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Focus of Today’s Lecture

For
Au + k*u =0,

and boundary or finite element methods for its solution:

1. How does conditioning depend on & (and the geometry)?

2. How can we remove or reduce this dependence?




Focus of Today’s Lecture

For
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What is conditioning? For a linear system

Arx =b
the condition number is

cond A := || A| [|[A™}]| where ||A|| :=
Large condition numbers associated with:

e slow convergence of iterative solution methods;

e magnification of effects of errors, e.g. in entries of A.




For
Au + k*u = 0,

and boundary or finite element methods for its solution:
1. How does conditioning depend on k (and the geometry)?
2. How can we remove or reduce this dependence?

What is conditioning? For an operator equation
Axr =b

(A: X — Y a continuous linear operator, z € X, b € Y') the condition

number is

cond A := [|A|| x_y [[A™ |y = x where [|A]| x_y :=




For

Au + k*u =0,

and boundary or finite element methods for its solution:
1. How does conditioning depend on & (and the geometry)?
2. How can we remove or reduce this dependence?

What is conditioning? For the variational equation: find u € X such
that
a(u,v) = f(v), wveY,

(X and Y Hilbert spaces, a: X x Y — C a continuous sesquilinear
form) a relevant condition number is that of the associated operator
A: X — Y’ defined by

Au(v) = a(u,v), we X, vey,.




Since (see Melenk notes, Theorem 3 (Babuska-Brezzi), Hiptmair,
'Fundamental Concepts’, §2),

Alxoy = M, Mi=  sp 2Ol
0£uEX, vEY [l x [Jvly

jau, v)|

A_l VI X —1 v i= inf sup
H H — T 0£UEX 0 £LycY HUHX H/UHY7

M often called the norm of a and 7 its inf-sup constant, it holds that

M
cond A = —.
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Precise Focus of Today’s Lecture

For
Au + k*u =0,

and integral equation or domain methods for its solution:
1. How does conditioning depend on & (and the geometry)?

2. How can we remove or reduce this dependence?

Estimating || A|| and [|[A™!|| when A is an integral operator, and norm

and inf-sup constants of sesquilinear forms.




The Scattering Problem in R (d = 2 or 3)

Au+ ku=0

u',

Incident wave
u=>0

obstacle

T

We seek u € Hy'*°(QF) N C2(Q) which satisfies the Sommerfeld
ou

radiation condition P iku = o ('r_(d_l)/2) as r = |r| — oo.
r




Recall from Yesterday ...

a standard weak formulation in QE, that part of QT inside a ball of

radius R, with the exact Dirichlet to Neumann map on the sphere I'r
truncating the domain.




Au+ k*u =0

compact & = 0
obstacle
T
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Let Vi denote the closure of {”U’Q-E v € CEP(QT)} € HY(QF) in the

norm of H1(QF).

u satisfies the scattering problem if and only if the restriction of u to QE

satisfies a variational problem of the form: find © € Vi such that
a(u,v) = f(v), v € Vg,

The functional f depends on the incident field. a(-,-) is the sesquilinear

form on Vi X Vi defined by

a(u,v) = /QJF(VU -V — k*uv) dr — / YT ryu ds,
R

I'r

where v : Vg — H'Y2(T'Rg) is the usual trace operator.
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Summary of Known Results

With Markus's norm, i.e. ||ull3, = fQE(|Vu|2 + k?|ul?) dx, ...

1. An upper bound on the inf-sup constant
v:= inf sup |a(u,v)], thatﬂ

lullve =1 o]y, =1

<ﬂ+ &:
T=%R T 2R

2. That, if the scatterer T is starlike (i.e. x € T = 0z € T, for
0 <6 < 1), then the lower bound holds that

1
5+4v2EkR

3This upper bound also holds for Markus Melenk’'s example on his page 11, yester-

<.

day.
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3. An example where T is not starlike (two parallel plates) for which

C

TS 2R

for an unbounded sequence of (nearly resonant) wavenumbers k.

