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Abstract

Existing architectures for operator learning require that the number and locations of
sensors (where the input functions are evaluated) remain the same across all training
and test samples, significantly restricting the range of their applicability. We address
this issue by proposing a novel operator learning framework, termed Variable-Input
Deep Operator Network (VIDON), which allows for random sensors whose number
and locations can vary across samples. VIDON is invariant to permutations of
sensor locations and is proved to be universal in approximating a class of continuous
operators. We also prove that VIDON can efficiently approximate operators arising
in PDEs. Numerical experiments with a diverse set of PDEs are presented to
illustrate the robust performance of VIDON in learning operators.

1 Introduction

Operators are mappings between infinite-dimensional spaces. They arise in a large variety of contexts
in science and engineering, particularly when the underlying models are ordinary (ODEs) or partial
(PDEs) differential equations. A prototypical example for operators is provided by the so-called
solution or evolution operator of a time-dependent PDE, which maps an input (infinite-dimensional)
function space of initial conditions to an output function space of solutions of the PDE at certain
point of time. Given the ubiquity of ODEs and PDEs in applications, learning operators from data is
of great significance in science and engineering, [9, 13] and references therein.

As inputs and outputs of operators are infinite-dimensional (e.g. functions, infinite sequences),
conventional neural networks cannot be directly deployed to learn them. Instead, a new field
of operator learning is rapidly emerging, wherein one designs novel learning architectures to
approximate such operators. A popular operator learning paradigm is that of neural operators
[13], which generalize the structure of neural networks, wherein each hidden layer consists of a
non-local affine operator, composed with a local (scalar) non-linear activation function. Reflecting
the infinite-dimensional structure of the underlying learning task, the non-local affine layer amounts
to integrating with respect to a kernel and choosing different kernels leads to graph kernel operators,
[17], low-rank kernel operators [13] and multipole expansions [18]. Evaluating a convolution-based
kernel efficiently in Fourier space (via FFT), yields the Fourier neural operator (FNO) [16], which
has been rigorously proved to be universal, efficient in learning operators arising in PDEs [12] as
well as being very successfully employed in a variety of applications in science and engineering
[16, 19, 24] and references therein. However, FNOs are restricted to operators where the discretization
of the underlying domains is (or can be efficiently mapped to) a Cartesian grid, considerably limiting
the range of their applicability [22].

An alternative framework is that of operator networks [3] and their deep version, DeepONets [21].
This architecture is based on two different sets of neural networks, so-called trunk nets which span the
infinite-dimensional output space and branch nets which map the (encoded) input into the coefficients
of the trunk nets. DeepONets are also universal, efficiently approximate operators arising in PDEs
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[14] and are widely used in scientific computing [21, 23, 1, 20] and references therein. In contrast to
FNOs, DeepONets can handle learning operators on very general domains and boundary conditions.
However, DeepONets have their own set of limitations. In particular, the (infinite-dimensional) input
function to the branch net of a DeepONet has to be projected to finite dimensions by evaluating it
on a finite set of sensors, located in the underlying domain. Although these sensor locations can be
randomly chosen inside the domain [21, 14], the number and location of these sensor points has to be
invariant across all training (and test) samples. Similarly, FNOs require input sensors to be located on
a Cartesian grid for each sample.

On the other hand, the training (and test) data for operator learning is generated either from physical
measurements (observations) or computer simulations (or a combination of them). In both scenarios,
it is too restrictive to expect that data is available at the same set (or number) of points across all
training samples. For instance, different data sources (measurement devices) can be placed at different
locations at different time periods or for different domains (experimental conditions), within the
same data set. Moreover, measurements at some sensor locations could be missing due to device
faults. Additionally, there will always be an intrinsic uncertainty in the exact location of measurement
devices. Similarly, numerical simulations at different spatio-temporal resolutions will be combined
in the same training and test data set. Hence, the lack of flexibility in sensor locations for encoding
the inputs to DeepONets and FNOs constitutes a major limitation for current operator learning
frameworks (see Figure 1).

This limitation of fixed number and location of sensors points to a fundamental issue with existing
operator learning frameworks as one can view their inputs as vectors of fixed length containing
function values at fixed locations, rather than functions which could be evaluated at arbitrary points of
the domain. This raises questions on the very essence of operator learning with current architectures.
A related issue pertains to the notion of permutation invariance i.e., permuting input sensor locations
should not alter the output of an operator learning framework as the same underlying input function
is being sampled. Thus, it is imperative to require that operator learning frameworks be permutation-
invariant.

