
Nonparametric Regression of Stochastic

Processes via Signatures

A. Schell and R. Alaifari

Research Report No. 2023-45

December 2023

Latest revision: May 2024

Seminar für Angewandte Mathematik

Eidgenössische Technische Hochschule

CH-8092 Zürich

Switzerland

____________________________________________________________________________________________________



Nonparametric Regression of Stochastic Processes

via Signatures

Alexander Schell∗ Rima Alaifari†

Seminar for Applied Mathematics, ETH Zurich

31 May 2024

Abstract

Nonparametric regression of stochastic processes estimates statistical relationships between

multidimensional, time-dependent data without relying on specific parametric assumptions.

We propose a novel approach to this classical estimation problem by using the signature trans-

form from rough path theory to encode the information of a stochastic process into a sequence of

iterated integrals, capturing its statistical properties in a time-global and hierarchical manner.

Viewing statistical regression as an operator learning problem, this signature-based discretisa-

tion allows us to characterise the conditional statistical dependence of a stochastic process on

another stochastic process as the solution to a convex semi-infinite linear least squares problem.

This result is based on a functional monotone class argument involving the bounded signature

of the conditioning process and allows for the efficient and provably consistent nonparametric

estimation of regression functions and conditional distributions for very general classes of jointly

distributed stochastic processes as solutions to convex optimisation problems. The structural

insights of this approach are summarised in two universally consistent regression estimators

that are computable with practical algorithms and supported by broad theoretical guarantees.

Keywords: stochastic processes, nonparametric and functional regression, conditional mean

embedding, conditional expectation, signature features, kernel ridge regression, function ap-

proximation

1 Introduction

Modelling and inferring meaningful patterns and relationships within complex, high-dimensional
data is a central challenge in modern machine learning and statistics. At the core of this challenge
lies the task of capturing statistical dependencies between data sets through conditional distri-
butions and the structured operationalisation of statistical conditioning. These are fundamental
aspects of probabilistic modelling that are crucial for a growing range of inference techniques and
applications. One of the most important paradigms for this is nonparametric regression, which is
predicated on the idea that the relationships between variables can be captured with minimal as-
sumptions about their functional form. Unlike parametric methods, which specify a Ąxed structure
for the relationship (e.g., linear or polynomial), nonparametric approaches allow the data to speak
for itself, revealing the underlying patterns and relationships more Ćexibly.

Conceptually, nonparametric regression involves estimating a regression function that describes the
conditional expectation of a response variable given one or more predictor variables. The chal-
lenge intensiĄes when the predictors or responses are observed as part of a stochastic process, since
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one must then account for temporal dependencies and potential non-stationarities inherent in the
data. Applications of such nonparametric regression methods for stochastic processes are extens-
ive and profound. In Ąnance and econometrics, these methods can be used to model asset prices,
interest rates, or volatility, capturing subtle dependencies and predicting future trends [54]. They
also permeate risk assessments in Ąnancial markets and portfolios [2], or stochastic Ąltering and
the optimisation of control systems in engineering [3, 38]. In environmental science, they help in
understanding climate patterns, pollution levels, or ecological dynamics, accommodating complex
interactions and temporal variations. In biomedical engineering, they are employed to analyse de-
pendencies between physiological signals, such as heart rate variability or brain activity, where the
underlying biological processes are inherently stochastic and nonlinear. Stochastic process regres-
sion is also applied in computer vision [1] and molecular dynamics [30], and it is central to survival
analysis [27] and causal models [44], time series analysis and forecasting [39, 45, 55], Bayesian
inversion and inference [37, 50] and statistical machine learning [21] broadly, to name just a few
classical examples. Most recently, nonparametric stochastic process regression has emerged as the
key concept behind large language models [62], which are essentially high-dimensional statistical
regression models that approximate conditional distributions on sequential data [53, 59].

A particular challenge in computing conditional expectations and their derived statistics, present in
most of the above examples and especially in sequential or language-based machine learning, is to
efficiently account for potential time dependencies in the conditioning variable, i.e. the conditioning
on complex multidimensional stochastic processes. This problem was Ąrst systematically considered
in classical probability, where the traditional model classes of martingales and Markov processes
were conceived to elegantly circumvent subtler issues of time-dependent conditioning. However,
these classical ŚconvenienceŠ assumptions have clear limitations (e.g. [6, 32]), making it worthwhile
to revisit the general problem of time-dependent regression and conditioning with modern tools
from stochastic analysis. The present work aims to contribute to this endeavour.

SpeciĄcally, this paper addresses the following central inference questions, which the above examples
suggest are of signiĄcant practical relevance: Given two multidimensional stochastic processes X
and Y in discrete- or continuous time and some random vector Z in Euclidean space,

how can the statistics f 7→ E[f(Y ) ♣X] and E[Z ♣X] be efficiently estimated? (1)

(The conditional law P(Y ∈ · ♣X) is included by letting f run over the indicator functions on Y .)
The approximation of such conditional expectations deĄnes the problem of statistical regression.
This has been well-addressed for time-independent X or if the temporality of X = (Xt) conforms
to certain parametric assumptions (e.g. [10, 5, 61] and the references therein). However, to the
best of our knowledge, there are currently no rigorous nonparametric solutions to (1) for the case
of general (jointly distributed) stochastic processes X = (Xt) and Y = (Yt).

The present work attempts to close this gap by using tools from rough path theory, and in particular
the concept of bounded (or ŞrobustŤ) signatures recently introduced in [12], to structure the stat-
istical information given by the predictor process X: A bounded signature, ϕ, is an algebraically
structured and bounded Hilbert-valued coordinate map over the space of sufficiently continuous
paths, which includes the sample realisations of X. Using a functional monotone class argument,
we show that for a linear subset L of the Hilbert co-domain (H, ⟨·, ·⟩) of ϕ, the coordinate func-
tions ¶⟨ℓ, ϕ(X)⟩ ♣ ℓ ∈ L♢ form an L2-dense subspace of all square-integrable X-measurable random
variables. As a basic step toward answering (1), this then implies the variational characterisation

E[Z ♣X] = lim
k→∞



〈

α1k, ϕ(X)
〉

, · · · ,
〈

αmk, ϕ(X)
〉

)

, (2)
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with m the dimension of Z ≡ (Z1, · · · , Zm) and for any minimizing sequence (α1k, . . . , αmk)k of

inf
(α̃1,...,α̃m) ∈Lm

m
∑

i=1

E
∣

∣Zi − ⟨α̃i, ϕ(X)⟩
∣

∣

2
. (3)

The parameter optimization (3) that underlies the above approximation is notably convex, and the
convergence (2) holds at least in L2 and almost surely if the sequence (αik) is fast enough. A similar
characterisation can be found for the conditional expectation given X of the bounded signatures of
Y itself, leading to the variational identities (convergent in L2, and under conditions almost surely)

E[f(Y ) ♣X] = lim
l→∞

lim
k→∞

〈

ℓfl , ψαk
(X)

〉

(4)

for any measurable function f of Y such that f(Y ) square-integrable. In this case, (ψαk
)k is an L2-

dense adaptive system of ϕ-derived model functions on sample paths that conceptually resembles
(and effectively replaces) an Śalgebraically structured and convexly parametrisable neural networkŠ,

and (ℓfl )l is a dualised signature-encoding of the argument function f . Optimally parametrised

instances of (ψαk
) and the function encodings (ℓfl ) can both be computed explicitly as solutions to

two separate, well-structured and efficiently approximable convex optimisation problems.

In addition to being fully convex-optimisable, the representations (2) and (4) hold nonparamet-
rically for any response-transforming nonlinearity f without needing any assumptions on the re-
lationship between the marginals in (X,Z) or (X,Y ), such as continuity or speciĄc statistical
dependence structures. The Ćexible and comparatively simple algorithmic premise behind these
identities also makes the regression statistics in (1) amenable to nonparametric statistical estima-
tion within the well-established empirical framework of kernel ridge regression. Consequently, this
approach provides a theoretically and practically attractive solution to the inference problem (1).

This paper is structured as follows. Section 2 reviews the fundamental concepts behind nonpara-
metric regression analysis and statistical conditioning and explains their use for modelling and
analysing dependencies between statistically associated datasets (Sections 2.1 and 2.2). It then sets
the stage for (1) by reformulating this question as an equivalent operator learning problem using
the perspective of conditional mean embedding (Section 2.3). Leaving the general setting behind,
Section 3 delves into the speciĄcs of nonparametric regression of time-dependent data, covering
structural basics for the associated regression spaces and time-dependent random variables (Sec-
tion 3.1). The signature transform is introduced as a key tool for representing such time-dependent
data (Section 3.2), complemented by a brief discussion of its basic properties and how it can serve
as a bounded global coordinate map on path spaces (Section 3.3). A derivation of the variational
identities (2) and (4) is provided in Section 4, which presents the main theoretical contributions
of the paper. We show how the bounded signature can be used to discretise and exhaust the in-
formation of the conditioning process (Section 4.1), and utilise this discretisation to characterise
the conditional expectations in (1) as solutions of convex semi-inĄnite linear least squares prob-
lems (Sections 4.2 and 4.3). These characterisations are then promoted to practical estimators for
the nonparametric regression statistics (1) in Section 5, which builds on the theoretical insights of
the previous sections to achieve an efficient data-based approximation of the proposed representa-
tions (4) and (2). Upon embedding our signature-based regression architectures in the context of
vector-valued reproducing kernel Hilbert spaces and providing basic support theory for a subsequent
analysis of statistical convergence properties (Section 5.1 and 5.2), we present explicitly comput-
able nonparametric regression estimators for (1) (Sections 5.3 and 5.4) and provide an analysis of
their statistical approximation properties, including convergence rates and error bounds (Section
5.5). Numerical experiments and practical example applications of our method are to be included
in the forhtcoming arXiv version of this paper. Most technical proofs are provided in the Appendix.
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Closing with a note on existing literature, we remark that prior approximations in a manner similar
to (2) were Ąrst explored in [31, 34], though the respective aspects of these works are mostly
empirical and based on rather strict assumptions on (X,Z). In a spirit related to ours but with no
immediate mathematical connection, [13] study nowcasting using linear regression on signatures.
Finally, we note that the observation that the robust signature algebra is dense in Lp, which is
crucial for (2), was made independently of us (and by other mathematical means) in the recent
preprint [4], where this idea is applied to different consequences in the realm of optimal stopping.

2 Perspectives on Regression and Statistical Conditioning

This section provides a brief review of probabilistic regression and statistical conditioning, intro-
ducing basic concepts (Sections 2.1 and 2.2) as well as more specialised mathematical perspectives
(Section 2.3) to structure and operationalise the underlying statistical theory. The aim is to lay
bare the essential probabilistic structure behind regression-based statistical inference and learning
on Polish spaces, so that, in subsequent sections, we can seamlessly extend this foundational theory
in the particular setting of nonparametric regression for time-dependent multidimensional data.

SpeciĄcally, Section 2.1 motivates the framework of statistical regression analysis as a principled
approach to model and analyse complex, non-functional statistical dependencies between two sets
of data residing in potentially inĄnite-dimensional spaces. The classical idea is to view these data
as samples from a pair of jointly distributed random variables and decompose their joint probability
distribution into a family of conditional distributions with respect to one of their marginals. This
is formalised through the well-known concept of disintegration, which Section 2.2 brieĆy recalls and
contextualises. With these basics in hand, Section 2.3 draws on the perspective of conditional mean
embedding to reformulate the problem of nonparametric (and, in general, nonlinear) regression as
an equivalent, yet more tangible problem of approximating, from Ąnite data, a bounded linear
ŚregressionŠ operator (Proposition 2.4 and DeĄnition 2.6; also Lemma 2.9). We show that this
problem can be solved under a Śsufficiently nonlinearŠ Hilbert-valued coordinatisation (15) over the
space of all response data (Proposition 2.4), and illustrate how this approach yields a comprehensive
statistical framework for stochastic process regression and in the context of large language models.

2.1 Regression Analysis: Modelling Statistical Dependencies in Data

Extracting and analysing statistical patterns and dependencies from complex, high-dimensional
data through conditional distributions and statistical conditioning is a fundamental problem cent-
ral various inference techniques and applications.

One of the most popular approaches to this challenge is regression analysis, which aims to identify
the relationship between two given data sets (xi) and (yi). Here, each xi represents an input
and each yi represents a corresponding output, and these data points reside in potentially inĄnite-
dimensional spaces X and Y, respectively. Classical regression analysis, and most physical models
alike, aims to extract from the pairs (xi, yi) an essentially functional relationship of the form:

Rf =
{

(x, f(x))
∣

∣x ∈ X
}

or, more broadly, R = ¶(x, y) ∈ X × Y ♣ y ≈ f(x)♢, (5)

assuming the existence of a function f : X → Y that maps inputs ¶x♢ to outputs ¶y♢. This f then
encapsulates the ŚtrueŠ link between the data (xi) and (yi). It is usually approximated by a proxy
fθ⋆

selected from a predeĄned family of model functions (fθ) to best Ąt the observed pairs (xi, yi).

However, many real-world scenarios defy this simpliĄed ŚfunctionalŠ assumption, presenting cases
where an input x in X does not correspond to a singular deterministic output f(x) in Y, but to a
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range R∼
x of possible outcomes associated with x. For instance, in machine translation, sentences x

from a source language X are to be translated into sentences y in a target language Y. This deĄnes
the complex relation

R∼ :=
{

(x, y) ∈ X × Y
∣

∣ y is a valid translation of x
}

, (6)

which typically extends beyond a simple functional relation (y ≈ f(x)) since a given sentence x in X
can translate into multiple valid sentences y in Y. Such a non-functional, multi-valued relationship
between x and y is termed an associative relation, or an association, between x and y.

To handle these complexities, classical regression analysis can be extended into a rigorous prob-
abilistic framework. Instead of describing associations through a deterministic function from X
to Y, a more appropriate approach is to use a (set-valued) map from X to 2Y , sending x to
R∼
x := ¶y ∈ Y ♣ (x, y) ∈ R♢. Further complexity is captured by assigning to each x ∈ X a prob-

ability measure µx over R∼
x , reĆecting the likelihood of different outcomes associated with x. One

way to implement this is by deĄning a probability measure µ on X × Y, say µ = P(X,Y ) for an
X × Y-valued random variable (X,Y ) that models the data. (The marginal variables X and Y are
called regressor and regressand, respectively.) The desired plausibility measures (µx)x∈X are then
obtained as the conditional probabilities of Y given X = x. This probabilistic approach provides
a well-known framework to describe associative relationships between data (x) and (y) through an
analysis of the statistical dependency between the random variables X and Y that model the data.

The remainder of Section 2 reviews the necessary mathematics to develop this perspective into a
coherent statistical theory. The focus of our discussion will be on how to consistently approximate
the probabilistic model (µx)x∈X of an associative relationship between data from a Ąnite number
of samples. We henceforth assume that X and Y are Polish spaces, unless otherwise stated.

2.2 Capturing Statistical Dependencies with Probability Kernels

As discussed above, the main idea behind the probabilistic modelling of an associative relation in
X × Y (such as (6)) is to reframe this relation as a functional relation within X × M1(Y):

By assuming that the statistically dependent (ŚassociatedŠ) data (xi) and (yi) are
sampled from a joint distribution µ on X × Y, say (xi, yi) ∼ µ, we aim to decompose µ
into a measure-valued function x 7→ µx from X to M1(Y), such that for each x ∈ X ,
the measure µx ∈ M1(Y) represents the conditional law of data in Y given x.

This concept is rigorously deĄned through the classical notion of a probability kernel. This is a
map κ : X × B(Y) → [0, 1] with (κ(x, · ) ♣ x ∈ X ) ⊆ M1(Y) such that for each set B ∈ B(Y),

X ∋ x 7−→ κ(x,B) =: κx(B) is
(

B(X ),B([0, 1])
)

-measurable.1

Following this, recall that every such kernel κ can be ŚfusedŠ with any υ ∈ M1(X ) via the coupling

κ⊗ υ : B(X × Y) ∋ A 7−→
∫

X

[
∫

Y
✶A(x, y)κx(dy)



υ(dx) ∈ [0, 1], (7)

and the resulting map (7) is then again a Borel probability measure on X × Y. Conversely, any
given measure µ ∈ M1(X ×Y) can be ŚdividedŠ by each of its marginals, and the resulting ŚquotientŠ
is essentially unique. This is formalised by the concept of disintegration, which asserts that there is

a ŚuniqueŠ probability kernel µY♣X ≡
(

µY♣x ♣ x ∈ X
)

such that µ = µY♣X ⊗ µX , (8)

where ŚuniqueŠ means Śunique up to inequality on a µX -nullsetŠ: for any two kernels κ, κ̃ ⊆ M1(Y),
the identity κ⊗ µX = κ̃⊗ µX implies that κx = κ̃x µX -almost everywhere (see e.g. [23, Chap. 8]).
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Figure 1: Visualisation of increasingly non-functional relations and their probabilistic description.
The left panel shows a functional relation f : x 7→ y, as in (5). The middle panel depicts a (slightly
non-functional) associative relation where an input x maps to a whole set Rx of possible outputs,
together with an associated probability measure µx capturing the likelihood of different outcomes
within Rx. The right panel shows a fully associative relation where X and Y exhibit complex de-
pendencies; it also demonstrates the concept of disintegrations (8), showing the decomposition of the
joint distribution µ = P(X,Y ) into the conditional distributions µY♣X ≡ (µx)x∈X wrt. the marginal
µX = PX . Altogether, these panels illustrate the transition from classical regression to more com-
plex probabilistic models and the role of disintegrations (12) in capturing statistical dependencies.

Consequently, for a Ąxed X -marginal ξ∈M1(X ), the assignment µ 7→ µY♣X in (8) deĄnes a bijection

cξ : Mξ
1(X × Y) −→ L0

(

ξ; M1(Y)
)

, µ 7→ µY♣X , (9)

with inverse c−1
ξ ( · ) = ( · ) ⊗ ξ. This conditioning map (9) provides the desired ŚfunctionalisationŠ of

any type of statistical dependence between the marginals of ¶(xi, yi)♢. The map (9) thus captures
every kind of associative relation on X × Y by interpolating between two statistical extreme cases:

Example 2.1 (Functional Dependence and Independence). Given marginals ξ ∈ M1(X ) and
µY ∈ M1(Y)Ůread as the distributions of (xi) and (yi), resp.Ůand a function f : X → Y, consider

µfY♣X := (δf(x) ♣ x ∈ X ) and µ⊥
Y♣X := (µY ♣ x ∈ X ).

These measure-valued functions (in fact kernels, i.e. in L0
(

ξ; M1(Y)
)

, if f is Borel-measurable)

identify associations µf := µfY♣X ⊗ξ (=c−1
ξ (µfY♣X )) and µ⊥ := µ⊥

Y♣X ⊗ξ = µY ⊗ξ (=c−1
ξ (µ⊥

Y♣X )) that

characterize functional dependence (5) and statistical independence ((xi)⊥(yi)), respectively.

The concept of a conditioning map (9) allows us to express the task of learning associative
relations between data (from Ąnitely many data samples) as follows:

For µ ∈ Mξ
1(X × Y), approximate the kernel cξ(µ) from samples of µ. (10)

Before we transition from the informal description (10) (the term ŚapproximateŠ is made precise
later) to a precise and actionable problem formulation, let us Ąrst establish some basic terminology.

Definition 2.2. For X ,Y Polish spaces and ξ ∈ M1(X ), the disintegration cξ(µ) of any law

µ ∈ Mξ
1(X × Y) is termed the conditional dependence of µ wrt. the source law ξ.
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It is often convenient, not least for notational reasons, to view a measure µ ∈ M1(X × Y) as
the law of some (X × Y)-valued random variable. That is, to suppose that

µ = P(X,Y ) for some X : Ω → X and Y : Ω → Y, (11)

where both X and Y are some Borel-measurable maps over a joint probability space (Ω,F ,P);
the data ¶(xi, yi)♢ are then sample realisations of (X,Y ). In common regression terminology, Y
is called the ŚregressandŠ and X is called the ŚregressorŠ. In this setting, the marginals of µ are
µX = PX and µY = PY , and it is customary to denote the conditional kernel µY♣X in (8) as

cX(µ) ≡
(

µY♣x( · ) : x ∈ X
)

=:
(

P(Y ∈ ( · ) ♣ X = x) : x ∈ X
)

. (12)

A solution to (10) then provides a data-based approximation (ŚestimatorŠ) of the statistics

P(Y ∈ A ♣ X = x) =

∫

A

dµY♣x, P(X ∈ A, Y ∈ B) =

∫

A

∫

B

dµY♣x PX(dx) and

E[f(Y ) ♣X] =

∫

Y
f dµY♣X , for any A×B ∈ B(X × Y) and f ∈ L2(PY ),

(13)

where µY♣X := cξ(µ) ◦X. These are of central importance to various applications.

Remark 2.3. Any conditional dependence (CD) can be lifted to the (conditional) law of a canonical
(X × Y)-valued random variable, and the converse is also true, giving a one-to-one correspondence
between CDs and paired random variables, see Remark B.1. Thus, the Ślifting assumptionŠ (11)
entails no loss of generality and is, in fact, not an assumption but rather a provable statement.

2.3 Nonparametric Regression as an Operator Learning Problem

Given a law µ ∈ M1(X × Y) with marginal ξ := µX , the main challenge we want to address is
how to efficiently approximate the conditional dependence cξ(µ) from a Ąnite number of µ-drawn
samples. In fact, we will tackle the task (10) in the setting of time-dependent data, where X and Y
are inĄnite-dimensional function spaces consisting of vector-valued paths (Sect. 3). This sequential
setting poses several statistical and analytical challenges, not least because the resulting relation
spaces X × Y are generally not locally compact. Our approach to handle this is to work with
sufficiently nonlinear Ścoordinate mapsŠ on X and Y that ultimately allow us to estimate (13) with
bespoke approximation architectures grounded in rigorous statistical theory (see Sections 4 and 5).

But Ąrst, we must ask how, and in what precise sense, we can approximate a conditional de-
pendence (8)Ůan uncountable family of measuresŮfrom Ąnite data. An established2 approach is to
use functional analysis and view such families as explicitly representable bounded linear operators.

Proposition 2.4 (Conditional Mean Embedding). For any law µ ∈ Mξ
1(X × Y), the conditional

dependence cξ(µ) ≡ (µx)x∈X ⊆ M1(Y) of µ wrt. ξ can be identiĄed with a bounded linear operator

cξ(µ) : L2(µY) −→ L2(ξ), f 7−→ µ ·(f) :=

[

x 7→
∫

Y
f dµx



, (14)

Moreover, given a separable Hilbert space
(

HY , ⟨·, ·⟩
)

together with a Borel-measurable map

q : Y → HY such that
{

⟨ℓ, q(·)⟩ ♣ ℓ ∈ HY
}

is L2-dense in L2(µY), (15)

2 See, for instance, [41, 33] and the references therein.
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then the (so-called) regression operator (14) and, thus, the conditional dependence cξ(µ) itself, can
be identiĄed with the function

µ ·(q) ∈ L2(ξ; HY) given by x 7→ µx(q) :=

∫

Y
q(y)µx(dy). (16)

SpeciĄcally then, for each f ∈ L2(µY) there is a sequence (ℓ
(f)
j )j ⊂ HY such that

cξ(µ)(f) = lim
j→∞

〈

ℓ
(f)
j , µ ·(q)

〉

in L2(ξ). (17)

(For functions f such that f = ⟨ℓ, q(·)⟩ for some ℓ ∈ HY , we can choose ℓ
(f)
j := ℓ for each j.)

Proof. Mostly straightforward consequences of the deĄnitions, but see Appendix B.1.2.

Remark 2.5 (Parametrizing Conditional Dependencies). The representation (17) based on (15)
can be seen as an ŚinĄnite-dimensional parametrizationŠ of the regression operator (14) representing
a conditional dependence cξ(µ); see also Remark B.2. The parameter domain for this represent-
ation can be chosen as the L2-closure of a separable Hilbert space. For conditional dependencies
between time-dependent data, this domain has a highly-structured and conveniently explicit form;
see Proposition 4.10 and Lemma 3.12. These structural beneĄts, as shown in Section 5, facilitate
translating the operator representation (17) into an efficient scheme for estimating cξ(µ).

The functional analytic viewpoint of Proposition 2.4ŮspeciĄcally, the one-to-one correspondence
between (9) and (14)Ůfacilitates a rigorous and straightforward formulation of (10) in terms of
operator learning. For any Ąxed pair X ,Y of Polish spaces, denote Z := X × Y and let Z := ZN.

Definition 2.6 (Learning CDs). Let µ ∈ M1(X × Y). A sequence of operator-valued maps

T̂n : Z −→
[

L2(µY) → L2(µX )
]

(n ∈ N) (18)

will be called a consistent estimator of cµX
(µ) if, for any iid samples Z1, Z2, . . . ∼ µ =: P, we have

T̂n
(

(Zj)
) P−→

n→∞
cµX

(µ) strongly, that is: lim
n→∞

P



∥

∥µ ·(f) − T̂n
(

(Zj)
)

(f)
∥

∥

L2(µX )
≥ ε
)

= 0 (19)

for each f ∈ L2(µY), which is required to hold for any ε > 0. We call universally consistent a
sequence (T̂n) for which both (18) and (19) hold for every measure µ ∈ M1(X × Y).

