w) ,

w , if ξ > f ′(v) ,

provided that w > v = situation of a rarefaction solution (11.3.4.30), see Lemma 11.2.5.10.

y

A graphical illustration of the various local Riemann solutions that can be found at dual cell boundaries is

given next:

Fig. 535 xj−2 xj−1 xj xj+1 xj+2 xj+3

t

0

u(x, t)/t

✁ local Riemann problems at dual cell

boundaries (for Burgers flux f (u) = 1
2 u2,

qualitative drawing)

−− =̂ piecewise constant function u(0, t)
−− =̂ shock in (t, x)-plane

−− =̂ rarefaction wave in (t, x)-plane

for convex flux function f

u↓(v, w) =





w , if

v = w (constant solution) ,
v > w ∧ ṡ < 0 (shock ➊) ,
v < w ∧ f ′(w) < 0 (rarefaction ➋) ,

v , if
v > w ∧ ṡ > 0 (shock ➌),
v < w ∧ f ′(v) > 0 (rarefaction ➍) ,

( f ′)−1(0) , if v < w ∧ f ′(v) ≤ 0 ≤ f ′(w) (rarefaction ➎).

(11.3.4.31)

Fig. 536
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Fig. 540

x

t/u

ur

ul

➎:

transonic rarefaction

§11.3.4.32 (Formulas for Godunov numerical flux function) A detailed analysis of (11.3.4.31) yields

fairly explicit formulas:

v > w (shock case): f (u↓(v, w)) =

{
f (v) , if

f (w)− f (v)
w−v > 0 ⇔ f (w) < f (v) ,

f (w) , if
f (w)− f (v)

w−v ≤ 0 ⇔ f (w) ≥ f (v) .
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f (u↓(v, w)) = max{ f (v), f (w)} .

For a convex flux function f :

v < w ⇒ f ′(v) ≤ f (w)− f (v)

w− v
≤ f ′(w) .

For v < w (rarefaction case)

f (u↓(v, w)) =





f (v) , if f ′(v) > 0 ,

f (z) , if f ′(v) < 0 < f ′(w) ,

f (w) , if f ′(w) < 0 ,

where f ′(z) = 0⇔ f has a global minimum in z.
Fig. 541

v w

f

z

2-point numerical flux function according to (11.3.4.27) and (11.3.4.28): Godunov numerical flux

Using general Riemann solution (11.2.6.3) we get for any flux function:

Godunov numerical flux function

FGD(v, w) =





min
v≤u≤w

f (u) , if v < w ,

max
w≤u≤v

f (u) , if w ≤ v .
(11.3.4.33)

Obviously the Godunov numerical flux is consistent according to Def. 11.3.3.5.

Fig. 542
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for Burgers’ equation (11.1.3.4)
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for traffic flow equation (11.1.2.23)
y

Remark 11.3.4.34 (Upwind flux and expansion shocks) For traffic flow equation (11.1.2.23) ( f (u) =
u(1− u))
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Fig. 544
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upwind flux FUW(v, w)

Fuw(v, w) = FGD(v, w), except for the case of transsonic rarefaction!

(transsonic rarefaction = rarefaction fan with edges moving in opposite direction, see Ex. 11.3.4.22)

What does the upwind flux Fuw(v, w) from (11.3.4.19) yield in the case of transsonic rarefaction?

If f convex, v < w, f ′(v) < 0 < f ′(w),

Fuw(v, w) = f (ψ(0)) ,

where u(x, t) = ψ(x/t) is a non-physical entropy-condition violating (→ Def. 11.2.6.1) expansion shock

weak solution of (11.3.4.28).

Upwind flux treats transsonic rarefaction as expansion shock!

➣ Explanation for observation made in Ex. 11.3.4.22. y

EXPERIMENT 11.3.4.35 (Godunov flux for Burgers equation) ☞ same setting and conservative dis-

cretization as in Ex. 11.3.4.22

☞ Numerical flux function: Godunov numerical flux (11.3.4.33)
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Observation: Transonic rarefaction captured by discretization, but small remnants of an expansion shock

still observed. y

EXPERIMENT 11.3.4.36 (Godunov flux for traffic flow equation) ☞ same setting and conservative

discretization as in Ex. 11.3.4.22

☞ Numerical flux function: Godunov numerical flux (11.3.4.33)
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Observation: Transonic rarefaction captured by discretization, but small remnants of an expansion shock

still observed.

y

Review question(s) 11.3.4.37 (Numerical flux functions)

(Q11.3.4.37.A) State concrete formulas for the following two-point numerical flux functions, when applied
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to a 1D scalar conservation law with flux function

1. f (u) = exp(u), u ∈ R,

2. f (u) = u2, u ∈ R:

➊ Central flux

FC(v, w) = f (1
2(v + w)) , v, w ∈ R ,

➋ (local) Lax-Friedrichs flux:

FLF(v, w) = 1
2( f (v) + f (w))− 1

2(w− v) · max
min{v,w}≤u≤max{v,w}

| f ′(u)| , (11.3.4.16)

➌ upwind flux

Fuw(v, w) =

{
f (v) , if ṡ ≥ 0 ,

f (w) , if ṡ < 0 ,
ṡ :=

{
f (w)− f (v)

w−v for v 6= w ,

f ′(v) for v = w ,
(11.3.4.19)

➍ Godunov flux:

FGD(v, w) =





min
v≤u≤w

f (u) , if v < w ,

max
w≤u≤v

f (u) , if w ≤ v .
(11.3.4.33)

(Q11.3.4.37.B) [Upwind flux vs. Godunov flux] Give an example of a strictly concave flux function

f : R → R and of two states v, w ∈ R, for which the upwind flux

Fuw(v, w) =

{
f (v) , if ṡ ≥ 0 ,

f (w) , if ṡ < 0 ,
ṡ :=

{
f (w)− f (v)

w−v for v 6= w ,

f ′(v) for v = w ,
(11.3.4.19)

and the Godunov flux:

FGD(v, w) =





min
v≤u≤w

f (u) , if v < w ,

max
w≤u≤v

f (u) , if w ≤ v ,
(11.3.4.33)

yield different results.

Give an example of a strictly concave flux function f , for which they agree for all input states.

(Q11.3.4.37.C) [Expansion shock and transonic rarefaction] For Burgers equation with flux function

f (u) = u2 characterize all pairs of left and right states ul, ur ∈ R for which a conservative finite volume

discretization of the 1D Riemann problem based on the upwind flux produces an expansion shock that

violates the Lax entropy condition.

Hint. The upwind flux fails in situations where transonic rarefactions emerge as entropy solutions.

△
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11.3.5 Monotone Schemes

We made the following observations for some piecewise constant solutions uN(t) of semi-discrete evolu-

tions arising from spatial finite volume discretization in conservation form (11.3.2.8):

Exp. 11.3.4.17 (Lax-Friedrichs numerical flux (11.3.4.16))

Exp. 11.3.4.35 (Godunov numerical flux (11.3.4.33))
:

✦min
x∈R

u0(x) ≤ uN(x, t) ≤ max
x∈R

u0(x)

✦no new local extrema

in numerical solution

In these respects the conservative finite volume discretizations based on either the Lax-Friedrichs numer-

ical flux (→ Section 11.3.4.2) or the Godunov numerical flux (→ Section 11.3.4.4) inherit crucial structural

properties of the exact solution, see Section 11.2.7, in particular,

Theorem 11.2.7.1. Comparison principle for scalar conservation laws

If u0 ≤ ū0 a.e. on R ⇒ u ≤ ū a.e. on R×]0, T[

Thus, in the numerical experiments these schemes display structure preservation, cf. Section 3.7.

Is this coincidence, just valid for the special settings examined in Exp. 11.3.4.17 and Exp. 11.3.4.35?

§11.3.5.1 (Discrete comparison principle) Focus: semi-discrete evolution (11.3.2.8) resulting from finite

volume discretization in conservation form with 2-point numerical flux on an equidistant infinite mesh

(11.3.2.7)
dµj

dt
(t) = −1

h

(
F(µj(t), µj+1(t))− F(µj−1(t), µj(t))

)
, j ∈ Z , (11.3.2.8)

for Cauchy problem

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ , u(x, 0) = u0(x) , x ∈ R , (11.2.2.1)

induced by Lax-Friedrichs numerical flux (11.3.4.16)

FLF(v, w) = 1
2( f (v) + f (w))− 1

2 max
min{v,w}≤u≤max{v,w}

| f ′(u)|(w− v) . (11.3.4.16)

dµj

dt
= − 1

2h

(
f (µj+1)− f (µj−1)−

max
u∈[µj,µj+1]

| f ′(u)|(µj+1 − µj) + max
u∈[µj−1,µj]

| f ′(u)|(µj − µj−1)
)

.

(11.3.5.2)

Goal: show that uN(t) linked to ~µ(t) from (11.3.5.2) through piecewise constant reconstruction

(11.3.2.3) satisfies

min
x∈R

uN(x, 0) ≤ uN(x, t) ≤ max
x∈R

uN(x, 0) ∀x ∈ R , ∀t ∈ [0, T] . (11.3.5.3)

Recall from Section 11.2.7 that the estimate (11.3.5.3) for the exact solution u(x, t) of (11.2.2.1) is a

consequence of the comparison principle of Thm. 11.2.7.1 and the fact that constant initial data are pre-

served during the evolution. The latter property is straightforward for conservative finite volume spatial

semi-discretization, see (11.3.3.2).

➣ Goal: Establish comparison principle for finite volume semi-discrete solutions based on Lax-

Friedrichs numerical flux:
{
~µ(t),~η(t) solve (11.3.5.2) ,

ηj(0) ≤ µj(0) ∀j ∈ Z

}
⇒ ηj(t) ≤ µj(t) ∀j ∈ Z , ∀0 ≤ t ≤ T .
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Assumption: ~µ = ~µ(t) and~η =~η(t) solve (11.3.5.2) and satisfy for some t ∈ [0, T]

ηk(t) ≤ µk(t) ∀k ∈ Z , ξ := ηj(t) = µj(t) for some j ∈ Z .

Can ηj raise above µj?

d

dt

(
µj − ηj) = −

1

h

(
FLF(ξ, µj+1)− FLF(ξ, ηj+1) + FLF(ηj−1, ξ)− FLF(µj−1, ξ)

)
.

To show:
d

dt

(
µj − ηj) ≥ 0 ➣ µj(t) will stay above ηj(t).

This can be concluded, if

FLF(ξ, µj+1)− FLF(ξ, ηj+1) ≤ 0 and FLF(ηj−1, ξ)− FLF(µj−1, ξ) ≤ 0 . (11.3.5.4)

The only piece of information we are allowed to use is

µj+1 ≥ ηj+1 and µj−1 ≥ ηj−1 .

This would imply (11.3.5.4), if FLF was increasing in the first argument and decreasing in the second

argument. Such a trait of a two-point numerical flux is considered in the next definition.

Definition 11.3.5.5. Monotone numerical flux function

A 2-point numerical flux function F = F(v, w) is called monotone, if

F is an increasing function of its first argument v (∀w)

and

F is a decreasing function of its second argument w (∀v).

Corollary 11.3.5.6. Simple criterion for monotone flux function

A continuously differentiable 2-point numerical flux function F = F(v, w) is montone, if and only if

∂F

∂v
(v, w) ≥ 0 and

∂F

∂w
(v, w) ≤ 0 ∀(v, w) . (11.3.5.7)

The important 2-point numerical fluxes that we have studied in Section 11.3.4.2 and Section 11.3.4.4 enjoy

the monotonicity property.

Lemma 11.3.5.8. Monotonicity of Lax-Friedrichs/Rusanov numerical flux and Godunov flux

For any continuously differentiable flux function f the associated Lax-Friedrichs/Rusanov flux

(11.3.4.16) and Godunov flux (11.3.4.33) are monotone.

Proof.

➊ (Local) Lax-Friedrichs/Rusanov numerical flux:

FLF(v, w) = 1
2( f (v) + f (w))− 1

2(w− v) · max
min{v,w}≤u≤max{v,w}

| f ′(u)| .
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Application of the criterion (11.3.5.7) is straightforward:

∂FLF

∂v
(v, w) = 1

2 f ′(v) + 1
2 max

min{v,w}≤u≤max{v,w}
| f ′(u)| ≥ 0 ,

∂FLF

∂w
(v, w) = 1

2 f ′(w)− 1
2 max

min{v,w}≤u≤max{v,w}
| f ′(u)| ≤ 0 .

For the genuine Lax-Friedrichs numerical flux (11.3.4.16) the proof of monotonicity entails treating nu-

merous cases separately, because the factor in front of the diffusive flux will also depend on v and w.

➋ Godunov numerical flux

FGD(v, w) =





min
v≤u≤w

f (u) , if v < w ,

max
w≤u≤v

f (u) , if w ≤ v .
(11.3.4.33)

v < w: If v increases, then the range of values over which the minimum is taken will shrink, which makes

FGD(v, w) increase.

If w is raised, then the minimum is taken over a larger interval, which causes FGD(v, w) to

become smaller.

v ≥ w: If v increases, then the range of values over which the maximum is taken will grow, which makes

FGD(v, w) increase.

If w is raised, then the maximum is taken over a smaller interval, which causes FGD(v, w) to

decrease. ✷

Lemma 11.3.5.9. Comparison principle for monotone semi-discrete conservative evolutions

Let the 2-point numerical flux function F = F(v, w) be monotone (→ Def. 11.3.5.5) and~µ = ~µ(t),
~η =~η(t) solve (11.3.2.8). Then

ηk(0) ≤ µk(0) ∀k ∈ Z ⇒ ηk(t) ≤ µk(t) ∀k ∈ Z , ∀ 0 ≤ t ≤ T .

The assertion of Lemma 11.3.5.9 means that for monotone numerical flux, the semi-discrete evolution

satisfies the comparison principle of Thm. 11.2.7.1.

Proof (of Lemma 11.3.5.9, following the above considerations for the Lax-Friedrichs flux).

The two sequences of nodal values satisfy (11.3.2.8)

dµj

dt
(t) = −1

h

(
F(µj(t), µj+1(t))− F(µj−1(t), µj(t))

)
, j ∈ Z , (11.3.5.10)

dηj

dt
(t) = −1

h

(
F(ηj(t), ηj+1(t))− F(ηj−1(t), ηj(t))

)
, j ∈ Z . (11.3.5.11)

Let t0 be the earliest time, at which~η “catches up” with ~µ in at least one node xj, j ∈ Z, of the mesh,

that is

ηk(t0) ≤ µk(t0) ∀k ∈ Z , ξ := ηj(t0) = µj(t0) .
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By subtracting (11.3.5.10) and (11.3.5.11) we get

d

dt
(µj − ηj)(t0) = −

1

h

(
F(ξ, µj+1(t0))− F(ξ, ηj+1(t0)) + F(ηj−1(t0), ξ)− F(µj−1(t0), ξ)

)
≥ 0 ,

because for a monotone numerical flux function (→ Def. 11.3.5.5)

ηj−1(t0) ≤ µj−1(t0)
increasing in first argument⇒ F(ηj−1(t0), ξ)− F(µj−1(t0), ξ) ≤ 0 ,

ηj+1(t0) ≤ µj+1(t0)
decreasing in second argument⇒ F(ξ, µj+1(t0))− F(ξ, ηj+1(t0)) ≤ 0 .

This means that “ηj cannot overtake µj”: no value ηj can ever raise above µj. ✷ y

§11.3.5.12 (No creation of discrete local extrema) Now we want to study the “decrease of the num-

ber of local extrema” during a semi-discrete evolution, another structural property of exact solutions of

conservations laws, see Section 11.2.7.

Intuitive terminology: ~µ has a local maximum um ∈ R, if

∃j ∈ Z: µj = um and ∃kl < j < kr ∈ N: max
kl<l<kr

µl = um and µkl
< um , µkr

< um .

In analogous fashion, we define a local minimum. If~µ is constant for large indices, these values are also

regarded as local extrema.

Counting local extrema of~µ and

the associated piecewise con-

stant reconstruction.

Fig. 548

x

local maximum

local maximum

local minimumlocal minimumlocal minimum

µj/uN

Lemma 11.3.5.13. Non-oscillatory monotone semi-discrete evolutions

If ~µ = ~µ(t) solves (11.3.2.8) with a monotone numerical flux function F = F(v, w) and ~µ(0) has

finitely many local extrema, then the number of local extrema of ~µ(t) cannot be larger than that of

~µ(0).

Proof. i =̂ index of local maximum of~µ(t), t fixed

µi−1(t) ≤ µi(t) ,

µi+1(t) ≤ µi(t)
monotone flux

=⇒ F(µi, µi+1) ≥ F(µi, µi) ≥ F(µi−1, µi) ,

⇒ d

dt
µi(t) = −

1

h

(
F(µi, µi+1)− F(µi−1, µi)

)
≤ 0 .

➣ maxima of~µ subside, (minima of~µ rise !)
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Idea of proof:

No new (local) extrema can arise !

Adjacent values cannot “overtake”:

local maximum: cannot move up

local minmum: cannot move down

Fig. 549
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Review question(s) 11.3.5.14 (Monotone schemes)

(Q11.3.5.14.A) Show that for smooth and convex f : R → R the Godunov numerical flux

FGD(v, w) =





min
v≤u≤w

f (u) , if v < w ,

max
w≤u≤v

f (u) , if w ≤ v ,
(11.3.4.33)

satisfies

∂FGD

∂v
(v, w) ≥ 0 and

∂FGD

∂w
(v, w) ≤ 0 ∀(v, w) , (11.3.5.7)

∣∣∣∣
∂FGD

∂v
(v, w)

∣∣∣∣,
∣∣∣∣
∂FGD

∂w
(v, w)

∣∣∣∣ ≤ max
min{v,w}≤u≤max{v,w}

| f ′(u)| ∀(v, w) .

(Q11.3.5.14.B) A mapping H : RZ → RZ (RZ is the vector space of real-valued sequences
(
µj

)
æ∈Z

,

equivalently, the vector space of functions Z 7→ R) is called monotone*, if

ζ j ≥ µj ∀j ∈ Z ⇒
(
H
((

ζk)k∈Z

))
j
≥
(
H
((

µk)k∈Z

))
j
∀j ∈ Z .

• Show that H : RZ → RZ which is continuously differentiable in each component is monotone, if
(

∂H

∂µk

)

j

≥ 0 ∀j, k ∈ Z .

• Applying explicit Euler timestepping with timestep τ > 0 to the semi-discrete evolution arising from

the conservative finite-volume discretization of a scalar conservation law ∂u
∂t +

∂
∂x f (u) = 0 on an

equidistant spatial mesh (mesh width h > 0) and based on the Godunov numerical flux yields a

mapping H : RZ → RZ. Show that this mapping is monotone provided that

τ

h
≤ 1

2M
, M := max{| f ′(u)| : min

x∈R
u0(x) ≤ u ≤ max

x∈R
u0(x)} .

Hint. Depends on Question (Q11.3.5.14.A).

Remark. Mappings like H will be investigated more closely in § 11.4.1.8.

△

11.4 Timestepping for Finite-Volume Methods

In the spirit of the method of lines (MOL) approach, we next we pursue the temporal discretization of the

ordinary differential equation (FV-MOL-ODE)

dµj

dt
(t) = −1

h

(
F(µj−ml+1(t), . . . , µj+mr

(t))− F(µj−ml
(t), . . . , µj+mr−1(t))

)
, j ∈ Z , (11.3.2.7)
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which arises from the conservative finite-volume (FV) spatial semi-discretization of the Cauchy problem

for a generic 1D scalar conservation law (without sources)

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ , u(x, 0) = u0(x) in R . (11.2.2.1)

Remark 11.4.0.1. Note that (11.3.2.7) is an ODE on the infinite-dimensional state space RZ, but formally

we can treat it like a regular ODE in RN. In any case, in actual computations the spatial domain will

always be truncated to a finite interval, and the initial value u0 = u0(x) will be constant for large |x|. Such

a truncation is implemented in Code 11.3.2.9. y

11.4.1 Fully Discrete Evolutions

§11.4.1.1 (Explicit timestepping for FV-MOL-ODE) We have learned that explicit timestepping meth-

ods for initial value problems for the generic autonomous ODE ẏ = f(y) generate a sequence

y(0) := y0, y(1), y(2), . . . of approximations of y(t) at particular points tj in time (forming a temporal grid)

by computing y(j+1) from y(j) by means of a fixed small number of f-evaluations.

For the method-of-lines ordinary differential equations (11.3.2.7) we exclusively focus on explicit timestep-

ping, for good reasons: Apart from the simplest case of linear advection (→ Section 11.1.1), the right-

hand-side in (11.3.2.7) will invariably be non-linear and might even be non-smooth, for instance when

choosing the Godunov numerical flux (11.3.4.33). Thus, anything that goes beyond plain evaluation can

be difficult and unpredictable; imagine using an iterative method for solving a non-linear system of equa-

tions involving that right-hand-side. This leaves little other option than using explicit timestepping. y

§11.4.1.2 (Runge-Kutta single-step timestepping) In a straightforward way explicit single-step timestep-

ping methods can be applied to (11.3.2.7).

Our focus: Explicit Runge-Kutta single-step methods (RK-SSMs,→ Def. 7.3.3.1)

Remember the the definition of an RK-SSM for a general ODE u̇ = f(t, u) on state space V0:

Definition 7.3.3.1. General Runge-Kutta single-step method

For coefficients bi, aij ∈ R, ci := ∑
s
j=1 aij, i, j = 1, . . . , s, s ∈ N, the discrete evolution Ψ

s,t of an

s-stage Runge-Kutta single step method (RK-SSM) for the ODE u̇ = f(t, u), is defined by

ki := f(t + ciτ, u + τ
s

∑
j=1

aijkj) , i = 1, . . . , s , Ψ
t,t+τu := u + τ

s

∑
i=1

biki .

The ki ∈ V0 are called increments.

We have also seen that the coefficients aij ∈ R and bl ∈ R are usually given in the form of a Butcher

scheme

c A

bT =̂

c1 a11 a12 . . . . . . a1s

c2 a21
. . . a2s

...
...

. . .
...

...
...

. . .
...

cs as1 . . . ass

b1 b2 . . . . . . bs

, c, b ∈ Rs, A ∈ Rs,s , (7.3.3.3)
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here for a general Runge-Kutta method.

Next recall from Def. 6.4.0.9 that explicit s-stage Runge-Kutta single step methods are distinguished by

the fact that

the coefficients aij vanish for j ≥ i, 1 ≤ i, j ≤ s.

This means, that for explicit RK-SSM the coefficient matrix A in the Butcher scheme is strictly lower

triangular. Butcher schemes for explicit RK-SSMs look like

c A

bT =̂

0 0 . . . . . . 0

c2 a21
. . .

...
...

...
. . .

. . .
...

...
...

. . .
. . .

...

cs as1 . . . as,s−1 0
b1 b2 . . . . . . bs

, c, b ∈ Rs, A ∈ Rs,s ,

Obviously, in this case the increments ki can be computed in turns (without solving a non-linear system

of equations): For the abstract autonomous ODE ẏ = f(y) an explicit s-stage Runge-Kutta single step

method reads (for uniform timestep size τ > 0)

k1 = f(y(k)) ,

k2 = f(y(k) + τa21k1) ,

...

ks = f(y(k) + τas1k1 + · · ·+ τas,s−1ks−1) ,

, y(k+1) := y(k) + τ
s

∑
l=1

blkl . (11.4.1.3)

Returning to (11.3.2.7) we now consider an initial value problem for an abstract semi-discrete evolution in

RZ:

d~µ

dt
(t) = Lh(~µ(t)) , 0 ≤ t ≤ T , ~µ(0) = ~µ0 ∈ RZ . (11.4.1.4)

Here Lh : RZ 7→ RZ is a (non-linear) finite-difference operator. For instance, for a finite volume

semi-discretization in conservation form with 2-point numerical flux is reads

(11.3.2.8) ➣ (Lh~µ)j := −1

h

(
F(µj, µj+1)− F(µj−1, µj)

)
. (11.4.1.5)

Note that for conservative finite volume discretizations Lh is local : (Lh(~µ))j depends only on “neighbor-

ing values” µj−ml
, . . . , µj+mr

:

(Lh~µ)j = Lj(µj−ml
, . . . , µj+mr

) , j ∈ Z , (11.4.1.6)

with suitable functions Lj : R1+ml+mr → R.

From (11.4.1.3) we deduce the formulas for a single step of an explicit s-stage Runge-Kutta single step
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method applied to (11.4.1.4) with timestep τ > 0:

~κ1 = Lh(~µ
(k)) ,

~κ2 = Lh(~µ
(k) + τa21~κ1) ,

~κ3 = Lh(~µ
(k) + τa31~κ1 + τa32~κ2) ,

...

~κs = Lh(~µ
(k) + τ

s−1

∑
j=1

asj~κj) ,

~µ(k+1) = ~µ(k) + τ
s

∑
l=1

bl~κj .

(11.4.1.7)

All increments~κi, i = 1, . . . , s, belong to the state space RZ.

The formulas (11.4.1.7) are “explicit” in the sense that timestepping just relies on more evaluations of the

operator Lh. This greatly facilitates implementation, because, as remarked already, Lh will, in general,

be a non-linear and even non-smooth mapping. Thus it might be very difficult and expensive to solve a

system of non-linear equations involving Lh. y

§11.4.1.8 (Fully discrete evolution) The application of a timestepping scheme converts (11.4.1.4) into a

family of equations for functions on an infinite space-time grid. We give a formal description:

Fig. 550

t1

t2

t3

t4

t5

x1 x2 x3 x4 x5 x6 x7
0 x

t
Setting: equidistant spatial mesh M, meshwidth

h > 0, nodes xj := hj, j ∈ Z,

uniform timestep τ > 0, tk := τk, k ∈ N0.

Single step timestepping for (11.4.1.4) produces a

sequence

(
~µ(k)

)
k∈N0

µ
(k)
j ≈ u(xj, tk) , j ∈ Z, k ∈ N0 .

Fully discrete evolution

~µ(k+1) = Hh(~µ
(k)) , k ∈ N0 .

Hh : RZ 7→ RZ: denotes the fully discrete evolution operator, arising from applying the single step

timestepping (11.4.1.7) to (11.4.1.4).
y

EXAMPLE 11.4.1.9 (Fully discrete evolutions arising from conservative discretizations) We examine

simple fully discrete evolutions Hh arising from finite volume semi-discretization in conservation form with

2-point numerical flux F = F(v, w), that is, from timestepping for a semi-discrete evolution with finite-

difference operator

(11.3.2.8) ➣ (Lh~µ)j := −1

h

(
F(µj, µj+1)− F(µj−1, µj)

)
, ~µ ∈ RZ, j ∈ Z . (11.4.1.5)

Using explicit Euler timestepping (=̂ 1-stage explicit RK-method) we get

~µ(k+1) = ~µ(k) + τLh(~µ
(k)) .
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(Hh(~µ))j = µj −
τ

h

(
F(µj, µj+1)− F(µj−1, µj)

)
. (11.4.1.10)

In the case of explicit trapezoidal rule timestepping Eq. (6.4.0.6) (2-stage RK-SSM, method of Heun)

~κ = µ(k) + τLh(~µ
(k)) , ~µ(k+1) = µ(k) +

τ

2

(
Lh(µ

(k)) +Lh(~κ)
)

.




κj := (~κ)j = µj −
τ

h

(
F(µj, µj+1)− F(µj−1, µj)

)
,

(Hh(~µ))j = µj −
τ

2h

(
F(κj, κj+1)− F(κj−1, κj) + F(µj, µj+1)− F(µj−1, µj)

)
.

(11.4.1.11)

For the explicit midpoint rule, another 2-stage RK-SSM, we get the recursion

~κ = µ(k) +
τ

2
Lh(~µ

(k)) , ~µ(k+1) = µ(k) + τLh(~κ) .




κj := (~κ)j = µj −
τ

2h

(
F(µj, µj+1)− F(µj−1, µj

)
,

(Hh(~µ))j = µj −
τ

h

(
F(κj, κj+1)− F(κj−1, κj)

)
.

(11.4.1.12)

y

11.4.2 CFL-Condition

As we have seen in Section 9.2.3 and Section 9.3.5, the use of explicit timestepping in the context of a

method-of-lines approach to an initial boundary value problem for a PDE often faces a mesh-dependent

timestep constraint in order to avoid catastrophic blow-up. This will also be the case for the conservative

finite volume discretization of conservation laws.

§11.4.2.1 (Difference stencils) We have already observed in (11.4.1.6) that the operators Lh process

cell averages µj locally. This allows a catchy representation of the structure of fully discrete evolutions.

We employ a stencil notation in order to visualize theflow of information in fully discrete explicit evolutions

(action of Hh), cf. Fig. 410.

Fig. 551 xj−2 xj−1 xj xj+1 xj+2 x

t

tk−1

tk

2-point numerical flux &

explicit Euler timestepping

Fig. 552 xj−2 xj−1 xj xj+1 xj+2 x

t

tk−1

tk

upwinding &

explicit trapezoidal rule

Fig. 553 xj−2 xj−1 xj xj+1 xj+2 x

t

tk−1

tk

2-point numerical flux &

explicit trapezoidal rule

The arrows indicate which values µ
(k−1)
i contribute in the computation of µ

(k)
j . y

§11.4.2.2 (Common properties of conservative fully discrete evolutions) A consequence of the lo-

cality of Lh combined with explicit timestepping is the locality of fully discrete evolution operator:

∃ml, mr ∈ N0: (H(~µ))j = Hj(µj−ml
, . . . , µj+mr

) . (11.4.2.3)

If the flux function f does not depend on x, f = f (u) as in (11.2.2.1), we can expect that

Hh is translation-invariant: Hj = H ∀j ∈ Z .
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This is the case for (11.4.1.10) and (11.4.1.11).

By inspection of (11.4.1.7) we realize that, if Lh is translation-invariant

(Lh(~µ))j = L(µj−nl
, . . . µj+nr

) , j ∈ Z ,

for a single function L : Rnl+nr+1 → R, nl, nr ∈ N, and timestepping relies on an s-stage explicit Runge-

Kutta method, then we conclude for ml, mr in (11.4.2.3)

ml ≤ s · nl , mr ≤ s · nr .

This gives us bounds for the width of the stencil of H. y

§11.4.2.4 (Domains of dependence) Now we revisit a concept from Section 9.3.5, see, in particular,

Rem. 9.3.5.7:

Definition 11.4.2.5. Numerical domain of dependence

Consider explicit translation-invariant fully discrete evolution~µ(k+1) := H(~µ(k)) on uniform spatio-

temporal mesh (xj = hj, j ∈ Z, tk = kτ, k ∈ N0) with

∃m ∈ N0: (H(~µ))j = H(µj−m, . . . , µj+m) , j ∈ Z . (11.4.2.6)

Then the numerical domain of dependence is given by

D−h (xj, tk) := {(xn, tl) ∈ R× [0, tk]: j−m(k− l) ≤ n ≤ j + m(k− l)} .

From Thm. 11.2.7.3 recall the maximal analytical domain of dependence for a solution of (11.2.2.1) is

D−(x, t) := {(x, t) ∈ R× [0, t]: ṡmin(t− t) ≤ x− x ≤ ṡmax(t− t)} . (11.4.2.7)

with maximal speeds of propagation in either direction

ṡmin := min{ f ′(ξ) : inf
x∈R

u0(x) ≤ ξ ≤ sup
x∈R

u0(x)} , (11.4.2.8)

ṡmax := max{ f ′(ξ) : inf
x∈R

u0(x) ≤ ξ ≤ sup
x∈R

u0(x)} . (11.4.2.9)

A domain of dependence with ṡ := ṡmin = ṡmax is sketched below in Fig. 555.

Fig. 554 x

ṡ

1

t

(x̄, t̄)

D−(x̄, t̄)

D−(x̄, t̄) ⊂ R× [0, T]

Fig. 555

t

x

(x̄, t̄)

D−h (x̄, t̄) for 3-point stencil
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The right figure highlights the numerical domain of dependence on a uniform space-time grid for m = 1,

that is the case of a 3-point stencil as depicted in Fig. 552. y

§11.4.2.10 (CFL-condition)

Definition 11.4.2.11. Courant-Friedrichs-Lewy (CFL-)condition → Rem. 9.3.5.7

An explicit translation-invariant local fully discrete evolution ~µ(k+1) := H(~µ(k)) on uniform spatio-

temporal mesh (xj = hj, j ∈ Z, tk = kτ, k ∈ N0) as in Def. 11.4.2.5 satisfies the Courant-

Friedrichs-Lewy (CFL-)condition, if the convex hull of its numerical domain of dependence contains

the maximal analytical domain of dependence:

D−(xj, tk) ⊂ convex(D−h (xj, tk)) ∀j, k .

By the definition (11.4.2.7) of D−(x, t) and D−h (xj, tk) from Def. 11.4.2.5 a sufficient condition for the

CFL-condition to be satisfied is

τ

h
≤ m

max{|ṡmin|, |ṡmax|}
←→ a timestep constraint ! . (11.4.2.12)

This is a timestep constraint similar to the one encountered in Section 9.3.5 in the context of leapfrog

timestepping for the semi-discrete wave equation.

Remember Rem. 9.2.8.10, page 622: stability induced timestep constraints can lead to an inefficient

discretization. Also in the case of the “ODE” (11.3.2.7) implicit timestepping can circumvent the CFL-

condition. Yet, at the price of having to solve non-linear systems of equations, which may be prohibitive

and makes people gladly put up with the moderate timestep constraint (11.4.2.12).

As discussed in Rem. 9.3.5.7,

we cannot expect convergence for fixed ratio τ : h, for h→ 0 in case the CFL-condition is violated.

Refer to Fig. 557 for a “graphical argument”:

Fig. 556

t

x

(xj, tk)

h

τ

u0

(• =̂ coarse grid, ■ =̂ fine grid, =̂ d.o.d)

✁ Sequence of equidistant space-time grids of R ×
[0, T] with τ = γh (τ/h = meshwidth in time/space)

If γ > CFL-constraint (11.4.2.12) then

analytical domain

of dependence
6⊂ numerical domain

of dependence

Heuristic reasoning: Initial data u0 supported outside the numerical domain of dependence can influence

the exact solution in the point (xj, tk), which is contained in all spatio-temporal grids of the sequence.

However, µ
(k)
j will never be influenced by initial data inside the support of u0. Hence, there can be cases,

when µ
(k)
j 6→ u(xj, tk) though h, τ → 0. y

Review question(s) 11.4.2.13 (Fully discrete evolutions and CFL-condition)
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For the following review questions you may need the definition of a Runge-Kutta single-step method (RK-

SSM) and their encoding through Butcher schemes.

Definition 7.3.3.1. General Runge-Kutta single-step method

For coefficients bi, aij ∈ R, ci := ∑
s
j=1 aij, i, j = 1, . . . , s, s ∈ N, the discrete evolution Ψ

s,t of an

s-stage Runge-Kutta single step method (RK-SSM) for the ODE u̇ = f(t, u), is defined by

ki := f(t + ciτ, u + τ
s

∑
j=1

aijkj) , i = 1, . . . , s , Ψ
t,t+τu := u + τ

s

∑
i=1

biki .

The ki ∈ V0 are called increments.

c A

bT =̂

c1 a11 a12 . . . . . . a1s

c2 a21
. . . a2s

...
...

. . .
...

cs as1 . . . ass

b1 b2 . . . . . . bs

, c, b ∈ Rs, A ∈ Rs,s . (7.3.3.3)

(Q11.4.2.13.A) We consider an abstract semi-discrete evolution in RZ:

d~µ

dt
(t) = Lh(~µ(t)) , Lh : RZ 7→ RZ .

We perform timestepping based on an s-stage RK-SSM described by the following butcher scheme:

c A

bT =̂

0 0 . . . . . . 0

c2 a21
. . .

...
... 0

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

cs 0 . . . . . . 0 as,s−1 0
b1 b2 . . . . . . bs

, c, b ∈ Rs, A ∈ Rs,s .

Elaborate the fully discrete evolution equations.

(Q11.4.2.13.B) [Multi-step timestepping] The 2-step Adams-Bashforth multi-step method with uni-

form timestep τ > 0 applied to the ODE u̇ = F(t, u) generates a sequence of approximate states

u(j) ≈ u(tj), tj := t0 + τ j, by the 3-term recursion

u(j+1) = u(j) + τ
(

3
2 f(tj, u(j))− 1

2 f(tj−1, u(j−1))
)

. (11.4.2.14)

Give the stencil of the fully discrete evolution when this timestepping scheme is used for the FV-MOL-

ODE

dµj

dt
(t) = −1

h

(
F(µj(t), µj+1(t))− F(µj−1(t), µj(t))

)
, j ∈ Z , (11.3.2.8)

on a uniform space-time grid and with some numerical flux function F : R×R → R.
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(Q11.4.2.13.C) We consider a Cauchy problem for 1D linear advection with v > 0

∂u

∂t
+

∂

∂x
(vu) = 0 in Ω̃ = R×]0, T[ , u(x, 0) = u0(x) ∀x ∈ R . (11.1.1.11)

For spatial discretization we use a conservative finite volume method with Lax-Friedrichs/Rusanov nu-

merical flux. For timestepping we employ

1. the explicit Euler single-step method,

2. the implicit Euler single-step method.

In both cases derive the equations for the resulting fully discrete evolutions on a uniform space-time grid

with spatial mesh width h > 0 and timestep τ > 0.

For both choices characterize the numerical domain of dependence for v = 1.

Hint. The (local) Lax-Friedrichs/Rusanov numerical flux function for the scalar conservation law
∂u
∂t +

∂
∂x f (u) = 0 is

FLF(v, w) = 1
2( f (v) + f (w))− 1

2(w− v) · max
min{v,w}≤u≤max{v,w}

| f ′(u)| . (11.3.4.16)

(Q11.4.2.13.D) Give reasons why explicit timestepping methods are preferred for the semi-discrete evo-

lution problems arising from conservative spatial finite-volume discretization of 1D scalar conservations

laws.

(Q11.4.2.13.E) We consider the fully discrete evolution for solving a Cauchy problem for a 1D scalar

conservation law based on

(i) a conservative finite-volumne spatial discretization with 2-point numerical flux,

(ii) an s-stage explicit Runge-Kutta single step method described by the Butcher scheme

c A

bT =̂

0 0 . . . . . . 0

c2 a21
. . .

...
...

...
. . .

. . .
...

...
...

. . .
. . .

...

cs as1 . . . as,s−1 0
b1 b2 . . . . . . bs

, c, b ∈ Rs, A ∈ Rs,s .

We obtain a solution~µ(k) ∈ RZ, k ∈ N0.

Assume that the initial data u0 : R → R are constant outside a bounded interval. Which conditions on

the RK-SSM ensure the discrete conservation property

∑
j∈Z

µ
(k)
j = ∑

j∈Z

µ
(0)
j ∀k ∈ N0 , µ

(k)
j :=

(
~µ(k)

)
j

?

△

11.4.3 Linear Stability Analysis

In Section 9.2.7.2 (parabolic evolutions) and Section 9.3.5 (linear wave equations) we found that for the

method of lines combined with explicit timestepping
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timestep constraints τ ≤ O(hr) , r ∈ {1, 2}, necessary to avoid exponential blow-up (instability )

Is the timestep constraint (11.4.2.12) suggested by the CFL-condition also stipulated by stability require-

ments?

§11.4.3.1 (Focus on linear advection) We are going to investigate the question only for the Cauchy

problem for scalar linear advection in 1D with constant velocity v > 0:

∂u

∂t
+ v

∂u

∂x
= 0 in R×]0, T[ , u(x, 0) = u0(x) ∀x ∈ R . (11.1.1.11)

Method of lines approach: Semi-discretization in space on equidistant mesh with meshwidth h > 0 leads

to a

➣ linear, local, and translation-invariant semi-discrete evolution

d~µ

dt
(t) = Lh(~µ(t)) , with (Lh(~µ))j =

m

∑
l=−m

clµj+l , j ∈ Z , (11.4.3.2)

for suitable weights cl ∈ R. This is also called a stencil formula, cf. § 11.4.2.1, m is the width of the

stencil.

Explanation of terminology:

• linear : The finite difference operator Lh : RZ 7→ RZ is linear.

• local : (Lh(~µ))j depends only on a few coefficients µj+l for small |l|, cf. page 786.

• translation-invariant : if ηj := µj+1, then (Lh(~η))j = (Lh(~µ))j+1 (the finite difference operator

commutes with shifts of the coefficient vector, cf. page 786).

y

EXAMPLE 11.4.3.3 (Upwind difference operator for linear advection) Finite volume semi-

discretization of (11.1.1.11) in conservation form with Godunov numerical flux (11.3.4.33) (, which agrees

with the upwind flux (11.3.4.19) in this case)

(Lh(~µ))j = −
v

h
(µj − µj−1) . (11.4.3.4)

Coefficients in (11.4.3.2): c0 = − v
h , c−1 = v

h .

Note: In this case the (loca) Lax-Friedrichs/Rusanov numerical flux (11.3.4.16) yields the same Lh. y

As in Section 9.2.7.2 and Section 9.3.5 we employ a diagonalization technique (with a new twist). The

policy was to expand the vector of unknowns of the semi-discrete evolution into eigenvectors of the “right-

hand-side operator” of the method-of-lines ODE.

Now the new twist is that Lh acts on the sequence space RZ!

