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Abstract. We propose a mathematical theory of acoustic wave scattering in one-dimensional finite high-
contrast media. The system considered is constituted of a finite alternance of high-contrast segments of ar-
bitrary lengths and interdistances, called the “resonators”, and a background medium. We prove the existence
of subwavelength resonances, which are the counterparts of the well-known Minnaert resonances in 3D systems.
Our main contribution is to show that the resonant frequencies, as well as the transmission and reflection prop-
erties of the system can be accurately predicted by a “capacitance” eigenvalue problem, analogously to the 3D
setting. Numerical results considering different situations with N = 1 to N = 6 resonators are provided to

support our mathematical analysis, and to illustrate the various possibilities offered by high-contrast resonators
to manipulate waves at subwavelength scales.
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1. Introduction

High-contrast media have raised a lot of attention in the field of photonics and phononics thanks to their
ability to manipulate waves at subwavelength scales [21, 20, 23, 24]. These media are constituted of a back-
ground medium and a set of highly contrasted bounded inclusions. The high-contrast property gives rise to
“subwavelength” resonances, which are frequencies at which the resonators strongly interact with incident waves
whose wavelengths can be larger by several orders of magnitude. A typical example of such high-contrast sys-
tems are air bubbles in water, where the associated subwavelength resonances are called Minnaert resonances
[29]. Subavelength resonances also arise in high-contrast elastic media [25], in plasmonic particles [10], or in
Helmholtz resonators [22]; they enable to achieve a variety of wave applications such as superfocusing [19],
cloaking [1] or guiding [5].

Mathematically, subwavelength resonances correspond to complex poles of the solution operator of the system:
they are a particular type of “scattering resonances” [37] encountered in quantum physics. The scattered field
is significantly amplified as the real incident frequency ω ∈ R becomes close to the complex resonant frequency;
the imaginary part of the resonance is usually small and its physically stems from the radiation of energy at
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infinity. Furthermore, these poles are called “subwavelength” frequencies because they lie in a small complex
neighborhood of the origin; this property allows to study them by mean of some asymptotic analysis in the
regime ω → 0.

So far, high-contrast resonant scattering has been thoroughly investigated mostly in the three-dimensional
setting [8, 13, 28, 2, 4, 15], which is somewhat the “easiest case” due to the decay properties of the fundamental
solution to the Helmholtz equation. We can only mention [8] which consider a single high-contrast inclusion
in a 2D setting, and [6, 3] who considered an infinitely periodic 1D chain of three-dimensional subwavelength
resonators. There has been recently, though, a rise of interest in the analysis of the topological properties of one-
dimensional, infinitely periodic wave systems: [26] considered resonances in finite photonic crystals with a defect,
[27] considered 1D infinitely periodic media with continuous physical parameters, while [12] studies a simplified
SSH model with piecewise continuous physical parameters. Beside these references, we can mention the work of
[18] who considered the optimization of scattering resonances in a finite chain of 1D resonators. Subwavelength
resonant 1D systems have also been studied through physical experiments [11, 33, 36, 35], which were observed to
possess exceptional acoustic or optical transmission properties near resonant frequencies. However, to the best
of our knowledge, a rigorous mathematical analysis of the resonances in acoustic scattering of one-dimensional
waves seems still to be missing from the literature.

The purpose of this paper is therefore to propose a complete mathematical analysis of subwavelength reso-
nances to one-dimensional, high-contrast, finite media. Of particular interest, an analogy between systems of
subwavelength resonators and systems of particles in quantum physics, where the tight-bending model is often

used, is shown. We consider a system D =
⊔N

i=1(x
−
i , x

+
i ) constituted of a chain of N disjoint subwavelength

resonators (x−
i , x

+
i ), where (x±

i )1≤i≤N are the 2N extremities satisfying x+
i < x−

i+1 for any 0 ≤ i ≤ N − 1.

We denote by ℓi = x+
i − x−

i the length of the i-th resonator, and by ℓi(i+1) = x−
i+1 − x+

i the length of the gap
between the i-th and (i+ 1)-th resonator. The system is illustrated on Figure 1.
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Figure 1. A system of N subwavelength resonators, with lengths (ℓi)1<i≤N and interdistances
(ℓi(i+1))1≤i≤N−1.

An acoustic wave field u(t, x) propagates in the heterogeneous medium, which is solution to the 1D wave
equation:

1

κ(x)

d2

dt2
u(t, x)− d

dx

(
1

ρ(x)

d

dx
u(t, x)

)
= 0, (t, x) ∈ R× R. (1.1)

The parameters κ(x) and ρ(x) are respectively the acoustic bulk modulus and the density of the medium, given
by

κ(x) =

{
κb if x ∈ D,

κ if x ∈ R\D,
ρ(x) =

{
ρb if x ∈ D,

ρ if x ∈ R\D.
(1.2)

The total wave field u(t, x) is assumed to be time-harmonic, and is decomposed as the sum of a prescribed
incident wave and an “unknown” outgoing scattered wave:

u(t, x) = e−iωtu(x) with u(x) = uin(x) + us(x). (1.3)

The incident wave uin is time-harmonic with frequency ω; it satisfies:
(

d2

dx2
+ k2

)
uin = 0 in R, (1.4)

where, following the notation of [8, 15], the wave speeds inside the resonators D and inside the background
medium R

3\D, are denoted respectively by vb and v, the wave numbers respectively by kb and k, and the
contrast between the resonators and the background medium by δ:

vb :=

√
κb

ρb
, v :=

√
κ

ρ
, kb :=

ω

vb
, k :=

ω

v
, δ :=

ρb
ρ
.

On the other hand, the scattered wave (t, x) 7→ e−iωtus(x) is determined by the fact that it should be “outgoing”,

i.e. that it should be a function of t−|x|/v. Since us must satisfy ( d2

dx2 +k2)us = 0 far away from D, “outgoing”

means in the 1D setting that us(x) must be proportional to eik|x| for |x| sufficiently large (more precisely, for
2



x < x−
1 and for x > x+

N ). This can equivalently be rewritten in the form of the following Sommerfeld radiation
condition for us: (

d

d|x| − ik

)
us = 0 for x ∈ (−∞, x−

1 ) ∪ (x+
N ,+∞). (1.5)

In these circumstances, the wave problem determined by (1.1) and (1.5) can be rewritten as the following
coupled system of 1D Helmholtz equations:





d2

dx2
u+

ω2

v2
u = 0 in R\

N⊔

i=1

(x−
i , x

+
i ),

d2

dx2
u+

ω2

v2b
u = 0 in

N⊔

i=1

(x−
i , x

+
i ),

u|−(x±
i ) = u|+(x±

i ) for all 1 ≤ i ≤ N,

du

dx

∣∣∣∣
+

(x−
i ) = δ

du

dx

∣∣∣∣
−

(x−
i ) for all 1 ≤ i ≤ N,

du

dx

∣∣∣∣
−

(x+
i ) = δ

du

dx

∣∣∣∣
+

(x+
i ) for all 1 ≤ i ≤ N,

(
d

d|x| − ik

)
(u− uin) = 0 for x ∈ (−∞, x−

1 ) ∪ (x+
N ,+∞),

(1.6)

where for a 1D function w, we have denoted

w|−(x) = lim
s→0
s>0

w(x− s), w|+(x) = lim
s→0
s>0

w(x+ s).

We study subwavelength resonances for the scattering problem (1.6) by performing an asymptotic analysis in
the low-frequency and high-contrast regimes

ω → 0, δ → 0. (1.7)

The mathematical analysis for the three-dimensional counterpart of (1.6) states that a system of N high-contrast

connected inclusions D =
⋃N

i=1 Di admits exactly 2N subwavelength resonant frequencies (ω±
i (δ))1≤i≤N [2, 15].

Moreover, the leading-order asymptotic of these resonant frequencies is given by

ω±
i (δ) ∼ ±vbλ

1
2

i δ
1
2 , 1 ≤ i ≤ N, (1.8)

where (λi)1<i≤N are the N eigenvalues of a symmetric eigenvalue problem [2, 15] with eigenvectors (ai)1≤i≤N ,
which read

Cai = λiV ai, 1 ≤ i ≤ N. (1.9)

The matrix V is the diagonal matrix gathering the volumes of the resonators, V = diag(|Di|)1≤i≤N , while C is
the so-called “capacitance matrix”, whose entries can be defined by the formula

Cij := −
∫

∂Di

∂uj

∂n
dσ with





−∆ui = 0 in R
3\

N⋃

l=1

Dl,

ui = δij on ∂Dj ,

ui(x) = O(|x|−1) as |x| → +∞.

1 ≤ i, j ≤ N. (1.10)

One of the main contributions of the present paper is to show that a capacitance formalism analogous to
(1.9) exists in 1D, up to some differences which are now described. First, the “capacitance” matrix in 1D should
be defined as

Cij := −
(
− dui

dx
(x−

j ) +
dui

dx
(x+

j )

)
with





− d2

dx2
ui = 0 in R\

N⊔

i=1

(x−
l , x

+
l ),

ui(x
±
j ) = δij ,

ui(x) = O(1) as |x| → +∞,

1 ≤ i, j ≤ N, (1.11)

which is the direct analogue of (1.10) up to the adaptation of the decay condition at infinity (in fact ui(x) is
even constant for x ≤ x−

1 or x ≥ x+
N ). Solving explicitly (1.11) (the solution ui is plotted on Figure 2) yields

the following expression for Cij :

Cij := − 1

ℓ(j−1)j
δi(j−1) +

(
1

ℓ(j−1)j
+

1

ℓj(j+1)

)
δij −

1

ℓj(j+1)
δi(j+1), 1 ≤ i, j ≤ N, (1.12)

with the convention 1/ℓij = 0 for indices i, j negative or greater than N . In other words, C ≡ (Cij)1≤i,j≤N is
3
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Figure 2. The solution ui to the capacitance problem (1.11).

the tridiagonal matrix






1

ℓ12
− 1

ℓ12

− 1

ℓ12

1

ℓ12
+

1

ℓ23
− 1

ℓ23

− 1

ℓ23

1

ℓ(N−1)N
− 1

ℓ(N−1)N

− 1

ℓ(N−1)N

1

ℓ(N−2)(N−1)
+

1

ℓ(N−1)N
− 1

ℓ(N−2)(N−1)

− 1

ℓ(N−2)(N−1)

C := . (1.13)

The matrix C measures the mutual interactions of the segments (x−
i , x

+
i ) on one another. In contrast to the

3D case where this matrix can be dense, the matrix C is tridiagonal, which reflects the fact that each resonator
interacts directly only with its closest neighbors. Then, the “volume” matrix V is defined analogously to the
3D case by replacing volumes with lengths:

V := diag((ℓi)1≤i≤N ). (1.14)

A major difference with respect to the 3D setting lies in the fact that the capacitance matrix C of (1.13) is a
singular matrix: its kernel is spanned by the vector of ones 1 = (1)1≤i≤N . Therefore, one of the eigenvalues of
the problem (1.9) is zero, and it can be shown that the N −1 other eigenvalues are distinct and strictly positive
(see Proposition 3.2 and Lemma 3.3):

0 = λ1 < λ2 < · · · < λN . (1.15)

From these definitions, we obtain (in Proposition 3.3) that the 1D medium admits 2N subwavelength reso-
nances. The first two frequencies have a behavior that is different from the 3D case due to the zero eigenvalue
λ1 = 0: the first resonant frequency is the zero frequency ω0(δ) = 0, while the second is a purely imaginary

frequency ω1(δ) ∈ iR which scales as O(δ) instead of O(δ
1
2 ); more precisely ω1(δ) ∼ −2iδ

v2
b

v|D| . Then, the remain-

ing 2N − 2 subwavelength resonances (ω±
i (δ))2≤i≤N satisfy the leading asymptotic (1.8) with the eigenvalues

(λi)2≤i≤N being those of the 1D capacitance matrix:

ω±
i (δ) ∼ ±vbλ

1
2

i δ
1
2 , 2 ≤ i ≤ N.