Details: see the blackboard and
www.rdg.ac.uk/“sms03snc/monk_bounded_submitted.pdf and the
references therein.
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Lemma 2.1 Suppose w € Vg N H?(QF) is such that yw = yVw = 0
and w is non-zero. Then the inf-sup constant ~v is bounded above by

S8 G
T=%R T K2R2

where Cy := 2R Hg—;‘i 2/HwH2 Cy = R?||Aw||2/||w]|2 and

14



Lemma 2.1 Suppose w € Vg N H?(Q}) is such that yw = yVw =0
and w is non-zero. Then the inf-sup constant ~ is bounded above by

<ﬁ+ C2
T=%R T K2R2

where Cy := 2R|| 22| /ljw]z, Cz := 2| Awls/|jw]z and

Cl Z 2\/§ ~ 2.83.

For Markus's interior impedance/Robin problem (p.11 of his notes), the
same bound holds if his bounded domain €2 contains a ball of radius R,
with

Ci =2v24 +3d/3 ~ 3.7
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Where do the lower bounds on the inf-sup constant come from?

|.e. the lower bound | just showed or the lower bound Markus showed

yesterday.
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Where do the lower bounds on the inf-sup constant come from?

|.e. the lower bound | just showed or the lower bound Markus showed

yesterday.
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1. A rephrasing of Markus's Theorem 3 gives us the following general
result:

If there exists C' > 0 such that, for every u € Vr and f € V}, satisfying
a(u,v) = f(v), v €& Vg,

It holds that

lullve < Clifllvy, (%)

then
v>C
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1. A rephrasing of Markus's Theorem 3 gives us the following general

result:

If there exists C' > 0 such that, for every u € Vr and f € V}, satisfying

CL(’U,,’U) — f(v)v v E VR)
It holds that

then v > C—l HuHVR < CHfHVé; (*)

2. If there exists C' > 0 such that, for every u € Vi and g € LQ(QE)
satisfying

CL(U,U) — _(g,U)Q L= _/ gu dl’, (NS VR7

+
QR

It holds that
ullvie < k7 Cllgll oo,

then (%) holds with C' =1 + 2C.
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3. To establish this last bound, Green's theorem and a
Rellich(-Payne-Weinberger-Necas) type identity.

Such identities, useful for obtaining explicit a prioiri bounds and
regularity estimates for strongly elliptic systems, follow from the

divergence theorem, and date back to Rellich (1943).

See Chapter 5 of Necas (1967) or McLean (2000). Our particular version
of the identity is essentially that from the PhD of Melenk (1995).
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Lemma 2.2. Suppose that Q2 C R% is a bounded Lipschitz domain and
that v € H2(G). Then, for every k > 0, where g := Av + k?v and the
unit normal vector n is directed into €2, it holds that

_Ov

/(\Vv|2—k2|v\2+gfz7) d:r::—/ v —ds
Q

o On

/ ((2 = d)|Vv|* + dk*|v]|* + 2R (g2 - VD)) dz =
Q

2
—/ (ZE‘ ‘n <k2|v|2 + Gol”_ VT’02> + 2% (IIJ Vv @) > ds.
o9 on on
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4. To complete the proof for the scattering problem, a subtle property of
radiating solutions of the Helmholtz equation, that, if v is radiating and

['r is the boundary of the sphere of radius R, then

_Ov o 19 |0V ’ 5 _0v
R V—ds+R E-lv|* + | =—| —|Vrv|* | ds <2kRS v— ds.
I'r r

r, Or or L Or
Proof. Expand everything in Bessel functions and use the monotonicity
property that |HS" (2)[2 is decreasing for v > 0, |HL" (2)|22 for

v > 1/2. (Cf. proof of Lemma 1.13 yesterday.)
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The Standard 2nd Kind Integral Equations When the Domain is
Lipschitz

(Brakhage-Werner and its adjoint)
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Au+ kE*u=0

u®, incident wave
u=20

Lipschitz
obstacle
Q_

By Green's representation theorem
(Hiptmair notes, Theorem 2.1.5,

as in Ralf notes, 7;5 and 7;{, are Dirchlet, Neumann trace operators),

w(a) = [ Glaypfuist), @0t

where vu € H=1/2(T) and

o 1 elklz—yl
G(z,y) = LH" (klz — y|) (2D),

(3D).