Idea: trial expression for “eigenvectors” (in CZ)

“complex waves”

(
~ψξ

)
j

:= exp(ıξ j) , j ∈ Z , −π < ξ ≤ π . (11.4.3.5)

11. Numerical Methods for Conservation Laws, 11.4. Timestepping for Finite-Volume Methods 753



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

We have obtained infinite set of eigenvectors, matching dim CZ = ∞! This set is also complete.

Remark 11.4.3.6 (Diagonalization in C) Why do we have to consider complex-valued eigenvectors? Well,

remember from linear algebra that purely real matrices may have complex eigenvalues. Here, purely real

finite difference operators have a complex spectrum! y

By straightforward computations, using exp(x + y) = exp(x) exp(y), we verify the eigenvector property

and compute the corresponding eigenvalues:

(Lh(~µ))j =
m

∑
l=−m

clµj+l ⇒ Lhψξ =
( m

∑
l=−m

cl exp(iξl)

︸ ︷︷ ︸
“eigenvalue” ĉh(ξ)

)
ψξ .

spectrum of Lh: σ(Lh) = {ĉh(ξ) :=
m

∑
l=−m

cl exp(ıξl): − π < ξ ≤ π} . (11.4.3.7)

Terminology: The function ĉh(ξ) is known as the symbol of the difference operator Lh, cf. the concept

of symbol of a differential operator.

Remark 11.4.3.8 (Eigenvectors of translation invariant linear operators) In [NCSE] periodic linear

time-invariant filters are introduced as linear operators on the space of n-periodic sequences that commute

with translation, see [NCSE]. They are described by circulant matrices, see [NCSE]. The linear difference

operator Lh from (11.4.3.2) generalizes this concept, because it still features translation invariance, but

acts on infinite sequencies. In fact, Lh can be represented by means of an infinite banded circulant matrix

with respect to the “unit vector basis” of the space of sequences RZ

Lh ∼




. . .
. . .

. . .
. . . 0

. . . c0 . . . cm 0
0 c−m . . . c0 . . . cm 0

0 c−m . . . c0 . . . cm 0
. . .

. . .
. . .




.

According to [NCSE] the columns of the Fourier matrix [NCSE], the vectors (exp(2π jk
n ))n−1

j=0 ∈ Cn, k =

0, . . . , n− 1, provide the eigenvectors of any circulant matrix ∈ Cn. The generalization of these “Fourier

harmonics” to RZ are the complex waves defined in (11.4.3.5). Therefore we can expect them to furnish

eigenvectors for Lh. y

EXAMPLE 11.4.3.9 (Spectrum of upwind difference operator) Apply formula (11.4.3.7) with c0 = − v
h ,

c−1 = v
h (from (11.4.3.4)):

For Lh from (11.4.3.4): σ(Lh) =
{v

h
(exp(−ıξ)− 1): − π < ξ ≤ π

}
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Spectrum of upwind finite difference operator for lin-

ear advection with velocity v > 0 (meshwidth h > 0)

as a subset of C ✄

Fig. 557

C

v
h

− v
h

σ(Lh)

y

§11.4.3.10 (Diagonalization of semi-discrete evolution) The eigenvalue ĉh(ξ) will govern the evolution

when we choose ~ψξ as initial value:

Lh~ψξ = ĉ(ξ)~ψξ ,

d~µ

dt
(t) = Lh(~µ(t)) ,

~µ(0) = ~ψξ

⇒ ~µ(t) = exp(ĉ(ξ)t)~ξξ , (11.4.3.11)

as can be seen by simply differentiation.

In § 9.2.7.15 the principal idea was an expansion of the time-dependent vector of unknown coefficients

as a finite linear combination of eigenvector of the spatially discrete evolution operator. However, now we

have to deal with uncountably many “eigenvectors” ~ψξ ,−π < ξ ≤ π, so that linear combination becomes

integration over [−π, π]:

~µ(t) =

π∫

−π

µ̂(t, ξ)~ψξ dξ ⇔ µj(t) =

π∫

−π

µ̂(t, ξ) exp(ıξ j)dξ . (11.4.3.12)

d~µ

dt
(t) = Lh(~µ(t)) ⇒

∂µ̂

∂t
(t, ξ) = ĉh(ξ)µ̂(t, ξ) . (11.4.3.13)

This is a family of decoupled scalar, linear ODEs parameterized by ξ ∈]− π, π]. y

Remark 11.4.3.14 (Fourier series → [NCSE]) Up to normalization the relationship

~µ(0) ∈ RZ ↔ µ̂(0) :]− π, π] 7→ C

from (11.4.3.12) is the Fourier series transform, which maps a sequence to a 2π-periodic function. It has

the important isometry property

∞

∑
j=−∞

|µj|2 = 2π

π∫

−π

|µ̂(ξ)|2 dξ .

➣ The symbol ĉh can be viewed as the representation of a difference operator in Fourier domain. y

The decoupling manifest in (11.4.3.13) carries over to Runge-Kutta timestepping in the sense of the com-

muting diagram (9.2.7.41). If Ψ
τ is the discrete evolution operator (→ Def. 9.2.6.2) induced by an s-stage
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Runge-Kutta single step method according to Def. 7.3.3.1 with timestep τ > 0 for the ODE ~̇µ = Lh(~µ),
Lh from (11.4.3.2), then straightforward computations yield

Ψ
τ~ψξ = Ψτ

ξ ĉ(ξ)~ξξ , (11.4.3.15)

where Ψτ
ξ ∈ C is the (multiplication) discrete evolution operator describing the application of the same

RK-SSM to the scalar ODE µ̇ = ĉ(ξ)µ.

To put these considerations into the diagonalization framework, we introduce the Fourier transforms of the

members of the sequence

(
~µ(k)

)
k

created by Runge-Kutta timestepping

~µ(k) =

π∫

−π

µ̂(k)(ξ)~ψξ dξ ⇔ µ
(k)
j =

π∫

−π

µ̂(k)(ξ) exp(ıξ j)dξ . (11.4.3.16)

Then from (11.4.3.15), formally appealing to the linearity of Lh, we conclude that

~µ(k+1) = Ψ
τ~µ(k) =

π∫

−π

µ̂(k)(ξ)Ψτ~ψξ dξ =

π∫

−π

µ̂(k)Ψτ
ξ
~ψξ dξ . (11.4.3.17)

Hence, ξ 7→ µ̂(k)(ξ)Ψτ
ξ has been identified as the Fourier transform of~µ(k+1)

and we find

µ̂(k) =
(

Ψτ
ξ

)k
µ̂(0) , k ∈ N . (11.4.3.18)

EXAMPLE 11.4.3.19 (Explicit Euler in Fourier domain) Let us apply the above formulas to explicit Euler

timestepping (6.2.1.4) for semi-discrete evolution (11.4.3.2), see also (11.4.1.10),

~µ(k+1) = ~µ(k) + τLh~µ
(k) .

π∫

−π

µ̂(k+1)(ξ)~ψξ dξ = (Id+ τLh)

π∫

−π

µ̂(k)(ξ)~ψξ dξ =

π∫

−π

µ̂(k)(ξ)(1 + τĉh(ξ)) dξ .

µ̂(k+1)(ξ) = µ̂(k)(ξ)(1 + τĉh(ξ)) .

In Fourier domain a single explicit Euler timestep corresponds to a multiplication of µ̂ :]− π, π] 7→ C with

the function (1 + τĉh) :]− π, π] 7→ C.

We get the same result when applying an explicit Euler step to the ODE
∂µ̂
∂t (t, ξ) = ĉh(ξ)µ̂(t, ξ) from

(11.4.3.13) with parameter ξ:

µ̂(k+1)(ξ) = (1 + τĉh(ξ))µ̂
(k)(ξ) .

y

We summarize the observation made in the previous example: For the sequence

(
~µ(k)

)
k∈N0

generated

by an RK-SSM for the linear MOL-ODE (11.4.3.2) holds

~µ(k) =

π∫

−π

µ̂(k)(ξ)~ψξ dξ ,
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where

(
µ̂(k)(ξ)

)
k∈N0

is the sequence of approximations created by the Runge-Kutta method when ap-

plied to the scalar linear initial value problem

ẏ = ĉ(ξ) y , y(0) = µ̂(0)(ξ) .

Clearly, timestepping can only be stable, if blowup |µ̂(k)(ξ)| → ∞ for k → ∞ can be avoided for

all −π < ξ ≤ π.

From Thm. 7.1.0.17 we know a rather explicit formula for the (complex) numbers Ψτ
ξ :

Theorem 11.4.3.20. Stability function of explicit Runge-Kutta methods

The execution of one step of size τ > 0 of an explicit s-stage Runge-Kutta single step method (→
Def. 7.3.3.1) with Butcher scheme

c A

bT (see (7.3.3.3)) for the scalar linear ODE ẏ = λy, λ ∈ C,

amounts to a multiplication with the number

Ψτ
λ = 1 + zbT(I− zA)−11︸ ︷︷ ︸

stability function S(z)

= det(I− zA+ z1bT) , z := λτ , 1 = (1, . . . , 1)T ∈ Rs .

EXAMPLE 11.4.3.21 (Stability functions of explicit RK-methods)

• Explicit Euler method (11.4.1.10) :
0 0

1
➣ S(z) = 1 + z .

• Explicit trapezoidal rule (11.4.1.11) :

0 0 0
1 1 0

1
2

1
2

➣ S(z) = 1 + z + 1
2 z2 .

• Classical RK4-method Ex. 6.4.0.15 :

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

2
6

2
6

1
6

➣ S(z) = 1 + z + 1
2 z2 + 1

6 z3 + 1
24 z4 .

y

Thm. 7.1.0.17 together with the combinatorial formula for the determinant means that Ψτ
λ(z) is a polyno-

mial of degree ≤ s in z ∈ C.

So we conclude for the evolution of the “Fourier transforms” µ̂(k)(ξ):

µ̂(k+1)(ξ) = S(τĉ(ξ)) · µ̂(k)(ξ) , k ∈ N0 , − π < ξ ≤ π ,
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where z 7→ S(z) is the stability function of the Runge-Kutta timestepping method, see Thm. 7.1.0.17.

For the explicit Euler method we recover the formula of Ex. 11.4.3.19.

Stability of RK-timestepping of linear semi-discrete evolution ⇐⇒ max
−π<ξ≤π

|S(τĉ(ξ))| ≤ 1

The linear stability analysis based on Fourier symbols of difference operators for Cauchy problems is often

referred to as von Neumann stability analysis.

Remark 11.4.3.22 (Stability domains) Terminology in the theory of Runge-Kutta single step methods

Def. 7.1.0.51:

Stability domain: {z ∈ C: |S(z)| ≤ 1} .

Stability domains:

Fig. 558 Re

Im
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explicit Euler method
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explicit trapezoidal rule

Fig. 560 Re
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Classical RK4-method

For explicit RK-SSM the stability function S(z) is a polynomial, see § 7.1.0.49. Therefore, their stability

domains will invariably be bounded sets in C.

Necessary stability condition for RK-SSM for linear evolutions in RZ:☛
✡

✟
✠{τĉ(ξ) , − π < ξ ≤ π} ⊂ stability domain of RK-SSM

y

EXAMPLE 11.4.3.23 (Stability and CFL condition) Consider: upwind spatial discretization (11.4.3.4)

& explicit Euler timestepping

➣ symbol of difference operator (→ Ex. 11.4.3.9): ĉh(ξ) =
v
h (exp(−ıξ)− 1),

stability function: S(z) = 1 + z.
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Locus of

Σ := S(τĉ(ξ)) , − π < ξ ≤ π ,

in the complex plane ✄

(Unit circle in green)

Fig. 561

C

τv
h

1− τv
h

Σ

1

|S(τĉ(ξ))| ≤ 1 ∀ − π < ξ ≤ π ⇐⇒ v
τ

h
≤ 1 .

= CFL-condition of Def. 11.4.2.11! Note that the maximal analytic region of dependence for constant

velocity v linear advection is merely a line with slope v in the x− t-plane, see Ex. 11.2.2.5.

Consider: upwind spatial discretization (11.4.3.4) & explicit trapezoidal rule: stability function S(z) =
1 + z + 1

2 z2

Plots for v = 1, τ = 1

Fig. 562
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Stability for Heun method & upwind finite differencing

|S(τĉ(ξ))| ≤ 1 ∀ − π < ξ ≤ π ⇐⇒ v
τ

h
≤ 1 .

= tighter timestep constraint than stipulated by mere CFL-condition (11.4.2.12). To see this note that the

explicit trapezoidal rule is a 2-stage Runge-Kutta method. Hence, the spatial stencil has width 2 in upwind

direction, see Fig. 553. y

Stability induced timestep constraint

For an explicit Runge-Kutta single-step method applied to a linear semi-discrete evolution (11.4.3.2)

the necessary stability condition max
−π≤ξ≤π

|S(τĉ(ξ))| ≤ 1 implies a timestep constraint.

Review question(s) 11.4.3.25 (Linear stability analysis of fully discrete evolutions)
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(Q11.4.3.25.A) Let Lh : RZ → RZ be a linear translation-invariant operator.

1. What does it mean that Lh is linear?

2. Give a definition of what is meant by “translation-invariant”.

3. What is the symbol of Lh?

(Q11.4.3.25.B) Conduct a von Neumann stability analysis for the linear evolution

µ̇j =
µj+1 − 2µj + µj−1

h2
, j ∈ Z , h > 0 , (11.4.3.26)

when

1. explicit Euler timestepping,

2. the explicit trapezoidal rule

with uniform timestep τ > 0 is used for discretization in time.

△

11.4.4 Convergence of Fully Discrete FV Method

In this section we examine the asymptotic convergence of fully discrete conservative finite volume methods

for scalar conservation laws as they have been introduced in Section 11.4.1. We restrict ourselves to

Cauchy problems and uniform space-time grids, and study the limit h→ 0 (h =̂ spatial meshwidth) and

τ → 0 (τ =̂ timestep). Our treatment focuses on numerical tests and some heuristic local considerations.

EXPERIMENT 11.4.4.1 (Convergence of fully discrete finite volume methods for Burgers equation)

This example presents a comprehensive empirical investigation of the convergence of simple finite volume

methods.

✦ Cauchy problem for Burgers equation (11.1.3.4)

∂u

∂t
+

∂

∂x
(1

2 u2) = 0 in R×]0, T[ , u(x, 0) = u0(x) , x ∈ R .

✦ smooth, non-smooth and discontinuous initial data, supported in [0, 1]:

u0(x) = 1− cos2(πx) , 0 ≤ x ≤ 1 , 0 elsewhere , (BUMP)

u0(x) = 1− 2 ∗ |x− 1
2 | , 0 ≤ x ≤ 1 , 0 elsewhere , (WEDGE)

u0(x) = 1 , 0 ≤ x ≤ 1 , 0 elsewhere . (BOX)

➣ maximum speed of propagation ṡ = 1.

Fig. 564
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✦ Spatial discretization on equidistant mesh with meshwidth h > 0 based on finite volume method in

conservation form with

➊ (local) Lax-Friedrichs numerical flux (11.3.4.16),

➋ Godunov numerical flux (11.3.4.33).

✦ Initial values~µ(0)
obtained from dual cell averages.

✦ Explicit Runge-Kutta (order 4) timestepping with uniform timestep τ > 0.

✦ Fixed ratio: τ : h = 1 (➣ CFL-condition satisfied)

✦ Monitored: error norms (log-log plots)

err1(h) := max
k>0

h ∑
j

|µ(k)
j − u(xj, tk)| ≈ max

k>0

∥∥∥u
(k)
h − u(·, tk)

∥∥∥
L1(R)

, (11.4.4.2)

err∞(h) := max
k>0

max
j∈Z
|µ(k)

j − u(xj, tk)| ≈ max
k>0

∥∥∥u
(k)
h − u(·, tk)

∥∥∥
L∞(R)

. (11.4.4.3)

for different final times T = 0.3, 4, h ∈ { 1
20 , 1

40 , 1
80 , 1

160 , 1
320 , 1

640 , 1
1280}.

Fig. 567
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“Exact solution”: Initial data (BUMP)

These “exact solutions’ were computed with a MUSCL scheme (→ Section 11.5.3) on an equidistant mesh

with h = 10−4

Note: for bump initial data (BUMP) we can still expect u(·, 0.3) to be smoot, because characteristics will

not intersect before that time, cf. (11.2.2.7) and § 11.2.2.8.

Why do we study the particular error norms (11.4.4.2) and (11.4.4.3)?

From Thm. 11.2.7.1 and Thm. 11.2.7.3 we know that the evolution for a scalar conservation law in 1D

enjoys stability on the norms ‖·‖L1(R) and ‖·‖L∞(R). Hence, these norms are the natural norms for mea-

suring discretization errors, cf. the use of the energy norm for measuring the finite element discretization

error for 2nd order elliptic BVP.

T = 0.3, error err1
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T = 0.3: error err∞
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Error obtained by comparison with numerical “reference solution” obtained on a very fine spatio-temporal

grid.

Oberservations: for either numerical flux function

✦ (near) first order algebraic convergence (→ Def. 3.2.2.1) w.r.t. mesh width h in err1,

✦ algebraic convergence w.r.t. mesh width h in err∞ before the solution develops discontinuities

(shocks),

✦ no covergence in norm err∞ after shock formation.

y

Observed throughout in numerical experiments:

The best we get is merely first order algebraic convergence: O(h) for h→ 0

§11.4.4.4 (Order of consistency of numerical fluxes) Now we give a heuristic explanation for this low

order of convergence:
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Let u = u(x, t) be a smooth entropy solution of the Cauchy problem

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ , u(x, 0) = u0(x) , x ∈ R . (11.2.2.1)

We study the so-called local consistency error of the numerical flux F = F(v, w)

(~τF(t))j = F(u(xj, t), u(xj+1, t))− f (u(xj+1/2, t)) , j ∈ Z , (11.4.4.5)

which measures the deviation of the approximate flux and the true flux, when the approximate solution

agreed with the exact solution at the nodes of the mesh. Specifically, we are interested in the behavior of

(~τF(t))j as for meshwidth h → 0, where an equidistant spatial mesh is assumed. We make use of the

following terminology:

max
j∈Z

(~τF(t))j = O(hq) for h→ 0 ↔ numerical flux is consistent of order q ∈ N . (11.4.4.6)

Heuristic reasoning: The order of consistency of the numerical flux function limits the (algebraic) order

of convergence of (semi-discrete and fully discrete) finite volume schemes.
y

EXAMPLE 11.4.4.7 (Consistency error of upwind numerical flux) We make the assumption that the

flux function is f continuously differentiable, u0 ≥ 0 and f ′(u) ≥ 0 for all u ≥ 0. This rules out transsonic

rarefactions, that is, rarefaction fans with edges moving in opposite directions, see Fig. 541.

In this case the upwind numerical flux (11.3.4.19) agrees with the Godunov flux (11.3.4.33), see

Rem. 11.3.4.34 and we have

Fuw(u(xj, t), u(xj+1, t)) = f (u(xj), t) , j ∈ Z . (11.4.4.8)

By successive Taylor expansion of f and u we obtain

(~τFuw(t))j = f (u(xj, t))− f (u(xj+1/2, t))

= f ′(u(xj+1/2, t))(u(xj, t)− u(xj+1/2, t)) + O(|u(xj, t)− u(xj+1/2, t)|2)

= − f ′(u(xj+1/2, t))
∂u

∂x
(xj+1/2, t)1

2 h + O(h2) for h→ 0 ,

This means that the upwind/Godunov numerical flux is (only) first order consistent . y

EXAMPLE 11.4.4.9 (Consistency error of Lax-Friedrichs/Rusanov numerical flux) Again ,we

assume a smooth flux function f and sufficiently smooth solutions u of the Cauchy prob-

lem. From Section 11.3.4.2 we recall the definition of the (local) Lax-Friedrichs numerical flux

FLF(v, w) = 1
2( f (v) + f (w))− 1

2 max
min{v,w}≤u≤max{v,w}

| f ′(u)|(w− v) , (11.3.4.16)

which is composed of the central flux and a diffusive flux.

We examine the consistency error for both parts separately, using Taylor expansion:

➊ central flux:

1
2( f (u(xj, t)) + f (u(xj+1, t)))− f (u(xj+1/2, t))

= 1
2 f ′(u(xj+1/2, t))(u(xj, t)− u(xj+1/2, t) + u(xj+1, t)− u(xj+1/2, t)) + O(h2)

= 1
2 f ′(u(xj+1/2, t))

(∂u

∂x
(xj+1/2, t)(− 1

2 h + 1
2 h) + O(h2)

)
+ O(h2)

= O(h2) for h→ 0 .

(11.4.4.10)
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➣ The central flux is second order consistent .

However, due to instability the central flux on its own is useless, see Section 11.3.4.1.

➋ diffusive flux part:

u(xj+1, t)− u(xj, t) =
∂u

∂x
(xj+1/2, t)h + O(h2) for h→ 0 .

FLF(u(xj, t), u(xj+1, t))− f (u(xj+1/2, t)) = O(h) for h→ 0 ,

that is the Lax-Friedrichs/Rusanov numerical flux is only first order consistent, because the consistency

error is dominated by the diffusive flux, which is necessary for the sake of stability. y

The observations made in the above examples are linked to a general fact:

Order barrier for monotone numerical fluxes

Monotone numerical fluxes (→ Def. 11.3.5.5) are at most first order consistent.

Review question(s) 11.4.4.12 (Convergence of fully discrete FV methods)

(Q11.4.4.12.A) [Relevant empiric error norms] When conducting convergence studies of conservative

finite volume methods for Cauchy problems for scalar conservations laws on uniform space-time grids

(spatial mesh width h > 0, timestep size τ > 0) one usually examines the errors

err1(h) := max
k>0

h ∑
j

|µ(k)
j − u(xj, tk)| ≈ max

k>0

∥∥∥u
(k)
h − u(·, tk)

∥∥∥
L1(R)

,

err∞(h) := max
k>0

max
j∈Z
|µ(k)

j − u(xj, tk)| ≈ max
k>0

∥∥∥u
(k)
h − u(·, tk)

∥∥∥
L∞(R)

.

1. In these formulas, what do µ
(k)
j , tk, uh, and u stand for?

2. Why are the above error expressions considered relevant for scalar conservation laws?

(Q11.4.4.12.B) [Local consistency error] The local consistency error of a 2-point numerical flux

F = F(v, w) associated with the flux function f : R → R is defined as

(~τF(t))j = F(u(xj, t), u(xj+1, t))− f (u(xj+1/2, t)) , j ∈ Z , (11.4.4.5)

What is the consistency order of F, how is it computed, and what assumption limits its predictive power

for the actual convergence of a conservative finite-volume method for a Cauchy problem for a scalar

conservation law?

△

11.5 Higher-Order Conservative Finite-Volume Schemes

All the finite-volume schemes that we have seen so far are of first order, that is, at best they achieve asymp-

totic algebraic convergence O(h + τ) for h, τ → 0. From earlier considerations we know that method of
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higher order are desirable from the perspective of efficiency. This section pursues idea that will lead to

finite-volume method that often enjoy faster asymptotic algebraic convergence.

Formally, high-order conservative finite volume methods are distinguished by numerical flux functions that

are consistent of order ≥ 2, see (11.4.4.6).

However, solutions of (systems of) conservation laws will usually not even be continuous (because of

shocks emerging even in the case of smooth u0, see (11.2.2.8)), let alone smooth, so that the formal

order of consistency may not have any bearing for the (rate of) convergence observed for the method for

a concrete Cauchy problem.

Therefore in the field of numerics of conservation laws “high-order” is desired not so much for the promise

of higher rates of convergence, but for the following advantages:

✦ for the same spatial resolution. high-order methods frequently provide more accurate solutions in

the sense of global error norms as first-order methods,

✦ high-order methods often provide better resolution of local features of the solution (shocks, etc.).

In standard semi-discrete finite volume schemes in conservation form for 2-point numerical flux function

F = F(v, w),

dµj

dt
(t) = −1

h

(
F(µj(t), µj+1(t))− F(µj−1(t), µj(t))

)
, j ∈ Z , (11.3.2.8)

the numerical flux function is evaluated for the cell averages µj, which can be read as approximate values

of a projection of the exact solution onto piecewise constant functions (on dual cells)

µj(t) ≈
1

h

xj+1/2∫

xj−1/2

u(x, t)dx . (11.3.2.2)

By Taylor expansion we find for u(·, t) ∈ C1(R)

u(xj+1/2, t)− 1

h

xj+1/2∫

xj−1/2

u(x, t)dx = O(h) for h→ 0 ,

and, unless some lucky cancellation occurs as in the

case of the central flux, see Ex. 11.4.4.9, this does

not allow more than first order consistency.
Fig. 578 xj− 1

2
xj+ 1

2

x

u

µj

h

O(h)

O(h)

11.5.1 Piecewise Linear Reconstruction

How to upgrade (11.3.2.8) without destroying the conservative structure?

Idea: Plug “better” approximations of u(xj±1/2, t) into numerical flux function in

(11.3.2.8)

dµj

dt
(t) = −1

h

(
F(ν+j (t), ν−j+1(t))− F(ν+j−1(t), ν−j (t))

)
, j ∈ Z , (11.5.1.1)

where ν±j are obtained by piecewise linear reconstruction from the (dual) cell

values µj.
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The values ν−j and ν+j are those of a function that is

piecewise linear on the dual cells, but discontinuous,

plotted as — in Fig. 580.

ν−j (t) := µj(t)− 1
2 hσj(t) ,

ν+j (t) := µj(t) +
1
2 hσj(t) ,

j ∈ Z , (11.5.1.2)

with suitable slopes σj(t) = σ(~µ(t)).
Fig. 579

xjxj−1
xj+1

µj−1

µj

µj+1
ν+j−1

ν−j

ν+j

ν−j+1

Analogy: piecewise cubic Hermite interpolation with reconstructed slopes, discussed in the context of

shape preserving interpolation in [NCSE]. However, we do not aim for smooth functions now as is clear

from Fig. 580.

Definition 11.5.1.3. Linear reconstruction

Given an (infinite) meshM := {]xj−1, xj[}j∈Z (xj−1 < xj), a linear reconstruction operator RM is

a mapping (not necessarily linear)

RM : RZ 7→ {v ∈ L∞(R): v linear on ]xj−1/2, xj+1/2[ ∀j ∈ Z} ,

taking a sequence ~µ ∈ RZ of cell averages to a possibly discontinuous function RM~µ that is

piecewise linear on dual cells.

Combining linear reconstruction and (11.5.1.1) we get a semi-discrete evolution in conservation form,

similar to (11.3.2.7). In particular, for a 2-point numerical flux F = F(v, w) we obtain the following semi-

discrete evolution (=̂ method-of-lines ODE)

dµj

dt
(t) = −1

h

(
F(RM(~µ(t))(x−j+1/2

),RM(~µ(t))(x+j+1/2
))−

F(RM(~µ(t))(x−j−1/2
),RM(~µ(t))(x+j−1/2

))
)

, j ∈ Z . (11.5.1.4)

The superscripts ’+’ and ’-’ designate limits from below/left and above/right. Compare this formula with the

basic semi-discrete conservation law

dµj

dt
(t) = −1

h

(
F(µj(t), µj+1(t))− F(µj−1(t), µj(t))

)
, j ∈ Z , (11.3.2.8)

and (11.5.1.1), (11.5.1.2).

C++/EIGEN code 11.5.1.5: Operator Lh for spatial semidiscretization with conservative FV

with linear reconstruction and 2-point numerical flux ➺ GitLab

2 // arguments:

3 // double h: meshwidth of equidistant spatial grid

4 // Vector mu: (finite) vector ~µ of cell averages

5 // Functor F: 2-point numerical flux function F = F(v, w)
6 // Functor slope: slope reconstruction function

7 // h·σj = slopes(µj−1, µj, µj+1)
8 //

9 // returns a vector with differences of numerical fluxes,

10 // which supplies the right-hand side for the FV-MOL ODE

11 //

12 // Function that realizes the right hand side operator Lh for the
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13 // ODE (11.4.1.4) arising from conservative finite volume

14 // semidiscretization of the Cauchy problem for a 1D scalar

15 // conservation law (11.2.2.1).
16 template <typename FunctionF , typename FunctionSlopes >

17 Eigen : : VectorXd s lope l imf luxd i f f ( const Eigen : : VectorXd &mu, Funct ionF &&F ,

18 Funct ionSlopes &&slopes ) {

19 unsigned n = mu. size ( ) ; // Number of active dual grid cells

20 Eigen : : VectorXd sigma = Eigen : : VectorXd : : Zero ( n ) ; // Vector of slopes

21 Eigen : : VectorXd fd = Eigen : : VectorXd : : Zero ( n ) ;

22

23 // Computation of slopes σj, uses µ0 = µ1,

24 // mN+1 = µN, which amounts to constant extension of states

25 // beyond domain of influence [a, b] of non-constant intial data. Same

26 // technique has been applied in Code 11.3.2.9

27 sigma [ 0 ] = slopes (mu[ 0 ] , mu[ 0 ] , mu [ 1 ] ) ;

28 for ( unsigned j = 1 ; j < n − 1; ++ j )

29 sigma [ j ] = slopes (mu[ j − 1 ] , mu[ j ] , mu[ j + 1 ] ) ;

30 sigma [ n − 1] = slopes (mu[ n − 2 ] , mu[ n − 1 ] , mu[ n − 1 ] ) ;

31

32 // Compute linear reconstruction at endpoints of dual cells (11.5.1.2)
33 Eigen : : VectorXd nup = mu + 0.5 * sigma ;

34 Eigen : : VectorXd num = mu − 0.5 * sigma ;

35

36 // As in Code 11.3.2.10: employ constant continuation of data

37 // outside [a, b]!
38 fd [ 0 ] = F( nup [ 0 ] , num [ 1 ] ) − F(mu[ 0 ] , num [ 0 ] ) ;

39 for ( unsigned j = 1 ; j < n − 1; ++ j )

40 fd [ j ] =

41 F( nup [ j ] , num[ j + 1 ] ) − F( nup [ j − 1 ] , num[ j ] ) ; // see (11.3.2.8)
42 fd [ n − 1] = F( nup [ n − 1 ] , mu[ n − 1 ] ) − F( nup [ n − 2 ] , num[ n − 1 ] ) ;

43 return fd ;

44 }

We stress that the slopes functor has to return the slopes σj scaled by the (global) meshwidth. Hence,

this implementation is suitable only for equidistant meshes.

C++ EIGEN code 11.5.1.6: Conservative FV with linear reconstruction: Explicit adaptive

Runge-Kutta “ode45” timestepping ➺ GitLab

2 // Arguments:

3 // real numbers a, b. a < b, the boundaries of the domain

4 // unsigned int N the number of grid cells

5 // Functor u0 : R 7→ R: initial data

6 // real number T > 0: final time

7 // Functor F = F(v, w): 2-point numerical flux function

8 // Functor slopes = σ(v, u, w): 3-point slope recostruction rule

9 // (Note: no division by h needs to be done in slopt computation

10 //

11 // returns:

12 // Vector of cell averages at final time

13 //

14 // finite volume discrete evolution in conservation form with linear

15 // reconstruction, see (11.5.1.4).

16 // Cauchy problem over time [0, T], equidistant mesh

17 template <typename FunctionU0 , typename FunctionF , typename FnSlopes>

18 Eigen : : VectorXd h igh resev l ( double a , double b , unsigned N, FunctionU0 &&u0 ,

19 double T , Funct ionF &&F , FnSlopes &&slopes ) {

20 double h = ( b − a ) / N; // mesh width

21 // positions of grid points
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22 Eigen : : VectorXd x = Eigen : : VectorXd : : LinSpaced (N, a + 0.5 * h , b − 0.5 * h ) ;

23 // vector of initial cell averages (column vector) from sampling u0

24 Eigen : : VectorXd mu0 = x . unaryExpr ( u0 ) ;

25

26 // right hand side lambda function for ODE solver

27 auto odefun = [ & ] ( const Eigen : : VectorXd &mu, Eigen : : VectorXd &dmdt ,

28 double t ) {

29 dmdt = −1. / h * slopel imf luxdi f f <FunctionF , FnSlopes >(mu, F , slopes ) ;

30 } ;

31

32 // timestepping by explicit adaptive Runge-Kutta single-step

33 // method of order 5. Adaptivity control according to [NCSE]
34 double abs to l = 1E−8 , r e l t o l = 1E−6; // integration control parameters

35 // std::vector<double> t; Temporal adaptive integration mesh

36 // std::vector<Eigen::VectorXd> MU; Returns states ~µ(k)

37 auto [ t , MU] = ode45 ( odefun , 0 , T , mu0, absto l , r e l t o l ) ;

38 // Extract state vector for final time

39 return MU. back ( ) ;

40 }

Now, let us continue with more concrete linear reconstructions. We start with a “natural” choice, the

so-called central slope (averaged slope)

σj(t) =
1

2

(
µj+1(t)− µj(t)

h
+

µj(t)− µj−1(t)

h

)
=

1

2

µj+1(t)− µj−1(t)

h
. (11.5.1.7)

By Taylor expansion: for u ∈ C2 (that is, u sufficiently smooth), central slope (11.5.1.7), ν±j according to

(11.5.1.2)

|ν−j (t)− u(xj−1/2, t)|, |ν+j (t)− u(xj+1/2, t)| = O(h2) .

EXPERIMENT 11.5.1.8 (Convergence of FV with linear reconstruction)

✦ Cauchy problem for Burgers equation (11.1.3.4) (flux function f (u) = 1
2 u2) from Ex. 11.2.6.4 with

C1 bump initial data (BUMP)

✦ Equidistant spatial mesh with meshwidth h of spatial interval [−0.5, 1.5]

✦ Linear reconstruction with central slope (11.5.1.7)

✦ Godunov numerical flux (11.3.4.33): F = FGD

✦ 2n-order Runge-Kutta timestepping (method of Heun), timestep τ = 0.5h (“CFL = 0.5”)

Monitored: Approximate L1- and L∞-norms of error at final time T = 0.3 (exact solution still smooth at

this time, see Exp. 11.4.4.1)
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Fig. 580
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✁ “exact solution”

computed by means of a high-order finite volume

method (WENO) on a equidistant mesh with 214

points., U. Fjordholm (SAM)

Observation: 2nd-order convergence in both norms

y

EXPERIMENT 11.5.1.9 (Linear reconstruction with central slope (Burgers’ equation))

We revisit the Cauchy problem of Exp. 11.3.4.2:

✦ Cauchy problem for Burgers equation (11.1.3.4) (flux function f (u) = 1
2 u2) from Ex. 11.2.6.4 (“box”

intial data)

✦ Equidistant spatial mesh with meshwidth h = 1
15 covering spatial interval [−0.5, 3.5]

✦ Linear reconstruction with central slope (11.5.1.7)

✦ Godunov numerical flux (11.3.4.33): F = FGD

✦ timestepping based on adaptive 5th-order explicit Runge-Kutta method with “overkill tolerances”
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Emergence of spurious oscillations in the vicinity of shock (in violation of structural properties of the exact

solution, see (11.2.7.2).)

Compare: Oscillations occurring in FV schemes relying on central flux, see Exp. 11.3.4.2. y

EXPERIMENT 11.5.1.10 (Linear reconstruction with central slope (traffic flow))

We adapt the previous experiment to the Cauchy problem from Exp. 11.3.4.3:

✦ Cauchy problem for Traffic Flow equation (11.1.2.23) (flux function f (u) = u(1 − u)) from

Ex. 11.2.6.5 (“box” intial data)

✦ Equidistant spatial mesh of −0.5, 3.5 with meshwidth h = 1
15

✦ Linear reconstruction with central slope (11.5.1.7)

✦ Godunov numerical flux (11.3.4.33): F = FGD

✦ timestepping based on adaptive 5th-order Runge-Kutta method (“ode45”). “overkill tolerances”
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Emergence of spurious oscillations in the vicinity of shock (in violation of structural properties of the exact

solution, see (11.2.7.2).)

Compare: Oscillations occurring in FV schemes relying on central flux, see Exp. 11.3.4.3. y

In Exp. 11.3.4.2, Exp. 10.2.2.4, the spurious oscillations can be blamed on the unstable central flux/central

finite differences. Maybe, this time the central slope formula is the culprit. Thus, we investigate slope

reconstruction connected with backward and forward difference quotients.

EXPERIMENT 11.5.1.11 (Linear reconstruction with one-sided slopes (Burgers’ equation)) One-

sided slopes for use in (11.5.1.2)

Right slope: σj(t) =
µj+1(t)− µj(t)

h
, (11.5.1.12)
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Left slope: σj(t) =
µj(t)− µj−1(t)

h
. (11.5.1.13)

Same setting as in Exp. 11.5.1.9, with central slope replaced with one-sided slopes.

Left slope:
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Fig. 583
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Right slope:
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Fig. 584
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Observation: spurious oscillations/overshoots, massive and global for (11.5.1.12), moderate close to

shock for (11.5.1.13). y

EXPERIMENT 11.5.1.14 (Linear reconstruction with one-sided slopes (traffic flow)) Left slope:
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Fig. 585
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Right slope:
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Fig. 586
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Observation: spurious oscillations/overshoots, massive and global for (11.5.1.12), moderate close to

shock for (11.5.1.13). y

It seems to be the very process of linear reconstruction that triggers oscillations near shocks. These

oscillations can be traced back to “overshooting” of linear reconstruction at jumps.
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EXAMPLE 11.5.1.15 (Over-/Undershoots in linear reconstruction) In this example we apply the slope

formulas proposed above to particular “synthetic cell averages” derived from a function (blue graph in

plots) featuring a jump, a kink, and a local maximum.

Slope from central differencing:

σj =
1

2h
(µj+1 − µj−1) . (11.5.1.7)

(— =̂ cell averages, — =̂ piecewise

linear reconstruction)

Fig. 587
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Slope from forward differencing:

σj =
1

h
(µj+1 − µj) . (11.5.1.12)

Fig. 588
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Slope from backward differencing:

σj =
1

h
(µj − µj−1) . (11.5.1.13)

Fig. 589
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We observe that the piecewise linear reconstruction develops over- and undershoots regardless of the

slope formula used. y

11.5.2 Slope Limiting

We want to find a piecewise linear reconstruction method with a guarantee for the bsuppression of “over-

/undershoots” (→ Fig. 588, Fig. 589, Fig. 590).

Use local monotonicity preservation of linear reconstruction

Definition 11.5.2.1. Monotonicity-preserving linear reconstruction (MPLR)

An linear reconstruction operator RM (→ Def. 11.5.1.3) is monotonicity preserving, if

(RM~µ)(xj) = µj ∧
µj ≤ µj+1 ⇒ RM~µ non-decreasing in ]xj, xj+1[ ,
µj ≥ µj+1 ⇒ RM~µ non-increasing in ]xj, xj+1[ .

Fig. 590 xj−1 xj xj+1 xj+2

Monotonicity preserving linear

reconstruction:

✦ constant at plateaus

✦ constant at (local) extrema

(Magenta arrows =̂ admissible

slope of p.w. linear reconstruction)

Related: shape preserving Hermite interpolation, see [NCSE], achieved by using

✦ zero slope, in case of local slopes with opposite sign, see [NCSE],

✦ harmonic averaging of local slopes, see [NCSE].
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Remark 11.5.2.2 (Consequence of monotonicity preservation) A monotonicity preserving linear recon-

struction operator RM (→ Def. 11.5.2.1)

• respects the range of cell averages

min{µkµk+1, . . . , µm} ≤ (R~µ)(x) ≤ max{µk, µk+1, . . . , µm} , xk < x < xm . (11.5.2.3)

↔ “range preservation” by entropy solutions, see Thm. 11.2.7.1.

• does not allow the creation of new extrema

♯{extrema of RM~µ} ≤ ♯{extrema of ~µ} . (11.5.2.4)

↔ preservation of number of extrema in entropy solution, Section 11.2.7.

y

Remark 11.5.2.5 (Linearity and monotonicity preservation) The linear reconstruction operators (→
Def. 11.5.1.3) based on the slope formulas (11.5.1.7) (central slope), (11.5.1.12) (forward slope),

(11.5.1.13) (backward slope) are linear in the sense that

RM(α~µ + β~ν) = αRM(~µ) + βRM~ν) ∀~µ,~ν ∈ RZ, α, β ∈ R . (11.5.2.6)

Lemma 11.5.2.7. Linear monotonicity preserving reconstruction trivial

Every linear, monotonicity preserving (→ Def. 11.5.2.1) linear reconstruction yields piecewise con-

stant functions.

Proof. Define~ǫk ∈ RZ, k ∈ Z, by

ǫk
j =

{
1 for k = j ,

0 else.

The~ǫk
form a basis of RZ. Thus, due to linearity, RM is fixed by its action on the basis vectors~ǫk

and its

image is spanned by

{
RM~ǫk

}
k∈Z

.

However, monotonicity preservation entails that RM~ǫk
is piecewise constant, see Fig. 591. ✷

Necessary (for monotonicity preservation): Non-linear

!?

linear reconstruction

y

A simple consideration, see Fig. 591

µj−1 ≤ µj and µj ≥ µj+1 ⇒ RM~µ ≡ const on ]xj−1/2, xj+1/2[ , (11.5.2.8)

for any monotonicity preserving (→ Def. 11.5.2.1) linear reconstruction operator RM (→ Def. 11.5.1.3).