The capacitance eigenvalue problem (1.9) allows, in addition, to obtain the reflection and transmission
coefficients of the system (see Definition 4.1) near the resonances. In Corollary 4.1, we find that the reflection and
transmission coefficients (Ri)1≤i≤N and (Ti)1≤i≤N at the resonant frequency ω±

i (δ) are conveniently determined
from the first and last coefficients of the eigenvector ai by the following formulas:

Ti :=
2a1iaNi

a21i + a2Ni

, Ri :=
a21i − a2Ni

a21i + a2Ni

. (1.16)

These formulas show that it is possible to devise a subwavelength systems with prescribed reflection and trans-
mission coefficients around resonant frequencies by tuning suitably the lengths (ℓi)1≤i≤N and (ℓi(i+1))1≤i≤N−1,
including exceptional positive reflections (see the Remark 4.3). It is remarkable that these coefficients are purely
geometric quantities which do not depend on the physical parameters of the medium.

The paper outlines as follows. Since we apply the Dirichlet-to-Neumann approach of [16] for computing
resonances in the 1D medium, we start in Section 2 by characterizing the Dirichlet-to-Neumann map of the
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Helmholtz operator on the exterior domain R\D. In Section 3, we show the existence of 2N subwavelength reso-
nances for the scattering problem (1.6), and we relate their asymptotic expansion to the capacitance eigenvalue
problem (1.9); see Proposition 3.3. In Section 4, we establish a modal decomposition for the wave field u(x) in
the subwavelength regime (1.7), and we find asymptotics for the transmission and reflection coefficients of the
system. Finally, Section 5 presents a variety of numerical illustrations supporting our mathematical analysis of
subwavelength resonances in 1D high-contrast media.

Before proceeding, we would like to highlight that this work leaves interesting connexions to explore with
the “tight-binding” method of condensed matter physics [7]. There is indeed an analogy between subwave-
length resonators and particles in quantum physics, whose wave functions are solution to an eigenvalue problem
analogous to (1.6). The tight-binding approach consists in approximating wave functions associated to several
particles by a superposition of the modes associated to isolated particles, and to possibly add terms to take into
account neighboring interactions [17, 32, 14].

From the point of view of acoustic waves, the capacitance matrix plays a role analogous to the Hamiltonian of
quantum physics. In 3D, it is known that long-range interactions between a large number of particles cannot be
neglected, because the coefficients of the capacitance matrix decay slowly away from the diagonal [6]. However,
such approximation would be exact in our one-dimensional context, due to the tridiagonal structure of the
capacitance matrix.

2. The Dirichlet-to-Neumann map in one dimension

In this section, we characterize the Dirichlet-to-Neumann map of the Helmholtz operator in one dimension,
in view of applying the Dirichlet-to-Neumann approach of [16] for analyzing subwavelength resonances. We give
a fully explicit expression of this operator in Proposition 2.1, before computing its leading-order asymptotic
expansion in Corollary 2.1.

In all what follows, we denote by H1(D) the usual Sobolev space of complex-valued functions on D and by
H−1(D) its dual space. Throughout the paper, we consider boundary data f ≡ (f±

i )1≤i≤N ∈ C
2N with 2N

components associated to the 2N points (x±
i )1≤i≤N , where for any 1 ≤ i ≤ N , we denote by f+

i (resp. f−
i ) the

component associated to x+
i (resp. to x−

i ). The following lemma provides an explicit expression for the solution
to exterior problems on R\D.

Lemma 2.1. Assume that k is not of the form k = nπ/ℓi(i+1) for some non-zero integer n ∈ Z\{0} and index

1 ≤ i ≤ N − 1. Then for any vector (f±
i )1≤i≤N ∈ C

2N , there exists a unique solution wf ∈ H1
loc(R) to the

exterior problem: 



(
d2

dx2
+ k2

)
wf = 0 in R\

N⊔

i=1

(x−
i , x

+
i ),

wf (x
±
i ) = f±

i for all 1 ≤ i ≤ N,
(

d

d|x| − ik

)
wf (x) = 0 for x ≤ x−

1 or x ≥ x+
N .

(2.1)

When further, k 6= 0, the solution wf reads explicitly

wf (x) =





f−
1 e−ik(x−x

−

1
) if x ≤ x−

1 ,

aie
ikx + bie

−ikx if x ∈ (x+
i , x

−
i+1),

f+
Neik(x−x

+

N
) if x ≥ x+

N ,

(2.2)

where ai and bi are given by the matrix-vector product

ai

bi


 = − 1

2i sin(kℓi(i+1))


e−ikx−

i+1 −e−ikx+

i

−eikx
−

i+1 eikx
+

i




 f+

i

f−
i+1


 . (2.3)

Proof. When k 6= 0, the solution wf to (2.1) can be written as a linear combination of eikx and e−ikx in each of
the intervals (x+

i , x
−
i+1)1≤i≤N−1 and may be represented as

wf (x) = aie
ikx + bie

−ikx, x ∈ (x+
i , x

−
i+1). (2.4)

The constants ai and bi are characterized from the boundary conditions of (2.1) at x+
i and x−

i+1, which read:




aie
ikx+

i + bie
−ikx+

i = f+
i ,

aie
ikx−

i+1 + bie
−ikx−

i+1 = f−
i+1.

(2.5)

Inverting this system, we find the expression (2.3) for ai and bi. On the other hand, wf (x) must be proportional
to eikx for x > x+

n , and to e−ikx for x < x−
1 , which yields (2.2).
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If k = 0, it is obvious that Lemma 2.1 admits a unique solution which is piecewise affine on each interval
(x+

i , x
−
i+1) for 1 ≤ i ≤ N − 1, and which is constant on the intervals (−∞, x−

1 ) and (x+
N ,+∞). �

Definition 2.1. For any k ∈ C which is not of the form nπ/ℓi(i+1) for some n ∈ Z\{0} and 1 ≤ i ≤ N − 1, the

Dirichlet-to-Neumann map with wave number k is the linear operator T k : C2N → C
2N defined by

T k[(f±
i )1≤i≤N ] =

(
± dwf

dx
(x±

i )

)

1≤i≤N

, (2.6)

where wf is the unique solution to (2.1).

Remark 2.1. The condition that k ∈ C is not of the form nπ/ℓi(i+1) for some n ∈ Z\{0} and 1 ≤ i ≤ N − 1 is

equivalent to state that k2 is not a Dirichlet eigenvalue of − d2/ dx2 on R\D.

Remark 2.2. We consider a minus sign in (2.6) on the abscissa x−
i because T k[(f±

j )1≤j≤N ]±i is the “normal

derivative” of wf at x±
i , with the normal pointing outward the segment (x−

i , x
+
i ). This convention allows to

maintain some analogy with the analysis in the 3D setting considered in [16, Section 3].

In the next proposition, we compute T k explicitly.

Proposition 2.1. The Dirichlet-to-Neumann map T k admits the following explicit matrix representation: for
any k ∈ C\{nπ/ℓi(i+1) |n ∈ Z\{0}, 1 ≤ i ≤ N − 1}, f ≡ (f±

i )1≤i≤N , T k[f ] ≡ (T k[f ]±i )1≤i≤N is given by




T k[f ]−1

T k[f ]+1
...

T k[f ]−N

T k[f ]+N




=




ik

Ak(ℓ12)

Ak(ℓ23)

. . .

Ak(ℓ(N−1)N )

ik







f−
1

f+
1

...

f−
N

f+
N




, (2.7)

where for any real ℓ ∈ R, Ak(ℓ) denotes the 2× 2 symmetric matrix

Ak(ℓ) :=


−k cos(kℓ)

sin(kℓ)
k

sin(kℓ)

k
sin(kℓ) −k cos(kℓ)

sin(kℓ)


 . (2.8)

Proof. Since from (2.4),
dwf

dx (x) = ik(aie
ikx − bie

−ikx) for x ∈ (x+
i , x

−
i+1), we can write




dwf

dx (x+
i )

− dwf

dx (x−
i+1)


 = ik


 eikx

+

i −e−ikx+

i

−eikx
−

i+1 e−ikx−

i+1




ai

bi


 .

Replacing the constants ai and bi with the expression (2.3) yields

 T k[f ]+i

T k[f ]−i+1


 =




dw
dx (x

+
i )

− dw
dx (x

−
i+1)


 = − k

2 sin(kℓi(i+1))


 eikx

+

i −e−ikx+

i

−eikx
−

i+1 e−ikx−

i+1




e−ikx−

i+1 −e−ikx+

i

−eikx
−

i+1 eikx
+

i




 f+

i

f−
i+1


 .

Computing the matrix product, we finally arrive at

 T k[f ]+i

T k[f ]−i+1


 = Ak(ℓi(i+1))


 f+

i

f−
i+1


 ,

where Ak(ℓi(i+1)) is the matrix defined by (2.8). Finally, since wf (x) is proportional to eikx when x > x+
N and

to e−ikx when x < x−
1 , we find T k[f ]−1 = ikf−

1 and T k[f ]+N = ikf+
N . �

It can be verified that the solution wf to (2.1) with k 6= 0 converges as k → 0 to the solution to the same
equation with k = 0. As it can be expected from the matrix representation (2.7), the operator T k is analytic
in a neighborhood of k = 0. In all what follows, we denote by r the convergence radius

r :=
π

max1≤i≤N−1 ℓi(i+1)
.
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Corollary 2.1. The Dirichlet-to-Neumann map T k can be prolongated to a holomorphic 2N × 2N matrix with
respect to the wave number k ∈ C on the disk |k| < r. Therefore, there exists a family of 2N × 2N matrices
(Tn)n∈N such that T k admits the following convergent series representation:

T k =

+∞∑

n=0

knTn, ∀k ∈ C with |k| < r. (2.9)

The matrices T0 and T1 of this series explicitly read

T0 =




0

A0(ℓ12)

A0(ℓ23)

. . .

A0(ℓ(N−1)N )

0




, T1 =




i

0

. . .

0

i




, (2.10)

where for any ℓ ∈ R, A0(ℓ) is the 2 × 2 matrix A0(ℓ) :=


−1/ℓ 1/ℓ

1/ℓ −1/ℓ


. Furthermore, T2n+1 = 0 for any

n ≥ 1, and the matrices T2n are real for any n ∈ N.

Proof. The result is immediate by noticing that for a given ℓ > 0, the matrix Ak(ℓ) of (2.8) is analytic with
respect to the parameter k on the disk |k|ℓ < π, and its components are even functions of k. The expressions
for T0 and T1 follow from the following expansion of Ak(ℓ):

Ak(ℓ) =


−k

(
1
kℓ

+O(k)
)

k
kℓ+O(k3)

k
kℓ+O(k3) −k

(
1
kℓ

+O(k)
)


 =


− 1

ℓ
1
ℓ

1
ℓ

− 1
ℓ


+O(k2).

�

Remark 2.3. The expression (2.10) for T0 can be more conveniently in terms of its action on a vector f ≡
(f±

i )1≤i≤N ∈ C
2N as 




T0[f ]−1 = 0,

T0[f ]−i = − 1

ℓ(i−1)i
(f−

i − f+
i−1), 2 ≤ i ≤ N,

T0[f ]+i =
1

ℓi(i+1)
(f−

i+1 − f+
i ), 1 ≤ i ≤ N − 1,

T0[f ]+N = 0.