Remark 2.7 (Stochastic Process Regression). The main goal of this paper is to propose a univer-
sally consistent estimator of conditional dependencies on spaces X ,Y of multivariate time-dependent
data. In other words (see Remark 2.3), we aim to estimate the conditional dependencies between
coupled multidimensional (discrete- or continuous-time) stochastic processes X and Y . In this
context, we recognize in (14) the familiar expressions

µ ·(f) : x 7→ µx(f) ≡ E[f(Y ) ♣X = x] and µX(f) := µ ·(f) ◦X ≡ E[f(Y ) ♣X] (20)

(recall (13)), or in other words, µ ·(f) is precisely the regression function of f(Y ) on X . In particular,

P(Y ∈ (·) ♣X = x) ≡ µx(✶(·)) : B(Y) ∋ A 7−→ µx(✶A)
(

= µx(A)
)

∈ [0, 1] (21)

is the conditional distribution of Y given X = x, cf. (12), where P(Y ∈ (·) ♣X) := µX(✶(·)) as usual.
If the space Y of possible outcomes is Ąnite, then we have the explicit embedding

P(Y ∈ A ♣X) =
∑

y∈Y
✶A(y)µX(¶y♢)

(15)
= lim

j→∞

∑

y∈A
〈

ℓ
(y)
j ,E[q(Y ) ♣X]

〉 (

A ∈ B(Y)
)

(22)
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of the conditional law P(Y ∈ · ♣X), where
{

(ℓ
(y)
j )

∣

∣ y ∈ Y
}

⊂ HY is some (deterministic) family of ex-

tractors obtainable as minimizing sequences of the regression problem inf¶∥✶¶y♢ −⟨ℓ, q⟩∥2
L2(PY ) ♣ ℓ ∈

HY♢ (Section 4.3). A consistent estimator (T̂n), as in (18) and (19), then yields an approximation

lim
n→∞

P
(

supA∈B(Y)

∣

∣P(Y ∈ A ♣X) − T̂n(A)
∣

∣ ≥ ε
)

= 0 (23)

for any given ε > 0, where T̂n(A) := T̂n(✶A) (see Section 5.5). The representation (17) (if it exists)
suggests a general blueprint for such estimators (T̂n), namely a Ścomposite architectureŠ of the form

T̂n(f) =
〈

ℓ̂(f)
n , Ξ̂qn

〉

(24)

for each f ∈ L2(PY ), where ℓ̂
(f)
n and Ξ̂qn are estimators of the components (ℓ

(f)
n ) and µ · (q) ≡

E[q(Y ) ♣X = · ] from (17), respectively. This paper presents two universally consistent instances of
this architecture and analyses their statistical approximation properties (19) (see Sects. 5.3Ű5.5).

A prominent recent application of this regression framework for stochastic processes is found in
computational linguistics:

Example 2.8 (Large Language Models). A particular use case of the above regression framework is
the efficient representation and estimation of conditional distributions (21) of a [random vector or]
stochastic process Y given a stochastic process X, as outlined in (22) and (23). This is the central
task of Large Language Models (LLMs) such as Generative Pre-trained Transformers (GPT), whose
goal it is to predictŮthat is, to sample from an estimated conditional distributionŮa contextually
appropriate response y ∼ Y (potential text completions) given a sequential input x ∼ X (supplied
text prompts). In this context, X is the space of all possible inputs, such as appropriately vectorized
text prompts of a given length, and Y is the (Ąnite, limited by the vocabulary size) set of all possible
token sequences of a given length that make up the modelŠs potential responses. An LLM learns from
data a conditional dependence cξ(µ) as in (12), for µ the joint distribution of (X,Y ) and ξ the law
of X, and this cξ(µ) captures the complex statistical relationship between input sequences (X) and
potential outcomes (Y ). This learning is operationalised (as expressed by (19) and (23)) through an
estimation of the conditional distribution P(Y ∈ (·) ♣X), and in practice translates to computing the
(empirical) likelihood of different possible model responses given a particular user input. (Given a
prompt, the model calculates the probability of various next tokens based on the learned conditional
distribution.) The necessary computations are performed by estimators T̂n of the general form (18),
which in contemporary models are typically implemented as sequence-processing neural networks
with (empirically Ąne-tuned) architectures like transformers. These estimators serve to translate
sampled text data into approximations of the conditional mean embeddings (14) and (17) (or other
suitable representations of the probability kernel cξ(µ)) that functionally express the associative
relationship between X and Y . This yields a statistical approximation of the intricate relationship
between input and output text data, underpinning the generative capabilities of LLMs and providing
us with probabilistically founded function approximators capable of emulating the nuances and
complexities of natural language. Applied to this context, the probabilistic concepts and novel
statistical estimation methods in this paper may bring practical improvements and contribute to
our understanding of the mathematical foundations of LLMs and statistical language models at
large. For more information on the statistics of LLMs, see [? ] and the references therein.

A mathematically insightful interpretation of the regression operator cξ(µ) in (14) is to view it
as providing, in an L2-variational sense, the optimal transfer of information from Y to X :

Lemma 2.9. The operator (14) is isometrically isomorphic to the restricted projection operator

PY♣X : L2(X × Y,X × B(Y), µ) −→ L2(X × Y,B(X ) × Y, µ), f̃ 7−→ P f̃, (25)

for the orthogonal projection P : L2(X × Y,B(X × Y), µ) ↠ L2(X × Y,B(X ) × Y, µ).
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Proof. See Appendix B.1.3. (Here, X ×B(Y) ≡ ¶X ×A ♣ A ∈ B(Y)♢, and likewise for B(X )×Y.)

This paper combines the classical variational perspective of Lemma 2.9 with a speciĄc Śfeature-based
parametrisationŠ of the form (17) to develop two universally consistent estimators for conditional
dependencies between jointly distributed, multidimensional stochastic processes. These estimators,
of the type (24), are derived from an ensemble of core rough path theory objects and enjoy a clear
mathematical and conceptual interpretation (Section 4). They are also computationally efficient
and supported by broad theoretical guarantees, including explicit convergence rates (Section 5).

3 Time-Dependent Data and the Signature Transform

So far, we have not speciĄed the regressor-regressand relation X ∼ Y beyond its inclusion in the
product X × Y for general Polish spaces X and Y. In this section, we sharpen this assumption and
focus on learning statistical relationships between multidimensional time-dependent data. SpeciĄc-
ally, we consider conditional dependencies (8) pertaining to (sufficiently regular) subspaces

X of C([0, 1];Rd1) and Y of C([0, 1];Rd2), for any d1, d2 ∈ N. (26)

This setting will allow for an effective and rigorous description of time-dependent statistical rela-
tionships betweens multidimensional covariates (X,Y ) that are genuinely probabilistic, or modelled
as such due to their inherent complexity, and exhibit nuanced temporal and spatial dynamics.

Suitably large data spaces X and Y as in (26) are obtained in Section 3.1 as ∥·∥∞-dense linear Polish
subspaces of continuous paths by imposing some natural continuity assumptions on the points in
C([0, 1];Rd). These data spaces X and Y, when adequately normed, are effectively (topological)
ŚHilbert manifoldsŠ as they admit single, globally-deĄned coordinate charts:

qX : X −→ HX and qY : Y −→ HY (27)

mapping the original data spaces X and Y into structurally well-behaved Hilbert spaces HX and HY .
In the language of RKHS, the functions (27), called Ś(bounded) signature transformsŠ and deĄned
in Sections 3.2 and 3.3, can be viewed as highly structured feature maps for multidimensional
sequential data. Serving the role of (15), these maps integrate seamlessly into the context of (10),
allowing for a fruitful extension of the general approximation approach (17) (see Sections 4 and 5).

3.1 Spaces of Sequential Data and Stochastic Processes

We specialise the general setting of Section 2 to the case of time-dependent data, and ensure the
measure-theoretic adequacy of the resulting state spaces X and Y for immediate integration into the
framework of Section 2.3. To this end, we deĄne a time-dependent, or ŚsequentialŠ, datum z = (zt)
as a continuously ordered family of vectors,

z := (zt ♣ t ∈ I) ≡ (zt)t∈I with zt ≡ (z1
t , . . . , z

d
t )⊺ ∈ R

d, (28)

that is, a continuous map z : I → R
d over some Ąxed compact interval I ⊂ R , usually I = [0, 1]. The

probabilistic description of time-dependent information (28) is largely a ŚmacroscopicŠ endeavour,
and so we view the objects (28) primarily as (highly-structured) points of the so-called path spaces

C(I;Z) :=
{

z ≡ (zt) ∈ ZI ♣ I ∋ t 7→ zt is continuous
}

, normed by ∥z∥∞ := supt∈I ♣zt♣, (29)

where (Z, ♣ · ♣) is a given normed space, usually Z = R
d for some d ∈ N; we write Cd := C([0, 1];Rd).
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Following on from the general spaces (29), choose I = [0, 1] wlog and consider the Banach space
(

Cd := C([0, 1];Rd); ∥ · ∥∞
)

of all continuous paths z ≡ (zt) : [0, 1] → R
d.

For simplicity, this paper operates on the Śsmooth coreŠ C1
d of absolutely continuous paths in Cd,

C1
d :=



z ∈ Cd
∣

∣

∣

∣

∃ ż ∈ L1([0, 1];Rd) : z· = z0 +

∫ ·

0

żs ds



, norm ∥z∥1-var := ♣z0♣ + ∥ż∥L1 , (30)

the so-called 1-variation norm. We note that the dense subspace C1
d of Cd is chosen for technical

convenience. However, as usual in rough path theory, this choice incurs essentially no loss of
generality, as everything that follows can be extended canonically to spaces of rougher paths [18].

Remark 3.1 (Discrete-Time Data). Note that the above setting covers both continuous- and
discrete-time data. Discrete-time data can be naturally embedded in the path spaces (30) through
order-preserving piecewise-linear interpolation of discretely observed sequential information. For
details on this embedding, see e.g. [49, Section B.2].

3.1.1 Measure-Theoretical Preliminaries for Path Spaces

Next, let us note the following convenient topological and measure-theoretical properties.

Lemma 3.2. The space C1
d is a Borel subset of (Cd, ∥ · ∥∞) and a separable Banach space wrt. the

norm ∥ · ∥1-var, and the spaces (C1
d , ∥ · ∥∞) and (C1

d , ∥ · ∥1-var) have the same Borel σ-algebra.

Proof. The Ąrst part of the lemma is well-known, and the second part is shown in Appdx. B.2.2.

Specifying the sequential setup (26), Ąx any predictor- and response-dimension dX , dY ∈ N and set

X :=
(

C1
dX
, ∥ · ∥1-var

)

and Y :=
(

C1
dY
, ∥ · ∥1-var

)

. (31)

For a topology on the Cartesian product X × Y hosting all relations between the points in (31), let

∥(x, y)∥1-var := ♣(x0, y0)♣ + sup
D

∑

(tν )∈D
♣(xtν , ytν ) − (xtν−1 , ytν−1)♣ and ∥(x, y)∥∞ := sup

t∈[0,1]

♣(xt, yt)♣,

where the Ąrst supremum runs over the set D of all (Ąnite) dissections (tν) of the interval [0, 1].

Remark 3.3. Lemma 3.4 below asserts that fusing (31) to the product (X × Y; ∥ · ∥1-var) bears
no measure-theoretic complications, conĄrming that the sequential setting (31) integrates smoothly
into the framework discussed in Section 2. Alongside Lemma 3.2, this lemma further ensures that
the choice of path-space topologyŮwhether ∥·∥1-var or ∥·∥∞Ůis inconsequential when working with
the Borel measure spaces M1(X ), M1(Y), or M1(X × Y), since both topologies induce identical
σ-algebras on the respective data spaces X , Y and X × Y.

Lemma 3.4. The space Z :=
(

X × Y, ∥ · ∥1-var) is Polish, and its Borel-σ-algebra B(Z) ≡ B(Z, ∥ ·
∥1-var) coincides with B(Z, ∥·∥∞). For maps X : (Ω,F ) → X and Y : (Ω,F ) → Y on a measurable
space (Ω,F ), the joint process (X,Y ) is

(

F ,B(Z)
)

-measurable iff X and Y are Borel-measurable.

Proof. See Appendix B.2.3.

As for the lift of a measure µ ∈ M1(X ×Y) to the law of an X ×Y-valued pair (X,Y ) of random
variables, as described in (11), we as usual deĄne a (continuous-time) stochastic process as any map

S : Ω → C(I;Z) such that ω 7→ S(ω) ≡ (St(ω))t∈I is
(

F ,B(C(I;Z))
)

-measurable, (32)

where the above is deĄned over some probability space (Ω,F ,P) (usually left implicit).

Some useful technical details on stochastic processes (32) are collected in Remark B.3.
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3.1.2 Example Applications: Stochastic Process Prediction and Classification

As a brief preview of potential future applications, note that the standard regression task of fore-
casting a stochastic processŠs future from its past Ąts seamlessly into the general framework (11):

Any process S = (St(ω)) : I × Ω → Z as in (32) generates two types of sub-σ-algebras of F ,

σ(S) := σ
(

S−1(B)
∣

∣B ∈ B(C(I;Z))
)

and σt](S) := σ(Ss ♣ s ∈ I : s ≤ t), (33)

for any Ąxed t ∈ I. The following well-known observation reminds us that (33) are closely related.
More speciĄcally, Lemma 3.5 ensures that the common regression application of predicting the
future evolution of a stochastic process (S) based on its history (i.e., σ(Ss ♣ s ≤ t0), for some t0 ∈ I)
is an immediate special instance of the general framework (11): Simply choose (X,Y ) := (S∧t0, S).

Lemma 3.5 (Prediction). Let S = (St)t∈I be as in (32), and t0 ∈ I. Then we have σt0](S) =
σ(S∧t0) for the stochastic process S∧t0 := (St∧t0)t∈I .

Proof. Directly by deĄnition of B(C(I;Z)) and (33), see e.g. [24, Problem 2.4.4.2 (p. 60)].

A second major machine learning task that can be subsumed under the above framework (11) & (10)
is the (probabilistic) classiĄcation of time-series/stochastic processes: Suppose that any given datum
x ∈ X , modelled as a sample of some abstract process (32) (that is, x = S(ω) for an ω ∈ Ω) is to
be assigned a class label cx ∈ ¶c1, . . . , ck♢ ⊂ R. To ensure this assignment is well-deĄned, let us call

the process S classiĄable (under k-many labels) if there exists a measurable partition Ω =
⊔k
i=1 Ei

(with Ei ∈ F for all i ∈ [k], and Ej ∩ Ek = ∅ if j ̸= k) such that: for each ω ∈ Ω there is

i = iω ∈ [k] with S−1(S(ω)) ⊆ Ei. We then deĄne C :=
∑k
i=1 ci✶Ei

: Ω → R and call this the class
variable associated to S. The following lemma ensures that classiĄcation can be treated as a special
instance3 of the regression framework (11) & (10) (recalling (13)): Simply choose (X,Y ) := (S,C).

Lemma 3.6 (ClassiĄcation). Let S be classiĄable and C its associated class variable. Then the class
labelling λ : X ∋ x 7→ cx ∈ ¶ci♢ is well-deĄned on S(Ω), the conditional dependence of µ := P(S,C)

wrt. PS is cS(µ) = (δλ(x) ♣ x ∈ S(Ω)), and we have λ = arg maxc∈C(Ω) P(C = c ♣S = · ) (PS-a.e.).

Proof. Let there be k-many class labels, say c1, . . . , ck ∈ R. Since S is classiĄable, we know
that for each x ∈ S(Ω) there is a unique ix ∈ [k] with S−1(¶x♢) ⊆ Eix . This deĄnes a function
φ : S(Ω) → [k], x 7→ ix, which in turn determines the class labelling λ to λ : S(Ω) ∋ x 7→ cτ(φ(x)), for

τ : [k]
∼→ [k] some Ąxed permutation; this proves the Ąrst claim. Next, note that, by construction,

C = λ(S) pointwise on Ω (assuming τ = id wlog). This shows cS(µ) = (δλ(x)), cf. Example 2.1,
and also: P(C = c ♣S) = E[✶¶c♢(λ(S)) ♣S] = ✶¶c♢(λ(S)) = δc,λ(S), which proves the last claim.

3.2 The Signature Representation of Time-Dependent Data

We proceed to deĄne the (bounded) signature transforms (27) over paths [9, 35, 12], which are
coordinate charts that concisely and efficiently embed the previously introduced data domains (31)
into (bounded subsets of) well-organized Hilbert spaces. These charts are conveniently computable,
continuous, and graded injections, formulated as multivariate formal power series with coefficients
given by rapidly decaying iterated integrals. As later sections will show, the rich structure of these
charts, carefully discussed below, positions them as valuable tools for a precise stochastic analysis
of time-dependent conditional dependencies (9) within a streamlined functional analytic context.

3 Note that the class variable C lifts to a stochastic process C : Ω → C1
1 under the trivial embedding R →֒ C1

1 which
identifies the reals with constant paths.

12



3.2.1 Definition of the Signature

At the most basic level, the signature transform is a faithful (i.e., one-to-one) compression that
maps a path to a hierarchically graded list of countably many numerical coordinates of that path.

A convenient indexing of these coordinates requires some basic Śmultiindex notationŠ:

Notation 3.7 (Words and Formal Power Series). Let d ∈ N be Ąxed. We denote by

[d]∗ := ¶∅, 1, 12, 21, d11, ddd1211d, . . .♢

the free monoid over the alphabet [d] := ¶1, 2, . . . , d♢, representing all Ąnite sequences (or ŚwordsŠ)
of zero or more elements from [d] (the ŚlettersŠ), with ∅ symbolizing the empty word. The space
R[[d]] (∼= R[[x1, . . . , xd]]) denotes the (free) algebra of all multivariate formal power series in the
non-commutative variables 1 (∼= x1), . . . , m (∼= xd), with 1 := 1 · ∅ its multiplicative unit. Explicitly,

R[[d]] = ¶t : [d]∗ → R ♣ t is a map♢ ≡
{
∑

w∈[d]∗ tw · w ∼= (tw)w∈[d]∗

∣

∣ tw ∈ R
} ∼=

∏∞
ν=0(Rd)⊗ν ,

(34)
where each word i1 · · · id ∈ [d]∗ is identiĄed with its associated elementary tensor e1 ⊗ · · · ⊗ ed ∈
(Rd)⊗m, writing (ei)i∈[d] for the standard basis in R

d. The length ♣w♣ of a word w is deĄned as the
number of its letters, so that any length-k word (k ∈ N) is of the form

w = i1i2 · · · ik−2ik−1ik ∈ [d]∗, with iν ∈ ¶1, . . . , d♢ for each ν ∈ [k]. (35)

All of this extends to the alphabet [d]∗ with [d] := ¶0, 1, . . . , d♢. For any k ∈ N, we write ∆k :=
¶(tν) ∈ [0, 1]k ♣ 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ 1♢ for the k-dimensional standard simplex.

Take any path z ≡ (z1, · · · , zd) ∈ C1
d with components zi ∈ C1

1 . For compact notation, let us for
any word w ≡ i1i2 · · · ik ∈ [d]∗ (k ∈ N) consider the w-indexed differential k-form

dzw := dzi1 ∧ dzi2 ∧ · · · ∧ dzik = żi1t1 ż
i2
t2 · · · żiktk dt1 ∧ dt2 ∧ · · · ∧ dtk.

The following map is (essentially) a global coordinate chart that elucidates the spaces (31) of
sequential data by embedding their elements into a Hilbert space where they are easier to analyse.

Definition 3.8 (Signature). The signature sig : C1
d → R[[d]] sends a path z to the formal power

series

sig(z) :=
∑

w∈[d]∗

∫

∆♣w♣

dzw · w ∼=


∫

∆♣w♣

dzw

∣

∣

∣

∣

∣

w ∈ [1, . . . , d]∗


. (36)

Written out, the w-th signature coefficient of a path z = (z1
t , · · · , zdt )t∈[0,1], denoted sigw(z), reads

∫

∆♣w♣

dzw ≡
∫ 1

0

∫ tk

0

∫ tk−1

0

· · ·
∫ t3

0

∫ t2

0

dzi1t1 dzi2t2 · · · dz
ik−2

tk−2
dz

ik−1

tk−1
dziktk , (37)

for any word w ∈ [d]∗ of the general form (35); these are each iterated Lebesgue-Stieltjes integrals.

3.2.2 Some Basic Properties of the Signature

Transitioning from a pathŠs trace to its graph, let us now map a path z ≡ (z1, · · · , zd) ∈ Cd to

z̄ := (t, zt)t∈[0,1] ≡
(

z0
t , z

1
t , · · · , zdt

)

t∈[0,1]
∈ Cd+1. (38)

The mapping ῑ : z 7→ z̄ embeds C1
d into C1

d+1, and composing it with (36) results in an actual
embedding of paths into the space of formal power series.
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Figure 2: The signature, sig, is a global Hilbert-valued coordinate chart on (sufficiently continuous)
time-dependent data that maps a multidimensional path to an ordered list of its iterated integrals.

Theorem 3.9 ([20]). The augmented signature map

sig := sig ◦ ῑ : C1
d −→ R[[d]], z 7→ sig(z̄), is injective. (39)

Proof. Immediate by [20, Theorem 4] and the fact that, for any x, y ∈ C1
d , due to the strict mono-

tonicity of their Ąrst component the augmented paths x̄ and ȳ are treelike equivalent iff x = y.

To exploit the transform (36), or rather its augmented version (39), for our analysis, we need to
enhance its co-domain with additional analytic structure. SpeciĄcally, we see next that a subspace
of R[[d]] [resp. R[[d]]] which includes the range im(sig) [resp. im(sig)] of the [augmented] signature,
can be easily structured as a Hilbert space. This requires some preliminary basic notation:

Notation 3.10 (Gradation, Projections, and Inner Products). Any [d]∗-indexed inĄnite tuple
a ≡ (aw)w∈[d]∗ ⊂ R, such as (36), can be injected into the set (34) via a =

∑

w∈[d]∗ ta(w)·w ∈ R[[d]],

where ta(i1 · · · im) := ai1···im . Upon grouping the summands in (34) by their wordlength, we get

V ≡ R[[d]] =

∞
∏

m=0

Vm with Vm :=
⊕

w∈[d]∗ : ♣w♣=m
Rw (40)

for V0 := R. The decomposition (40) of R[[d]] into an inĄnite product of homogeneous components
(Vm) deĄnes a gradation of V , accompanied by projections πm : V → Vm, a 7→ πm(a) := am ≡
∑

♣w♣=m aw · w; we set π[m] ≡ ∑m
ν=1 πν : V −→ V[m] :=

⊕m
j=0 Vj ⊂ V . Finally, the inner product

⟨· , ·⟩ : V × V → R, (a, b) 7→
∑

w∈[d]∗
⟨a, w⟩ · ⟨b, w⟩ =: ⟨a, b⟩, (41)
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is deĄned as the (inĄnite) bilinear extension of ⟨u, v⟩ := δuv, u, v ∈ [d]∗. In other words, [d]∗ is an
ONS wrt. ⟨·, ·⟩, and we note that ⟨·, ·⟩ =

∑

m≥0⟨πm(·), πm(·)⟩ pointwise on V × V .

Example 3.11. To illustrate the above notation, note for instance that, for d ≥ 4 say,

3 sig21(x) − 25 sig44(x) = ⟨3 · 21 − 25 · 44, sig(x)⟩ = 3

∫ 1

0

∫ t

0

dx2
sdx

1
t − 25

∫ 1

0

∫ t

0

dx4
sdx

4
t ,

⟨10230, sig(x)⟩ =

∫

∆5

dx1 ∧ ds ∧ dx2 ∧ dx3 ∧ dt =

∫ 1

0

∫ t5

0

∫ t4

0

∫ t3

0

∫ t2

0

ẋ1
t1t2ẋ

2
t3 ẋ

3
t4t5 dt1dt2dt3dt4dt5,

and further π4(1232 + 2 · 243 − 0.5 · 22 − 3 · 2334) = 1232 − 3 · 2334, π2(231) = 0 (≡ 0 · ∅),
π[3](1 − 32 + 1345 + 6 · 333 + 2 · 32) = 1 + 32 + 6 · 333, and ⟨3 · 11 − 2 · 132, 123 − 4 · 11⟩ = −12.

The structure (41) allows us to conĄgure V as a Hilbert space, under convergence constraints:

Lemma 3.12 (Hilbert Codomain of (36)). For (V, ⟨·, ·⟩) the power series algebra from above, let

Hd :=
{

t ∈ V
∣

∣

∣
∥t∥ :=

√

∑

m≥0∥πm(t)∥2
m < ∞

}

with ∥ · ∥m :=
√

⟨·, ·⟩m , (42)

where ⟨·, ·⟩m := ⟨πm(·), πm(·)⟩ for each m ≥ 0. Then (Hd, ⟨·, ·⟩) is a separable Hilbert space with
orthonormal basis (w ♣ w ∈ [d]∗), containing the image sig(C1

d) and all of R[d]. Moreover, the maps

sig : C1
d → Hd and sig : C1

d → Hd (43)

are both continuous wrt. the p-variation topology, for any p ≥ 1.

The statements of this lemma are all well-known, but see Appendix B.2.4.

Remark 3.13. By weighting the graded components (Vm) in (40) before ℓ2-direct-summing them
into a composite Hilbert space as in (42), we can generalise the standard space Hd to a whole family
of alternate sig- resp. sig-containing Hilbert codomains Hγ

d . See Remark B.4 for details.

Geometrically, the (augmented) signature map sig from (43) serves as a global coordinate chart4

for the Hilbert manifold C1
d . Similar to general coordinate charts that map from a less intuitive

space (like (30)) into a more comprehensible Śanalysis spaceŠ (such as (42)), we will use the signature
representation (36) of the paired spaces (31) to facilitate the analysis of statistical dependencies
between sequential data through (17) and (27) via the lens (43).

To this end, the next subsection bridges the gap between (43) and the desired transforms (27).

3.3 Bounded Signature Transforms

The primary aim of this paper is to propose a universally consistent estimator for conditional de-
pendencies in sequential data, as detailed in DeĄnition 2.6. Employing the composite approach
(24), as suggested by (17), requires the square integrability, with respect to any measure in M1(Y),
of the (31)-tailored coordinate chart qY from (27) (whose prototype is (15)). The only way to ensure
this is for the function qY to be bounded. This is achieved by the concepts of tensor normalization
and Śrobust signaturesŠ introduced in [12], which this section implements to conĄne the signature
transforms (43) to a bounded subdomain of (42) in a structure-preserving fashion. This Ąnalizes
the transition from the default charts (43) to the (15)-respecting enhancements (27).

To begin, let us state some basic facts on the growth [wrt. their gradation index m] and con-
tinuity of the coordinate representations (43). This section consistently applies Notation 3.10.

Given λ ∈ R, the λ-dilation is the map δλ : V ∋ t 7→ ∑∞
m=0 λ

mπm(t) ∈ V (thus, δ1 = idV ).