➣ monotonicity preserving linear reconstruction RM~µ must be constant at local extrema of~µ!
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Definition 11.5.2.9. Minmod reconstruction

The minmod reconstruction Rmm is a piece-

wise linear reconstruction (→ Def. 11.5.1.3)

defined by

(Rmm~µ)(x) = µj + σj(x− xj)

for xj−1/2 < x < xj+1/2 ,j ∈ Z ,

σj := minmod

(
µj+1 − µj

xj+1 − xj
,

µj − µj−1

xj − xj−1

)
,

minmod(v, w) :=





v , vw > 0, |v| < |w| ,

w , vw > 0, |w| < |v| ,

0 , vw ≤ 0 .
Fig. 591
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Lemma 11.5.2.10. Monotonicity preservation of minmod reconstruction

Minmod reconstruction (→ Def. 11.5.2.9) is monotonicity preserving (→ Def. 11.5.2.1)

Proof. w.l.o.g. assume µj+1 ≥ µj ⇒ σj ≥ 0 ∧σj+1 ≥ 0

⇒ µj +
1
2 hσj ≤ 1

2(µj + µj+1) ≤ µj+1 − 1
2 hσj+1 ✷

Terminology: effect of minmod-function in Rmm: slope limiting: minmod = slope limiter

EXPERIMENT 11.5.2.11 (Linear reconstruction with minmod limiter (Burgers’ equation)) Same set-

ting as in Exp. 11.5.1.9, Cauchy problem as in Exp. 11.3.4.2:

✦ Cauchy problem for Burgers equation (11.1.3.4) (flux function f (u) = 1
2 u2) from Ex. 11.2.6.4 (“box”

intial data)

✦ Equidistant spatial mesh with meshwidth h = 1
15

✦ Linear reconstruction with minmod limited slope (→ Def. 11.5.2.9)

σj := minmod

(
µj − µj−1

h
,

µj+1 − µj

h

)
.

✦ Godunov numerical flux (11.3.4.33): F = FGD

✦ timestepping based on adaptive 5th-order Runge-Kutta method “ode45” with “overkill tolerances”
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Fig. 592
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Observation: spurious oscillations successfully suppressed! y

EXPERIMENT 11.5.2.12 (Linear reconstruction with minmod limiter) Same setting as in Exp. 11.5.1.9,

Cauchy problem as in Exp. 11.3.4.3:

✦ Cauchy problem for Traffic Flow equation (11.1.2.23) (flux function f (u) = u(1 − u)) from

Ex. 11.2.6.5 (“box” intial data)

✦ Equidistant spatial mesh with meshwidth h = 1
15

✦ Linear reconstruction with minmod limited slope (→ Def. 11.5.2.9)

σj := minmod

(
µj − µj−1

h
,

µj+1 − µj

h

)
.

✦ Godunov numerical flux (11.3.4.33): F = FGD

✦ timestepping based on adaptive Runge-Kutta method ode45 with absolute tolerance 10−7 and

relative tolerance 10−6.
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Fig. 593
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Observation: spurious oscillations successfully suppressed! y

EXPERIMENT 11.5.2.13 (Improved resolution by limited linear reconstruction)

✦ Same setting as in Ex. 11.3.4.22: Cauchy problem for Burgers equation (11.1.3.4) (flux function

f (u) = 1
2 u2) from Ex. 11.2.6.4 (shifted “box” intial data, u0(x) = −1 for x 6∈ [0, 1], u0(x) = 1 for

x ∈ [0, 1])

✦ Equidistant spatial mesh with meshwidth h = 1
15

✦ “High-order” method based on linear reconstruction with minmod limited slope (→ Def. 11.5.2.9)

σj := minmod

(
µj − µj−1

h
,

µj+1 − µj

h

)
.

✦ Godunov numerical flux (11.3.4.33): F = FGD

✦ timestepping based on adaptive Runge-Kutta method ode45 with absolute tolerance 1010 and rel-

ative tolerance 108.

Fig. 594
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Fig. 595
−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 x

 µ
j(2

.0
0)

Burgers equation  (transsonic rarefaction), N = 60

 

 

u
low order: Godunov
high order: minmod

Observation: Better resolution of rarefaction fan compared with the conservative finite volume method

based on of Godunov numerical flux without linear reconstruction. Good resolution of shock.

This improved resolution is the main rationale for the use of piecewise linear reconstruction. y
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11.5.3 MUSCL Scheme

= Monotone Upwind Scheme for Conservation Laws

Also in the case of the method-of-lines approach to Cauchy problems for conservation laws with smooth

solutions it is commonly observed that

max
k>0

∥∥∥u
(k)
h − u(·, tk)

∥∥∥
L1(R)

, max
k>0

∥∥∥u
(k)
h − u(·, tk)

∥∥∥
L∞(R)

= O(hp + τq) for h, τ → 0 ,

if we use a scheme of (formal) order p ∈ N in space combined with explicit timestepping of order q ∈ N.

We already saw error bounds of this kind for parabolic evolution problems in Section 9.2.8 and for the

linear wave equation in Thm. 9.3.5.10.

However, the CFL-condition will always force us to choose τ = O(h), see Section 11.4.2. Therefore, in

light of the considerations in Rem. 9.2.8.10, there is nothing gained by choosing q ≥ p, which suggests

that we opt for q = p. Thus, in the case of a minmod-limited conservative finite volume scheme with piece-

wise linear reconstruction, the use of a second-order explicit Ruge-Kutta single-step method is advisable.

This will yield the popular MUSCL scheme.

Case of equidistant spatial mesh with meshwidth h > 0:

✦ Conservative finite volume spatial discretization (11.5.1.1) with monotone consistent 2-point flux,

e.g., Godunov numerical flux (11.3.4.33)

✦ Piecewise linear reconstruction (→ Def. 11.5.1.3) with minmod slope limiting (→ Def. 11.5.2.9):

ν±j := µj ± 1
2 minmod

(
µj+1 − µj, µj − µj−1

)
. (11.5.3.1)

✦ 2nd-order Runge-Kutta timestepping for (11.5.1.1): method of Heun, cf. (11.4.1.11):

If the right hand side of (11.5.1.1) is abbreviated by

Lh(~µ(t)) := −1

h

(
F(ν+j (t), ν−j+1(t))− F(ν+j−1(t), ν−j (t))

)
,

then the fully discrete scheme (uniform timestep τ > 0) reads (11.5.1.1)

~κ := ~µ(k) + τLh(~µ
(k)) ,

~µ(k+1) := ~µ(k) + 1
2 τ
(
Lh(~µ

(k)) + Lh(~κ)
)

.
(11.5.3.2)

EXAMPLE 11.5.3.3 (Adequacy of 2nd-order timestepping)

✦ Same setting as in Ex. 11.3.4.22: Cauchy problem for Burgers equation (11.1.3.4) (flux function

f (u) = 1
2 u2) from Ex. 11.2.6.4 (shifted “box” intial data, u0(x) = −1 for x 6∈ [0, 1], u0(x) = 1 for

x ∈ [0, 1])

✦ Equidistant spatial mesh with meshwidth h = 1
15

✦ Linear reconstruction with minmod limited slope (→ Def. 11.5.2.9)

σj := minmod

(
µj − µj−1

h
,

µj+1 − µj

h

)
.

✦ Godunov numerical flux (11.3.4.33): F = FGD
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✦ Two options for timestepping:

1. timestepping based on 5th-order adaptive Runge-Kutta method with tight tolerances (“exact

timestepping”),

2. Heun timestepping (11.5.3.2) with uniform timestep τ = h

Fig. 596
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Fig. 597
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Observation: 2nd-order Runge-Kutta method (11.5.3.2) provides same accuracy as “overkill integration”

by means of ode45 with tigth tolerances.

➣ For the sake of efficiency balance order of spatial and temporal discretizations and use Heun timestep-

ping.

y

EXPERIMENT 11.5.3.4 (Convergence of MUSCL scheme) We repeat the numerical experiments of

Exp. 11.4.4.1 for

✦ a conservative finite volume discretization with Godunov numerical flux and minmod-limited linear

reconstruction, see Exp. 11.5.2.11 (ode45 timestepping),

✦ the MUSCL scheme as introduced above with fixed timestep τ = 0.5h.

We monitor the “discrete” error norms (11.4.4.2) and (11.4.4.3)

err1(h) := max
k>0

h ∑
j

|µ(k)
j − u(xj, tk)| ≈ max

k>0

∥∥∥u
(k)
h − u(·, tk)

∥∥∥
L1(R)

,

err∞(h) := max
k>0

max
j∈Z
|µ(k)

j − u(xj, tk)| ≈ max
k>0

∥∥∥u
(k)
h − u(·, tk)

∥∥∥
L∞(R)

.
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Observation: 2nd-order Heun method produces solutions whose convergence and accuracy matches

those of solutions obtained by highly accurate high-order Runge-Kutta timestepping.

➣

y

Review question(s) 11.5.3.5 (Higher order conservative finite volume methods)

We recall two key concepts for the design of higher-order finite volume methods:

Definition 11.5.1.3. Linear reconstruction

Given an (infinite) meshM := {]xj−1, xj[}j∈Z (xj−1 < xj), a linear reconstruction operator RM is

a mapping

RM : RZ 7→ {v ∈ L∞(R): v linear on ]xj−1/2, xj+1/2[ ∀j ∈ Z} ,

taking a sequence ~µ ∈ RZ of cell averages to a possibly discontinuous function RM~µ that is

piecewise linear on dual cells.
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Definition 11.5.2.1. Monotonicity-preserving linear reconstruction (MPLR)

An linear reconstruction operator RM (→ Def. 11.5.1.3) is monotonicity preserving, if

(RM~µ)(xj) = µj ∧
µj ≤ µj+1 ⇒ RM~µ non-decreasing in ]xj, xj+1[ ,
µj ≥ µj+1 ⇒ RM~µ non-increasing in ]xj, xj+1[ .

(Q11.5.3.5.A) Argue why a linear monotonicity preserving piecewise linear reconstruction must impose

vanishing slopes throughout.

(Q11.5.3.5.B) Explain the meanings of “linear” in the phrase “non-linear linear reconstruction” (in the

context of high-order finite volume methods for 1D conservation laws).

(Q11.5.3.5.C) Fully discrete evolutions for scalar conservation laws on uniform space-time meshes can

be described by means of stencils.

What will be the width of the stencil for the fully discrete evolution operator, when using two-point numer-

ical fluxes, piecewise linear reconstruction based on min-mod limiting, and a (generic) s-stage explicit

RK-SSM for timestepping for the discretization of a scalar conservation law in 1D.

(Q11.5.3.5.D) [“Linear” all over the place] Explain the meanings of “linear” in the assertion of the

following lemma.

Lemma 11.5.2.7. Linear monotonicity preserving reconstruction trivial

Every linear, monotonicity preserving linear reconstruction yields piecewise constant functions.

(Q11.5.3.5.E) The method-of-lines ODE underlying the MUSCL scheme for the 1D scalar conservation

law ∂u
∂t +

∂ f (u)
∂x = 0 is

~µ

dt
(t) = Lh(~µ(t)) , Lh(~µ(t)) := −1

h

(
F(ν+j (t), ν−j+1(t))− F(ν+j−1(t), ν−j (t))

)
,

with ν±j := µj ± 1
2 minmod

(
µj+1 − µj, µj − µj−1

)
.

Assume that the numerical flux F is a smooth function of its two arguments. Is the right-hand side vector

field of that ODE locally Lipschitz continuous in the sense of

Definition 6.1.3.12. Local Lipschitz continuity

Let Ω := I×D, I ⊂ R an interval, D ⊂ RN, N ∈ N, an open domain. A functions f : Ω 7→ RN

is locally Lipschitz continuous, if for every (t, y) ∈ Ω there is a closed box B with (t, y) ∈ B such

that f is Lipschitz continuous on B:

∀(t, y) ∈ Ω: ∃δ > 0, L > 0:

‖f(τ, z)− f(τ, w)‖ ≤ L‖z−w‖
∀z, w ∈ D: ‖z− y‖ ≤ δ, ‖w− y‖ ≤ δ, ∀τ ∈ I: |t− τ| ≤ δ .

(11.5.3.6)

△

11.6 A Glimpse of Systems of Conservation Laws

Rem. 11.1.3.5 already presented the Euler equations as an example of a non-linear system of conser-

vation laws in one spatial dimension. In this section we discuss, admittedly on a rather superficial level,
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some properties of such systems and some basic finite-volume methods for the spatial discretization of

associated Cauchy problems.

11.6.1 Linear Systems of Conservation Laws

Video tutorial for Section 11.6.1: Linear Systems of Conservation Laws: (45 minutes)

Download link, tablet notes

➣ Quizz 11.6.1.33

We start with the simplest case of linear systems, for which we will try to understand the structure of

solutions of Riemann problems (→ Section 11.2.5).

11.6.1.1 General One-Dimensional Linear Systems

Definition 11.6.1.1. Linear system of conservation laws

Given m ∈ N and a matrix-valued function A : R →∈ Rm,m the partial differential equation

∂u

∂t
(x, t) +

∂

∂x
(A(x)u(x, t)) = 0 on U ⊂ R×R+ (11.6.1.2)

is a linear system of conservation laws (LSCL) for the unknown function u : U → Rm.

Obviously, (11.6.1.2) amounts to the m coupled scalar equations

∂ui

∂t
(x, t) +

m

∑
j=1

∂(ai,j(x)uj(x, t))

∂x
= 0 , u =: [u1, . . . , um]

⊤ , A(x) =:
[
ai,j(x)

]m

i,j=1
. (11.6.1.3)

Given a final time T > 0, the associated Cauchy problem seeks a function u : R×]0, T[→ Rm depending

on space and time, u = u(x, t), that satisfies

the PDE (11.6.1.2):
∂u

∂t
(x, t) +

∂

∂x
(A(x)u(x, t)) = 0 on R×]0, T[ , (11.6.1.4a)

+ initial conditions: u(x, 0) = u0(x) for x ∈ R , (11.6.1.4b)

where u0 : R → Rm are given initial data. Below in Section 11.6.2.1 we will make more precise what is

meant by “satisfy”.

EXAMPLE 11.6.1.5 (1D wave equation as linear system of conservation laws) From § 9.3.2.1 we

recall the Cauchy problem for the 1D scalar wave equation for the pressure p = p(x, t) and with spatially

varying wave speed c = c(x) > 0:

∂2p

∂t2
(x, t)− ∂

∂x

(
c(x)2 ∂p

∂x
(x, t)

)
= 0 , p(x, 0) = p0(x) ,

∂p

∂t
(x, 0) = v0(x) , x ∈ R ,

(11.6.1.6)

with given initial values p0 : R → R, v0 : R → R.

We introduce the partial derivatives of p as new unknown functions,

w(x, t) =
∂p

∂x
(x, t) , v(x, t) =

∂p

∂t
(x, t) . (11.6.1.7)
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If p solves the Cauchy problem (11.6.1.4), then w and v are solutions of the Cauchy problem

∂v

∂t
− ∂

∂x

(
c(x)2w

)
= 0 ,

∂w

∂t
− ∂v

∂x
= 0

in R×]0, T[ ,
w(x, 0) =

dp0

dx
(x) ,

v(x, 0) =v0(x) ,
x ∈ R . (11.6.1.8)

The second equation just reflects that partial derivatives can be swapped. The PDE of (11.6.1.8) can be

recast in the form (11.6.1.4) with m = 2,

u(x, t) :=

[
v(x, t)
w(x, t)

]
,

∂u

∂t
(x, t) +

∂

∂x

([
0 −c(x)2

−1 0

]

︸ ︷︷ ︸
=:A(x)

u(x, t)
)
= 0 on R×]0, T[ . (11.6.1.9)

y

Assumption 11.6.1.10. Eigenvalues of A(x)

We assume that

(i) x 7→ A(x) ∈ Rm,m is continuous, and

(ii) A(x) has m distinct real eigenvalues for every x ∈ R.

Linear systems of conservation laws according to Def. 11.6.1.1 complying with Ass. 11.6.1.10 are called

strictly hyperbolic.

EXAMPLE 11.6.1.11 (Ex. 11.6.1.5 cnt’d; strict hyperbolicity of 1D wave equation) The eigenvalues

λ1(x), λ2(x) of A(x) from (11.6.1.9) are

λ1(x) = −c(x) and λ2(x) = c(x) ⇒ λ1(x) 6= λ2(x) ∀x ∈ R , (11.6.1.12)

since we suppose c(x) > 0 for all x ∈ R. We conclude that the 1D wave system (11.6.1.9) is strictly

hyperbolic. y

Lemma 11.6.1.13. Real diagonalizability of A(x)

Under Ass. 11.6.1.10 there exist a continuous matrix-valued function R : R → Rm,m, R(x) invert-

ible for all x ∈ R, and continuous functions λi : R → R, i = 1, . . . , m such that

R(x)−1A(x)R(x) = diag(λ1(x), . . . , λm(x)) , x ∈ R . (11.6.1.14)

Proof. From linear algebra we know that an m×m-matrix with m distinct eigenvalues can be diagonal-

ized.

The continuity of x 7→ R(x) and x 7→ λi(x) follows from the continuous dependence of eigenvalues and

eigenvectors on the matrix [KAT95].
✷

11.6.1.2 Constant-Coefficient One-Dimensional Linear Systems

We assume that the matrix A ∈ Rm,m in Def. 11.6.1.1 does not depend on the spatial variable x and

consider the simpler Cauchy problem

for the PDE:
∂u

∂t
(x, t) + A

∂u

∂x
(x, t) = 0 on R×]0, T[ , (11.6.1.15a)

with initial conditions: u(x, 0) = u0(x) for x ∈ R , (11.6.1.15b)
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where u0 : R → R is given. Ass. 11.6.1.10 will remain valid throughout this section.

§11.6.1.16 (Diagonalization of conservation law) As a special case of Lemma 11.6.1.13 Ass. 11.6.1.10

gives us an invertible matrix R ∈ Rm,m and a diagonal matrix D = diag(λ1, . . . , λm) ∈ Rm,m such that

AR = RD ⇔ Ari = λiri , i = 1, . . . , m , [r1, . . . , rm] := R . (11.6.1.17)

Here, the vectors ri are the eigenvectors of A, the λi its eigenvalues, which we assume to be sorted

λ1 < λ2 < · · · < λm.

Next, we diagonlize the PDE (11.6.1.15a) by left-multiplying with R−1

∂u

∂t
(x, t) + A

∂u

∂x
(x, t) = 0

∂R−1u

∂t
(x, t) + R−1AR

∂R−1u

∂x
(x, t) = 0 ,

and introducing a transformed unknown

ũ(x, t) := R−1u(x, t) ↔ u(x, t) =
m

∑
i=1

ũi(x, t)ri . (11.6.1.18)

We arrive at a Cauchy problem with unknown ũ:

(11.6.1.15)

∂ũ

∂t
+ D

∂ũ

∂x
= 0 on R×]0, T[ ,

ũ(x, 0) = R−1u0(x) , x ∈ R .
(11.6.1.19)

This is a collection of m fully decoupled Cauchy problems for linear advection (11.1.1.11) with velocities

λi, i = 1, . . . , m:

∂ũ

∂t
+ D

∂ũ

∂x
= 0 ⇔ ∂ũi

∂t
+ λi

∂ũi

∂x
= 0 , i = 1, . . . , m . (11.6.1.20)

From (11.1.1.12) we already know a solution formula for these advection problems:

ũi(x, t) = ũi,0(x− λit) , ũi,0(x) :=
(

R−1u0(x)
)

i
, x ∈ R , t ∈]0, T[ . (11.6.1.21)

Switching back to the unknown u we find the solution formula for (11.6.1.15)

u(x, t) =
m

∑
i=1

(R−1u0)i(x− λit)ri , (x, t) ∈ R×]0, T[ . (11.6.1.22)

In words, the solution u = u(x, t) of (11.6.1.15) is a superposition of m states ri propagating with veloci-

ties λi. The function (x, t) 7→ (R−1u0)i(x− λit)ri is often called the i-wave component of the solution.

y

EXAMPLE 11.6.1.23 (Diagonalization of the constant-coefficient wave equation) We consider the

one-dimensional wave equation in the form (11.6.1.9) and with c(x) ≡ c > 0, that is, the constant-

coefficient linear conservation law

∂u

∂t
(x, t) +

∂

∂x

([
0 −c2

−1 0

]

︸ ︷︷ ︸
=:A

u(x, t)
)
= 0 on R×]0, T[ . (11.6.1.24)

The matrix A has eigenvalues −c and c and

[
0 −c2

−1 0

][−c c
1 1

]
=

[−c c
1 1

][
c 0
0 −c

]
⇒ R =

[−c c
1 1

]
, R−1 =

[−1/2c 1/2

1/2c 1/2

]
.
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So the solution formula (11.6.1.22) gives

u(x, t) =

([−1/2c

1/2

]
· u0(·)

)
(x− ct)

[−c
1

]
+

([
1/2c

1/2

]
· u0(·)

)
(x− ct)

[
c
1

]
. (11.6.1.25)

From the transformation (11.6.1.8) we know that (u0(x))1 = dp0
dx (x) and (u0(x))2 = v0(x), x ∈ R, p0

and v0 the initial data from (11.6.1.6). Using this, (11.6.1.25) becomes, for the first component of u(x, t)

∂p

∂x
(x, t) = (u(x, t))1 =

1

2

dp0

dx
(x− ct)− c

2
v0(x− ct) +

1

2

dp0

dx
(x + ct) +

c

2
v0(x + ct) , (11.6.1.26)

(x, t) ∈ R×R+. Integrating in space, we recover the d’Alembert solution formula (11.6.1.23) for the

Cauchy problem for the 1D constant-coefficient wave equation:

p(x, t) = 1
2(p0(x− ct) + p0(x + ct)) +

1

2c

x+ct∫

x−ct

v0(s)ds , (x, t) ∈ R×R+ .

y

§11.6.1.27 (Domains of dependence and influence) The diagonalization of (11.6.1.15) reveals that in

the Cauchy problem information propagates along the characteristic curves

γi(τ) = λiτ + c , 0 ≤ τ ≤ T , c ∈ R , (11.6.1.28)

which are straight lines in the (x, t)-plane. Instead of one characteristic curve in the case m = 1, see

Def. 11.2.2.3, we now have m of them.

The representation (11.6.1.22) of the solution of the Cauchy problem immediately implies the domains

of dependence D−(x, t) of a point (x, t) and the domain of influence D+(I0) of an interval I0 ⊂ R, cf.

Cor. 11.2.7.5, Fig. 511, and Fig. 512 for m = 1:

Fig. 602 x

λ1

λ2

λ3

1 1

t

(x̄, t̄)

D−(x̄, t̄)

m = 3: domain of dependence of (x̄, t̄) ∈ R×]0, T[

Fig. 603

1 1 1

λ3

λ2

λ1

x

t

I0

D+(I0)

m = 3: domain of influence of I0 ⊂ R
y

11.6.1.3 Riemann problem for Linear Systems of Conservation Laws

For given A ∈ Rm,m satisfying Ass. 11.6.1.10 and two states ul, ur ∈ Rm, we study the special Cauchy

problem

∂u

∂t
(x, t) + A

∂u

∂x
= 0 on R×R+ , u(x, 0) =

{
ul for x < 0 ,

ur for x > 0 .
(11.6.1.29)
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This is the Riemann problem for a linear system of conservation laws with constant coefficients, cf.

Section 11.2.5. Assuming sorted eigenvalues of A, λ1 < λ2 < · · · < λm, we can adapt the general

solution formula (11.6.1.22) to the special setting of a Riemann problem.

To begin with we expand the left and right state into eigenvectors of A, known as a wave decomposition

ul = ∑
m

k=1
wl

krk , wl
k :=

(
R−1ul

)
k

, ur = ∑
m

k=1
wr

krk , wr
k :=

(
R−1ur

)
k

, (11.6.1.30)

u(x, t) =





ul for x < λ1t ,

wr
1r1 +

m

∑
i=2

wl
1ri for λ1t < x < λ2t ,

...
...

k

∑
i=1

wr
i ri +

m

∑
i=k+1

wl
1ri for λkt < x < λk+1t ,

k = 1, . . . , m− 1 ,
...

...

ur for x > λmt .

(11.6.1.31)

The solution has the general structure of a shock fan, a fan of constant states separated by discontinu-

ities.

Illustration for m = 3, structure of solution of Riemann problem, λ1 < 0 < λ2 < λ3:

Fig. 604

11 1

λ3

λ2

λ1

x

t

0

(A)

(B) (C)

(D)

• Zone (A), x < λ1t: u(x, t) = ul.

• Zone (B): λ1t < x < λ2t

u(x, t) =wr
1r1 + wl

2r2 + wl
3r3 .

• Zone (C): λ2t < x < λ3t

u(x, t) =wr
1r1 + wr

2r2 + wl
3r3 .

• Zone (D), λ3t < x: u(x, t) = ur.

In the shock fan the right and left states are con-

nected by m − 1 intermediate states (u0 := ul,

um := ur)

uj =ul +
j

∑
k=1

(wr
k − wl

k)rk ,

j = 0, . . . , m .

Fig. 605 x

t

11

λmλ1

ul ur

u1 u2

um−1

At the discontinuities we have the jumps

uk − uk−1 = (wr
k − wl

k)rk ➤ A(uk − uk−1) = λk(uk − uk−1) , k = 1, . . . , m . (11.6.1.32)
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Fig. 606 u1

u2
ul

ur

u1

r1

r2

For m = 2 there is a graphical way to determine the

single intermediate state in the u1 − u2-plane.

States separated from ul by a jump with speed λ1

(slow discontinuity)

States separated from ur by a jump with speed λ2

(fast discontinuity)

An intersection point of the two lines can always be

found, because the two eigenvectors /Vr1 and r2 are

linearly independent.

Review question(s) 11.6.1.33 (Linear systems of conservation laws)

(Q11.6.1.33.A) For given A ∈ Rm,m consider the Cauchy problem for a constant-coefficient linear system

of conservation laws

for the PDE:
∂u

∂t
(x, t) + A

∂u

∂x
(x, t) = 0 on R×]0, T[ , (11.6.1.15a)

with initial conditions: u(x, 0) = u0(x) for x ∈ R , (11.6.1.15b)

Show that this Cauchy problems has a classical complex-valued solution that grows exponentially for

t→ ∞, if A has m distinct eigenvalues, two of which are not real (and complex conjugates of each

other).

Hint. Employ the diagonalization technique. for the resulting scalar Cauchy problems use initial data

x 7→ exp(ıωx), ω > 0.

(Q11.6.1.33.B) Compute the solution of the Riemann problem

∂u

∂t
+

[
1 1
1 1

]
∂u

∂x
= 0 , u(x, 0) =

{[
1
−1

]
for x < 0 ,[

1
1

]
for x ≥ 0 .

(Q11.6.1.33.C) Let u = u(x, t) the solution of the Cauchy problem (??) with compactly supported initial

data and symmetric matrix A. Show that the spatial L2(R)-norm of the solution does not change with

time:

d

dt

∫

R
‖u(x, t)‖2 dx = 0 ∀t > 0 . (11.6.1.34)

△

11.6.2 1D Non-Linear Systems of Conservation Laws

Video tutorial for Section 11.6.2: 1D Non-Linear Systems of Conservation Laws: (45 minutes)

Download link, tablet notes

➣ Quizz 11.6.2.34

We now generalize both the scalar conservation laws treated in Section 11.2 and the linear systems of

conservation laws introduced in Section 11.6.1, Def. 11.6.1.1. Again, we restrict ourselves to one spatial

dimension, systems with “constant coefficients”, and the focus is on Cauchy problems on the space-time

domain R×]0, T[, T > 0 given.
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11.6.2.1 Definition and Fundamentals

§11.6.2.1 (Definition)

Definition 11.6.2.2. Non-linear system of conservation laws

Given m ∈ N, an open set U ⊂ Rm, and a continuously differentiable flux function F : U → Rm

a (translation invariant, “constant-coefficient”) non-linear system of conservation laws (NLSCL)

in one spatial dimension for the unknown function u : D ⊂ R×R+ → U reads

∂u

∂t
(x, t) +

∂F(u)

∂x
(x, t) = 0 on D . (11.6.2.3)

• Translation invariance mentioned in the definition refers to the fact that the flux F function only takes

a state argument u, and no position argument x.

• The definition also covers constant-coefficient linear systems in the case F(u) = Au, A ∈ Rm,m,

U = Rm.

The Cauchy problem for (11.6.2.3) is a natural generalization of the Cauchy problem (11.6.1.4) for linear

systems:

PDE (11.6.1.2):
∂u

∂t
(x, t) +

∂F(u)

∂x
(x, t) = 0 on R×]0, T[ , (11.6.2.4a)

+ initial conditions: u(x, 0) = u0(x) for x ∈ R , (11.6.2.4b)

where u0 : R → U are given initial data. y

§11.6.2.5 (Required properties of flux functions) The flux function F is supposed to have properties

generalizing those imposed in Ass. 11.6.1.10. These properties are essential for ensuring that solutions

(for T = ∞) depend continuously on the initial data.

Assumption 11.6.2.6. Strict hyperbolicity

The Jacobian DF(u) of the flux function F : Rm → Rm must have m distinct real eigenvalues for

any u ∈ U.

Again, a non-linear system of conservation laws is called strictly hyperbolic, if Ass. 11.6.2.6 holds. As

we have seen with Lemma 11.6.1.13 this assumption implies that there exists a matrix-valued function

u ∈ U 7→ R(u) ∈ Rm,m, R(u) invertible, and m scalar-valued functions λi : U → R, i = 1, . . . , m such

that

DF(u)R(u) = R(u)diag(λ1(u), . . . , λm(u)) ∀u ∈ U . (11.6.2.7)

Hence, the columns of R(u) are the eigenvectors of DF(u) and the λi(u) ∈ R are the corresponding

eigenvalues that we will always assume to be sorted; λ1(u) < λ2(u) < · · · < λm(u).

✎ notation: ri(u) := (R(u)):,i =̂ i-th eigenvector of DF(u).

Assumption 11.6.2.8. Genuine non-linearity/linear degeneracy

The eigenvectors ri(u) and associated eigenvalues λi(u) of DF(u) must satisfy

gradu λi(u) · ri(u) 6= 0 ∀u ∈ U or gradu λi(u) · ri(u) = 0 ∀u ∈ U . (11.6.2.9)
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Note that for m = 1, writing f instead of F, and u for u, the first condition in (11.6.2.9) becomes

f ′′(u) 6= 0 , since λ1(u) = f ′(u) , r1(u) = [1] .

This is equivalent to Ass. 11.2.2.2. y

As in the scalar case (→ Section 11.2.1), also (11.6.2.3) can be converted into an integral form, for

instance

d

dt

b∫

a

u(x, t)dx = −(F(u(b, t))− F(u(a, t))) ∀a, b ∈ R, t > 0 . (11.6.2.10)

Note that this is an equality of vectors ∈ Rm: conservation holds componentwise for u. Also the concept

of weak solutions introduced for m = 1 in Section 11.2.3 remains meaningful for systems:

Definition 11.6.2.11. Weak solution of Cauchy problem for system of conservation laws

For u0 ∈ (L∞(R))m, u : R×]0, T[ 7→ Rm is a weak solution of the Cauchy problem (11.6.2.4), if

u ∈ (L∞(R×]0, T[))m and

∞∫

−∞

T∫

0

{
u(x, t)·∂Φ

∂t
(x, t) + F(u(x, t))·∂Φ

∂x
(x, t)

}
dtdx−

∞∫

−∞

u0(x)·Φ(x, 0)dx = 0 ,

for all Φ ∈ (C∞
0 (R× [0, T[))m fulfilling Φ(·, T) = 0.

11.6.2.2 Simple and Important Examples

EXAMPLE 11.6.2.12 (Euler equations, cf. Rem. 11.1.3.5) For the Euler equations (11.1.3.6), a model

for the flow of an inviscid polytropic ideal gas,

∂

∂t




ρ
ρv
E


+

∂

∂x




ρv
ρv2 + p
(E + p)v


 = 0 =̂ (11.6.2.3) with u =




ρ
ρv
E


 , F(u) =




u2
u2

2/u1 + p(u)
(u3 + p(u))u2/u1


 ,

with state equation p = p(u) = (γ− 1)(E− 1
2 ρv2), 1 < γ < 2. A tedious computation reveals

λ1(u) = u2/u1 − c , λ2(u) = u2/u1 , λ3(u) = u2/u1 + c , c :=

√
γ

p(u)

u1
.

Hence, on the state space U := {u ∈ R3 : u1 > 0, u3 > 1
2

u2
2/u1}, the Euler equations are strictly hyper-

bolic, they satisfy Ass. 11.6.2.6. y

EXAMPLE 11.6.2.13 (1D shallow water equations (SWE) [LEV02])

The 1D shallow water equations are a continuum

model for the flow of an incompressible inviscid fluid

in a straight, shallow, and long channel.

They rely on the assumption that the fluid velocity is

always parallel to the channel (x) direction and that it

is uniform across a channel cross section. Fig. 607 x

v(x, t)h(x, t)
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The involved physical quantities: h(x, t): height of fluid ([h] = m), must be non-negative, h ≥ 0

v(x, t): fluid velocity (x-component) ([v] = ms−1)
enter the conservation laws,

conservation of mass
∂h

∂t
+

∂

∂x
(vh) = 0 , (11.6.2.14a)

conservation of momentum
∂

∂t
(hv) +

∂

∂x
(hv2 + 1

2 gh2) = 0 . (11.6.2.14b)

with g > 0 standing for the earth’s gravity acceleration, [g] = 9.81ms−2.

These equations match the general formula (11.6.2.3) with m = 2 and

u =

[
u1

u2

]
:=

[
h

hv

]
, F(u) :=

[
u2

u2
2/u1 +

1
2 gu2

1

]
DF(u) =

[
0 1

−(u2/u1)2 + gu1 2u2/u1

]
.

(11.6.2.15)

The natural state space is U := R+ ×R and the eigenvalues and eigenvectors of DF(u) are

λ1 = v−
√

gh ↔ r1 =

(
1

v−
√

gh

)

λ2 = v +
√

gh ↔ r2 =

(
1

v +
√

gh

)
.

(11.6.2.16)

Since h > 0, the shallow water equations (11.6.2.14) are strictly hyperbolic and comply with Ass. 11.6.2.6.

y

11.6.2.3 Riemann problem

As in Section 11.2.5 (for m = 1) and Section 11.6.1.3 we study the following special Cauchy problems for

a non-linear system of conservation laws

∂u

∂t
(x, t) +

∂F(u)

∂x
(x, t) = 0 on R×]0, T[ , u(x, 0) =

{
ul for x < 0 ,

ur for x > 0 ,
(11.6.2.17)

with given states ul, ur ∈ Rm.

§11.6.2.18 (Single-shock solutions) For linear systems of conservation laws with constant coefficients,

F(u) = Au, A ∈ Rm,m, we have seen in Section 11.6.1.3 that the solution of (11.6.2.17) is a shock fan

comprising m + 1 states (including ul and ur) separated by discontinuities traveling with speeds given by

the eigenvalues of A.

In order to understand when such shock solutions are possible for (11.6.2.17) we relate the speed of

a shock to the bounding states as we have already done in Section 11.2.4 in the form of the Rankine-

Hugoniot jump conditions (11.2.4.2). These can also be formulated for non-linear systems:
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Theorem 11.6.2.19. Rankine-Hugoniot jump conditions for systems

Let a C1-curve (in the x− t-plane) Γ := (γ(τ), τ), 0 ≤ τ ≤ T, separate

Ω̃l := {(x, t) ∈ R×]0, T[:x < γ(t)} , Ω̃r := {(x, t) ∈ R×]0, T[:x > γ(t)} .

Assume that u ∈ L1
loc(R×]0, T[) and that u|Ω̃l

/u|Ω̃r
can be extended to ul ∈ C1(Ω̃l), ur ∈

C1(Ω̃r), which solve ∂u
∂t +

∂
∂x F(u) = 0 in a classical sense in Ω̃l/Ω̃r. Then u is a weak solution

(→ Def. 11.6.2.11) of (11.6.2.17), if and only if

dγ

dτ
(τ) · (ul(γ(τ), τ)− ur(γ(τ), τ)) = F(ul(γ(τ), τ))− F(ur(γ(τ), τ)) ∀0 < τ < T .

A short way to write this Rankine-Hugoniot jump condition in the case of two constant states ul and ur to

the left and right of Γ is, analoguous to (11.2.4.2),

ṡ(ul − ur) = F(ul)− F(ur) , ṡ :=
dγ

dτ
“propagation speed of discontinuity” . (11.6.2.20)

Note that the jump condition (11.6.1.32) for linear systems, F(u) = Au, is a particular consequence of

Thm. 11.6.2.19. y

§11.6.2.21 (Hugoniot loci) Let us assume ul ∈ Rm fixed and view

ṡ(ul − ur) = F(ul)− F(ur) , s ∈ R , ur ∈ Rm , (11.6.2.20)

as an underdetermined system of m equations for the (combined) m + 1 unknowns s ∈ R and ur ∈ Rm.

We expect 1-paraneter families of solutions κ 7→ (s(κ), ur(κ)), at least locally in a neigborhood of

(s = 0, ur = ul). A profound investigation based on Ass. 11.6.2.8 can establish the existence of m such

families. Their right states ur = ur(κ) will trace out m curves in the state space U all running through ul.

In the case m = 2 these considerations have already been illustrated in Fig. 607. A similar visualization

for general systems is give below.

Fig. 608 u1

u2

r1

r2

ul

Curve 1

Curve 2

Linear case: F(u) = Au

Fig. 609

ul

r1

r2

u1

u2

General non-linear case

The union of these m curves in state space covering all possible states that can be connected to a single

state u∗ ∈ U by a shock is known as Hugoniot locus of u∗. y
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EXAMPLE 11.6.2.22 (Hugoniot locus for 1D shallow water equations (11.6.2.14)) We formulate

the Rankine-Hugoniot jump conditions for the 1D shallow water equations in physical variables h, v, cf.

(11.6.2.15),

ṡ(ul − u) = F(ul)− F(u) ⇔
ṡ(hl − h) = hlvl − hv ,

ṡ(hlvl − hv) = hlv
2
l − hv2 + 1

2 gh2
l − h2 .

(11.6.2.23)

Fig. 610
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We eliminate the unknown ṡ in (11.6.2.23):

v(h) = v∗ ±
√

g

2
(

h∗

h
− h

h∗
)(h∗ − h) .

✁ curves of right states u satisfying (11.6.2.20)

w.r.t. ul = (2, 0.5) (g = 1)

∗ =̂ (hl, hlvl)
➚ =̂ r1/r2

y

Summing up, in light of Thm. 11.6.2.19, in order to compute an all-shock solution of the Riemann

problem (11.6.2.17) with left state ul ∈ U and right state ur we have to find m− 1 states uk ∈ U,

k = 1, . . . , m− 1, such that (u0 := ul, um := ur)

❶ ṡk(uk − uk−1) = F(uk)− F(uk−1) , k = 1, . . . , m ,

❷ ṡk < ṡk+1 , k = 1, . . . , m− 1 .
(11.6.2.24)

Formally, (11.6.2.24) is a non-linear system of m2 equations for m2 unknowns, m(m− 1) components of

uk, k = 1, . . . , m− 1, and m speeds ṡk. For ur “sufficiently close” to ul solutions can be found.

EXAMPLE 11.6.2.25 (Shock fans for 1D shallow water equations (11.6.2.14))

✦ hl = hr = 1, vl = 1/2, vr = −1/2 (colliding water fronts)

Fig. 611
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Fig. 612
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✦ hl = 1 hr = 3, vl = vr = 0 (dam break problem)
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Fig. 613
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Fig. 614
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y

§11.6.2.26 (Simple rarefaction waves for systems) Remember from § 11.2.5.9 that for m = 1 we could

always find continuous (weak) solutions of the scalar conservation law connecting any two left and right

states, so-called rarefaction waves Lemma 11.2.5.10.

Also for m > 1 the search for similarity solutions u(x, t) = w(x/t), w : R → Rm some function to be

determined, is successful: Under Ass. 11.6.2.6 and Ass. 11.6.2.8, for any fixed left state ul ∈ U we find m
curves ci : Ii ⊂ R → Rm with ci(0) = ul such that for every i = 1, . . . , m, κ ∈ Ii, there exists a function

w : R → Rm and σ− < σ+ such that

u(x, t) =





ul for x < σ−t ,

w(x/t) for σ−t < x < σ+t ,

ci(κ) for x > σ+t ,

κ ∈ Ii , (11.6.2.27)

is a weak solution of the Riemann problem (11.6.2.17) with ur = ci(κ). y

§11.6.2.28 (Entropy conditions for systems of conservation laws) Of course, as in the case m = 1
discussed in Section 11.2.6, weak solutions of systems of conservation laws will usually fail to be unique.

We need entropy conditions to select physically meaningful weak solutions, more precisely, to identify

non-physical shocks. This can be accomplished by extending Def. 11.2.6.1 to systems.

Definition 11.6.2.29. Lax entropy condition for systems of conservation laws

A discontinuity separating states ul and ur and propagating at speed ṡ satisfies the Lax entropy

condition (LEC), if

(i) ∃k ∈ {1, . . . , m}: λk(ul) > ṡ > λk(ur)
(ii) ∀j < k: λj(ul), λj(ur) < ṡ
(iii) ∀j > k: λj(ul), λj(ur) > ṡ

This means that

• the characteristics of the k-th family impinge on the shock,

• the characteristics of the j-th family cross the shock from left to right, if j < k,

• the characteristics of the j-th family cross the shock from right to left, if j > k, and

• that no family of characteristics must diverge from a shock.

