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Spectral convergence in large finite resonator arrays: the
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Abstract

We show that resonant frequencies of a system of coupled resonators in a truncated periodic
lattice converge to the essential spectrum of corresponding infinite lattice. We use the capacitance
matrix as a model for fully coupled resonators with long-range interactions in three spatial dimen-
sions. For one-, two- or three-dimensional lattices embedded in three-dimensional space, we show
that the (discrete) density of states for the finite system converge in distribution to the (contin-
uous) density of states of the infinite system. We achieve this by proving a weak convergence of
the finite capacitance matrix to corresponding (translationally invariant) Toeplitz matrix of the
infinite structure. With this characterization at hand, we use the truncated Floquet transform
to introduce a notion of spectral band structure for finite materials. This principle is also ap-
plicable to structures that are not translationally invariant and have interfaces. We demonstrate
this by considering examples of perturbed systems with defect modes, such as an analogue of the
well-known interface Su-Schrieffer-Heeger (SSH) model.

Mathematics Subject Classification (MSC2010): 35J05, 35C20, 35P20.

Keywords: finite periodic structures, essential spectrum convergence, edge effects, subwavelength
resonance, density of states, multilevel Toeplitz matrix, van Hove singularity

1 Introduction

The spectra of periodic elliptic operators have significant implications for many physical problems and
have been studied extensively, as a result. In most cases, this analysis is relatively straightforward,
since the spectrum can be decomposed into a sequence of continuous bands using Floquet-Bloch theory
[9, 16]. Meanwhile, the spectra of elliptic operators on finite domains are quite different in nature but
are similarly convenient to handle, in most cases. Such problems typically have a discrete spectrum
that can be described using a variety of standard techniques. A more subtle question, however, is how
to relate these two spectra.

In the physical and experimental literature on waves in periodic structures, the link between the
spectra of finite and infinite structures is made routinely. For example, Floquet-Bloch analysis of
infinite structures is commonly used to predict the behaviour of the equivalent truncated version,
which can be realised in experiments or simulations. Similarly, measurements from experiments or
simulations are often used to recreate the Floquet-Bloch spectra band structure by taking Floquet
transforms of spatially distributed data. This work will make the link between these two systems
precise, by clarifying how the spectrum of the finite structure converges to that of the corresponding
infinite structure, as its size becomes arbitrarily large.

In this work, we will study the capacitance matrix as a model for a system of coupled resonators.
This is a model that describes the resonant modes of a system of N resonators in terms of the eigenstates
of an N × N matrix. This matrix is defined in terms of Green’s function operators, posed on the
boundaries of the resonators. This use of boundary integral formulations allows the model to describe
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a broad class of resonator shapes [7, 10]. A crucial feature of the model is that it takes into account long-
range interactions between the resonators; interactions between a pair of resonators scale in inverse
proportion to the distance between them. This is in contrast to many tight-binding Hamiltonian
formulations, which often use nearest-neighbour approximations. The capacitance matrix model was
first introduced by Maxwell to model the relationship between the distributions of potential and charge
in a system of conductors [17]. More recently, it has been shown that the capacitance matrix model also
captures the subwavelength resonant modes of a system of high-contrast resonators [1]. Our motivation
for using it as the basis for this work is that it serves as a canonical model for a fully coupled system
of resonators, which has long-range interactions between the resonators decaying in proportion to the
distance.

An important subtlety of the model considered in this work is that there are no energy sources or
damping mechanisms, such that the system is time-reversal symmetric. This means that the capac-
itance matrix model used in this work is a Hermitian matrix. While generalized capacitance matrix
models have been developed for non-Hermitian systems [4], for non-Hermitian models we generally
expect drastically different behaviour, whereby the finite and infinite systems have fundamentally dif-
ferent spectra. A symptom of this is the non-Hermitian skin effect, whereby all eigenmodes are localised
at one end of a finite-sized structure, in certain systems [23].

As the system of finitely many resonators becomes large, the corresponding capacitance matrix
also grows in size. Thus, the problem at hand is to understand the asymptotic distribution of the
eigenvalues of the capacitance matrix, in the limit that its size becomes arbitrarily large. While this
is an open question for the capacitance matrix, similar results exist for other classes of matrices. For
example, the asymptotic distribution of the eigenvalues of banded matrices has been studied [8, 14].
The capacitance matrix is not banded, but it is “almost” banded in the sense that the entries decay
in successive off-diagonals. Similarly, there is an established theory describing the limiting spectra of
Toeplitz matrices [15, 19, 21]. Once again, the capacitance matrix is not Toeplitz, but for a periodic
resonator array it is known to converge to a doubly infinite matrix that has constant (block) diagonals
[2]. The crux of this work is to use the properties of the capacitance matrix, as summarised in e.g.