4 Notwithstanding the continuity of its inverse sig−1, which does not concern us in this paper.
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Proposition 3.14 (Signature Decay; e.g. [36, Theorem 3.7 (case p = 1)]). We have that
∥

∥πm(sig(x))
∥

∥

m
≤ ∥x∥m1-var/(m!β), for each (x,m) ∈ C1

d × N0, (44)

for some [(x,m)-independent] constant β > 1; i.e., the signature decays factorially. In particular,

sig(C1
d) ⊂ H↓

d :=
{

t ∈ V
∣

∣

∣

∑

m≥0
∥πm(t)∥mλm < ∞, ∀λ > 0

}

⊆ Hd,

and consequently δλ(sig(C1
d)) ⊂ H↓

d for each λ > 0, since clearly δλ : H↓
d → H↓

d for each λ > 0.

Lemma 3.15 (ŚStrong ContinuityŠ). Endow the subspace H↓
d with the locally convex topology τ↓

that is induced by the family of norms

♣♣♣·♣♣♣λ : H↓
d → R, t 7→ ♣♣♣t♣♣♣λ :=

∑

m≥0

∥πm(t)∥λm, λ > 0.

Then (H↓
d, τ↓) is separable and metrizable Hausdorff and, for each p ≥ 1, the signature transform

sig :
(

C1
d , ∥ · ∥p-var

)

→ (H↓
d, τ↓) is continuous. (45)

Proof. The topological qualities of (H↓
d, τ↓) are due to [11, Corollary 2.4], while the continuity

assertion about the signature is contained in [11, Corollary 5.5].

Remark 3.16 (Comparison of Topologies). Clearly, for any topological space T , a map φ : H↓
d → T

is τ↓-continuous if φ is ♣♣♣·♣♣♣λ-continuous for at least one λ > 0. Moreover, H↓
d is a subspace of each

Hγ
d (Remark B.4), and the above topology τ↓ on H↓

d is Ąner than the (127)-induced subspace

topology τγ on H↓
d (Appendix B.2.5). Thus, statement (45) also holds for H↓

d replaced by Hγ
d .

Lemma 3.17. If λ· : (H↓
d, τ↓) → R>0 is a continuous positive scalar Ąeld, then the map

Λ : (H↓
d, τ↓) → (H↓

d, ∥ · ∥), t 7→ δλt
t, is continuous. (46)

Consequently and for any Ąxed p ≥ 1, the Λ-scaled augmented signature transform

Λ ◦ sig : (C1
d , ∥ · ∥p-var) → (H↓

d, ∥ · ∥), x 7→ δλsig(x)
(sig(x)), is continuous. (47)

Proof. See Appendix B.2.6

With the above observations in mind, we can now proceed to modify the Hilbert charts (43)
to ensure they are integrable with respect to any (Borel) probability measure on their respective
domains (31), which serve as our regression spaces. The idea, originally proposed in [12], is to
continuously inject (ŚsquishŠ) the image sig(C1

d) of the chart (39) into a ball of Ąnite radius in Hd

by composing the chart sig with a bounded Śsqueezing dilationŠ of the form (46). Provided that the
chosen dilation (46) is also a continuous injection, this ensures that the squished signature (47) is
a Hilbert chart of the envisioned kind (27). The next deĄnition summarizes this procedure.

Definition 3.18 (cf. [12]). We call feature normalisation (fN) any injective map of the form

Λ : H↓
d → HR

d := ¶t ∈ Hd ♣ ∥t∥ ≤ R♢, t 7→ δλt
t, (48)

for R > 0 some Ąxed constant and λ : (H↓
d, τ↓) ∋ t 7→ λt ∈ R>0 continuous. Given an fN Λ, we call

sig
Λ

:= Λ ◦ sig : C1
d −→ HRΛ

d (49)

a (Λ-)bounded signature transform (here, RΛ := sup¶∥Λ(t)∥ ♣ t ∈ H↓
d♢).
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[12, Section 3.2] show that feature normalisations exist and can be conveniently constructed.
Furthermore, [12] show that the speciĄc form (46) of these transforms preserves certain algebraic
properties of sig, which is crucial for proving that bounded signatures fulĄl the universality property
(15); see Section 4 below. The following result is a slight extension of [12, Theorem 21].

Proposition 3.19 (cf. [12, Theorem 21]). Let Λ = δλ(·)
be an fN with scalar Ąeld λ· : (H↓

d, τ↓) →
R>0, and set λ(·) := λ·◦ sig(·). Further, abbreviate Z := (C1

d , ∥ · ∥1-var) and denote by

AΛ := spanR

{

ξΛ

w
: Z ∋ x 7→ λ♣w♣

x

∫

∆♣w♣

dx̄w
∣

∣

∣
w ∈ [d]∗

}

, thus sig
Λ

=
∑

w∈[d]∗
ξΛ

w
· w, (50)

the linear span of the component functions (ξΛ

w
♣ w ∈ [d]∗) of the Λ-bounded signature sig

Λ
. Then AΛ

is a point-separating and non-vanishing5 subalgebra of Cb(Z), the algebra of all bounded continuous
functions on Z. Moreover, AΛ is dense in

(

Cb(Z), τZ
str

)

, for τZ
str the strict topology6 on Cb(Z). If

instead the domain Z is a bounded subset of (C1
d , ∥ ·∥1-var), then all of the above holds for Λ = idH↓

d

.

Proof. The fact that AΛ is an algebra is due to the span of all iterated integrals (37) being closed
under multiplication, a property preserved by the dilation structure (46). The inclusion AΛ ⊂ Cb(Z)
follows clearly from (48) and Lemma 3.17. That AΛ is point-separating is ensured by Theorem 3.9
and the injectivity of Λ, while AΛ being non-vanishing is evident since ξΛ

∅ = 1 by deĄnition of (49).
Given the preceding discussion, the statements regarding the strict topology follow immediately

from [19, Thm. 3.1], cf. [12, Thm. 21]. All details are provided in Appdx. B.2.7 for completeness.

Proposition 3.19, i.e. the asserted denseness of AΛ in Cb(Z) with respect to the strict topology,
generalises the Stone-Weierstrass theorem to the non locally-compact setting of path spaces (31).
This aspect of (49) holds secondary signiĄcance for the main objective of this article and will be
utilized merely to substantiate a few more peripheral corollaries in Section 4.3.

4 Signature Representation of Time-Dependent Association

The signature transform, introduced as a global Hilbert-valued coordinate map on spaces of suf-
Ąciently continuous paths (Section 3.2), is a powerful and well-structured tool for analysing time-
dependent data, and it retains this property when injected into bounded subsets (Section 3.3).
With this data-analytic concept in hand, we now return to our main task (10) of estimating stat-
istical dependencies, represented as regression operators (Proposition 2.4), between sets (26) of
time-dependent multidimensional data. Our strategy for achieving this is as follows:

The statistical approximation of conditional dependencies (8) relies on the σ-algebra generated
by the regressor, which serves as an information reservoir for the approximants of (14). Section
4.1 uses the bounded signature transform to discretise this reservoir (Lemma 4.3) and exhaust its
operationalisable information with a system of simple signature-based functions (Proposition 4.5
and Corollary 4.6). These results provide us with a tailor-made architecture (58) for the convex
approximation of statistical dependencies, with the gradation index m in (40) of the signature
serving as the central control parameter for the resolution of this approximation. This architecture
is put to use in Section 4.2, where the conditional expectation of the bounded signature of a process
Y given another process X, as well as the conditional expectation of a random vector Z given X,
are characterised as the solutions of conveniently approximable, convex semi-inĄnite linear least
squares problems (Theorem 4.8 and Corollary 4.9). These solutions yield Śvariational signature
representationsŠ of the respective conditional expectations, which are then extended in Section 4.3
to asymptotic variational representations (17) of the regression operator (14) (Proposition 4.10).

5 A family A ⊆ C(Z) will be called non-vanishing if: ∀ x ∈ Z there exists φ ∈ A such that φ(x) ̸= 0. 6 See e.g.
[19] or, for internal reference, Definition B.5.
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In combination, this provides a convex nonparametric regression framework for stochastic pro-
cesses that makes essentially no assumptions about the joint distribution of regressor and regressand,
and allows for a comprehensive statistical estimation theory and error control (Section 5).

4.1 A Dense Discretisation of Time-Dependent Information

To begin, we re-instantiate the sequential setting of Section 3.1, meaning that from here onwards:

X :=
(

C1
dX
, ∥ · ∥1-var

)

and Y :=
(

C1
dY
, ∥ · ∥1-var

)

for some dX , dY ∈ N, (51)

denoting (d, d̃) :=
(

dX , dY
)

for brevity. Then, any probability measure µ ∈ M1(X × Y) admits a
lift µ = P(X,Y ) to the law of some pair of jointly distributed stochastic processes

X : Ω → X and Y : Ω → Y (52)

over some (complete) probability space (Ω,F ,P), see (11) and Remark 2.3. These X and Y induce

sub-σ-algebras ΣX := σ(X) and ΣY := σ(Y ) of F .

Remark 4.1. Let us include a few basic remarks on the above σ-algebras and measurability.

(i) We recall the set system ΣX to serve as an information base for the best-approximation (in the
Bochner-L2-distance) YX =: E[Y ♣X] of the process Y from within all Y-valued measurable
functions of X, cf. also Lemma 2.9. Recall that this best-approximation E[Y ♣X] exists if Y is
Bochner-integrable (which we donŠt need to assume for our actual purposes), and it is unique
up to P-almost sure equality; see e.g. [48, Theorem II.2.1]. For the ŚcanonicalŠ probability
space (Ω,F ,P) := (X × Y,B(X × Y), µ) (cf. Remark B.1), the sub-σ-algebras ΣX and ΣY of
F correspond to the sub-σ-algebras B(X ) × Y and X × B(Y) of B(X × Y), respectively.

(ii) Throughout, any random variable is understood to be Borel-measurable. In particular: for
any Hilbert space (H, ∥ · ∥H) and function ❩ : Ω → H, we call ❩ an H-valued random variable
(⇔: ❩ ∈ L0(P; H)) iff ❩ is

(

F , σ(∥ · ∥H)
)

-measurable. The latter measurability is equivalent
to ❩ being Bochner-measurable thanks to [58, Prop. 1.8], provided that H is separable.

A best-approximation YX of the full-process Y given X is generally difficult to come by, especially
due to the Śanalytical intractabilityŠ of the path space Y. Luckily, such an approximation YX is also
not directly required: Instead of their Banach-valued default representation (52), it suffices for (10)
to examine the covariates X and Y through the lens of their bounded Hilbert-coordinates (49).

So for any two feature normalisations Ξ : H↓
X → HX and Λ : H↓

Y → HY , see (48), we denote by

❳
Ξ := sig

Ξ
(X) and ❨

Λ := sig
Λ
(Y ) (53)

the respective Hilbert-valued representations of X and Y . We then know from (49) that ❳Ξ and
❨Λ are bounded Hilbert-valued random variables, speciĄcally:

❳
Ξ ∈ L∞(P; HX ) := L∞(Ω,F ,P ; HX ) and ❨

Λ ∈ L∞(P; HY)

with HX := Hd and HY := Hd̃ the Hilbert spaces of square-summable power series from (42).

Differentiating degrees of integrability 1 ≤ p < ∞, we also introduce the (Bochner-)Lp-spaces

Lp(P; H) :=
{

❩ ∈ L0(P; H)
∣

∣ ∥❩∥Lp(H) < ∞
}

for
∥

∥❩
∥

∥

Lp(H)
:=

(
∫

Ω

∥

∥❩(ω)
∥

∥

p

HdP

)1/p

= E
[

∥❩∥pH
]

1
p .

(54)

18



Recall that (Lp(P; H), ∥ ·∥Lp(H)) is Banach for 1 ≤ p < ∞, and Hilbert for p = 2 with inner product

〈

❩1,❩2

〉

L2(H)
:=

∫

Ω

⟨❩1(ω),❩2(ω)⟩H dP = E
[

⟨❩1,❩2⟩H
]

. (55)

The boundedness of (53) ensures that there will be no integrability concerns for us here.

Lemma 4.2. We have that ❳Ξ ∈ Lp(P; HX ) and ❨Λ ∈ Lp(P; HY), for each p ≥ 1.

Proof. The inclusion ❨Λ ∈ L0(P; HY) is due to (47) and the fact that in our setting, Bochner- and
Borel-measurability coincide thanks to the separability of HY , see Remark 4.1 (ii). The unrestricted
integrability of ❨Λ is clear since Λ is bounded by deĄnition (48) of a feature normalisation.

Let us also make the following simple but useful observation, proved in Appendix B.2.8.

Lemma 4.3. For each feature normalisation Ξ : H↓
X → HX , we have that

ΣX = σ
(

sig
Ξ
(X)

)

= σ


ξΞ

w
(X)

∣

∣

∣
w ∈ [d]∗

)

(56)

(in the notation of Proposition 3.19).

Let us further introduce the spaces (which for p = 2 can be identiĄed with the domain of (25))

LpX(HY) := Lp(P,ΣX ; HY) ≡ ¶❩ ∈ Lp(P; HY) ♣ ❩−1(B(HY)) ⊆ ΣX♢
(

p ∈ [1,∞)
)

(57)

of all ΣX -measurable mean-p-integrable HY -valued random variables, and the parameter space

L2
XΞ

:=
{

α :
[

d̃
]∗ → R[d], w 7→ αw

∣

∣ ∥α∥2
L :=

∑

w∈[d̃]∗E
[

⟨αw, ❳Ξ⟩2
]

< ∞
}

.

The following proposition provides an architecture of readily adjustable model functions through
which we can compute the conditional expectation E[❨Λ ♣X] as the unique solution to a convex
and practically implementable Śleast-squares typeŠ optimization problem (Theorem 4.8). The proof
of this proposition is based on the classical fact that if a class of bounded functions contains all
indicator functions of a π-system and is closed under taking pointwise limits of uniformly bounded,
monotone sequences, then this class contains all bounded, measurable functions with respect to the
σ-algebra generated by the π-system. This fact is formulated as Lemma 4.4 below.

Lemma 4.4 (Functional Monotone Class). Suppose that H is a vector space of bounded real-
valued functions on a measurable space X such that H contains the constants and is closed under
bounded monotone convergence (that is, for any increasing sequence (φk) ⊂ H of positive, uniformly
bounded functions, the (pointwise) limit φ := limk→∞ φk lies in H). Let C be a subset of H which
is closed under pointwise multiplication, then H contains all σ(C)-measurable bounded functions.

Proof. See, for instance, [22, Theorem A.1].

Proposition 4.5. For any given feature normalisation Ξ : H↓
X → HX , consider the family

ΨX :=
{

ψα : X → HY ∪¶∞♢
∣

∣

∣
α ≡ (αw) ∈ L2

XΞ

}

, with ψα :=
∑

w∈[d̃]∗

〈

αw, sigΞ
( · )
〉

·w, (58)

of L2
XΞ

-parametrised (PX-a.e.-deĄned) ŚsimpleŠ functions. Then, the family of random variables

ΨX(X) := ¶ψ(X) ♣ ψ ∈ ΨX♢ is an ∥ · ∥L2(HY )-dense subset of L2
X(HY). (59)
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Proof. We Ąrst show ΨX(X) ⊆ L2
X(HY), for which we Ąx any α ∈ L2

X . By monotone convergence,

∥ψα(X)∥2
L2(HY ) =

∑

w∈[d̃]∗E
[

♣⟨αw, sigΞ
(X)⟩♣2

]

= ∥α∥2
L < ∞.

In particular, ∥ψα(X)∥ < ∞ almost surely, whence the (ΣX ,B(HY))-measurability of ψα(X) follows
via Pettis measurability theorem (e.g. [58, Theorem 1.11], applicable by Remark B.3 (iv)) from the
fact that: (a) the compositions ⟨w,ψα(X)⟩ = ⟨αw, sigΞ

(X)⟩ are each ΣX -measurable by Lemma

3.17 and Lemma 4.3, and (b) (⟨w, ·⟩ ♣ w ∈ [d̃]) is a (Schauder) basis of the [topological] dual of Hd̃.
(Note that in our setting, Bochner- and Borel-measurability coincide; see Remark 4.1 (ii).)

Next we prove (59), for which we consider any Ąxed p ∈ [1,∞) (a setting that, for the sake
of generality, extends beyond the requirements of (59), where only p = 2 is needed). For any
❩ ∈ LpX(HY) =: G and any given w ∈ [d̃]∗, the coordinate ❩w := ⟨w,❩⟩ is in Lp(Ω,ΣX ,P) =: G1.

(Indeed, E
[

♣❩w♣p
]

= E
[(

♣❩w♣2
)p/2] ≤ E

[(
∑

w∈[d̃]∗ ❩
2
w

)p/2]
= E

[

∥❩∥p
]

= ∥❩∥pLp(HY ) < ∞.)

Now for the ❳Ξ-spanned algebra AΞ(X) := ¶ξ(X) ♣ ξ ∈ AΞ♢, recalling (50) for notation, let

H := AΞ(X)
Lp

∩ L∞ and C := AΞ(X).

In other words, C is the vector space of images of X under the maps from AΞ, where AΞ the
space of all Ξ-scaled signature polynomials as deĄned by (50)♣Λ=Ξ, and H is the set of all bounded
ΣX -measurable random variables which are in the G1-closure of C. From Proposition 3.19 we know
that AΞ is a subalgebra of Cb(X ), and consequently C is a subset of H which is closed under
pointwise multiplication. Next, let us show that H satisĄes the hypotheses of Lemma 4.4: First, it
is clear that H is a vector space (as the intersection of two vector spaces) which also contains the
constants since C contains the constants. To check for the appropriate closedness of H, note that
for any monotone sequence (③k) ⊂ H such that supk ♣③k♣ ≤ C for some C > 0 and ③ := limk→∞ ③k

pointwise, we have ③k → ③ in Lp by dominated convergence, implying ③ ∈ H as required.
The above pair (H,C) thus qualiĄes for the application of Lemma 4.4, which yields that H

contains all bounded σ(C)-measurable functions. But since C = spanR

{

ξΞ

w
(X)

∣

∣ w ∈ [d̃]
}

and hence

σ(C) = σ(ξΞ

w
(X)

∣

∣ w ∈ [d̃]), Lemma 4.3 implies σ(C) = ΣX , which shows that in fact we proved

G1 ∩ L∞ ⊆ H ⊆ C
Lp

. (60)

Before using this observation to prove (59), note that for the above w-coordinate ❩w we have

❩w = Lp- lim
n→∞

❩
⟨n⟩
w for the truncations ❩

⟨n⟩
w := max

(

− n, min(❩w, n)
)

∈ G1 ∩ L∞

(the Lp-convergence holds by dominated convergence). But since (❩
⟨n⟩
w ) ⊂ C

Lp

by (60), we Ąnd

❩w ∈ C
Lp

, that is: ❩w = Lp- lim
j→∞

⟨αw,j , sigΞ
(X)⟩ for some (αw,j)j ⊂ R[d]. (61)

Since (61) holds for p = 2 and for all w ∈ [d̃]∗, the conclusion (59) is now within very close reach:
Fix any ε > 0. Abbreviating φ℘ := ⟨℘, sig

Ξ
(X)⟩ for ℘ ∈ R[d], choose some

α⋆w ∈ R[d] such that ∥❩w − φα⋆
w

∥2
G1

≤ ε2(2dY + 2)−♣w♣/2
(

w ∈ [d̃]∗
)

. (62)

For the coefficient vector α⋆ := (α⋆w)w∈[d̃]∗ , we then obtain

∥α⋆∥2
L =

∑

w∈[d̃]∗

E
[

φ2
α⋆

w

]

≤ 2

∞
∑

m=0

∑

♣w♣=m
∥❩w − φα⋆

w
∥2
G1

+ ∥❩w∥2
G1

≤ ε2
∞
∑

m=0

2−m + 2∥❩∥2
G < ∞, (63)
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where the penultimate inequality is due to there being ♯¶w ∈ [d̃]∗ ♣ ♣w♣ = m♢ = (dY + 1)m many
length-m words in the monoid [d̃]∗. So α⋆ ∈ L2

XΞ
and thus ψα⋆ ∈ ΨX(X), and from (63) we get

∥❩− ψα⋆∥2
L2(HY ) =

∞
∑

m=0

∑

♣w♣=m
∥❩w − φα⋆

w
∥2
G1

≤ ε2.

Since both ❩ ∈ L2
X(HY) and ε > 0 were arbitrary, the claim (59) is established.

The next statement, which is of independent interest, is an immediate corollary of the above proof.

Corollary 4.6. In the setting and notation of Proposition 3.19, we have for any υ ∈ M1(Z) that

AΛ is an ∥ · ∥Lp(υ)-dense subset of Lp(υ), for each p ∈ [1,∞).

Proof. This is precisely statement (61), upon replacing (Ξ,PX) by (Λ, υ) (which does not impact
the proof).

Corollary 4.7. Let k ∈ N and υ ∈ M1(X ), and Ξ : H↓
X → HX be any feature normalisation.

Then for the family of vector-valued (bounded) signature polynomials

ψ[k]
α :=

k
∑

i=1

⟨αi, sigΞ
(·)⟩ · ei : X −→ R

k, α ≡ (α1, . . . , αk) ∈ L2
k :=

(

R[d]∗
)×k

,

we have that ¶ψ[k]
α ♣α ∈ L2

k♢ is an ∥ · ∥L2(υ;Rk)-dense subset of L2(υ;Rk).

Proof. Immediate by Corollary 4.6 upon recalling the deĄnition in (41) of ⟨·, ·⟩ ≡ ⟨·, ·⟩HX
.

4.2 The Conditional Expected Signature of Y given X

Merging Proposition 4.5 with the classical perspective on conditional expectations as L2-projections
(Lemma 2.9) allows us to compute the conditional expected signature E[❨Λ ♣X] as the solution to
a conveniently posed convex optimization problem, as Theorem 4.8 below shows.

In order to align this result with the overarching goal of approximating the regression operator (14)
on time-dependent data (51) (Section 2.3), let us recall that, in the notation of Proposition 2.4:

E[❨Λ ♣X] = µ·(q) for µ := P(X,Y ) and q := sig
Λ
. (64)

The following theorem thus provides a principled approximation of the inner component (16) for
the proposed regression strategy that combines (17) and (64).

Theorem 4.8. Adopting the setting and notation of Proposition 4.5, we have that

E
[

❨
Λ
∣

∣X
]

= lim
k→∞

ψαk
(X) in L2

X(HY) (65)

for any minimizing sequence (αk) ⊂ L2
XΞ

of the convex linear least squares problem

inf
α∈ L2

XΞ

E
[

∥❨Λ − ψα(X)∥2
]

. (66)

Denoting Φ(❩) := E[∥❨Λ −❩∥2] and γ := infα∈L2
XΞ

Φ(ψα(X)), the convergence (65) holds P-almost

surely if (αk) runs Śfast enoughŠ in the sense that it satisĄes
∑∞
k=0(Φ(ψαk

(X)) − γ)1/2 < ∞.
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Sketch of Proof. We combine Proposition 4.5 with an HY -valued version of Lemma 2.9:
Since ❨Λ

X := E[❨Λ ♣X] is the orthogonal projection of sig
Λ
(Y ) with respect to the decomposition

L2(P; HY) = L2
X(HY) ⊕ L2

X(HY)⊥ ,

cf. (Rem. 4.1 (i) and) Lemma 2.9, the Hilbert projection theorem yields the variational character-
ization

❨
Λ
X = arg min

❩∈L2
X

(HY )

E
∥

∥❨
Λ − ❩

∥

∥

2
, and hence Φ(❨Λ

X) = inf
α∈L2

XΞ

Φ(ψα(X)), (67)

of ❨Λ
X as the L2−proximum of ❨Λ within the closed subspace L2

X(HY). Combining this character-
isation with Proposition 4.5 leads to the second identity in (67), which in turn implies the desired
convergence (65), including the stated almost sure version, via the completeness of L2

X(HY) and by
applying the parallelogram law for the norm ∥ · ∥L2

X
(HY ). See Appendix B.2.9 for the details.

The next result, which is a corollary to the proof of Theorem 4.8, presents a way to directly
compute the conditional expectation (20) for a Ąxed function f ∈ L2(PY ;Rk). Ultimately, this
computation can be achieved from samples of the pair (X,Z) := (X, f(Y )), see Theorem 5.9.

Corollary 4.9. Let k ∈ N. For any random vector Z ∈ L2(Ω,F ,P;Rk) we have that

E
[

Z
∣

∣X
]

= lim
j→∞

ψ[k]
αj

(X) in L2
X(Rk) (68)

for each minimizing sequence (αj) ⊂ L2
k of the convex semi-inĄnite linear least-squares problem

inf
α∈ L2

k

E

[

∣

∣Z − ψ[k]
α (X)

∣

∣

2
]

. (69)

Denoting Φk(W) := E[∥Z − W∥2] and η := infα∈L2
k

Φm(ψ
[k]
α (X)), the convergence (68) holds P-a.s.

if the sequence (αj) runs Śfast enoughŠ in the sense that it satisĄes
∑∞
j=0

(

Φk(ψ
[k]
αj (X))−η

)1/2
< ∞.

Proof. The proof of Theorem 4.8 stays valid up to the Ąrst identity in (67) if we replace (❨Λ, L2
X(HY))

with
(

Z,L2
X(Rk)

)

, where L2
X(Rk) ≡ ¶W ∈ L2(Rk) ♣ W is (ΣX ,B(Rk))-measurable♢. In particular

E
[

Z
∣

∣X
]

= arg min
W ∈L2

X
(Rk)

E
∣

∣Z − W
∣

∣

2
, (70)

and since ¶ψ[m]
α (X) ♣ α ∈ L2

k♢ is ∥ · ∥L2
X

(Rk)-dense in L2
X(Rk) by Corollary 4.7, we see Corollary 4.9

follow from (70) in the same way Theorem 4.8 follows from the Ąrst identity in (67).