T dr |z —y
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Au+ Ku=0

u®, incident wave
u =20

Lipschitz
obstacle
O

By Green's representation theorem,

u(x) = u'(x) — /1“ G(z,y)vhuly)ds(y), =eQf,

where yiu € H~1/2(T"), in operator form
uw=u'— \IJSL’Y;\F,U

where Wgy, : H~1/2(T") — HY°¢(RY) and is continuous (Ralf, (2.1.5)).
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Au—+ku=0

u®, incident wave
u=20

Lipschitz
obstacle
0

By Green's representation theorem,

u(x) = u(z) — / G, y)rbuly)ds(y).

where viu € H=/2(T), in operator form
uw=u'— \IJSLfy;(]u

= 0=y u' —v5¥styhu, vhu=yhu' —yEUspyhu.
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Au+ Ku =0

u?, incident wave
u=20

Lipschitz
obstacle
e

By Green's representation theorem,

ua) = u'(@) ~ [ Gl RN TE 0,

where viu € H=/2(T), in operator form

uw=u'— \IJSLW;\GU
= Vygu =2y u', ~yhu+ K'vtu=2viu",

where V=29 Ug, K’ := (v +vy)¥sL.
(Ralf Defn 2.1.7, but N.B. my V = 2x Ralf V, etc. )
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u®, incident wave

Lipschitz
obstacle
O

Vytu =2vEu', ~vyhu+ K'viu=2viu’,
with V : H=V/2(I') - HY2(T"), K’ : H=Y2(I') — H~'Y/2(T") given by
V=29 Vg, K := (Vi +vy)¥sL,
explicitly, for ¢ € L?(T") and (almost all) z € T,

0G(z, y)
r on(x)

p(y)ds(y).

Vo) =2 [ Glap)oln) dsty), K'pla) =2
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VWE\L,u — 27$ui, ﬁ,u + K’vf{,u = 27;}11,",

= A'vju = f,

A =T+K —inV,

I is the identity operator, n € R the coupling parameter,
f = 2v{ut — 2ipyfut, and, for ¢ € L?(T) and (almost all) z € T,

Vela) =2 [ Glepen) dsto), K'o(w) =2 [ S o(y)is(a)
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Alternatively ..., following Brakhage & Werner (1965) we find that an
ansatz for u® as a combined single and double-layer potential, with
density ¢ and coupling parameter 1 € R satisfies the scattering
problem iff

where

A=1+K—inV,

and, for ¢ € L?(T") and (almost all) z € T,

Vila) =2 [ Glepen) dsto), Kelo) =2 [ T ow)asto)

N.B., where (¢,v) := / opds,
T
(Ap, ) = (¢, A'Y), ¢, € C(T).
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Al=T+K —inV, A=1+K—inV

where [ is the identity operator, n € R the coupling parameter, and, for
@ € L*(T") and (almost all) z € T,

G (z,y)
r on(z)

—Q/G:cy y)ds(y), K'p(x)=2

p(y)ds(y),

0G(z,y)

Kp(z) =2 () p(y)ds(y).

r

Mapping Properties. (Follows from Ralf, Thm 2.1.9)
Al - HS_1/2(F) N Hs_l/Q(F), A - HS+1/2(P) N HS+1/2(P)

and these mappings are bounded, for |s| < 1/2.
(See Costabel (1988), McLean (2000), Meyer & Coifmann (2000).)
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Al =T+K —-inV, A=1+K—inV

where [ is the identity operator, n € R the coupling parameter, and, for
o € L*(T") and (almost all) z € T,

G (z,y)
r on(z)

p(y)ds(y),

—Q/G:I:y y)ds(y), K'o(x)=2

G (z,y)

Kop(r) =2 an@ p(y)ds(y).

r

Injectivity. (Ralf, Thm 2.1.16)

Ifn#£0, A': H-Y/2(T') — H~'/2(T) is injective.