[1, 11], to develop an analogous asymptotic eigenvalue distribution theory.
In many of the existing theories on asymptotic eigenvalue distributions, the crucial quantity is the

density of states (DOS) [8, 14]. This is a measure that describes the distribution of eigenmodes in
frequency space and is given, for a finite array, by

Df(ω) =
1

M

M∑

j=1

δ
(
ω − ω

(M)
j

)
, (1.1)

where ω
(M)
1 , ω

(M)
2 , . . . , ω

(M)
M are the M eigenvalues of the M -resonator system. One of the main results

of this work is showing that Df converges (in the sense of distributions) to the density of states D for
the corresponding infinite system (which can be obtained via Floquet-Bloch analysis):

Df → D. (1.2)

The proof of this result is based on comparing the capacitance matrix for a finite system of resonators
with the finite-sized matrix obtained by taking the matrix arising from the infinite array of resonators
and truncating it to be M -by-M . The key insights are that (i) these two finite-sized matrices converge
to the same limit (under a normalised Frobenius norm) as the size becomes large and (ii) the truncated
infinite matrix is a block Toeplitz matrix, meaning we can use existing theory. This approach proves
to be immensely useful and will allow us to prove not only the convergence of the density of states,
but also a theorem demonstrating that this spectral convergence is in fact pointwise. That is, given
an eigenvalue ω of the infinite structure and a positive number ε, any sufficiently large finite structure
will have an eigenvalue ωf such that

|ωf − ω| < ε. (1.3)

Further, we will see that a similar convergence result holds for the corresponding eigenvectors, also.
This paper will begin by introducing the capacitance matrix model in Section 2. This is accom-

panied by an asymptotic derivation of the model from a three-dimensional differential problem (with
high-contrast subwavelength resonators) in Appendix A, for context. In Section 3, we will develop the
theory needed to prove the convergence of the density of states. This is followed by results on point-
wise convergence in Section 4, which are accompanied by a demonstration of how the Floquet-Bloch
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spectral bands can be reconstructed from a finite structure using the Floquet transform. Finally, in
Section 5 we present some open questions and possible avenues for future work.

2 Capacitance matrix model

Throughout this work, we will use a capacitance matrix model for a system coupled resonators. We
can view this as a canonical model for coupled resonators with long-range interactions (the interactions
are inversely proportional to the distance between the resonators). This model can be derived from
first principles to describe either a system of conductors [17] or a system of high-contrast resonators,
which is summarised in Appendix A.

We consider a periodically repeating system in R
3. We take a lattice Λ of dimension d, where

0 < d ≤ 3, generated by the lattice vectors l1, . . . , ld ∈ R
3. For simplicity, we take Λ to be aligned

with the first d coordinate axes. We will refer to the three possible lattice dimensions as, respectively,
a chain of resonators (d = 1), a screen of resonators (d = 2), and a crystal of resonators (d = 3). We
take Y ⊂ R

3 to be a single unit cell,

Y =





{c1l1 + x2e2 + x3e3 | 0 ≤ c1 ≤ 1, x2, x3 ∈ R}, d = 1,

{c1l1 + c2l2 + x3e3 | 0 ≤ c1, c2 ≤ 1, x3 ∈ R}, d = 2,

{c1l1 + c2l2 + c3l3 | 0 ≤ c1, c2, c3 ≤ 1}, d = 3.

To define the finite lattice, we let Ir ⊂ Λ be all lattice points within distance r from the origin;

Ir = {m ∈ Λ | |m| < r}.

The resonators are given by inclusions of a heterogeneous material surrounded by some heteroge-
neous background medium. We let D ⊂ Y be a collection of N resonators contained in Y ,

D =

N⋃

i=1

Di,

where Dn are disjoint domains in Y with boundary ∂Di ∈ C1,s for s > 0. We will use D to denote the
collection of resonators contained within a single unit cell of the periodic lattice. We can subsequently
define the periodic system D and the finite system Df of resonators, respectively, as

D =
⋃

m∈Λ

D +m, and Df(r) =
⋃

m∈Ir

D +m.

Here, D is the full lattice of resonators while Df is a finite lattice of resonators of width r. For
i = 1, ..., N and m ∈ Λ, we let Dm

i denote the ith resonator inside the mth cell:

Dm
i = Di +m.