Provided that (samples of) the association (X,Z) := (X, f(Y )) can be directly observed, the
approach of Corollary 4.9 offers a more direct alternative for computing E[f(Y ) ♣X] than the com-
pound strategy (17) based on Theorem 4.8 (via (64)). However, there are scenarios where the latter
method proves advantageous, such as when the pairs (X,Y ) and (Y, f(Y )) are observed independ-
ently and the evaluation Y 7→ f(Y ) is challenging or infeasible. The compound strategy (17) is also
beneĄcial in cases requiring rapid online evaluations of the regression operator (14) across a wide
range of different argument functions (e.g. with LLMs, where individual f may be indicators over
the modelŠs vocabulary, cf. (21) and Example 2.8). A further comparison of the advantages and
disadvantages of each of these estimation methods is given in Remark B.8.
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4.3 Signature-Based Regression of Stochastic Processes

The conditional expectation E
[

❨
Λ
∣

∣X
]

of the bounded signature coordinates ❨Λ (see (53)) of a
process Y given another process X can be variationally characterized as the solution to a convex
least squares problem, see (65) and (66) in Theorem 4.8. This characterisation can be extended to
a convex nonparametric estimation method for stochastic process regression (Remark 2.7) through
the operator-learning scheme deĄned by (17) and (64). The central objective of this regression
method is the consistent and efficient approximation of X-conditional functionals of Y , see (20),
and this subsection presents the probabilistic foundations of this regression approach.

Note that, since the conditional expectation operators in (20) are linear in f , the following
results all trivially extend to vector-valued functions of Y .

Proposition 4.10. For any stochastic processes X and Y as in (52) and any f ∈ L2(PY ), we have

E
[

f(Y )
∣

∣X
]

= lim
l→∞

〈

E
[

❨
Λ
∣

∣X
]

, ℓ
(l)
f

〉

in L2
X(R) (71)

for each minimizing sequence
(

ℓ
(l)
f ♣ l ∈ N

)

of the convex optimization problem

inf
ℓ∈ R[d̃]

∫

Y



f(y) − ⟨ℓ, sig
Λ
(y)⟩

)2

PY (dy). (72)

In particular, for (ℓ
(l)
f ) as above and any sequence (ψαk

(X)) as in (65) or (168), we have

E
[

f(Y )
∣

∣X
]

= lim
l→∞

lim
k→∞

〈

ψαk
(X), ℓ

(l)
f

〉

in L2
X(R). (73)

Proof. Fix any f ∈ L2(PY ). By virtue of Corollary 4.6, there is a sequence (ℓl) ⊂ R[d̃] such that
∫

Y(f(y) − ⟨ℓl, sigΛ
(y)⟩)2

PY (dy) = ∥f(Y ) − ⟨ℓl, sigΛ
(Y )⟩∥2

L2(ΣY ) → 0 as l → ∞, so the inĄmum (72)

is zero. Hence for any minimizing sequence (ℓ
(l)
f ) ⊂ R[d̃] of (72),

∥

∥E[f(Y ) ♣X] − E[⟨ℓ(l)
f ,❨

Λ⟩ ♣X]
∥

∥

L2(ΣX )
=
∥

∥E[f(Y ) − ⟨ℓ(l)
f ,❨

Λ⟩ ♣X]
∥

∥

L2(ΣX )

≤
∥

∥f(Y ) − ⟨ℓ(l)
f ,❨

Λ⟩
∥

∥

L2(ΣY )
−→ 0 as l → ∞,

(74)

where the last line is due to JensenŠs inequality and the tower property of conditional expectations.
Now inherited from the analogous ŚcommutingŠ property of Bochner integrals, we have that

E[⟨ℓ(l)
f ,❨

Λ⟩ ♣X] =
〈

ℓ
(l)
f , E[❨Λ ♣X]

〉

(∀ l ∈ N) (75)

with probability one, see for instance [48, Theorem II.2.3]. Combining (74) and (75) proves (71).
The convergence (73) is clear from (71) and (65). Indeed: Since, for each ℓ ∈ R[d̃], ηk(ℓ) :=

⟨ψαk
(X), ℓ⟩ ∈ L2

X(R) is merely a (Ąnite) linear combination of [L2
X(R)-valued] coefficients of ψαk

(X),
the L2

X(R)-convergence ⟨E[❨Λ ♣X], ℓ⟩ = limk→∞ ηk(ℓ) is readily implied by (65) [cf. (54)].

Almost-sure versions of (71) and (73) hold, e.g., if Y is compactly supported and f is continuous.

Corollary 4.11. Let X and Y be as in (52) but with DY := supp(PY ) compact. Then for any

function f ∈ C(DY ) and any minimizing sequence (ℓ
(l)
f )l of the optimisation problem

inf
ℓ∈R[d̃]

∥

∥f − ⟨ℓ, sig
Λ
(·)⟩
∥

∥

∞;DY
(76)
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and any approximating sequence (ψαk
(X)) as in (65) or (168), we have that

lim
l→∞

〈

E
[

❨
Λ
∣

∣X
]

, ℓ
(l)
f

〉 α
= E

[

f(Y )
∣

∣X
] β

= lim
l→∞

lim
k→∞

〈

ψαk
(X), ℓ

(l)
f

〉

, (77)

where the convergence in (α) holds P-a.s. and the convergence in (β) holds wrt. ∥ · ∥L2
X

(R); if in

addition (ψαk
(X)) is such that (65) or (169) converges almost surely, then (β) also holds P-a.s.

Proof. See Appendix B.2.10.

Applied to the special cases f = ✶A for arbitrary Borel sets A ⊆ Y, Proposition 4.10 yields the
following variational representation of the conditional law P(Y ∈ · ♣X).

Corollary 4.12. For any stochastic processes X and Y as in (52) and any A ∈ B(Y), we have

P(Y ∈ A ♣ X) = lim
l→∞

lim
k→∞

〈

ψ̃αk
(X), ℓ

(l)
A

〉

in L2
X(R)

for each sequence (ψ̃αk
(X)) as in (65) or (168) and any minimizing sequence

(

ℓ
(l)
A ♣ l ∈ N

)

of

inf
ℓ∈R[d̃]

∫

Y



✶A(y) − ⟨ℓ, sig
Λ
(y)⟩

)2

PY (dy).

For an almost sure variant of this result, note that if A ⊆ Y is open, then ✶A admits a monotone
pointwise approximation by a sequence of nonnegative uniformly bounded functions in Cb(Y):

✶A ↑ h
(ν)
A (ν → ∞) pointwise, e.g. h

(ν)
A : y 7→ d(y,Y\A)

d(y,Y\A) + d(y, Fν(A))
∈ Cb(Y), (78)

where d(y, C) := infz∈C ♣♣y − z♣♣1-var (for C ⊂ Y) and Fν(A) := ¶y ∈ Y ♣ d(y,Y\A) ≥ ν−1♢.

Corollary 4.13. Adopt the setting and notation of Corollary 4.13 and suppose in addition that the
support DY := supp(PY ) is compact and A ⊆ Y is open. Then

lim
ν→∞

lim
µ→∞

〈

E
[

❨
Λ
∣

∣X
]

, ℓ
(µ)
Aν

〉 α
= P(Y ∈ A ♣ X)

β
= lim

ν→∞
lim
µ→∞

lim
k→∞

〈

ψ̃αk
(X), ℓ

(µ)
Aν

〉

,

which, for any sequence
(

h
(ν)
A

)

ν
⊂ Cb(Y) as in (78), holds for any

(

ℓ
(µ)
Aν

∣

∣µ, ν ∈ N
)

such that:

(

ℓ
(µ)
Aν

)

µ
is minimizing sequence of inf

ℓ∈R[d̃]

∥

∥h
(ν)
A − ⟨ℓ, sig

Λ
(·)⟩
∥

∥

∞;DY
, for each ν ∈ N;

under these assumptions, the convergence (α) holds P-a.s. and (β) holds wrt. L2
X(R)-convergence,

and (β) holds P-a.s. if (ψ̃αk
(X)) is chosen such that (65) or (168) converges almost surely.

Since P(Y ∈ A ♣ X) = 1 − P(Y ∈ Ac ♣ X), analogous statements hold if A is closed.

Proof. From (78) and the deĄnition of conditional probability, we have

P(Y ∈ A ♣ X) = E
[

✶A(Y )
∣

∣X
]

= lim
ν→∞

E
[

h
(ν)
A (Y )

∣

∣X
]

P-a.s. (79)

via the conditional monotone convergence theorem. The remainder of the corollary then follows

from (79) by applying Proposition 4.10 to the continuous functions f = h
(ν)
A

∣

∣

∣

DY

for each ν ∈ N.
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5 Signature-Based Regression: Estimation and Consistency

This section extends the probabilistic results of Section 4.3 to a practically applicable, convex,
and nonparametric statistical method to perform regression on and between stochastic processes.
SpeciĄcally, we derive two signature-based regression estimators (Algorithms I and II, cf. DeĄnition
2.6) whose universal consistency guarantees come with explicit convergence rates (Theorem 5.9).

These estimators rely on a data-based discretization of the optimisation problems (66) and (69)
and of the associated approximations (72) and (73). The initial hurdle is that the regressors ΨX ≡
¶ψα ♣α ∈ L2

X♢, while deĄned only almost everywhere wrt. PX in (58), require pointwise evaluation
when applied to speciĄc data points. This is addressed in Section 5.1 by embedding Proposition 4.5
within the context of vector-valued reproducing kernel Hilbert spaces. In this framework, Section 5.2
adapts the tools and ideas from Section 4 to prepare for a regularised-least-squares-type empirical
estimation analysis. This leads to several auxiliary results that structure the algorithmisation
of Proposition 4.10 and culminate in Section 5.3, where these notions are combined to a Ąrst
estimator for the regression operator f 7→ µ ·(f) in (20). Section 5.4 specialises this approach to
Ąnite-dimensional regressands (Corollary 4.9) and proposes a second, specialised estimator for this
scenario. Finally, Section 5.5 synthesizes all previous ideas and results to demonstrate the statistical
consistency of the proposed estimators, convergence rates and error bounds (Theorem 5.9).

5.1 Signature Regressors form a Dense Vector-Valued RKHS

To underpin the approximation strategies of Section 4 with a clean and robust estimation theory, it
is beneĄcial to transfer the insights of Proposition 4.5 to the framework of vector-valued reprodu-
cing kernel Hilbert spaces (vRKHS), cf. [42]. To this end, we modify the function space in (58) to
obtain a dense subsystem of functions in L2

X(HY) with vRKHS structure, thus ensuring that these
modiĄed signature-regressors can be evaluated pointwise. This adaptation is crucial for empiric-
ally approximating (via (68) and (71)) the probabilistic quantities in (13) from discrete-data points.

(The theory of vRKHS was Ąrst developed in [52], and we refer to [7] for a modern exposition.)

Proposition 5.1. Let Ξ be a feature normalisation on HX , and denote by (Hκ, ∥ · ∥κ) ⊂ R
X the

RKHS with reproducing kernel κ : (x, y) 7→ ⟨sig
Ξ

(x), sig
Ξ

(y)⟩. Then the space of functions

HΞ :=
{

f : X → HY
∣

∣

∣

{

⟨f, w⟩
∣

∣w ∈ [d̃]∗
}

⊂ Hκ and
∑

w∈[d̃]∗
∥⟨f, w⟩∥2

κ < ∞
}

(80)

is a separable vRKHS with reproducing kernel K : X ×2 → L(HY), (x, y) 7→ κ(x, y)IdHY
. Moreover,

HΞ is dense in
(

L2(X ,PX ; HY), ∥ · ∥L2(PX ;HY )

)

, (81)

and H
[m]
Ξ = ¶f̃ ≡ π[m] ◦f ♣ f ∈ HΞ♢

)

is dense in
(

L2(X ,PX ;π[m](HY)), ∥ · ∥L2(PX ;π[m](HY ))

)

for each

m ≥ 0, where H
[0]
Ξ

∼= Hκ. Recalling Proposition 4.5 and introducing the space

Ψ⋆
X :=

{

∑

w∈[d̃]∗⟨uw, sigΞ
(·)⟩w

∣

∣

∣
(uw) ⊂ HX :

∑

w∈[d̃]∗E
[

⟨uw,❳Ξ⟩2
]

< ∞
}

,

we further have the ∥ · ∥L2(X ,PX ;HY )-denseŮand, in the case of HΞ, also continuousŮembeddings

HΞ ,ΨX ⊆ Ψ⋆
X ⊆ L2(X ,PX ; HY). (82)

Proof. See Appendix B.3.1.
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5.2 Preliminary Results via Hilbert-Valued Regularised Least Squares

Proposition 5.1 together with Proposition 4.10 and Corollary 4.9, allows us to leverage the consist-
ency theory of ŚvectorialŠ regularised least squares routines, as outlined in [42], to derive estimators
that are universally consistent in the sense of DeĄnition 2.6. This section provides some auxiliary
results to support this.

For this, we let µ ∈ M1(X × Y) be a Borel probability measure with marginals µX := µ ◦ π−1
X and

µY := µ ◦ π−1
Y , and appeal to an M-estimation scheme given by the following family of objectives:

ϕ(m)
µ : L2

(

µX ; H[m]
Y
)

−→ R+, g 7→ ϕ(m)
µ (g) :=

∫

X ×Y

∥

∥π[m](sigΛ
(y)) − g(x)

∥

∥

2
dµ(x, y), (m ∈ N),

ϕ
(m)
µ♣λ : H

[m]
Ξ −→ R+, g 7→ ϕ

(m)
µ♣λ (g) := ϕ(m)

µ (g) + λ∥g∥2
HΞ
, (λ > 0),

where H[m]
Y := π[m]

(

HY
)

and H
[m]
Ξ := π[m]

(

HΞ

)

for π[m] as in Section 3.10 and π[∞] := idHY
.

For any given f ∈ L2(µY), we additionally consider

ϕfµY
: HY −→ R+, ℓ 7→ ϕfµY

(ℓ) :=

∫

Y

∣

∣f(y) − ⟨ℓ, sig
Λ
(y)⟩

∣

∣

2
µY(dy),

ϕ
f
µY ♣λ : HY −→ R+, ℓ 7→ ϕ

f
µY ♣λ(ℓ) := ϕfµY

(ℓ) + λ
∥

∥⟨ℓ, sig
Λ
(·)⟩
∥

∥

2

κ
. (83)

Finally, for non-zero (f,Υ) ∈ L2(µY) × L2(µX ; HY) we deĄne

ϑf (ϵ̃) :=
ϵ̃2

4



inf
{

∥g∥2
κ

∣

∣ g ∈ Hκ : ∥f − g∥2
L2(PY ) ≤ ε̃2/2

}

)−1

and (84)

ϑ̃Υ(ϵ̃) :=
ϵ̃2

4



inf
{

∥g∥2
HΞ

∣

∣ g ∈ H
[m]
Ξ : ∥Υ − g∥2

L2(PX ;HY ) ≤ ε̃2/2
}

)−1

, (85)

where we set ϑf (ϵ̃) := ∞ [resp. ϑ̃Υ(ϵ̃) := ∞] if the inĄmum in (84) [resp. in (85)] is zero.

(Note ϵ̃ 7→ ϑf (ϵ̃) and ϵ̃ 7→ ϑ̃
(m)
Υ (ϵ̃) are well-deĄned maps from (0,∞) to (0,∞] by Proposition 5.1.)

The following technical results elucidate basic properties and interrelations of the above auxiliary
functions, preparing them for use in deriving our announced regression estimators.

Lemma 5.2. For each f ∈ L2(µY) and any λ > 0 and m ∈ N, both minimizers

ℓfµY ,λ
∈ arg min

ℓ∈ HY

ϕ
f
µY ♣λ(ℓ) and Υ∗

µ,λ,m = arg min
g ∈ H

[m]

Ξ

ϕ
(m)
µ♣λ (g) (86)

exist and the minimizer Υ∗
µ,λ,m is unique. Moreover, if µY is an empirical measure of the form

µY =
1

♣I♣
∑

i∈I
δyi

for some ¶yi ♣ i ∈ I♢ ⊂ Y with I Ąnite, (87)

then
(

arg minℓ∈HY
ϕ
f
µY ♣λ

)

∩ VµY
̸= ∅ for VµY

:= span¶sig
Λ
(yi) ♣ i ∈ I♢; if, in addition, the points in

¶yi ♣ i ∈ I♢ are pairwise distinct, then ℓf,⋆µY ,λ
:= arg minℓ∈VµY

ϕ
f
µY ♣λ(ℓ) is unique and satisĄes:

∥

∥ℓfµY ,λ

∥

∥

HY
≥
∥

∥ℓf,⋆µY ,λ

∥

∥

HY
for each ℓfµY ,λ

as in (86), (88)

and also
∥

∥ℓf,⋆µY ,λ

∥

∥

HY
=
∥

∥ arg minh∈Hκ̃
ϕ̃f,λ(h)

∥

∥

κ̃
for the map ϕ̃f,λ : Hκ̃ ∋ h 7→ ∥f−h∥2

L2(µY ) +λ∥h∥2
κ̃,

where the domain Hκ̃ is an RKHS with kernel κ̃ : Y×2 ∋ (x, y) 7→ ⟨sig
Λ
(x), sig

Λ
(y)⟩.
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Proof. Delegated to Appendix B.3.2.

In the following, suppose that, for any Ąxed X and Y as in (52), we are given observations

Y ≡
{

Y (l)
∣

∣ l ∈ [n]
}

and Z ≡
{

(X(j), Y (j))
∣

∣ j ∈ [N ]
}

(n,N ∈ N), (89)

modelled as iid copies of Y and (X,Y ), respectively.

For the associated empirical (random) measures µ̂Y := 1
n

∑n
l=1 δY (l) and µ̂Z := 1

N

∑N
j=1 δ(X(j),Y (j))

and for any given f ∈ L2(PY ), we follow the notation in (86) and choose any minimizers

ℓ̂fn,λ := ℓfµ̂Y,λ
and Υ̂∗

N,λ,m := Υ∗
µ̂Z,λ,m

and Υ̂∗
N,λ := Υ∗

µ̂Z,λ,∞. (90)

Recall that the objects in (90) are all (Y- resp. Z-dependent) random variables.

We describe the empirical minimizers in (90) and distinguish three associated types of error.

Proposition 5.3. Let Y, Z be as in (89), and consider any f ∈ L2(PY ). Then for all λ > 0,

⟨Υ̂∗
N,λ,m, w⟩∈ span

(

⟨sig
Ξ

(X(j)), sig
Ξ

(·)⟩
∣

∣ j ∈ [N ]
)

, for each w ∈ [d̃]∗ : ♣w♣ ≤ m (m ∈ N). (91)

Moreover, with md̃ :=
∑m
ν=0 d̃

ν and q∗
j := ⟨sig

Ξ
(X(j)), sig

Ξ
(·)⟩ we have that, with probability one,

n
∑

l=1

αl sigΛ
(Y (l)) ∈ arg min

ℓ∈HY

ϕ
f
µ̂Y♣λ(ℓ) and Υ̂lex

N,λ,m = Ã⊤
∗ · (q∗

j )Nj=1 (92)

if and only if the coefficients α∗ ≡ (αl)
n
l=1 ∈ R

n and Ã∗ ≡
(

ã(1)

∣

∣ · · ·
∣

∣ã(md̃)

)

∈ R
N×md̃ are such that

(A⊤
YAY + nλAY)α∗ = AYbY,f and (93)

(A⊤
Z AZ +NλAZ)Ã∗ = AZBZ, (94)

where the above systems are formulated in terms of the data-based (random) matrices and vectors

AY :=
(〈

sig
Λ
(Y (k)), sig

Λ
(Y (l))

〉)n

k,l=1
and bY,f :=

(

f(Y (l))
)n

l=1
, (95)

AZ :=
(〈

sig
Ξ
(X(i)), sig

Ξ
(X(j))

〉)N

i,j=1
and BZ :=

(〈

sig
Λ
(Y (i)), η−1(j)

〉)

(i,j)∈[N ]×[md̃]
; (96)

here, η : [d̃]∗ → N0 is the length-lexicographic7 (or shortlex) ordering of the words in [d̃]∗ and

Υ̂lex
N,λ,m ≡

(

⟨Υ̂N,λ,m, η
−1(1)⟩, . . . , ⟨Υ̂N,λ,m, η

−1(md̃)⟩
)

: X → R
md̃ (97)

is the length-lexicographically indexed version of Υ̂∗
N,λ,m.

Proof. See Appendix B.3.3.

Remark 5.4. The matrix AZ in (95) [resp. the matrix AY in (96)] is invertible iff the observed
samples (X(j))j in Z [resp. the samples (Y (l))l in Y] are pairwise disjoint. For a proof, see the
argumentation around (151) in Appendix B.3.2.

7 Recall that in the length-lexicographic ordering of [d̃]∗, words are primarily sorted by wordlength with the shortest
words first, and words of the same length are sorted into lexicographical order; see e.g. [56, p. 14].
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Revisiting the notation from (86), let us now complement (90) by any Ąxed choice of minimizers

ℓfλ := ℓf
PY,λ

and Υ∗
λ,m := Υ∗

P(X,Y ),λ,m
and Υ∗

λ := Υ∗
P(X,Y ),λ,∞.

To extend the uniqueness and optimality characteristic (88) to singular kernel matrices (95), let

ℓ̂⋆n,λ,f :=

n
∑

l=1

α⋆l sigΛ
(Y (l)) for α⋆ ≡

(

α⋆l
)n

l=1
the minimum norm solution of (93); (98)

equivalently, α⋆ = (A⊤
YAY + nλAY)+AYbY,f for ( · )+ the Moore-Penrose pseudoinverse [43].

Lemma 5.5. In the above notation, consider for any given f ∈ L2(PY ) the expressions

rI
f (λ) :=

∥

∥f − ⟨ℓfλ, sigΛ
⟩
∥

∥

L2(PY )
and rII

f,λ(n) :=
∥

∥⟨ℓfλ − ℓ̂fn,λ, sigΛ
⟩
∥

∥

L2(PY )
, (99)

referred to as the f -approximation error and the f -estimation error, respectively. Set further

rIII
f,λ,n(m) :=

∥

∥ℓ̂⋆n,λ,f − π[m](ℓ̂
⋆
n,λ,f )

∥

∥

HY
, (100)

which, for a given m ∈ N, we refer to as the f -cutoff error. Recalling that E[❨Λ ♣X] = φ⋆(X) for
some unique φ⋆ ∈ L2(PX ; HY) by the Doob-Dynkin lemma, let us Ąnally consider the expressions

RI
m(λ) :=

∥

∥π[m]

(

φ⋆ − Υ∗
λ

)
∥

∥

L2(PX ;HY )
and RII

m,λ(N) :=
∥

∥π[m]

(

Υ∗
λ − Υ̂∗

N,λ

)
∥

∥

L2(PX ;HY )
, (101)

referred to as the inner approximation error and inner estimation error, respectively. Then we have:

(i) sup
{

rI
f (λ)

∣

∣ 0 < λ ≤8 ϑf (ϵ)
}

≤ ϵ, for all ϵ > 0 ;

(ii) it holds that π[m](φ⋆) = arg min
g ∈L2(PX ;H[m]

Y
)
ϕ

(m)
P(X,Y )

(g) for each m ∈ N, and also:

RI
m(λ)2 = ϕ

(m)
P(X,Y )

(

π[m](Υ
∗
λ)
)

− ϕ
(m)
P(X,Y )

(

π[m](φ⋆)
)

, for all λ > 0 ;

(iii) for each m ∈ N : sup
{

RI
m(λ)

∣

∣ 0 < λ ≤ ϑ̃π[m](φ⋆)(ϵ)
}

≤ ϵ, for all ϵ > 0 ;

(iv) there is an explicit monotone decreasing null sequence
(

β
(cut)
m

)

⊂ R+, depending on (Y,Λ, λ, f),
such that with probability one:

rIII
f,λ,n(m) ≤ β(cut)

m for all m ≥ 0 ;

(v) for any δ > 0, there are explicit strictly decreasing null sequences (β
(out)
n ), (β

(in)
N ) ⊂ R+,

depending on (Λ, λ, δ) and (Λ,Ξ, λ, δ) respectively, such that for each n,N ∈ N,

P
(

rII
f,λ(n) ≥ β(out)

n

)

≤ δ and P
(

RII
m,λ(N) ≥ β

(in)
N

)

≤ δ. (102)

Proof. Reported in Appendix B.3.4.

Remark 5.6. SpeciĄc rate sequences (β
(out)
n ) and (β

(in)
N ) for which (102) holds are, for example,

β(out)
n :=

cΛ

λ
√
nδ

and β
(in)
N :=

√

cΞcΛ

λ2Nδ
(n,N ∈ N) (103)

with constants cZ := supt∈Hξ
∥Z(t)∥2

Hξ
for (Z, ξ) ∈ ¶(Λ,Y), (Ξ,X )♢; see proof of Lemma 5.5 (v).

8 If ϑf (ϵ) = ∞, then the constraint ‘λ ≤ ϑf (ϵ)’ is to be dropped; likewise for (iii).
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5.3 A Convex Estimator for Stochastic Process Regression

Let now f = (f1, · · · , fk) ∈ L2(PY ;Rk), for any k ∈ N. In order to structure the results of Sections
5.1 and 5.2 into an estimator for E[f(Y ) ♣X], we introduce, for each ε, δ > 0 and λ > 0, the moduli

λI
f (ε) := min¶ϑfi

(ε/(5k)) ♣ i = 1, . . . , k♢ and

nf,λ(ε, δ) := min
{

n ∈ N
∣

∣β(out)
n (δ/(2k);λ) ≤ ε/(5k)

}
(104)

for any Ąxed rate sequence
(

β
(out)
n

)

≡
(

β
(out)
n (δ;λ)

)

as in Lemma 5.5 (v), e.g. the one in (103), and

mf,λ(ε;Y) := min
{

m ∈ N
∣

∣ ∥α
f
λ∥1,2β̃m ≤ ε/(5k)

}

(105)

for the norm ∥A∥1,2 := max1≤j≤n ∥A:j∥2 and the Y-dependent sequence (β̃m) from (158), and with

α
f
λ ≡

(

α
(λ)
li

)

(l,i)∈[n]×[k]
:=
(

A⊤
YAY + nλAY

)+
AYBY,f

for the data matrices AY from (95) and BY,f :=
(

fj(Y
(l))
)

(l,j)∈[n]×[k]
. For m ∈ N, we further set

λI
λ,m(ε;Y) := ϑ̃φ⋆

m

(

ε/(5cλ,m;Y)
)

and

Nλ,λ̃,m(ε, δ;Y) := min
{

N ∈ N
∣

∣β
(in)
N (δ/2; λ̃) ≤ ε/(5cλ,m;Y)

}
(106)

for φ⋆m := π[m](φ⋆) as in Lemma 5.5, with the constant cλ,m;Y :=
√

∑k
i=1 ∥π[m](ℓ̂

⋆
n,λ,fi

)∥2
HY

com-

putable from (98) and for any Ąxed sequence (β
(in)
N ) ≡ (β

(in)
N (δ̃; λ̃)) as in Lem. 5.5 (v), e.g. (103).