(2.11)

3. Subwavelength resonances in 1D acoustic media

Based on the properties derived in Section 2 for the Dirichlet-to-Neumann map, we can now analyze the arising
of subwavelength resonances in the 1D high-contrast medium illustrated on Figure 1. Classically and following
[16, Section 3], the scattering problem (1.6) can be reformulated in terms of the Dirichlet-to-Neumann map T ω

v ,

which becomes a set of coupled ordinary differential equations posed on the N segments D =
⊔N

i=1(x
−
i , x

+
i ):




(
d2

dx2
+

ω2

v2b

)
u = 0 in

N⊔

i=1

(x−
i , x

+
i ),

± du

dx
(x±

i ) = δT ω
v [u− uin]

±
i ± δ

duin

dx
(x±

i ) for all 1 ≤ i ≤ N,

(3.1)

where for a function u ∈ H1(D), we use the notation T ω
v [u] ≡ T ω

v [(u(x±
i ))1≤i≤N ]. Let us recall the definition

of subwavelength resonance.

Definition 3.1. We call “subwavelength resonance” a complex frequency ω(δ) ∈ C, satisfying ω(δ) → 0 as
δ → 0, and such that (3.1) admits a non-zero solution v(ω, δ) ∈ H1(D) for ω = ω(δ) with uin = 0:





(
d2

dx2
+

ω2

v2b

)
v(ω, δ) = 0 in D,

± dv(ω, δ)

dx
(x±

i ) = δT k[v(ω, δ)]±i for all 1 ≤ i ≤ N,

with v(ω, δ) 6= 0. (3.2)

Such a non-zero solution v(ω, δ) is called a “resonant mode”.
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The remaining part of this section is organized as follows. We remark in Section 3.1 that the scattering
problem (3.1) can be reformulated as a 2N × 2N linear system, which gives a first characterization of the
resonances and a computational methodology to solve numerically (3.1). However, this characterization is
peculiar to the one-dimensional setting and does not lend itself to a convenient asymptotic analysis. In the next
Section 3.2, we use the formulation (3.1) to reduce the 2N ×2N problem to a smaller N ×N system involving a
matrix C(ω, δ) whose characteristic values ω are exactly the subwavelength resonances. In Section 3.3, we relate
the asymptotic expansions of the matrix C(ω, δ) to the capacitance eigenvalue problem (1.9) with capacitance
matrix (1.13). We deduce, in Proposition 3.3, the existence of 2N subwavelength resonances and we compute
explicitly their leading asymptotic expansion.

3.1. A first characterization of resonances based on an explicit representation of the solution

Let us first state a characterization of the resonances which relies on a finite dimensional parameterization
of the solution u.

Lemma 3.1. Any solution u to the wave problem (3.1) can be written as

u(x) = aie
ikbx + bie

−ikbx, ∀x ∈ (x−
i , x

+
i ),

for 2N coefficients (ai)1≤i≤N and (bi)1≤i≤N solutions to the 2N × 2N linear system

A(ω, δ)


ai

bi




1≤i≤N

=


−δT ω

v [uin]
−
i − δ duin

dx (x−
i )

−δT ω
v [uin]

+
i + δ duin

dx (x+
i )




1≤i≤N

, (3.3)

where A(ω, δ) is the 2N × 2N matrix

A(ω, δ) := ikb diag




−eikbx

−

i e−ikbx
−

i

eikbx
+

i −e−ikbx
+

i






1≤i≤N

− δT ω
v × diag




eikbx

−

i e−ikbx
−

i

eikbx
+

i e−ikbx
+

i






1≤i≤N

, (3.4)

and where T ω
v is the 2N × 2N matrix defined by (2.7).

Proof. The boundary condition of (3.1) reads

±ikb(aie
ikbx

±

i − bie
−ikbx

±

i )− δT ω
v [u]±i = −δT ω

v [uin]
±
i ± δ

duin

dx
(x±

i ),

which can be rewritten as (3.3). �

Corollary 3.1. Subwavelength resonances are complex frequencies ω(δ) such that det(A(ω(δ), δ)) = 0.

Remark 3.1. The characterization (3.3) shows that the scattering problem (1.6) is a finite-dimensional problem
that can be solved exactly by solving the 2N ×2N linear system (3.3). We will exploit this formula in Section 5
for solving (1.6) numerically.

3.2. Characterization of the resonances based on the Dirichlet-to-Neumann approach

Although (3.3) gives a complete characterization of the solution to (3.1), it does not allow to predict directly
the arising of scattering resonances, since it seems rather tedious to compute asymptotic expansions of the
determinant det(A(ω, δ)). In what follows, we use the Dirichlet-to-Neumann approach of [16, Section 3] to
characterize the resonances very conveniently. This methodology exploits the physical structure of the system
and applies to more complicated situations.

Multiplying by a test function v ∈ H1(D) and integrating on all the intervals (x−
i , x

+
i ), equation (3.1) can

be rewritten in the following weak form: find u ∈ H1(D) such that for any v ∈ H1(D),

a(u, v) = 〈f, v〉H1(D),H−1(D), (3.5)

where a is the bilinear form on H1(D)×H1(D) defined by

a(u, v) :=

N∑

i=1

∫ x
+

i

x
−

i

(
du

dx

dv

dx
− ω2

v2b
uv

)
dx−

N∑

i=1

δ
[
v(x+

i )T
ω
v [u]+i + v(x−

i )T
ω
v [u]−i

]
, ∀u, v ∈ H1(D),

and f ∈ H−1(D) is the linear form

〈f, v〉H1(D),H−1(D) := δ

N∑

i=1

[
v(x+

i )

(
−T k[uin]

+
i +

duin

dx
(x+

i )

)
+ v(x−

i )

(
−T k[uin]

−
i − duin

dx
(x−

i )

)]
. (3.6)
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In what follows, we introduce a new bilinear form aω,δ on H1(D):

aω,δ(u, v) :=

N∑

i=1

[∫ x
+

i

x
−

i

du

dx

dv

dx
dx+

∫ x
+

i

x
−

i

u dx

∫ x
+

i

x
−

i

v dx

]

−
N∑

i=1

[
ω2

v2b

∫ x
+

i

x
−

i

uv dx+ δ[v(x+
i )T k[u]+i + v(x−

i )T k[u]−i ]

]
. (3.7)

The bilinear form aω,δ(u, v) is obtained by adding the rank-one bilinear forms (u, v) →
∫ x

+

i

x
−

i

u dx
∫ x

+

i

x
−

i

v dx to the

bilinear form a. Clearly, aω,δ is an analytic perturbation in ω and δ of the bilinear form a0,0 defined by

a0,0(u, v) =

N∑

i=1

[∫ x
+

i

x
−

i

du

dx

dv

dx
dx+

∫ x
+

i

x
−

i

u dx

∫ x
+

i

x
−

i

v dx

]
,

which is continuous coercive on H1(D) owing to the Poincaré-Wirtinger inequality. From standard perturbation
theory, aω,δ remains coercive for sufficiently small complex values of ω, δ. Therefore, for any right-hand-side
f ∈ H−1(D), there exists a unique Lax-Milgram solution uf (ω, δ) to the problem

aω,δ(uf (ω, δ), v) = 〈f, v〉H−1(D),H1(D), (3.8)

which is analytic in ω and δ. In order to characterize resonant modes, we denote by uj(ω, δ) the solution to the
variational problem

aω,δ(uj(ω, δ), v) =

∫ x
+

j

x
−

j

v dx, ∀v ∈ H1(D), ∀1 ≤ j ≤ N. (3.9)

The functions uj(ω, δ) allow to reduce the 2N × 2N problem (3.3) to a N ×N matrix linear system, which is
simpler to analyze.

Lemma 3.2. Let ω ∈ C and δ ∈ R belong to a neighborhood of zero such that aω,δ is coercive. For any right-
hand side f ∈ H−1(D), the variational problem (3.5) admits a unique solution u ≡ u(ω, δ) if and only if the
N ×N linear system

(I − C(ω, δ))x = F (3.10)

has a unique solution x := (xi(ω, δ))1≤i≤N , where C(ω, δ) and F are the matrix and column vector given by

C(ω, δ) ≡ (C(ω, δ)ij)1≤i,j≤N :=

(∫ x
+

i

x
−

i

uj(ω, δ) dx

)

1≤i,j≤N

, (3.11)

and

F ≡ (Fi)1≤i≤N :=

(∫ x
+

i

x
−

i

uf (ω, δ) dx

)

1≤i≤N

. (3.12)

When it is the case, the solution to (3.5) (equivalently, to (1.6) and (3.1)) reads

u(ω, δ) = uf (ω, δ) +

N∑

j=1

xj(ω, δ)uj(ω, δ), (3.13)

with uf (ω, δ) and uj(ω, δ) being defined by (3.8) and (3.9).
When I −C(ω, δ) is not invertible for a frequency ω ≡ ω(δ), then a linear combination of the functions uj(ω, δ)
is a nonzero solution to (3.5), and ω is a subwavelength resonance.

Proof. The variational problem (3.5) reads equivalently

a(u, v) = 〈f, v〉H−(D),H1(D) ⇔ aω,δ(u, v)−
N∑

i=1

(∫ x
+

i

x
−

i

u dx

)
aω,δ(ui, v) = aω,δ(uf (ω, δ), v)

⇔ u−
N∑

i=1

(∫ x
+

i

x
−

i

u dx

)
ui = uf (ω, δ).

(3.14)

By integrating both sides of (3.14) on (x−
i , x

+
i ), we find that the vector x :=

(∫ x
+

i

x
−

i

u(ω, δ) dx
)

1≤i≤N
solves the

linear system
∫ x

+

i

x
−

i

u(ω, δ) dx−
N∑

j=1

∫ x
+

i

x
−

i

uj(ω, δ) dx

∫ x
+

j

x
−

j

u(ω, δ) dx =

∫ x
+

i

x
−

i

uf (ω, δ) dx, 1 ≤ i ≤ N,

which is exactly (3.10). Reciprocally, if (3.10) has a solution, then the second line of (3.14) shows that the
solution to (3.5) is given by (3.13). �
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Subwavelength resonances are therefore the characteristic values ω ≡ ω(δ) for which I − C(ω, δ) is not
invertible. Furthermore, (3.13) yields a modal decomposition of the solution when ω is not a resonant frequency.

3.3. Asymptotic expansions of the subwavelength resonances

We now show the existence of 2N subwavelength resonances and we compute their leading-order asymptotic
expansions. We start by computing explicit asymptotic expansions of the functions ui(ω, δ) solutions to (3.9).
Here and thereafter, the characteristic function of the interval (x−

i , x
+
i ) is written 1(x−

i
,x

+

i
):

1(x−

i
,x

+

i
)(t) =

{
1 if t ∈ (x−

i , x
+
i ),

0 otherwise.

Proposition 3.1. Let ω ∈ C and δ ∈ R belong to a neighborhood of zero. The unique solution uj(ω, δ) with
1 ≤ j ≤ N to the variational problem (3.9) has the following asymptotic behavior as ω, δ → 0:

uj(ω, δ) =

(
1

ℓj
+

ω2

v2b ℓ
2
j

)
1(x−

j
,x

+

j
)

+ δ

[
1

ℓ2j−1ℓj

1

ℓ(j−1)j
1(x−

j−1
,x

+

j−1
) −

1

ℓ3j

(
1

ℓ(j−1)j
+

1

ℓj(j+1)

)
1(x−

j
,x

+

j
) +

1

ℓjℓ2j+1

1

ℓj(j+1)
1(x−

j+1
,x

+

j+1
) + ũj,0,1

]

+
iωδ

ℓ3jv
(δj1 + δjN )

(
1(x−

j
,x

+

j
) + ũj,1,1

)
+O((ω2 + δ)2),

(3.15)
where ũj,0,1 and ũj,1,1 are some (quadratic) functions satisfying

∫ x
+

i

x
−

i

ũj,0,1 dx = 0,

∫ x
+

i

x
−

i

ũj,1,1 dx = 0, ∀1 ≤ i ≤ N.