Next, we will define the capacitance coefficients associated to D and Df , starting with the finite
structure Df . Let G be the Green’s function for Laplace’s equation in three dimensions:

G(x) = −
1

4π|x|
.

Given a smooth, bounded domain Ω ⊂ R
3, the single layer potential SΩ : L2(∂Ω) → H1(∂Ω) is defined

as

SΩ[ϕ](x) :=

∫

∂Ω

G(x− y)ϕ(y) dσ(y), x ∈ ∂Ω.

Crucially for the analysis that will follow, SΩ is known to be invertible [7]. For the finite lattice Df ,
we define the capacitance coefficients as

Cmn
f,ij (r) =

∫

∂Dm
i

S−1
Df

[χ∂Dn
j
] dσ, (2.1)
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for 1 ≤ i, j ≤ N and m,n ∈ Ir, where χA(x) denotes the indicator function of the set A ⊂ R
3. Here, we

explicitly indicate the dependence of the size r of the truncated lattice. For m,n ∈ Ir, we observe that
Cmn

f (r) is a matrix of size N ×N , while the block matrix Cf = (Cmn
f ) is a matrix of size N |Ir|×N |Ir|.

We can define analogous capacitance coefficients for the infinite structure D. We begin by defining
the dual lattice Λ∗ of Λ as the lattice generated by the dual lattice vectors α̂1, ..., α̂d satisfying α̂i · lj =
2πδij for i, j = 1, ..., d and whose projection onto the orthogonal complement of Λ vanishes. We define
the Brillouin zone Y ∗ as Y ∗ :=

(
R

d × {0}
)
/Λ∗, where 0 is the zero-vector in R

3−d. We remark that
Y ∗ can be written as Y ∗ = Y ∗

d × {0}, where Y ∗
d has the topology of a torus in d dimensions.

When α ∈ Y ∗ \ {0}, we can define the quasi-periodic Green’s function Gα(x) as

Gα(x) :=
∑

m∈Λ

G(x−m)eiα·m. (2.2)

The series in (2.2) converges uniformly for x and y in compact sets of R
d, with x 6= y and α 6= 0.

Given a bounded domain Ω ⊂ Y , the quasi-periodic single layer potential Sα
Ω : L2(∂Ω) → H1(∂Ω) is

then defined as

Sα
Ω[ϕ](x) :=

∫

∂Ω

Gα(x− y)ϕ(y) dσ(y), x ∈ ∂Ω. (2.3)

For α ∈ Y ∗ and for 1 ≤ i, j ≤ N , we have a “dual-space” representation of the infinite capacitance
matrix as the N ×N -matrix

Ĉα
ij =

∫

∂Di

(Sα
D)−1[χ∂Dj

] dσ. (2.4)

This is a “dual-space” representation in the sense that it is parametrised by α which is the Floquet-
Bloch parameter that describes the frequency of spatial oscillation of the eigenmodes. Thus, we can
equivalently define a “real-space” representation of the capacitance coefficients through an appropriate
transformation. That is, for 1 ≤ i, j ≤ N , the “real-space” capacitance coefficients at the lattice point
m are given by

Cm
ij =

1

|Y ∗|

∫

Y ∗

Ĉα
ije

−iα·m dα. (2.5)

Here, C0
ij corresponds to the diagonal block which contains the capacitance coefficients of the resonators

within a single unit cell. We use the notation C to denote the infinite matrix that contains all the Cm
ij

coefficients, for all 1 ≤ i, j ≤ N and all m ∈ Λ.
The main results in this work are based on relating the finite capacitance matrix Cf to the truncated

capacitance matrix Ct. This matrix is obtained by truncating C to the centre block of size N |Ir|×N |Ir|,
to give a matrix of the same dimensions as Cf . The main technical result of this work is Lemma 3.1,
which ascertains a type of weak convergence of Cf to Ct as r → ∞.

The spectra of the infinite structure and the finite structure, respectively, are given by the solutions
ω to the spectral problems

Cu = ω2
u and Cfu = ω2u. (2.6)

The goal of this work is to compare spectral properties of the infinite structure and the finite structure.
Specifically, this work will focus on the convergence of eigenvalues of Cf to the essential spectrum of
C; the convergence of pure-point spectra (defect modes) has already been treated in [3]. Throughout,
we let ω̂k(α), for k = 1, ..., N denote the positive eigenvalues of the quasi-periodic capacitance matrix
problem

Ĉαu = (ω̂k(α))
2
u, k = 1, ..., N,

and let ωi, for i = 1, ..., N |Ir| denote the positive eigenvalues of the finite capacitance matrix problem

Cfu = (ωi)
2
u, i = 1, ..., N |Ir|.