Finally, for any dimensions n,N ∈ N of the data sets (89) and parameters λ ≡ (λ1, λ2) ∈ R
2
>0 and

m ∈ N, consider the estimator (of the regression function between f(Y ) and X)

R̂
I
λ,f [n,N,m] :=

k
∑

i=1



n
∑

l=1

αλ1

li

〈

πlex
[m](sigΛ

(Y (l))), Υ̂lex
N,λ2,m(·)

〉

2

]

ei : X −→ R
k (107)

with (ei ♣ i ∈ [k]) the standard basis of Rk, ⟨·, ·⟩2 the Euclidean inner product on R
md̃ , and where

Υ̂lex
N,λ2,m =

md̃
∑

ν=1





N
∑

j=1

β
(λ2)
jν

〈

sig
Ξ

(X(j)), sig
Ξ

(·)
〉



ẽν , with md̃ := d̃m+1−1
d̃−1

,

is as deĄned in (92), that is with the coefficient matrix
(

β
(λ2)
jν

)

=: βλ2 solving

(A⊤
Z AZ +Nλ2AZ)βλ2

= AZCZ for CZ :=
(〈

sig
Λ
(Y (i)), η−1(j)

〉)

(i,j)∈[N ]×[md̃]
;

here, the map πlex
[m]

:= η ◦ π[m] : HY → R
md̃ is the shortlex-ordered projection onto H[m]

Y .

The function deĄned in equation (107) serves as a data-based approximation of the (regression)
function ψf ∈ L2(PX ;Rk) such that ψf (X) = E[f(Y )♣X]. SpeciĄcally, we anticipate that:

E[f(Y ) ♣X] ≈ R̂
I
λ,f [n,N,m](X), (108)

where this approximation is expected to improve with sufficiently large values of n,N and with
sufficiently small values of λ1, λ2. The precise quality of the approximation (108), and the requis-
ite parameter choices for achieving this approximation within given error bounds, are established
in Theorem 5.9 below, based on the threshold quantities deĄned in equations (104), (105), and (106).
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In summary, the above combines to the following estimator for the regression operator (118).

Algorithm I: Computing the Regression Operator f 7→ µ ·(f) via Signatures

Goal: For processes X in R
dX and Y in R

dY , compute L2(PY ;Rk) ∋ f 7→ ψf ∈ L2(PX ;Rk),
for regression functions ψf := µ ·(f) (with µ := P(X,Y )) such that ψf (X) = E[f(Y ) ♣X].

1. Input: Samples z := ¶(xj , yj) ♣ j ∈ [N ]♢ and yf :=
{

(yl, f(yl)) ♣ l ∈ [n]
}

of the associations
(X,Y ) and (Y, f(Y )), for f ≡ (f1, · · · , fk) ∈ L2(PY ;Rk), respectively.

Hyperparameters: tensor normalisations (Ξ,Λ), resolution parameters λf , λΥ,m > 0.

2. Compute the weights βλΥ
≡
(

β
(λΥ)
jν

)

∈ R
N×mdY and α

f
λf

≡
(

α
(λf )
li

)

∈ R
n×k solving

(A⊤
z Az +NλΥAz)βλΥ

= AzCz,

(A⊤
y Ay + nλfAy) α

f
λf

= AyBy,f ,
(109)

with mdY
:= (dm+1

Y − 1)/(dY − 1) and for the data-dependent coefficient matrices

Az :=


〈

sig
Ξ
(xi), sigΞ

(xj)
〉

)N

i,j=1
and Cz =



〈

sig
Λ
(yi), lex−1(j)

〉

)

(i,j)∈[N ]×[mdY
]
,

Ay :=


〈

sig
Λ
(yi), sigΛ

(yj)
〉

)n

i,j=1
and By,f =

(

fj(yi)
)

(i,j)∈[n]×[k]
.

Here, lex : [dY ]∗ → N0 is the shortlex ordering of the words in [dY ]∗ (cf. footnote 7).

3. Compute the function, using the weights βλΥ
and the standard basis (ẽν) of RmdY ,

Υ̂
βλΥ

N,λΥ,m
:=

mdY
∑

ν=1





N
∑

j=1

β
(λΥ)
jν ⟨sig

Ξ
(xj), sigΞ

(·)⟩



ẽν . (110)

4. Compute the function, using the weights α
f
λf

and the quantity Υ̂
βλΥ

N,λΥ,m
,

ψ̂f :=

k
∑

i=1



n
∑

l=1

α
(λf )
li

〈

πlex
[m](sigΛ

(yl)), Υ̂
βλΥ

N,λΥ,m
(·)
〉

2

]

ei (111)

for the standard basis (ei) of Rk and with πlex
[m] : HdY

→ R
mdY , (qw) 7→ ∑mdY

ν=1 qlex−1(ν)ẽν .

5. Output: ψ̂f (estimator of the regression function ψf ).

The fact that this estimator is a particular instance of DeĄnition 2.6 is emphasised in Remark B.7.

Remark 5.7. The estimator (111), as well as the estimator (117) below, relies on the (bounded)
signature kernels κΘ : Z × Z ∋ (z1, z2) 7→ ⟨sig

Θ
(z1), sig

Θ
(z2)⟩ ∈ R, where (Θ,Z) ∈ ¶(Ξ,X ), (Λ,Y)♢,

for both its parametrisation (109) and pointwise evaluation (110). These kernels, like the (bounded)
signatures themselves [12, 26], can be efficiently computed or approximated with several specialised
algorithms and estimators. For an overview of related works, see e.g. [8, 29, 47] and the references
therein.
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5.4 Preliminary Results and Estimator for Finite-Dimensional Covariate

The scenario of Corollary 4.9, where we condition on X some Ąnite-dimensional covariate Z ∈
L2(P;Rk) instead of the Hilbert-valued covariate sig

Λ
(Y ), permits structural results similar to those

in Lemma 5.5 and Propositions 5.1 and 5.3. These statements, given below, can be proven entirely
in parallel to the aforementioned results and thus may be regarded as corollaries to the above proofs.

In a slight modiĄcation from the setting in (89), this Z-covaried scenario operates on the given data

W ≡
{(

X(j), (Z1
(j), · · · , Zk(j))

)

♣ j ∈ [M ]
}

(M ∈ N), (112)

i.e., on some Ąxed ensemble of M -many iid copies of (X,Z). We can then observe the following.

Corollary 5.8. Let X be as in (52), and consider the subspace hk :=
{

h ≡ (h1, · · · , hk) : X →
R
k
∣

∣hi ∈ Hκ, ∀ i ∈ [k]
}

⊂ L2(PX ;Rk) together with the objectives

ϕZ : L2
(

PX ;Rk
)

−→ R+, g 7→
∫

X ×Rk

∣

∣z − g(x)
∣

∣

2
P(X,Z)(dx,dz),

ϕZ♣λ : hk −→ R+, g 7→ ϕZ(g) + λ∥g∥2
hk
,

ϕ̂W,λ : hk −→ R+, g 7→
∫

X ×Rk

∣

∣z − g(x)
∣

∣

2
µ̂W(dx,dz) + λ∥g∥2

hk
,

for λ > 0 and where µ̂W := 1
M

∑

j∈[M ] δ(X(j), Z(j)). Then both the minimizer Υ∗
Z,λ of ϕZ♣λ and

Υ̂∗
Z,λ;M := arg min

h∈hk

ϕ̂W,λ(h) are unique,

and the latter minimizer admits the representation (with (ei ♣ i ∈ [k]) the standard basis of Rk)

Υ̂∗
Z,λ;M =

k
∑

i=1





M
∑

j=1

α̂
(λ)
ji

〈

sig
Ξ

(X(j)), sig
Ξ

(·)
〉



ei (113)

for any coefficient matrix Â⋆ ≡
(

α̂
(λ)
ji

)

∈ R
M×k which, abbreviating q̃j := sig

Ξ
(X(j)), solves

(A⊤
WAW +MλAW)Â∗ = AWBW for AW := (⟨q̃i, q̃j⟩)Mi,j=1 and BW :=

(

Zj(i)
)

(i,j)∈[M ]×[k]
.

(114)
Then the following holds:

(i) the space hk is a separable vRKHS with reproducing kernel K : X ×2 → L(Rk), (x, y) 7→
κ(x, y)Idk×k, and also a ∥ · ∥L2(PX ;Rk)-dense subspace of L2(X ,B(X ),PX ;Rk);

(ii) for (the unique) ψX,Z ∈ L2(PX ;Rk) such that E[Z♣X] = ψX,Z(X) (Doob-Dynkin) and the

modulus9 ϑ̂ψX,Z
(ε̃) := ϵ̃2

4

(

inf
{

∥h∥2
hk

∣

∣h ∈ hk :
∥

∥ψX,Z − h
∥

∥

2

L2(PX ;Rk)
≤ ε̃2/2

})−1
, we have that

sup
{

ρI
Z(λ) :=

∥

∥ψX,Z − Υ∗
Z,λ

∥

∥

L2(PX ;Rk)

∣

∣ 0 < λ ≤10 ϑ̂ψX,Z
(ϵ)
}

≤ ϵ, for all ϵ > 0 ;

(iii) for any δ > 0, there is an explicit monotone null sequence (β̃M ) ≡ (β̃M (δ, λ))M∈N ⊂ R+,
depending on (Ξ, λ, δ), such that for each M ∈ N we have

P
(

ρII
Z,λ(M) ≥ β̃M

)

≤ δ for ρII
Z,λ(M) :=

∥

∥Υ∗
Z,λ − Υ̂∗

Z,λ;M

∥

∥

L2(PX ;Rk)
.

9 We set ϑ̂ψX,Z
(ϵ̃) := ∞ if the defining infimum is zero. 10 If ϑ̂ψX,Z

(ϵ) = ∞, then the constraint ‘λ ≤ ϑ̂ψX,Z
(ϵ)’ is

to be dropped.
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Proof. The assertions concerning hk are derived entirely analogously to the corresponding properties
of (80), as demonstrated in the proof of Proposition 5.1. The uniqueness of (Υ̂Z,λ;M ) is established
analogously to the uniqueness of Υ∗

µ,λ,m in (86), while its data-based representation in (113) is

derived similarly to the Υ̂lex
N,λ,m-representation in (92). Statement (ii) is derived in the same manner

as Lemma 5.5 (iii), while the corollaryŠs statement (iii) holds, for example, for the sequence (β̃M ) :=
(

√
cΞ∥Z∥

L2(P;Rk)

λ
√
Mδ

)

, as established by the same reasoning as in the proof of Lemma 5.5 (v).

Similar to how the results of Section 5.2 informed the construction of the estimator (107), setting

R̂
II
λ,Z [M ] :=

k
∑

i=1





M
∑

j=1

α̂
(λ)
ij

〈

sig
Ξ

(X(j)), sig
Ξ

(·)
〉



ei : X → R
k (115)

yields an estimator of the regression function between Z and X. Through the data (112), this

estimator relies on a parameter λ > 0 and coefficients Â⋆ =
(

α̂
(λ)
ji

)

∈ R
M×k solving (114).

When applied to the vector Z := f(Y ), the function (115) is designed to yield an approximation

E[f(Y ) ♣X] ≈ R̂
II
λ,Z [M ](X), (116)

similar to (108), where this approximation is expected to improve with sufficiently large M and with
sufficiently small λ. The precise quality of the approximation (116), and the requisite parameter
choices for achieving this approximation within given error bounds, are established in Theorem 5.9
below, based on the threshold quantities deĄned in Corollary 5.8.

The results of Section 5 combine to the following estimators for the regression operator (118).

Algorithm II: Computing ψZ ∈ L2(PX ;Rk) such that ψZ(X) = E[Z ♣X] (Z ∈ L2(P;Rk)).

Goal: For a stochastic process X in R
d and a random vector Z in R

k, estimate a regression
function ψZ ∈ L2(PX ;Rk) such that ψZ(X) = E[Z ♣X].

1. Input: Samples w :=
{(

xi, (z
1
i , . . . , z

k
i )
) ∣

∣ i ∈ [M ]
}

of the association (X,Z).

Hyperparameters: tensor normalisation Ξ : H↓
d → Hd, regularity parameter λ > 0.

2. Compute the weights α̂λ ≡
(

α̂
(λ)
ij

)

∈ R
k×M by solving

(A⊤
wAw +MλAw)α̂λ = AwBw

for the data-dependent coefficient matrices

Aw :=


〈

sig
Ξ
(xi), sigΞ

(xj)
〉

)M

i,j=1
and Bw =

(

zji
)

(i,j)∈[M ]×[k]
.

3. Compute the function, using the weights α̂λ and the standard basis (ei) of Rk,

ψ̂Z :=

k
∑

i=1





M
∑

j=1

α̂
(λ)
ij ⟨sig

Ξ
(xj), sigΞ

(·)⟩



ei. (117)

4. Output: ψ̂Z (estimator of the regression function ψZ).

The fact that this estimator is a particular instance of DeĄnition 2.6 is emphasised in Remark B.8.
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5.5 Convex and Consistent Stochastic Process Regression

The main objective of this paper is to establish a universally consistent framework for the nonpara-
metric regression of stochastic processes. In Section 2.3, particularly through Proposition 2.4 and
DeĄnition 2.6, we have have identiĄed as our central target object for this the regression operator

cξ(µ) : L2(µY) −→ L2(ξ), f 7−→ µ ·(f), (118)

deĄned for any measure µ ∈ M1(X × Y) with X -marginal ξ := µX ∈ M1(X ). Recall from (20) and
(21) that if µ is the joint law of two stochastic processes X and Y as in (52), i.e., µ = P(X,Y ) and
thus ξ = PX , then (118) characterises the conditional statistical dependence of Y given X.

Assuming µ = P(X,Y ) entails no loss of generality (Remark 2.3), and the samples of µ then read:

Z ≡
{

(X(j), Y (j))
∣

∣ j ∈ [N ]
}

(N ∈ N) (119)

as speciĄed in (89) (cf. (10)), or they are of the form (112) if we are interested in dependencies
modelled by µ = P(X,Z) for a random covariate Z in R

k. To enable parallel learning of the argu-
ments f in (118), we may also wish to observe some marginal samples of µY , which appear as Y in
(89).

We then have the following result on the approximation quality of the structures (107) and (115).

Theorem 5.9. Consider the estimators R̂ν
θ : L2(PY ;Rk) → L2(PX ;Rk) (ν = I, II) given by

R̂
I
(λ,n,N,m)[f ] := R̂

I
λ,f [n,N,m] and R̂

II
(λ,M)[f ] := R̂

II
λ,f(Y )[M ], (120)

as deĄned in (107) and (115). Then for each f ∈ L2(PY ;Rk), any accuracy ε > 0 and any δ > 0,

sup
θ∈ Aν

f
(ε,δ)

P



∥

∥µ ·(f) − R̂
ν
θ [f ]

∥

∥

L2(PX;Rk)
≥ ε
)

≤ δ (121)

for both ν = I, II. In particular, for each ε > 0 and any given conĄdence level q ∈ [0, 1), we have

inf
θ∈ Θν

f
(ε,q)

P



∣

∣E
[

f(Y )
∣

∣X
]

− R̂
ν
θ [f ](X)

∣

∣ < ε
)

≥ q (122)

for both ν = I, II. The inequalities (121) hold for the parameter regimes

AI
f (ε, δ) :=

{(

(λ1, λ2), n,N,m
)

∈ R
2
>0 × N

3
∣

∣ λ1 ≤ λI
f (ε), n ≥ nf,λ1

(ε, δ), m ≥ mf,λ1
(ε;Y),

λ2 ≤ λII
λ1,m(ε;Y), N ≥ Nλ1,λ2,m(ε, δ;Y)

}

and AII
f (ε, δ) :=

{

(λ,M) ∈ R>0 × N
∣

∣ λ ≤ ϑ̂ψX,Z
(ε/2) and β̃M (δ, λ) ≤ ε/2

}

,

respectively, deĄned for any (β̃m) as in Cor. 5.8 (iii) and in the notation of (104), (105), (106).
The inequalities (122) hold for the parameter regimes

ΘI
f (ε, q) :=

⋃

(ε̃,δ̃)∈I(ε,q)

AI
f (ε̃, δ̃) and ΘII

f (ε, q) :=
⋃

(ε̃,δ̃)∈I(ε,q)

AII
f (ε̃, δ̃),

respectively, which are deĄned over I(ε, q) := ¶(ε̃, δ̃) ∈ R
2
>0 ♣ ε̃(1 − δ̃) + δ̃ε2 ≤ (1 − q)ε2♢.

Proof. The consistency guarantees (121) and (122) rely on a combination of the results from Sections
5.1 to 5.4. A detailed proof of Theorem 5.9 is provided in Appendix B.3.6.
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Remark 5.10 (Time-Discretized Non-iid Data). For simplicity, Theorem 5.9 is based on the stand-
ard assumption that the empirical data (119) and (112), from which the estimators (120) are com-
puted, are iid samples of the process pairs (X,Y ) and (X,Z), respectively. Yet in practice one
usually has access to time-discretized samples of these processes only, often taken over non-equally
spaced time grids, and oftentimes only statistically dependent (time-discretized) sample paths of
these pairs are available rather than many independent realisations. The above consistency the-
orem can be extended to hold under these non-standard assumptions, in line with the approaches
established in [49, Section 8]. A full elaboration of according modiĄcations is left for future research
in order to not exceed the scope of this paper.

6 Numerical Experiments

Numerical experiments and practical example applications will be included in the forthcoming arXiv
version of this paper.

Appendix A Notation

Below are some of the symbols and terminology that we use throughout the main paper.

Symbol Meaning Page

X ,Y factor spaces of the relation space X × Y, usually assumed to be Polish spaces. 4

B(Z) Borel σ-algebra of a given topological space Z. 5

M1(Z) := ¶υ : B(Z) → [0, 1] ♣ υ measure♢; cone of all Borel probability measures on Z. 5

cξ(µ) the conditional dependence of a measure µ ∈ M1(X × Y) wrt. the source law
ξ ∈ M1(X ); often identified with the regression operator (14), denoted by the
same symbol.

6

µ ·(f) : X ∋ x 7→
∫

Y
f dµx; (conditional) expectation of f ∈ L2(ξ) wrt. the ξ-

disintegration µ · = (µx)x∈X of a measure µ ∈ Mξ
1(X × Y).

6

δp : 2Z ∋ A 7→ ✶A(p) ∈ [0, 1]; the Dirac measure at a given point p ∈ Z. 6

Lp(υ;E) := ¶f : Z → E ♣ f is measurable,
∫

Z
∥f∥p

E
dυ < ∞♢, p ∈ [1,∞) ∪ ¶0♢. 7

✶A z 7→ ✶A(z) := ¶1 if z ∈ A; 0 else; indicator function over a set A. 8

Cd := ¶x : [0, 1] → R
d ♣ x is continuous♢; space of continuous paths in R

d, usually
endowed with the uniform norm ∥x∥∞ := supt∈[0,1] ♣xt♣ (unless otherwise stated).

10

C1
d the space of all absolutely continuous paths in R

d. 10

♣ · ♣ : Rn → R+, Euclidean norm on R
n; in partic., ♣ · ♣ is the absolute value on R = R

1. 10

α ∧ β := min¶α, β♢; the minimum of α, β ∈ R. 12

δa,b := ¶1 if a = b; 0 else; the Kronecker delta over two elements a, b. 12

[k] := ¶1, . . . , k♢, and [k]0 := [k] ∪ ¶0♢ (k ∈ N). 12

[d]⋆ :=
⋃

m≥0
[d]×m = ¶∅, 1, 2, . . . , 11, 12, 112, . . .♢; the set of all multi-indices with

entries in [d], where [d]0 := ¶∅♢ and i1 · · · im ≡ (i1, . . . , im).

13

sig the time-augmented signature transform. 14

Hd codomain of the signature on d-dimensional paths, see (42) for the definition. 15

R := R ∪ ¶−∞,∞♢; the affine closure of the real numbers. 14

sig
Λ
, sig

Ξ
bounded signature transforms, for feature normalisations Λ and Ξ. 16

Lp

X
(H) space of all p-integrable, H-valued X-measurable functions, see (57). 19

(ei)i∈[k] the standard basis of R
k (i.e.: ei = (δ1i, · · · , δki) ∈ R

k, for each i ∈ [k]). 21

supp(υ) the support of a measure υ ∈ M1(Z), i.e. the smallest closed subset C ⊆ Z with
υ(C) = 1 (see e.g. [23, Lemma 1.19]).

23

φ
∣

∣

Ã
the restriction of a map φ : A → B to a subdomain Ã ⊆ A. 24

⟨u, v⟩2 := u1v1 + . . . + udvd; the dot product of two vectors u = (ui), v = (vi) in R
d. 51
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wlog/wrt./s.t. “without loss of generality”/ “with respect to” / “such that”.

Notation A.1. Unless speciĄed otherwise, we assume that both X and Y are Polish spaces.
For a given topological space Z, we denote by B(Z) its Borel σ-algebra and by M1(Z) := ¶υ :
B(Z) → [0, 1] ♣ υ measure♢ the cone of all Borel probability measures on Z. Given a measure
υ ∈ M1(Z), we write supp(υ) for its support, that is the smallest closed subset C ⊆ Z with
υ(C) = 1 (e.g. [23, Lemma 1.19]). The Cartesian product X × Y is endowed with the product
topology (thus, B(X × Y) = B(X ) ⊗ B(Y)), the canonical coordinate projections X × Y → X
and X × Y → Y are denoted by π̂1 and π̂2 respectively, and for a given µ ∈ M1(X × Y) we
write µX := (π̂1)∗µ ≡ µ ◦ π̂−1

1 and µY := (π̂2)∗µ for its marginals. Given ξ ∈ M1(X ), we write

Mξ
1(X × Y) := ¶µ̃ ∈ M1(X × Y) ♣ µ̃X = ξ♢ for the set of all measures on X × Y with X -marginal ξ.

The law of some Z-valued (Borel) random variable Z over a probability space (Ω,F ,P) is denoted
by PZ := Z∗P ≡ P ◦ Z−1 ∈ M1(Z).
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Appendix B Further Proofs and Technical Remarks

B.1 Ad Section 2

B.1.1 Remarks on Product-Space Measures and Operator Parametrizations

Remark B.1. For each (Borel) probability measure µ ∈ M1(X ×Y) with X -marginal ξ ∈ M1(X ),
there is a canonical pair (X,Y ) of jointly distributed (Borel) rvs X : Ω → X and Y : Ω → Y such
that µ = P(X,Y ) and ξ = PX . Conversely, for any pair (X̃, Ỹ ) : Ω → X × Y of (jointly distributed
Borel) random variables, their law P(X̃,Ỹ ) is a Borel probability measure with X -marginal PX̃ .

Proof. This is trivial: Given µ ∈ Mξ
1(X × Y), set (Ω̃, F̃ , P̃) := (X × Y,B(X × Y), cξ(µ) ⊗ ξ), which

deĄnes a probability space, and consider the canonical projections X := π̂1 and Y := π̂2 (thus,
Z := (X,Y ) = idX × idY). (Recall that π̂1 : Ω̃ ∋ (x, y) 7→ x ∈ X and π̂2 : Ω̃ ∋ (x, y) 7→ y ∈ X .)
Then X : Ω̃ → X and Y : Ω̃ → Y are (Borel) random variables with PX = ξ and joint law
PZ = P = µ. The converse statement is immediate from the deĄnitions.

Remark B.2 (Injective Parametrization (17) over a Hilbert Space). Recognizing the importance
of the injectivity of the parametrization in (semi-)parametric statistical models for the uniqueness,
identiĄability, and analytical tractability of a model, let us remark that the parametrization (17) of
the conditional dependency cξ(µ) is ŚinjectiveŠ in the following basic sense: Denoting by (Hκ, ∥·∥κ) ⊂
L2(µY) the (q-induced) RKHS with kernel κ : (x, y) 7→ ⟨q(x), q(y)⟩, there is a ŚparameterŠ Hilbert
space H̃q (that is conveniently explicit and regular for the maps q introduced in Sect. 3.3) such that

cξ(µ) : Hκ
L2

−→ L2(ξ) reads cξ(µ)♣Hκ
= ψq ◦ ι (123)
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for an isometric isomorphism ι : Hκ → H̃q and some q-deĄned bounded linear operator ψq : H̃q →
L2(ξ), the Śq-parametrisationŠ of cξ(µ), where both ι and ψq are canonically related to q.

Indeed: Take any f ∈ Hκ, whence f = ⟨ℓf , q(·)⟩ for some ℓf ∈ HY . Writing [ℓf ] :=
{

ℓ ∈ HY
∣

∣ f =

⟨ℓ, q(·)⟩
}

, note that [ℓf ] = ¶ℓ ∈ HY ♣ ℓ ∼ ℓf♢ = ℓf + F under the equivalence relation: ℓ ∼ ℓ̃ :⇐⇒
⟨ℓ, q⟩ = ⟨ℓ̃, q⟩ ⇐⇒ (ℓ− ℓ̃) ∈ F := ¶ℓ̂ ∈ HY ♣ ⟨ℓ̂, q(·)⟩ = 0♢ = ker(φ), for the bounded linear surjection

φ : HY ↠ Hκ, ℓ̂ 7→ ⟨ℓ̂, q(·)⟩. Consequently, ι :
(

Hκ, ∥ · ∥κ
)

∋ f 7→ [ℓf ] ∈ H̃q := (HY/F, ♣♣♣·♣♣♣), with

♣♣♣[ℓ]♣♣♣ := inf¶∥ℓ̃∥HY
♣ ℓ̃ ∈ [ℓ]♢ the canonical quotient space norm, is a (norm)isometric isomorphism

of Hilbert spaces: injectivity is clear, while the deĄnition of the RKHS-norm ∥ · ∥κ yields norm-
preservation, which in turn (shows that ♣♣♣·♣♣♣ preserves the parallelogram identity and hence) reveals
♣♣♣·♣♣♣ as an inner product norm; that the quotient H̃ is complete follows since F (= ker(φ)) is closed in
HY . Now the (linear, and bounded due to (16)) evaluation map ψq : H̃q ∋ [ℓf ] 7→ ⟨ℓf , q(·)⟩ ∈ L2(ξ)
is well-deĄned since clearly ψq(ℓf ) = ψq(ℓ) for each ℓ ∈ [ℓf ], and so the asserted composition (123)
holds with Proposition 2.4 (17) and said propositionŠs Ąnal statement.