Proof. From the definition of aω,δ, the function uj ≡ uj(ω, δ) satisfies the following differential equation written
in strong form:





− d2

dx2
uj −

ω2

v2b
uj +

N∑

i=1

(∫ x
+

i

x
−

i

uj dx

)
1(x−

i
,x

+

i
) = 1(x−

j
,x

+

j
) in

N⊔

i=1

(x−
i , x

+
i ),

± duj

dx
(x±

i ) = δT ω
v [uj ]

±
i for all 1 ≤ i ≤ N.

(3.16)

Since uj(ω, δ) is analytic in ω and δ, there exist functions (uj,p,k)p≥0,k≥0 such that uj(ω, δ) can be written as
the following convergent series in H1(D):

uj(ω, δ) =

+∞∑

p,k=0

ωpδkuj,p,k. (3.17)

By using Corollary 2.1 and identifying powers of ω and δ, we obtain the following equations characterizing the
functions (uj,p,k)p≥0,k≥0:





− d2

dx2
uj,p,k +

N∑

i=1

(∫ x
+

i

x
−

i

uj,p,k dx

)
1(x−

i
,x

+

i
) =

1

v2b
uj,p−2,k + 1(x−

j
,x

+

j
)δp=0δk=0 in

N⊔

i=1

(x−
i , x

+
i ),

± duj,p,k

dx
(x±

i ) =

p∑

n=0

1

vn
Tn[uj,p−n,k−1]

±
i for all 1 ≤ i ≤ N,

with the convention that uj,p,k = 0 for negative indices p and k. It can then be easily obtained by induction
that

uj,2p,0 =
1(x−

j
,x

+

j
)

v2pb ℓp+1
j

and uj,2p+1,0 = 0, for any p ≥ 0.

Then for p = 0 and k = 1, we find that uj,0,1 satisfies




− d2

dx2
uj,0,1 +

N∑

i=1

(∫ x
+

i

x
−

i

uj,0,1 dx

)
1(x−

i
,x

+

i
) = 0 in

N⊔

i=1

(x−
i , x

+
i ),

± duj,0,1

dx
(x±

i ) = T0[uj,0,0]
±
i for all 1 ≤ i ≤ N.

(3.18)
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From (2.11) with f±
i := uj,0,0(x

±
i ) = δij/ℓj , we obtain





T0[uj,0,0]
−
1 = 0,

T0[uj,0,0]
−
i = − 1

ℓj

1

ℓ(i−1)i

(
δij − δ(i−1)j

)
for 2 ≤ i ≤ N,

T0[uj,0,0]
+
i =

1

ℓj

1

ℓi(i+1)

(
δ(i+1)j − δij

)
for 1 ≤ i ≤ N − 1,

T0[uj,0,0]
+
N = 0.

Multiplying (3.18) by 1(x−

i
,x

+

i
) and integrating by parts, we find that

∫ x
+

i

x
−

i

uj,0,1 dx =
1

ℓi

[
T0[uj,0,0]

−
i + T0[uj,0,0]

+
i

]

=
1

ℓiℓj

1

ℓ(j−1)i
(δ(i−1)j − δij)12≤j≤N +

1

ℓiℓj

1

ℓi(i+1)
(δ(i+1)j − δij)11≤j≤N−1

=





1

ℓj−1ℓj

1

ℓ(j−1)j
if i = j − 1,

− 1

ℓ2j

(
1

ℓ(j−1)j
+

1

ℓj(j+1)

)
if i = j,

1

ℓjℓj+1

1

ℓj(j+1)
if i = j + 1.

Using Fredholm’s alternative, this allows to infer that uj,0,1 can be written as

uj,0,1 =
1

ℓ2j−1ℓj

1

ℓ(j−1)j
1(x−

j−1
,x

+

j−1
) −

1

ℓ3j

(
1

ℓ(j−1)j
+

1

ℓj(j+1)

)
1(x−

j
,x

+

j
) +

1

ℓjℓ2j+1

1

ℓj(j+1)
1(x−

j+1
,x

+

j+1
) + ũj,0,1,

where ũj,0,1 is a function (in fact, a second order polynomial) satisfying
∫ x

+

i

x
−

i

ũj,0,1 dx = 0 for any 1 ≤ i ≤ N .

Furthermore, ũj,0,1 is identically zero on (x−
i , x

+
i ) where i /∈ {j − 1, j, j + 1}.

Finally, let us compute uj,1,1, which satisfies




− d2

dx2
uj,1,1 +

N∑

i=1

(∫ x
+

i

x
−

i

uj,1,1 dx

)
1(x−

i
,x

+

i
) = 0 in

N⊔

i=1

(x−
i , x

+
i ),

± duj,1,1

dx
(x±

i ) =
1

v
T1[uj,0,0]

±
i for all 1 ≤ i ≤ N.

(3.19)

Similarly, we find that T1[uj,0,0]
±
i is given by

T1[uj,0,0]
−
i =





i

ℓj
δj1 if i = 1,

0 if i ≥ 2,

T1[uj,0,0]
+
i =





0 if i ≤ N − 1,

i

ℓj
δjN if i = N.

Consequently, multiplying (3.19) by 1(x−

i
,x

+

i
) and integrating by parts yields

∫ x
+

i

x
−

i

uj,1,1 dx =
i

ℓiℓjv
(δi1δj1 + δiNδjN ) .

This implies that uj,1,1 = i
ℓ3
j
v
(δj1 + δjN )1(x−

j
,x

+

j
) + ũj,1,1, where ũj,1,1 is a function satisfying

∫ x
+

i

x
−

i

ũj,1,1 dx = 0

for any 1 ≤ i ≤ N . The result follows.
�

In what follows, we recall the definitions (1.12) and (1.13) of the N ×N tridiagonal capacitance matrix C, and
the definition (1.14) of the volume matrix V . We also introduce the N ×N matrix

B = diag(1, 0, · · · , 0, 1). (3.20)

These matrices C, V and B arise in the asymptotic expansion of C(ω, δ) of (3.11).

Corollary 3.2. We have the following asymptotic expansion for the matrix C(ω, δ) defined in (3.11):

C(ω, δ) = I +
ω2

v2b
V −1 − δV −1CV −1 +

iωδ

v
V −1BV −1 +O((ω2 + δ)2), (3.21)

where C is the “capacitance matrix” of (1.13), and B and V are the matrices of (3.20).
11



Proof. Integrating the asymptotic expansion (3.15) of uj(ω, δ) on the interval (x−
i , x

+
i ), we obtain

Cij(ω, δ) =

(
1 +

ω2

v2b ℓi

)
δij + δ

[
1

ℓiℓj

1

ℓ(j−1)j
δi(j−1) −

1

ℓiℓj

(
1

ℓ(j−1)j
+

1

ℓj(j+1)

)
δij +

1

ℓiℓj

1

ℓj(j+1)
δi(j+1)

]

+
iωδ

ℓ2jv
δij(δj1 + δjN ) +O((ω2 + δ)2).

This yields the result. �

The next proposition shows that C is a nonnegative symmetric matrix.

Proposition 3.2. The capacitance matrix of (1.13) is a symmetric positive semi-definite matrix. Furthermore,
the null space of C is the one-dimensional vector space spanned by the vector of ones:

KerC = span(1) where 1 := (1)1≤i≤N .

Proof. For a real vector f = (fi)1≤i≤N , and using the conventions f−1 = fN+1 = 0 and 1/ℓi(i+1) = 0 for
i = −1, N , we easily compute

fTCf =

N∑

i=1

[
− 1

ℓ(i−1)i
fi−1fi +

(
1

ℓ(i−1)i
+

1

ℓi(i+1)

)
f2
i − 1

ℓi(i+1)
fifi+1

]

=

N−1∑

i=1

[
− 1

ℓi(i+1)
fifi+1 +

1

ℓi(i+1)
f2
i+1 +

1

ℓi(i+1)
f2
i − 1

ℓi(i+1)
fifi+1

]

=

N−1∑

i=1

1

ℓi(i+1)
(fi+1 − fi)

2.

Since ℓi(i+1) > 0 for any 1 ≤ i ≤ N − 1, this equality shows that fTCf ≥ 0 for any F ∈ R
N , which implies

that C is nonnegative. Furthermore, fTCf = 0 implies fi+1 = fi for any 1 ≤ i ≤ N − 1, which means that f
is proportional to the vector of ones. �

Remark 3.2. In three-dimensions, special properties arise when the vector of ones is an eigenvector of the
capacitance matrix , which is the case under special symmetry circumstances [15, Section 2]. The result of
Proposition 3.2 shows that 1 is always an eigenvector of the capacitance matrix in the 1D situation, which is
associated to the zero eigenvalue. We shall see in Proposition 3.3 that this physically corresponds to the fact
that in 1D, constant functions are resonant modes. Non-trivial eigenvalues arise therefore for a system of at
least N = 2 resonators.

Next, we consider the N eigenvalues (λi)1≤i≤N and eigenvectors (ai)1≤i≤N of the generalized eigenvalue
problem (1.9):

Cai = λiV ai, 1 ≤ i ≤ N, (3.22)

where the eigenvectors form an orthonormal basis with respect to the inner product of V :

aT
i V aj = δij , ∀1 ≤ i, j ≤ N,

and the vector a1 is given by

a1 =
1√∑N
i=1 ℓi

1.

The tridiagonal structure of C implies the simplicity of the eigenvalues:

Lemma 3.3. The N eigenvalues of the capacitance matrix C are simple:

0 = λ1 < λ2 < · · · < λN .

Proof. This results from the fact that C is a tridiagonal matrix with non-zero off-diagonal elements, see [31,
Lemma 7.7.1]. �

The next corollary shows the arising of exactly 2N resonant frequencies whose leading order asymptotics are
related to the eigenvalues (λi)1≤i≤N .

Proposition 3.3. The scattering problem (1.6) admits exactly 2N resonant frequencies:

• the zero frequency ω0(δ) = 0 for any δ > 0,
• a purely imaginary frequency ω1(δ), which is an analytic function of δ whose leading asymptotic expan-
sion reads:

ω1(δ) = −2iδ
v2b

v
∑N

j=1 ℓj
+O(δ2); (3.23)

12



• the remaining 2N−2 resonant frequencies are analytic functions of δ
1
2 and their leading-order asymptotic

expansion read

ω±
i (δ) = ±vbλ

1
2

i δ
1
2 − iδ

v2b
2v

aT
i Bai +O(δ

3
2 ) for 2 ≤ i ≤ N, (3.24)

where B is the matrix defined in (3.20).

Proof. We proceed as in the proof of [15, Propositions 3.7 and 3.9]. We pose λ := ω2

δ
and introduce the function

F ((λ,x), ω) :=

(
λ

ω2

(
I − C

(
ω,

ω2

λ

))
V x,xTV x− 1

)
.

First, we observe that F is a smooth function of ω ∈ C and λ ∈ C because

λ

ω2

(
I − C

(
ω,

ω2

λ

))
V x =

(
− λ

v2b
I + V −1C − iω

v
V −1B +O(ω2)

)
x.

Then for ω = 0, it holds F ((λiv
2
b ,ai), 0) = 0. Applying the implicit function theorem as in [15, Proposition

3.7] (this is possible thanks to the simplicity result of Lemma 3.3), we obtain the existence of analytic functions
λi(ω) and ai(ω) satisfying

F ((λi(ω),ai(ω)), ω) = 0 (3.25)

with λi(0) = λiv
2
b and ai(0) = ai, for ω ∈ C belonging to a neighborhood of zero. Furthermore, differentiating

(3.25) with respect to ω at ω = 0, we find that λ′
i(0) and a′

i(0) satisfy

−λ′
i(0)

v2b
ai −

i

v
V −1Bai +

(
−λi

v2b
I + V −1C

)
a′
i(0) = 0.