(See C-W & Langdon, preprint, but same standard argument as for
smooth boundaries, see e.g. Colton & Kress (1983).)
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A=T+K —inV, A=I+K—inV

where [ is the identity operator, n € R the coupling parameter, and, for
o € L*(T") and (almost all) z € T,

Vela) =2 [ Glepetn) dsto), K'o(w) =2 [ Z5E D o(y)is(o)

0G(x,y)

ony) p(y)ds(y).

Kop(x) =2

Invertibility. If n # 0, then
A - H8_1/2(F) N HS_1/2(F), A - H8+1/2(F) N Hs—|—1/2(r)

are bijections, for |s| < 1/2.
(See C-W & Langdon, preprint: follows since A is Fredholm of index
zero on H'(T") and L?(T"); Verchota (1985), Elschner (1992).)
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A =T+K —inV, A=1+K—-inV

where [ is the identity operator, n € R the coupling parameter, and, for
o € L*(T") and (almost all) z € T,

Vo(x)=2 [ Glz,y)e(y)ds(y), K'o(x)=2 G (z,y)

] on() p(y)ds(y),

Coercivity. (Ralf, Lemmma 2.1.17) A is coercive (elliptic + compact)
as an operator on H'/2(T") (and A’ as an operator on H~'/2(T")), in
fact in the 3D case (with the right choice of norm) 1A =1 — (31 — K)

and %I — K i1s a contraction when k£ = 0.
(Corollary of results in Steinbach & Wendland (2001).)

(Ralf, p. 33, not great for discretization as inner products non-local.)
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A=T+K —inV, A=I+K—inV

where [ is the identity operator, n € R the coupling parameter, and, for
o € L*(T") and (almost all) z € T,

Vela) =2 [ Glepen) dsto), K'o(w) =2 [ Z5E D o(y)asto)

Kota) =2 [ 250 oty)dsty)

Wave Number Dependence. But how do ||A]| and ||A™!|| depend on
k, especially as k — oo, and how should we choose 7?
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Theorem. (See Dominguez, Graham, and Smyshlyaev, preprint, and cf.
Buffa & Sauter, to appear SISC.)

If I' is a circle, and n = k, then, for all sufficiently large k£, A is elliptic
on L?(T"), precisely

- 1
so that ||[A7!||s < 2. Further ||Al|s = O(k'/3) as k — .

Proof. Explicit calculation of spectrum of A (this dates back to Kress
and Spassov 1983), and clever estimates of Bessel functions uniform in
argument and order.

N.B. In the circle case A = A’.

N.B. Suggests variational formulation in L*(T") attractive and natural!?
(cf. Ralf, p.33)
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Let n(xz) denote the outward unit normal at = € T", and

Ry := max |z|, J&_ :=ess.inf x-n(x).
xell xel’
Theorem. (C-W & Monk, preprint.) If 2~ is a polyhedron which is
starlike with respect to the origin (i.e. _ > 0), or a more general
piecewise smooth, Lipschitz, starlike domain, n =k and KRy > 1, then

_ 1
[AH e =14 < 5 (14136 +46%),

where 6 := Ry /J_.

Examples.

Circle/sphere: 0 =1, |[A™ |, = ||A" |2 < 9.
Cube: 8 = /3, [|[A7 || = |42 < 18.

37



The Main Ingredients in the Proof

1. Green's theorem and a Rellich(-Payne-Weinberger-Necas) type

identity.

Such identities, useful for obtaining explicit a priori bounds and
regularity estimates for strongly elliptic systems, follow from the
divergence theorem, and date back to Rellich (1943).