The above considerations set the stage for the current paper where we propose a novel architecture for
operator learning that allows for variable (flexible) sensor locations. To this end and motivated by the
permutation-invariant deep learning frameworks such as deep sets [29, 27] as well as transformers
[26], we propose an operator learning framework termed Variable-Input Deep Operator Networks
(VIDON) in Section 2, that allows for random locations for input sensors in each sample as well as for
the number and locations of sensors to vary across samples (see Figure 1). We prove in Section 3 that
VIDON is universal in approximating continuous operators that map into Sobolev spaces. Moreover,
we also prove that VIDON can efficiently approximate operators stemming from a variety of PDEs,
by showing that the size of the underlying neural networks only grows polynomially (at worst) in
the inverse of the accuracy. Finally in Section 4, we illustrate VIDON in a series of numerical
experiments for different PDEs, showing that it can accurately approximate the underlying operators,
while presented with very different input sensor configurations. The notation and technical details for
proofs and implementations are presented in the supplementary material (SM).

2 Variable-Input Deep Operator Networks

Setting. For compact sets D,U ⊂ Rd, we consider (general forms of) operators G : X → Y ,
where X ⊂ L2(D;Rdv ) and Y ⊂ L2(U ;Rdu). In the context of time-dependent PDEs of the general
abstract form, La(u) = 0 with u(0, ·) = u0, where a is a parameter function, we will consider
operators that map a parameter function a to the solution u i.e., G : X → Y : a 7→ u, as well as
operators that map the initial condition u0 to the solution u i.e., G : X → Y : u0 7→ u.

DeepONets. Following [21, 14], one approximates the operators G by starting with an en-
coder E : X → Rm that maps every input function u to m fixed sensors and its sensor values
((xj , u(xj)))1≤j≤m. Two sets of neural networks are then defined, a branch net β∗ : Rm → Rp

and a trunk net τ : U → Rp+1. The branch and trunk nets are then combined to approximate the
underlying non-linear operator as the DeepONet N ∗,

N ∗ : E(X ) ⊂ Rm → Y : E(u) 7→ τ0(y) +

p∑

k=1

β∗
k(E(u))τk(y). (2.1)
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Figure 1: Learning the operator mapping the permeability coefficient a (Input) to the solution u
(Target) for Darcy flow (3.3), for two different realizations (samples) of the input. The input has to
be evaluated at sensor points. FNO requires a Cartesian grid of sensors for each sample whereas as
DeepONets allow for a random cloud of sensors. However, the number and location of sensors has
to be the same for all training and test samples. In contrast, VIDON (2.6) allows for random sensor
points, whose location and number can vary for each sample.

Functions on sets. In DeepONets (2.1), the input to the branch net is a tuple of fixed length, whose
entries are function values of the input function u at m fixed sensors. As described in the introduction,
this is necessarily limiting. To allow for variable sensor locations as well as invariance of the output
to permutations of sensor locations, the input to the branch net should consist of sets of variable size,
rather than tuples of fixed length. To this end, we follow [27] to define X

≤M to be the set of subsets
of a set X containing at most M ∈ N elements and we denote by X

F the set of finite subsets of X.
For M ∈ N, u ∈ X and (possibly random) sensor points x1(u), . . . , xM (u) we can then define an
encoder E by,

E : X × {1, . . . ,M} → (Rd+dv )≤M : (u,m)→ Em(u), where,

Em : X → (Rd+dv )m : u 7→ {(xj , u(xj))}mj=1, 1 ≤ m ≤M.
(2.2)

Given this encoding, the branch net in (2.1) needs to be a permutation-invariant function that allows
sets with variable size as input, i.e., β : (Rd+dv )≤M → Rp. Based on the result of [29] on
permutation-invariant functions, it has been proven in [27, Theorem 4.1] that every continuous
function f : R≤M → R is necessarily continuously sum-decomposable via RM , meaning that it must

be of the form f(X) = ρ
(∑

x∈X φ(x)
)

, X ∈ R≤M , where ρ : RM → R and φ : R → RM are

continuous functions. This characterization constitutes the starting point of our new architecture,
which consists of the following ingredients,