Here, in the spirit of Def. 11.2.2.3, we mean by “k-characteristic” a curve τ 7→ (γ(τ), τ) in the (x, t)-
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plane such that

dγ

dτ
(τ) = λk(u(γ(τ), τ)) , k = 1, . . . , m , (11.6.2.30)

where u = u(x, t) is a solution of the Cauchy problem (11.6.2.4). In regions where u is constant the

characteristics are straight lines. y

EXAMPLE 11.6.2.31 (Lax entropy condition for the shallow water equations (11.6.2.14)) We study the

characteristics for particular shock solutions of the Riemann problem for the 1D shallow water equations

(11.6.2.14). We plot the k-characteristics, k = 1, 2, for all-shock solutions.

✦ Riemann problem for (11.6.2.14): hl = hr = 0, vl = 0.5, vr = −0.5 (colliding water fronts), see

Ex. 11.6.2.25, Fig. 612, Fig. 613.

Fig. 615
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Fig. 616
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The characteristics with slope λ1(ul) (from left) and λ1(ur) both transport information into the left shock.

The right shock sees the characteristics with slopes λ2(ul) and λ2(ur) impinging on it. Both shocks

“physical”; the Lax entropy condition is satisfied for both.

✦ Riemann problem for (11.6.2.14): hl = 1, hr = 3, vl = 0, vr = 0 (dam break), see Ex. 11.6.2.25,

Fig. 614, Fig. 615

Fig. 617
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Fig. 618
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Lax entropy condition violated !
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The left shock has the 1-characteristics converging on it, while the right shocks lies in a divergence zone

of the 2-characteristics. The former shock is “physicsl”, the latter is not. y

Solution of Riemann problem for non-linear systems

The computation of closed-form (“analytic”) “physical” solutions of Riemann problems for non-linear

systems of conservation laws is possible only for a few simple models. No general algorithm exists

so far.

Remark 11.6.2.33. Despite the assumptions made above, strong theoretical results analoguous to those

given for the Cauchy problem for scalar conservation laws in Section 11.2.7, are not available for non-

linear systems. Existence of solutions can be shown under mild assumptions, but uniqueness of solutions

remains elusive in general, even if entropy conditions in various forms are imposed. y

Review question(s) 11.6.2.34 (Non-linear systems of conservation laws)

(Q11.6.2.34.A) Write down and explain the Rankine-Hugoniot jump condition for a general non-linear

conservation law ∂u
∂t +

∂F(u)
∂x = 0.

(Q11.6.2.34.B) What is the Hugoniot locus of a state u∗ for a general non-linear system of conservation

laws with two-dimensional state space (m = 2)?

(Q11.6.2.34.C) The p-system is the non-linear system of conservations laws

∂

∂t

[
v
w

]
+

∂

∂x

[
w

p(v)

]
= 0 on R2 , p : R → R smooth, strictly decreasing . (11.6.2.35)

Show that the p-system is strictly hyperbolic.

Hint. A system of conservation laws ∂u
∂t +

∂F(u)
∂x = 0, F : U ⊂ Rm → Rm is called strictly hyperbolic, if

the Jacobians DF(u) have m distinct eigenvalues for all u ∈ U.

(Q11.6.2.34.D) Based on the Rankine-Hugoniot juimp condition, show that for the p-system (11.6.2.35) a

shock connecting u = (v, w) to some other fixed state u∗ = (v∗, w∗) must satisfy

w = w∗ ±
√
−
(

p(v)− p(v∗)
v− v∗

)
(v− v∗) .

△

11.6.3 Finite Volume Methods (FVMs) for Systems of Conservation Laws

Video tutorial for Section 11.6.3: Finite Volume Methods (FVMs) for Systems of Conservation

Laws: (65 minutes) Download link, tablet notes

➣ Quizz 11.6.3.50

We are concerned with the (spatial) discretization of the Cauchy problem for a general translation-invariant

non-linear system of conservation laws

PDE (11.6.1.2):
∂u

∂t
(x, t) +

∂F(u)

∂x
(x, t) = 0 on R×]0, T[ , (11.6.2.4a)

Initial conditions: u(x, 0) = u0(x) for x ∈ R , (11.6.2.4b)
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with given initial data u0 and a continuously differentiable flux function F : U → Rm, U ⊂ Rm the set of

admissible states, that satisfies

Assumption 11.6.2.6. Strict hyperbolicity

The Jacobian DF(u) of the flux function F : Rm → Rm must have m distinct real eigenvalues for

any u ∈ U.

Assumption 11.6.2.8. Genuine non-linearity/linear degeneracy

The eigenvectors ri(u) and associated eigenvalues λi(u) of DF(u) must satisfy

gradu λi(u) · ri(u) 6= 0 ∀u ∈ U or gradu λi(u) · ri(u) = 0 ∀u ∈ U . (11.6.2.9)

As in 11.6.2.5 we write λi(u) and ri(u) for the ordered eigenvalues and eigenvectors of DF(u), u ∈ U,

respectively. We also set R(u) := [r1(u), . . . , rm(u)] ∈ Rm,m, u ∈ U, for the matrix whose columns

contain the eigenvectors of DF(u), which means R(u)−1DF(u)R(u) = diag(λ1(u), . . . , λm(u)), cf.

(11.6.1.17).

11.6.3.1 Finite-Volume Spatial Semi-Discretization: Framework

As in Section 11.3.2 we endow the spatial domain R (Cauchy problem!) with an equidistant mesh M:

M := {]xj−1, xj[: xj := jh, j ∈ Z} . (11.3.2.1)

mesh cells and dual cells ✄
Fig. 619 xjxj−1 xj+1 xj+2

As time-dependent unknown µj = µj(t) ∈ Rm, j ∈ Z, we introduce approximations of the averages of

the solution u = u(x, t) of (11.6.2.4) over the dual cells ofM, cf. (11.3.2.2)

µj(t) ≈
1

h

j+1/2∫

xj−1/2

u(x, t)dx ∈ Rm , t ∈]0, T[ . (11.6.3.3)

The identification of the sequence

(
µj(t)

)
j∈Z

with a piecewise constant function

uN = uN(x, t) : R×]0, T[→ Rm according to (11.3.2.3) carries over to the system case unaltered;

Fig. 519 can be drawn for every component of uN.

Replacing u with u and µ with µ the manipulations (11.3.2.4) & (11.3.2.5) can be adapted to systems and

suggest the following definition of a finite-volume semi-discrete evolution for (11.6.2.4) in conservation

form:

dµj

dt
(t) = −1

h

(
F̂(µj−ml+1(t), . . . , µj+mr

(t))− F̂(µj−ml
(t), . . . , µj+mr−1(t))

)
, j ∈ Z , (11.6.3.4)

with a Lipschitz continuous numerical flux (function)

F̂ : (Rm)ml+mr → Rm , ml, mr ∈ N . (11.6.3.5)

As in (11.3.2.8) we write F̂ = F̂(v, w), v, w ∈ Rm in the case ml = mr = 1 (2-point numerical flux). It

is straightforward to adapt Code 11.3.2.9 to non-linear systems. The truncation of the spatial domain

employed in that code remains valid for systems of conservation laws, since finite speeds of propagation

also apply to them.
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Remark 11.6.3.6 (Full discretization) Applying a timestepping scheme to (11.6.3.4) (after truncation of

the spatial domain) we arrive at a full discretization of the Cauchy problem (11.6.2.4). We skip details

here, because all concepts, considerations, and approaches from Section 11.4 still apply, including CFL

conditions constraining the timestep of explicit single-step timestepping methods. The only new aspect is

that for systems of conservation laws ∂u
∂t (x, t) + ∂F(u)

∂x (x, t) = 0 a suitable bound for the maximal speed

of propagation is

ṡmax := max{|λi(u)| : i = 1, . . . , m, u solves (11.6.2.4)} ,

λi(u) the eigenvalues of DF(u). For want of universal results on bounds for u(x, t) it is difficult to estimate

ṡmax. Bounds based on current approximations can be used, but should be multiplied with a “safety” factor

when used to set the timestep. y

Remark 11.6.3.7 (Higher-order FVM for systems of conservation laws) The main ideas of Section 11.5

remain unchanged for non-linear systems of conservation laws; piecewise linear reconstruction and slope

limiting can simply be applied componentwise. y

11.6.3.2 Numerical Fluxes for Linear Systems of Conservation Laws

Now we restrict ourselves to the case F(u) = Au, A ∈ Rm,m with m distinct real eigenvalues, and con-

sider the Cauchy problem,

PDE:
∂u

∂t
(x, t) + A

∂u

∂x
(x, t) = 0 on R×]0, T[ , (11.6.1.15a)

+ initial conditions: u(x, 0) = u0(x) for x ∈ R . (11.6.1.15b)

§11.6.3.8 (Finite-volume methods by diagonalization) We recall from § 11.6.1.16 that (11.6.1.15a) can

be converted into m decoupled scalar linear advection equations (11.6.1.19):

∂u

∂t
+ A

∂u

∂x
= 0

ũ:=R−1u
➥

∂ũ

∂t
+ D

∂ũ

∂x
= 0 , D := diag(λ1, . . . , λm) . (11.6.3.9)

m decoupled scalar linear advection equations

We write µ̃j = µ̃j(t) for approximations of the dual-cell averages of ũ = ũ(x, t) := R−1u(x, t):

µ̃j(t) ≈
1

h

xj+1/2∫

xj−1/2

ũ(x, t)dx = R−1 · 1

h

xj+1/2∫

xj−1/2

u(x, t)dx ≈ R−1µj(t) . (11.6.3.10)

A finite-volume spatial semi-discretization of ũ
∂t + D ∂ũ

∂x = 0, with 2-point numerical flux F̃ = F̃(v, w),
v, w ∈ Rm, reads

dµ̃j

dt
(t) = −1

h

(
F̃(µ̃j(t), µ̃j+1(t))− F̃(µ̃j−1(t), µ̃j(t))

)
. (11.6.3.11)

Setting

F̂(v, w) := RF̃(R−1v, R−1w) , v, w ∈ Rm , (11.6.3.12)

immediately yields a finite-volumne semi-discretization of the original constant-coefficient linear system of

conservation laws ∂u
∂t (x, t) + A ∂u

∂x (x, t) = 0 based on the 2-point numerical flux F̂,

dµj

dt
(t) = −1

h

(
F̂(µj(t), µj+1(t))− F̂(µj−1(t), µj(t))

)
(11.6.3.13)
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From Section 11.3.4 we already know several finite-volumne schemes for scalar linear advection with

constant velocity. Applying them componentwise will immediately yield numerical flux functions F̃. Next

this will be elaborated for concrete schemes. y

§11.6.3.14 (Upwind finite volume method) We apply the recipe from § 11.6.3.8 with the upwind flux

introduced in Section 11.3.4.3, (11.3.4.19). For a scalar linear advection equation
∂ũi
∂t + λi

∂ũi
∂x = 0 that

numerical flux boils down to

Fuw(v, w) =

{
λiv , if λi ≥ 0 ,

λiw , if λi < 0 ,
= max{λi, 0}v + min{λi, 0}w , v, w ∈ R . (11.6.3.15)

This leads to the transformed numerical flux function

F̃uw(v, w) = D+v + D−w ,
D+ := diag(max{λi, 0}, i = 1, . . . , m) ,
D− := diag(min{λi, 0}, i = 1, . . . , m) .

(11.6.3.16)

Next, we use the formula (11.6.3.12) to obtain a numerical flux function for the original linear system of

conservations laws:

F̂uw(v, W) = A+v + A−w , v, w ∈ Rm , A± := RD±R−1 . (11.6.3.17)

y

§11.6.3.18 (Lax-Friedrich/Rusanov numerical flux) The Lax-Friedrich/Rusanov numerical flux from Sec-

tion 11.3.4.2, (11.3.4.16), for constant-velocity scalar linear advection is, cf. (11.3.4.14),

∂ũi

∂t
+ λi

∂ũi

∂x
= 0 FLF(v, w) =

1

2
λi(v + w)− 1

2
|λi|(w− v) , v, w ∈ R . (11.6.3.19)

The induced transformed numerical flux is

F̃LF(v, w) =
1

2
D(v + w)− 1

2
|D|(w− v) , v, w ∈ Rm , |D| := D+ −D− . (11.6.3.20)

Plugging this F̃ into (11.6.3.12) gives

F̂LF(v, w) = 1
2 A(v + w)− 1

2 |A|(w− v) , v, w ∈ Rm , |A| := A+ −A− . (11.6.3.21)

As in the scalar case, this F̂LF is the central flux plus a weighted diffusive flux. y

§11.6.3.22 (Godunov numerical flux) The idea presented in Section 11.3.4.4 allows a straightforward

generalization to the linear system of conservation laws ∂u
∂t (x, t) + A ∂u

∂x (x, t) = 0.

Given two states v, w ∈ Rm, we know from Section 11.6.1.3 that the weak solution of the Riemann prob-

lem

∂u

∂t
(x, t) + A

∂u

∂x
(x, t) = 0 on R×R+ , u(x, 0) =

{
v for x < 0 ,

w for x ≥ 0 .
(11.6.1.29)

is the shock fan

u(x, t) =





v for x < λ1t ,

wr
1r1 +

m

∑
i=2

wl
1ri for λ1t < x < λ2t ,

...
...

k

∑
i=1

wr
i ri +

m

∑
i=k+1

wl
1ri for λkt < x < λk+1t ,

k = 1, . . . , m− 1 ,
...

...

w for x > λmt ,

(11.6.1.31)
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ul = ∑
m

k=1
wl

krk , wl
k :=

(
R−1v

)
k

, ur = ∑
m

k=1
wr

krk , wr
k :=

(
R−1w

)
k

. (11.6.1.30)

Hence, at x = 0 and for all t > 0 u attains the constant state

u↓(v, w) := u(0, t) =
p

∑
i=1

wr
i ri +

m

∑
i=p+1

wl
1ri , p := max{i ∈ {1, . . . , m} : λi < 0} . (11.6.3.23)

Plugging this state into the flux function F(u) = Au we get

Au↓(v, w) =
p

∑
i=1

wr
i λiri +

m

∑
i=p+1

wl
iλiri =

p

∑
i=1

(
R−1w

)
i
λiri +

m

∑
i=p+1

(
R−1v

)
i
λiri

= RD−R−1w + RD+R−1v = A+v + A−w ,

where we reused the notations from (11.6.3.16) and (11.6.3.17),

D+ := diag(max{λi, 0}, i = 1, . . . , m) ,
D− := diag(min{λi, 0}, i = 1, . . . , m) ,

A± := RD±R−1 .

This means that the Godunov numerical flux F̂GD(v, w) coincides with the upwind numerical flux in the

case of linear systems of conservation laws,

F̂GD(v, w) = Au↓(v, w) = F̂uw(v, w) = A+v + A−w , v, w ∈ Rm , (11.6.3.24)

an observation we have already made for m = 1 in the beginning of Section 11.3.4.4. y

11.6.3.3 Numerical Fluxes for General Non-Linear Systems of Conservation Laws

We return to the generic Cauchy problem stated in the beginning of the section,

the PDE (11.6.1.2):
∂u

∂t
(x, t) +

∂F(u)

∂x
(x, t) = 0 on R×]0, T[ , (11.6.2.4a)

+ initial conditions: u(x, 0) = u0(x) for x ∈ R . (11.6.2.4b)

All assumptions on the flux function F made above still apply.

§11.6.3.25 (Exact Godunov numerical flux) We first examine Godunov numerical flux functions

guided by the same idea as in Section 11.3.4.4 for m = 1:

F̂GD(v, w) := F(u↓(v, w)) , v, w ∈ U ⊂ Rm , u↓(v, w) := Ψ(0) , (11.6.3.26)

where u(x, t) = Ψ(x/Pt) is a similarity solution of the Riemann problem

∂u

∂t
+

∂F(u)

∂x
= 0 , u(x, t) =

{
v for x < 0 ,

w for x ≥ 0 .
(11.6.3.27)

The daunting insight from Section 11.6.2.3 remains true as regards the use of Godunov numerical fluxes.

The computation of Ψ(0) is possible only in exceptional cases (e.g., for the shallow water

equations (11.6.2.14)), and, even then entails solving m×m non-linear systems of equa-

tions.

Spatial finite volume semi-discretization of (11.6.2.4) based on exact Godunov numerical fluxes is

too expensive, if feasible at all.
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The only practical option is to rely on approximate Godunov numerical fluxes.

y

§11.6.3.28 (Local Roe linearization) The first attempt is to replace the Riemann problem (11.6.3.27) with

a Riemann problem for a linear system of conservation laws

∂ũ

∂t
(x, t) + AR

∂ũ

∂x
(x, t) = 0 on R×R+ , ũ(x, t) =

{
v for x < 0 ,

w for x ≥ 0 ,
(11.6.3.29)

with a “suitable” matrix AR = AR(v, w) ∈ Rm,m.

Let us assume that w ∈ U belongs to the Hugoniot locus of v ∈ U, that is the solution of the Riemann

problem (11.6.3.27) is a single shock separating the two constant states v (“on the left”) and w (“on the

right”). By the Rankine-Hugoniot jump condition of Thm. 11.6.2.19, (11.6.2.20) that shock will move with

constant speed ṡ satisfying

ṡ(w− v) = F(w)− F(v) .

In this case we want (11.6.3.29) to possess a single shock solution with a shock moving with the same

speed ṡ. By our explicit “wave decomposition” formula (11.6.1.30) for the weak solution of (11.6.3.29) a

single shock solution will be obtained, if and only if

w− v is an eigenvector of AR with eigenvalue ṡ.

This is implied by demanding that AR = AR(v, w) has the special properties collected in the following

definition.

Definition 11.6.3.30. Roe matrix

A matrix-value function AR : U ×U → Rm,m is a Roe matrix for the flux function F : U → Rm, if

(i) AR(u, u) = DF(u) for all u ∈ U (consistency),

(ii) AR(v, w)(w− v) = F(w)− F(v) for all v, w ∈ U (correct shock speed),

(iii) AR(v, w) has m distinct real eigenvalues (strict hyperbolicity).

y

EXAMPLE 11.6.3.31 (Roe matrix for shallow water equations (11.6.2.14), [LEV02]) The state space

and flux function for the shallow water equations are (u =
[ u1

u2

]
=
[

h
hv

]
)

U := R+ ×R ⊂ R2 , F(u) =

[
hv

hv2 + 1
2 gh2

]
=

[
u2

u2
2

u1
+ 1

2 gu2
1

]

DF(u) =

[
0 1

−(u2/u1)2 + gu1 2u2/u1

]
=

[
0 1

−v2 + gh 2v

]
.

In literature we find the following choice for a Roe matrix

AR(v, w) = DF

([
h

hv̂

])
,

h := 1
2(hv + hw) ,

v̂ :=

√
hvvv +

√
hwvw√

hv +
√

hw

, v =

[
hv

hvvv

]
, w =

[
hw

hwvw

]
. (11.6.3.32)

The verification of condition (ii) of Def. 11.6.3.30 can be done by an elementary, but lengthy computation.

y
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§11.6.3.33 (Harten-Lax-van Lehr-Einfeldt (HLLE) two wave entropy fix) As we have seen in Sec-

tion 11.6.1.3 the solution of (11.6.3.29) is a pure shock fan. We also know from § 11.6.2.28 that

some of these shocks may be “non-physical” in the sense that they violate the Lax entropy condition

of Def. 11.6.2.29.

Hence, an approximate Godunov numerical flux based on (11.6.3.29) will be based on an ũ with non-

physical behavior and will make the induced finite volume methods produce non-physical solutions. We

have seen this already for m = 1 in Ex. 11.3.4.22, where the upwind numerical flux failed to capture a

transsonic rarefaction fan and we got a non-physical all-shock solution instead.

It turns out that a surprisingly simple two-wave approximation can offer a remedy [HLV83; EIN88]. As

approximation for the solution of the Riemann problem we use the three-state/two-shock trial expression

ŭ(x, t) =





v , if x < ṡ−t ,

u∗ , if ṡ−t ≤ x < ṡ+t ,

w , if ṡ+t ≤ x ,

(11.6.3.34)

with edge speeds

ṡ− := min{λ̂1, λ1(v)} ,

ṡ+ := max{λ̂m, λm(w)} ,
(11.6.3.35)

where the λ̂i, i = 1, . . . , m, are the (sorted) eigen-

values of a Roe matrix AR(v, w).
Fig. 620 x

t

11

ṡ− ṡ+

v w

u∗

The “bridge state” u∗ is determined by expecting ŭ = ŭ(v, w) to satisfy the same global conservation

property as an exact weak solution of the Riemann problem for ∂u
∂t (x, t) + ∂F(u)

∂x (x, t) = 0 with left/right

state v/w,

− d

dt

∫

R
ŭ(x, t)dx = F(w)− F(v) . (11.6.3.36)

In light of (11.6.3.34) this is equivalent to

ṡ−(u∗ − v) + ṡ+(w− u∗) = F(w)− F(v) ⇒ u∗ =
F(w)− F(v)− ṡ+w + ṡ−v

ṡ− − ṡ+
, (11.6.3.37)

which defines an approximate Godunov numerical flux also known as HLLE numerical flux

F̂HLLE(v, w) =





F(v) , if ṡ− > 0 , ṡ− from (11.6.3.35) ,

F(u∗) , if ṡ− < 0 < ṡ+ , u∗ as in (11.6.3.37) ,

F(w) , if ṡ+ < 0 , ṡ+ according to (11.6.3.35) ,

(11.6.3.38)

for any states v, w ∈ U. y

EXAMPLE 11.6.3.39 (HLLE numerical flux for scalar conservation law) We consider the special case

of a scalar conservation law ∂u
∂t +

∂
∂x f (u) = 0 with a strictly convex smooth flux function f : U ⊂ R → R.

In this case u 7→ f ′(u) is increasing. The “Roe matrix” is

AR(v, w) = [ṡ] ∈ R1,1 , ṡ :=
f (w)− f (v)

w− v
. (11.6.3.40)
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Taking into account the monotonicity of f ′ we find for the edge speeds

ṡ− =

{
ṡ , if v > w ,

f ′(v) , if v ≤ w ,
ṡ+ =

{
ṡ , if v > w ,

f ′(w) , if v ≤ w .
(11.6.3.41)

Thus, we end up with

FHLLE(v, w) = f (ŭ↓) , ŭ↓ :=





v , if ṡ− > 0 ,
f (w)− f (v)− f ′(w)w+ f ′(v)v

f ′(v)− f ′(w)
, if f ′(v) < 0 < f ′(w) ,

w , if ṡ+ < 0 .

(11.6.3.42)

Note that f ′(v) < 0 < f ′(w), which implies v ≤ w, is precisely the case of a transsonic rarefaction, which

cannot be dealt with by a simple upwind numerical flux. Refer to the discussion in ??, Rem. 11.3.4.34. y

EXAMPLE 11.6.3.43 (HLLE numerical flux for Burgers equation (11.1.3.4)) We face a scalar conser-

vation law (m = 1) with strictly convex flux function f (u) = 1
2 u2, f ′(u) = u. Then (11.6.3.42) becomes

F̂HLLE(v, w) =





1
2 v2 , if

(
v > w ∧ 1

2(v + w) > 0
)

or 0 < v < w ,
1
2 w2 , if

(
v > w ∧ 1

2(v + w) < 0
)

or v < w < 0 ,
1
8(v + w)2 , if v < 0 < w ,

v, w ∈ R .

(11.6.3.44)

The following plots display F̂HLLE(v, w) versus the exact Godunov numerical flux (11.3.4.33) for Burgers

equation.

Fig. 621
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We observe that F̂HLLE features a discontinuity, which does not seem to affect its performance, however.

y

EXPERIMENT 11.6.3.45 (HLLE-FVM for Burgers equation)
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We repeat Exp. 11.3.4.35 (equidistant spatial mesh

with mesh width h = 0.06, explicit Euler timestep-

ping, timestep size τ = h) and try to approximate a

transsonic rarefaction for Burgers equation.

Solution at T = 1 ✄

The rarefaction fan is resolved well and the spurious

expansion shock is suppressed successfully!

Fig. 623
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y

EXPERIMENT 11.6.3.46 (HLLE-FVM for shallow water equation) We simulate the dam break Cauchy

problem (hl = 1 hr = 3, vl = vr = 0) for the 1D shallow water equation on an equidistant spatial mesh

with meshwidth h = 0.06, using the HLLE numerical flux (11.6.3.42) based on the Roe matrix (11.6.3.32).

Explicit Euler timestepping with τ = 1
2 h was employed.

The positions of the leading shock and the trailing rarefaction fan are resolved well, though considerable

smearing of sharp features of the solution can be observed. The scheme is low-order and diffusive. y

§11.6.3.47 (Lax-Friedrich/Rusanov numerical flux for general systems) Local linearization by means

of the Row matrix AR = AR(v, w) (→ Def. 11.6.3.30) paves the way for generalizing the Lax-Friedrichs

numerical flux (11.6.3.21) for linear system; the Roe matrix provides the weight for the artificial diffusive

flux added to the central flux. Thus, (11.6.3.21) is converted into

F̂LF(v, w) =
1

2
(F(v) + F(w))− 1

2
|AR(v, w)|(w− v) , v, w ∈ U , (11.6.3.48)

|AR(v, w)| := R diag(|λ̂1|, . . . , |λ̂m|)R−1 , AR(v, w) = R diag(λ̂1, . . . , λ̂m)R
−1 .

y

EXPERIMENT 11.6.3.49 (FVM with Lax-Friedrich flux for shallow water equations) The setting is the

same as in Exp. 11.6.3.46, just with the HLLE numerical flux replaced with the Lax-Friedrichs numerical

flux (11.6.3.48).

We observe that like its scalar counterpart (11.3.4.16) the Lax-Friedrichs numerical flux (11.6.3.48) avoids

all oscillations, but causes significant smearing of shocks. y

Review question(s) 11.6.3.50 (FVMs for non-linear systems of conservation laws)

(Q11.6.3.50.A) Give a concrete expression for the upwind/Godunov numerical flux for the 1D linear wave

equation

u(x, t) :=

[
v(x, t)
w(x, t)

]
,

∂u

∂t
(x, t) +

∂

∂x

([
0 −c(x)2

−1 0

]

︸ ︷︷ ︸
=:A

u(x, t)
)
= 0 on R×]0, T[ . (11.6.1.9)

Hint. The formula for the upwind flux is

F̂uw(v, W) = A+v + A−w , v, w ∈ Rm , A± := RD±R−1 . (11.6.3.17)
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(Q11.6.3.50.B) For the 1D linear wave equation (??) derive the formula for the Lax-Friedrich/Rusanov

numerical flux function.

Hint. For linear systems of conservation laws we derived

F̂LF(v, w) = 1
2 A(v + w)− 1

2 |A|(w− v) , v, w ∈ Rm , |A| := A+ −A− . (11.6.3.21)

(Q11.6.3.50.C) [Roe matrix for m = 1] Give a universal formula for the Roe matrix for the scalar case

m = 1, that is for the scalar conservation law ∂u
∂t +

∂ f (u)
∂x = 0 with f : R → R. Verify the necessary

properties from the definition.

Definition 11.6.3.30. Roe matrix

A matrix-value function AR : U ×U → Rm,m is a Roe matrix for the flux function F : U → Rm,

if

(i) AR(u, u) = DF(u) for all u ∈ U (consistency),

(ii) AR(v, w)(w− v) = F(w)− F(v) for all v, w ∈ U (correct shock speed),

(iii) AR(v, w) has m distinct real eigenvalues (strict hyperbolicity).

△

Learning outcomes

In this chapter about the numerical treatment of conservation laws you should have learned

• the general form of a scalar conservation law in one spatial dimension, and the balance law ex-

pressed by it.

• the notions of weak solutions, shock solutions, entropy conditions and entropy solutions.

• the general policy of constructing a conservative finite volume spatial semi-discretization.

• important consistent numerical flux functions, in particular the Godunov flux.

• the structure preservation inherent in conservative finite volume methods based on monotone nu-

merical fluxes.

• the concept and significance of the CFL-condition for fully discrete conservative finite volume

schemes.

• the construction of “high-order” spatial discretizations based on slope limited piecewise linear recon-

struction.

• what is a linear/non-linear system of conservation laws.

• about the particular difficulties faced in the solution of Riemann problems for non-linear conservation

laws.

• the construction of finite volume methods for systems of conservation laws based on local lineariza-

tion (Roe matrix).
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Chapter 12

Finite Elements for the Stokes Equation

12.1 Modeling the Flow of a Viscous Fluid

Video tutorial for Section 12.1: Modeling the Flow of a Viscous Fluid: (30 minutes)

Download link, tablet notes

➣ Quizz 12.1.0.19

We are interested in the numerical simulation of the stationary flow of a viscous (“sticky”) stirred fluid in

a container occupying Ω ⊂ Rd,, d = 2, 3. More precisely, we want to find approximations for a velocity

field v = v(x), x ∈ Ω, governing the fluid motion as explained in Section 10.1.1, § 10.1.1.1. The case

d = 2 is relevant for 2D models arising from dimensional reduction based on translational symmetry.

✎ Notation: As before, we use bold typeface for vector valued functions

We restrict ourselves to incompressible fluids according to Def. 10.1.3.1, which means div v ≡ 0 in Ω.

Remeber the appropriate velocity configuration space for an incompressible fluid

V :=
{

v : Ω 7→ Rd continuous , div v = 0
}

. (12.1.0.1)

The continuity requirement is natural, because the velocity of a viscous fluid cannot change abruptly in

space.

§12.1.0.2 (Creeping flow) The flow regimes of an incompressible Newtonian fluid (a fluid, for which stress

is linearly proportional to strain) are distinguished by the size of a fundamental non-dimensional quantity,

the

Reynolds number Re :=
ρVL

µ
, (12.1.0.3)

where (for d = 3) ✦ ρ =̂ density of the fluid ([ρ] = kg m−3)

✦ V =̂ typical velocity of the fluid ([V] = m s−1)

✦ L =̂ characteristic length of the region of interest Ω ([L] = m)

✦ µ =̂ dynamic viscosity ([µ] = kg m−1s−1)

In short: Reynolds number = ratio of inertia forces : viscous (friction) forces

The Reynolds number becomes small, if
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• the speed of the flow is very small (slowly flowing fluids), or

• the flow is studied at tiny length scales (micro flows), or

• the fluid is highly viscous (“sticky”).

In this case acceptably accurate modeling can neglect inertia forces, a situation referred to as creeping

flow; the fluid instantly stops moving, when the stirring stops. y

§12.1.0.4 (Boundary conditions for viscous fluid flow) Intuitively, viscous fluids “stick to the walls of the

container”, which is expressed by

no-slip boundary conditions: v = 0 on ∂Ω . (12.1.0.5)

When treated as essential boundary conditions, no-slip boundary conditions constrain the velocity config-

uration space to

V :=
{

v : Ω 7→ Rd continuous, div v = 0, v |∂Ω = 0
}

. (12.1.0.6)

y

§12.1.0.7 (Energy dissipation in fluid flow) We appeal to an extremal principle to derive governing

equations for incompressible creeping flow: the state of the system renders a physical quantity minimal.

For the elastic string discussed in ??), the taut membrane of ??, the electrostatic field introduced in

Section 1.2.2, this quantity was the total potential energy. For stationary viscous fluid flow, this role is

played by the dissipated energy. Here, energy dissipation should be read as the conversion of kinetic

energy into internal energy (heat). Invariably this will involve production of entropy.

We take for granted that the energy dissipation for a viscous fluid moving with velocity v : Ω→ Rd is

given by the functional

Pdiss(v) =
∫

Ω
µ‖curl v(x)‖2 dx (12.1.0.8)

Here curl is the following first-order differential operator, called the rotation or curl

curl v :=




∂v2

∂x3
− ∂v3

∂x2
∂v3

∂x1
− ∂v1

∂x3
∂v1

∂x2
− ∂v2

∂x1




for d = 3 , curl v :=
∂v1

∂x2
− ∂v2

∂x1
for d = 2 . (12.1.0.9)

This operator has a “geometric interpretation”:
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Fig. 624

“eddy field”, div v = 0
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Plot of ‖curl v‖ for eddy field

curl v measures the “density of eddies/vortices in a flow field”

Thus, (12.1.0.8) means that in viscous fluid flow the conversion of kinetic energy into heat due to friction

presumably happens in vortical flow patterns (eddies). y

§12.1.0.10 (Relevant laws of thermodynamics) The two fundamental laws of thermodynamics conspire

to give us an equilibrium condition:

• The second law of thermodynamics for creeping flow drives towards the

maximization of energy dissipation = entropy production in flow (12.1.0.11)

• The first law of thermodynamics enforces conservation of energy/power balance:

∫

Ω
µ‖curl v(x)‖2 dx =

∫

Ω
f · v dx . (12.1.0.12)

dissipated energy energy injected through forces

The force

density field f : Ω→ Rd ([f] = Nm−3 for d = 3) makes the fluid move and models “stirring”.

This leads to a first equilibrium condition for viscous stationary flow:

v∗ = argmax

{∫

Ω
µ‖curl v(x)‖2 dx: v ∈ V , v satisfies (12.1.0.12)

}
. (12.1.0.13)

This is a constrained optimization problem with constraint (12.1.0.12). y

§12.1.0.14 (Dual equilibrium condition for viscous flow) Out goal is to convert (12.1.0.13) into a

“more standard” optimization problem. We use a duality technique that will first be motivated in a finite-

dimensional setting.

To that end we study a related problem in finite dimensional Euclidean space Rn:

x∗ = argmax
x: xTAx=bTx

xTAx , (12.1.0.15)

with s.p.d. A ∈ Rn,n, b ∈ Rn. Recall from linear algebra that for every s.p.d. matrix M ∈ Rn,n we can

find a unique s.p.d. square root R = A1/2 ∈ Rn,n such that R2 = M→ [NCSE]. Using this construction

we employ the transformation y := A−1/2x and arrive at the equivalent maximization problem

x∗ = argmax
(A1/2x)⊤(A1/2x)=(A−1/2b)⊤(A1/2x)

(A
1/2x)⊤(A1/2x) = A−1/2 argmax

y: ‖y‖2=(A−1/2b)Ty

‖y‖2 . (12.1.0.16)
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Fig. 626

A−1/2b
The set {y : ‖y‖2 = (A−1/2b)Ty} is a sphere

through 0 around 1
2 A−1/2b and we are looking for its

point farthest away from 0.

✁ By “geometric considerations” this will be the point

y∗ = A−1/2b ➣ x∗ = A−1b .

At this point we recall the relationship between linear systems of equations and quadratic minimization

problems, see [NCSE] and Section 1.2.3. This theory tells us that for s.p.d. A x∗ = A−1b can be

obtained by solving a quadratic minimization problem:

x = A−1b ⇔ x∗ = argmin
x∈Rn

1
2 xTAx− bTx . (12.1.0.17)

To have faith that this reasoning applies to (12.1.0.13) as well, the bilinear form (u, v) 7→
∫

Ω
curl u ·

curl v dx should be positive definite according to Def. 1.2.3.26. This will be confirmed in Lemma 12.2.1.2

below.

Another issue, of course, is, whether the above arguments remain true for (infinite dimensional) function

spaces. This is investigated in the theory of variational calculus [ZEI90c], but not elaborated here.

We have found a second equilibrium condition for viscous stationary flow,

v∗ = argmin
v∈V

1
2

∫

Ω
µ‖curl v(x)‖2 dx−

∫

Ω
f · v dx . (12.1.0.18)

This has a manifest structural similarity with the equilibrium conditions (1.2.1.24) for elastic membranes

and (1.2.2.16) for electrostatic fields. From the quadratic minimization problem (12.1.0.18) we derive

variational formulations in the sequel. y

Review question(s) 12.1.0.19 (Modeling the flow of a viscous fluid)

(Q12.1.0.19.A) We consider the flow of a viscous fluid between two long, straight, concentric cylinders,

one of which rotates with a constant speed, while the other does not move.

What is an appropriate configuration space for the velocity of the fluid in the case of a 2D model posed

on a transversal cross section.

(Q12.1.0.19.B) Consider a finite open (on both sides) section of a pipe occupying Ω ⊂ R3. Describe a

velocity field v”Ω→ R3 with both vanishing divergence and rotation.

Hint. Recall that curl ◦ grad = 0.

△

12.2 The Stokes Equations

Parallel to the considerations of Section 1.4 and Section 1.5, from the equilibrium conditions just found we

now derive variational equations and actual boundary value problems, whose solutions provide the fluid

velocity field v : Ω→ Rd.

12. Finite Elements for the Stokes Equation, 12.2. The Stokes Equations 808
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12.2.1 Constrained Variational Formulation

Video tutorial for Section 12.2.1: The Stokes Equations: Constrained variational formulation:

(20 minutes) Download link, tablet notes

➣ Quizz 12.2.1.17

Hidden in the definition of the space V,

V :=
{

v : Ω 7→ Rd continuous, div v = 0, v |∂Ω = 0
}

, (12.2.1.1)

is the linear constraint div v = 0. It will make possible to rewrite the quadratic minimization problem

(12.1.0.18), based on the following auxiliary result:

Lemma 12.2.1.2. −∆ = curl curl− grad div

For v ∈ C2(Ω), v|∂Ω = 0, holds (v = [v1, . . . , vd]
⊤

)

∫

Ω
‖curl v‖2 dx +

∫

Ω
|div v|2 dx =

∫

Ω
‖Dv‖2

F dx =
∫

Ω
Dv : Dv dx =

d

∑
i=1

∫

Ω
‖grad vi‖2 dx .

✎ Notation: Dv :=

[
∂vi

∂xj

]d

i,j=1

: Ω 7→ Rd,d =̂ Jacobian of v,

✎ Notation: ‖M‖F =̂ Frobenius matrix norm,→ [NCSE]

✎ Notation: A : B := ∑
i,j

aijbij for matrices A, B ∈ Rm,n (“componentwise dot product”).

Proof. (Lemma 12.2.1.2) Use the variant of Green’s first formula from Thm. 1.5.2.7

∫

Ω

∂u

∂xj
v dx = −

∫

Ω

∂v

∂xj
u dx ∀u, v ∈ C1(Ω) , u, v = 0 on ∂Ω , (12.2.1.3)

and the fact that different partial derivatives can be interchanged, which implies

∫

Ω

∂u

∂xj

∂v

∂xk
dx =

∫

Ω

∂u

∂xk

∂v

∂xj
dx , k, j = 1, . . . , d .

Then use the definitions of curl and div.
✷

This lemma, in light of the properties div v = 0 in Ω, v = 0 on ∂Ω, for fluid velocity fields v ∈ V, see

(12.2.1.1), gives us the equivalence:

(12.1.0.18)
Lemma 12.2.1.2⇐⇒ v∗ = argmin

v∈V

1
2

∫

Ω
µ‖Dv‖2

F dx
︸ ︷︷ ︸

=:a(v,v)

−
∫

Ω
f · v dx

︸ ︷︷ ︸
=:ℓ(v)

. (12.2.1.4)

Again, this is a quadratic minimization problem (→ Def. 1.2.3.11) on the function space V.

Using that µ is just a constant parameter, we rewrite the quadratic form of (12.2.1.4) as

v = [v1, . . . , vd]
⊤: a(v, v) :=

∫

Ω
µ‖Dv‖2

F dx = µ
d

∑
i=1

‖grad vi‖2 dx . (12.2.1.5)
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From this formula it is immediate that a(v, v) = 0 is only possible for v ≡ 0, cf. § 1.2.3.35,

a(v, v) = 0 ⇔ grad vi = 0 ⇔ vi = const ⇒ vi = 0 , since v|∂Ω=0 . (12.2.1.6)

Corollary 12.2.1.7. Symmetric positive definite bilinear form

The bilinear form

(v, w) 7→ a(v, w) := 1
2

∫

Ω
µDv(x) : Dw(x)dx , v, w ∈ V , (12.2.1.8)

is symmetric positive definite (s.p.d., → Def. 0.3.1.16) on the function space V of divergence-free

vector fields Ω 7→ Rd vanishing on ∂Ω.

Remark 12.2.1.9 (Decoupling of velocity components ?) Rewrite (12.2.1.4) in terms of the components

vi of velocity (with force field f = [ f1, f2, f3]
⊤):

(12.2.1.4) ⇔ argmin
v∈V

d

∑
i=1

(
1
2

∫

Ω
µ‖grad vi‖2 dx−

∫

Ω
fivi dx

)
. (12.2.1.10)

Well, doesn’t this look like three copies of the “scalar” quadratic minimization problem (1.2.2.16) ?

NO! There is no decoupling of components, because the div v = 0 constraint built into V links all

components of the velocity field v.

Thus, this constraint in the space V represents the crucial difference compared to the minimization prob-

lems (1.2.1.24), (1.2.2.16) underlying scalar 2nd-order elliptic variational equations. y

§12.2.1.11 (Function space framework) We follow the policy of Section 1.3 to put (12.2.1.4) into a Hilbert

space (more precisely, Sobolev space) framework, where we have existence and uniqueness of solutions.

Remember the main idea:

The function spaces for a (linear) variational problem are chosen as the largest (Hilbert) spaces on

which the involved bilinear forms and linear forms are still continuous in the sense of Def. 1.2.3.41.