B.1.2 Proof of Proposition 2.4

Proof. First, it is clear that each measure µx ∈ M1(Y) can be identiĄed with the linear functional
µx : L2(µY) ∋ f 7→

∫

Y f dµx ∈ R (trivially, since ¶✶A ♣ A ∈ B(Y)♢ ⊂ L2(µY)). That the functions

µ ·(f) : X ∋ x 7→ µx(f) are in L2(ξ), for each f ∈ L2(µY), follows from JensenŠs inequality:

∥

∥µ ·(f)
∥

∥

2

L2(ξ)
≤
∫

X

∫

Y

∣

∣f(y)
∣

∣

2
µx(dy)ξ(dx) =

∫

X ×Y

∣

∣f(y)
∣

∣

2
d(cξ(µ) ⊗ ξ) =

∥

∥f
∥

∥

2

L2(µY )
.

The above also shows that the operator (14) =: T [cξ(µ)] is well-deĄned and bounded. To prove
identiĄcation, note Ąrst that, since L2(µY) is separable (e.g. [14, Prop. 3.4.5]; recall that Y is Polish),

there is a dense set D := ¶gj ♣ j ∈ J♢ ⊂ L2(µY) with J countable. Now take any µ, µ̃ ∈ Mξ
1(X × Y)

with T [cξ(µ)] = T [cξ(µ̃)] (thus L2(µY) = L2(µ̃Y) in particular). Then for each j ∈ J , we have that
µ ·(gj) = µ̃ ·(gj) in L2(ξ) and, thus, µx(gj) = µ̃x(gj) for each x ∈ X \ Nj with Nj some ξ-nullset.
In particular, for each x ∈ X \ N with N :=

⋃

j∈J Nj , we have µx♣D = µ̃x♣D and hence µx = µ̃x
(since D ⊂ L2(µY) is dense and each M1(Y) ∋ υ : L2(µY) ∋ f 7→

∫

Y f dυ ∈ R is bounded). Hence,

as desired, cξ(µ) = cξ(µ̃) in L2(ξ), since ξ(N ) = 0 (as J is countable).

For the remaining identiĄcation of (14) with the function (16), take any µ, µ̃ ∈ Mξ
1(X ×Y) with

µ ·(q) = µ̃ ·(q) in L2(ξ; HY) (i.e. such that µx(q) = µ̃x(q) for each x ∈ X \ N̂ for some ξ-nullset N̂ ).
Then for each f ∈ Hq := ¶⟨ℓ, q(·)⟩ ♣ ℓ ∈ HY♢, say f = ⟨ℓf , q(·)⟩, we have the L2(ξ)-identities

cξ(µ)(f) = µ ·
(

⟨ℓf , q(·)⟩
)

= ⟨ℓf , µ ·(q)⟩ = ⟨ℓf , µ̃ ·(q)⟩ = cξ(µ̃)(f), i.e.: cξ(µ)♣
Hq

= cξ(µ̃)♣
Hq

(124)

(where the second and the fourth identity holds since Bochner integrals commute with bounded
functionals; e.g. [58, Sec. 1.3.1]). But since Hq is dense in L2(µY) and the operator (14) is bounded,
(124) implies that cξ(µ) = cξ(µ̃) (as operators (14) and thus, via the lemmaŠs initial identiĄcation,
also in the original kernel sense (9)) by uniqueness of extension.

Statement (17) is clear from the second equality in (124) and the assumption L2(µY) = Hq
L2

.

B.1.3 Proof of Lemma 2.9

Proof. Abbreviating the domain and range of (25) by H1 and H2 respectively, note that both
ι1 : L2(µY) ∋ f 7→ f ◦ π̂2 ∈ H1 and ι2 : L2(ξ) ∋ g 7→ g ◦ π̂1 ∈ H2 are well-deĄned Hilbert
isometries and onto. Indeed: Well-deĄnedness is clear since µY = (π̂2)∗µ and ξ = (π̂1)∗µ, and
isometry holds since ⟨ι1(f), ι1(g)⟩H1

=
∫

X ×Y(fg) ◦ π̂2 dµ =
∫

Y fg d[(π̂2)∗µ] = ⟨f, g⟩L2(µY ) (and

likewise for ι1); the surjectivity of ι2 (and likewise that of ι2) is seen as follows: if f̃ : X × Y → R
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is Borel-measurable wrt. X × B(Y) ≡ ¶X × A ♣ A ∈ B(Y)♢, then f̃ is constant wrt. its Ąrst
variable (otherwise, i.e. if f̃(x1, y) ̸= f̃(x2, y) for a y ∈ Y and some x1, x2 ∈ X with x1 ̸= x2, then:
A(x1,y) := f̃−1(¶f̃(x1, y)♢) ∩ (X ∩ ¶y♢) ∈ X × B(Y) (by measurability of f̃ and since all singletons
in Y are (closed and thus) in B(Y)) and π̂1(A(x1,y)) /∈ ¶∅,X ♢ Ů a contradiction), that is: there is

f : Y → R such that f̃(x, y) = f(y) for each (x, y) ∈ X × Y, which is equivalent to f̃ = f ◦ π̂2.
We now claim that the operator cξ(µ) from (14) relates to the operator (25) via

cξ(µ) = ι−1
2 ◦ PY♣X ◦ ι1. (125)

To verify this, we abbreviate T̃ := ι2 ◦ cξ(µ) ◦ ι−1
1 and need to show that, for any f̃ ∈ H1,

f̃ − T̃ f̃ ∈ H⊺

2 , i.e.
〈

f̃ − T̃ f̃, g̃
〉

L2(µ)
= 0 for each g̃ ∈ H2. (126)

(Note here that the PY♣X -deĄning projector P is well-deĄned since the orthogonal decomposition
L2(µ) = H2 ⊕H⊺

2 exists by the fact (consequent to every L2-convergent subsequence admitting an
µ-a.e. convergent subsequence) that H2 is a closed subspace of L2(µ).) Proving (126), note that
∫

X ×Y
✶Ã∆f̃ dµ =

∫

A×Y
f̃ dµ−

∫

A

µx(f) ξ(dx) =

∫

A×Y
f̃ dµ−

∫

X

∫

Y
f(y)✶Ã(x, y)µx(dy) ξ(dx)

(7)
=

∫

A×Y
f̃ dµ−

∫

X ×Y
f̃(x, y)✶Ã(x, y) (µY♣X ⊗ ξ)(d(x, y))

(8)
= 0

(

f := ι−1
1 (f̃)

)

for each Ã ≡ (A× Y) ∈ B(X ) × Y and with ∆f̃ := f̃ − T̃ f̃ . This proves (126) and, hence, (125).

B.2 Ad Section 3

B.2.1 Remarks on Stochastic Processes and Weighted Signature-Codomains

Remark B.3 (On Stochastic Processes). Writing PX := P ◦ X−1 and X(ω) ≡ (Xt(ω))t∈[0,1] for
each ω ∈ Ω, let us note the following general facts on stochastic processes S as in (32).

(i) The rv X is
(

F ,B(∥ · ∥1-var)
)

-measurable by def. Now B(∥ · ∥1-var) = B(∥ · ∥∞) by Lemma
3.2, where B(∥ · ∥∞) = σ(πt ♣ t ∈ [0, 1]) =: B(C1

dX
) = B(CdX

) ∩ C1
dX

is the Borel σ-algebra on

(C1
d , ∥ · ∥∞). (Here, πt : (xt)t∈[0,1] 7→ xt is the t-projection from CdX

onto R
dX .) Consequently,

PX ∈ M1

(

C1
dX
, ∥ ·∥∞

)

and Xt : Ω ∋ ω 7→ Xt(ω) ∈ R
dX is

(

F ,B(RdX )
)

-measurable

for each t ∈ [0, 1]. Hence, we can equivalently deĄne the stochastic process X : Ω → X as an
[0, 1]-indexed family (Xt)t∈[0,1] of (Borel) random vectors Xt : Ω → R

dX such that t 7→ Xt(ω)
is continuous for each ω ∈ Ω, see e.g. [46, Section II.27].

(ii) In stricter terminology, a stochastic process X ≡ (Xt(ω)) : [0, 1] × Ω → R
d deĄned as a

(F ,B(C1
dX

)-measurable map X : Ω → CdX
, as we did above, is called jointly measurable.

If (Ω,F ,P) is Ąltered then it can carry stronger measurability notions (such as progressive
measurability or predictability, see e.g. [60, Proposition 2.23]), but for our purposes the weak
notion of joint measurability will suffice, cf. also Lemma 3.5.

(iii) It will be no loss of generality for us to assume (if convenient) that in fact

X : Ω → DX , where DX := supp(PX)

is the support of X. Indeed: By its deĄnition, the support DX is the smallest closed subset
C ⊆ X for which PX(C) = 1, see e.g. [23, Lemma 1.19]. Hence Ω̃ := X−1(DX) ∈ F is a
P-full set, which implies that X and its DX -valued twins X̃ := ✶Ω̃ ·X + ✶Ω\Ω̃ · x0 : Ω → DX

(any x0 ∈ DX Ąxed, say x0 = 0 for convenience) are indistinguishable.

40



(iv) We further assume that the X-induced sub-σ-algebra ΣX := σ(X) ⊆ F is P-complete. Recall
that this assumption entails no loss of generality: If (Ω,ΣX ,P) is not complete, we can
immediately and ŚminimallyŠ complete it as follows. Writing N P := ¶N ⊆ Ω ♣ ∃A ∈ F : N ⊆
A and P(A) = 0♢ for the system of all subsets of P-nullsets [in F ], deĄne ΣP

X := ¶A ∪ N ♣
A ∈ ΣX , N ∈ N P♢ and F P := ¶A ∪ N ♣ A ∈ F , N ∈ N P♢ and P̄ : F P → [0, 1] by
P̄(A ∪N) := P(A) for all A,∈ F , N ∈ N P. Then ΣP

X ⊆ F P, both (Ω,ΣP

X , P̄) and (Ω,F P, P̄)
are complete probability spaces, and each complete extension µ of P is an extension of P̄, e.g.
[17, Satz 6.3]. All our objects of interest stay the same when passing to this completion, that is
(trivially) E[Y ♣ ΣX ] = E[Y ♣ ΣP

X ] P̄-a.s. and Lp(Ω,ΣX ,P; H) ∼= Lp(Ω,ΣP

X , P̄; H) (canonically).

Remark B.4 (Alternative Hilbert Codomains). Let γ ≡ (γm)m≥0 > 0 with 0 < γm ≤ λm (all
m ∈ N) for some λ > 0. Given the gradation (40) of V together with the ŚEuclidean identiĄcationŠ
of its components Vm ∼= (V ⊗m

1 , ⟨·, ·⟩m) seen above [right after (34)], with V1
∼= (Rd, ⟨·, ·⟩2) and

⟨·, ·⟩m ≡ ∏[m]⟨·, ·⟩2 and ∥ · ∥m =
√

⟨·, ·⟩2
m, another natural Hilbert space structure on V is given by

Hγ
d :=

{

t ∈ V
∣

∣

∣
∥t∥γ :=

√

∑

m≥0 γm∥πm(t)∥2
m < ∞

}

(127)

together with the inner product ⟨s, t⟩γ :=
∑

m≥0 γm⟨πm(s), πm(t)⟩m. It is clear that (Hγ
d , ⟨·, ·⟩) is a

Hilbert space (as the ℓ2-direct sum of the Hilbert spaces (Vm, γm⟨·, ·⟩m), m ≥ 0), see e.g. [15, Prop.
I.6.2]), and we denote its topology by τγ . Clearly τγ̃ ⊆ τγ if γ̃ ≤ γ, as then ∥ · ∥γ̃ ≤ ∥ · ∥γ .

B.2.2 Proof of Lemma 3.2

Proof. The Ąrst assertion holds by [18, Propositions 1.31 & 1.32]. In fact, [18, Prop. 1.31] asserts
that for X := R

d × L1([0, 1];Rd) and Y := Cd, the map f : X → Y given by f(c, v) := c+
∫ ·

0
vs ds is

a Banach space isomorphism (which also proves the norm identity ∥x∥1-var = ♣x0♣ + ∥ẋ∥L1 on C1
d).

From this, [25, Theorem 15.1] implies that the image f(X) = C1 is a Borel subset of (C1, ∥ · ∥∞),
i.e. that C1 ∈ B(Cd). That (C1, ∥ · ∥-var) is separable and Banach is stated as [18, Corollary 1.35].

For the lemmaŠs second assertion, note Ąrst that since ♣♣ · ♣♣1-var ≥ ∥·∥∞ (which is easy to see), we
Ąnd that the 1-variation topology on C1 is Ąner than the uniform topology on C1, which of course
implies that B1-var := σ(C1, ♣♣ · ♣♣1-var) ⊇ σ(C1, ∥ · ∥∞) =: B∞. Since the separability of (C1, ♣♣ · ♣♣1-var)
guarantees that the σ-algebra B1-var is generated by the closed ♣♣ · ♣♣1-var-balls, the converse inclusion
B1-var ⊆ B∞ follows if we can show that

B1
r (x) := ¶y ∈ C1 ♣ ♣♣y − x♣♣1-var ≤ r♢ ∈ B∞ for every x ∈ C1 and any r ≥ 0. (128)

To see that this holds, Ąx any x ∈ C1 and r ≥ 0 and recall that, by deĄnition of the 1-variation
norm,

♣♣z♣♣1-var = sup
I∈I

VI(z) with V(tν )(z) := ♣z0♣ +
∑

ν

∣

∣ztν+1 − ztν
∣

∣

and where I := ¶I = (tν) ♣ I is a (Ąnite) dissection of [0, 1]♢. Given any I ∈ I it is clear that the
function QI : C1 ∋ y 7→ VI(y − x) is continuous wrt. ∥ · ∥∞, whence the level set CI := ¶y ∈ C1 ♣
QI(y) ≤ r♢ is ∥ · ∥∞-closed. Combined with this, the immediate identity

B1
r (x) =

⋂

I∈I
CI implies that B1

r (x) is closed wrt. ∥ · ∥∞ ,

which shows that (128) holds as desired.

B.2.3 Proof of Lemma 3.4

Proof. Note that since both (X , ∥ · ∥1-var) and (Y, ∥ · ∥1-var) are Polish by Lemma 3.2, so is the
product space (X × Y, ∥ · ∥α) with ∥(x, y)∥α := max¶∥x∥1-var, ∥y∥1-var♢, as the norm ∥ · ∥α induces
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the product topology on (X , ∥ · ∥1-var) × (Y, ∥ · ∥1-var). This implies that Z itself is Polish, since the
norms ∥ · ∥α and ∥ · ∥1-var are equivalent on X × Y. The latter equivalence of norms also gives that

B(Z, ∥ · ∥1-var) = B(Z, ∥ · ∥α), (129)

and since further B(Z, ∥ · ∥α) = B(X , ∥ · ∥∞) ⊗ B(Y, ∥ · ∥∞) = B(Z, ∥ · ∥β) for the norm ∥z∥β :=
max¶∥πX (z)∥∞, ∥πY(z)∥∞♢ by Lemma 3.2 (recalling that: (a) the Borel σ-algebra of the product
of two (second countable) topological spaces equals the product of their Borel σ-algebras, and (b)
the norm ∥ · ∥β induces the product topology on (X , ∥ · ∥∞) × (Y, ∥ · ∥∞)) and with the norms ∥ · ∥∞
and ∥ · ∥β being equivalent on X × Y, we Ąnd that B(Z, ∥ · ∥1-var) = B(Z, ∥ · ∥∞) as desired.

The claimed characterisation of measurability holds by (129) (upon recalling that B(Z, ∥ · ∥α) =
B(X , ∥ · ∥1-var) ⊗ B(Y, ∥ · ∥1-var)) and the fact that a product-space-valued function (here: (X,Y ))
is product-measurable iff all of its factor components (here: X and Y ) are measurable.

B.2.4 Proof of Lemma 3.12

Proof. Each of the spaces (Vm, ⟨·, ·⟩m) from (40) is Hilbert and separable (with ONB [d]∗m := ¶w ∈
[d]∗ ♣ ♣w♣ = m♢). Thus the space H is Hilbert and separable Ů with ONB [d]∗ Ů as the Hilbert
direct sum of the family ¶(Vm, ⟨·, ·⟩m) ♣ m ∈ N0♢, see e.g. [15, Proposition I.6.2]. The inclusion
sig(C1

d) ⊂ H follows from the factorial decay of the signature coefficients, cf. [11, Corollary 5.5].
The last assertion follows from the usual p-variation continuity of sig, see e.g. [11, Corollary 5.5],

and the fact that the locally convex topology from [11, Section 2] (deĄned by the (fundamental)
family of semi-norms Ψ := (♣♣♣·♣♣♣λ ♣ λ > 0) on V , where ♣♣♣t♣♣♣λ :=

∑

m≥0 ∥πm(t)∥m · λm; denote the
associated locally m-convex topology by τlc) is Ąner than the [canonical, i.e. ∥ · ∥-induced] topology
on H (denote this topology by τH). To prove the asserted inclusion of topologies: Since τlc is
metrizable, see e.g. [11, Corollary 2.4], the topological space (V, τlc) is sequential, whence τH ⊆ τlc

iff every τlc-convergent sequence in V is τH convergent. This clearly holds, however, since for every
null-sequence (vk) in (V, τlc) there is k0 ∈ N with supk≥k0

♣♣♣vk♣♣♣λ < 1 (for some λ > 1), whence for
k ≥ k0 we Ąnd that ∥vk∥2 =

∑

m≥0∥πm(vk)∥2
m ≤ ♣♣♣vk♣♣♣λ goes to zero as k → ∞.

B.2.5 Proof for Remark 3.16

Claim: On H↓
d, the locally convex topology τ↓ is Ąner than the (127)-induced subspace topology τγ .

Proof. Since τ↓ is metrizable (Lemma 3.15), the space (H↓
d, τ↓) is sequential, whence τγ ⊆ τ↓ (iff

idH↓
d

: (H↓
d, τ↓) → (H↓

d, τγ), v 7→ v, is continuous) iff every τ↓-convergent sequence in H↓
d is τγ-

convergent. This clearly holds, however, since for every null-sequence (vk) in (H↓
d, τ↓) there is

k0 ∈ N with supk≥k0
♣♣♣vk♣♣♣λ < 1 and hence, for each k ≥ k0,

∥vk∥2
γ =

∑

m≥0 γm∥πm(vk)∥2
m ≤ ♣♣♣vk♣♣♣λ −→ 0 as k → ∞.

As one consequence of the inclusion τγ ⊆ τ↓, statement (45) also holds for H↓
d replaced by Hγ

d .

B.2.6 Proof of Lemma 3.17

Proof. Since the augmentation map ῑ = (θ, idX ) : C1
d → C1

d from (38), with θ(x) := (t)t∈[0,1], is

(∥ · ∥p-var, ∥ · ∥p-var)-continuous, the continuity (47) follows immediately from (45) and assertion
(46).

Let us now prove (46). Recall for this that Λ(t) =
∑

m≥0 λ
m
t πm(t) by deĄnition, and that, since

(H↓
d, τ↓) is Ąrst-countable by Lemma 3.15, the map Λ is continuous if it is sequentially continuous.
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Let hence t, (tk) ⊂ H↓
d with limk→∞ tk = t in τ↓, i.e. limk→∞ ♣♣♣tk − t♣♣♣λ̃ = 0 for all λ̃ > 0. Then

∥Λ(tk) − Λ(t)∥2 ≤ 2
∑

m≥0

(

∥λmtk
πm(tk) − λmtk

πm(t)∥2
m + ∥λmtk

πm(t) − λmt πm(t)∥2
m

)

. (130)

With λ· : t 7→ λt τ↓-continuous, we have limk→∞ ♣λtk
− λt♣ = 0 and thus c := max¶supk λtk

, λt♢ <
∞. As noted above, limk→∞ ♣♣♣tk − t♣♣♣c = 0 and ♣♣♣t♣♣♣c < ∞. The summands αm,k := ∥λmtk

πm(tk −
t)∥2

m and βm,k := ∥(λmtk
− λmt )πm(t)∥2

m on the right-hand side of (130) compare to

αm,k ≤ am,k := cm∥πm(qk − q)∥m and βm,k ≤ bm := 4cm∥πm(q)∥m, (131)

for all k ∈ N and each m ≥ m0, for some sufficiently large m0 ∈ N0. Hence and from (130) we Ąnd

lim
k→∞

∥Λ(tk) − Λ(t)∥2 ≤ 2 lim
k→∞

♣♣♣tk − t♣♣♣c +
∑

m≥0

lim
k→∞

βm,k = 0 , (132)

where interchanging limit and summation for the second summand in (132) is permissible by dom-
inated convergence, which in turn is applicable thanks to the (βm,k)-domination in (131) and the
fact that

∑

m≥0 ♣bm♣ = 4♣♣♣q♣♣♣c < ∞. This proves (46), as desired.

B.2.7 Definition of the Strict Topology and Detailed Proof of Proposition 3.19

Let Z := (C1
d , ∥ · ∥1-var), write Cb(Z) for the set of all bounded continuous functions on Z, and set

B0(Z) := ¶ψ : Z → R bounded ♣ ∀ ε > 0 : ∃ K ⊂ Z compact : supx∈Z\K ♣ψ(x)♣ < ε♢

for the set of all bounded functions on Z that vanish at inĄnity.

Definition B.5 (Strict Topology [19]). The strict topology on Cb(Z), denoted by τZ
str, is the topo-

logy induced by the family of seminorms

pψ(f) := sup
x∈Z

∣

∣f(x)ψ(x)
∣

∣, ψ ∈ B0(Z).

Note that the strict topology is weaker than the uniform topology on Cb(Z) but stronger than
the topology of compact (and thus also pointwise) convergence on Cb(Z), see [19, Theorem 2.4 (i)].

Proof of Proposition 3.19. Let us Ąrst note that, indeed,

∑

w∈[d]∗
ξΛ

w
· w = Λ ◦ sig. (133)

Indeed, πm(sig
Λ
(x)) = λmx

∑

♣w♣=m ξw(x̄) = λmsig(x)

[(
∑

♣w♣=m ξw
)

◦ ῑ
]

(x) = λmsig(x)

[

πm ◦ sig
]

(x) =

πm
(

λmsig(x) · πm(sig(x))
)

= πm
(

δλsig(x)
(sig(x))

)

= πm
(

(Λ ◦ sig)(x)
)

for each (x,m) ∈ Z × N0.

To see AΛ ⊂ C(Z), note [from (50)] that since each function φ ∈ AΛ can be represented as

φ = ⟨ℓφ, sigΛ
⟩ for some ℓφ ∈ R[d],

the desired ∥ · ∥1-var-continuity of φ follows from (133) and statement (47) of Lemma 3.17.
Since for 1 = 1 · ∅ ∈ R[d] we have ξΛ

∅ = ⟨1, sig
Λ

⟩ = λ0
1

· ⟨∅, sig⟩ ≡ 1 on Z, clearly AΛ is
non-vanishing. For AΛ being point-separating, note that for any x, y ∈ Z with x ̸= y we have
sig(x) ̸= sig(y) by Lemma 39, and hence also sig

Λ
(x) ̸= sig

Λ
(y) by (133) and the injectivity

of Λ. This implies that there is w0 ∈ [d]∗ such that ⟨w0, sigΛ
(x)⟩ ≠ ⟨w0, sigΛ

(y)⟩, whence for

φ := ξΛ

w0
∈ AΛ we Ąnd φ(x) ̸= φ(y).
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To prove that AΛ is an algebra, we need to show φ ·ψ ∈ AΛ for any two φ,ψ ∈ AΛ. And indeed,

φ · ψ =
∑

w,w̃∈[d]∗

⟨ℓφ, w⟩⟨ℓψ, w̃⟩λ♣w♣
· λ♣w̃♣

· ⟨w, sig⟩⟨w̃, sig⟩ (134)

=
∑

w,w̃∈[d]∗

λ♣w♣+♣w̃♣
· ⟨ℓφ, w⟩⟨ℓψ, w̃⟩⟨w w̃, sig⟩ (135)

=
∑

m≥0

λm·
∑

w,w̃ : ♣w w̃♣=m
⟨ℓφ, w⟩⟨ℓψ, w̃⟩⟨w w̃, sig⟩ (136)

=
∑

m≥0

λm· ⟨πm(ℓφψ), sig⟩ (137)

= ⟨ℓφψ, Λ ◦ sig⟩ , for ℓφψ :=
∑

w,w̃∈[d]∗
⟨ℓφ, w⟩⟨ℓψ, w̃⟩ · w w̃. (138)

Since both ℓφ, ℓψ ∈ R[d] (and thus ⟨ℓφ, w⟩ = 0 and ⟨ℓψ, w⟩ = 0 for almost all w ∈ [d]∗), we get that
also ℓφψ ∈ R[d] and hence φ · ψ ∈ AΛ as desired. A few remarks on this are in order:

While (134) holds simply by linearity of (41), equation (135) involved the character identity

⟨ℓ1, sig⟩ · ⟨ℓ2, sig⟩ = ⟨ℓ1 ℓ2, sig⟩, for any ℓ1, ℓ2 ∈ R[d]

(see e.g. [36, proof of Thm. 2.15]), where : R[d]×2 → R[d] is the so-called shuffle product, deĄned
e.g. in [36, eq. (2.5) (p. 35)]. Denoting by ♣ℓ♣ := max¶♣w♣ ♣ w ∈ [d]∗ : w ∈ ℓ♢ the maximal length
of any word contained (as a summand) in a given polynomial ℓ ∈ R[d], it holds that ♣ℓ1 ℓ2♣ =
♣ℓ1♣ + ♣ℓ2♣. This justiĄes equation (136), where we also used that [d]∗ × [d]∗ =

⊔

m≥0¶(w, w̃) ∈
[d]∗ × [d]∗ ♣ ♣w w̃♣ = m♢ deĄnes a (disjoint) partition. For equation (137) we used that πm(ℓφψ) =
∑

♣w w̃♣=m⟨ℓφ, w⟩⟨ℓψ, w̃⟩w w̃, and the concluding identity (138) follows from ⟨ℓφψ, Λ ◦ sig⟩ =
∑

m≥0 λ
m
· ⟨ℓφψ, πm(sig)⟩ upon noting that ⟨ℓφψ, πm(sig)⟩ = ⟨πm(ℓφψ), πm(sig)⟩ = ⟨πm(ℓφψ), sig⟩ for

each m ≥ 0 (which is a trivial consequence of the deĄnition (41) of ⟨·, ·⟩).
We thus saw that AΛ is a subalgebra of C(Z). Now if Λ is in fact an fN of the form (48), then

∥φ∥∞ := sup
x∈Z

∣

∣⟨ℓφ, sigΛ
(x)⟩

∣

∣ ≤ ∥ℓφ∥ sup ∥Λ(sig(Z))∥ ≤ ∥ℓφ∥R < ∞

by Cauchy-Schwarz, which shows that in this case even AΛ ⊂ Cb(Z) as claimed.
The asserted denseness of AΛ in (Cb(Z), τZ

str) is then guaranteed by [19, Theorem 3.1], which
generalises the theorem of Stone-Weierstrass to the τZ

str-modulated non-compact setting.
If Ąnally we are in the (unnormalised) special case Λ = idH↓

, that is if λ· ≡ 1, then the above
arguments show that A := AidH↓

is a subalgebra of C(Z), while the bounds (44) yield that, for

each φ ∈ A,

∥φ∥∞;Z =
∥

∥⟨ℓφ, sig⟩
∥

∥

∞;Z ≤ ∥ℓφ∥ supx∈Z ∥sig(x)∥ ≤ ∥ℓφ∥ sup
x∈Z

∑

m≥0

∥x̄∥m1-var

m!
≤ ∥ℓφ∥eκZ +1 < ∞

if κZ := supx∈Z ∥x∥1-var is assumed Ąnite, and then A ⊂ Cb(Z) as desired.