Input encoding. The input is a function u ∈ X that is sampled at m = m(u) sensor points by the
encoder Em (2.2) i.e., Em(u) = {(xj , u(xj))}mj=1 where {xj}mj=1 ⊂ D are the sensor coordinates

and {u(xj)}mj=1 ⊂ Rdv the corresponding sensor values. Note that the sampling procedure, both in
terms of number of sensors and their locations, is allowed to be different for every input. The samples
are then further encoded as follows,

Ψ : Rd+dv → Rdenc : (xj , u(xj)) 7→ Ψc

(
xj
)
+Ψv

(
u(xj)

)
=: ψj (2.3)

where Ψc : R
d → Rdenc is the coordinate encoder and Ψv : Rdv → Rdenc the value encoder, both

modeled as trainable multilayer perceptrons (MLPs).

Head(s). The well-known attention mechanism of the transformer [26] architecture transforms
sequential inputs into weighted values, where the (convex) weights are computed in terms of correla-
tions between inputs at different locations. Loosely motivated by this mechanism but seeking to keep
computational complexity linear (instead of quadratic as in the case of attention of [26]) in inputs, we
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process the encoded inputs {ψj}mj=1 in the following manner. First for any 1 ≤ ℓ ≤ H , the values of

the head ℓ are calculated using a single MLP ν̃(ℓ) : Rdenc → Rp. Next, the corresponding weights
are computed as,

ω(ℓ) : Rdenc → R : ψj 7→
exp
(
ω̃(ℓ)(ψj)/

√
denc

)

∑m
k=1 exp

(
ω̃(ℓ)(ψk)/

√
denc

) , where ω̃(ℓ) : Rdenc → R (2.4)

is instantiated as an MLP. The output of a single head with index ℓ is then given by,

ν(ℓ) : Rdenc → Rp : Ψ(Em(u)) = (ψj)
m
j=1 7→

m∑

j=1

ω(ℓ)(ψj)ν̃
(ℓ)(ψj). (2.5)

Note that νℓ is permutation-invariant and well-defined for any m ∈ N. Next, in analogy to multihead

attention [26], we concatenate the multiple heads ν(ℓ) and denote the result by ν = [ν(1), . . . , ν(H)].

Variable-Input Deep Operator Network. Finally, we combine the outputs of the multiple heads
using another MLP Φ : RH·p → Rp. The Variable-Input Deep Operator Network (VIDON) is then
defined by replacing the branch net β∗ in (2.1) by β := Φ ◦ ν ◦Ψ i.e., for any m ∈ N we define,

N : E(X )→ Y : Em(u) 7→ τ0(y) +

p∑

k=1

βk(Em(u))τk(y). (2.6)

We measure the size of VIDON, size(N ), by the total number of unique parameters in both the branch
and trunk nets, which is independent of the number of sensors (SM Remark B.1). The structure of
VIDON is illustrated and summarized in Figure 2. Moreover, by construction, the new branch net β
in VIDON (2.6) is a permutation-invariant function that takes finite sets of variable sizes as input.

Figure 2: Structure of VIDON (2.6). The coordinates and values at each sensor are encoded through
MLPs and are processed through another set of MLPs to compute weights and values. The resulting
convex combination of the outputs from different sensors constitutes the output of a single head.
Multiple heads are concatenated and combined through another MLP to yield the branch net, which is
then combined with the trunk net to obtain the VIDON output. Light blue shading represents a MLP.

Related work. Our proposed architecture, VIDON (2.6), is related to the DeepONet operator
learning framework of [21] (see [3] for the original (shallow) version of operator networks). As in
the case of DeepONets, the underlying operator is approximated by VIDON with branch and trunk
nets. While the structure of trunk nets is identical in both architectures, the branch net of VIDON is
different as it allows variable number of sensors at variable locations. In particular, the branch net of
VIDON is permutation-invariant. Moreover, one can recover DeepONets (2.1) as a special case of

VIDON (2.6) by setting H = m, Ψc ≡ 0, Ψv ≡ Id, ω̃
(ℓ)
k = δkℓ and ν̃(ℓ) ≡ Id. Just like DeepONets,

VIDONs can also be viewed as a neural operator by slightly modifying the construction proposed in
[13, Section 3.2]. Moreover, given the fact that FNOs can viewed as DeepONets with a fixed Fourier
basis for trunk nets and sensors located on Cartesian grids [12, Theorem 36], fixing the Fourier basis
for trunk nets of VIDON recovers FNO. However, FNO is only limited to sensors located at Cartesian
grid points. Compared to both DeepONets and FNOs, VIDON’s main advantage lies in its ability
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to handle input functions with both a variable number of sensor points as well as different sensor
locations for each sample.