Definition 1.2.3.41. Continuity of a linear form and bilinear form

Consider a normed vector space V0 with norm ‖·‖. A linear form ℓ : V0 → R (→ Def. 0.3.1.4) is

continuous or bounded on V0, if

∃C > 0: |ℓ(v)| ≤ C‖v‖ ∀v ∈ V0 .

A bilinear form a : V0 ×V0 → R (→ Def. 0.3.1.4) on V0 is continuous, if

∃K > 0: |a(u, v)| ≤ K‖u‖‖v‖ ∀u, v ∈ V0 .

The crucial bilinear form from (12.2.1.4) is that given in Cor. 12.2.1.7

a(v, w) = 1
2

∫

Ω
µDv(x) : Dw(x)dx

(12.2.1.5)
= µ

d

∑
i=1

∫

Ω
grad vi(x) · grad wi(x)dx ,

v = [v1, . . . , vd]
⊤ ,

w = [w1, . . . , wd]
⊤ .

(12.2.1.12)
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Obviously, this a is just the sum of d copies of the bilinear form for a second-order elliptic variational

problem as we have seen them in Section 1.3. Hence, by definition the largest space of vectorfields, on

which a from (12.2.1.12) is continuous is
(

H1(Ω)
)d

, vectorfields on Ω ⊂ Rd with each component in

H1(Ω).

Imposing the boundary conditions v|∂Ω as essential boundary conditions we end up with the Sobolev

space

H1
0(div 0, Ω) :=

{
v ∈ (H1

0(Ω))d: div v = 0
}

(12.2.1.13)

as the appropriate Hilbert space, on which to pose the variational problem arising from the quadratic

minimization problem (12.2.1.4). y

§12.2.1.14 (Variational boundary value problem) As in Section 1.4.1 we convert the quadratic mini-

mization problem (12.2.1.4) posed on H1
0(div 0, Ω) into an equivalent (→ Thm. 1.4.1.8) linear variational

problem,

v ∈ H1
0(div 0, Ω): a(v, w) = ℓ(w) ∀w ∈ H1

0(div 0, Ω) ,

which reads in concrete terms (v = [v1, . . . , vd]
⊤

, f = [ f1 . . . , fd]
⊤

): Seek v ∈ H1
0(div 0, Ω) :={

v ∈ (H1
0(Ω))d: div v = 0

}
such that

∫

Ω

µ grad vi · grad wi dx =
∫

Ω

fiwi dx ∀w ∈ H1
0(div 0, Ω) , i = 1, . . . , d ,

m
∫

Ω

µDv : Dw dx =
∫

Ω

f ·w dx ∀w ∈ H1
0(div 0, Ω) .

(12.2.1.15)

✎ notation: A : B := ∑
i,j

aijbij for matrices A, B ∈ Rm,n (“componentwise dot product”).

For this variational problem we verify

• (Ass. 3.1.1.2) that a : H1
0(div 0, Ω)× H1

0(div 0, Ω)→ R is s.p.d. and continuous,

by means of componentwise application of the Poincaré-Friedrichs/Cauchy-Schwarz inequalities,

see above,

• (Ass. 3.1.1.3) that the linear form ℓ is continuous on H1
0(div 0, Ω), for f ∈ (L2(Ω))d,

by the Cauchy-Schwarz inequality, see (1.3.4.15), (1.3.4.16),

• (Ass. 3.1.1.4) that the energy norm is a norm of H1
0(div 0, Ω) and that that space is a Hilbert space,

since H1
0(div 0, Ω) is a closed subspace of (H1(Ω))d.

Then Thm. 3.1.1.5 directly gives us existence & uniqueness of solutions v ∈ H1
0(div 0, Ω) of (12.2.1.15).

y

Remark 12.2.1.16 (H1
0(div 0, Ω)-conforming finite elements) In principle, the linear variational problem

could be tackled by means of a finite element Galerkin discretization.

However, finding finite element spaces ⊂H1
0(div 0, Ω) is complicated [SCV85; NEI20]: Continuous,

piecewise polynomial, locally supported, and divergence free basis fields exist only for polynomial de-

gree ≥ 4! y
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This remark motivates an approach that removes the constraint div v = 0 from trial and test space and

incorporates it into the variational formulation. This will be elaborated next.

Review question(s) 12.2.1.17 (The Stokes equations: Constrained variational formulation)

(Q12.2.1.17.A) Based on the vector analytic identity

div(u× v) = v · curl u− u · curl v , u, v ∈ (C1(Ω))3 , Ω ⊂ R3 , (12.2.1.18)

use Gauss’ divergence theorem

Theorem 1.5.2.4. Gauss’ theorem

With n : ∂Ω 7→ Rd denoting the exterior unit normal vectorfield on ∂Ω and dS indicating integra-

tion over a surface, we have

∫

Ω
div j(x)dx =

∫

∂Ω
j(x) · n(x)dS(x) ∀j ∈ (C1

pw(Ω))d . (12.2.1.19)

to derive a “Green’s formula for the rotation operator”.

(Q12.2.1.17.B) Explain the name/title of the following lemma:

Lemma 12.2.1.2. −∆ = curl curl− grad div

For v ∈ C2(Ω), v|∂Ω = 0, holds (v = [v1, . . . , vd]
⊤

)

∫

Ω
‖curl v‖2 dx +

∫

Ω
|div v|2 dx =

∫

Ω
‖Dv‖2

F dx =
∫

Ω
Dv : Dv dx =

d

∑
i=1

∫

Ω
‖grad vi‖2 dx .

Hint. What are the bilinear forms occurring in the variational formulation of boundary value problem for

the PDE operators curl curl, − grad div, and the vector Laplacian −∆? Apply the formula found in

Question (Q12.2.1.17.A).

(Q12.2.1.17.C) The flow velocity of a viscous fluid solves the following quadratic minimization problem

v∗ = argmin
v∈H1

0(div 0,Ω)

1
2

∫

Ω
µ‖curl v(x)‖2 dx−

∫

Ω
f · v dx . (12.1.0.18)

(i) The “canoncical” form of a quadratic functional is J(v) = 1
2a(v, v)− ℓ(v) + c with a symmetric

bilinear form a and a linear form ℓ, and c ∈ R. What are a and ℓ for the quadratic functional of

(12.1.0.18)?

(ii) Argue why the bilinear form a of (12.1.0.18) is positive definite.

(iii) Why is the linear functional of (12.1.0.18) continuous with respect to the energy norm induced by

a?

(iv) Write down the explicit expression for the norm of H1
0(div 0, Ω).

(v) Why is the energy norm induced by a from (12.1.0.18) equivalent to the norm of H1
0(div 0, Ω) on

that space?

Hint. The result of Lemma 12.2.1.2 is key to answering some of the questions.

△
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12.2.2 Saddle Point Problem Formulation

Video tutorial for Section 12.2.2: The Stokes Equations: Saddle Point Problem Formulation:

(55 minutes) Download link, tablet notes

➣ Quizz 12.2.2.45

In basic calculus [STRLN09] and in [NCSE] you have seen the use of Lagrangian multipliers to obtain

necessary conditions for extremal points of differentiable functions under (linear) equality constraints.. The

ideas discussed in [NCSE] and [NCSE] in a finite-dimensional setting carry over to infinite-dimensional

settings.

Idea: Weak enforcement of the divergence constraint div v = 0
through a Lagrange multiplier

§12.2.2.1 (Heuristics behind Lagrangian multipliers) We work in the following abstract setting:

✦ U, Q =̂ real Hilbert spaces with inner products (·, ·)U, (·, ·)Q,

✦ J : U 7→ R convex and differentiable functional,

✦ B : U 7→ Q a continuous linear operator, defining the constraint through u ∈ U: Bu = 0.

We consider a linearly constrained minimization problem,

v∗ ∈ U: v∗ = argmin
v∈U,Bv=0

J(v) . (12.2.2.2)

We introduce the Lagrangian functional/Lagrangian L : U ×Q→ R and find that the sought minimizer

can be obtained as the solution of an min-max problem for that functional:

L(v, p) := J(v) + (p,Bv)Q , v ∈ U, p ∈ Q v∗ = argmin
v∈U

sup
p∈Q

L(v, p) , (12.2.2.3)

because, if Bv 6= 0, the value of the inner supremum will be +∞, and, thus, such a v can never be a

candidate for a minimizer. The following lemma sheds light on this name.

In (12.2.2.3) p is called a Lagrange multiplier, Q the multiplier space. Moreover, a min-max problem like

(12.2.2.3) is usually called a saddle point problem.

Lemma 12.2.2.4. Necessary conditions for existence of solution of saddle point problems

→ [ZEI90c]

Any solution v∗ of (12.2.2.3) will be the first component of a zero (v∗, p∗) of the derivative (“gradi-

ent”) of the Lagrangian functional L: DL(v∗, p∗) = 0.

✎ notation: D =̂ total (Frechet) derivative of a differentiable apping between normed vector spaces.

By the very structure of the saddle point problem, see Fig. 628 for illustration, we have

L(v∗, p) ≤ L(v∗, p∗) ≤ L(v, p∗) ∀v ∈ U, p ∈ Q . (12.2.2.5)
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2D illustration for the solution of a min-max problem

✄

saddle point

(non-extremal critical point)

The saddle point is a minimum when approached

from the “U-direction”, and a maximum, when ap-

proached from the “Q-direction”. Obviously, the gra-

dient in the saddle point vanishes, cf. the discussion

in [NCSE].

Fig. 627
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Since L maps from the space U ×Q to R, its derivatives assigns to every element of U ×Q a linear form

on U ×Q! Hence, Lemma 12.2.2.4 has a natural variational interpretation:

v∗ solves (12.2.2.3) ⇒ ∃p∗ ∈ U: DL(v∗, p∗)(w, q) = 0 ∀w ∈ U, q ∈ Q . (12.2.2.6)

In terms of limits of difference quotients the requirement that (v∗, p∗) is a zero of the derivative of L means

that this “point” ∈ U ×Q will satisfy

(12.2.2.6) ⇔
lim
t→0

L(v∗ + tw, p∗)− L(v∗, p∗)
t

= 0 ∀w ∈ U ,

lim
t→0

L(v∗, p∗ + tq)− L(v∗, p∗)
t

= 0 ∀q ∈ Q .
(12.2.2.7)

Using the formula for L, we can compute its “directional derivatives” as in Section 5.2.1 (for the elastic

string energy functional there)

∂L

∂v
(v, p)(w) = DJ(v)(w) + (p,Bw)Q , v, w ∈ U , p ∈ Q , (12.2.2.8a)

∂L

∂p
(v, p)(q) = (q,Bv)Q , p, q ∈ Q , v ∈ U . (12.2.2.8b)

Combining (12.2.2.8) and (12.2.2.6) we obtain

(12.2.2.6) ⇔
〈DJ(v∗), w〉 + (p∗,Bw)Q = 0 ∀w ∈ U ,

(q,Bv∗)Q = 0 ∀q ∈ Q .
(12.2.2.9)

This is a variational saddle point problem (SPP). . y

§12.2.2.10 (Linearly constrained quadratic minimization problem [BRA07]) We stay in the abstract

framework of § 12.2.2.1 and now deal with the relevant special case that J is a quadratic functional J :
U 7→ R (→ Def. 1.2.3.2)

J(v) := 1
2a(v, v)− ℓ(v) ,

with a continuous positive definite, symmetric bilinear form a : U × U 7→ R (→ Def. 0.3.1.4,

Def. 1.2.3.26), and a continuous linear form ℓ : U 7→ R. Exploting (bi-)linearity we find

lim
t→0

J(v∗ + tw)− J(v∗)
t

= 〈DJ(v∗), w〉 = a(v∗, w)− ℓ(w) , v∗, w ∈ U .

Thus, in this special case (12.2.2.9) becomes a linear variational saddle point problem:
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Seek v∗ ∈ U, p∗ ∈ Q

a(v∗, w) + (p∗,Bw)Q = ℓ(w) ∀w ∈ U ,

(Bv∗, q)Q = 0 ∀q ∈ Q .
(12.2.2.11)

For rigorous mathematical treatment of constrained optimization in Banach spaces refer to [ZEI90c]. A

discussion in finite-dimensional setting is given in [NCSE]. y

§12.2.2.12 (Stokes saddle point problem) We now adapt the abstract approach outlined in § 12.2.2.1 to

the linearly constrained variational problem

v ∈ H1
0(div 0, Ω):

∫

Ω
Dv : Dw dx =

∫

Ω
f ·w dx ∀w ∈ H1

0(div 0, Ω) , (12.2.1.15)

H1
0(div 0, Ω) :=

{
v ∈ (H1

0(Ω))d: div v = 0
}

. (12.2.2.13)

The concrete counterparts of the abstract entities used in § 12.2.2.1 are

✦ the Hilbert spaces U = (H1
0(Ω))d, Q = L2(Ω),

✦ the constraint div v = 0 ➣ B := div : U 7→ Q, obviously continuous,

✦ J ↔ v 7→ 1
2

∫
Ω

µ‖Dv‖2 dx −
∫

Ω
f · v dx, a strictly convex quadratic functional

v 7→ 1
2a(v, v)− ℓ(v) (→ Def. 1.2.3.2) with building blocks

a(v, w) :=
∫

Ω
µ‖Dv‖2 dx , ℓ(v) :=

∫

Ω
f · v dx , v, w ∈ U . (12.2.2.14)

A suitable Lagrangian functional for (12.2.1.15) is

L(v, p) = 1
2

∫

Ω
µ‖Dv‖2

F dx−
∫

Ω
f · v dx +

∫

Ω
div v p dx , v ∈ (H1

0(Ω))d, p ∈ L2(Ω) .

(12.2.2.15)

The concrete incarnation of (12.2.2.11) is the final Stokes boundary value problem in variational saddle

point form.

Seek the velocity field v ∈ (H1
0(Ω))d and a Lagrange multiplier p ∈ L2(Ω) such that

∫
Ω

µDv : Dw dx +
∫
Ω

div w p dx =
∫
Ω

f ·w dx ∀w ∈ (H1
0(Ω))d ,

∫
Ω

div v q dx = 0 ∀q ∈ L2(Ω) .
(12.2.2.16)

The Lagrange multiplier p has the physical meaning of a pressure ([p] = N m−2).

Note that no (differential) constraint is imposed on trial and test functions in (12.2.2.16). y

§12.2.2.17 (Ensuring uniqueness of pressure) We point out that by Gauss theorem Thm. 1.5.2.4

∫

Ω
div v dx =

∫

∂Ω

v · n dS = 0 , since v|∂Ω = 0 .

We infer that the pressure solution p in (12.2.2.16) can be unique only up to an constant, because we can

add any constant to p and will still retain a solution.
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The situation is similar to that encountered for pure Neumann boundary value problems fro 2nd-order

scalar elliptic PDEs in Ex. 1.8.0.10, and discussed in Rem. 1.8.0.14. As in that case, the remedy is to

impose a vanishing average condition on the “pressure” trial and test space, cf. (1.8.0.15),

Choose p ∈ L2
∗(Ω) := {q ∈ L2(Ω):

∫

Ω
q dx = 0} . (12.2.2.18)

←→ Linear constraint on “pressure” trial/test space L2(Ω) y

Thus we have arrived at the final weak saddle point form of the Stokes problem with (essential) no-slip

boundary conditions v|∂Ω, which models the flow of a viscous fluid in a container under the action of

the stirring force field f ∈ (L2(Ω))d:

Seek the fluid velocity field v ∈ (H1
0(Ω))d, and the pressure p ∈ L2

∗(Ω) such that

∫

Ω

µDv : Dw dx +
∫
Ω

div w p dx =
∫
Ω

f ·w dx ∀w ∈ (H1
0(Ω))d ,

∫

Ω

div v q dx = 0 ∀q ∈ L2
∗(Ω) .

(12.2.2.19)

§12.2.2.20 (Theory of saddle-point variational problems [BRA07]) We revisit the abstract setting of

§ 12.2.2.10 and consider the saddle-point variational problem

v ∈ U

p ∈ Q
:

a(v, w) + b(w, p) = ℓ(w) ∀w ∈ U ,

b(v, q) = g(q) ∀q ∈ Q .
(12.2.2.21)

where ✦ U and Q are Hilbert spaces, with norms ‖·‖U and ‖·‖Q, respectively,

✦ a : U ×U → R and b : U ×Q→ R are continuous/bounded bilinear forms,

✦ ℓ : U → R and g : Q→ R are continuous/bounded linear forms.

Powerful abstract theoretical results give us necessary and sufficient conditions for existence, uniqueness,

and stability of solutions. To state them we introduce the nullspace/kernel of b,

N (b) := {v ∈ U : b(v, q) = 0 ∀q ∈ Q} . (12.2.2.22)

Since b : U ×Q→ R is continuous/bounded, N (b) is a closed subspace of U.
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Theorem 12.2.2.23. Ladyzhenskaya–Babuška–Brezzi conditions (LBB-conditions)

If the following two conditions are satisfied,

(i) the bilinear form a is N (b)-elliptic (ellipticity on the kernel)

∃α > 0: |a(v, v)| ≥ α‖v‖2
U ∀v ∈ N (b) , (LBB1)

(ii) the bilinear form b satisfies the inf-sup condtion

∃β > 0: sup
v∈U

|b(v, q)|
‖v‖U

≥ β‖q‖Q ∀q ∈ Q , (LBB2)

then the variational saddle point problem (12.2.2.50) possesses a unique solution

(v, p) ∈ U ×Q, which satisfies

‖v‖U + ‖p‖Q ≤ C

(
sup
w∈U

|ℓ(w)|
‖w‖U

+ sup
w∈U

|g(q)|
‖q‖Q

)
, (12.2.2.24)

with C > 0 independent of ℓ and g.

Proof. (Incomplete sketch) The proof of this theorem relies on rather deep results of functional analysis

(Hahn-Banach theorem, open mapping theorem, closed graph theorem) and is beyond the scope of this

course. It can be pieced together from the proofs of Thm. 3.6, Lemma 4.2, and Thm. 4.3 in [BRA07].

Moreover, the estimate (12.2.2.24) can be refined, see [BRA07]. We only give an outline of the proof,

leaving large gaps.

➊ The most profound part of the proof of ?? relies on duality theory in Banach spaces [RUD73]. To begin

with, the inf-sup condition (LBB2) from Thm. 12.2.2.49 implies that the bounded operator B : Q→ U′ 1

induced by the bilinear form b through B(q)(w) := b(w, q), q ∈ Q, w ∈ U, is injective with closed range.

Appealing to [RUD73] we conclude that its adjoint B′ : U → Q′ defined by B′(v)(q) := v, q is surjective

and even bijective when restricted to the orthogonal complement of N (b). The norm of the inverse

will be bounded by β−1. The bottom line is the following implication of the inf-sup condition (LBB2) of

Thm. 12.2.2.49:

∃β > 0: sup
v∈U

b(v, q)

‖v‖U

≥ β‖q‖Q ∀q ∈ Q

=⇒ ∀g ∈ Q′: ∃vg ∈ U: b(vg, q) = g(q) ∀q ∈ Q and
∥∥vg

∥∥
U
≤ 1

β
sup
q∈Q

|g(q)|
‖q‖Q

. (12.2.2.25)

➋ Based on (12.2.2.25) we can solve (12.2.2.50) for the offset u := v− vg,

u ∈ U

p ∈ Q
:

a(u, w) + b(w, p) = ℓ(w) ∀w ∈ U ,

b(u, q) = 0 ∀q ∈ Q .
(12.2.2.26)

Clearly, by the very definition (12.2.2.22) of N (b) the second equation in (12.2.2.26) implies u ∈ N (b).
Then choose w ∈ N (b) in the first equation,

a(u, w) = ℓ(w) ∀w ∈ N (b) . (12.2.2.27)

Again invoking duality theory in Banach spaces, the ellipticity of a on the kernel N (b) ensures that the

induced operator A : N (b)→ N (b)′ is bijective, which guarantees the existence of a unique solution

u ∈ N (b) of (12.2.2.27), which satisfies ‖u‖U ≤ α−1 sup
v∈U

|ℓ(v)|
‖v‖U

.

1For a normed vector space X we write X′ for its dual space, that is, the Banach space of bounded linear functionals.
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➌ Once we have the solution component u for (12.2.2.26), we find p ∈ Q by solving

b(w, p) = ℓ(w)− a(u, w) ∀w ∈ U . (12.2.2.28)

Note that the right-hand side functional of (12.2.2.28) vanishes on N (b) = N (B′) = R(B)⊥. So the

right-hand side functional of (12.2.2.28) is consistent , which guarantees the existence of a solution p.

Thanks to (LBB2) that solution satisfies

‖p‖Q ≤
1

β
sup
w∈U

|b(w, p)|
‖w‖U

=
1

β
sup
w∈U

|ℓ(w)− a(u, w)|
‖w‖U

≤ 1

β

(
sup
w∈U

|ℓ(w)|
‖w‖U

+ ‖a‖‖u‖U

)
.

✷ y

§12.2.2.29 (LBB-condition for saddle point problems in Euclidean spaces) To elucidate the as-

sumptions of Thm. 12.2.2.49 we consider the saddle point problem (12.2.2.50) for the Euclidean spaces

U := Rm, Q := Rn, m, n ∈ N:

~ν ∈ Rm

~π ∈ Rn :
a(~ν,~η) + b(~η, ~π) = ℓ(~η) ∀~η ∈ Rm ,

b(~ν, ~ω) = g(~ω) ∀~ω ∈ Rn .
(12.2.2.30)

We can switch to matrix/vector representations of the (bi-)linear forms

∃A ∈ Rm,m: a(~ν,~η) =~η⊤A~ν ∀~η,~ν ∈ Rm ,

∃B ∈ Rn,m: b(~ν,~ω) = ~ω⊤B~ν ∀~ν ∈ Rm, ~ω ∈ Rn ,

∃~ϕ ∈ Rm: ℓ(~η) =~η⊤~ϕ ∀~η ∈ Rm , ∃~γ ∈ Rm: g(~ω) = ~ω⊤~γ ∀~ω ∈ Rn ,

which converts (12.2.2.31) into

~ν ∈ Rm

~π ∈ Rn :
~η⊤A~ν + ~η⊤B⊤~π = ~η⊤~ϕ ∀~η ∈ Rm ,

~ω⊤B~ν = ~ω⊤~γ ∀~ω ∈ Rn .
(12.2.2.31)

This is equivalent to the algebraic saddle point problem

~ν ∈ Rm

~π ∈ Rn :
A~ν + B⊤~π = ~ϕ ,

B~ν = ~γ ,
(12.2.2.32)

which is an (m + n)× (m + n) linear system of equations.




A

B

B⊤

O







~ν

~π



=




~ϕ

~γ




. (12.2.2.33)

Translating (12.2.2.22) to the finite-dimensional setting we get

N (b) =
{
~η ∈ Rm : ~ω⊤B~η = 0 ∀~ω ∈ Rn

}
= N (B) , (12.2.2.34)

which shows that N (b) is the kernel of the matrix B. This also explains the notation.
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The inf-sup condition (LBB2) of Thm. 12.2.2.49 becomes

∃β > 0: sup
~η∈Rm

~η⊤B⊤~ω
‖~η‖2

≥ β‖~ω‖2 ∀~ω ∈ Rn . (12.2.2.35)

We conclude that B⊤ must have a trivial kernel,

(LBB2) ⇒ N (B⊤) = {0} . (12.2.2.36)

Obviously, this is a necessary condition for the solution component ~π ∈ Rn to be unique. By the dimen-

sion theorem of linear algebra we infer that (12.2.2.36) can hold only if m ≥ n and if B has full rank ,

rank(B) = n, from which we conclude that the column space of B is Rn: R(B) = Rn, which is obviously

necessary for the existence of a solution of (12.2.2.32) for any ~γ. y

We now apply the abstract result of Thm. 12.2.2.49 to the Stokes saddle-point variational problem

∫

Ω

µDv : Dw dx +
∫
Ω

div w p dx =
∫
Ω

f ·w dx ∀w ∈ (H1
0(Ω))d ,

∫

Ω

div v q dx = 0 ∀q ∈ L2
∗(Ω) ,

(12.2.2.19)

which incarnates the abstract saddle-point variational problem

v ∈ U

p ∈ Q
:

a(v, w) + b(w, p) = ℓ(w) ∀w ∈ U ,

b(v, q) = g(q) ∀q ∈ Q .
(12.2.2.50)

with

✦ Hilbert spaces U := (H1
0(Ω))d, Q := L2(Ω),

✦ bilinear form a ↔ (v, w) 7→
∫

Ω
µDv(x) : Dw(x)dx,

✦ bilinear form b ↔ (v, q) 7→
∫

Ω
div v(x) q(x)dx,

✦ and r.h.s. linear forms ℓ ↔ w 7→
∫

Ω
f(x) ·w(x)dx, and g ≡ 0.

The continuity of the (bi-)linear forms is an immediate consequence of the Cauchy-Schwarz inequality

(1.3.4.15) and of the definitions of the Sobolev norms.

➊ The identity

∑
d

i=1

∫

Ω

grad vi · grad wi dx =
∫

Ω
Dv : Dw dx , v, w ∈

(
H1

0(Ω)
)d

, (12.2.2.37)

combined with the first Poincaré-Friedrichs inequality

Theorem 1.3.4.17. Poincaré-Friedrichs inequality

If Ω ⊂ Rd, d ∈ N, is bounded, then

‖u‖0 ≤ diam(Ω) ‖grad u‖0 ∀u ∈ H1
0(Ω) .

gives us the first assumption of Thm. 12.2.2.49,

∃α > 0: a(v, v) ≥ α‖v‖2
U ∀v ∈ N (b) , (LBB1)
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with α = µ(1 + diam(Ω)−2).

➋ The inf-sup condition in Thm. 12.2.2.49

∃β > 0: sup
v∈U

|b(v, q)|
‖v‖U

≥ β‖q‖Q ∀q ∈ Q (LBB2)

is much more challenging. Its proof is based on the following fundamental result.

Theorem 12.2.2.38. Existence of stable velocity potentials

∃C = C(Ω) > 0: ∀q ∈ L2
∗(Ω): ∃v ∈ (H1

0(Ω))d: q = div v ∧ ‖v‖H1(Ω) ≤ C‖q‖L2(Ω) .

Proof. There is an explicit construction by means of an integral operator. For bounded convex Ω ⊂ Rd

that operator L : C∞
0 (Ω)→ (C∞(Ω))d is defined for q ∈ C∞

0 (Ω) according to [GHH06]

(Lq)(x) :=
∫

Ω

q(y)
x− y

‖x− y‖d
2

∞∫

0

ψ(x + r
x− y

‖x− y‖ )(‖x− y‖+ r)d−1 dr dy , x ∈ Ω , (12.2.2.39)

where ψ ∈ C∞
0 (Ω) is a smooth compactly supported function with

∫
Ω

ψ(x)dx = 1. If
∫

Ω
q dx = 0, then it

can be shown that div L = q, and Lq|∂Ω = 0. Moreover, a deep analysis discloses that L can be extended

to a continuous mapping L : L2
∗(Ω)→ (H1

0(Ω))d [GHH06].

Then, given q ∈ L2
∗(Ω) we simply choose v := Lq and obtain the assertion of the theorem with C > 0

the continuity constant of L.
✷

Armed with Thm. 12.2.2.38, given q ∈ L2
∗(Ω), we write v(q) for a corresponding velocity potential and

find

sup

w∈(H1
0(Ω))

d

∣∣∫
Ω

div w(x) q(x)dx
∣∣

‖w‖H1(Ω)

≥
∣∣∫

Ω
div(v(q))(x) q(x)dx

∣∣
‖v(q)‖H1(Ω)

≥
∫

Ω
q2(x)dx

C‖q‖L2(Ω)

=
1

C
‖q‖L2(Ω) ,

with C > 0 as in Thm. 12.2.2.38. This is the inf-sup condition (LBB2) of Thm. 12.2.2.49 and now we are

in a position to invoke that theorem.

Theorem 12.2.2.40. Existence and uniqueness of weak solutions of Stokes problem

The linear variational saddle point problem (12.2.2.19) (“Stokes problem”) has a unique solution

(v, p) ∈ H1
0(div 0, Ω)× L2

∗(Ω), which satisfies

∃C = C(Ω) > 0: ‖v‖H1(Ω) + ‖p‖L2(Ω) ≤ C‖f‖L2(Ω) . (12.2.2.41)

Remark 12.2.2.42 (Enforcing zero mean → [BOL05]) There remains one issue; (12.2.2.18) introduces

another constraint into (12.2.2.19)!

Relax, Lagrangian multipliers can deal with this, too. Now we study their use to enforce a zero mean

constraint in the simpler setting of 2nd-order elliptic Neumann BVPs.

As in Section 1.5, Rem. 1.8.0.14, we consider a 2nd-order linear Neumann BVP (with zero

Neumann boundary conditions, h = 0), cf. (1.8.0.16),

u ∈ H1
∗(Ω):

∫

Ω
κ(x) grad u · grad v dx =

∫

Ω
f v dx ∀v ∈ H1

∗(Ω) .
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with the constrained trial/test space

H1
∗(Ω) := {v ∈ H1(Ω):

∫

Ω
v(x)dx = 0} . (1.8.0.15)

The related quadratic minimization problem reads (→ Section 1.2.3)

u = argmin
v∈H1∗(Ω)

J(v) , J(v) := 1
2

∫

Ω

κ(x)‖grad v‖2 dx−
∫

Ω
f v dx .

Idea: enforce linear constraint
∫

Ω
v(x)dx = 0 by means of Lagrangian multiplier, see

Rem. 12.2.2.1

Here: scalar constraint (Q = R) ➤ scalar multiplier p ∈ R

Lagrangian functional:

L(v, p) = J(v) + p
∫

Ω
v(x)dx , v ∈ H1(Ω) , p ∈ R .

related (augmented) linear variational saddle point problem, specialization of (12.2.2.11):

seek u ∈ H1(Ω), p ∈ R

∫

Ω
κ(x) grad u · grad v dx + p

∫

Ω
v dx =

∫

Ω
f v dx ∀v ∈ H1(Ω) ,

∫

Ω
v dx = 0 .

(12.2.2.43)

y

The same technique can be applied to (12.2.2.19) and yields the extended Stokes variational saddle point

problem with pressure normalization: seek velocity v ∈ (H1
0(Ω))d, pressure p ∈ L2(Ω), Lagrange

multiplier λ ∈ R

∫

Ω

µ∇v : ∇w dx +
∫

Ω

div w p dx =
∫

Ω

f ·w dx ∀w ∈ (H1
0(Ω))d ,

∫

Ω

div v q dx + λ
∫

Ω

q dx = 0 ∀q ∈ L2(Ω) ,

∫

Ω

p dx = 0 .

(12.2.2.44)

Review question(s) 12.2.2.45 (Stokes Saddle Point Problem Formulation)

(Q12.2.2.45.A) We consider the abstract saddle point problem

v ∈ U

p ∈ Q
:

a(v, w) + b(w, p) = ℓ(w) ∀w ∈ U ,

b(v, q) = g(q) ∀q ∈ Q ,
(12.2.2.50)

posed on the Hilbert spaces U and Q. Describe a bilinear form c : (U ×Q)× (U ×Q)→ R and a

linear form f : U ×Q→ R on the product space U ×Q such that (12.2.2.50) can be written in the

compact form

(v, p) ∈ U ×Q: c((v, p), (w, q)) = f ((w, q)) ∀(w, q) ∈ U ×Q . (12.2.2.46)
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(Q12.2.2.45.B) The object of study is the variationale saddle point problem (SPP): For given

f ∈ L2(]0, 1[) seek q ∈ H1(]0, 1[), u ∈ L2(]0, 1[) such that

1∫
0

q(x)p(x)dx +
1∫

0

dp
dx (x) u(x)dx = 0 ∀p ∈ H1(]0, 1[) ,

1∫
0

dq
dx (x) v(x)dx =

1∫
0

f (x)v(x)dx ∀v ∈ L2(]0, 1[) .

(12.2.2.47)

Verify the LBB conditions for (12.2.3.9).

Hint. Recall the theory for the abstract saddle point variational problem

v ∈ U

p ∈ Q
:

a(v, w) + b(w, p) = ℓ(w) ∀w ∈ U ,

b(v, q) = g(q) ∀q ∈ Q .
(12.2.2.48)

N (b) := {v ∈ U : b(v, q) = 0 ∀q ∈ Q} . (12.2.2.22)

Theorem 12.2.2.49. Ladyzhenskaya–Babuška–Brezzi conditions (LBB-conditions)

If the following two conditions are satisfied,

(i) the bilinear form a is N (b)-elliptic (ellipticity on the kernel)

∃α > 0: |a(v, v)| ≥ α‖v‖2
U ∀v ∈ N (b) , (LBB1)

(ii) the bilinear form b satisfies the inf-sup condtion

∃β > 0: sup
v∈U

|b(v, q)|
‖v‖U

≥ β‖q‖Q ∀q ∈ Q , (LBB2)

then the variational saddle point problem (12.2.2.50) possesses a unique solution

(v, p) ∈ U ×Q, which satisfies

‖v‖U + ‖p‖Q ≤ C

(
sup
w∈U

|ℓ(w)|
‖w‖U

+ sup
w∈U

|g(q)|
‖q‖Q

)
, (12.2.2.24)

with C > 0 independent of ℓ and g.

(Q12.2.2.45.C) For Hilbert spaces U and Q we consider the special saddle-point variational problem

v ∈ U

p ∈ Q
:

a(v, w) + b(w, p) = ℓ(w) ∀w ∈ U ,

b(v, q) = 0 ∀q ∈ Q .
(12.2.2.50)

The (bi-)linear forms are assumed to be continuous and the assumptions of Thm. 12.2.2.49 are sup-

posed to hold:

∃α > 0: a(v, v) ≥ α‖v‖2
U ∀v ∈ N (b) , (LBB1)

∃β > 0: sup
v∈U

b(v, q)

‖v‖U

≥ β‖q‖Q ∀q ∈ Q , (LBB2)

Show that

‖v‖U ≤ α−1 sup
w∈U

|ℓ(w)|
‖w‖U

(12.2.2.51)
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Hint. Choose the test function for the first equation from the subspace

N (b) := {v ∈ U : b(v, q) = 0 ∀q ∈ Q} . (12.2.2.22)

(Q12.2.2.45.D) What does the result of Question (Q12.2.2.45.C) mean for the Stokes problem in saddle

point variational formulation? Can we conclude ‖v‖H1(Ω) ≤ C‖f‖L2(Ω) with some constant C > 0

independent of f?

△

12.2.3 Stokes System of Partial Differential Equations

Video tutorial for Section 12.2.3: Stokes System of Partial Differential Equations: (15 minutes)

Download link, tablet notes

➣ Quizz 12.2.3.7

As we have seen in Section 1.5.3 in the case of scalar elliptic boundary value problems, by “reverse

integration by parts” in combination with the fundamental lemma of calculus of variations Lemma 1.5.3.4

boundary value problems in strong/PDE form can be extracted from variational formulations. Now we apply

these ideas to derive the Stokes equations in strong form from the saddle-point variational formulation

(12.2.2.19): Seek v ∈ (H1
0(Ω))d,p ∈ L2

∗(Ω) such that
∫

Ω

µDv : Dw dx +
∫
Ω

div w p dx =
∫
Ω

f ·w dx ∀w ∈ (H1
0(Ω))d ,

∫

Ω

div v q dx = 0 ∀q ∈ L2
∗(Ω) .

(12.2.2.19)

Note that the no-slip boundary conditions are built into the trial space for v, they are essential boundary

conditions in the classification introduced in Section 1.9.

We follow the policy to remove spatial derivatives from test functions by integration by parts based on

Green’s formula of Thm. 1.5.2.7. Of course, as in Section 1.5.3 we have to assume sufficient “extra”

smoothness of the solution components v and p.

Assumption 12.2.3.1. Extra smoothness of velocity and pressure

For the solution (v, p) of (12.2.2.19) we assume

v =
(

H2(Ω)
)d

and u ∈ H1(Ω) .

Making this assumption, taking into account the no-slip boundary conditions v|∂Ω = 0, and apply Green’s

first formula of

Theorem 1.5.2.7. Green’s first formula

For all vector fields j ∈ (C1
pw(Ω))d and functions v ∈ C1

pw(Ω) holds

∫

Ω
j · grad v dx = −

∫

Ω
div j v dx +

∫

∂Ω
j · n v dS . (12.2.3.2)

we can rewrite several terms in (12.2.2.19) as:

∫

Ω

µ∇v : ∇w dx = µ
d

∑
i=1

∫

Ω

grad vi · grad wi dx = −µ
d

∑
i=1

∫

Ω

∆vi wi dx ,
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∫

Ω

div w p dx = −
∫

Ω

grad p ·w dx ,

which transforms (12.2.2.19) to

−µ
d

∑
i=1

∫

Ω

∆vi wi dx −
∫
Ω

grad p ·w dx =
∫
Ω

f ·w dx ∀w ∈ (H1
0(Ω))d ,

∫

Ω

div v q dx = 0 ∀q ∈ L2
∗(Ω) .

(12.2.3.3)

The first equation amounts to

∫

Ω


−µ




∆v1
...

∆vd


− grad p− f


 ·w dx = 0 ∀w ∈

(
H1

0(Ω)
)d

. (12.2.3.4)

As (C∞
0 (Ω))d is dense in

(
H1

0(Ω)
)d

, by the fundamental lemma of the calculus of variations

Lemma 1.5.3.4 we infer that the term in brackets must vanish. We end up with the Stokes boundary

value problem

(12.2.2.19) ⇒

−µ∆v− grad p = f
div v = 0 in Ω ,∫

Ω
p dx = 0

v = 0 on ∂Ω .

(12.2.3.5)

✎ notation: ∆ =̂ componentwise Laplacian, see (1.5.3.7) (“vector Laplacian”)

Remark 12.2.3.6 (Pressure Poisson equation) Making use of the fact that partial derivatives (of suffi-

ciently smooth functions) commute, we are tempted to manipulate the PDEs in (12.2.3.5) by applying the

divergence operator to the first equation and then using div v = 0:

div · (12.2.3.5) −µ div ∆v + div grad p = div f in Ω ,

−µ∆(div v) + ∆p = div f in Ω ,
div v=0

∆p = div f .

It seems that (12.2.3.5) can be solved by solving d + 1 Poisson equations (??):

(I) first solve pressure Poisson equation ∆p = div f.

(II) then solve Dirichlet boundary value problems for the Cartesian components of the velocity

−∆vi = fi +
∂p

∂xi
in Ω , vi = 0 on ∂Ω .

However, this approach is not feasible, because

• we cannot solve the pressure Poisson equation ∆p = div f, we also need boundary conditions for

p, but the variational problem (12.2.2.19) does not give us any!

• above manipulations are only valid for sufficiently smooth u and that smoothness is not guaranteed.
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y

Review question(s) 12.2.3.7 (Stokes system of PDEs)

(Q12.2.3.7.A) We consider the linear saddle point variational problem: Seek v ∈
(

H1(Ω)
)d

, p ∈ L2(Ω)

∫

Ω

µDv : Dw dx +
∫
Ω

div w p dx =
∫
Ω

f ·w dx ∀w ∈
(

H1(Ω)
)d

,

∫

Ω

div v q dx = 0 ∀q ∈ L2
∗(Ω) .

(12.2.3.8)

What are the natural boundary conditions fulfilled by the solutions v and p of (12.2.3.8)?

(Q12.2.3.7.B) We examine the variationale saddle point problem (SPP): For given f ∈ L2(]0, 1[) seek

q ∈ H1(]0, 1[), u ∈ L2(]0, 1[) such that

1∫
0

q(x)p(x)dx +
1∫

0

dp
dx (x) u(x)dx = 0 ∀p ∈ L2(]0, 1[) ,

1∫
0

dq
dx (x) v(x)dx =

1∫
0

f (x)v(x)dx ∀v ∈ H1(]0, 1[) .

(12.2.3.9)

Tease out the two-point boundary value problem induced by this weak formulation.

△

12.3 Galerkin Discretization of the Stokes Saddle Point Problem

The finite-element Galerkin discretization of the Stokes variational saddle point problem (12.2.2.44) which

is posed on
(

H1
0(Ω)

)d × L2(Ω)×R seems to be straightforward, but it isn’t!

§12.3.0.1 (Finite element Galerkin discretization of variational saddle point problems) Now, we ex-

amine the Galerkin discretization (→ Section 2.2) of the linear variational problem (12.2.2.19) (Practical

schemes will rely on (12.2.2.44), but here, for the sake of simplicity, we skirt the treatment of the zero-mean

constraint.)

As a shorthand notation for
∫

Ω

µDv : Dw dx +
∫
Ω

div w p dx =
∫
Ω

f ·w dx ∀w ∈ (H1
0(Ω))d ,

∫

Ω

div v q dx = 0 ∀q ∈ L2
∗(Ω) .

(12.2.2.19)

we write it as an abstract linear variational saddle point problem, cf. (12.2.2.9) in § 12.2.2.20.

v ∈ U :=
(

H1
0(Ω)

)d

p ∈ Q := L2
∗(Ω)

:
a(v, w) + b(w, p) = ℓ(w) ∀w ∈ U ,
b(v, q) = 0 ∀q ∈ Q .

(12.3.0.2)

Recall, that the concrete bilinear forms are

a(v, w) :=
∫

Ω
µ Dv : Dw dx , b(v, q) :=

∫

Ω
div v q dx . (12.3.0.3)

Galerkin discretization of (12.3.0.2) is carried out exactly as in Section 2.2.