See Chapter 5 of Necas (1967) or McLean (2000). Our particular
version of the identity is essentially that from the PhD of Melenk
(1995).
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Lemma 2.2. Suppose that Q2 C R% is a bounded Lipschitz domain and
that v € H2(G). Then, for every k > 0, where g := Av + k?v and the
unit normal vector n is directed into €2, it holds that

_Ov

/(\Vv|2—k2|v\2+gfz7) d:r::—/ v —ds
Q

o On

/ ((2 = d)|Vv|* + dk*|v]|* + 2R (g2 - VD)) dz =
Q

2
—/ (ZE‘ ‘n <k2|v|2 + Gol”_ VT’02> + 2% (IIJ Vv @) > ds.
o9 on on
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Corollary 2.3. Suppose that Q C R? is a bounded Lipschitz domain and
that v € C?(Q) N CL(Q) and Av + k?v = 0 in Q. Then, where the unit
normal vector n is directed into €2, it holds that

/Q(WUIQ — k*v]?) dz = —/8 o 2 ds (1)

0 (972,

/Q ((2 = d)|Vv]* + dk*|v|?) dz =

2
—/ (CE‘ ‘n <k2|v|2 + Gol”_ VT’02> + 2% (iU VU @) > ds.
o9 on on

N.B. This is applied in {27 and in QE to v := Wgr,0, where ¢ = A’_lw,
in order to bound (v, —yx)v = @ in terms of 9, starting from

1 B o 1
p=A""p=yyv—inypv = 5‘”'
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2. Once again, the property of radiating solutions of the Helmholtz
equation, that, if v is radiating and I'g is the boundary of the
sphere of radius R, then

2
3%/ Tk ds+R/ k2 |v)? + Oul” _ IVrol? | ds < sz%/ 52% ds.
FR 8T PR ar FR 6’?“
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Summary

1. Discussed wave number explicit lower and upper bounds on the
inf-sup constant for the weak formulation in Qﬂ of the Dirchlet

scattering problem.

. Presented results on invertibility of the standard combined single-
and double-layer boundary integral equation formulations for this
problem, in the case of a Lipschitz domain, including the

Brakhage-Werner (1965) formulation Ap = —2ypu’ where
A=1+K —inV.

. Showed that, if {27 is piecewise smooth, Lipschitz and starlike, then
|A=Y||2 < C, with an explicit formula for C as a function of the

geometry and n/k.

3That part of QT inside a ball of radius R.
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Further Reading on Wave-Number-Explicit Estimates

A hybrid numerical-asymptotic boundary integral method for
high-frequency acoustic scattering.

Dominguez, Graham, Smyshlyaev, University of Bath preprint, which
builds on . ..

Schnelle Summationsverfahren zur numerischen Losung von

Integralgleichungen fiir Streuprobleme im R3.

Giebermann, PhD, Karlsruhe, 1997.

On Generalized Finite Element Methods.
Melenk, PhD, Maryland, 1995.

An elliptic regularity coefficient estimate for a problem arising from a

frequncy domain treatment of waves.
Feng & Sheen, Trans. Amer. Math. Soc., 1994.

Sharp regularity coefficient estimates for complex-valued acoustic and
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elastic Helmholtz equations.
Cummings and Feng, Math. Models Methods Appl. Sci., 2006.

Wave-number-explicit bounds in time-harmonic scattering.
C-W & Monk 2006, preprint.

A well-posed integral equation formulation for 3D rough surface
scattering.
C-W, Heinemeyer & Potthast, Proc. R. Soc. Lond. A, 2006.

Existence, uniqueness and variational methods for scattering by
unbounded rough surfaces.

C-W & Monk, SIAM J. Math. Anal., 2005.

The mathematics of scattering by unbounded, rough, inhomogeneous

layers.
C-W, Monk & Thomas J. Comp. Appl. Math. 2006

For copies of my stuff: www.reading.ac.uk/"sms03snc
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Four Open Problems

. Sharp estimates on ||Al|2 as kK — oo. This is much harder, see the

harmonic analysis literature on oscillatory integral operators (Stein,
Phong). (A crude bound that

1Al < max(||Allse, ||A']|oe) = O(E4=1)/2) is straightforward, but
it seems, from the circle/sphere, that ||A|ls = O(k'/3).)

. Bounds on [|[A7!||> and lower bounds on the inf-sup constant for the
weak problem in QE when the scatterer is not starlike.

. Any wave-number-explicit bounds in the discrete case.

. Preconditioners/new formulations which remove this k-dependence

— and proofs!
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