We conclude this section with the following convergence result of the capacitance coefficients, which
was proved in [3].

Theorem 2.1. For fixed m,n ∈ Λ, we have as r → ∞,

lim
r→∞

Cmn
f (r) = Cm−n,

where Cmn
f = (Cmn

f,ij )
N
i,j=1 and Cm−n = (Cm−n

ij )Ni,j=1 denote, respectively, the N ×N matrices defined

in (2.1) and (2.5).
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3 Eigenvalue distribution and essential spectral convergence

The main goal of this section is to prove the distributional convergence of the density of states of the
finite and infinite materials. The main technical result is Lemma 3.1, which establishes the convergence
of the finite and truncated capacitance matrices in a certain weak “averaged” norm. We emphasise
that the finite and truncated capacitance matrices are not expected to converge strongly in the matrix
operator norm. This is due to the fact that, regardless of its size, the finite structure will always exhibit
edge effects.

3.1 Density of states

For an N -level system with band functions ω̂k(α), k = 1, ..., N , we define the “finite-material” density
of states Df(ω) and “infinite-material” denisty of states D(ω) as the distributions (see, for example,
[12, 24])

Df(ω) =
1

N |Ir|

N |Ir|∑

i=1

δ(ω − ωi) and D(ω) =
1

(2π)d

∫

Y ∗

1

N

N∑

k=1

δ
(
ω − ω̂k(α)

)
dα. (3.1)

Let L(ω) = {α ∈ Y ∗ | ω̂k(α) = ω for some k} be the level set of ω̂k(α) at ω. Carrying out the integral
in (3.1), we can rewrite D as

D(ω) =
1

(2π)d

∫

L(ω)

1

N

N∑

k=1

1

|∇αω̂k(α)|
dσ(α), (3.2)

where dσ(α) is the surface measure on L(ω). Points α where |∇αω̂k(α)| = 0 are known as van Hove

singularities and occur around any band edge [22].

3.2 Finite-material eigenvalue distribution

The truncated matrix Ct of size m ∈ Z
d is a multilevel block Toeplitz matrices, with known asymptotic

eigenvalue distribution in terms of the eigenvalues ω̂k(α) of the quasi-periodic capacitance matrix Cα

(see, e.g. [13, 15] for the one-dimensional case and [20, 21] for the two- and three-dimensional cases).
Based on these results, we will show that the finite capacitance matrix Cf has identical eigenvalue
distribution to Ct as the size tends to infinity.

For an n× n matrix M , let |M | denote the normalized Frobenius norm

|M |2 =
1

n

n∑

i,j=1

|mi,j |
2. (3.3)

We will use ‖M‖2 for the standard Euclidean matrix norm. The following lemma is the main technical
result we will need.

Lemma 3.1. As r → ∞, the matrices Ct and Cf are asymptotically equivalent, in other words, it

holds that

• lim
r→∞

|Cf − Ct| = 0;

• ‖Cf‖2 and ‖Ct‖2 are uniformly bounded as r → ∞.

Proof. ‖Cf‖2 is uniformly bounded by [3, Lemma 3.4], while ‖Ct‖2 is uniformly bounded since it is
the Toeplitz matrix of an essentially bounded symbol.

Let Df denote the finite lattice of width r. Theorem 2.1 tells us how to extend this finite lattice Df

to a larger lattice D̃f , which has width r̃ > r. In particular, Theorem 2.1 shows that we can make this
extension in such a way that the corresponding “r-sized” block C̃f,0 of the finite capacitance matrix

corresponding to D̃f is arbitrarily close to the “r-sized” truncated matrix Ct. That is, given an ε > 0,
we can make a sufficiently large extension such that

‖Ct − C̃f,0‖2 < ε. (3.4)
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Observe that
∣∣∣Cf − C̃f,0

∣∣∣
2
=

1

N |Ir|

∑

m,n∈Ir
1≤i,j≤N

Ç∫

∂Dm
i

(
S−1
Df

− S−1

D̃f

)
[χ∂Dn

j
] dσ

å2

. (3.5)

We define the “tail” D0 of the extended lattice as

D0 = D̃f \ Df .

Observe that we have a block-structure of the single-layer potential on the extended lattice:

SD̃f
=

Å

SDf
SD0

|Df

SDf
|D0

SD0

ã

.