➊ First step of Galerkin discretization (→ Section 2.2.1):
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Replace
U :=

(
H1

0(Ω)
)d

,

Q := L2
∗(Ω)

with finite dimensional subspaces
Uh ⊂ H1

0(Ω),

Qh ⊂ L2
∗(Ω).

This yields the discrete linear variational saddle point problem, the counterpart of (2.2.1.1):

vh ∈ Uh

ph ∈ Qh
:

a(vh, wh) + b(wh, ph) = ℓ(wh) ∀wh ∈ Uh ,
b(vh, qh) = 0 ∀qh ∈ Qh .

(12.3.0.4)

➋ Second step of Galerkin discretization (→ Section 2.2.2)

Introduce ordered bases
BU := {b1

h, . . . , bN
h },

BQ := {β1
h, . . . , βM

h }
of

Uh, N := dim Uh,

Qh, M := dim Qh.

Then insert the basis expansion

vh =
N

∑
ℓ=1

νℓb
ℓ
h , ph =

M

∑
j=1

πjβ
j
h (12.3.0.5)

and appeal to Lemma 2.2.2.3 to restrict testing to basis functions. This converts (12.3.0.2) to

~ν = (νℓ)
N
ℓ=1 ∈ RN ,

~π =
(
πj

)M

j=1
∈ RM

:

N

∑
ℓ=1

νℓa(b
ℓ
h, bi

h) +
M

∑
j=1

πjb(b
i
h, β

j
h) = ℓ(bi) ∀i ∈ {1, . . . , N} ,

N

∑
ℓ=1

νℓb(b
ℓ
h, βk

h) = 0 ∀k ∈ {1, . . . , M} ,

(12.3.0.6)

which can immediately be rewritten as an (N + M)× (N + M) linear system of equations (LSE),

saddle point LSE:

[
A BT

B 0

][
~ν
~π

]
=

[
~ϕ
0

]
, (12.3.0.7)

with Galerkin matrices and right-hand side vectors

A :=
[
a(b

j
h, bi

h)
]N

i,j=1
=

[∫

Ω
µDb

j
h(x) : Dbi

h(x)dx

]N

i,j=1

∈ RN,N , (12.3.0.8a)

B :=
[
b(b

j
h, βi

h)
]

1≤i≤M
1≤j≤N

=

[∫

Ω
div b

j
h(x) βi

h(x)dx

]

1≤i≤M
1≤j≤N

∈ RM,N , (12.3.0.8b)

~ϕ :=
[
ℓ(b

j
h)
]N

j=1
=

[∫

Ω
f(x) · bj

h(x)dx

]N

j=1

∈ RN . (12.3.0.8c)

The linear system of equation (12.3.0.7) features a a symmetric, indefinite system matrix with a typical

block structure, a so-called saddle point matrix. y

12.3.1 Pressure Instability

This section highlights the principal difficulty encountered in the Galerkin discretization of the Stokes vari-

ational saddle point problem.

EXPERIMENT 12.3.1.1 (Q1-Q1 finite elements on tensor-product mesh)
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Fig. 628
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We target the Stokes boundary value problem

(12.2.3.5)

✦ on the unit square Ω =]0, 1[2,

✦ with µ ≡ 1, and

✦ with driving force field f = cos(πx1)
[

0
1

]
,

✁ Right-hand side force field f

We perform a finite element Galerkin discretization

✦ based on a uniform n× n tensor-product

quadrilateral meshM ✄

✦ with Uh := (S0
1,0(M))2 ⊂

(
H1

0(Ω)
)2

,

✦ and Qh := S0
1 (M) ⊂ L2(Ω),

that is, both the velocity v and the pressure p are

approximated by means of lowest-order piecewise bi-

linear Lagrangian finite elements.

Fig. 629

The following plots show the computed finite-element solutions for n = 50.

Fig. 630
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Fig. 631 0
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pressure solution ph

We observe spurious oscillations of the pressure approximation ph in one corner of the domain, accom-

panied by an “unphysical” behavior of the velocity field in the same area. y
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! Even if solutions of variational saddle point problems (12.2.2.9) exist, are unique and stable,

these properties may not be enjoyed by a Galerkin discretization as in § 12.3.0.1.

This contrasts with the case of a simple (discrete) linear variational problem, u ∈ V0,h a(uh, vh) = ℓ(vh)
for all vh ∈ V0,h ⊂ V0, for a symmetric positive definite bilinear form a, for which any Galerkin solution

uh will always be stable, ‖uh‖a ≤ supv∈V0
|ℓ(v)|/‖v‖a, and quasi-optimal as stated in Cea’s lemma

Thm. 3.1.3.7.

Let us try to understand why a straightforward Galerkin discretization of a saddle point variational prob-

lem may fail in the sense that no solution may exists or that solution may be unstable. First, recall the

considerations of § 12.2.2.29 and apply them to the saddle point linear system of equations

[
A BT

B 0

][
~ν
~π

]
=

[
~ϕ
0

]
. (12.3.0.7)

Obviously, this (N + M)× (N + M) linear system of equations cannot have a unique solution if

N (B⊤) 6= {0}. As a simple consequence we note a condition on the dimensions of the finite element

spaces that we have already seen in § 12.2.2.29 in a slightly different form,

M > N ⇒ N (B) 6= {0} ⇒ non-uniquenesss of ph .

dim Uh ≥ dim Qh is a necessary condition for the uniqueness of the pressure solution ph of the

discrete saddle point variational problem (12.3.0.4).

Some “natural” finite element Galerkin schemes for (12.2.2.19) ↔ (12.3.0.2) fail to meet this condition.

One of them relies on the simplest family of finite element subspace of L2(Ω),

S−1
p (M) := {qh ∈ L2(Ω) : qh|K ∈ Pp(R

d)} , M a mesh of Ω ⊂ Rd . (12.3.1.2)

In words, this is the space of functions Ω→ R, which are M-piecewise polynomials of degree ≤ p,

p ∈ N, without any continuity requirements. The dimension of this space is ♯M· dimPp(Rd).

Notation: (cf. S0
p(M)): S−1

p (M)
discontinuous functions

locally polynomials of degree p , cf. Pp(Rd)

A detail linked to the mean-zero constraint for the pressure: The Galerkin discretization has to rely on a

subspace of L2
∗(Ω), so that S−1

p (M) is not a valid choice. Instead we have to use

S−1
p,∗(M) :=

{
qh ∈ S−1

p (M) :
∫

Ω
qh(x)dx = 0

}
⊂ L2

∗(Ω) . (12.3.1.3)

EXAMPLE 12.3.1.4 (Unstable P1-P0 finite element pair on triangular mesh)
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“Tensor-product” triangular mesh of ]0, 1[2 ✄

Finite element spaces for (12.2.2.19),

Uh := (S0
1,0(M))2 ,

Qh := S−1
0,∗ (M) (M-piecewise constants) .

Let n ∈ N denote the number of mesh cells in one

coordinate direction. By simple counting

dim Uh = 2(n− 1)2 , dim Qh = 2n2 − 1 .

We have to subtract 1 in order to honor the zero-

mean constraint.
Fig. 632

So in this case we encounter the problematic situation

dim Qh > dim Uh .

Therefore, we end up with a singular linear system (12.3.0.7), which will make the linear solver crash or

produce a meaningless pressure solution, which is polluted by “noise” from N (B). y

But dim Uh ≥ dim Qh is not enough: even if this condition is satisfied, the pressure may not be unique:

EXAMPLE 12.3.1.5 (Checkerboard instability for quadrilateral P1-P0 FE pair → [BRA07]) We

consider following finite element discretization of the Stokes boundary value problem (12.2.3.5)

✦ M is a uniform tensor product mesh of the unit

square domain Ω :=]0, 1[2 ✄

✦ velocity space Uh = (S0
1,0(M))2

✦ pressure space Qh = S−1
0 (M) ∩ L2

∗(Ω)

If n ∈ N is the number of mesh cells in one coordi-

nate direction, then

dim Uh = 2(n− 1)2 , dim Qh = n2 − 1 .

dim Qh < dim Uh for n ≥ 4 .

So, the necessary dimension condition for unique-

ness of the pressure solution ph is satisfied.
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Fig. 633
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Consider interior grid point p = (ih, jh), 1 ≤ i, j ≤
n, with adjacent quadratic cells C1, C2, C3, C4, see

Fig. 634.

Denote by pi the piecewise constant values of ph on

Ci, i = 1, 2, 3, 4.

Let b
p
h,1 be the nodal basis function for the x1-

component of the velocity at vertex p: b
p
h,1 = b

p
h ·[

1
0

]
, where b

p
h is the 2D “tent function” (→ Fig. 99)

associated with p.

supp(b
p
h,1) = C1 ∪ C2 ∪ C3 ∪ C4 .

Apply Gauss’ theorem, Thm. 1.5.2.4, on Ci taking into account that b
p
h,1 ⊥ normals at e2, e4, and b

p
h,1 ‖

normals at e1, e3,
∫

Ω

div b
p
h,1 ph dx = p1

∫

e1

b
p
h dx− p2

∫

e1

b
p
h dx + p3

∫

e3

b
p
h dx− p4

∫

e3

b
p
h dx

= 1
2(p1 − p2 + p3 − p4) .

Similarly, if b
p
h,2 is the nodal basis function at p for the x2-component of the velocity vh, then

∫

Ω

div b
p
h,2 ph dx = 1

2(p1 + p2 − p3 − p4) .

p1 = 1, p2 = −1, p3 = 1, p4 = −1 ⇒
∫

Ω

div b
p
h,1 ph dx =

∫

Ω

div b
p
h,2 ph dx = 0 . (12.3.1.6)

Now, realize that the setting is translation invariant!

Fig. 634
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By (12.3.1.6) the discrete pressure with alternating

values ±1 in checkerboard fashion will belong to

N (B) for this finite element Galerkin method (for odd

n).

Observation:

{ph ∈ Qh: b(vh, ph) = 0 ∀vh ∈ Uh} 6= ∅ .

= 1-dimensional space of checkerboard modes

✁ p.w. constant checkerboard mode

The presence of such unstable checkerboard modes

will manifests itself as emergence of spurious oscilla-

tions in the finite element solution ph for the pressure.

y

EXPERIMENT 12.3.1.7 (P1-P0 quadrilateral finite elements for Stokes problem)
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✦ BVP (12.2.3.5) on Ω =]0, 1[2, µ ≡ 1, f = cos(πx1)
[

0
1

]
, see Exp. 12.3.1.1

✦ P1-P0 finite element Galerkin discretization on equidistant tensor product quadrilateral mesh, as in

Ex. 12.3.1.5

Fig. 635
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Observations: ☞ The pressure solution is marred by checkerboard modes,

☞ but the computed velocity field seems to be correct!
y

Review question(s) 12.3.1.8 (Pressure instability)

(Q12.3.1.8.A) Explain why the system matrix of the

saddle point LSE:

[
A BT

B 0

][
~ν
~π

]
=

[
~ϕ
0

]
, (12.3.0.7)

cannot be positive definite.

(Q12.3.1.8.B) We consider the following variational saddle point problem (SPP): For given f ∈ L2(]0, 1[)
seek q ∈ H1

0(]0, 1[), u ∈ L2(]0, 1[) such that

1∫
0

q(x)p(x)dx +
1∫

0

dp
dx (x) u(x)dx = 0 ∀p ∈ H1

0(]0, 1[) ,

1∫
0

dq
dx (x) v(x)dx =

1∫
0

f (x)v(x)dx ∀v ∈ L2(]0, 1[) .

(12.2.3.9)

LetM be an equidistant mesh of [0, 1]. Will the pair S0
1,0(M), S−1

0,∗ satisfy the “dimension condition”

for a valid Galerkin discretization of (12.2.3.9)?

△

12.3.2 Stable Galerkin Discretization of Stokes Saddle Point Problem

In the previous examples we found a subspace of Qh, which is L2(Ω)-orthogonal to div vh for any

vh ∈ Uh. Those functions cannot be controlled by the bilinear form b, b(v, q) :=
∫

Ω
div v q dx, and give

rise to spurious components in the pressure solution ph, if the systems can be solved at all. We arrive at

the important heuristic insight:☛
✡

✟
✠div vh must be “large enough to fix the pressure” ph ∈ Qh
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How can we get a larger trial space for the velocity? We can raise the polynomial degree of the compo-

nentwise Lagrangian finite element space for the velocity!

EXPERIMENT 12.3.2.1 (P2-P0 finite element scheme for the Stokes problem)

✦ Ω =]0, 1[2, v(x) = (cos(π/2(x1 + x2)),− cos(π/2(x1 + x2)))
T, p(x) = sin(π/2(x1 − x2)), f and

inhomogeneous Dirichlet boundary values for v accordingly

✦ Sequence of (a) uniform triangular meshes, created by regular refinement,

(b) randomly perturbed meshes from (a) (still uniformly shape-regular & quasi-uniform).

✦ “P2-P0-scheme”: velocity finite element space Uh = (S0
2,0(M))2 (continuous, piecewise quadratic

→ Section 2.6.1, Ex. 2.6.1.2), pressure finite element space Qh = S−1
0,∗ (M) :=

S−1
0 (M) ∩ L2

∗(Ω) (piecewise constant functions).

Monitored: Error norms ‖v− vh‖H1(Ω), ‖v− vh‖L2(Ω), ‖p− ph‖L2(Ω)

Fig. 637
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Fig. 638
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Randomly perturbed “regular” meshes

Raising the polynomial degree has cured the instability! We can compute finite element

solutions that converge nicely. In particular, we observe empiric asymptotic algebraic con-

vergence

‖u− uh‖H1(Ω) = O(hM) , ‖u− uh‖L2(Ω) = O(h2
M) , ‖p− ph‖L2(Ω) = O(hM) ,

for mesh width h→ 0. y

The pair Uh = S0
2,0(M), Qh = S−1

0,∗ (M) is the first combination of finite element spaces that we find to

provide a stable Galerkin discretization of the variational Stokes problem (12.2.2.19)↔ (12.2.2.9).

§12.3.2.2 (Stability of a discretized problem) Recall the concept of stability/well-posedness for linear

problems, see Section 1.4.3 and the “stability estimate” of Thm. 2.2.1.5:
∥∥discrete solution

∥∥ ≤ C
∥∥right hand side = data

∥∥ for all data,

where relevant norms have to be considered.

We have already seen a notion of stability in Section 1.4.3, recall the “stability estimate” of Thm. 2.2.1.5.

There we also found that norms of the solution are bounded by norms of the data, though we were

concerned with a 2nd-order elliptic variational problem before discretization. y
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§12.3.2.3 (Stokes problem: choice of norms) For the Stokes problem those relevant norms just men-

tioned in § 12.3.2.2 are the norms of the Sobolev spaces occurring in (12.2.2.19):

• For the velocity v use the “energy norm” ‖·‖
a

:= a(·, ·)1/2 ∼ ‖·‖H1(Ω), cf. Def. 1.2.3.34, and

• for the pressure p we rely on ‖·‖L2(Ω).

But what is an appropriate norm for the data? What immediately comes to mind is the L2(Ω)-norm of

the driving force field f: ‖data‖ = ‖f‖L2(Ω). Yet, the analysis becomes more general and simpler, if we

choose the dual norm of the right-hand side linear functional,

dual norm of ℓ := sup
w∈U

|ℓ(w)|
‖w‖

a

= sup
w∈(H1

0(Ω))d

|
∫

Ω
f(x)w(x)dx|

µ‖w‖H1(Ω)

. (12.3.2.4)

By the Cauchy-Schwarz inequality for integrals (1.3.4.15) this dual norm can be bounded by the L2(Ω)-
norm of f,

sup
w∈(H1

0(Ω))d

|
∫

Ω
f(x)w(x)dx|

µ‖w‖H1(Ω)

≤ 1

µ
sup

w∈(H1
0(Ω))d

‖f‖L2(Ω)‖w‖L2(Ω)

‖w‖H1(Ω)

≤ 1

µ
‖f‖L2(Ω) ∀f ∈ L2(Ω) .

y

Remark 12.3.2.5 (Continuity of right-hand side linear form) A bounded dual norm for a right-hand side

linear functional is equivalent to its continuity in the sense of Def. 1.2.3.41,

Cℓ := sup
w∈U

|ℓ(w)|
‖w‖

a

< ∞ ⇔ |ℓ(w)| ≤ Cℓ‖w‖a ∀w ∈ U . (12.3.2.6)

In Section 1.2.3.4 we first caught a glimpse of the fundamental important of the continuity of ℓ. We

found that the existence of solutions of quadratic minimization problems (→ Def. 1.2.3.11) hinges on that

continuity of the involved linear form, remember Lemma 1.2.3.38. y

Definition 12.3.2.7. Stable finite element pair

A pair of finite element spaces Uh ⊂ H1
0(Ω), Qh ⊂ L2

∗(Ω) is a stable finite element pair, if the

solution (vh, ph) of the discrete saddle point problem (12.3.0.4) satisfies

∃C > 0: ‖vh‖a + ‖ph‖L2(Ω) ≤ C sup
w∈(H1

0(Ω))d

|
∫

Ω
f(x)w(x)dx|
‖w‖

a

∀f ∈ L2(Ω) ,

where the constant C > 0 may depend only on Ω, the coefficient µ, and the shape regularity

measure (→ Def. 3.3.2.20) ofM.

§12.3.2.8 (Stability of velocity solution) Let us shed light one aspect of the stability of the discretized

Stokes saddle point variational problem, which turns out to be much simpler than expected.

Consider the saddle pijt variational problem (12.2.2.19) ↔ (12.2.2.9), standard abstract Galerkin dis-

cretization

vh ∈ Uh

ph ∈ Qh
:

a(vh, wh) + b(wh, ph) = ℓ(wh) ∀wh ∈ Uh ,
b(vh, qh) = 0 ∀qh ∈ Qh ,

(12.3.0.4)

and define the subspace

Nh(b) := {wh ∈ Uh: b(wh, qh) = 0 ∀qh ∈ Qh} ⊂ Uh . (12.3.2.9)
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From 2nd equation we conclude that for any solution (vh, ph) of (12.3.0.4) it holds vh ∈ Nh(b).

Next, test the first equation of (12.3.0.4) with wh ∈ Nh(b) and infer:

a(vh, wh) = ℓ(wh)
wh :=vh=⇒ ‖vh‖2

a
≤ ℓ(vh)

(12.3.2.6)

≤ Cℓ‖vh‖a . (12.3.2.10)

We conclude unconditional stability of any velocity Galerkin solution : ‖vh‖a ≤ Cℓ for any f.

This explains the observation made in Exp. 12.3.1.7, namely that a reasonable approximation for the

velocity v can be obtained in spite of pressure instability. y

§12.3.2.11 (Stability of pressure solution: inf-sup condition) It is not as straightforward to establish

conditions that guarantee stable pressure Galerkin solutions ph ∈ Qh of (12.3.0.4) in the sense that

∃C > 0: ‖ph‖L2(Ω) ≤ C sup
wh∈Uh

|ℓ(w)|
‖w‖

a

= C sup
w∈(H1

0(Ω))d

|
∫

Ω
f(x)w(x)dx|
‖w‖

a

∀f ∈ L2(Ω) .

(12.3.2.12)

From the first equation of (12.3.0.4)

a(vh, wh) + b(wh, ph) = ℓ(wh) ∀wh ∈ Uh ,

and the stability of the velocity solution found in § 12.3.2.8 we conclude (12.3.2.12), once we know that

∃Cβ > 0: ‖ph‖L2(Ω) ≤ Cβ sup
wh∈Uh

|b(wh, ph)|
‖wh‖a

, (12.3.2.13)

because from this estimate we can infer by means of the Cauchy-Schwarz inequality

(|a(u, w)| ≤ ‖u‖
a
‖w‖

a
)

‖ph‖L2(Ω) ≤ Cβ sup
wh∈Uh

|ℓ(wh)− a(vh, wh)|
‖wh‖a

≤ Cβ sup
w∈U

|ℓ(w)|
‖w‖

a

+ Cβ‖vh‖a ≤ 2Cβ sup
w∈U

|ℓ(w)|
‖w‖

a

.

(12.3.2.14)

The estimate (12.3.2.13) looks familiar, because this is just a specialization of the inf-sup condition, the

second Ladyzhenskaya-Babuska-Brezzi condition, of Thm. 12.2.2.49. Indeed, we can simply apply that

theorem to the discrete variational saddle point problem (12.3.0.4).

Theorem 12.3.2.15. inf-sup condition

The finite element spaces Uh ⊂ H1
0(Ω), Qh ⊂ L2

∗(Ω) provide a stable finite element pair (→
Def. 12.3.2.7) for the Stokes problem (12.2.2.19)/ (12.3.0.2) if there is a constant β > 0 depending

only on Ω and the shape regularity measure (→ Def. 3.3.2.20) ofM such that

sup
wh∈Uh

|b(wh, qh)|
‖wh‖a

≥ β‖qh‖L2(Ω) ∀qh ∈ Qh . (12.3.2.16)

The inf-sup condition (12.3.3.25) is the linchpin of the numerical analysis of finite element methods for

the Stokes problem, see [GIR86]. From § 12.3.2.8 and Thm. 12.2.2.49, (12.2.2.24), we infer the fol-

lowing stability estimate for the solution (vh, ph) ∈ Uh ×Qh of (12.3.0.4): Provided that the assump-

tions of Thm. 12.3.2.15 are fulfilled, there exists a constant Cs > 0 depending only on Ω, µ, and the
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shape regularity measure ofM such that

‖vh‖H1(Ω) + ‖ph‖L2(Ω) ≤ Cs sup

w∈(H1
0(Ω))

d

∫
Ω

f w dx

‖w‖H1(Ω)

∀f ∈ L2(Ω) . (12.3.2.17)

y

Review question(s) 12.3.2.18 (Convergence of stable FEM for Stokes)

(Q12.3.2.18.A) With

a(v, w) :=
∫

Ω
µ Dv : Dw dx , b(v, q) :=

∫

Ω
div v q dx . (12.3.0.3)

we have established the following result:

Theorem 12.3.2.15. inf-sup condition

The finite element spaces Uh ⊂ H1
0(Ω), Qh ⊂ L2

∗(Ω) provide a stable finite element pair (→
Def. 12.3.2.7) for the Stokes problem (12.2.2.19)/ (12.3.0.2) if there is a constant β > 0 depending

only on Ω and the shape regularity measure (→ Def. 3.3.2.20) ofM such that

sup
wh∈Uh

|b(wh, qh)|
‖wh‖a

≥ β‖qh‖L2(Ω) ∀qh ∈ Qh . (12.3.3.25)

Explain, why dim Uh ≥ dim Qh is a necessary condition for (12.3.3.25).

(Q12.3.2.18.B) [Checkerboard mode] Again we examine the following “mixed” variational saddle point

problem (SPP): For given f ∈ L2(]0, 1[) seek q ∈ H1
0(]0, 1[), u ∈ L2(]0, 1[) such that

1∫
0

q(x)p(x)dx +
1∫

0

dp
dx (x) u(x)dx = 0 ∀p ∈ H1

0(]0, 1[) ,

1∫
0

dq
dx (x) v(x)dx =

1∫
0

f (x)v(x)dx ∀v ∈ L2(]0, 1[) .

(12.2.3.9)

We carry out a Galerkin finite element discretization of (12.2.3.9) based on an equidistant meshM of

]0, 1[ with n ∈ N cells: we replace H1
0(]0, 1[) with S0

1,0(M) and L2(]0, 1[) with S0
1,0(M). We use the

standard nodal basis consisting of tent functions for both spaces. This leads to a saddle point linear

system of equations,

saddle point LSE:

[
A BT

B 0

][
~ν
~π

]
=

[
~ϕ
0

]
, (12.3.0.7)

(i) Describe the matrix block B of the system matrix of the saddle point LSE in the current setting.

(ii) Characterize the null space/kernel N (B⊤) depending on n.

△

12.3.3 Convergence of Stable FEM for Stokes

Now, taking for granted a stable pair Uh ×Qh of finite element spaces for (12.3.0.2) in the sense of

Def. 12.3.2.7, we aim for a-priori estimates of the natural norms of the Galerkin discretization errors v− vh

and p− ph.
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§12.3.3.1 (Stability implies convergence: abstract view) To begin with, in an abstract setting we elab-

orate a fundamental principle in the theory of discretizations. The setting is as follows

✦ H is a normed vector space equipped with norm ‖·‖ (think of a function space),

✦ c : H × H 7→ R =̂ a bilinear form on H (→ Def. 0.3.1.4, not necessarily s.p.d. in the sense of

Def. 1.2.3.26),

✦ ℓ : H 7→ R is a a bounded linear form on H (→ Def. 0.3.1.3)).

✦ We make the assumption that c is continuous (→ Def. 1.2.3.41), cf. § 2.2.0.1, (2.2.0.3),

∃Cc > 0: |c(u, v)| ≤ Cc‖u‖‖v‖ ∀u, v ∈ H . (12.3.3.2)

We consider the linear variational problem (→ Def. 1.4.1.6)

u ∈ H: c(u, v) = ℓ(v) ∀v ∈ H , (12.3.3.3)

and its Galerkin discretization, based on a finite-dimensional subspace Hh ⊂ H, cf. (2.2.1.1),

uh ∈ Hh: c(uh, vh) = ℓ(vh) ∀vh ∈ Hh . (12.3.3.4)

The crucial assumption is that of stability of the discrete variational problem

Assumption 12.3.3.5. Stability of the discrete variational problem

For any solution uh of the discrete variational problem (12.3.3.4) holds

∃Cs > 0: ‖uh‖ ≤ Cs sup
wh∈Hh

|ℓ(wh)|
‖wh‖

∀ℓ , (12.3.3.6)

with Cs independent of the right-hand side linear functional ℓ, and, therefore, also independent of

uh.

In order to exploit this stability property we resort to a smart idea and study a residual equation. For any

vh ∈ Hh the difference uh − vh (uh solution of (12.3.3.4)) solves

the residual equation: c(uh − vh, wh) = ℓ(wh)− c(vh, wh) ∀wh ∈ Hh .

(12.3.3.6)
=⇒ ‖uh − vh‖ ≤ Cs sup

wh∈Hh

|ℓ(wh)− c(vh, wh)|
‖wh‖

[ c(u, wh) = ℓ(wh) ]
(12.3.3.3)

= Cs sup
wh∈Hh

|c(u− vh, wh)|
‖wh‖

(12.3.3.2)

≤ CcCs‖u− vh‖ .

(12.3.3.7)

The next trick is a smart use of the triangle inequality,

‖u− uh‖ ≤ ‖u− vh‖+ ‖uh − vh‖
(12.3.3.7)

≤ (1 + CcCs)‖u− vh‖ ∀vh ∈ Hh .

‖u− uh‖ ≤ (1 + CcCs) inf
vh∈Hh

‖u− vh‖ . (12.3.3.8)

This estimate reveals a fundamental property of stable Galerkin discretizations. We have seen a special

case of it in Cea’s lemma Thm. 3.1.3.7, which claimed the optimality of Galerkin solutions (in energy norm)

in the case of linear variational problems with symmetric positive definite (s.p.d.) bilinear form. To describe

the message of (12.3.3.8) in words it is convenient to introduce a name for “optimality up to a constant”.
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Terminology: Quasi-optimality of Galerkin solutions means that with C > 0 independent of data and

discretization parameters

‖u− uh‖︸ ︷︷ ︸
↑

≤ C inf
vh∈Hh

‖u− vh‖
︸ ︷︷ ︸

↑

, (12.3.3.9)

(norm of) discretization error best approximation error

Discrete stability⇒ quasi-optimality

If a discrete linear variational problem is stable according to Ass. 12.3.3.5, then Galerkin solutions

are quasi-optimal .

y

§12.3.3.11 (Specialization to Stokes saddle point problem) No we apply the abstract theory of

§ 12.3.3.1 to the finite element Galerkin discretization of the Stokes variational saddle point problem

(12.2.2.19). We first identify the concrete counterparts of the abstract entities introduced in § 12.3.3.1:

✦ H := (H1
0(Ω))d × L2(Ω) (a product of two function spaces!) with norm

‖(v, q)‖2 := ‖v‖2
H1(Ω) + ‖q‖2

L2(Ω) , (v, q) ∈ (H1(Ω))d × L2(Ω) .

✦ the role of the bilinear form c is played by

c((v, p), (w, q)) := a(v, w) + b(w, p) + b(v, q) , (12.3.3.12)

a(v, w) :=
∫

Ω
µ Dv : Dw dx , b(v, q) :=

∫

Ω
div v q dx . (12.3.0.3)

✦ The right-hand side functional is ”ℓ
(
(w, q)

)
= ℓ(w) :=

∫
Ω

f w dx”.

✦ The Galerkin trial/test space must also be product space:

Hh := Uh ×Qh , Uh ⊂ (H1
0(Ω))d , Qh ⊂ L2

∗(Ω) .

Then, along the lines of the above abstract considerations, one can show the following a priori error

estimate:

Theorem 12.3.3.13. Convergence of stable FE for Stokes problem

If Uh, Qh is a stable finite element pair (→ Def. 12.3.2.7) for the Stokes variational saddle point

problem (12.2.2.19), then the corresponding finite element Galerkin solution (vh, ph) satisfies

‖v− vh‖H1(Ω) + ‖p− ph‖L2(Ω) ≤ C

(
inf

wh∈Uh

‖v−wh‖H1(Ω) + inf
qh∈Qh

‖p− qh‖L2(Ω)

)
,

with a constant C > 0 that depends only on Ω, µ, and the shape regularity of the finite element

mesh.

Note that the a priori error bound of Thm. 12.3.3.13 involves the sum of the best approximation

errors for both the velocity and pressure trial/test spaces.
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y

EXAMPLE 12.3.3.14 (Convergence of P2-P0 scheme for Stokes equation) Endowed with the new

insights from Thm. 12.3.3.13 we could have predicted the error curves observed in Exp. 12.3.2.1 for the

finite element spaces Uh = (S0
2,0(M))2, Qh := S−1

0 (M).

In that example we deal with manufactured smooth solutions for both v and p:

Section 3.3.5 ➣

inf
wh∈S0

2,0(M)
‖v−wh‖H1(Ω) ≤ Ch2

M‖v‖H3(Ω) by Thm. 3.3.5.6,

inf
qh∈S−1

0

‖p− qh‖L2(Ω) ≤ ChM‖p‖H1(Ω),

with constants depending only on the shape regularity measure (→ Def. 3.3.2.20) of the triangulationM.

The observed O(h) algebraic convergence in the H1(Ω)-norm (for vh) and L2(Ω)-norm (for ph) results,

because the asymptotically larger best aproximation error of the space S−1
0 (M) of M-piecewise con-

stants dominates:

‖v− vh‖H1(Ω) + ‖p− ph‖L2(Ω) = O(max{h2
M, hM}) = O(hM) for h→ 0 .

Here we see the effect of both best approximation error contributing additively to the bound of

Thm. 12.3.3.13; the largest best approximation error will determine the overall accuracy of both vh and

ph. y

Remark 12.3.3.15 (Pressure robustness) In § 12.3.2.8 we learned that the velocity component of any

Galerkin solution of the Stokes variational saddle point problem (12.2.2.19) will always be stable regardless

of any instability affecting the pressure. Unfortunately, in general this does not give us estimates for the

error in velocity independent of the approximation properties of the pressure trial/test space Qh. Specially

designed Galerkin method may achieve this, however.

Definition 12.3.3.16. Pressure-robust Galerkin discretization of the Stokes problem [JML17]

A pair of finite element spaces Uh ⊂ (H1
0(Ω))d, Qh ⊂ L2(Ω) for the Galerkin discretization of

the Stokes variational saddle point problem (12.2.2.19) is called pressure-robust, if the velocity

component vh of the Galerkin solution satisfies

‖v− vh‖H1(Ω) ≤ C inf
wh∈Uh

‖v−wh‖H1(Ω)

with C > 0 independent of the driving force field f.

There is a simple relationship between Uh and Qh that renders the Galerkin method for (12.2.2.19)

pressure-robust.

Lemma 12.3.3.17. Criterion for pressure robustness

A pair of finite element spaces Uh ⊂ (H1
0(Ω))d, Qh ⊂ L2(Ω) for the Galerkin discretization of the

Stokes variational saddle point problem (12.2.2.19) is pressure-robust in the sense of Def. 12.3.3.16,

if

div Uh ⊂ Qh .
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Proof. (partial) For the sake of lucidity we carry out the proof for Uh ⊂ L2
∗(Ω). Recall the discrete Stokes

variational saddle point problem.

vh ∈ Uh ,
ph ∈ Qh

:

∫

Ω

µDvh : Dwh dx +
∫
Ω

div wh ph dx =
∫
Ω

f ·wh dx ∀wh ∈ Uh ,

∫

Ω

div vh qh dx = 0 ∀qh ∈ Qh .
(12.3.3.18)

Assume that a solution (vh, ph) exists, of which ph may not be unique.

If div Uh ⊂ Qh, then we can test the second equation with div vh and immediately get

‖div vh‖L2(Ω) = 0, that is, div vh = 0; the Galerkin solution for the velocity is exactly divergence free!

Next, we consider the first equation of (??) on the subspace

Uh(div 0) := {wh ∈ Uh : div wh = 0} ⊂ H1
0(div 0, Ω) . (12.3.3.19)

When restricted to this space, the first equation of (12.3.3.18) simplifies to

∫

Ω
µDvh : Dwh dx =

∫

Ω
f ·wh dx ∀wh ∈ Uh(div 0) . (12.3.3.20)

In addition, the exact solution v ∈ H1
0(div 0, Ω) for the velocity satisfies

∫

Ω
µDv : Dw dx =

∫

Ω
f ·w dx ∀w ∈ H1

0(div 0, Ω) . (12.3.3.21)

We set w = wh ∈ Uh(div 0) in this equation, which is possible owing to Uh(div 0) ⊂ H1
0(div 0, Ω), and

subtract it from (12.3.3.20), which gives us Galerkin orthogonality similar to (3.1.3.2):

∫

Ω
µD(v− vh) : Dwh dx = 0 ∀wh ∈ Uh(div 0) . (12.3.3.22)

Employing exactly the same arguments as in the proof of Cea’s lemma Thm. 3.1.3.7, we thus get

|v− vh|H1(Ω) ≤ |v−wh|H1(Ω) ∀wh ∈ Uh(div 0) . (12.3.3.23)

Comparing with Def. 12.3.3.16, we see that this is the assertion of the lemma.
✷

We point out that the property div Uh ⊂ Qh is so strong that it guarantees good solutions for the velocity

even if the spaces Uh, Qh fail to provide a stable finite element pair. However, instability of the pressure

could still be disruptive when it comes to solving the saddle point linear system of equations (12.3.0.7):

that system may be (nearly) singular. y

Review question(s) 12.3.3.24 (Convergence of Stable FEM for Stokes)

(Q12.3.3.24.A) [A simple way to ensure stability] The Stokes variational saddle point problem with

no-slip boundary conditions reads: seek v ∈ (H1
0(Ω))d and p ∈ L2

∗(Ω) such that

∫

Ω

µDv : Dw dx +
∫
Ω

div w p dx =
∫
Ω

f ·w dx ∀w ∈ (H1
0(Ω))d ,

∫

Ω

div v q dx = 0 ∀q ∈ L2
∗(Ω) .

(12.2.2.19)

We consider a finite-element Galerkin discretization based on finite-dimensional subspaces

Uh ⊂ (H1
0(Ω))d, Qh ⊂ L2(Ω).
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Show that the choice Qh := div Uh will always provide a stable pair of Galerkin trial/test spaces in the

sense that the inf-sup condition of Thm. 12.3.2.15 holds.

Theorem 12.3.2.15. inf-sup condition

The finite element spaces Uh ⊂ H1
0(Ω), Qh ⊂ L2

∗(Ω) provide a stable finite element pair (→
Def. 12.3.2.7) for the Stokes problem (12.2.2.19)/ (12.3.0.2) if there is a constant β > 0 depending

only on Ω and the shape regularity measure (→ Def. 3.3.2.20) ofM such that

sup
wh∈Uh

|b(wh, qh)|
‖wh‖a

≥ β‖qh‖L2(Ω) ∀qh ∈ Qh . (12.3.3.25)

(Q12.3.3.24.B) In Question (Q12.3.3.24.A) we have seen that choosing Qh := div Uh in the context of

a Galerkin finite element discretization of the Stokes variational saddle point problem will completely

avoid any instability.

Adopt this idea for Uh := (S0
1,0(M))d,M a triangular/tetrahedral mesh, and write vh = (S0

1,0(M))2,

ph ∈ div(S0
1,0(M))2 for the resulting finite-element Galerkin solution. Describe the asymptotic conver-

gence of ‖v− vh‖H1(Ω) + ‖p− ph‖L2(Ω) n sequences of uniformly shape regular meshes predicted

by theory, if the exact solutions v and p are smooth.

Theorem 12.3.3.13. Convergence of stable FE for Stokes problem

If Uh, Qh is a stable finite element pair (→ Def. 12.3.2.7) for the Stokes variational saddle point

problem (12.2.2.19), then the corresponding finite element Galerkin solution (vh, ph) satisfies

‖v− vh‖H1(Ω) + ‖p− ph‖L2(Ω) ≤ C

(
inf

wh∈Uh

‖v−wh‖H1(Ω) + inf
qh∈Qh

‖p− qh‖L2(Ω)

)
,

with a constant C > 0 that depends only on Ω, µ, and the shape regularity of the finite element

mesh.

(Q12.3.3.24.C) [Too nice to be true?] What is the problem faced when trying to use

• Uh := (S0
1,0(M))2 as finitie-element space for the velocity, and

• div Uh for the approximation of the pressure,

as a finite element methods for the discretization of the Stokes BVP with no-slip boundary conditions.

Hint. Answer Question (Q12.3.3.24.A) and Question (Q12.3.3.24.B) first.

△

12.3.4 The Taylor-Hood Finite Element Method

We have learned that Galerkin trial and test spaces Uh and Qh for the Stokes variational saddle point

problem (12.2.2.19) have to match, at least in the sense of being a stable pair (→ Def. 12.3.2.7), which

usually boils down to satisfying the inf-sup condition of Thm. 12.3.2.15. This does not seem to hard; a

conversation

A: The ultimate cure for instability is to

chose the trial/test space for velocity large enough→ very large (to play safe).
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B: B: Well, but a large finite element space leads to a large system of linear equations, that

is, high computational cost.

A: Never mind, a large space buys good accuracy, which is what we also want!

Remark 12.3.4.1 (Efficient finite element discretization of Stokes problem) As Thm. 12.3.3.13 told us,

also remember the discussion in Ex. 12.3.3.14, that the finite element discretization error for a stable finite

element pair (Uh, Qh) (→ Def. 12.3.2.7) for the Stokes problem (12.2.2.19) is, up to a constant, bounded

by the sum of best approximation errors for the velocity v in Uh and the pressure p in Qh.

➣ Excellent approximation of either v or p alone may not lead to an accurate solution for either.

Recall a similar situation for method of lines, where errors of spatial discretization and timestepping add

up, see the “Meta-Theorems” Thm. 9.2.8.5, Thm. 9.3.5.10.

So, for the sake of efficiency , we need to

balance inf
wh∈Uh

‖v−wh‖H1(Ω) and inf
qh∈Qh

‖p− qh‖L2(Ω).

If one of the best approximation error is much smaller than the other, then we are probably wasting compu-

tational resources by using a large trial/test space without commensurate quality of the solution. A similar

consideration is pursued in Rem. 9.2.8.10.

However, balancing of best approximation errors is too ambitious a goal, because we have no chance of

guessing then a priori. Thus we settle for a more modest asymptotic balance condition, again refer to the

considerations in Section 9.2.8. y

We formulate the following guidelines for viable and efficient choice of Galerkin finite element spaces for

the Stokes variational sadle point problem:

➊ The pair (Uh, Qh) of finite element spaces must be stable (→ Def. 12.3.2.7)

➋ The velocity finite element space Uh should provide the same rate of algebraic convergence of the

H1(Ω)-best approximation error w.r.t. hM → 0 as the pressure space Qh in L2(Ω).

➌ The velocity finite element space Uh should guarantee ➊ and ➋ with as few degrees of

freedom as possible.

Note that the stable P2-P0 finite element pair (S0
2,0(M),S−1

0 (M)) from Exp. 12.3.2.1 does not meet

the efficiency criterion, because the velocity space offers a better asymptoic rate of convergence than the

pressure space, recall Ex. 12.3.3.14.

Fortunately, there is a stable, perfectly balanced pair of spaces:

The Taylor-Hood (P2-P1) finite element method for Stokes problem relies on

✦ a triangular/tetrahedral or rectangular/hexahedral meshM of Ω, which may even be hybrid, see

Section 2.5.1,

✦ the velocity space: Uh := (S0
2,0(M))2 ⊂ (H1

0(Ω))d, and

✦ the pressure space: Qh := S0
1 (M), which means a continuous pressure approximation.