Given it’s designed to be invariant with respect to permutations of sensor locations, VIDON is related
to deep learning architectures that approximate functions on sets. These include deep sets [29, 27]
as well as Neural Processes [6, 5], and Attentive Neural Processes [10]. However, the branch net in
VIDON has a more general structure, based on weighted sums of inputs (2.6).

Finally, there are connections between VIDON and the extensive literature on transformers. To
start with, the idea of positional encoding (2.3) is borrowed from the field of sequence modelling.
Instead of the popular choice of fixing the encoding (e.g. a sinusoidal encoding in the transformers of
[26]), we learn the optimal encoding using a MLP in VIDON. Another relevant transformer-based
architecture is the Set Transformer [15], which uses permutation-invariant attention blocks to learn
functions on sets. However, the main difference between transformer based architectures and VIDON
lies in the fact that the attention head in transformers accounts for correlations between the different
coordinates, whereas the head (2.5) in VIDON does not require any interactions between different
coordinates and only assigns a weight for each coordinate based on its intrinsic value. As a result,
VIDON scales as O(m) instead of O(m2) (as standard transformers do), with m being the number
of sensors. It is also worth mentioning recent works that use transformer-type architectures such as
the Fourier and Galerkin transformers of [2] as well as the coupled attention-based LOCA framework
of [11]. Although these architectures are shown to perform well on numerical experiments, they do
not possess the rigorous theoretical guarantees nor the flexibility of inputs of VIDON.

3 Rigorous analysis of Variable-Input Deep Operator Networks

Universal approximation theorem. Conventional neural networks are universal in the sense that
they can approximate any continuous function. In similar vein, one can show that operator learning
frameworks such as DeepONets (in [14]) and FNOs (in [12]) are also universal in being able to, in
principle, approximate any continuous operator. As a first step in the rigorous analysis of VIDON,
we prove (SM B.1) the following universal approximation theorem for VIDON,

Theorem 3.1. Let G : X → Hs(U) be an α-Hölder continuous operator, let µ be a measure on
L2(D) whose covariance operator has a bounded eigenbasis with eigenvectors {λj}j∈N and let

E : X → (Rd+dv )≤M for M ∈ N be a random encoder i.e., (2.2) with the underlying sensor points
being randomly drawn from the uniform distribution on D. Then for every p ∈ N, there exists a
VIDON N : R≤M → Hs(U) (2.6), with p branch and trunk nets such that for every m ∈ N with
m ≤M it holds with probability 1 that,

∥∥G(u0)−N (E(u0))
∥∥
L2(µ)

≲

(∑
j>m/C log(m)

λj

)α/2

+ p−s/d, (3.1)

where the constant C > 0 only depends on G and µ.

Thus, any Hölder-continuous operator that maps into a Sobolev space can be approximated by a
VIDON to desired accuracy. These assumptions are satisfied by a wide variety of operators arising
in ODEs and PDEs as seen in the following. To illustrate the quantitative error bound in (3.1), we
readily apply (3.1) to the often encountered example of Gaussian measures (see for instance [14,
Section 3.5.1] for definitions) to obtain,

Corollary 3.2. If the measure µ in the statement of Theorem 3.1 is Gaussian, then (3.1) reduces to

∥∥G(u0)−N (E(u0))
∥∥
L2(µ)

≲ exp
(
−Cm2/ log(m)

2
)
+ p−s/d. (3.2)

Hence for Gaussian measures, we see that the error decays exponentially in the number of sensors.