We then have a block inverse of SD̃f
as follows:

S−1

D̃f

=

Ç(
SDf

− SD0
|Df

S−1
D0

SDf
|D0

)−1
A1

A2 A3

å

, (3.6)

where Ai are bounded operators that are immaterial for our analysis. We are now ready to start
estimating the difference between Cf and Ct. We want to estimate the term

SD0
|Df

S−1
D0

SDf
|D0

S−1
Df

[χ∂Dn
j
].

Define U(x) = SDf
S−1
Df

[χ∂Dn
j
] and V = SD0

S−1
D0

[U |∂D0
]; these functions satisfy the systems of equations





∆U = 0, x ∈ R
3 \ Df ,

U |∂Df
= χ∂Dm

i
,

U(x) ∼ 1
|x| ,

and





∆V = 0, x ∈ R
3 \ D0,

V (x) = U(x), x ∈ ∂D0,

V (x) ∼ 1
|x| .

(3.7)

Observe that the boundary conditions satisfied by U are imposed on ∂Df while the boundary conditions
satisfied by V are imposed on ∂D0. In particular, U(x) scales like |m|−1 for x ∈ ∂D0 while V (x) scales
like (|m||n|)−1 for x ∈ ∂Dn. As r → ∞, we therefore have

∫

∂Dm
i

(
S−1
Df

− S−1

D̃f

)
[χ∂Dn

j
] dσ ≤

K1

(1 + |m|)(1 + |n|)
,

for some constant K1. From (3.5) and (3.6), we use the Neumann series to find that

∣∣∣Cf − C̃f,0

∣∣∣
2
≤

K2

rd

∑

m,n∈Ir

1

(1 + |m|)2(1 + |n|)2

≤ K3r
d−4,

where d ∈ {1, 2, 3}. In other words,
∣∣∣Cf − C̃f,0

∣∣∣ → 0, which together with (3.4) concludes the proof.

From [15] we know that asymptotically equivalent matrices have identical eigenvalue distributions
as their sizes tend to infinity. This gives the following result on distributional convergence of the
discrete density of states Df(ω) to the continuous density of states D(ω).

Theorem 3.2. As r → ∞, Df(ω) converges to D(ω) in the sense of distributions. In other words, for

any smooth function F with compact support, we have

lim
r→∞

∫ ∞

−∞

Df(ω)F (ω) dω =

∫ ∞

−∞

D(ω)F (ω) dω.

Proof. Since Ct and Cf are asymptotically equivalent, we have from [15] that

lim
r→∞

1

N |Ir|

N |Ir|∑

i=1

F (ωi) =
1

(2π)d

∫

Y ∗

1

N

N∑

k=1

F
(
ω̂k(α)

)
dα,

from which the theorem follows.
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From Theorem 3.2 we have that the frequencies ωi, i = 1, ..., N |Ir|, of the finite capacitance matrix
are distributed according to

ωi ∼ ω̂k(α),

where α is uniformly distributed on the Brillouin zone Y ∗ and ω̂k(α), k = 1, ..., N, are the eigenval-
ues of the quasi-periodic capacitance matrix. The proportion of modes with eigenfrequencies in the
infinitesimal interval between ω and ω + dω is then approximated by

Df(ω) dω ≈
dω

(2π)d

∫

L(ω)

1

N

N∑

k=1

1

|∇αωk(α)|
dσ(α).

For a one-dimensional chain of single resonators (d = 1, N = 1) we obtain

Df(ω) dω ≈
dω

2π

1

|ω̂′(α)|

∣∣∣∣∣
α∈α(ω)

, (3.8)

where α(ω) = {α ∈ Y ∗ | ω̂1(α) = ω}, which is shown by the solid lines in Figure 1a.

3.3 Numerical results

The convergence of the distribution of the resonant frequencies can be studied numerically. In Figure 1
we plot histograms of the discrete, finite set of subwavelength resonant frequencies for truncated
structures and compare this to the density of states (DOS) for the infinite array, given by (3.8). In
each case, the histograms and the DOS are normalised so that the area under the curves is equal to
1. We can see that the distribution of the truncated eigenvalues closely resembles the DOS as the
structure becomes sufficiently large (for 1000 resonators, the curve is difficult to distinguish from the
histogram in our plot). We can quantify the error by computing the area between the two curves (the
histograms being viewed as curves for these purposes). This is shown in the lower plot of Figure 1 and
we observe linear convergence as the size of the array increases. In other words, the discrete DOS of
the truncated resonant frequencies is converging in distribution to the DOS, at a linear rate.

Similar histograms can be produced for multi-dimensional lattices. For example, in Figure 2 we
plot the same histograms for successively larger square (two-dimensional) lattices. Once again, we can
see that the distribution of the eigenfrequencies converges to a fixed distribution as the size of the
finite lattice increases. One notable difference from the one-dimensional lattice shown in Figure 1 is
that the distribution is not singular at the edge of the first band.