The following corollary is an immediate consequence of Proposition 3.19.

Corollary B.6. Given d ∈ N, let Z be a subset of C1
d. Then for each f ∈ Cb(Z) we have

f = lim
k→∞

〈

ℓ̃k, Λ ◦ sig
〉

in τX
str, for some (ℓ̃k) ⊂ R[d].
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B.2.8 Proof of Lemma 4.3

Proof. Let us abbreviate φ := sig
Ξ

and ϕw := ξΛ

w
(X) for each w ∈ [d]∗. We Ąrst prove that

σ(X) = σ(φ(X)): The inclusion σ(φ(X)) ⊆ σ(X) is immediate since φ : X → Hd is continuous
(and hence Borel-measurable), see Lemma 3.17. For the converse, note that since φ is also an
injection, we have that Aφ := φ(A) ∈ B(Hd) ∩φ(X ) for any Ąxed ∥ · ∥1-var-open set A ⊆ X . Indeed,
the set Aφ is analytic (as the continuous image of a Borel subset of a Polish space) and so is its
complement Acφ ≡ φ(X ) \ Aφ = φ(Ac), where the last identity holds since φ is injective; this
implies that Aφ ∈ B(Hd∩φ(X )) by a theorem of Souslin [28, Corollary 3.1 (p. 486)]. Consequently,
X−1(A) = (φ(X))−1(Aφ) ∈ σ(φ(X)) and hence σ(X) ⊆ σ(φ(X)), as desired. Let us next prove
the second identity in (56).

The inclusion σ(ϕw ♣ w ∈ [d]∗) ⊆ σ(φ(X)) is immediate since ϕw = ⟨w,φ(X)⟩ for each w ∈ [d]∗

(cf. (41)) and each ⟨w, ·⟩ : Hd → R is continuous. The converse inclusion holds as, pointwise on Ω,

∥φ(X) − ψn∥ ≤
∞
∑

m=n+1

∥πm(φ(X))∥m m→∞−→ 0, for ψn :=
∑

♣w♣≤n ϕw · w

(cf. (50) and (47)), i.e. φ(X) is the pointwise limit of σ(ϕw♣w)-measurable functions and thus
σ(ϕw♣w)-measurable itself.

B.2.9 Proof of Theorem 4.8

Proof. We begin with the well-known observation that the space L2
X(HY) from (57) is a closed

linear subspace of
(

L2(P; HY), ∥ · ∥L2(HY )

)

, which entails the ⟨·, ·⟩L2(HY )-orthogonal decomposition

L2(P; HY) = L2
X(HY) ⊕ L2

X(HY)⊥.

(The closedness of L2
X(HY) follows from the well-known fact (which persists for Hilbert-valued

random variables [58, Proposition 2.11]) that L2-convergence implies almost sure convergence on
a subsequence.) Denoting E := L2(P; HY) and G := L2

X(HY) for brevity, we then adopt (from
the scalar-valued setting, e.g. [58, Section 11.1]) the classical perspective that the (vector-valued)
conditional expectation ❨Λ

X := E
[

❨
Λ
∣

∣X
]

∈ G is the orthogonal projection of ❨Λ onto G along G⊥,
in symbols:

❨
Λ
X = PG❨

Λ for the orthogonal projector PG : E → E on G (= im(PG)). (139)

To see that this perspective (139) is true in the present vector-valued setting (54) & (55), denote
❨G := PG❨

Λ and notice that then ∆ := ❨
Λ −❨G ∈ G⊥, that is ⟨∆, χ⟩L2(HY ) = 0 for all χ ∈ G. In

particular,

0 = ⟨∆, w✶A⟩L2(HY ) = ⟨∆✶A, w⟩L2(HY ) = ⟨
∫

A

❨
Λ dP, w⟩ − ⟨

∫

A

❨G dP, w⟩
(

A ∈ ΣX , w ∈ [d̃]∗
)

,

where the last identity is due to Bochner integrals commuting with bounded linear functionals, cf.
[58, Sec. 1.3.1]; note that each element of E is Bochner-integrable by deĄnition (54) and [58, Prop.
1.16]. Since [d̃]∗ is an orthonormal basis of HY , the above implies that:

∫

A
❨

Λ dP =
∫

A
❨G dP, for all

A ∈ ΣX . But the latter property is characteristic also of the vector-valued conditional expectation
E[❨Λ ♣ ΣX ], see e.g. [58, Theorem 11.10], which implies that ❨G = ❨

Λ
X as claimed in (139).

The above characterisation (139) of ❨Λ
X as the orthogonal projection of ❨Λ onto G implies that

∥

∥❨
Λ −❨

Λ
X

∥

∥

L2(HY )
≤
∥

∥❨
Λ − ❩

∥

∥

L2(HY )
for all ❩ ∈ G. (140)
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Moreover, the Hilbert projection theorem guarantees that the arg min in (140) is unique, so that in
fact

❨
Λ
X = arg min

❩∈G
E
∥

∥❨
Λ − ❩

∥

∥

2
. (141)

Now in order to make the variational identity (141) more operational, recall from Prop. 4.5 that

the set G := Ψ(X) =
{

ψα(X)
∣

∣ α ∈ L2
X

}

from (59) is ∥ · ∥L2(HY )-dense in G. (142)

Let us observe how (142) and (141) imply (65): Abbreviating Φ(❩) := ∥❨Λ − ❩∥2
L2(HY ), which

deĄnes a function Φ : G → R+ that is clearly ∥ · ∥L2(HY )-continuous and strictly convex, we Ąnd
that

Φ(❨Λ
X)

(141)
= inf

❩∈G
Φ(❩)

(142)
= inf

❩∈G
Φ(❩) = inf

α∈L2
X

Φ(ψα(X)) =: γ.

Hence for any minimizing sequence of (66), i.e. any sequence (αk) in L2
X with limk→∞ Φ(ψαk

(X)) =
γ, the functions (❩k) := (ψαk

(X)) ⊂ G are a minimizing sequence for inf❩∈G Φ(❩). Upon recalling
that ∥·∥L2(HY ) satisĄes the parallelogram identity and that G is convex, a quick computation shows

∥❩n − ❩m∥2
L2(HY ) ≤ 2Φ(❩n) + 2Φ(❩m) − 4Φ(❨Λ

X) −→ 0 (for n,m → ∞), (143)

which implies that (❩k)k∈N is Cauchy. Hence, and since G is complete, there is ❩⋆ ∈ G such that
❩⋆ = limk→∞ ❩k in ∥ · ∥L2(HY ), whence we have Φ(❩⋆) = limk→∞ Φ(❩k) = γ and thus

❩⋆ ∈ arg min
❩∈G

Φ(❩), which, by (141), implies ❩⋆ = ❨
Λ
X

(as noted in the lead-up to (140), the above arg min contains exactly one element only). This
proves (65). Regarding the Ąnal claim on almost sure convergence, note ∥❩k − ❩⋆∥2

L1(HY ) ≤ ∥❩k −
❩⋆∥2

L2(HY ) ≤ 2(Φ(❩k) − γ) =: 2βk by (143) [and since ∥ · ∥L1 ≤ ∥ · ∥L2 ], whence if
∑∞
k=0

√
βk < ∞

then, by monotone convergence,
∫

Ω

∑∞
k=0 ∥❩k − ❩⋆∥ dP =

∑∞
k=0 ∥❩k − ❩⋆∥L1(HY ) < ∞, thus

∑∞
k=0 ∥❩k − ❩⋆∥ < ∞ P-a.s. and hence limk→∞ ∥❩k − ❩⋆∥ = 0 a.s., as claimed.

B.2.10 Proof of Corollary 4.11

Proof. Let f ∈ C(DY ). As DY := supp(PY ) is assumed compact, there is (ℓ
(ν)
f )ν ⊂ R[d̃] such that

lim
ν→∞

∥

∥f − ⟨ℓ(ν)
f , sig

Λ
⟩
∥

∥

∞;DY
= 0 (144)

by Corollary B.6, so minimizing sequences for the optimisation problem (76) exist.
Since P(Y ∈ DY ) = 1, or even Y (Ω) ⊆ DY without loss of generality by Remark B.3 (iii),

C := sup
µ∈N

sup
ω∈Ω

∣

∣ςµ(Y (ω))
∣

∣ < ∞ for ςν(y) := f(y) − ⟨ℓ(ν)
f , sig

Λ
(y)⟩.

Indeed, given ϵ > 0 there is ν0 ∈ N with supν≥ν0,ω ♣ςν(Y (ω))♣ ≤ supν≥ν0
∥ςν∥∞;DY

≤ ϵ by (144),

and so C ≤ maxν≤ν0 ∥ςν∥∞;DY
+ ϵ ≤ 1 + ∥Λ∥∞;H · maxν≤ν0 ∥ℓ(ν)

f ∥ + ϵ < ∞. Thus and with (144),

∣

∣

∣
E
[

f(Y )
∣

∣X
]

− E
[

⟨ℓ(ν)
f , sig

Λ
(Y )⟩

∣

∣X
]

∣

∣

∣
=
∣

∣E[ςν(Y ) ♣X]
∣

∣

ν→∞−→ 0 P-a.s.

via the conditional dominated convergence theorem, which proves (α) in (77). The convergence (β)
follows as in (73), while the corollaryŠs last assertion is immediate from (77) and (65).
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B.3 Ad Section 5

B.3.1 Proof of Proposition 5.1

Proof. That HΞ is a vRKHS with reproducing kernel K is shown in [7, Example 3.2 (iii)]. This
reference also implies that HΞ is separable: Denoting by φ := sig

Ξ
: X → HY the feature map

of Hκ, we see (e.g. from [40, Lemma 2.1]) that the RKHS Hκ is separable due to the separability
of φ(X ), where the latter holds by the separability of X (Lemma 3.2) and the fact that φ is
continuous (Lemma 3.17). The asserted separability of HΞ now follows from the unitary equivalence
HΞ

∼=
⊕

w∈[d̃]∗ Hκ (given in [7, Example 3.2 (iii)]) and the fact that the countable direct sum of
separable Hilbert spaces is separable.

For a proof of (81), note Ąrst that HΞ can be canonically injected into L2(X ,PX ; HY) via [42,
Lemma 2.1 (i)] by the fact that supx∈X ∥K(x, x)∥op = ♣κ(x, x)♣ ≤ supt∈HY

∥Λ(t)∥2
HY

=: R2
Λ < ∞.

(The Borel-measurability of each f ∈ HΞ holds since (w ♣ w ∈ [d̃]∗) is a countable ONB of HY and
the feature map sig

Ξ
of Hκ is continuous.) Next, take any g ∈ L2(X ,PX ; HY) and ε > 0. Then

∞
∑

m=0

βm(g) = ∥g∥2
L2(PX ;HY ) < ∞ for βm(g) :=

∑

♣w♣=m

∫

X
♣⟨g(x), w⟩♣2 PX(dx)

and hence
∑∞
m=m0+1 βm(g) ≤ ε2/2 for some m0 ∈ N. As done in (62), we can for all w ∈ [d̃]∗ Ąnd

αw ∈ R[d] such that
∥

∥⟨g, w⟩ − ⟨αw, sigΞ
⟩
∥

∥

2

L2(PX )
=
∥

∥⟨g(X), w⟩ − φαw

∥

∥

2

L2(P)
≤ ε2(2d̃)−♣w♣/4

by the density (59) (resp. (61)). Hence for fε :=
∑m0

m=0

∑

♣w♣=m⟨αw, sigΞ
⟩w ∈ HΞ we have that

∥

∥g − fε
∥

∥

2

L2(PX ;HY )
=

∑

♣w♣≤m0

∥

∥⟨g − fε, w⟩
∥

∥

2

L2(PX )
+

∞
∑

m=m0+1

βm(g) ≤ ε2
(
∑∞
m=02−m + 2

)

/4 = ε2

(cf. (63)). Since g ∈ L2(X ,PX ; HY) and ε > 0 have been arbitrary, statement (81) follows.
The propositionŠs subsequent assertion is an immediate corollary to the above argument.
For the remaining statements on (82), note Ąrst that clearly Ψ⋆

X ⊆ L2(X ,PX ; HY) (the argu-
ments are the same as for the inclusion ΨX ⊆ L2(PX ; HY)) and ΨX ⊆ Ψ⋆

X . Further, for any f ∈ HΞ

we have

∑

w∈[d̃]∗E
[

⟨f(X), w⟩2
]

= E
[

∥f(X)∥2
HY

]

= ∥f∥2
L2(PX ;HY ) ≤ R2

Λ∥f∥2
HΞ

< ∞ (145)

by [42, Lemma 2.1 (i)], which shows that the inclusion HΞ ⊆ L2(PX ; HY) is continuous. Upon
recalling that Hκ = ¶⟨u, sig

Ξ
⟩ ♣ u ∈ HX ♢ (which is the feature-map representation of Hκ), the

estimate (145) also shows HΞ ⊆ Ψ⋆
X . That all inclusions are dense has been shown above.

B.3.2 Proof of Lemma 5.2

Proof. Since the functions ϕ̃f,λ and ϕ
(m)
µ♣λ are strictly convex and coercive, they both admit a

unique minimizer over their respective domains (proving the assertions on Υ∗
µ,λ,m), see e.g. the

proof of [42, Lemma 2.4] for the full argument. In particular, ϕ̃f,λ(h⋆) = minh∈Hκ̃
ϕ̃f,λ(h) =: γ⋆

for some (unique) h⋆ ∈ Hκ̃. But since Hκ̃ is an RKHS with feature map sig
Λ

, we have that (a)

minℓ∈HY
ϕ
f
µY ♣λ(ℓ) = γ⋆ (cf. the deĄnition (83)), and (b) there is ℓ⋆ ∈ HY such that h⋆ = ⟨ℓ⋆, sigΛ

⟩.
Hence and since ϕf,λ(h⋆) = ϕ

f
µY ♣λ(ℓ⋆), a minimizer ℓfµY ,λ

as in (86) exists.
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Suppose now that µY is Ąnitely supported, i.e. a convex combination of the form µY =
∑

i∈I piδyi

for some ¶yi ♣ i ∈ I♢ ⊂ Y with I Ąnite (this representation is valid since the path space Y is Polish
and hence Radon), and note that the associated function (83) then reads

HY ∋ ℓ 7−→ ϕ
f
µY ♣λ(ℓ) =

∑

i∈I
pi
∣

∣f(yi) − ⟨ℓ, qi⟩)
∣

∣

2
+ λ∥q∗

ℓ ∥2
κ̃ with qi := sig

Λ
(yi) (146)

and q := sig
Λ

: Y → HY and q∗
ℓ := ⟨ℓ, q⟩ ∈ Hκ̃. Let further q∗

i := ⟨qi, q⟩ ∈ Hκ̃ for each i ∈ I.
The derivation of (88) follows the idea behind the classical representer theorem [51], for which we
consider the (closed) subspaces VµY

= span¶qi ♣ i ∈ I♢ ⊂ HY and V ∗
µY

:= span¶q∗
i ♣ i ∈ I♢ ⊂ Hκ̃.

Then HY = VµY
⊕V ⊥

µY
and Hκ̃ = V ∗

µY
⊕
(

V ∗
µY

)⊥
, so that for any Ąxed minimizer ℓ̂ ∈ HY of (146) we

have ℓ̂ = ℓ̂1 + ℓ̂2 and q∗
ℓ̂

= q̂∗
1 + q̂∗

2 for some pairs (ℓ̂1, ℓ̂2) ∈ VµY
× V ⊥

µY
and (q̂∗

1 , q̂
∗
2) ∈ V ∗

µY
×
(

V ∗
µY

)⊥

which are both unique with these properties; said uniqueness implies that q̂∗
ν = ⟨ℓ̂ν , q⟩ for ν = 1, 2

(note for this that ⟨ℓ̂2, q⟩ ∈
(

V ∗
µY

)⊥
since

〈

q∗
i , ⟨ℓ̂2, q⟩

〉

κ̃
=
〈

κ̃(yi, ·), ⟨ℓ̂2, q⟩
〉

κ̃
= ⟨ℓ̂2, q(yi)⟩ = 0 for each

i ∈ I, by the reproducing property). Clearly ∥ℓ̂∥HY
≥ ∥ℓ̂1∥HY

, and by orthogonality,

⟨ℓ̂, qi⟩ = ⟨ℓ̂1, qi⟩ for each i ∈ I and
∥

∥q∗
ℓ̂

∥

∥

2

κ̃
=
∥

∥q∗
ℓ̂1

∥

∥

2

κ̃
+
∥

∥q̂∗
2

∥

∥

2

κ̃
≥
∥

∥⟨ℓ̂1, q⟩
∥

∥

2

κ̃
. (147)

Combining (146) and (147) implies ϕ
f
µY ♣λ(ℓ̂) ≥ ϕ

f
µY ♣λ(ℓ̂1) and hence, as ℓ̂ is a minimizer of ϕ

f
µY ♣λ,

that
ϕ
f
µY ♣λ(ℓ̂1) = min

ℓ∈ HY

ϕ
f
µY ♣λ(ℓ) = min

ℓ∈VµY

ϕ
f
µY ♣λ(ℓ).

Since the above minimizer ℓ̂ of (146) was arbitrary, the claims surrounding (88) follow for ℓf,⋆µY ,λ
:= ℓ̂1

if we can show that the function (146) has only one minimizer over VµY
, i.e. that

∣

∣

∣

∣

∣

arg min
ℓ∈VµY

ϕ
f
µY ♣λ(ℓ)

∣

∣

∣

∣

∣

= 1. (148)

To this end, suppose I = ¶1, . . . , ♣I♣♢ wlog and pi ≡ ♣I♣−1 as in (87), and let ℓ̃ ∈ VµY
be any minimizer

of ϕ
f
µY ♣λ. Then ℓ̃ =

∑

j∈I α̃jqj for some α̃(ℓ̃) ≡ (α̃j) ∈ R
♣I♣ and q∗

ℓ̃
≡ ⟨ℓ̃, q⟩ =

∑

j∈I α̃jq
∗
j ∈ V ∗

µY

minimizes the function ϕ̃f,λ from the lemmaŠs last line. Thus, said α̃(ℓ̃) is a global minimizer of

R
♣I♣ ∋ (αj) 7−→ F̃ (α) := ϕ̃f,λ(

∑

j∈Iαjq
∗
j ) =

1

♣I♣

♣I♣
∑

i=1

∣

∣

∣
f(yi) −

♣I♣
∑

j=1

αj⟨qi, qj⟩
∣

∣

∣

2

+ λ

♣I♣
∑

i,j=1

αiαj⟨qi, qj⟩

=
1

♣I♣
[

∥

∥b− Aα
∥

∥

2

2
+ ♣I♣λα⊺Aα

]

(149)

for ∥ · ∥2 the Euclidean norm on R
♣I♣×♣I♣ and with the µY -dependent coefficients

A :=
(

⟨qi, qj⟩
)♣I♣
i,j=1

and b :=
(

f(yi)
)♣I♣
i=1

. (150)

After expanding and rearranging the terms in (149), we obtain for F := ♣I♣F̃ that

F (α) = α⊺(A⊺A + ♣I♣λA)α− 2α⊺Ab and ∇αF = 2(A⊺A + ♣I♣λA)α− 2Ab.

Since the function F : R♣I♣ → R is convex, all of its local minimizers are global minimizers, and so

arg min
α∈R♣I♣

F (α) = ¶α ∈ R
♣I♣ ♣ ∇αF = 0♢ =

{

α ∈ R
♣I♣ ∣
∣ (A⊺A + ♣I♣λA)α = Ab

}

. (151)
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Now since α̃(ℓ̃) ∈ arg minα∈R♣I♣ F (α), the claim (148) thus follows if A (and thus A⊺A + ♣I♣λA) is
invertible. But since A is a Gramian matrix by its deĄnition (150), we know that A is invertible iff

the vectors q1, . . . , q♣I♣ ∈ HY are linearly independent. (152)

But under the lemmaŠs premise, namely that the points yi, i ∈ I, be pairwise distinct, the required
independence (152) follows by (Theorem 3.9 and the injectivity of any (48) and) [36, Cor. 2.16].

As to the lemmaŠs Ąnal assertion, note that for the (unique) minimizer h⋆ = arg minh∈Hκ̃
ϕ̃f,λ(h)

we saw that Lh⋆
:= ¶ℓ ∈ HY ♣ ⟨ℓ, q⟩ = h⋆♢ = ¶ℓ ∈ HY ♣ ϕ̃f,λ(ℓ) = γ⋆♢ and hence

∥h⋆∥κ̃ def
= inf¶∥ℓ∥HY

♣ ℓ ∈ Lh⋆
♢ (88)

=
∥

∥ℓf,⋆µY ,λ

∥

∥

HY

as claimed.

B.3.3 Proof of Proposition 5.3

Proof. The equivalence between (the Ąrst inclusion in) (92) and (93) has been shown in the proof
of Lemma 5.2, see the argumentation around (151). The propositionŠs remaining assertions follow

by a similar adaptation of the representer theorem [51]. Indeed: By the deĄnitions of ϕ
(m)
µ♣λ and µ̂Z,

we have

H
[m]
Ξ ∋ g ≡ (gw)w∈[d̃]∗

≤m
7−→ ϕ

(m)
µ̂Z♣λ(g) =

1

N

N
∑

j=1

∥

∥π[m]

(

q̃(Y (j))
)

−g(X(j))
∥

∥

2

HY
+λ∥g∥2

HΞ
=

md̃
∑

k=1

ϕk(gw)

(153)
for each m ∈ N, where q̃ := sig

Λ
and the scalar functions (ϕk)k∈N ⊂ Hκ are deĄned as

ϕk(h) :=
1

N

N
∑

j=1

∣

∣⟨q̃(Y (j)), η−1(k)⟩ − h(X(j))
∣

∣

2
+ λ∥h∥2

κ.

Note that the second identity in (153) is due to (the deĄnition of ∥·∥HY
in (42) and) Proposition 5.1,

whose Ąrst assertion provides the unitary isomorphism HΞ ∋ g 7→ (⟨g, w⟩ ♣ w ∈ [d̃]∗) ∈ ⊕w∈[d̃]∗ Hκ

(so that ∥(gw)∥2
HΞ

=
∑

w∈[d̃]∗⟨gw, gw⟩2
κ =

∑

w∈[d̃]∗ ∥gw∥2
κ), cf. also [7, Example 3.2 (iii)]. Therefore,

arg min
g∈H

[m]

Ξ

ϕ
(m)
µZ♣λ(g) = arg min

(gw)∈(Hκ)×m
d̃

md̃
∑

k=1

ϕk(gη−1(k)) =

{md̃
∑

k=1

g∗
k · η−1(k)

∣

∣

∣

∣

∣

g∗
k ∈ arg min

h∈Hκ

ϕk(h)

}

. (154)

Now from the classical representer theorem [51] (cf. also the proof of Lemma 5.2) we know that

g∗
k ∈ arg min

h∈Hκ

ϕk(h) only if g∗
k ∈ span

(

κ(X(j), · )
∣

∣ j ∈ [N ]
)

,

which together with (154) (and the deĄnition of κ, see Prop. 5.1) proves (91). In fact, as detailed
in the proof of Lemma 5.2, for instance, we have that g∗

k = arg minh∈Hκ
ϕk(h) if and only if

g∗
k =

N
∑

j=1

α
(k)
j ⟨qj , q⟩ for α̃(k) ≡

(

α
(k)
j

)

∈ R
N such that CZ,λα̃(k) = AZb

(k)
Z , (155)

where q := sig
Ξ

and qj := q(X(j)) and CZ,λ := (A⊤
Z AZ + NλAZ) for AZ as in (96) and b

(k)
Z

:=

(⟨q̃(Y (j)), η−1(k)⟩)j∈[N ]; cf. (151). Now by the deĄnitions (90), (86), (97) and uniqueness (Lem.
5.2),

Υ̂lex
N,λ,m=

md̃
∑

k=1

g∗
k · ek

(155)
=

md̃
∑

k=1





N
∑

j=1

α
(k)
j q∗

j



· ek =


α̃⊺

(1) · q∗
∣

∣

∣
· · ·
∣

∣

∣
α̃⊺

(md̃) · q∗
)⊺

= Ã⊺

∗ · q∗
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for the matrix Ã∗ ≡
(

α̃(1)♣ · · · ♣α̃(md̃)

)

∈ R
N×md̃ and the function q∗ :=

∑N
j=1 q

∗
j · ẽj : X → R

N ,

where (ek)k∈[md̃] and (ej)j∈[N ] are the standard bases of Rmd̃ and R
N , respectively; this completes

the proof of (92). Noting that BZ =
(

b
(1)
Z

∣

∣ · · ·
∣

∣b
(md̃)
Z

)

, equation (94) is clear from (155).