Left multiplying by aT
i V and using a′

i(0)
TV ai = 0, we obtain

λ′
i(0) = − iv2b

v
aT
i Bai, a′

i(0) =
i

v

∑

j 6=i

aT
j Bai

(λj − λi)
aj ,

which allows to infer that

λi(ω) = λiv
2
b −

iωv2b
v

aT
i Bai +O(ω2), (3.26)

and

ai(ω) = ai +
iω

v

∑

j 6=i

aTj Bai

v(λj − λi)
aj +O(ω2). (3.27)

Subwavelength resonant frequencies ω are the solutions to the equation ω2 = δλi(ω). For i = 1, we obtain the
equation

ω2 = δ

(
− iωv2b

v
aT
1 Ba1 +O(ω2)

)
.

This yields the zero frequency ω = 0, or

ω = δ

(
− iv2b

v
aT
1 Ba1 +O(ω)

)
,

which admits a solution ω1(δ) analytic in δ satisfying

ω1(δ) = −iδ
v2b
v
aT
1 Ba1 +O(δ2) = −iδ

v2b
v

2
∑N

i=1 ℓi
+O(δ2),

i.e. (3.2).
For 2 ≤ i ≤ N , λi 6= 0 and the equation ω2 = δλi(ω) is then equivalent to

ω = δ
1
2

√
λi(ω) or ω = −δ

1
2

√
λi(ω),

where
√· denotes any analytic continuation of the square root on C\{it | t < 0}. Solving these equations with

the implicit function theorem yields two resonant frequencies ω±
i (δ) which are analytic in δ

1
2 . Using (3.26), we

obtain ω±
i (δ) ∼ δ

1
2 vbλ

1
2

i , and the next order term can be retrieved by writing

ω±
i (δ) = ±δ

1
2λ

1
2

i vb

√

1∓ iδ
1
2λ

1
2

i vb
vλi

aT
i Bai +O(δ) = ±δ

1
2λ

1
2

i vb

(
1∓ iδ

1
2λ

− 1
2

i vb
2v

aT
i Bai +O(δ)

)

= ±δ
1
2λ

1
2

i vb − iδ
v2b
2v

aT
i Bai +O(δ

3
2 ),

which yields (3.24).
It remains to show that ω1(δ) is a purely imaginary complex number. From Corollary 2.1, the Dirichlet-to-

Neumann map T k satisfies T k = T −k. From (3.2), we deduce that if ω is a resonant frequency with resonant
13



mode v(ω, δ), then −ω must also be a resonant frequency with resonant mode v(ω, δ). Therefore, −ω1(δ) must
also be a resonant frequency. From the Rouché general argument principle, the nonlinear eigenvalue ω = 0
at δ = 0 has algebraic multiplicity 2N . Hence, it must split in exactly 2N branches as δ deviates from zero.
Consequently, −ω1(δ) and ω1(δ) must coincide, which is possible only if ω1(δ) is purely imaginary. �

Remark 3.3. The resonant mode associated to the zero frequency ω0(δ) = 0 is the constant mode u = 1 in R.
The occurence of this mode, absent in the 3D setting, is due to the fact that there is no function satisfying
− d2u/ dx2 = 0, u(x−

1 ) = u(x+
N ) = 1 and decaying at infinity. The mode associated to the purely imaginary

frequency ω1(δ) is approximately constant in each segment (x−
i , x

+
i )1≤i≤N and grows exponentially as |x| → +∞,

but decays exponentially in time. These phenomena are illustrated on Figure 6 in the numerical section below.

Remark 3.4. It is possible to compute w1(δ) explicitly in the single resonator case N = 1. Computing the roots
of the determinant of the matrix A(ω, δ) of (3.4), we find the exact formula

w1(δ) = −ivb log

(
1 +

2vbδ

v − vbδ

)
. (3.28)

4. Modal decompositions and transmission properties in the high-contrast medium

In this section, we compute a modal decomposition for the wave solution based on the representation (3.13),
and study transmission properties of incident waves through the high-contrast medium.

The modal decomposition of the total wave field is established in Section 4.1. We obtain that in the subwave-
length regime, the solution to the non-hermitian scattering problem (1.6) can be approximated as a superposition
of modes which are excited near the resonant frequencies. Then, Section 4.2 introduces the transmission and
reflection coefficients, which capture the effective scattering properties of the high-contrast system of resonators.
We obtain approximate formulas in the subwavelength regime (Proposition 4.5), and we establish the identities
(1.16) for the values of the transmission and reflection coefficients taken to the resonant frequencies.

4.1. Modal decomposition of the wave total field

A modal decomposition of the total wave field can be obtained from the characterization (3.13) of the solution.
In this part, we assume that the incident field uin solution to (1.4) can be written as

uin(x) = α+e
ikx + α−e

−ikx, (4.1)

where α+ and α− are two constants chosen independently of ω and δ. The wave uin is therefore the superposition
of the wave α+e

ikx travelling from left to right, and of the wave α−e
−ikx propagating in the opposite direction.

We first need an asymptotic expansion of the solution uf (ω, δ) to the variational problem (3.8).

Proposition 4.1. Let f be the right-hand side (3.6). The function uf (ω, δ) solution to (3.8) has the following
first order asymptotic expansion:

uf (ω, δ)(x) = −2iωδ

v

(
α+

ℓ21
1(x−

1
,x

+

1
) +

α−

ℓ2N
1(x−

N
,x

+

N
) + ṽ1,1(x)

)
+O(ω2δ), (4.2)

where ṽ1,1 is a (quadratic) function vanishing on (x−
i , x

+
i ) for 2 ≤ i ≤ N − 1 and satisfying

∫ x
+

i

x
−

i

ṽ1,1 dx = 0 for

i = 1 or i = N .

Proof. The variational problem (3.8) reads in strong form




− d2

dx2
uf − ω2

v2b
uf +

N∑

i=1

(∫ x
+

i

x
−

i

uf dx

)
1(x−

i
,x

+

i
) = 0 in

N⊔

i=1

(x−
i , x

+
i ),

± duf

dx
(x±

i )− δT ω
v [uf ]

±
i = −δT ω

v [uin]
±
i ± δ

duin

dx
(x±

i ) for all 1 ≤ i ≤ N.

(4.3)

From (4.1), uin can be approximated by the following asymptotic development inside the resonators:

uin(x) = α+ + α− +
iω

v
(α+ − α−)x+O(ω2), x ∈

N⊔

i=1

(x−
i , x

+
i ).

This yields the following asymptotic expansion for the right-hand side of (4.3):

−δT ω
v [uin]

±
i ± δ

duin

dx
(x±

i ) = δ

(
−
(
T 0 +

ω

v
T 1
)[

α+ + α− +
iω

v
(α+ − α−)x

]±

i

± iω

v
(α+ − α−) +O(ω2)

)

= δ

(
−(α+ − α−)

iω

v
T0[x]±i − iω

v
(α+ + α−)(δ

−
i1 + δ+iN )± iω

v
(α+ − α−) +O(ω2)

)
.
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Since uf (ω, δ) is analytic in ω and δ and the right-hand side is of order O(ωδ), we can write the ansatz

uf (ω, δ) = ωδv1,1 +O(ω2δ).

Inserting this expression into (4.3), we obtain the following equation for v1,1:




− d2

dx2
v1,1 +

N∑

i=1

(∫ x
+

i

x
−

i

v1,1 dx

)
1(x−

i
,x

+

i
) = 0 in

N⊔

i=1

(x−
i , x

+
i ),

± dv1,1
dx

(x±
i ) = − i

v

(
(α+ − α−)T0[x]±i

+ (α+ + α−)(δ
−
i1 + δ+iN )∓ (α+ − α−)

)
for all 1 ≤ i ≤ N.

(4.4)
Integrating by parts on (x−

i , x
+
i ) and using (2.11), we infer

∫ x
+

i

xi

v1,1 dx = − i

ℓiv

(
(α+ − α−)[T0[x]−i + T0[x]+i ] + (α+ + α−)(δi1 + δiN )

)

= − i

ℓiv

(
(α+ − α−)

(
−
x−
i − x+

i−1

ℓ(i−1)i
δ2≤i≤N +

x−
i+1 − x+

i

ℓi(i+1)
δ1≤i≤N−1

)
+ (α+ + α−)(δi1 + δiN )

)

= − 2i

ℓiv
[α+δi1 + α−δiN ] .

From the Fredholm alternative, we deduce that the function v1,1 is given by

v1,1 = −2i

v

[
α+

ℓ21
1(x−

1
,x

+

1
) +

α−

ℓ2N
1(x−

N
,x

+

N
) + ṽ1,1(x)

]
,

where ṽ1,1 is a function vanishing on (x−
i , x

+
i ) for 2 ≤ i ≤ N − 1 and satisfying

∫ x
+

i

x
−

i

ṽ1,1 dx = 0 for i = 1 or

i = N . This yields the result.
�

Remark 4.1. The expansion of (4.2) shows that an incident wave eikx (resp. e−ikx) propagating from left to
right (resp. from right to left) excites only the first resonator (x−

1 , x
+
1 ) (resp. the last resonator (x−

N , x+
N )) at

first order.

Proposition 4.2. Assume that ω is real and belongs to the subwavelength regime ω = O(δ
1
2 ). For any right-

hand side F ∈ C
N , the solution x(ω, δ) to (3.10) can be decomposed as the following modal decomposition:

x(ω, δ) = −
N∑

j=1

v2b

ω2 − δv2bλj + iωδ
v2
b

v
aT
j Baj

(1 +O(δ
1
2 ))
(
aT
j V F

)
V aj . (4.5)

Proof. In order to solve (3.10), we use the same notation as the ones of the proof of Proposition 3.3, and

proceed as in the proofs of [15, Propositions 3.9, 3.10 and 4.1]. Introducing λ := ω2

δ
, y := V −1x, G(ω, λ) :=

λ
ω2

(
I − C

(
ω, ω2

λ

))
V and F̂ := 1

δ
F , (3.10) can be rewritten as

G(ω, λ)y = F̂ .

By continuity of the determinant, (ai(ω))1≤i≤n is a basis of CN for ω sufficiently small. This allows us to
consider the decomposition of y = y(ω, δ) onto this basis with coefficients (yj(ω, δ))1≤j≤N :

y(ω, δ) =
N∑

j=1

yj(ω, δ)aj(ω). (4.6)

Since G(ω, λj(ω))aj(ω) = 0, we can write G(ω, λ)y as

G(ω, λ)y =

N∑

i=1

yj(ω, δ)(G(ω, λ)− G(ω, λj(ω)))aj(ω). (4.7)

Then, λ 7→ (G(ω, λ) − G(ω, λj(ω)))aj(ω) is analytic in λ and ω and vanishes at λ = λj(ω). Therefore, this
expression can be factorized as

(G(ω, λ)− G(ω, λj(ω)))aj(ω) = (λ− λj(ω))gj(λ, ω),

for a vector gj(λ, ω) analytic in λ and ω. Using the expansion (3.21), we find

(G(ω, λ)− G(ω, λj(ω)))aj(ω) = −λ− λj(ω)

v2b

(
aj(ω) +O(ω2)

)
,
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where O(ω2) is a function that depends smoothly on λ. Left multiplying (4.7) by aT
i V and summing on the

indices 1 ≤ j ≤ N , we obtain a linear system for the components (λ− λj(ω))yj(ω, δ):

−
N∑

j=1

aT
i V aj(ω)(1 +O(ω2))

λ− λj(ω)

v2b
yj(ω, δ) = aT

i V F̂ , 1 ≤ i ≤ N.

From (3.27), we have aT
j V ai(ω) = δij +O(ω). This allows to use a Neumann series to invert this linear system,

which yields
(λ− λj(ω))yj(ω, δ) = −(1 +O(ω))v2ba

T
i V F̂ .

Therefore, we find the following expansion for y(ω, δ):

y(ω, δ) = −
N∑

j=1

v2b
λ− λj(ω)

(aT
j V F̂ )(1 +O(ω))aj(ω).