4 Pointwise convergence and discrete band structure

Since any edge effects persist in the limit r → ∞, we should not expect all eigenvalues of Cf to converge
to the spectrum of C. Nevertheless, for any point in the continuous spectrum, there will always be
eigenvalues arbitrarily close. We can repeat the arguments used in the proof of Lemma 3.1 to obtain
the following theorem on pointwise convergence of the essential spectrum and Bloch modes.

Theorem 4.1. Let ω = ω̂k(α) be an eigenvalue of the quasi-periodic capacitance matrix Cα for some

α ∈ Y ∗, corresponding to the normalized eigenvector u ∈ R
N . Then, for any ε > 0 we can choose

r > 0 such that the finite capacitance matrix Cf(r) has a family of eigenvalues ω2
i , i ∈ I and associated

normalized eigenvectors ui ∈ R
N |Ir| satisfying

|ω2 − ω2
i | < ε,

∥∥∥∥∥ũ−
∑

i∈I

ciui

∥∥∥∥∥
2

< ε,

for some ci ∈ C, where ũ ∈ R
N |Ir| is the normalized quasi-periodic extension of u.

Remark 4.2. Although any eigenvalue and eigenvector of the quasi-periodic capacitance matrix can
be approximated by eigenvalues and eigenvectors of the finite capacitance matrix, the converse need
not hold. Indeed, due to edge effects, Cf might have eigenvalues which do not approach those of Ct

in the limit r → ∞. Although Cf converges to Ct in the (weak) norm | · |, it does not converge in the
(strong) Euclidean operator norm.
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(a)

(b)

Figure 1: Convergence in distribution of the resonant frequencies of the truncated linear array to the density
of states (DOS) for the infinite array. (a) The resonant frequencies of the truncated arrays are shown in
histograms and the DOS for the infinite array (3.2) as a solid red line. Both the histograms and the DOS have
been normalised to have unit area under the curves. (b) The L

1 error between the histogram plots and the DOS
curve, which converges to zero as the size of the finite array increases.

Figure 2: Distribution of the resonant frequencies of a truncated square (two-dimensional) array, plotted as
histograms.
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Figure 3: A given eigenmode uj of a truncated periodic structure can be associated with a quasi-periodicity
α. Here, we plot the norm of the truncated Floquet transform of the 10th, 20th and 30th eigenmodes of an
array of 50 resonators. In each case, there are clear peaks that we can assign as the quasi-periodicities of the
eigenmodes. These values can be used to reconstruct approximate spectral band functions.

The discrete band function calculation introduced in [3] provides a notion of how well an eigenmode
of Cf , for large r, is approximated by Bloch modes of the infinite structure. Given an eigenmode uj ,
we can take the truncated Floquet transform of uj as

(ûj)α =
∑

m∈Ir

(uj)meiα·m, α ∈ Y ∗. (4.1)

Here we denote by (uj)m the vector of length N associated to cell m ∈ Λ. Observe that uj is a vector
of length N |Ir| while (ûj)α is a vector of length N . Looking at the Euclidean 2-norm ‖(ûj)α‖2 as
a function of α, this function has distinct peaks, which are the quasi-periodicities α associated with
uj . An example is shown in Figure 3. We can then define a discrete band structure whereby the
eigenvalues ωj of Cf are associated to a quasi-periodicity αj given by

αj = argmax
α∈Y ∗

‖(ûj)α‖2. (4.2)

Note that the symmetry of the problem means that if α is an approximate quasi-periodicity then so
will −α be. In cases of additional symmetries of the lattice, we expect additional symmetries of the
quasi-periodicities.

As a demonstrative example of this process, we consider the case of a single resonator repeating
in one direction. This has a single continuous band of eigenfrequencies, as shown in Figure 4a. For a
truncated version of the structure, the approximate band functions can be reconstructed as above. In
Figure 3 we show the norm of the truncated Floquet transform of the 10th, 20th and 30th eigenmodes
in an array of 50 resonators. In each case the function is even about zero and has a clear peak, which
allows us to identify an appropriate quasi-periodicity αj via (4.2). These values can be used to plot
the 50 resonant frequencies alongside the continuous bands of the limiting infinite structure, which is
shown in Figure 4a. We see that, even for a set of 50 resonators, the approximate band function closely
resembles that of the infinite structure.