Computational complexity of VIDON. The universal approximation theorem (Theorem 3.1)
shows that one can find a VIDON such that the approximation error for the underlying operator can
be made as small as needed, as long as one chooses m and p to be large enough. Although this result
provides information about the required number of sensors m and number of branch and trunk nets p
to obtain a certain accuracy, it does not reveal how large the underlying networks should be.
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Given the underlying infinite-dimensional nature of the operator, one observes that the network size
of both DeepONets [14, Remark 3.2] and FNOs [12, Remark 22] can grow (super)exponentially with
respect to the desired accuracy, while approximating general continuous operators. By leveraging the
relation between VIDON and DeepONets, one can translate these results to show that the needed size
of VIDON (see SM Remark B.1 for definitions) to approximate certain operators G to an accuracy

ε > 0 may grow as ε−ξ(ε), where ξ : (0,∞) → N is a monotonically decreasing function (see
SM Remark B.2 for details). Such exponential growth clearly inhibits efficient approximation of
operators. However, in [14] and [12], it was shown that in the special case of operators arising in a
wide variety of PDEs, DeepONets and FNOs, respectively, can mitigate this exponential growth in
size as one can prove that the corresponding network size will only grow polynomially with respect
to the error. We will prove similar efficient approximation results for VIDON. To do so, we follow
[14, 12] and consider several prototypical examples of operators arising in PDEs, defined on the
d-dimensional torus D = Td = [0, 2π)d. This should however not be seen as a restriction, as for

every Lipschitz domain D with D ⊂ Td there exists a (continuous and linear) periodic extension
operator E :Wm,p(D)→Wm,p(Td), m ∈ N, 1 ≤ p ≤ ∞, such that E(u)|D = u and E(u) and its

derivatives are Td-periodic [12, Lemma 41].

Darcy-type elliptic PDE. We start with a standard elliptic PDE that models the steady-state
pressure for a fluid flowing in a porous medium according to the Darcy’s law, or diffusion of heat
in a material with variable thermal conductivity. Given Aℓ

λ(T
d) = {a ∈ Hℓ(Td) | ∥a∥Hℓ(Td) ≤

λ−1, ∥a− 1∥L∞(Td) ≤ 1 − λ} for λ > 0 and ℓ ∈ N, we consider the operator G : Aℓ
λ(T

d) →
Ḣ1(Td), a 7→ u, where u solves the Darcy equation

−∇ · (a∇u) = f,

 

Td

u(x) dx = 0, (3.3)

on the periodic torus Td, with right-hand side f ∈ Ḣk−1. For this nonlinear operator that maps the
coefficients of a PDE to its solution, we have the following result on its approximation by VIDON,

Theorem 3.3. Let ℓ > d, λ ∈ (0, 1) and let E be a random encoder. There exists a VIDON

N : (Rd+1)F → H1(Td) (2.6), with p trunk nets such that for every a ∈ Aℓ
λ(T

d) and m ≥ p1+ℓ/d,

E

[∥∥N (Em(a))− G(a)
∥∥
L2(Td)

]
≤ C(p1−ℓ/d + p2m−1/2). (3.4)

It holds that depth(β) = O(log(p)), width(β) = O(p(d+1)/d), size(β) = O(p3), depth(τ ) = 2,

width(τ ) = O(p(d+1)/d) and size(τ ) = O(p(d+2)/d) In particular, to obtain an accuracy of ε > 0
in (3.4), it suffices that size(N ) = O(ε−3d/(ℓ−d)) and m = O(ε−2(ℓ+d)/(ℓ−d)).

We sketch the proof here, while deferring the details to SM B.2. First, we approximate the coefficient
a by a truncated version of its Fourier series and then further approximate the underlying Fourier
coefficients based on the random encoder Em(a) using a Monte-Carlo approach (SM Lemma A.6).
Emulating a pseudospectral numerical scheme for the Darcy equation by neural networks as in [12,
Theorem 3.5] and approximating the Fourier basis by neural networks (SM Lemma A.5) then gives
rise to a suitable approximation of the operator G(a). We observe from the above theorem that, given
an error tolerance ε, the size of VIDON and the number of sensors only grow polynomially in ε.

Nonlinear parabolic PDE: Allen-Cahn equation. Next, we consider a nonlinear time-dependent
parabolic PDE, the so-called Allen-Cahn equation, which models reaction-diffusion phenomena with
phase separations and transitions,

∂tu = ∆xu+
u(u2 − 1)

ε2
, u(t = 0) = u0 (3.5)

where u is the state and ε > 0 is a parameter that controls the contribution of the nonlinear term.
We are interested in approximating the solution or time-evolution operator G : Cℓ(Td)→ Cℓ(Td) :
u0 7→ u(T ), mapping initial conditions u0 to solutions at final time T . We have the following
theorem (proved in SM B.3) on the efficient approximation of this operator with VIDON,