Using x = V y, and substituting λ = ω2/δ and F̂ = F/δ, we obtain

x(ω, δ) = −
N∑

j=1

v2b
ω2 − δλj(ω)

(1 +O(ω))(aT
j V F )V aj .

This modal decomposition holds for any complex frequency ω ∈ C. If further, ω is real and satisfies ω = O(δ
1
2 ),

then the expansion (3.26) allows to write

ω2 − δλj(ω) = ω2 − δv2bλj + iωδ
v2b
v
aT
j Baj +O(ω2δ)

=

(
ω2 − δv2bλj + iωδ

v2b
v
aT
j Baj

)(
1 +O(δ

1
2 )
)
,

where the order O(δ
1
2 ) can be deduced from [15, Lemma 4.2]. The expansion (4.5) follows. �

In what follows, we write (aij)1≤i,j≤N ≡
(
a1 a2 . . .aN

)
the coefficients of the column vectors (aj)1≤j≤N .

Inserting the asymptotic (4.5) into (3.13), we obtain the following result.

Proposition 4.3. Assume that ω is real and belongs to the subwavelength frequency regime ω = O(δ
1
2 ). The

total field u(ω, δ) solution to the scattering problem (1.6) admits the following asymptotic modal decomposition
in the resonators as δ → 0:

u(ω, δ) =
α+ + α− +O(δ

1
2 )

1− iτM
ω
δ

+
2iω

v

N∑

j=2

1

λj

a1jα+ + aNjα− +O(δ
1
2 )

ω2

ω2
M,j

− 1 + iω
λjv

aT
j Baj

(
N∑

i=1

aij1(x−

i
,x

+

i
)

)
in

N⊔

i=1

(x−
i , x

+
i ), (4.8)

where we have denoted by τM the damping constant

τM :=
v

2v2b

N∑

p=1

ℓp,

and by ωM,j the first order approximation of the resonant frequency ω+
j (δ):

ωM,j := vbλ
1
2

j δ
1
2 .

Proof. From (3.12) and (4.2), we deduce the following asymptotic for the vector F ≡ (Fi)1≤i≤N :

Fi = −2iωδ

v

(
α+

ℓ1
δi1 +

α−

ℓN
δiN

)
+O(ω2δ),

from where we obtain

aT
j V F = −2iωδ

v
(a1jα+ + aNjα−) +O(ω2δ).

Inserting this expression into (4.5), we obtain the asymptotic expansions of the coordinates of the vector
x(ω, δ) ≡ (xi(ω, δ))1≤i≤N :

xi(ω, δ) =
2iω

v

N∑

j=1

δv2b

ω2 − δv2bλj + iωδ
v2
b

v
aT
j Baj

(1 +O(δ
1
2 ))(a1jα+ + aNjα−)V aj

=
2i

v

(α+ + α− +O(δ
1
2 ))

ω
v2
b
δ
+ 2i 1

v
∑

N
i=p ℓp

1
∑N

p=1 ℓp
ℓi +

2iω

v

N∑

j=2

1

λj

a1jα+ + aNjα− +O(δ
1
2 )

ω2

ω2
M,j

− 1 + iω
λjv

aT
j Baj

ℓiaij

=
(α+ + α− +O(δ

1
2 ))

1− iωv
2v2

b
δ

∑N
p=1 ℓp

ℓi +
2iω

v

N∑

j=2

1

λj

a1jα+ + aNjα− +O(δ
1
2 )

ω2

ω2
M,j

− 1 + iω
λjv

aT
j Baj

ℓiaij .
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Using the expansion (3.15) for the modal functions uj(ω, δ), equation (3.13) allows to infer the following ap-

proximation for u(ω, δ) on
⊔N

i=1(x
−
i , x

+
i ):

u(ω, δ) = O(ωδ) +

N∑

i=1


 (α+ + α− +O(δ

1
2 ))

1− iωv
2v2

b
δ

∑N
p=1 ℓp

+
2iω

v

N∑

j=2

1

λj

a1jα+ + aNjα− +O(δ
1
2 )

ω2

ω2
M,j

− 1 + iω
λjv

aT
j Baj

aij


 1(x−

i
,x

+

i
)

=
α+ + α− +O(δ

1
2 )

1− iτM
ω
δ

+
2iω

v

N∑

j=2

1

λj

a1jα+ + aNjα− +O(δ
1
2 )

ω2

ω2
M,j

− 1 + iω
λjv

aT
j Baj

N∑

i=1

aij1(x−

i
,x

+

i
).

�

The result of Proposition 4.3 shows that the constant mode is excited in the regime ω = O(δ), while piecewise
constant modes are excited around the frequency ω ≃ ωM,j . For 2 ≤ j ≤ N , the j-th mode is constant in
each resonator (x−

i , x
+
i ), with a constant given by the i-th coefficient of the eigenvector aj of the capacitance

eigenvalue problem (3.22).

4.2. Transmission and reflection coefficients of the high-contrast medium

The next proposition motivates the definition of the transmission and reflection coefficients.

Proposition 4.4. Let us assume that ω is real and that uin is a wave propagating from left to right, namely
α− = 0 in (4.1). Then we have the following energy conservation identity:

∣∣∣∣
u(x−

1 )− uin(x
−
1 )

uin(x
−
1 )

∣∣∣∣
2

+

∣∣∣∣
u(x+

N )

uin(x
+
N )

∣∣∣∣
2

= 1. (4.9)

Proof. The total field u solution to (1.6) satisfies

− d

dx

[
1

ρ(x)

d

dx
u

]
− ω2

κ(x)
u = 0 in R,

where we recall the definition (1.2) of κ(x) and ρ(x). Multiplying by the conjugate u and integrating by parts
on (x−

1 , x
+
N ) yields

∫ x
+

N

x
−

1

[
1

ρ(x)

∣∣∣∣
d

dx
u(x)

∣∣∣∣
2

− ω2

κ(x)
|u(x)|2

]
dx− 1

ρb

du

dx
(x+

N )u(x+
N ) +

1

ρb

du

dx
(x−

1 )u(x
−
1 ) = 0, (4.10)

where we used the jump relations of (1.6) to cancel the terms occuring at intermediate points. Since uin

propagates from left to right, we have duin/ dx = ikuin. We now remark that

du

dx
(x+

N ) =
d(u− uin)

dx
(x+

N ) +
duin

dx
(x+

N ) = ik(u(x+
N )− uin(x

+
N )) + ikuin(x

+
N ) = iku(x+

N ),

and
du

dx
(x−

1 ) =
d(u− uin)

dx
(x−

1 ) +
duin

dx
(x−

1 ) = −ik(u(x−
1 )− uin(x

−
1 )) + ikuin(x

−
1 ).

Inserting these values into (4.10) and taking the imaginary part yields

0 = −|u(x+
N )|2 + [−(u(x−

1 )− uin(x
−
1 )) + uin(x

−
1 )]((u(x

−
1 )− uin(x

−
1 )) + uin(x1)

−)

= −|u(x+
N )|2 − |u(x−

1 )− uin(x
−
1 )|2 + |uin(x

−
1 )|2,

which concludes the proof. �

Motivated by the energy identity (4.9), we introduce the transmission and reflection coefficients as follows.

Definition 4.1. Consider an incident wave uin propagating from left to right. The transmission and the
reflection coefficients of the system of N resonators are the complex quantities T (ω, δ) and R(ω, δ) defined by

T (ω, δ) :=
u(x+

N )

uin(x
+
N )

, R(ω, δ) :=
u(x−

1 )− uin(x
−
1 )

uin(x
−
1 )

. (4.11)

The coefficients T (ω, δ) and R(ω, δ) capture the amplitude and the phase (or time delay with respect to
the incident wave) of the transmitted reflected waves, which are respectively the parts of the solution u which
propagate from left to right and from right to left. The identity (4.9) reads

|T (ω, δ)|2 + |R(ω, δ)|2 = 1,

which implies in particular that T (ω, δ) and R(ω, δ) are of modulus lower than one.

In the next proposition, we compute the leading asymptotic expansions of T (ω, δ) and R(ω, δ).
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Proposition 4.5. Assume that ω is real and ω = O(δ
1
2 ). The reflection and transmission coefficients T (ω, δ)

and R(ω, δ) of (4.11) have the following asymptotic expansions:

T (ω, δ) =
1 +O(δ

1
2 )

1− iτM
ω
δ

+
2iω

v

N∑

j=2

1

λj

a1jaNj +O(δ
1
2 )

ω2

ω2
M,j

− 1 + iω
λjv

aT
j Baj

,

R(ω, δ) =
1 +O(δ

1
2 )

1− iτM
ω
δ

+
2iω

v

N∑

j=2

1

λj

a21j +O(δ
1
2 )

ω2

ω2
M,j

− 1 + iω
λjv

aT
j Baj

− 1.

Proof. From (4.8) with uin(x) = α+e
ikx, we infer that

u(x+
N ) =

α+

1− iτM
ω
δ

+
2iω

v

N∑

j=2

1

λj

a1jα+ +O(δ
1
2 )

ω2

ω2
M,j

− 1 + iω
λjv

aT
j Baj

aNj +O(δ
1
2 ).

Hence, the transmission coefficient reads

T (ω, δ) =
u(x+

N )

uin(x
+
N )

=


 1

1− iτM
ω
δ

+
2iω

v

N∑

j=2

1

λj

a1jaNj +O(δ
1
2 )

ω2

ω2
M,j

− 1 + iω
λjv

aT
j Baj

+O(δ
1
2 )


 e−ikx+

N ,

and the expression for T (ω, δ) follows, observing that e−ikx+

N = 1 +O(δ
1
2 ). Similarly,

u(x−
1 ) =

α+

1− iτM
ω
δ

+
2iω

v

N∑

j=2

1

λj

a1jα+ +O(δ
1
2 )

ω2

ω2
M,j

− 1 + iω
λjv

aT
j Baj

a1j +O(δ
1
2 ),

which yields the reflection coefficient

R(ω, δ) =
u(x−

1 )− uin(x
−
1 )

uin(x
−
1 )

=
1 +O(δ

1
2 )

1− iτM
ω
δ

+
2iω

v

N∑

j=2

1

λj

a21j +O(δ
1
2 )

ω2

ω2
M,j

− 1 + iω
λjv

aT
j Baj

− 1.

�

Remark 4.2. In the single resonator case N = 1, the transmission and the reflection coefficients can be explicitly
written as

R(ω, δ) =
(δ2v2b − v2) sin (ωℓ1

vb
)

(δ2v2b + v2) sin (ωℓ1
vb

) + 2iδvvb cos (
ωℓ1
vb

)
,

T (ω, δ) =
2iδvvb

(δ2v2b + v2) sin (ωℓ1
vb

) + 2iδvvb cos (
ωℓ1
vb

)
.

(4.12)

Considering incident frequencies ω ∼ vbλ
1
2

j δ
1
2 close to the resonant values, we obtain the following result for

the transmission and reflection coefficients near the resonant frequencies.

Corollary 4.1. The transmission and reflection coefficients converge to the following values near the resonant
frequencies:

• the following convergences hold as ω = o(δ) with δ → 0:

T (0, δ) → 1, R(0, δ) → 0;

• the following convergences hold as δ → 0 with ω ∼ vbλ
1
2

j δ
1
2 :

T (ω, δ) → Tj and R(ω, δ) → Rj ,

where the limit transmission and reflection coefficients Tj and Rj are given by

Tj :=
2a1jaNj

a21j + a2Nj

, Rj :=
a21j − a2Nj

a21j + a2Nj

. (4.13)

Here, we recall the notation (aij)1≤i≤N for the coefficients of the eigenvector aj of (3.22).