In Figure 4b, we compare the continuous and truncated spectra of an array of resonators arranged
in pairs (dimers). The truncated structure has 100 resonators arranged in 50 pairs. This geometry is an
example of the famous Su-Schrieffer-Heeger (SSH) chain [18] which has been shown to have fascinating
topological properties [5]. This system has two subwavelength spectral bands and the truncated modes
are split evenly between approximating the two bands.

Additionally, we can consider this method for lattices of higher dimension. Figure 5a shows the
case of a square lattice of resonator dimers. Similarly to Figure 4b, there is a band gap between the
first and the second bands, and we see a close agreement between the discrete and the continuous band
structure. Figure 5b shows a similar figure in the case of a honeycomb lattice, where the finite lattice
is truncated along zig-zag edges of the lattice. As shown in [6], there are Dirac cones on each corner
of the Brillouin zone. In the truncated structure, in addition to the “bulk modes” whose frequencies
closely agree with the continuous spectrum, there are “edge modes” which are localized around the
edges and whose points in the band structure lie away from the continuous bands.
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· · · · · ·

.

(a) Single periodic resonators (N = 1)

· · · · · ·

.

(b) Periodic pairs of resonators (N = 2)

Figure 4: The continuous spectrum of the infinite structure and the discrete spectrum of the truncated structure
for a one-dimensional lattices. (a) Single periodic resonators (N = 1) with a truncated structure consisting of
50 resonators. (b) Periodic pairs of resonators (N = 2) with a truncated structure containing 100 resonators.
In both cases, the truncated Floquet transform (4.1) is used to approximate the quasi-periodicity of the truncated
modes.
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(b) Honeycomb lattice

Figure 5: Examples of continuous and discrete spectra of the infinite and truncated structures, respectively. (a)
A square lattice with two resonators per unit cell, resulting in two bands separated by a gap. (b) A honeycomb
lattice with Dirac cones at the vertices of the Brillouin zone. In both cases, the truncated structures have 800
resonators and the truncated Floquet transform is used to approximate the quasi-periodicity of the truncated
modes.
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· · · · · ·

.

(a) Point defect

· · · · · ·

.

(b) Topological “SSH” defect

Figure 6: The discrete spectrum a truncated array with defects can be related to the continuous spectrum of
the unperturbed periodic structure. (a) A local defect in a periodic array of resonators. The truncated array
has 51 resonators with the defect on the 26th. The continuous spectrum of the infinite array is the same as
that shown in Figure 4a. (b) A topological (non-compact) defect in an array of resonator pairs. The truncated
array has 101 resonators with the defect on the 51st. The continuous spectrum of the infinite array is the same
as that shown in Figure 4b. In both cases, the defect introduces a localised eigenmode, which does not have a
well-defined associated quasi-periodicity and is show with a dashed line.

5 Nonperiodic band structure and topological invariants

The method described in Section 4 can also be applied to aperiodic structures that have been perturbed
to introduce defects. Two examples of this are shown in Figure 6. In each case, the defects have induced
localised eigenmodes which do not have well-defined associated quasi-periodicities. These are shown
with dashed lines. The rest of the truncated spectrum still agrees well with the continuous spectrum
of the limiting infinite operator.

The example shown in Figure 6a is that of a local defect, where the material parameters are changed
on the central resonator. As was studied in [2, 3], this corresponds to multiplying the capacitance
matrix by a diagonal matrix that is equal to the identity matrix other than a value greater than 1 in
the central entry. A formula for the eigenfrequency of this defect mode in the infinite structure was
derived in [2] and it was proved in [3] that the eigenfrequencies of the localised modes in the truncated
arrays converges to that value.

In Figure 6b we study the famous example of a interface mode in the Su-Schrieffer-Heeger (SSH)
chain. This localised eigenmode exhibits enhanced robustness with respect to imperfections, a prop-
erty it inherits from the underlying topological properties of the periodic structure via the notion of
topological protection [5]. Even though the periodicity of the structure is broken due to the interface,
we can still visualise the spectrum as a discrete band structure through (4.1) and (4.2).

6 Concluding remarks

In this work, we have shown the convergence of resonant frequencies of systems of coupled resonators
in truncated periodic lattices to the essential spectrum of corresponding infinite lattice. We have
studied this using the capacitance matrix model for coupled resonators with long-range interactions.
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We emphasise that our conclusions extends to other long-range models, since it is the decay of the
coupling which is the main feature of the analysis.

The discrete band structure calculations in Section 4 give a concrete way to associate band struc-
tures to practically realizable materials which may be finite and aperiodic. Notably, for the field of
topological insulators, this opens the possibility of defining discretely defined invariants, defined only
in terms of the eigenvalues and eigenmodes of the finite interface structures rather than the Bloch
eigenvalues and eigenmodes of corresponding infinite, periodic, structures.