Concerning the “location” of the standard nodal basis functions for the Taylor-Hood finite element method,

that is, the mesh entities they are associated with, we give the following local visualization.
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Fig. 639

sites of velocity local shape functions

Fig. 640

sites of pressure local shape functions

The standard global shape functions for the Taylor-Hood finite element spaces are,

• for Qh = S0
1 (M), the usual node-associated tent basis functions of Section 2.4.3,

• for uh = (S0
2,0(M))2 the set of vector fields

BU :=

{[
bi

h

0

]
,

[
0

bi
h

]
: bi

h ∈ set of global shape functions for S0
2,0(M)

}
. (12.3.4.2)

The choice of space ensures balanced (asymptotic) approximation powers of the two finite element

spaces, assuming for sufficiently smooth velocity and pressure solutions,

velocity: inf
wh∈Uh

‖v−wh‖H1(Ω) ≤ Ch2
M‖v‖H3(Ω) by Thm. 3.3.5.6,

pressure: inf
qh∈S−1

0

‖p− qh‖L2(Ω) ≤ Ch2
M‖p‖H2(Ω) by Thm. 3.3.2.21.

§12.3.4.3 (Convergence of Taylor-Hood FE solutions of Stokes BVPs) It turns out that the Taylor-Hood

pair of finite element spaces Uh := (S0
2,0(M))d, Qh := S0

1 (M), is stable in the sense of Def. 12.3.2.7.

This is shown by proving the inf-sup condition of Thm. 12.3.2.15. Refer to [MSW11] for the intricate proof.

Theorem 12.3.4.4. Stability and convergence of Taylor-Hood finite element → [STB90]

The Taylor-Hood element provides a stable finite element pair for the Stokes problem (→
Def. 12.3.2.7) and for sufficiently smooth velocity and pressure solution v ∈ H3(Ω), p ∈ H2(Ω),

‖v− vh‖H1(Ω) + ‖p− ph‖L2(Ω) ≤ Ch2
M
(
‖v‖H3(Ω) + ‖p‖H2(Ω)

)
,

with a constant C > 0 that depends only on Ω, µ, and the shape regularity of the finite element

mesh.

In short, the Taylor-Hood element gives us optimal rates of asymptotic algebraic convergence of the natural

norms of the Galerkin discretization errors. “Optimal” in the sense that for both trial/test spaces their local

polynomial degrees cannot allow for a better asymptotic rate. y

EXAMPLE 12.3.4.5 (Convergence of Taylor-Hood method for Stokes problem)

✦ Stokes problem (12.2.2.44) as in Exp. 12.3.2.1

✦ perturbed triangular meshes as in Exp. 12.3.2.1

✦ Taylor-Hood finite element Galerkin discretization
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Monitored: Error norms ‖v− vh‖H1(Ω),

‖v− vh‖L2(Ω), ‖p− ph‖L2(Ω)

Observation: algebraic convergence

‖v− vh‖H1(Ω) = O(h2
M) ,

‖v− vh‖L2(Ω) = O(h3
M) ,

‖p− ph‖L2(Ω) = O(h2
M) .

The convergence of ‖v− vh‖L2(Ω) does not follow

from Thm. 12.3.4.4. It can be proved using duality

techniques as those of Section 3.6.3.
Fig. 641
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Review question(s) 12.3.4.6 (The Taylor-Hood FEM for the Stokes problem)

(Q12.3.4.6.A) [Implementation of Taylor-Hood FEM in LEHRFEM++ ] We want to implement the Taylor-

Hood FEM for a 2D Stokes BVP with non-slip boundary conditions on a triangular mesh in LEHRFEM++.

We do this by using a single lf::assemble::DofHandler object to handle all FE spaces.

Complete the following code meant for the initialization of that lf::assemble::DofHandler object:

lf::assemble::UniformFEDofHandler dof_handler(

mesh_p, {{lf::base::RefEl::kPoint(), },

{lf::base::RefEl::kSegment(), },

{lf::base::RefEl::kTria(), },

{lf::base::RefEl::kQuad(), }});

You may consult the documentation of LEHRFEM++.

(Q12.3.4.6.B) [Zero mean constraint in Taylor-Hood FEM] In practice one relies on the extended

Stokes variational saddle point problem to enforce the zero mean constraint on the pressure: seek

velocity v ∈ (H1
0(Ω))d, pressure p ∈ L2(Ω), and the Lagrange multiplier λ ∈ R such that

∫

Ω

µ∇v : ∇w dx +
∫

Ω

div w p dx =
∫

Ω

f ·w dx ∀w ∈ (H1
0(Ω))d ,

∫

Ω

div v q dx + λ
∫

Ω

q dx = 0 ∀q ∈ L2(Ω) ,

∫

Ω

p dx = 0 .

(12.2.2.44)

Sketch the block structure of the linear system of equations arising from the Taylor-Hood FEM for

(12.2.2.44).

△

12.3.5 The Non-Conforming Crouzeix-Raviart FEM

We present a method that falls outside the framework of standard Galerkin finite element discretization.

To approximate the velocity v ∈ (H1
0(Ω))d it relies onM-piecewise polynomial vector fields,M a trian-
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gular/tetrahedral mesh of Ω ⊂ Rd, that do not necessarily belong to C0(Ω). According to

Theorem 1.3.4.23. Compatibility conditions for piecewise smooth functions in H1(Ω)

Let Ω be partitioned into sub-domains Ω1 and Ω2. A function u that is continuously differentiable

in the closures of both sub-domains, belongs to H1(Ω), if and only if u is continuous on Ω.

such vector fields may not be contained in (H1(Ω))2:

The finite element method described in this section approximates the velocity v in a space

that is not a subspace of the Sobolev space in which we seek v in the variational formulation

(12.2.2.19) of the Stokes boundary value problem.

Such “exotic” finite element methods that rely on generalized Galerkin discretization based on finite-

dimensional function spaces that are not subspaces of the function spaces on which the underlying varia-

tional problem is posed, are called non-conforming.

Throughout the remainder of this section we restrict ourselves to planar polygonally bounded computa-

tional domains Ω ⊂ R2, that is, d = 2.

§12.3.5.1 (The 2D scalar Crouzeix-Raviart finite element space) LetM be a triangular finite element

mesh covering Ω.

Definition 12.3.5.2. 2D scalar Crouzeix-Raviart finite element space

The Crouzeix-Raviart finite element space on a triangular meshM is

CR(M) := {v ∈ L2(Ω): v|K ∈ P1(K) ∀K ∈ M,

v continuous at midpoints of interior edges ofM} .

There is an alternative characterization of CR(M) as a span of suitable functions that will turn out to be

appropriate global shape functions (GSF). Write E(M) for the set of edges ofM and me for the midpoint

of e ∈ E(M). We define functions be
h ∈ L2(Ω), e ∈ E(M), according to

be
h|K ∈ P1(K) ∀K ∈ M , be

h(m f ) =

{
1 , if e = f ,

0 else,
e, f ∈ E(M) , (12.3.5.3)

see Fig. 643. That figure also provides a “visual proof” of the following claim.

Fig. 642

1

1
1

me

Lemma 12.3.5.4. GSF for CR(M)

The functions be
h, e ∈ E(M), as defined in

(12.3.5.3) span CR(M):

CR(M) = Span{be
h, e ∈ E(M)} .

✁ A piecewise linear global shape function of the fi-

nite element space CR(M) associated with the

midpoint of an edge of a mesh.

From (12.3.5.3) and Lemma 12.3.5.4 we draw the following conclusions:

• The dimension of CR(M) is equal to the number of edges ofM, dim CR(M) = ♯E(M).

• The functions be
h, e ∈ E(M), qualify as locally supported global shape functions (GSF) of CR(M)

in the sense of Section 2.5.3; they are naturally associated with the edges of M and satisfy B1,

B2, and B3 from Section 2.5.3, Page 195.
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• The function be
h is discontinuous along the two other edges of those triangles ofM adjacent to the

edge e to which be
h is associated.

• The Crouzeix-Raviart finite element space is not a subspace of H1(Ω): CR(M) 6⊂ H1(Ω).

The local shape functions (LSF) b1
K, b2

K, b3
K associated with the edges of a triangle K ∈ M look like this:

Fig. 643

Fig. 644

Fig. 645

y

§12.3.5.5 (CR(M)-FEM for 2nd-order elliptic BVPs) As CR(M) 6⊂ H1(Ω) we cannot directly use

the space CR(M) from Def. 12.3.5.2 for a Galerkin finite element discretization of the 2nd-order elliptic

variational (pure Neumann) problem

u ∈ H1(Ω):
∫

Ω
α(x) grad u(x) · grad v(x)dx =

∫

Ω
f (x)v(x)dx ∀v ∈ H1(Ω) , (12.3.5.6)

with f ∈ L2(Ω), α : Ω→ R2,2 bounded, uniformly positive definite (→ Def. 1.2.2.9). The reason is that

for vh ∈ CR(M) the gradient grad vh is not defined as an integrable function and so we cannot make

sense of the integral
∫

Ω
α grad uh · grad vh dx for uh, vh ∈ CR(M).

Yet, for vh ∈ CR(M) and K ∈ M the local gradient grad(vh|K) exists and is even constant on K. So

we can replace the left-hand side bilinear form of (12.3.5.6) with a sum of local integrals and get the

well-defined discrete variational problem

uh ∈ CR(M): ∑
K∈M

∫

K

α(x) grad(uh|K)(x) · grad(vh|K)(x)dx =
∫

Ω

f (x)vh(x)dx ∀vh ∈ CR(M) .

(12.3.5.7)

Also 2nd-order elliptic Dirichlet boundary value problems can be discretized based on CR(M). In the

case of zero Dirichlet boundary values the only modification of (12.3.5.7) is to replace CR(M) with

CR0(M) := {vh ∈ CR(M) : vh(me) = 0 ∀e ⊂ ∂Ω} . (12.3.5.8)

The analysis of the convergence of the CR(M)-FEM is not straightforward, because we cannot appeal

to Cea’s lemma Thm. 3.1.3.7. More sophisticated tools are needed, called Strang’s lemmas, which are

outside the scope of this course, see [BRA07] for details. We point out that the discretization error cannot

even be measured in the H1(Ω)-norm. Instead one resorts to the so-called “broken H1(Ω)-norm” or

H1(M)-norm,

‖v‖2
H1(M) := ∑

K∈M

∫

K
‖grad(v|K)(x)‖2 dx . (12.3.5.9)
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Theorem 12.3.5.10. Convergence of scalar CR(M)-FEM [BRA07]

If the homogeneous Neumann problem (12.3.5.6) is 2-regular according to Ass. 3.6.3.6, then

‖u− uh‖L2(Ω) + ‖u− uh‖H1(M) ≤ Ch2
M|u|H2(Ω) , (12.3.5.11)

where uh ∈ CR(M) solves (12.3.5.7) and C > 0 depends only on Ω, α, and the shape-regularity

ofM.

y

EXAMPLE 12.3.5.12 (Convergence of CR(M)-FEM for Dirichlet BVPs)

✦ Domain Ω =]− 1, 1[2 (square), Ω =]− 1, 1[2\([0, 1]× [−1, 0]) (L-shaped domain)

✦ Pure Dirichlet boundary value problems for −∆u = f :

on square: u(x, y) = sin(πx) sin(πy),
on L-shaped domain: u(r, ϕ) = r2/3 sin(2/3ϕ) (polar coordinates w.r.t. (0, 0))

✦ Sequence of uniformly shape-regular/quasi-uniform triangular meshes.

Monitored: L2(Ω)- and H1(M)-norms (→ broken Sobolev norm (12.3.5.9)) of discretization error.
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Observations:

✦ On the square: ‖u− uh‖H1(M) = O(hM), ‖u− uh‖L2(Ω) = O(h2
M),

✦ On the L-shaped domain: ‖u− uh‖H1(M) = O(h
2/3

M), ‖u− uh‖L2(Ω) = O(h
4/3

M). Compare this

with the rates for linear Lagrangian FE, Exp. 3.6.3.1, Exp. 3.2.3.10.
y

Remark 12.3.5.13 (Interelement “glue” in CR(M)) As an alternative to Def. 12.3.5.2 we could have

used

CR(M) :=

{
v ∈ L2(Ω) :

v|K ∈ P1(K) ∀K ∈ M,∫

e
JvKe dS = 0 ∀e ∈ E(M), e ⊂ Ω

}
, (12.3.5.14)

where JvKe stands for the jump of v across e. In words, the space CR(M) is the space ofM-piecewise

linear functions which have the same mean value on both sides of every interior edge.
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It turns out that this is the weakest interelement connection that piecewise linear functions have to possess

in order to provide a viable trial/test space for (12.3.5.7). y

§12.3.5.15 (CR(M)-P0 Stokes FEM) This non-conforming finite element method for the Stokes varia-

tional saddle point problem (12.2.2.19) uses

• Uh := (CR0(M))2 6⊂(H1
0(Ω))2 as non-conforming trial/test space for the velocity, and

• the space Qh := S−1
0,∗ (M) ⊂ L2(Ω) of M-piecewise constant functions with zero mean as tri-

al/test space for the pressure.

Two global shape functions for the velocity are associated with every edge ofM, one for each Cartesian

component. The standard basis for the pressure space comprises the characteristic functions of the mesh

cells. The following figure conveys the “locations” of the local shape functions.

Fig. 648

velocity FE space: “locations” of LSF

Fig. 649

pressure FE space: “locations” of LSF

Analogously to (12.3.5.7), the discrete variational saddle point problem has to be modified by “break-

ing” the bilinear forms a, a(v, w) :=
∫

Ω
µ Dv : Dw dx, and b, b(v, q) :=

∫
Ω

div v q dx, into cell con-

tributions, which leads to the well-defined discrete variational problem: seek vh ∈ (CR(M))2
,

ph ∈ S−1
0,∗ (M) such that

∑
K∈M

∫

K

µDvh|K : Dwh|K dx + ∑
K∈M

∫
K

divwh|K ph dx =
∫
Ω

f ·wh dx ,

∑
K∈M

∫

K

divvh|K qh dx = 0 ,
(12.3.5.16)

for all wh ∈ (CR0(M))2
, qh ∈ S−1

0,∗ (M).

y

EXAMPLE 12.3.5.17 (Convergence of CR(M)-P0 FEM for Stokes BVP)

12. Finite Elements for the Stokes Equation, 12.3. Galerkin Discretization of the Stokes Saddle Point Problem 847



NumPDE, ST’24, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2024

The setting is exactly that of Exp. 12.3.2.1

Monitored: Error norms ‖u− uh‖H1(M),

‖v− vh‖L2(Ω), ‖p− ph‖L2(Ω)

Oberservation:

‖v− vh‖H1(Ω) = O(hM) ,

‖v− vh‖L2(Ω) = O(h2
M) ,

‖p− ph‖0 = O(hM) .

Fig. 650
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We observe balanced and optimal asymptotic algebraic convergence in both velocity and pressure. The

rates are the best one can expect in light of the local polynomial degrees of the finite-element functions. y

§12.3.5.18 (Stability of CR(M)-P0 Stokes FEM) The pair (CR0(M))2 × Cs−1
0 (M) satisfies the sec-

ond LBB condition (LBB2) for the discrete variational saddle point problem (12.3.5.16).

Lemma 12.3.5.19. Inf-sup condition for (CR0(M))2-S−1
0 (M)-pair

With a constant C > 0 depending only on Ω and the shape-regularity measure ofM

sup
wh∈(CR0(M))2

1

‖wh‖H1(M)

∣∣∣∣∣∣ ∑
K∈M

∫

K

divwh|K qh dx

∣∣∣∣∣∣
≥ 1

C
‖qh‖L2(Ω) ∀qh ∈ S−1

0,∗ (M) .

(12.3.5.20)

For the proof of this lemma we need the “nodal projection operator” ICR : H1(Ω)→ CR(M) for the

Crouzeix-Raviart finite element space defined through

ICR(v) := ∑
e∈E(M)

( 1

|e|
∫

e

v(x)dS(x)
)

be
h , v ∈ H1(Ω) (12.3.5.21)

where E(M) is the set of edges of the meshM.

Since ICR does not involve any point evaluation of its argument, it has a chance to be continuous on

H1(Ω) and this is in fact the case, even hM-uniformly so.

Lemma 12.3.5.22. Continuity of ICR

With a constant CI > 0 depending only on the shape-regularity measure ofM

‖ICRv‖H1(M) ≤ CI ‖v‖H1(Ω) ∀v ∈ H1(Ω) . (12.3.5.23)

Proof. (Sketch) We fix a triangle K ∈ M and show

‖ ICRv|K‖H1(K) ≤ CI ‖v‖H1(K) ∀v ∈ H1(K) .

Once this is established, summation over all cells gives the assertion of the lemma.

We appeal to an intuitive arguments: Shrinking the size of a cell by a factor ρ > 0, will reduce its area by

a factor ρ2, but will make the gradient gradbe
h

∣∣
K

, e ∈ E(K), grow by a factor of ρ. These effects offset and
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we have the estimate for the local shape functions

cb ≤
∣∣be

h|K
∣∣

H1(K) ≤ cb ∀K ∈ M, e ∈ E(K) , (12.3.5.24)

with constants cb, cb > 0 depending only on the shape regularity measure ofM.

We proceed based on this estimate,

‖ ICRv|K‖2
H1(K) . ∑

e∈E(K)

1

|e|2
∣∣∣∣
∫

e
v dS

∣∣∣∣
2 ∥∥be

h|K
∥∥2

H1(Ω) [by△-inequality, (12.3.5.24)]

. ∑
e∈E(K)

1

|e| ‖v‖
2
L2(e) ≤ C|K|−1/2‖v‖2

L2(∂K) [by trace inequality Thm. 1.9.0.10]

. ‖v‖2
H1(K) ,

where . . . . means ≤ C . . . with a constant depending only on the shape regularity measure of K.
✷

We keep the notation ICR for the operator ICR :
(

H1(Ω)
)2 → (CR(M))2

acting componentwise on a

vectorfield. This vector-valued projection operator ICR plays a key role, because “it leaves the bilinear form

b invariant” in the following sense.

Lemma 12.3.5.25. Fortin-projector property of ICR

∑
K∈M

∫

K
div( ICRv|K) qh dx =

∫

Ω
div v qh dx ∀v ∈ (H1(Ω))2, qh ∈ S−1

0 (M) . (12.3.5.26)

Proof. Since the space S−1
0 (M) contains only piecewise constant discontinuous functions, it is sufficient

to show (set qh|K ≡ 1)

∫

K

div ICRv|K dx =
∫

K

div v dx ⇔
∫

∂K

ICRv|K · n dS =
∫

∂K

v · n dS ∀K ∈ M ,

thanks to Gauss’ divergence theorem Thm. 1.5.2.4.

Note that for the edge-associated global shape functions be
h of CR(M) introduced in § 12.3.5.1 an easy

computation reveals

1

|e|
∫

f

be
h(x)dS(x) =

{
1 , if e = f ,

0 else .
(12.3.5.27)

As a consequence, by the definition (12.3.5.21) of ICR we conclude also for the vector-valued case
∫

e
ICRv|K dS =

∫

e
v dS ⇔

∫

e
ICRv|K · ne dS =

∫

e
v · ne dS

for any edge e of the triangle K, ne the constant (!) exterior unit normal on ∂K restricted to e.
✷

Proof. (of Lemma 12.3.5.19) We fix aM-piecewise constant function qh ∈ C−1
0,∗ (M), which has vanishing

mean.

In order to show (12.3.5.20) we have to find a “candidate vector field” zh = zh(qh) ∈ (CR0(M))2 such

that
∫

K
div
(

zh|K
)

qh dx = ‖qh‖2
L2(K) ∀K ∈ M and ‖zh‖H1(M) ≤ Cz ‖qh‖L2(Ω) , (12.3.5.28)
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with a constant Cz > 0 depending only on Ω and the shape regularity measure of M. Once, we have

such a zh, we conclude

sup
wh∈(CR0(M))2

1

‖wh‖H1(M)

∣∣∣∣∣∣ ∑
K∈M

∫

K

div(wh|K) qh dx

∣∣∣∣∣∣

≥ 1

‖zh‖H1(M)

∣∣∣∣∣∣ ∑
K∈M

∫

K

div(zh|K) qh dx

∣∣∣∣∣∣
≥

∑
K∈M
‖qh‖2

L2(Ω)

Cz‖qh‖L2(Ω)

= C−1
z ‖qh‖L2(Ω) .

Of course, the proof of a discrete inf-sup condition must somehow be based on the proof of the corre-

sponding inf-sup condition for the Stokes variational saddle point problem (12.2.2.19) that we recall from

§ 12.2.2.29. The crucial result there was

Theorem 12.2.2.38. Existence of stable velocity potentials

∃C = C(Ω) > 0: ∀q ∈ L2
∗(Ω): ∃v ∈ (H1

0(Ω))d: q = div v ∧ ‖v‖H1(Ω) ≤ C‖q‖L2(Ω) .

about the existence of stable velocity potentials. Those provided the “candidate vectorfields” for the inf-sup

condition

∃C = C(Ω) > 0: sup
w∈(H1

0(Ω))2

∫
Ω

div w q dx

‖w‖H1(Ω)

≥ ‖q‖L2(Ω) ∀q ∈ L2
∗(Ω) . (12.3.5.29)

Well, this idea seems doomed in the discrete setting, because the velocity potential for qh will certainly not

belong to CR0(M).

Apply the interpolation operator ICR to a velocity potential for qh to obtain a “candidate

vector field”.

Following this policy and appealing to Thm. 12.2.2.38, for q := qh we find z ∈ (H1
0(Ω))2 such that

div z = qh and ‖z‖H1(Ω) ≤ C‖qh‖L2(Ω) with C = C(Ω) > 0. Then set zh := ICRz ∈ CR0(M). Owing

to Lemma 12.3.5.25 we have
∫

K
div
(

zh|K
)

qh dx =
∫

K
div z qh dx =

∫

K
|qh|2 dx = ‖qh‖2

L2(K) ,

and Lemma 12.3.5.22 gives the estimate ‖zh‖H1(M) ≤ C‖qh‖L2(Ω), with a constant C > 0 depending

only on the shape regularity ofM. Hence, zh meets all requirements (12.3.5.28) for a “candidate vector

field”.
✷ y

After we have established the stability of the CR-P0 FEM for the Stokes variational saddle point problem,

we can simply appeal to insight gained in § 12.3.3.1, stability ⇒ quasi-optimality, to predict the rates

of asymptotic algebraic convergence of ‖v− vh‖H1(M) + ‖p− ph‖L2(Ω) for hM → 0 on shape-regular

families of meshes.

Review question(s) 12.3.5.30 (Non-conforming Crouzeix-Raviart FEM for Stokes)

(Q12.3.5.30.A) [Doomed non-corming FEM for −∆] One may try a non-conforming finite element

methods for the variational problem

u ∈ H1
0(Ω):

∫

Ω
grad u · grad v dx =

∫

Ω
f v dx ∀v ∈ H1

0(Ω) ,
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f ∈ L2(Ω), Ω ⊂ R2, based on a triangular meshM and the finite-element space

S−1
1 (M) :=

{
vh ∈ L2(Ω) : vh|K ∈ P1(K) ∀K ∈ M

}
.

Why will this fail miserably?

(Q12.3.5.30.B) The Crouzeiz-Raviart finite element method for the Stokes BVP is non-conforming in the

sense that the discrete velocity space (CR0(M))2 6⊂ (H1
0(Ω))2. Explain the additional difficulty this

involves for Galerkin finite element discretization of the Stokes saddle point variational problem, seek

v ∈ (H1
0(Ω))d and p ∈ L2

∗(Ω) such that

∫

Ω

µDv : Dw dx +
∫
Ω

div w p dx =
∫
Ω

f ·w dx ∀w ∈ (H1
0(Ω))d ,

∫

Ω

div v q dx = 0 ∀q ∈ L2
∗(Ω) ,

(12.2.2.19)

and how this difficulty can be resolved.

(Q12.3.5.30.C)

We consider the finite element discretization of a 2D

Stokes BVP on the unit square with no-slip bound-

ary conditions by means of

• the Taylor-Hood FEM, and

• the Crouzeix-Raviart FEM

on “tensor-product triangular meshes” with n cells

in each direction as drawn beside.

What is the asymptotic, for n→ ∞, ratio of the total

number of unknowns for both finite element meth-

ods?

Fig. 651

(Q12.3.5.30.D) [Convergence of Crouzeix-Raviart FEM for Stokes] Let vh ∈ (CR0(M))2,

ph ∈ S−1
0,∗ (M) the finite element approximation of the solution (v, p) of a Stokes BVP with no-slip

boundary conditions by means of the Crouzeix-Raviart FEM. What is the asymptotic behavior of

‖v− vh‖H1(M) + ‖p− ph‖L2(Ω) for hM → 0

for a sequence of triangular meshes created by uniform regular refinement?

(Q12.3.5.30.E) [Implementation of Crouzeix-Raviart FEM in LEHRFEM++ ] We want to implement the

Crouzeix-Raviart FEM for a 2D Stokes BVP with non-slip boundary conditions on a triangular mesh in

LEHRFEM++. We do this by using a single lf::assemble::DofHandler object to handle all FE spaces.

Complete the following code meant for the initialization of that lf::assemble::DofHandler object:

lf::assemble::UniformFEDofHandler dof_handler(

mesh_p, {{lf::base::RefEl::kPoint(), },

{lf::base::RefEl::kSegment(), },
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{lf::base::RefEl::kTria(), },

{lf::base::RefEl::kQuad(), }});

You may consult the documentation of LEHRFEM++.

△

Learning outcomes
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electric scalar potential, 58

electromagnetic field energy, 58

electrostatic field energy, 58

electrostatics, 57

element, 176

Element (stiffness) matrix and element (load)

vector, 217

element load vector, 217

element stiffness matrix, 217

elliptic

boundary value problem, 47

linear scalar second order PDE, 107

elliptic boundary value problem, 108

ellipticity on the kernel, 816

embedded Runge-Kutta methods, 500

energy

conservation, 106

of electrostatic field, 58

energy conservation

for wave equation, 602

Energy norm, 67

energy norm, 67, 287

energy space, 74

entity, 176

co-dimension, 176

entropy, 806

equidistant mesh, 139, 180

equilibrium condition, 53

equilibrium length

of spring, 416

equipotential surface, 58

equivalence

of norms, 318

essential boundary conditions, 120, 249

essential constraints, 252

Euclidean norm, 27

Euler equations, 684
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Euler method, 575

explicit, 466

implicit, 468

implicit, stability function, 532

semi implicit, 538

Euler polygon, 466

evolution operator, 462

for an ODE, 563

fully discrete, 747

semi-discrete, 746

Evolution operator/mapping, 462

evolution problem, 548

semi-discrete, 560

spatial variational formulation, 554

expansion shock, 699, 700

explicit Euler method, 466, 566, 575

Butcher scheme, 488

explicit midpoint rule

Butcher scheme, 489

for ODEs, 486

explicit Runge-Kutta method, 487

Explicit Runge-Kutta single-step method, 487

explicit trapzoidal rule

Butcher scheme, 488

exponential convergence, 295

extended state space

of an ODE, 457

face, 175

factory object, 202

field energy

electromagnetic, 58

finite difference method (FDM), 711

finite difference methods, 375

Finite element mesh/triangulation, 175

finite element space

H1-conforming, 184

Lagrangian, 185

finite elements

parametric, 264

finite volume methods (FVM), 389

finite-difference operator, 746

flow field, 621

flow map, 622, 674

flux function, 686, 688

Fourier expansion, 556

Fourier’s law, 106, 395, 551

in fluid, 624

Frobenius norm, 315

fully discrete evolutions, 747

functional, 344, 428

linear, 345

functor, 128

fundamental lemma of calculus of variations,

100, 438

fundamental theorem of calculus, 95

Galerkin discretization

of saddle point problem, 825

Galerkin matrix, 217

Galerkin orthogonality, 288

Galerkin solution

quasi-optimality, 289

Gamma function, 237

Gauss collocation single step method, 528, 573

Gauss’ theorem, 107, 623, 694

Gauss-Legendre quadrature, 245

Gauss-Lobatto quadrature, 245

Gauss-Radau quadrature formulas, 536

generalized (= weak) gradient, 86

generalized eigenvalue problem, 613

generalized eigenvalues, 613

generic constants, 326

geometry layer, 204, 213

Gibbs free energy, 40

global shape functions, 179

global solution

of an IVP, 460

Gmsh, 196

.geo-file, 197

.msh-file, 199

geometric modeling, 196

geometry file, 197

mesh file, 199

physical groups, 200, 203

gmsh

mesh generation, 198

Godunov numerical flux, 736, 799

graded mesh, 146

gradient, 32, 54

in weak sense, 86

of a function, 54

transformation, 267, 281

Gramian determinant, 242

Green’s first formula, 99, 437, 823

grid, 381, 711

1D, 139

grid point

of a 1D mesh, 376

h-refinement, 290, 329

hanging node, 149, 177

hat function, 86, 154

heartbeat model, 454
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heat capacity, 550

heat conductivity, 106

heat equation, 550

heat flux, 105, 106

computation of, 348

convective, 624, 673

diffusive, 624, 673

heat source, 106

heat transport, 673

Helmholtz equation, 45

Hessian, 39, 314

Heun method, 748

Higher order Sobolev spaces/norms, 318

Higher-order Sobolev semi-norms, 319

Hilbert space, 76, 286

homogeneous boundary conditions, 109

homogeneous Dirichlet problem

linear finite element space, 155

Hooke’s law, 416

Hugoniot locus, 791

hyperbolic evolution problem, 597

discrete case, 604

impedance boundary conditions, 108

implicit Euler method, 468, 566, 575

implicit function theorem, 469

implicit midpoint method, 469, 566, 608

implicit midpoint rule, 576

incidence relations, 206

incompressible, 625

Incompressible flow field, 625

increment

for collocation SSM, 572

increment equations

linearized, 539

increments

Runge-Kutta, 487, 529

index mapping matrix, 233

indexing

of entities, 205

inexact splitting methods, 543

inf-sup condition, 816, 834

inflow, 686

inflow boundary, 634, 655, 677

initial conditions, 548

initial value problem

stiff, 521, 579

initial value problem (IVP), 457

initial-boundary value problems (IBVP), 549

parabolic, 551

initial-value problem, 563

Inner product, 27

inner product, 27

integrated Legendre polynomials, 400

integration by parts

1D, 95

multidimensional, 99, 437, 823

intermediate state, 733

interpolant

piecewise linear, 395

interpolation error, 309, 313

interpolation error estimates

anisotropic, 320

in 1D, 308

interpolation nodes, 185, 190

inviscid, 683

IVP, 457

IVP =̂ initial value problem, 563

Jacobian, 32, 38

kinetic energy, 602

kinetics

of chemical reaction, 519

Kronecker product, 577

L(π)-stability, 587

L(π)-stability, 587

L-shaped domain, 303

L-stability, 586

L-stable, 535

L-stable Runge-Kutta method, 535

Ladyzhenskaya–Babuska–Brezzi condition

(LBB-condition), 816

Lagrange functional

for zero mean constraint, 821

Lagrange multiplier, 813

Lagrangian finite elements, 185

on quadrilaterals, 261

Lagrangian functional, 813

Lagrangian method, 661

for advecti0n, 657

Lagrangian view, 655

lambda function, 128

Laplace equation, 101

Laplace operator, 101

Laplacian, 33

Lax entropy condition, 706, 793

Lax entropy condition for systems of

conservation laws, 793

Lax-Friedrichs flux, 727, 798

Lax-Friedrichs numerical flux, 803

layer

boundary, 632
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layers

internal, 647

of mesh functionality, 204

LBB condition, 834

LBB-condition, 816

ellipticity on the kernel, 816

inf-sup condition, 816

leapfrog, 610

Legendre polynomials, 400

integrated, 400

LehrFEM++, 194

gmsh reader, 202

mesh factory, 202

Lemma:

fundamental lemma of the calculus of variations,

95

Lemma: −∆ = curl curl− grad div, 809

Lemma: Affine equivalence of Lagrangian finite

elements on simplicial meshes, 258

Lemma: Affine transformation of triangles, 240

Lemma: Auxiliary estimate on sector, 315

Lemma: Behavior of of generalized eigenvalues,

583

Lemma: Boundedness condition on linear form,

68

Lemma: Classical solutions and characteristic

curves, 690

Lemma: Comparison principle for monotone

semi-discrete conservative evolutions,

742

Lemma: Congruent Galerkin matrices, 136

Lemma: Continuity of ICR, 848

Lemma: Criterion for local Liptschitz continuity,

459

Lemma: Criterion for pressure robustness, 838

Lemma: Decay of solutions of parabolic

evolutions, 557

Lemma: Dimension of spaces of polynomials,

178

Lemma: Dimension of spaces of tensor product

polynomials, 179

Lemma: Effect of change of basis on Galerkin

matrix, 135

Lemma: Energy norm and energy deviation, 287

Lemma: Existence of solutions of collocation

equations, 571

Lemma: Fortin-projector property of ICR, 849

Lemma: Fundamental lemma of calculus of

variations in higher dimensions, 100

Lemma: Fundamental lemma of calculus of

variations on boundaries, 103

Lemma: General product rule, 96

Lemma: GSF for CR(M), 844

Lemma: Inf-sup condition for

(CR0(M))2-S−1
0 (M)-pair, 848

Lemma: Integration of powers of barycentric

coordinate functions, 237

Lemma: Invertibility of “averaging matrices”, 365

Lemma: Linear monotonicity preserving

reconstruction trivial, 774

Lemma: Local interpolation error estimates for

2D linear interpolation, 316

Lemma: Monotonicity of Lax-Friedrichs/Rusanov

numerical flux and Godunov flux, 741

Lemma: Monotonicity preservation of minmod

reconstruction, 775

Lemma: Necessary conditions for existence of

solution of saddle point problem, 813

Lemma: Non-oscillatory monotone semi-discrete

evolutions, 743

Lemma: Preservation of polynomials under

affine pullback, 258

Lemma: Rarefaction solution of Riemann

problem, 703

Lemma: Real diagonalizability of A(x), 783

Lemma: Shock solution of Riemann problem,

699

Lemma: Smoothness of solutions of ODEs, 451

Lemma: Space of solutions of linear ODEs, 452

Lemma: Sparsity of Galerkin matrix, 157

Lemma: Stability function as approximation of

exp for small arguments, 512

Lemma: Testing with basis vectors, 134

Lemma: Transformation formula for gradients,

267

lexikographic ordering, 381, 382

Lie-Trotter splitting, 541

limit cycle, 520

linear boundary fitting, 340

linear evolution, 555

Linear first-order ODE, 451

linear form, 25, 61

continuity, 83

Linear forms, 25, 61

linear function

in 2D, 152

linear functional, 25, 61

linear interpolation

in 1D, 308

in 2D, 312, 313

Linear interpolation in 2D, 313

linear ODE, 451, 564
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linear operator

bounded, 116

Linear reconstruction, 766

linear regression, 298

Linear system of conservation laws, 782

linear variational problem, 89

Linearity, 109

Lipschitz continuity, 563

Lipschitz continuos function, 458, 459

load vector, 134, 217

local linearization, 442, 443

local operations, 224

local quadrature rule

transformation, 241

local quasi-uniformity, 327

local shape function, 181

barycentric representation, 260

local shape functions

quadratic, 186

Local shape functions (LSF), 181

local→global index mapping, 218

logistic differential equation, 452

Lotka-Volterra ODE, 453

M-matrix, 365, 366

macroscopic quantities, 679

magnetization, 40

manufactured solution, 300

manufactured solutions, 371

mass lumping, 579, 611

mass matrix, 134

mass-spring model, 414, 424

Material derivative, 666

material derivative, 666

material tensor, 91

matrix

condition number, 401

matrix exponential, 513

maximum norm

on Rn, 27

maximum principle, 359, 628

discrete, 361

Maxwell’s equations

static case, 58

Mean square norm/L2-norm, 35

mean value formula, 314

mean-value theorem, 115

mesh, 175

1D, 139

cell, 148

equidistant, 139

in time, 471

node, 148

non-conforming, 177

quadrilateral, 176

simplicial, 177

temporal, 465

topolgy, 206

triangular, 176

mesh data structure, 203

mesh file format, 195

mesh functionality

layers, 204

mesh generator, 195

Mesh width, 294

mesh width, 139, 294

method of characteristics, 633, 655

method of lines, 560

micromagneticcs, 40

micromagnetics, 40

midpoint method

implicit, stability function, 532

midpoint rule, 486

composite, 144

minimal surface, 434

minimal surface differential equation, 438

minimization problem, 428

minmod, 775

Minmod reconstruction, 775

mixed boundary conditions, 109

Mixed Neumann–Dirichlet problem, 104

model

continuous, 126

discrete, 126

monomial basis, 400

Monotone numerical flux function, 741

monotonicity preserving linear interpolation, 773

Monotonicity-preserving linear reconstruction

(MPLR), 773

multi-index, 318

multi-index notation, 178

multiplicative trace inequality, 121

Multivariate polynomials, 178

MUSCL scheme, 778

natural boundary conditions, 120

Navier-Stokes equations, 40

nested meshes, 290

NETGEN, 202

Neumann boundary conditions, 104, 108

Neumann data

admissibility conditions, 120

Neumann problem, 112

compatibility condition, 113
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variational form, 112