• If ω = O(δ
1
2 ) stays away from the resonant frequencies, namely if

ω ≫ δ and |ω − vbλ
1
2

j δ
1
2 | ≫ δ for any 2 ≤ j ≤ N,

then

T (ω, δ) → 0 and R(ω, δ) → −1.
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Remark 4.3. The corollary shows that the transmission is optimal near the resonant frequency ωj(δ) when the
first and last entries of the eigenvector aj coincide, up to a sign. Furthermore, the last point of the corollary
states that away from a band around the resonances of size O(δ), the reflection coefficient remains close to −1.
The formula (4.13) suggests that exceptional positive reflection coefficients can be obtained near the resonances
ωM,j upon the condition aNj = 0. We present in the next section several numerical evidences of these results.

5. Numerical illustrations of subwavelength resonances

In this final section, we provide several numerical illustrations of the subwavelength resonant phenomena
occuring in the 1D high-contrast system of Figure 1. We consider four different situations with a system of
N = 1, 2, 6 non-identical resonators, and a system of 6 identical resonators, which are respectively treated
in Sections 5.2 to 5.5. The values of the physical parameters considered, as well as the adopted numerical
methodology are first detailed in Section 5.1.

5.1. Setting and methodology

In all three situations, the physical parameters are set to

v = 1, vb = 1, δ = 0.001,

while the frequency ω is a parameter that is allowed to vary in a “subwavelength” frequency range (0,Ω). In
the present 1D setting, a natural choice for the bound Ω is

Ω := 0.1
π

max1≤i≤N ℓi
. (5.1)

Indeed, frequencies larger than Ω correspond to wavelengths smaller or comparable to the size of the largest
resonator, hence they cannot be qualified “subwavelength”. More mathematically said, the first nonzero Neu-

mann eigenvalue of the (negative) Laplacian operator on
⊔N

i=1(x
−
i , x

+
i ) is π/max1≤i≤N ℓi, around which further

resonances (called Fabry-Pérot resonances, see [13]) occur.
Il all three situations, we consider an incident wave propagating from left to right:

uin(x) = eikx, (5.2)

where we recall that k = ω/v. We solve numerically the scattering problem (1.6) with uin given by (5.2), and
we compute the transmission and reflection coefficients for incident frequencies in the subwavelength regime
(0,Ω). We observe peaks of the transmission coefficient at the subwavelength resonant frequencies predicted by
the asymptotic analysis of Proposition 3.3. Furthermore, we also verify the result of Corollary 4.1 which states

that for ω ≃ ωM,j = vbλ
1
2

j δ
1
2 , the transmission and reflection coefficients converge to the quantities Tj and Rj

of (4.13).
Our discussions include plots of the numerical solution u to the scattering problem (1.6), which are obtained

by plotting the function x 7→ ℜ(u(x)e−iφ), where φ is a phase shift selected to observe the maximum amplitude
of the wave on the negative real line:

eiφ :=
u(0)

|u(0)| . (5.3)

This phase shift allows the reader to better appreciate the damping or the enhancement of the transmitted wave
near the resonances.

In order to assess the accuracy of the asymptotic formula of Proposition 3.3, we compute numerically the
exact values of the subwavelength resonant frequencies with the Muller’s method [30], following the methodology
of [9, Section 1.6], and report their values in Tables 1 to 4 below. We rely on the implementation provided by
the open-source code [34]. We recall that the Muller’s method allows to find (complex) roots of holomorphic
functions by using quadratic interpolants. In our case, we apply the Muller’s method to obtain the zeros of the
function ω 7→ µ1(ω), where µ1(ω) is the eigenvalue of the matrix A(ω, δ) (Eq. (3.3)) with the smallest complex
modulus. Since µ1(ω) = 0 implies that A(ω, δ) is not invertible, computing such roots ω yields the desired
resonant frequencies. In order to obtain all the roots, we initialize the Muller’s method with the frequencies
(3.23) and (3.24) predicted by the asymptotic analysis.

The numerical results allow to observe the arising of subwavelength resonances, which are frequencies for
which the transmission coefficient becomes suddenly close to a nonzero value. In contrast, there is almost
no transmission to the positive real line when the incident frequency is away from the resonances, leading
to almost perfect reflection. It is also possible to observe special resonances (see e.g. ω+

5 (δ) in Section 5.4)
with low transmission but a positive reflection coefficient (R(ω, δ) ≃ +1 instead of R(ω, δ) ≃ −1 away from
the resonances). These findings show that such systems of subwavelength resonators can serve as a low pass
filter for frequencies very close to zero, and as either a band filter near the nonzero resonant frequencies, or an
amplifier of the reflected wave.
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Frequency Theoretical Numerical Tj Rj

ω0(δ) 0 0 1 0

ω1(δ) −0.0020000006666670215i −0.0020000006666698773i 1 0

Table 1. Theoretical frequencies predicted by the leading-order approximation of Proposi-
tion 3.3 for the single resonator setting of Section 5.2. The last column features the predicted
transmission and reflection coefficients (Tj)1≤j≤N and (Rj)1≤j≤N around resonant frequencies
according to (4.13).

5.2. Single resonator case

Our first example is the simplest situation in which there is only a single resonator of unit length ℓ1 = 1, as
illustrated on Figure 3. The system admits only the null frequency ω0(δ) = 0 and a purely imaginary resonant

ℓ1 = 1

R

Figure 3. A situation with a single N = 1 subwavelength resonator.

frequency ω1(δ) ∈ iR. We compare in Table 1 the numerical value obtained with the Muller’s method for the
purely imaginary frequency ω1 to the predicted exact value given in (3.28), which are in excellent agreement.

We then plot on Figure 4 the real part of the transmission and the reflection coefficients defined in (4.11). In
the present situation with N = 1, the formula (5.1) yields Ω ≃ 0.31. We observe the absence of distinguished
subwavelength resonances apart from the peak at ω = 0. In order to illustrate this behaviour, we compute the
total wave solution at the frequencies ω ∈ {0.003, 0.05} and plot on Figure 5 the respective solution function
x 7→ ℜ(u(x)e−iφ), where φ is the phase shift (5.3). We clearly observe that the transmitted wave is considerably
damped at ω = 0.05, while a significant part of the wave is transmitted on the positive real line in the first case
ω = 0.003.
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0.0
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(a) Transmission coefficient ℜ(T (ω, δ)).
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(b) Reflection coefficient ℜ(R(ω, δ)).

Figure 4. Transmission and reflection coefficients (Eq. (4.11)) for the single resonator case of
Section 5.2. The red dots indicate the frequencies ω = 0.003 and ω = 0.05, whose associated
solution waves are plotted on Figure 5.

Finally, we plot on Figure 6 the resonant modes associated with ω0(δ) = 0 and ω1(δ), obtained with the
Muller’s method. The mode associated to ω0(δ) is uniformly constant on R, while the mode associated to
ω1(δ) ∈ iR has an exponential spatial growth.

To summarize, these numerical computations illustrate the fact that a single subwavelength resonator behaves
as a low pass filter in the subwavelength frequency regime.

5.3. Two resonator case

Our second example is a situation featuring two resonators with different sizes: the precise setting is given
on Figure 7. The transmission and reflection coefficients associated to the incident wave (5.2) are plotted on
Figure 8 on the frequency range ω ∈ (0,Ω), for which the formula (5.1) yields Ω ≃ 0.079. The plots reveal
the occurrence of a non-trivial, nonzero resonant frequency ω+

2 (δ) in this subwavelength range. We then check
that the peak observed in the transmission coefficient occurs near the resonances predicted by the asymptotic
analysis of Propositions 3.3 and 4.5: we report in Table 2 the numerical values of the subwavelength resonant
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(b) ω = 0.003 (zoom on (−10, 10)).

1000 500 0 500 1000
x

3

2

1

0

1

2

3

u(
x)

(c) ω = 0.05.
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(d) ω = 0.05 (zoom on (−10, 10)).

Figure 5. Wave ℜ(u(x)e−iφ) solution to (1.7) for two incident frequencies ω = 0.003 and
ω = 0.05 (reported as the red dots on Figure 4), in the single resonator case of Section 5.2.
For both frequencies, we plot a zoom of the solution on the interval (−10, 10). The part of
the solution on the resonator (x−

1 , x
+
1 ) is represented in orange color. The phase φ is chosen

according to (5.3).
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(a) Resonant (constant) mode for
ω0(δ) = 0.
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(b) Resonant (constant) mode for
ω0(δ) = 0 (zoom on (−10, 10)).
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(c) Resonant mode for the imaginary
resonant frequency ω1(δ).
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(d) Resonant mode for the imagi-
nary resonant frequency ω1(δ) (zoom on
(−10, 10)).

Figure 6. Subwavelength resonant modes for the single resonator case of Section 5.2.
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ℓ1 = 3 ℓ2 = 4ℓ12 = 4

R

Figure 7. A situation with N = 2 subwavelength resonators.
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(a) Transmission coefficient ℜ(T (ω, δ)).
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(b) Reflection coefficient ℜ(R(ω, δ)).

Figure 8. Transmission and reflection coefficients (Eq. (4.11)) for the two resonator case of
Section 5.3. The red dots indicate the frequencies ω = 0.02 and ω = 0.15, while the orange
cross marks the predicted resonant frequency ω+

2 (δ) ≃ 0.0382. The wave solutions associated
to these frequencies are plotted on Figure 9.

Frequency Theoretical Numerical Tj Rj

ω0(δ) 0 0 1 0

ω1(δ) −0.00028571i −0.00028555i 1 0

ω+
2 (δ) 0.012076− 0.00014881i 0.012070− 0.00014886i -0.96 0.28

Table 2. Theoretical frequencies predicted by the leading-order approximation of Proposi-
tion 3.3 for the two resonator case of Section 5.3. The last column feature the predicted
transmission and reflection coefficients (Tj)1≤j≤N and (Rj)1≤j≤N around resonant frequencies
according to (4.13).

frequencies computed with the Muller’s method, and compare them to the formulas (3.23) and (3.24). The
real part of the predicted value for the resonant frequency ω+

2 (δ) is also indicated by an orange cross on the
transmission and reflection plots of Figure 8. Despite the fact that we use only the leading-order asymptotic
in δ, we still observe a very good agreement between the numerical and theoretical values. To illustrate the
behavior of the system around the resonant frequency ω+

2 (δ), we plot on Figure 9 the total wave field for the
three different frequencies ω ∈ {0.003, 0.0121, 0.015}, which are marked on Figure 8 with the red points and
orange crosses. We still use the phase shift (5.3) to display the maximum values attained by the incident wave.
We clearly observe the significant enhancement of transmission near the resonant frequency ω+

1 (δ) ≃ 0.0121,
and the damping of the transmitted wave (on the positive real line) at the frequencies ω ∈ {0.003, 0.015}. The
imperfect transmission value T2 ≃ −0.96 comes from the lack of symmetry of the system. We can appraise
the fact that the resonators (x−

1 , x
+
1 ) and (x−

2 , x
+
2 ) operate in the subwavelength frequency regime: for instance

they are approximately a hundred times smaller than the operating wavelength on Figure 9c!
Finally, we plot on Figure 10 the resonant modes associated to the three resonant frequencies ω0(δ) = 0,

ω1(δ) ∈ iR and ω2(δ)
+. The mode associated to ω1(δ) exhibits no oscillation but a slow exponential growth.

The mode associated to ω+
2 (δ) has an oscillating component and a slow exponential growth. We remark that,

consistently with the approximation formula (4.8), the total solution at ω = 0.0121 ≃ ω+
2 (δ) visible on Figure 9c

resembles to the resonant mode visible on Figure 10e.
To conclude, these numerical results illustrate the fact that in this situation, the system behaves as a low pass

filter very close to the null frequency ω0(δ) = 0, and as a band pass filter close to the resonant frequency ω+
2 (δ).

5.4. Six resonator case

In order to illustrate the fact that the 1D system of Figure 3 admits exactly as many subwavelength resonances
as the number N of subwavelength resonators (one of them being located at the null frequency ω0(δ) = 0),
we consider now a situation with six resonators, illustrated on Figure 11. The transmission and reflection
coefficients associated to the incident wave (5.2) are plotted on Figure 12. As expected from the result of

22



4000 2000 0 2000 4000
x

3

2

1

0

1

2

3

u(
x)

(a) ω = 0.003.