Theorem 3.4. Let p, ℓ ∈ N with ℓ ≥ 4 and let E be a random encoder. There exists a VIDON
N : (Rd+1)F → C(Td) (2.6), with p trunk nets such that for every u0 ∈ Cℓ(Td) and m ∈ N,

E

[
∥G(u0)−N (Em(u0))∥L2(Td)

]
≤ C(p−ℓ/d + p3(ℓ+d)/(ℓ−d)m−1/2). (3.6)
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It holds that depth(β) = O(p1+ℓ/d), width(β) = O(p(d+ℓ)/2+1/d), size(β) = O(p(d+ℓ)/2+2/d),
depth(τ ) = 2, width(τ ) = O(p(d+1)/d) and size(τ ) = O(p(d+2)/d). In particular, to ob-

tain an accuracy of ε > 0 in (3.6), it suffices that size(N ) = O(ε−d(d+ℓ)/2ℓ−2ℓ) and m =
O(ε−2−6d(ℓ+d)/ℓ(ℓ−d)).

Navier-Stokes equations. The motion of a viscous, incompressible Newtonian fluid is modeled by
the well-known incompressible Navier-Stokes equations,

∂tu+ u · ∇u+∇p = ν∆u, div(u) = 0, u(t = 0) = u0. (3.7)

Here, u ∈ Rd is the velocity and p ∈ R is the pressure of the fluid, ν the viscosity and the initial
velocity is denoted by u0. For simplicity, we assume periodic boundary conditions in the domain
Td and consider solutions of (3.7) that are in the set V ⊂ C([0, T ];Hr)∩C1([0, T ];Hr−2) (see SM
Definition B.3 for notation). Writing Vt := {u(t) | u ∈ V}, we want to approximate the solution
operator G of (3.7), mapping initial data u0 = u(t = 0), to the solution u(T ) at t = T . We have the
following theorem (proved in SM B.4) on efficient approximation of this operator with VIDON,

Theorem 3.5. Let p ∈ N, r ≥ d/2 + 2 and let E be a random encoder. There exists a Variable-Input

Deep Operator Network N : (Rd+1)F → H1(Td) with p trunk nets such that for every u0 ∈ V0 and
m ∈ N,

E

[
∥G(u0)−N (Em(u0))∥L2(Td)

]
≤ C(p−r/d + pm−1/2). (3.8)

It holds that depth(β) = O(log(p)), width(β) = O(p(d+1)/d), size(β) = O(p3), depth(τ ) = 2,

width(τ ) = O(p(d+1)/d) and size(τ ) = O(p(d+2)/d). In particular, to obtain an accuracy of ε > 0
in (3.4), it suffices that size(N ) = O(ε−3d/r) and m = O(ε−2−2d/r).

4 Experiments

Setting. We will compare the performance of VIDON to baselines, DeepONets [21] and FNOs
[16]. As the main point of VIDON is the flexibility with respect to the number of sensors and their
locations, we will consider the following configurations (with increasing levels of difficulty) in each
experiment (see SM Figure 3 for illustrations). Regular Grid: The sensors are located on a regular
Cartesian grid, with equally spaced grid sizes in each direction, on the domain D. This is an idealized
situation (particularly for training data based on physical measurements) and rarely holds in practice.
Irregular Grid: Here, the sensor locations are on a fixed non-Cartesian grid for all training and test
samples. Missing Data. To model missing sensor data, we randomly delete a certain proportion (up
to 20%) of sensor locations from the original Cartesian grid. Perturbed Grid: We model both missing
data as well as uncertainty in sensor locations by randomly perturbing the original sensor locations
(on a regular Cartesian Grid) and deleting up to 20% of them. Random Sensor Locations. Here,
although the number of sensors is fixed across samples, their location is chosen randomly for each
sample. Variable Random Locations. We randomly vary both the number (with a variance of up to
10%) as well as the location of sensors, across samples, in this configuration.