Newton’s method

in function space, 442

Newton’s second law of motion, 595

Newton-Cotes formula, 245

nodal analysis

transient, 456

nodal basis, 154

nodal interpolation operator, 272

nodal interpolation operators, 324

node, 148

1D, 139, 711

hanging, 149

of a 1D mesh, 376

quadrature, 143

non-conforming, 844

Non-linear system of conservation laws, 788

Norm, 26

norm, 26

on function space, 34

Numerical domain of dependence, 749

numerical domain of dependence, 749

numerical flux, 391, 396

numerical flux (function), 717, 796

numerical flux function, 391

numerical quadrature

nodes, 239

weights, 239

ODE, 38, 457

autonomous, 450

linear, 451, 564

scalar, 451, 466

ODE =̂ ordinary differential equation, 562

ODE, right-hand-side function, 450

offset function trick, 130

offset function, 250

for linear FE, 250

for linear finite elements in 1D, 145

offset function trick, 63, 130

one-sided difference quotient, 377

one-step error, 478

option pricing, 42

order

of a discrete evolution, 481

of an ODE, 458

of discrete evolution, 566

Order of a discrete evolution operator, 481

Order of a local quadrature rule, 243

Order of a single step method, 477

order of quadrature rule, 243

ordinary differential equation, 562

ordinary differential equation (ODE), 457

oregonator, 490

orientation

of edges, 208

outflow, 686

outflow boundary, 634

output functional, 344

p-refinement, 329

Parametric finite elements, 265

parametric finite elements, 264, 265

Paraview, 203

partial differential equation, 38

particle mesh method, 662

particle method, 661

particle model

of traffic flow, 678

PDE, 38

lLinear scalar second order elliptic, 107

Peano

Theorem of, 459

perpendicular bisector, 392

Petrov-Galerkin discretization, 226

phase space, 686

of an ODE, 457

phenomenological model, 454

Picard-Lindelöf

Theorem of, 459

Piecewise continuously differentiable functions,

33, 55

piecewise linear interpolant, 395

piecewise linear reconstruction, 765

piecewise quadratic interpolation, 325

Plateau problem, 434

point force, 55

Poisson equation, 101

Poisson equation, 298

Poisson matrix, 382

polar coordinates, 70

polygon, 148

polynomials

degree, 178

multivariate, 178

Positive (semi-)definite bilinear form, 27

positive definite, 27

bilinear form, 65

uniformly, 59

positive definite (s.p.d.), 27

Positive definite bilinear form, 65

Positive definite matrix, 27

positive semi-definite, 27

bilinear form, 64
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Positive semi-definite bilinear form, 64

potential energy, 53, 602

predator-prey model, 453

predicate, 232, 252

pressure, 815

pressure Poisson equation, 824

Pressure-robust Galerkin discretization of the

Stokes problem, 838

pressure=robust, 838

primal mesh, 391

principal, 451

problem size, 326

procedural form

of data functions, 128

product rule, 557

in higher dimensions, 96

production term, 686

propagated error, 478

Pullback, 257

pullback, 257

Punkt

stationär, 454

Pythagoras’ theorem, 288

Quadratic functional, 62

quadratic functional, 62

quadratic local shape functions, 186

Quadratic minimization problem, 63

quadratic minimization problem, 63, 76

quadratic minimization problems, 61

quadrature formula

1D, 143

general, 239

quadrature nodes, 143, 239

quadrature rule, 239

on triangle, 244

order, 243

quadrature rules

Gauss-Legendre, 245

Gauss-Lobatto, 245

quadrature weights, 143, 239

quadrilateral mesh, 176

quasi-linear variational problems, 435

quasi-optimality, 289, 837

quasi-uniformity, 370

Radau RK-method

order 3, 536

order 5, 536

Radau timestepping, 587

radiation boundary conditions, 108

Rankine-Hugoniot jump conditions, 790

rarefaction

subsonic, 735

supersonic, 735

transonic, 735

rarefaction wave/fan, 703

rate

of algebraic convergence, 476

Rate of convergence, 295

reaction coefficient, 127

reaction term

in 2nd-order BVP, 148

recirculating flow, 635

reference element, 239, 240

reference elements, 265

reference triangle, 240

refinement layer, 204

Region of (absolute) stability, 518

region of absolute stability, 518

regular refinement, 290

relative tolerance, 494

Rellich theorem, 117

residual equation, 836

reversibility, 606

Reynolds number, 805

Ricati differential equation, 465

Riccati differential equation, 466

Riemann problem, 697

for linear systems of CL, 785

local, 734

Riesz representation theorem, 286

right hand side

of an ODE, 457

right hand side vector, 217

Robin boundary conditions, 108

robust discretization, 637

Rodriguez formula, 400

Roe linearization, 800

Roe matrix, 800

ROW methods, 540

Runge-Kutta

increments, 487, 529

Runge-Kutta method, 487, 529

L-stable, 535

Runge-Kutta methods

embedded, 500

semi-implicit, 537

stability function, 511, 532, 757

Runge-Kutta single-step method, 529

Rusanov numerical flux, 803

saddle point

linear system of equations, 826
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saddle point linear system of equations, 826

saddle point matrix, 826

saddle point problem, 813

algebraic, 818

linear, 814

variational, 814

scalar ODE, 466

scalar product, 27

scaling, 54, 629

Schrödinger equation

electronic, 43

SDIRK timestepping, 587

semi-discrete evolution problem, 560

semi-implicit Euler method, 538

semi-linear variational problems, 435

semi-norm, 81

separation of variables, 556

shallow water equations, 789

shape functions

global, 179

shape regularity

uniform, 370

Shape regularity measure, 317

shape regularity measure, 317, 330

Shock, 698

shock, 698

physical, 706

subsonic, 735

supersonic, 735

shock fan, 786

shock speed, 698

similarity solution, 702

Simplicial Lagrangian finite element spaces, 185

simplicial mesh, 177

single step method

A-stability, 533

Single-step method, 471

single-step method, 471

singular perturbation, 633

Singularly perturbed boundary value problem,

633

SIR model, 455

slope limiter, 775

slope limiting, 773

slopes, 766

Sobolev norms, 318

Sobolev semi-norms, 319

Sobolev space H1
0(Ω), 79

Sobolev space H1(Ω), 80

Sobolev space H1
0(Ω), 79

Sobolev spaces, 72, 318

solution

approximate, 126

Solution of an ordinary differential equation, 451

source term, 47

Space L2(Ω), 75

space-time-cylinder, 548

span, 205

sparse matrix

initialization, 167

sparsity pattern, 158

spatial domain, 51, 423

spectral collocation method, 408

spectral Galerkin methods, 290

spectrum, 754

spline

cubic, 410

spline collocation, 410

split-step timestepping, 657

splitting

Lie-Trotter, 541

Strang, 541

splitting methods, 541

inexact, 543

spring constant, 416

Störmer scheme, 610

stability, 91, 832, 836

region of, 518

unconditional, 585

stability domain, 758

stability function

of explicit Runge-Kutta methods, 511, 757

of RK-SSM, 586

of Runge-Kutta methods, 532

Stable finite element pair, 833

stages, 530

star-shaped, 121

state space, 686

of an ODE, 457

stencil, 383, 748

Stiff IVP, 521, 579

stiffness, 53

of spring, 416

stiffness matrix, 134, 217

sparsity, 180

Stokes problem

saddle point form, 815

variational form, 816

Strang splitting, 541, 657, 658

Strang’s lemma, 338

streamline, 621

closed, 634
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streamline backtracking, 668

streamline diffusion, 645

strictly hyperbolic, 783

strong form, 47, 102

structure-preserving timestepping, 606

sub-entities, 176

subsonic rarefaction, 735

subsonic shock, 735

supersonic rarefaction, 735

supersonic shock, 735

support

of a function, 141

Support of a function, 141

Supremum norm, 34

supremum norm, 34

surface, 36

symbol

of a difference operator, 754

Symmetric bilinear form, 27

symmetric bilinear form, 27, 62

symmetric difference quotient, 377

Symmetric positive definite matrices, 28

T-matrix, 233

Töplitz matrix, 143

tangent field, 465

Taylor-Hood finite element, 841

Tensor product Lagrangian finite element

spaces, 190

Tensor product polynomials, 179

tensor product polynomials, 179

tent function, 140, 153, 154

test space, 89, 433

TETGEN, 202

Theorem: L2(Ω) by completion, 78

Theorem: L1-contractivity of evolution for scalar

conservation law, 709

Theorem: H1(Ω)-Norm interpolation error

estimates for Lagrangian finite elements,

343

Theorem: L2(Ω)-Norm interpolation error

estimates for Lagrangian finite elements,

343

Theorem: (Absolute) stability of explicit RK-SSM

for linear systems of ODEs, 517

Theorem: Maximum principle for 2nd-order

elliptic BVP, 359

Theorem: Rankine-Hugoniot jump conditions

for systems, 791

Theorem: Angle condition for Voronoi dual

meshes, 393

Theorem: Assembly through index mapping

matrices, 233

Theorem: Best approximation error estimates for

Lagrangian finite elements, 325

Theorem: Cauchy-Schwarz inequality, 27

Theorem: Cea’s lemma, 289

Theorem: Characterization of global minimizers,

428

Theorem: Classical solutions are weak solutions,

112

Theorem: Comparison principle for scalar

conservation laws, 708

Theorem: Compatibility conditions for piecewise

smooth functions in H1(Ω), 85

Theorem: Completion of a normed vector space,

78

Theorem: Convergence of scalar CR(M)-FEM

[BRA07], 846

Theorem: Convergence of single-step methods,

570

Theorem: Convergence of solutions of fully

discrete parabolic evolution problems,

591

Theorem: Convergence of stable FE for Stokes

problem, 837

Theorem: Convergene of fully discrete solutions

of the wave equation, 617

Theorem: Corner singular function

decomposition, 335

Theorem: Differentiation formula for

determinants, 626

Theorem: Divergence-free velocity fields for

incompressible flows, 627

Theorem: Domain of dependence for isotropic

wave equation, 601

Theorem: Duality estimate for linear functional

output, 346

Theorem: Elliptic lifting theorem on convex

domains, 335

Theorem: Energy conservation in wave

propagation, 602

Theorem: Equivalence of quadratic minimization

problem and linear variational problem,

89

Theorem: Error estimate for piecewise linear

interpolation, 317

Theorem: Existence and uniqueness of solution

of linear variational problem, 286

Theorem: Existence and uniqueness of solutions

of discrete variational problems, 132

Theorem: Existence and uniqueness of solutions
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of IVPs, 563

Theorem: Existence and uniqueness of weak

solutions of Stokes problem, 820

Theorem: Existence of minimizers in Hilbert

spaces, 77

Theorem: Existence of stable velocity potentials,

820

Theorem: Existence of unique minimizer in finite

dimensions, 69

Theorem: Gauss’ theorem, 97

Theorem: Green’s first formula, 99

Theorem: Implicit function theorem, 469

Theorem: Independence of Galerkin solution of

choice of basis, 135, 138

Theorem: inf-sup condition, 834

Theorem: Inverse positivity, 366

Theorem: Ladyzhenskaya–Babuška–Brezzi

conditions (LBB-conditions), 817, 822

Theorem: Maximum principle for linear FE

solution of Poisson equation, 367

Theorem: Maximum principle for scalar

2nd-order convection diffusion

equations, 628

Theorem: Multi-dimensional truncated Tayler

expansion, 431

Theorem: Multiplicative trace inequality, 121

Theorem: Norms from inner products, 28, 66

Theorem: Order of collocation single step

method, 529, 573

Theorem: Order of simple splitting methods, 542

Theorem: Order of Strang splitting single step

method, 658

Theorem: Partial derivatives commute, 31

Theorem: Poincaré-Friedrichs inequality, 82, 114

Theorem: Poincaré-Friedrichs-type estimate,

117

Theorem: Real diagonalization of symmetric

matrices, 29

Theorem: Region of stability of Gauss

collocation single step methods, 534

Theorem: Rellich’s Theorem: Compact

embedding of H1(Ω) in L2(Ω), 117

Theorem: Smooth elliptic lifting theorem, 332

Theorem: Sobolev embedding theorem, 320

Theorem: Sobolev spaces by completion, 81

Theorem: Solution of linear advection problem,

675

Theorem: Stability and convergence of

Taylor-Hood finite element, 842

Theorem: Stability function of explicit

Runge-Kutta methods, 757

Theorem: Stability function of general

Runge-Kutta methods, 532

Theorem: Stability function of some explicit

Runge-Kutta methods, 511

Theorem: Strang’s second lemma, 338

Theorem: Taylor’s theorem, 30

Theorem: Theorem of Peano & Picard-Lindelöf

[AMA83], [STRLN09], [DAR06],

[HAB02a], 459

Theorem: Transformation formula for integrals,

36

Theorem: Uniqueness of solutions of quadratic

minimization problems, 66

Theorem: Variation-of-constants formula, 561

timestep (size), 467

timestep constraint, 512

explicit Euler, 584

timestepping, 466, 575

tolerance

absolute, 494

for adaptive timestepping for ODEs, 493

realtive, 494

topology

of a mesh, 206

topology layer, 204

trace theorem, 121

traffic flow

velocity model, 678

trajectory, 454, 621

transformation

bilinear, 262

transformation of functions, 257

transformation techniques, 264

translation-invariant, 748

transonic rarefaction, 735

transport equation, 654, 673

transport-dominated, 673

transsonic rarefaction fan, 732

trapezoidal rule, 486

composite, 144

for ODEs, 486

global, 643

trial space, 89, 433

for collocation, 526

triangle inequality, 26

Triangle mesh generator, 202

triangular mesh, 176

triangulation, 175

in 2D, 148

two-point boundary value problem, 96

two-step method, 610
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Types of convergence, 295

unconditional stability, 585

uniform shape regularity, 370

uniform shape-regularity, 327

uniformly positive, 107

Uniformly positive (definite) tensor field, 59

unit triangle, 181, 240

upwind flux, 798

upwind quadrature, 641–643

upwinding, 640

validation

of FE codes, 370

variational crime, 337

variational equation

general, 428, 433

variational formulation

spatial, 554

variational problem

discrete, 130, 134

perturbed, 337

vector field, 457

vector Laplacian, 824

velocity field, 621

vertex, 175

vertical force, 50

virtual work principle, 428

von Neumann stability analysis, 582, 758

Voronoi cell, 392

Voronoi dual mesh, 391

vortex, 807

VTK, 203

wave equation, 596

weak (= generalized) gradient, 86

weak form, 102

weak solution, 695

for systems, 789

Weak solution of Cauchy problem for scalar

conservation law, 695

Weak solution of Cauchy problem for system of

conservation laws, 789

Weak/generalized gradient, 86

weight

quadrature, 143

well-posedness, 832

width

of a mesh, 294
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Abbreviations and Acronyms

ASP =̂ affine space, 24

BDC =̂ boundary conditions, 50

BLF =̂ bilinear form, 25, 61

BVP =̂ boundary value problem, 47

CAD =̂ computer-aided design, 278

CDE =̂ convection-diffusion equation, 624

CFG-SPC =̂ configuration space, 49

CSI =̂ Cauchy-Schwarz inequality, 81

CSI =̂ Cauchy-Schwarz inequality, 27

DOF =̂ degree of freedom, 134, 179

DP =̂ discretization parameter, 294

DQ =̂ difference quotient, 376, 712

DVP =̂ discrete variational problem, 130

E&U =̂ existence and uniqueness, 64

FDM =̂ finite difference method, 711

FDM =̂ finite-difference method, 375

FEM =̂ finite element method, 125, 129

FSP =̂ function space, 24

FV =̂ finite volume (scheme), 711

FV-MOL-ODE =̂ semi-discrete evolution arising

conservative finite-colume

semi-discretization, 745

FVM =̂ finite-volume method, 390

GALMAT =̂ Galerkin matrix, 134

GD =̂ Galerkin Discretization, 129

GO =̂ Galerkin orthogonality, 288

GSF =̂ global shape functions, 181

HLLE =̂ Harten-Lax-van Lehr-Einfeldt two wave

entropy fix, 801

IbP =̂ integration by parts, 95

IBP =̂ integration by parts, 95

IBVP =̂ initial-boundary value problem, 549

IRK-SSM =̂ implicit Runge-Kutta single-step

method, 531

IVP =̂ initial-value problem, 449

LagrFE =̂ Lagrangian finite element space

S0
p(M), 184

LEC =̂ Lax entropy condition, 793

LF =̂ linear form, 25, 61

LSCL =̂ linear system of conservation laws, 782

LSE =̂ linear system of equations, 88, 134

LSF =̂ local shape functions, 181

LVP =̂ linear variational problem, 89

LWE =̂ linear wave equation, 596

MOC =̂ method of characteristics, 655

MPLR =̂ monotonicity-preserving linear

reconstruction, 773

MSM =̂ mass-spring model, 414

MW =̂ mesh width, 294

NFF =̂ numerical flux (function), 717

NLSCL =̂ non-linear system of conservation

laws, 788

ODE =̂ ordinary differential equation, 96, 449

p.d. =̂ positive definite, 27

p.s.d. =̂ positive semi-definite, 27

PDE =̂ partial differential equation, 38

PMM =̂ particle mesh method, 662

r.h.s =̂ right-hand side, 450

RHS =̂ right-hand side, 134

s.p.d. =̂ positive definite, 27

SF =̂ stability function, 511

SPP =̂ variational saddle point problem, 814

SSM =̂ single-step method, 471

SU =̂ streamline upwinding, 647

SWE =̂ shallow water equations, 789

UP =̂ uniformly positive, 53

UPD =̂ uniformly positive definite, 59

VS =̂ vector space, 24

VSP =̂ vector space, 24
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List of Symbols

C∞
0 (Ω) =̂ smooth functions with support inside

Ω, 82

Ck
pw([a, b]) =̂ piecewise k-times continuously

differentiable functions on an interval, 34

D−(x, t) =̂ maximal analytical domain of

dependence of (x, t), 749

Dαu =̂ multiple partial derivatives, 318

D f =̂ general derivative of a function f , 31

H1
∗(Ω) =̂ function is H1(Ω) with vanishing

mean, 114

H2(M) =̂ Sobolev space of functions

M-piecewise ∈ H2, 649

J(t0, y0) =̂ maximal domain of definition of a

solution of an IVP, 459

L2
∗(Ω) := {q ∈ L2(Ω):

∫
Ω

q dx = 0}, 816

O( f (N)) =̂ Landau-O for N → ∞, 295

S(z) =̂ stability function of Runge-Kutta method,

757

A, B, . . . =̂ real or complex matrices, 25

a, b, . . . =̂ “small” coordinate vectors, 24

n, 108

n =̂ exterior unit normal vectorfield, 97

Hh =̂ fully discrete evolution operator, 747

L =̂ space of (bounded) linear mappings

X → Y, 443

L(V, W) =̂ space of linear mappings V 7→W,

31

Lh =̂ semi-discrete evolution operator doe 1D

conservation law, 746

N (b) =̂ nullspace/kerna; of the bilinear form b,

816

C0(Ω) =̂ vector space of continuous functions

on Ω ⊂ Rd, 33

Ck(Ω) =̂ k-times continuous differentiable

real-valued functions on Ω, 33

Pp(Rd) =̂ space of d-variate polynomials, 178

Qp(Rd), 179

S−1
p,∗(M) =̂ space of p.w. polynomials with

mean zero, 828

S−1
p (M) =̂M-piecewise polynomials of

degree ≤ p, 828

S3,T =̂ cubic spline space, knot set T , 410

V(M) =̂ set of vertices of the triangulation, 149

∆ =̂ Laplace operator, 101

∆ =̂ vector Laplacian, 824

Dv =̂ Jacobian of a vectorfield v, 809

D f =̂ Jacobian of a differentiable function, 32,

38

D =̂ total derivative, 813

Dyf =̂ Derivative of f w.r.t. y (Jacobian), 459

div j =̂ divergence of a vector field, 97

I1, 313

Γin =̂ inflow boundary for advection BVP, 634

H f =̂ Hessian of a scalar valued function, 39

Hu =̂ Hessian of a scalar valued function, 32

Hm(Ω) =̂ m-th order Sobolev space, 318

S0
1 (M), 152

I1 =̂ piecewise linear interpolation on finite

element mesh, 395

Pn =̂ n-th Legendre polynomial, 400

S0
p(M) =̂ H1(Ω)-conforming Lagrangian FE

space, 185

L∞(Ω) =̂ space of (essentially) bounded

functions on Ω, 34

L∞(Ω) =̂ vector space of essentially bounded

functions on Ω, 34

L2(Ω) =̂ space of square-integrable functions

on Ω, 75

‖u‖Hm(Ω) =̂ m-th order Sobolev norm, 318

‖u‖L∞(Ω) =̂ supremum norm of u : Ω 7→ Rn,

34

‖·‖L2(Ω) =̂ L2-norm of a function, 35

‖·‖L2(Ω) =̂ norm on L2(Ω), 75

‖·‖0 =̂ L2-norm of a function, 35

V(M), 176

‖·‖0 =̂ norm on L2(Ω), 75

‖·‖F =̂ Frobenius norm, 809

‖·‖∞ =̂ supremum norm of a function/maximum

norm of a vector, 34

‖·‖∞ =̂ supremum norm (of function), maximum

norm (for a vector), 34

‖v‖2
H1(M) =̂ mesh-based broken H1(Ω)-norm,
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846

Ω =̂ (spatial) domain, 47

Φ∗, 257

Φ
s,tu =̂ evolution operator for an ODE, 563

Ψ
hy =̂ discrete evolution for autonomous ODE,

471

|u|Hm(Ω) m-th order Sobolev semi-norm, 319

A, B, C, . . . (matrices), 134

A : B =̂ componentwise dot product of matrices,

809, 811

S−⊤ hat= inverse transposed of matrix S, 267

1=̂ vector with entries all equal to 1, 25

ri(u) =̂ i-th eigenvalue of DF(u), F a flux

function, 788

0 =̂ zero vector ∈ Rn, 25

≈ =̂ two-sided uniform estimate, 327

H1
ΓD
(Ω) =̂ functions in H1(Ω) with zero trace

on ΓD, 369

C− := {z ∈ C: Re z < 0}, 533

S2 =̂ unit sphere, 44

aK =̂ restriction of bilinear form a to cell K, 159

χI =̂ characteristic function of an interval I ⊂ R,

717

˙ =̂ differentiation with respect to time t, 562

curl =̂ rotation/curl of a vector field, 806

ü := ∂u
∂t2 , 595

δi,j =̂ Kronecker symbol, 25

u̇(t) =̂ (partial) derivative w.r.t. time, 554

ℓK restriction of linear form ℓ to cell K, 168
D f
Dv (t) =̂ material derivative w.r.t. velocity field v,

666

grad =̂ gradient of a scalar valued function, 54

ĉ(ξ) =̂ symbol of a finite difference operator, 754

J·KΓ =̂ jump of a function across a

curve/boundary, 696

(~µ)j =̂ j-th component of vector~µ, 25

. =̂ ≤ c·, with a “generic constant” C > 0, 93

1 = (1, . . . , 1)T, 757

1 = [1, . . . , ]⊤, 511

dS =̂ integration over a surface, 97

M, 176

∇F(x) := grad F(x) =̂ nabla notation for

gradient, 54

cond(A), 401

diam(Ω) =̂ diameter of Ω ⊂ Rd, 52

nnz, 157

D =̂ the closure of a set D ⊂ Rd, 148

Ω =̂ closure of domain Ω, 52

Ck
pw,0(Ω) =̂ piecewise k-times continuously

differentiably functions vanishing on the

boundary, 34

Ck
pw(Ω) =̂ piecewise k-times continuously

differentiably functions, 33

ρK =̂ shape regularity measure of cell K, 317,

330

ρM =̂ shape regularity measure of a meshM,

317, 330

f |D =̂ restriction to a function to a set D, 34

~ǫk =̂ k-th unit vector in Rn, 25

~µ,~η =̂ “large” coefficient vectors, 24

~µ,~ϕ,~ξ, . . . (coefficient vectors), 134

S0
p,0(M) =̂ Degree p Lagrangian finite element

space with zero Dirichlet boundary

conditions., 191

S0
1,0(M) =̂ space of p.w. linear C0-finite

elements, 140

H1
0(Ω) Sobolev space, 79

f ′, f ′′, f (k) =̂ derivatives of a function in 1D, 30

f (·) = O(g(·)) =̂ Landau “O”-notation, 30

hM =̂ mesh width of meshM, 294

hM =̂ meshwidth of a grid, 139

xj− 1
2

:= 1
2(xj + xj−1) =̂ midpoint of cell in 1D,

716

x, p, y, . . . =̂ small vectors, coordinate vectors of

points, 51

|v|H1(Ω) = |v|1,Ω = |v|1 =̂ semi-norm on

H1(Ω), 79

f =̂ right hand side of an ODE, 457

∂Ω =̂ boundary of the domain Ω, 51

˙ =̂ Derivative w.r.t. time t, 450

TOL tolerance, 493
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Examples and Remarks

L2-convergence of FE solutions, 354

L2-estimates on non-convex domain, 356

H1
0(div 0, Ω)-conforming finite elements, 811

h-convergence of Lagrangian FEM on L-shaped

domain, 303

R by completion of Q, 78

(Bi)-linear Lagrangian finite elements on hybrid

meshes, 191

Ex. 11.6.1.5 cnt’d; strict hyperbolicity of 1D wave

equation, 783

Section 1.4.1 revisted: Thm. 5.2.1.5 for quadratic

J, 428

Gmsh – meshing more complex geometries, 201

Gmsh file format for storing meshes, 198

Gmsh geometry description file, 197

|·|H1(Ω)-seminorm, 81

Non-linear variational problem, 434

LEHRFEM++– A simple but flexible C++ finite

element library, 194

LEHRFEM++– building a mesh from Gmsh

mesh file, 202

LEHRFEM++ interface to local computations,

228

LEHRFEM++ numbering convention for global

shape functions, 222

“Butcher barriers” for explicit RK-SSM, 489

“Energy-geometry”, 288

“Explosion equation”: finite-time blow-up, 460

“Failure” of adaptive timestepping, 497

“Generic constants”, 325

“Wrapped rock on a stove”, 109

L-stable implicit Runge-Kutta methods, 536

1D convection-diffusion boundary value problem,

632

1D shallow water equations (SWE) [LEV02], 789

1D wave equation as linear system of

conservation laws, 782

6-Node triangles in LEHRFEM++, 279

Gmsh – marking parts of a mesh by tags, 200

A function that is not locally Lipschitz continuous,

459

Acceleration based traffic modeling, 678

Accessing corner coordinates in LEHRFEM++,

213

Accessing sub-entities in LEHRFEM++, 207

Actual shock patterns in traffic flow, 700

Adaptive explicit high-order Runge-Kutta method

for discrete parabolic evolution, 579

Adaptive explicit RK-SSM for scalar linear decay

ODE, 506

Adaptive timestepping for mechanical problem,

503

Adequacy of 2nd-order timestepping, 778

Alternative (“legacy”) terminology, 134

Alternative computation of element matrix for

−∆, 161

Approximate computation of error norms, 298

Approximate Dirichlet boundary conditions, 250

Approximate sub-steps for Strang splitting time,

659

Approximation of mean temperature, 345, 346

Assembly of boundary contributions, 231

Assembly of Galerkin linear system for

homogeneous Neumann problem, 230

Assembly of Galerkin matrices in LEHRFEM++,

225

Assembly of right hand side vector for linear

finite elements, 170

Asymptotic nature of convergence, 306

Behavior of generalized eigenvalues of

A~µ = λM~µ, 582

Benefit of variational formulations of BVPs, 141

Bi-linear tensor-product Lagrangian finite

element functions, 190

Bilinear forms on Rn, 26

Bilinear Lagrangian finite elements, 188

Blow-up, 491

Blow-up for leapfrog timestepping, 613

Blow-up of explicit Euler method, 507

Boundary conditions and L2(Ω), 75

Boundary conditions and density, 78
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Boundary conditions for linear advection, 677

Boundary conditions for wave equation, 597

Boundary conditions in H1
0(Ω), 79

Boundary values for conservation laws, 687

Butcher scheme for some explicit RK-SSM, 488

BVP for shape of elastic membrane, 437

Cell-dependent evaluations for bilinear

transformations, 269

Cell-local shape functions for S0
1 (M) in 2D, 181

Central flux for Burgers equation, 722

Central flux for linear advection, 725

Central flux for Traffic Flow equation, 723

Characteristics for advection, 689

Characteristics of stiff IVPs, 524

Checkerboard instability for quadrilateral P1-P0

FE pair, 829

Choice of bases for polynomial spectral Galerkin

methods, 400

Choice of timestepping for m.o.l. for transient

convection-diffusion, 653

Circumcenter-based construction: Geometric

obstruction, 392

Closed streamlines, 634

Commonly used embedded explicit Runge-Kutta

methods, 500

Compatibility conditions for 1D FVM for

Neumann two-point BVP, 380

Compatible boundary and initial data, 551

Computation of heat flux, 349, 352

Computation of norms of finite element

discretization errors in LEHRFEM++,

299

Computing element matrices for parametric FEM

in LEHRFEM++, 274

Conditioning of polynomial spectral Galerkin

matrices, 401

Connection with artificial viscosity, 726

Connection with convection-diffusion IBVPs→
Chapter 10, 725

Consequence of monotonicity preservation, 774

Conservation law and flux for transient heat

conduction, 686

Conservation of volume content, 676

Consistency error of Lax-Friedrichs/Rusanov

numerical flux, 763

Consistency error of upwind numerical flux, 763

Consistency of implicit midpoint method, 472

Constant advection in 1D, 675

Construction of higher order Runge-Kutta single

step methods, 489

Continuity of interpolation operators, 319

Continuity of right-hand side linear form, 833

Continuity up to the boundary, 52

Convective cooling, 108

Convergence for conditionally stable

Runge-Kutta timestepping, 592

Convergence for linear and quadratic Lagrangian

finite elements in energy norm, 301

Convergence of CR(M)-P0 FEM for Stokes

BVP, 847

Convergence of CR(M)-FEM for Dirichlet

BVPs, 846

Convergence of Euler timestepping for MOL

ODE, 577

Convergence of finite-difference single-step

methods → Exp. 6.3.2.5, 569

Convergence of fully discrete finite volume

methods for Burgers equation, 760

Convergence of fully discrete timestepping in

one spatial dimension, 589

Convergence of FV with linear reconstruction,

768

Convergence of inexact simple splitting methods,

543

Convergence of Lagrangian FEM for

p-refinement, 305

Convergence of linear and quadratic Lagrangian

finite elements in L2-norm, 302

Convergence of linear finite element method for

two-point BVP, 300

Convergence of MUSCL scheme, 779

Convergence of naive semi-implicit Radau

method, 539

Convergence of P2-P0 scheme for Stokes

equation, 838

Convergence of polynomial spectral Galerkin

method in 1D, 403

Convergence of semi-implicit midpoint method,

539

Convergence of simple Runge-Kutta methods,

486

Convergence of simple splitting methods, 542

Convergence of spectral collocation in 1D, 409

Convergence of streamline-diffusion and upwind

quadrature FEM, 650

Convergence of Taylor-Hood method for Stokes

problem, 842

Conversion into non-dimensional form by

scaling, 629

Corner singular functions, 333

Crank-Nicolson timestepping, 576

Curse of dimension, 329
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Data in procedural form, 128

Decoupling of velocity components ?, 810

Degenerate elliptic boundary value problem, 39

Delaunay-remeshing in 2D, 663

Derivative of a semi-linear u 7→ a(u; ·), 443

Diagonalization in C, 754

Diagonalization of the constant-coefficient wave

equation, 784

Differentiating bilinear forms with

time-dependent arguments, 557

Diffusive flux, 686

Directional derivatives for elastic string potential

energy, 429

Directional derivatives of integral functionals, 431

Discontinuous solutions of advection equations,

675

Discrete evolutions for non-autonomous ODEs,

472

Discrete quadratic minimization problems, 131

Discrete variational problems in affine spaces,

132

Domain of dependence/influence for 1D wave

equation, constant coefficient case, 600

Duality estimate for modified heat flux functional,

352

Effect of added diffusion, 646

Efficient assembly of sparse Galerkin matrices,

167

Efficient finite element discretization of Stokes

problem, 841

Eigenvectors of translation invariant linear

operators, 754

Element matrix for quadratic Lagrangian finite

elements, 237

Elliptic lifting result for rectangular domains, 347

Elliptic lifting result in 1D, 332

Empiric Convergence of collocation single step

methods, 527, 572

Empiric convergence of semi-implicit Euler

single-step method, 538

Energy conservation for leapfrog, 611

Energy norm and H1(Ω)-norm, 318

Enforcing zero mean → [BOL05], 820

Entropy solution of Burgers equation, 706

Entropy solution of Traffic Flow equation, 707

Equivalent formulations of elliptic BVPs, 101

Estimation of “wrong” error?, 496

Euler equations, 684

Euler equations, cf. Rem. 11.1.3.5, 789

Euler methods for stiff decay IVP, 524

Euler timestepping, 575

Euler timestepping for 1st-order form of

semi-discrete wave equation, 606

Evolution operator for Lotka-Volterra ODE, 462

Evolution problems for PDEs and ODEs, 552

Existence of minimizers in finite dimensions, 69

Explicit adaptive RK-SSM for stiff IVP, 505

Explicit Euler in Fourier domain, 756

Explicit Euler method as a difference scheme,

467

Explicit Euler method for damped oscillations,

516

Explicit trapzoidal rule for decay equation, 509

Extra smoothness of source function in finite

difference approach, 383

Extra smoothness requirement for PDE

formulation, 101

Fan patterns in traffic flow, 700

Feasibility of implicit Euler timestepping, 468

Finding continuous replacement functionals, 353

Finite difference single-step methods, 566

Finite differences for convection-diffusion

equation in 1D, 636

Finite element meshes with hanging nodes, 177

Finite element methods on surfaces, 271

Finite-difference discretization of 1D linear

advection with constant velocity, 713

First-order semidiscrete hyperbolic evolution

problem, 605

Flux functions for simple scalar conservation

laws, 687

Fourier series, 755

Fourier spectral Galerkin methods, 404

From higher order ODEs to first order systems,

458

Full discretization, 797

Fully discrete evolutions arising from

conservative discretizations, 747

Function space frameworks for nonlinear

variational equations, 432

Function space valued functions, 554

FVM with Lax-Friedrich flux for shallow water

equations, 803

FVM: Incorporation of Dirichlet boundary

conditions, 394

Gain through adaptivity, 496

Galerkin discretization and Newton’s method for

elastic membrane model, Ex. 5.3.2.13

cnt’d, 447

Gap between interpolation error and best

approximation error, 323
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Gauss-Radau collocation SSM for stiff IVP, 537

General asymptotic estimates, 329

General entropy solution for 1D scalar Riemann

problem, 706

Geometric interpretation of CFL condition in 1D,

615

Geometric modeling with Gmsh, 196

Global assembly of right-hand-side vector in

LEHRFEM++, 227

Global regular refinement in LEHRFEM++, 290

Godunov flux for Burgers equation, 737

Godunov flux for traffic flow equation, 738

Good accuracy on “bad” meshes, 322

Group property of autonomous evolutions, 463

Growth with limited resources, 452

Guessing timestep constraint, 592

Heartbeat model, 454

Higher order timestepping for 1D heat equation,

590

Higher-order FVM for systems of conservation

laws, 797

HLLE numerical flux for Burgers equation

(11.1.3.4), 802

HLLE numerical flux for scalar conservation law,

801

HLLE-FVM for Burgers equation, 802

HLLE-FVM for shallow water equation, 803

Hugoniot locus for 1D shallow water equations

(11.6.2.14), 792

Impact of efficient initialization of sparse

Galerkin matrix, 168

Impact of linear boundary approximation on FE

convergence, 340

Impact of numerical quadrature on finite element

discretization error, 339

Implicit Euler method of lines for transient

convection-diffusion, 652

Implicit midpoint rule for semi-discrete wave

equation, 608

Implicit nature of collocation single step

methods, 527

Implicit RK-SSMs for stiff IVP, 534

Implicit sharpness of asymptotic convergence,

295

Importance of discrete maximum principle, 363

Importance of global numbering of geometric

entities, 204

Important Banach spaces and Hilbert spaces, 76

Improved resolution by limited linear

reconstruction, 777

Index mapping by d.o.f. mapper, 165

Index mapping matrix for linear Lagrangian finite

elements on triangular mesh, 234

Indexing and numbering of (sub-)entities in

LEHRFEM++, 211

Initial time, 549

Inspecting mesh topology in LEHRFEM++, 211

Interelement “glue” in CR(M), 846

Internal array representation of 2D triangular

mesh, 151

Internal layers, 647

Justification for teaching Sobolev spaces, 84

Kinetics of chemical reactions, 519

L(π)-stable Runge-Kutta single step methods,

587

Lagrangian finite element method for 2nd-order

non-linear variational equations, 440

Lagrangian finite elements on hybrid meshes,

192

Lagrangian method for convection-diffusion in

1D, 663

Lagrangian method for convection-diffusion in

2D, 664

Laplace operator, 101

Lax entropy condition for the shallow water

equations (11.6.2.14), 794

Lax-Friedrichs flux for Burgers equation, 727

Lax-Friedrichs flux for traffic flow equation, 728

Leap-frog implementation of Strang splitting, 659

Learning LEHRFEM++, 194

Linear BVP, 109

Linear FE discretization of 1D

convection-diffusion problem, 636

Linear forms from bilinear forms, 26

Linear forms on Rn, 26

Linear reconstruction with central slope (Burgers

equation), 769

Linear reconstruction with central slope (traffic

flow), 770

Linear reconstruction with minmod limiter, 776

Linear reconstruction with minmod limiter

(Burgers’ equation), 775

Linear reconstruction with one-sided slopes

(Burgers equation), 770

Linear reconstruction with one-sided slopes

(traffic flow), 771

Linear variational problems on affine spaces, 130

Linearity and monotonicity preservation, 774

Linearization of elastic membrane variational

equation, 444
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Local computations based on affine equivalence,

259

Local interpolation nodes for cubic (p = 3) and

quartic (p = 4) Lagrangian FE in 2D,

187

Local quadrature rules on quadrilaterals, 245

Local quadrature rules on triangles, 244

Local→global index mapping and index array,

219

Local→global mapping for linear Lagrangian

finite elements on triangular mesh, 219

Low-dimesional configuration spaces, 50

LSFs for S0
1 (M) on edges, 182

M-matrices, 365

Mass lumping, 611

Mathematical notion of L2(Ω), 75

Maximum principle for higher order Lagrangian

FEM, 367

Maximum principle for linear FE for 2nd-order

elliptic BVPs, 367

Meaning of characteristics, 692

Minimal surface (Plateau) problem for graphs,

434

Minimal surface differential equation, 438

Mixed boundary conditions, 109

Modules of LEHRFEM++, 195

More general finite-volume methods, 397

Naive finite difference scheme for Burgers

equation, 715

Necessary condition for L-stability, 535

Necessary conditions for minimizers in

finite-dimensional setting, 429

Non-degenerate parametric mappings, 265

Non-differentiable function in H1
0()0, 1[], 86

Non-dimensional equations, 54

Non-existence of solutions of positive definite

quadratic minimization problem, 72

Non-polynomial “bilinear” local shape functions,

263

Non-smooth d’Alembert solutions, 600

Non-unique minimizers, 417

Notation for “discrete entities”, 131

Notation for single step methods, 473

Numbering of global shape functions, 223

Numbering of local shape functions for quadratic

Lagrangian finite elements, 220

Offset function for elastic string model, 63

Offset function for finite element Galerkin

discretization, 145

offset functions for linear Lagrangian FE, 250

One-sided difference approximation of

convective terms, 638

Ordering of global shape functions required?,

253

Orders of finite-difference single-step methods,

481, 567

Oregonator reaction, 490

Orientation of sub-entities, 208

Other tools for mesh generation, 202

Output functionals, 344

Output of explicit Euler method, 467

Over-/Undershoots in linear reconstruction, 772

P1-P0 quadrilateral finite elements for Stokes

problem, 830

P2-P0 finite element scheme for the Stokes

problem, 832

Parametric bilinear finite elements in

LEHRFEM++, 264

Particle method adapted to inflow/outflow, 661

Particle simulation of traffic flow, 678, 679

PDEs arising from the minimization of integral

functionals, 438

Piecewise gradient, 152

Piecewise linear functions (not) in H1
0()0, 1[], 85

Piecewise quadratic interpolation, 325

Point load, 69

Point loading of elastic string, 55

Point particle method for pure advection, 661

Positive definite matrices, 65

Potential inefficiency of conditionally stable

single step methods, 592

Predator-prey model, 453

Predicting stiffness of non-linear IVPs, 523

Pressure Poisson equation, 824

Pressure robustness, 838

Processing extra information in Gmsh mesh file

with LEHRFEM++, 203

Properties of the Galerkin matrix inherited from

a, 136

Properties of weak solutions, 695

Provider types as C++ 20 concepts, 227

Pythagoras’ theorem, 288

Q1-Q1 finite elements on tensor-product mesh,

826

Quadratic functionals on RN, 62

Quadratic functionals with positive definite

bilinear form in 2D, 65

Quadratic minimization problem in L2(Ω), 77
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Quadratic tensor product Lagrangian finite

elements, 190

Quasi-linear second-order elliptic variational

problems, 435

Radiative cooling, 109

Rationale for high-order single step methods,

484

Recasting quadratic minimization problems on

RN, 87

Regions of stability for simple implicit RK-SSM,

532

Regions of stability of some explicit RK-SSM,

518

Regular/uniform refinement of triangular mesh in

2D, 290

Repetition: Well-posed 2nd-order linear elliptic

variational problems, 286

RK-SSM and quadrature rules, 488

Roe matrix for shallow water equations

(11.6.2.14), [LEV02], 800

Second-order geometry approximation in GMSH,

278

Semi-implicit Euler single-step method, 538

Semi-Lagrangian method for

convection-diffusion in 1D, 669

Semi-Lagrangian method for

convection-diffusion in 2D, 670

Semi-linear second-order elliptic variational

problems, 435

Shock fans for 1D shallow water equations

(11.6.2.14), 792

Simple adaptive stepsize control, 496

Simple adaptive timestepping for fast decay, 509

Simple collocation single-step methods, 572

Simple Runge-Kutta methods by quadrature &

boostrapping, 486

SIR model, 455

Solution of a Dirichlet BVP with LEHRFEM++,

254

Solving the stage equations for implicit

RK-SSMs, 530

Sparse sitffness matrices, 157

Spatial discretization options, 560

Special case: Linear system of equations for

linear finite element discretization on

equidistant mesh, 143

Spectral collocation on a square, 408

Spectrum of elliptic operators, 583

Spectrum of upwind difference operator, 754

Speed of convergence of polygonal methods,

476

Splitting linear and decoupling terms, 544

Splitting off stiff components, 543

Spurious Galerkin solution for 2D

convection-diffusion BVP, 640

Stability and CFL condition, 758

Stability domains, 758

Stability function and exponential function, 511

Stability functions of explicit RK-methods, 757

Stability functions of explicit Runge-Kutta single

step methods, 511

Stage form equations for increments, 530

Stencils on more general meshes, 384

Stepsize control detects instability, 513

Storing topology of triangular mesh in 2D, 209

Streamline-diffusion discretization: Internal layer,

650

Strongly attractive limit cycle, 520

Suitability of macroscopic models for traffic flow,

680

Summary: Impact of choice of basis, 137

Supports of global shape functions in 1D, 179

Supports of global shape functions on triangular

mesh, 180

Symmetric difference quotient for second

derivative, 378

Tangent field and solution curves, 465

Taut membrane with free boundary values, 102

Temporally varying spatial domains, 548

Tense string without external forcing, 421

Testing for topological type, 207

The Laplacian in Thm. 3.4.0.10, 335

The quadrature challenge on general domains,

404

The rationale behind learning LEHRFEM++, 195

Tolerances and accuracy, 502

Traffic flow: Evolution of smooth initial density,

692

Transient circuit simulation, 456

Transient simulation of RLC-circuit, 513

Treatment of Neumann boundary conditions in

finite volume schemes, 394

Triangular quadratic (p = 2) Lagrangian finite

elements, 185

Truncation of unbounded domain, 39

Two-point boundary value problem for tense

elastic string, 436

Uniqueness of solutions of the Neumann

problem, 113
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Unstable P1-P0 finite element pair on triangular

mesh, 828

Upwind difference operator for linear advection,

753

Upwind flux and expansion shocks, 736

Upwind flux and transsonic rarefaction, 731

Upwind flux for Burgers equation, 730

Upwind flux for traffic flow simulation, 730

Upwind flux: Convergence to expansion shock,

733

Upwind quadrature discretization, 644

Use of methods of lf::assemble::DofHandler,

221

Usefulness of L2-estimates, 357

Using entity iterators in LEHRFEM++, 205

Vanishing viscosity for Burgers equation, 701

Variational equation for 2D membrane model,

432

Variational formulation for heat conduction with

Dirichlet boundary conditions, 111

Variational formulation for Neumann problem,

112

Variational formulation: heat conduction with

general radiation boundary conditions,

112

Variational problems with different trial and test

spaces, 226

Visualization of explicit Euler method, 466

von Neumann stability analysis, 582

Why “numerical integration”?, 449
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C++ Codes and More

lf::mesh::Entity, 204

lf::io::GmshReader, 202

lf::mesh::Mesh, 204

lf::mesh::Mesh::Contains(), 205

lf::mesh::Mesh::Entities(), 205

lf::mesh::MeshFactory, 202

nostd::span, 205

lf::geometry::Corners, 213

lf::geometry::Geometry::Global, 241

lf::geometry::Geometry::IntegrationElement, 242

lf::mesh::Entity::Geometry (), 213

lf::mesh::Mesh::EntityByIndex(), 205

lf::mesh::Mesh::Index(), 205

lf::mmesh::Mesh::NumEntities(), 205

ReactionDiffusionElementMatrixProvider::Eval(),

275

877
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