10 5 0 5 10 15 20
x

3

2

1

0

1

2

3

u(
x)

(b) ω = 0.003 (zoom on (−10, 20)).
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(c) ω = 0.0121 ≃ ω+

2 (δ).
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(d) ω = 0.0121 (zoom on (−10, 20)).
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(e) ω = 0.15.
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(f) ω = 0.15 (zoom on (−10, 20)).

Figure 9. Wave solution ℜ(u(x)e−iφ) to (1.7) for three incident frequencies ω ∈
{0.003, 0.0121, 0.15} in the two resonator setting of Section 5.3. These frequencies, reported
with the red mark and the orange crosses on Figure 8, are either far from or close to the res-
onances. The part of the solution crossing the resonators is drawn in orange color. The phase
φ is chosen according to (5.3).

Proposition 3.3, six resonant frequencies are visible, including the zero frequency ω0(δ) = 0. The magnitude
of the resonant peaks decay as the order of the resonance increases, which is consistent with the transmission
coefficients values Tj reported in Table 3. A striking feature of this system is the fifth resonance ω+

5 (δ) which is
associated to a reflection coefficient R5 ≃ 0.93 close to the value +1, instead of the value −1 encountered away
from the resonances.

We report on Table 3 the numerical values of the subwavelength resonant frequencies computed with the
Muller’s method, and compare them to the values obtained with formulas (3.23) and (3.24). We also report the
predicted frequencies with an orange cross on the transmission and reflections plots of Figure 8. Once again,
we observe that the numerical and theoretical values are in very good agreement, up to a slight loss of accuracy
for the imaginary part of the highest order resonant frequencies ω+

5 (δ) and ω+
6 (δ). We then plot on Figure 13

the total wave field generated by the incident wave (5.2) at the frequencies ω ∈ {0.0119, 0.0165, 0.0197, 0.0272}
which are respectively close to ω+

3 (δ), in between ω+
3 (δ) and ω+

4 (δ), close to ω+
4 (δ) and close to ω+

5 (δ). Their
values are indicated by the red mark and the orange crosses on Figure 12. Again, we observe that the incident
wave is transmitted to the right part of the domain for frequencies close to the first four resonant frequencies:
the magnitude of the transmitted wave field on the positive real line is large for ω ≃ ω+

3 (δ) and ω ≃ ω+
4 (δ), and

slightly damped for ω = 0.0272 ≃ ω+
5 (δ). The attenuation observed for ω = 0.0272 is consistent with the value

T5 ≃ 0.37 of the transmission coefficient. However, we observe the striking amplified and inverted reflected wave
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(b) Resonant (constant) mode for
ω0(δ) = 0 (zoom on (−10, 20))
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(c) Resonant mode for the imaginary
resonant frequency ω1(δ)
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(d) Resonant mode for the imagi-
nary resonant frequency ω1(δ) (zoom on
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(e) Resonant mode for ω+
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Figure 10. Subwavelength resonant modes for the two resonator case of Section 5.3.
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Figure 11. A situation with N = 6 subwavelength resonators.

on Figure 13g. Finally, we report on Figure 14 the six resonant modes computed with the Muller’s method
associated to the six subwavelength resonant frequencies. The first mode is constant, the second has a slow
exponential growth and no oscillatory behavior, while the subsequent ones feature both a slow exponential
growth and an oscillatory behavior. Consistently with the analysis of Proposition 3.3, the total wave fields are
approximately constants in the resonators, with constants being approximately proportional to the coordinates
of the eigenvectors (ai)1≤i≤N of the capacitance eigenvalue problem (3.22). We still remark the resemblance
of the wave solution u at ω ≃ ω+

3 (δ) and ω ≃ ω+
4 (δ) (Figs. 17a and 17e) to the modes associated to these

frequencies (Figs. 14g and 14i), up to a phase shift.
To conclude, this numerical experiment further illustrates the arising of as many resonances as the number

of considered resonators, the ability of the resonators to manipulate waves at subwavelength scales, and the fact
that the transmission and reflection properties are well predicted by the capacitance analysis of Proposition 3.3.
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(b) Reflection coefficient ℜ(R(ω, δ)).

Figure 12. Transmission and reflection coefficients (Eq. (4.11)) for the six resonator case of
Section 5.4. The red dot indicates the frequency ω = 0.0165, while the orange cross indicates
the location of the predicted resonant frequencies (from Table 3). The wave solutions associated
to the frequencies marked by the red dots and ω+

3 (δ) and ω+
4 (δ) are plotted on Figure 13.

Frequency Theoretical Numerical Tj Rj

ω0(δ) 0 0 1 0

ω1(δ) −0.00016667i −0.00016647i 1 0

ω+
2 (δ) 0.005669− 0.00012768i 0.0056643− 0.00012759i -0.985 0.172

ω+
3 (δ) 0.011926− 5.8224× 10−5i 0.011915− 5.8286× 10−5i 0.915 0.403

ω+
4 (δ) 0.019678− 1.5263× 10−5i 0.019658− 1.5326× 10−5i −0.848 −0.530

ω+
5 (δ) 0.027254− 5.9817× 10−6i 0.027229− 6.0172× 10−6i 0.371 0.929

ω+
6 (δ) 0.036341− 1.1878× 10−6i 0.036311− 1.2017× 10−6i −0.113 −0.994

Table 3. Theoretical frequencies predicted by the leading-order approximation of Proposi-
tion 3.3 for the six resonator case of Section 5.4. The last column features the predicted
transmission and reflection coefficients (Tj)1≤j≤N and (Rj)1≤j≤N around resonant frequencies
according to (4.13).

5.5. Six resonator case with perfect transmission

We now consider a final example to illustrate the possibility to achieve perfect transmission and zero reflection
near the resonant frequencies. As highlighted from the formula (4.13), the loss of transmission near resonances
is due to the difference between the first and the last entries of the eigenvectors aj of the capacitance eigenvalue
problem (3.22). If the system of resonators is invariant when reversing the direction of the real line (i.e. under
the inversion of the order of the sequences (ℓi)1≤i≤N and (ℓi(i+1))1≤i≤N−1), then it can be shown by using a
symmetry argument that the same symmetry property holds for the eigenvectors aj , up to a change of sign.

Proposition 5.1. Assume that the sequences (ℓi)1≤i≤N and (ℓi(i+1))1≤i≤N−1 are invariant when reversing their
orders:

∀1 ≤ i ≤ N, ℓi = ℓN−i+1 and ∀1 ≤ i ≤ N − 1, ℓi(i+1) = ℓ(N−i)(N−i+1).

Then, under the simplicity assumption Lemma 3.3, the eigenvectors (aj)1<j≤N of the eigenvalue problem (3.22)
satisfy

∀1 ≤ i ≤ N, aij = (−1)kja(N−i+1)j ,

with kj = 0 or kj = 1.

Proof. This is an immediate consequence of the fact that under the symmetry assumption, Cijxj = CijxN−1+j

and Vijxj = VijxN−1+j for any x ∈ C
N . �

Therefore, a system of resonators which is invariant by reversing the order of its elements attains in the
limit δ → 0 perfect transmission at all its subwavelength resonances. We illustrate this property numerically by
considering a system of six identical resonators, illustrated on Figure 15.
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(d) ω = 0.0165 (zoom on (−10, 40)).
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(f) ω = 0.0197 (zoom on (−10, 40)).
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(g) ω = 0.0272 ≃ ω+
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Figure 13. Wave solution ℜ(u(x)e−iφ) to (1.7) for four incident frequencies ω ∈
{0.0119, 0.0165, 0.0197, 0.0272} in the six resonator setting of Section 5.4. These frequencies,
reported with the red mark and the orange crosses on Figure 12), are either far from or close
to the resonances. The part of the solution in the resonators is drawn in orange color. The
phase φ is chosen according to (5.3).

The numerically computed transmission and reflection coefficients associated to the incident wave (5.2) are
plotted on Figure 16. As in the previous Section 5.4, five resonant frequencies are visible in addition to the zero
frequency ω0(δ) = 0. However, the transmission coefficients are close to the values −1 and +1. They do not
reach perfectly these values due to the fact that δ 6= 0.
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(b) Resonant (constant) mode for
ω0(δ) = 0 (zoom on (−10, 40)).
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(c) Resonant mode for the imaginary
resonant frequency ω1(δ).
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(d) Resonant mode for the imagi-
nary resonant frequency ω1(δ) (zoom on
(−10, 40)).
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(f) Resonant mode for ω+

2 (δ) (zoom on
(−10, 40)).
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(h) Resonant mode for ω+

3 (δ) (zoom on
(−10, 40)).

Figure 14. Subwavelength resonant modes for the six resonator case of Section 5.4.

The numerical values of the predicted subwavelength resonant frequencies and the scattering coefficients
are reported in Table 4. We also report the predicted frequencies with orange crosses on the transmission
and reflections plots of Figure 8. We observe that the location of the resonance is accurately predicted, but
not the exact position of the maximum amplitude, which would require using higher order terms (of order

O(δ
3
2 )). We then plot on Figure 17 the total wave field generated by the incident wave (5.2) at the frequencies

ω ∈ {0.0446, 0.05, 0.0774, 0.0863} which are alternatively close to ω+
3 (δ), in between ω+

3 (δ) and ω+
4 (δ), and close

to ω+
4 (δ) and ω+

6 (δ). Their values are indicated by the red mark and the orange crosses on Figure 16. In
contrast with the previous Section 5.4, we observe that the transmitted fields are almost not attenuated at the
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(l) Resonant mode for ω+

5 (δ) (zoom on
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Figure 14. Subwavelength resonant modes for the two resonator case of Section 5.4.
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ℓ12 = 1
2 ℓ23 = 1

2 ℓ34 = 1
2 ℓ45 = 1

2 ℓ56 = 1
2

R

Figure 15. A symmetric system of six resonators considered in Section 5.5.

Frequency Theoretical Numerical T R

ω0(δ) 0 0 1 0

ω1(δ) −0.00033333i −0.00033323i 1 0

ω+
2 (δ) 0.023149− 0.000311i 0.023122− 0.00031097i −1 0

ω+
3 (δ) 0.044721− 0.00025i 0.044676− 0.00025012i 1 0

ω+
4 (δ) 0.063246− 0.00016667i 0.063194− 0.00016689i −1 0

ω+
5 (δ) 0.07746− 8.3333× 10−5i 0.077412− 8.3512× 10−5i 1 0

ω+
6 (δ) 0.086395− 2.2329× 10−5i 0.086354− 2.2391× 10−5i −1 0

Table 4. Theoretical frequencies predicted by the leading-order approximation of Proposi-
tion 3.3 for the six resonator case of Section 5.4.
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(a) Transmission coefficient ℜ(T (ω, δ)).
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Figure 16. Transmission and reflection coefficients (Eq. (4.11)) for the symmetric six res-
onator case of Section 5.5. The red dot indicates the frequency ω = 0.05, while the orange
crosses indicates the predicted resonant frequencies (from Table 4). The wave solutions associ-
ated to the frequencies marked by the red dots and ω+

3 (δ) and ω+
4 (δ) are plotted on Figure 17.

highest order resonant frequencies, thereby achieving almost perfect transmission. Here, this system does not
reach a positive reflection coefficient.
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Figure 17. Wave solution ℜ(u(x)e−iφ) to (1.7) for four incident frequencies ω ∈
{0.0446, 0.05, 0.0774, 0.0863} in the six resonator setting of Section 5.5. These frequencies,
reported with the red mark and the orange crosses on Figure 16), are either far from or close
to the resonances. The part of the solution in the resonators is drawn in orange color. The
phase φ is chosen according to (5.3).
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