B.3.4 Proof of Lemma 5.5

Proof. The statements (i) and (iii) both follow from essentially the same simple observations: By
the fact that Hκ is dense in L2(PY ) (Proposition 5.1) and from the deĄnition (84), we for each

ϵ > 0 with ϑf (ϵ) ̸= ∞ can Ąnd ℓϵ ∈ HY such that ϕ
f
PY

(ℓϵ) ≤ ϵ2/2 and ∥⟨ℓϵ, sigΛ
⟩∥2
κ ≤ ϵ2/2ϑf (ϵ).

Hence for each λ > 0, we have by deĄnition of ℓfλ and the property ϕ
f
PY

(ℓϵ) ≤ ϵ2/2 that

rI
f (λ)2 = ϕ

f
PY

(ℓfλ) ≤ ϕ
f
PY ♣λ(ℓ

f
λ) = ϕ

f
PY ♣λ(ℓ

f
λ) − ϕ

f
PY

(ℓϵ) + ϕ
f
PY

(ℓϵ)

≤ ϕ
f
PY ♣λ(ℓϵ) − ϕ

f
PY

(ℓϵ) + ϕ
f
PY

(ℓϵ) ≤ λ
∥

∥⟨ℓϵ, sigΛ
⟩
∥

∥

2

κ
+
ϵ2

2
,

(156)

which (by the above choice of ℓϵ) implies (i) for the case ϑf (ϵ) ̸= ∞. If ϑf (ϵ) = ∞, then for each

λ > 0 there will be some ℓλϵ ∈ HY with ϕ
f
PY

(ℓλϵ ) ≤ ϵ2/2 and ∥⟨ℓϵ, sigΛ
⟩∥2
κ ≤ ϵ2/2λ, which, by the

fact that the inequalities (156) are valid for all (λ, ℓϵ) ∈ R>0 ×
(

ϕ
f
PY

)−1
(0, ϵ2/2], implies (i) also for

the case ϑf (ϵ) = ∞. Statement (iii) follows analogously to (i) upon noting that, by statement (ii),

RI
m(λ)2 = ϕ

(m)
P(X,Y )

(

π[m](Υ
∗
λ)
)

− ϕ
(m)
P(X,Y )

(

π[m](φ⋆)
)

(157)

≤ ϕ
(m)
P(X,Y )♣λ(g) − ϕ

(m)
P(X,Y )

(g) + ∆g ≤ λ∥g∥2
HΞ

+ ∆g

for the difference ∆g := ϕ
(m)
P(X,Y )

(g) − ϕ
(m)
P(X,Y )

(

π[m](φ⋆)
)

and any λ > 0 and any g ∈ L2(PX ; H[m]
Y );

then exactly as shown for (i) above, the density result [following (81)] of Proposition 5.1 allows us

to, for any given ϵ > 0 and any 0 < λ ≤ ϑ̃π[m](φ⋆)(ϵ), Ąnd a g ∈ L2(PX ; H[m]
Y ) such that λ∥g∥2

HΞ

and ∆g are both bounded by ϵ2/2 (the case ϑ̃π[m](φ⋆)(ϵ) = ∞ is handled as before), implying (iii).

For the proof of (157), that is of statement (ii), abbreviate φ
[m]
⋆ := π[m](φ⋆) and note that with

φ
[m]
⋆ (X) = π[m]

(

E[❨Λ ♣X]
)

= E[π[m](❨
Λ) ♣X] = φ⋆m(X) for φ⋆m := arg min

g ∈L2(PX ;H[m]

Y
)

ϕ
(m)
P(X,Y )

(g)

(where the second of the above equalities holds by the commuting property (75) and the linearity of
conditional expectations, and the third equality holds by the variational characterisation (cf. (141))

of conditional expectations) we have φ
[m]
⋆ = φ⋆m in L2(PX ; H[m]

Y ) and hence, as claimed, obtain that

RI
m(λ)2 = E

[

∥

∥π[m](Υ
∗
λ) − φ⋆m(X)

∥

∥

2

HY

]

= ϕ
(m)
P(X,Y )

(

π[m](Υ
∗
λ)
)

− ϕ
(m)
P(X,Y )

(

φ
[m]
⋆

)

for each λ > 0, by the classical risk decomposition from [16, Proposition 1].
As to statement (iv), denote q̃l := sig

Λ
(Y (l)) and note that, by the deĄnitions (98) and (42),

∥

∥πν(ℓ̂⋆n,λ,f )
∥

∥

ν
≤

n
∑

l=1

∣

∣α⋆l
∣

∣∥πν(q̃l)∥ν ≤ ∥α⋆∥2γν for γν :=

√

√

√

√

n
∑

l=1

∥πν(q̃l)∥2
ν

(

ν ∈ N
)

.

Hence by the deĄnitions of rIII
f,λ,n(m) and π[m] and (again) with deĄnition (42), for each m ∈ N0,

rIII
f,λ,n(m) =

√

√

√

√

∞
∑

ν=m+1

∥

∥πν(ℓ̂⋆n,λ,f )
∥

∥

2

ν
≤ ∥α⋆∥2β̃m =: β(cut)

m for β̃m :=

√

√

√

√

∞
∑

ν=m+1

γ2
ν . (158)
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Now since q̃1, . . . , q̃n ∈ HY and thus
∑∞
ν=0 γ

2
ν =

∑n
l=1 ∥q̃l∥HY

< ∞, we Ąnd that
(

β
(cut)
m

)∞
m=1

is

a monotone decreasing null sequence which, due to α⋆ = (A⊤
YAY + nλAY)+AYbY,f , depends on

(Y,Λ, λ, f) only.
For (v), let δ > 0 and observe that by [42, Proposition 3.2], (102) then holds for the sequences

β(out)
n :=

cΛ

λ
√
nδ

and β
(in)
N :=

√

cΞcΛ

λ2Nδ
(n,N ∈ N)

featuring the constants cZ := supt∈Hξ
∥Z(t)∥2

Hξ
< ∞ for (Z, ξ) ∈ ¶(Λ,Y), (Ξ,X )♢ (recall DeĄnition

3.18 for their Ąniteness); recall that the general applicability of [42] is due to Proposition 5.1.

B.3.5 Algorithms I and II are Instances of Definition 2.6

Remark B.7. An approximation of the regression operator (14), the estimator (107) can be written

T̂ I
N (f,Y;Z, λ, n,m) := R̂

I
λ,f [n,N,m] =

〈

ℓ̂
f
λ1;Y , Ξ̂λ2,n,m;Z(·)

〉

2,k
(159)

Ůthat is: in the form of DeĄnition 2.6, eq. (18), and (24)Ůfor the bilinear map

〈

·, ·
〉

2,k
: ℓ2(N0)×k × ℓ2(N) −→ R

k,
(

(qi), q
)

7→
(

⟨qi, q⟩ℓ2

)

i=1,...,k

and the constituent component representations

ℓ̂
f
λ1;Y :=



∑n
l=1

[

α
f
λ1

]

li
η
(

sig
Λ
(Y (l))

)

)

i=1,...,k
and Ξ̂λ2,n,m;Z := Υ̂lex

N,λ2,m : X → R
md̃ ,

where η : HY → ℓ2(N0),
(

tw
)

w∈[d̃]∗ 7→
(

tη−1(j)

)

j∈N0
extends the shortlex ordering used in (97).

Note that the estimator (159) is linear in both ℓ̂
f
λ1;Y ∈ ℓ2(N0)×k and f ∈ L2(PY ).

Remark B.8. An approximation of the regression operator (14), the estimator (115) can be written

T̂ II
M (f ;Wf , λ) := R̂

II
λ,f(Y )[M ] =

〈

ϱ̂λ;Wf
, sig

Ξ
(·)
〉

HX, k
(160)

for the data Wf := ¶(X(j), f(Y (j))) ♣ j ∈ [M ]♢, which are iid copies of (X, f(Y )), the bilinear map

〈

·, ·
〉

HX, k
: H×k

X × HX −→ R
k,
(

(qi), q
)

7→
(

⟨qi, q⟩HX

)

i=1,...,k
,

and the constituent Wf -processing data representation, with Â∗ = (α̂
(λ)
ij ) solving (114)♣Z=f(Y ),

ϱ̂λ;Wf
:=


∑M
j=1

[

Â∗
]

ij
sig

Ξ
(X(j))

)

i=1,...,k
.

Note that while the estimator (160) is also linear11 in f ∈ L2(PY ) and ϱ̂λ;Wf
∈ H×k

X , unlike the more
modular estimator (160) it does not us a factorisation into two separate and possibly independent
types of data (i.e., Z and Yf := ¶(Yl, f(Yl)) ♣ Yl ∈ Y♢) but instead operates directly on the combined
dataset Wf , where f(Y ) is observed exclusively in association with X.

11 In the sense that: T̂ II
M

(f1 + cf2;Wf1+cf2 , λ) = T̂ II
M

(f1;Wf1 , λ) + cT̂ II
M

(f2;Wf2 , λ) for any f1, f2 ∈ L2(PY ), c ∈ R.
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B.3.6 Proof of Theorem 5.9

Proof. Denote ψ := µ ·(f), so that ψ ≡ (ψ1, · · · , ψk) ∈ L2(PX ;Rk). Showing (121)♣ν=I Ąrst, Ąx any
(ε, δ) ∈ R

2
>0 and take an arbitrary (λ, n,N,m) ∈ AI

f (ε, δ). Recalling from (159) that

R̂
I
λ,f [n,N,m] =

k
∑

i=1

〈

ℓ̂iλ1,n,m, Υ̂
∗
N,λ2,m

〉

ei (161)

with Υ̂∗
N,λ2,m

as in (90) and with ℓ̂iλ1,n,m
:= π[m](ℓ̂

⋆
n,λ1,fi

) for ℓ̂⋆n,λ1,fi
as in (98), we Ąnd that

P
(∥

∥ψ − R̂
I
f,λ[n,N,m]

∥

∥ ≥ ε
)

≤ P(E1 ≥ 3ε/5) + P(E2 ≥ 2ε/5) (162)

(from (161) and by the triangle inequality) with ∥ · ∥ := ∥ · ∥L2(PX ;Rk) and for the differences

E1 :=
∥

∥ψ − ψ̂λ1,n,m

∥

∥ and E2 :=
∥

∥

∥

∑k
i=1

〈

ℓ̂iλ1,n,m, φ⋆ − Υ̂∗
N,λ2,m

〉

ei

∥

∥

∥
,

where ψ̂λ1,n,m :=
∑k
i=1

〈

ℓ̂iλ1,n,m
, φ⋆
〉

ei and for φ⋆ as in (101). Using (75) and the inequality in (74),

E1 ≤
k
∑

i=1

Ẽ1,i for Ẽ1,i :=
∥

∥fi −
〈

ℓ̂iλ1,n,m, sigΛ
〉∥

∥

L2(PY )
.

Recalling the deĄnitions in (99) and (100), we obtain, for each i ∈ [k], that

Ẽ1,i ≤ rI
fi

(λ1) + rII
fi,λ1

(n) + rIII
fi,λ1,n(m) ≤ ε

5k
+ rII

fi,λ1
(n) +

ε

5k
,

where we used the error bound max
{

rI
fi

(λ1), rIII
fi,λ1,n

(m)
}

≤ ε/(5k) which is due to Lemma 5.5 (i)
and (iv) in conjunction with the Bf (ε, δ)-deĄning constraints deĄned in (104) and (105). Hence,

P(E1 ≥ 3ε/5) ≤ P



k
∑

i=1

rII
fi,λ1

(n) ≥ ε/5



≤
k
∑

i=1

P



rII
fi,λ1

(n) ≥ ε/(5k)
)

≤ δ

2
, (163)

where the last inequality is due to Lemma 5.5 (v) via the constraint n ≥ nf,λ1
(ε, δ).

For a bound on P(E2 ≥ 2ε/5), note that, by Cauchy-Schwarz and the triangle inequality,

E2 ≤ cλ1,m;Y

∥

∥π[m](φ⋆) − Υ̂∗
N,λ2,m

∥

∥

L2(PX ;HY )
≤ cλ1,m;Y

(

RI
m(λ2) +RII

m,λ2
(N)

)

(164)

with cλ1,m;Y as deĄned in (106) and for the errors RI
m and RII

m,λ introduced in (101). Lemma 5.5

(iii) and the bound λ2 ≤ λII
λ1,m

(ε;Y) (cf. (106)) ensure cλ1,m;YR
I
m(λ2) ≤ ε/5. Consequently,

P(E2 ≥ 2ε/5) ≤ P
(

RII
m,λ2

(N) ≥ ε/(5cλ1,m;Y)
)

≤ δ

2
(165)

follows by combining (164) and Lemma 5.5 (v), using that N ≥ Nλ1,λ2,m(ε, δ;Y) (cf. (106)).
Applying the inequalities (163) and (165) to (162) proves the case ν = I in (121), as desired.
The proof of (121)♣ν=II is very similar but more concise, using Corollary 5.8 applied to Z := f(Y )

instead of Lemma 5.5: For any Ąxed (λ,N) ∈ Af (ε, δ), we know that (since ψ = ψX,Z by uniqueness)

P
(
∥

∥ψ − Υ̂∗
f(Y ),λ;N

∥

∥ ≥ ε
)

≤ P(ρI
Z(λ) ≥ ε/2) + P(ρII

Z,λ(N) ≥ ε/2) ≤ 0 + δ

by (the triangle inequality and) Corollary 5.8 (ii) and (iii); this proves the case ν = II in (121).
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Proving (122), recall that R̂I
θ := R̂I

f,λ[n,N,m] for θ = (λ, n,N,m), and R̂II
θ := R̂II

λ,Z [M ] for

θ = (λ,N). Then for both ν = I, II, the object R̂ν
θ is an L2(PX ;Rk)-valued random variable:

R̂
ν
θ = R̂θ( · ; Z̃ν) : Ω −→ L2(PX ;Rk), ω 7→ R̂θ

(

· ; Z̃ν(ω)
)

,

for Z̃I resp. Z̃II the random vectors from which the data in (89) resp. (112) is sampled, that is

Z̃I :=
(

Y (1), · · · , Y (n), (X(1), Y (1)), · · · , (X(N), Y (N))
)

: Ω −→ Z̃I := Yn ×
(

X × Y
)N

and Z̃II :=
(

(X(1), Z(1)), · · · , (X(M), Z(M))
)

: Ω −→ Z̃II :=
(

X × R
k
)M
.

DeĄne Aνθ,ε :=
{

♣E[f(Y ) ♣X] − R̂ν
θ (X)♣ ≥ ε

}

≡
{

ω ∈ Ω
∣

∣ ♣E[f(Y ) ♣X](ω) − R̂ν
θ (X(ω); Z̃ν(ω))♣ ≥ ε

}

,

A
×♣ν
θ,ε :=

{

(x, z) ∈ X × Z̃ν
∣

∣ ♣ψ(x) − R̂ν
θ (x; z)♣ ≥ ε

}

and ∆z
θ♣ν :=

∣

∣ψ − R̂ν
θ ( · ; z)

∣

∣ for any Ąxed z ∈ Z̃ν .

With the z-sections A
z♣ν
θ,ε := ¶x ∈ X ♣ (x, z) ∈ A×

θ,ε♢ (z ∈ Z̃ν) for ν = I, II, we have by that

P(Aνθ,ε) =

∫

X ×Z̃ν

✶
A

×♣ν

θ,ε

(x, z)P(X,Z̃ν )(dx,dz) =

∫

Z̃ν

PX(A
z♣ν
θ,ε )PZ̃ν

(dz), (166)

which holds by Fubini and the (89)- resp. (112)-underlying assumption that the random variables
X and Z̃I and Z̃II are statistically independent. Now for any (ε̃, δ̃) ∈ R

2
>0, the inequalities (121)

yield exceptional events Cν
ε̃,δ̃

∈ B(Z̃ν) of measure PZ̃ν
(Cν
ε̃,δ̃

) ≤ δ̃ such that, for each θ ∈ Aν
f (ε̃, δ̃),

PX(A
z♣ν
θ,ε ) ≤ ε−2

∥

∥✶
A

z♣ν

θ,ε

· ∆z
θ♣ν
∥

∥

2

L2(PX ;Rk)
≤ ε−2∥∆z

θ♣ν∥2
L2(PX ;Rk) <

ε̃

ε2
, for all z ∈

(

Cε̃,δ̃
)c

; (167)

this holds for both ν = I, II. The combination of (167) with (166) thus yields that

P(Aνθ,ε) ≤
∫

(

Cε̃,δ̃

)c
PX(A

z♣ν
θ,ε )PZ̃ν

(dz) + δ̃ <
ε̃

ε2
(1 − δ̃) + δ̃ ≤ (1 − q) =: q′ (ν = I, II)

for each θ ∈ Θν
f (ε, δ) ≡ ⋃

(ε̃,δ̃) : ε̃(1−δ̃)+δ̃ε2 ≤ q′ε2 Aν
f (ε̃, δ̃). Since P



∣

∣E[f(Y ) ♣X] − R̂ν
θ (X)

∣

∣ < ε
)

=

1 − P(Aνθ,ε) for ν = I, II, the assertion (122) follows.

B.4 ‘Stabilized’ Estimation of Conditional Expectations (Over L
2-Balls)

To allow for a statistically consistent sample-based approximation of the optimisation scheme (66),
we adopt the proof of Theorem 4.8 for a ŚstabilizedŠ version of (65).

Lemma B.9. Given any R ≥ 0, consider the set deĄned by

CR :=
{

❩ ∈ L2
X(HY)

∣

∣

∣
∥❩∥L∞ := ess supω∈Ω ∥❩(ω)∥ ≤ R

}

.

Then the following hold.

(i) The set CR is a convex and complete subset of L2
X(HY).

(ii) Denoting ΨR :=
{

ψ · ✶¶∥ψ∥≤R♢
∣

∣ψ ∈ Ψ
}

(cf. (58)) for R ≥ 0, then each element of CR is an

∥ · ∥L2(HY )-limit point of the set Ψ2R(X) := ¶ψ̃(X) ♣ ψ̃ ∈ Ψ2R♢ ⊂ L2
X(HY).

(iii) For any R ≥ 0 and with DX the spatial support of X (see Rem. B.3 (iii)), we have that

CR =
{

ϕ(X)
∣

∣ϕ ∈ BR
}

with BR := ¶ϕ : DX → HY ♣ ϕ Borel-measurable : ∥ϕ∥∞;DX
≤ R♢,

which holds as an identity in 2L
2(HY ), that is up to element-wise inequality on a P-nullset.
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(iv) We have that E
[

❨
Λ
∣

∣X
]

∈ CRΛ
for RΛ := sup¶∥Λ(t)∥ ♣ t ∈ HY♢ < ∞.

Proof. Fix any R ≥ 0. The convexity of CR is clear since ∥ · ∥L∞ is homogeneous and subadditive.
To see that CR is complete, let (❩k) ⊂ CR be a Cauchy sequence in (CR, ∥ · ∥L2(HY )). There is

then ❩ ∈ L2
X(HY) with limk→∞ ∥❩−❩k∥L2(HY ) = 0, by the fact that L2

X(HY) is complete. To see
that in fact ❩ ∈ CR, note that for each ε > 0 and with Aε := ¶∥❩∥ −R ≥ ε♢,

P(Aε) =
1

ε2

∫

Aε

ε2 dP ≤ 1

ε2

∫

Aε

∥❩− ❩k∥2 dP ≤ 1

ε2
∥❩− ❩k∥2

L2(HY ) for all k ∈ N,

hence P(Aε) = 0 and thus, as ε > 0 was arbitrary, P(∥Z∥ > R) ≤ P(
⋃

n∈N
A1/n) ≤ ∑n∈N

P(A1/n) =
0. This implies that ∥❩∥L∞ ≤ R and hence ❩ ∈ CR, concluding the proof of (i).

For a proof of statement (ii), choose an arbitrary ❩⋆ ∈ CR and any ε > 0. Since by Proposition
4.5 there is ψ ∈ Ψ with ∥❩⋆ − ψ(X)∥L2(HY ) ≤ ε, the choice ψ̃ := ψ · ✶¶∥ψ∥≤2R♢ gives that

∥

∥❩⋆ − ψ̃(X)
∥

∥

2

L2(HY )
=

∫

AR

∥

∥❩⋆ − ψ(X)
∥

∥

2
dP +

∫

Ac
R

∥❩⋆∥2 dP

≤
∫

AR

∥

∥❩⋆ − ψ(X)
∥

∥

2
dP +

∫

Ac
R

∥❩⋆ − ψ(X)∥2 dP

=
∥

∥❩⋆ − ψ(X)
∥

∥

2

L2(HY )
≤ ε2, where AR := ¶∥ψ(X)∥ ≤ 2R♢,

since Ac
R ⊆

{

ω ∈ Ω ♣ ∥❩⋆(ω)∥ ≤ R = 2R−R <
∣

∣∥ψ(X(ω))∥−∥❩⋆(ω)∥
∣

∣ ≤ ∥ψ(X(ω))−❩⋆(ω)∥
}

∪N⋆

for the P-nullset N⋆ := ¶∥❩⋆∥ > R♢. This proves (ii), as desired.
As to (iii), note that clearly evX(BR) ⊆ CR, so let us Ąx any ❩ ∈ CR for the converse inclusion.

Then ❩ is (ΣX ,B(HY))-measurable by deĄnition of CR, and hence, by Doob-Dynkin, ❩ = ϕ̃0(X)
for some (B(DX),B(HY))-measurable function ϕ̃0 : DX → HY ; see e.g. [23, Lemma 1.14]. (Note
that this ϕ̃0 is unique PX -a.e.: if ❩ = ϕ̃0(X) = ϕ̃1(X) then ∆ := (ϕ̃0 − ϕ̃1) ◦ X = 0 and thus
1 = P(∆−1¶0♢) = PX(ϕ̃0 = ϕ̃1).) Denoting BR := ¶t ∈ HY ♣ ∥t∥ ≤ R♢ ∈ B(HY) and Ω̂ :=
❩

−1(BR) ∈ F and ❩̃ := ✶Ω̂ · ❩, note that (❩ = ❩̃ P-a.s. by deĄnition of C and thus) ❩ = ❩̃ in

L2(P; HY). Hence, and since ❩̃ = ϕ(X) for the map ϕ ≡ ϕ(x) := ✶ϕ̃−1
0 (BR)(x) · ϕ̃0(x) from BR, we

have the identity ❩ = ϕ(X) (in L2(P; HY)). This proves (iii), as claimed.
Statement (iv) follows via the conditional JensenŠs inequality, as stated in [57], which gives that

∥

∥E
[

❨
Λ
∣

∣X
]
∥

∥

L∞ ≤ ess supω∈Ω E
[

∥❨Λ∥
∣

∣X
]

(ω) ≤ RΛ

(the last inequality holds by (48) and the monotonicity of the operator PG from (139)); [57, f = ∥·∥]
is applicable since ❨Λ is Bochner-integrable by [its inclusion in (54) and] [58, Proposition 1.16].

Given R ≥ 0 and with notation (58), denote ψα♣R := ψα · ✶¶∥ψα∥≤2R♢ for α ∈ L2
X .

Proposition B.10. In the setting of Theorem 4.8, and with ψα♣R := ψα · ✶¶∥ψα∥≤2R♢ for α ∈ L2
X ,

E
[

❨
Λ
∣

∣X
]

= arg min
❩∈ CRΛ

Φ(❩) = lim
k→∞

ψαk♣RΛ
(X) in L2

X(HY) (168)

for any minimizing sequence (αk) ⊂ L2
X of the (semi-inĄnite) linear least squares problem

inf
α∈L2

X

E
[

∥❨Λ − ψα♣RΛ
(X)∥2

]

. (169)

The convergence in (168) holds P-a.s. if (αk) is such that
∑∞
k=0(Φ(ψαk♣RΛ

(X)) − γRΛ
)1/2 < ∞ for

γRΛ
:= infα∈L2

X
Φ(ψα♣RΛ

(X)).
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Proof. The above are straightforward consequences of Lemma B.9 and the proof of Theorem 4.8.
Indeed: Adopting the notation of said proof, we see that

❨
Λ
X = arg min

❩∈ CRΛ

E

[

∥

∥❨
Λ − ❩

∥

∥

2
]

= arg min
❩∈C2RΛ

Φ(❩) (170)

from the characterisation (141) and the inclusions C2RΛ
⊂ G and ❨Λ

X ∈ CRΛ
(Lemma B.9 (iv)).

The convergence (168) then follows by combination of (170) and Lemma B.9 (ii), in complete
analogy to how (65) was obtained by combination of (141) and (142): Noting that

Φ(❨Λ
X)

(170)
= min

❩∈CRΛ

Φ(❩)
Lem. B.9 (ii)

= inf¶Φ(❩) ♣ ❩ ∈ Ψ2RΛ
(X)♢ = inf

α∈L2
X

Φ(ψα♣RΛ
(X)) = γRΛ

,

we see that, for any minimizing sequence (αk) of ¶Φ(ψα♣RΛ
(X)) ♣ α ∈ L2

X♢, the sequence (❩k) :=
(ψαk♣RΛ

(X)) ⊂ C2RΛ
is minimizing for min¶Φ(❩) ♣ ❩ ∈ C2RΛ

♢; hence and with Lemma B.9 (i), both
the convergence in (168) and the propositionŠs Ąnal almost-sure assertion follow exactly as in the
proof of Theorem 4.8.
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