We emphasise that the matrix model adopted in this work is a Hermitian model with time-reversal
symmetry. For non-Hermitian models, similar convergence theorems are not expected to hold, and
the spectra of the finite and infinite models might be vastly different. For the discrete band structure
calculations in Section 4, we expect the finite modes to be associated to a complex momentum and to
adequately describe these, we need to extend the Brillouin zone to the complex plane. A precise study
of this setting would be a highly interesting future work.

A Continuous PDE model

In this appendix, we summarize how the generalized capacitance matrix gives an asymptotic charac-
terisation a system of coupled high-contrast resonators. In particular, it can be used to characterize
the subwavelength (i.e. asymptotically low-frequency) resonance of the system. We refer the reader
to [1] for an in-depth review and extension to other settings.

We will consider an array of finitely many resonators here, but the modification to infinite peri-
odic systems is straightforward, though an appropriate modification of the Green’s function [1]. As
previously considered, we suppose that the resonators are given by Di ⊂ R

3. We consider the scatter-
ing of time-harmonic waves with frequency ω and will solve a Helmholtz scattering problem in three
dimensions. This Helmholtz problem, which can be used to model acoustic, elastic and polarized
electromagnetic waves, represents the simplest model for wave propagation that still exhibits the rich
phenomena associated to subwavelength physics.

We let vi denote the wave speed in each resonator Di so that ki = ω/vi is the wave number in Di.
Similarly, the wave speed and wave number in the background medium are denoted by v and k. The
crucial asymptotic parameters are the contrast parameters δ1, . . . , δN . For example, in the case of an
acoustic system, δi is the ratio of the densities inside and outside the resonator, respectively. In the
current formulation, the material parameters may take any values (for example, complex parameters
correspond to non-Hermitian systems with energy gain and loss). In the setting of Section 2, we take
all parameters to be positive and equal.

Subwavelength resonance will occur in the high-contrast limit

δi → 0.

We define D as the collection of resonators:

D =
⋃

m∈Ir

N⋃

i=1

(Di +m),

and consider the Helmholtz resonance problem in D





∆u+ k2u = 0 in R
3 \D,

∆u+ k2i u = 0 in Di +m, for i = 1, . . . , N, m ∈ Ir,

u|+ − u|− = 0 on ∂D,

δi
∂u

∂ν

∣∣∣∣
+

−
∂u

∂ν

∣∣∣∣
−

= 0 on ∂Di +m for i = 1, . . . , N, m ∈ Ir,

u(x) satisfies the Sommerfeld radiation condition,

(A.1)

where the Sommerfeld radiation condition is given by

lim
|x|→∞

|x|

Å

∂

∂|x|
− ik

ã

u = 0, uniformly in all directions x/|x|, (A.2)
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and guarantees that energy is radiated outwards by the scattered solution.
As mentioned, we take the limit of small contrast parameters while the wave speeds are all of order

one. In other words, we take δ > 0 such that

δi = O(δ) and v, vi = O(1) as δ → 0, for i = 1, . . . , N. (A.3)

Within this setting, we are interested in solutions ω to the resonance problem (A.1) that are subwave-

length in the sense that
ω → 0 as δ → 0. (A.4)

To be able to characterize the subwavelength resonant modes of this system, we must define the
generalized capacitance coefficients. Recall the capacitance coefficients (Cmn

f )ij from (2.1). Then, we
define the corresponding generalized capacitance coefficient as

(Cmn
f )ij =

δiv
2
i

|Dm
i |

(Cmn
f )ij , (A.5)

where |Dm
i | is the volume of the bounded subset Dm

i . Then, the eigenvalues of Cf determine the
subwavelength resonant frequencies of the system, as described by the following theorem [1].

Theorem A.1. Consider a system of N |Ir| subwavelength resonators in R
3. For sufficiently small

δ > 0, there exist N |Ir| subwavelength resonant frequencies ω1(δ), . . . , ωN |Ir|(δ) with non-negative real

parts. Further, the subwavelength resonant frequencies are given by

ωn =
√

λn +O(δ) as δ → 0,

where {λn : n = 1, . . . , N |Ir|} are the eigenvalues of the generalized capacitance matrix Cf , which satisfy

λn = O(δ) as δ → 0.

A similar result exists for an infinite periodic structure, in terms of the eigenvalues of the generalized
quasi-periodic capacitance matrix, as defined in (2.4); see [1] for details.
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