Given this lineup of configurations, FNO can only be evaluated for the idealized configuration (Regu-
lar Grid), DeepONets can be evaluated for Regular Grid and Fixed Irregular Grid whereas VIDON is
designed to handle every single configuration described above. For each of these configurations, our
training set contains 1000 samples whereas the test set has 5000 samples. The details of the training
and hyperparameters for each configuration and architecture is provided in SM C.1

Darcy flow. We consider the Darcy-type elliptic PDE (3.3) on the domain D = [0, 1]2 with periodic
boundary conditions. The corresponding operator G maps the coefficient a to the solution u of (3.3).
We choose the permeability coefficient a for training (and test) samples from the underlying measure
N(0,C), i.e. a Gaussian measure with a covariance operator C, given by C = (−∆+ 9I)−2. See
[16] for details on generating such coefficients and Figure 1 (leftmost column) for two examples.
The corresponding solutions u are then computed with a centered finite-difference scheme on a
2512 Cartesian grid (see rightmost column in Figure 1 for examples) and constitute the ground truth
for both training and testing. The resulting mean test error for each configuration listed above is
presented in Table 1 (see SM Table 6 for the corresponding standard deviations). We observe from
this table that for the idealized configuration of a regular grid, FNO outperforms both DeepONet and
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Table 1: Mean relative Test errors in L2(D) for the Darcy flow problem for different configurations
of sensors. The symbol "-" implies that the model could not be used for this configuration.

Configuration # (Sensors) FNO DeepONet VIDON

Regular Grid 51× 51 0.76% 1.48% 1.29%
Irregular Grid 512 = 2601 - 1.52% 1.48%
Missing Data [2081, 2601] - - 1.77%
Perturbed Grid [2341,2861] - - 1.68%
Random Locations 2601 - - 2.58%
Variable Random Locations [2341,2861] - - 2.55%

VIDON. The fact that FNO can yield superior performance to DeepONet on problems where both
frameworks apply is well-studied [13] and even theoretically investigated [12]. As VIDON is related
to DeepONets, we expect a similar performance of both architectures which is borne out on both
the regular grid as well as the fixed irregular grid, where DeepONets and VIDON can be evaluated
but FNO cannot be used. The main advantage of VIDON lies in the fact that it can be applied to
the other sensor configurations where neither DeepONet nor FNO work. In all these configurations,
we observe that VIDON approximates the underlying operator for Darcy flow at errors which are
marginally higher than the error for the idealized configuration of sensors located on a regular grid.
As expected, the error with VIDON increases with increasing difficulty of the configurations while
always remaining under 2.6% for this particular problem. In particular, the highest amplitude of error
is realized for the random and variable random sensor locations. This is completely expected as in
these configurations, the sensor locations are randomly drawn and with the maximum number of
sensors being limited to 2861, there could be gaps of significant area, where no sensor information is
available. Nevertheless, VIDON was able to approximate the underlying operator with slightly larger
error (less than a factor of 2) over the idealized configuration of a regular grid.

Table 2: Mean relative Test errors in L2(D × (0, T )) for the Allen-Cahn PDE for different configura-
tions of sensors. The symbol "-" implies that the model could not be used for this configuration.

Configuration # (Sensors) DeepONet VIDON

Regular Grid 26× 26 0.34% 0.26%
Irregular Grid 262 = 676 0.34% 0.27%
Missing Data [541, 676] - 0.63%
Perturbed Grid [608,744] - 0.83%
Random Locations 676 - 1.21%
Variable Random Locations [608,744] - 1.20%

Allen-Cahn equation. Next, we consider the Allen-Cahn equation (3.5) on the spatial domain
D = [0, 2]2, with initial data u0 = u(x, y, 0) that corresponds to the rotated travelling wave,

u(x, y, t) =
1

2
− 1

2
tanh

(
1

2
√
2ε

[
cx
cy

]
·
[
x− ox
y − oy

]
− 3t√

2ε

)
, c2x + c2y = 1. (4.1)

The PDE is supplemented with zero-Neumann boundary conditions, in the rotated frame. We
approximate the operator G that maps the initial condition u0 to the entire time-evolution u(x, y, t),
for all t ∈ [0, T ]. The training (and test) initial conditions are generated by sampling the parameters
ε ∈ [0, 13, 0.18], ox, oy ∈ [0, 2], cx ∈ [0, 1] uniformly. See SM Figure 4 for examples of the input
and output of the operator G. Training and test data are extracted from the exact solution. VIDON
is compared with baseline DeepONet here. The standard form of FNO [16] cannot be used to
approximate the operator G mapping the initial condition to the entire time-history. Although a
recurrent version of FNO can be used instead [16], we chose not to do so as it can only be evaluated
at fixed time steps and is thus not directly comparable to the non-reccurent versions of DeepONet
and VIDON. The mean errors for all the configurations of sensor locations are presented in Table 2
(standard deviations are presented in SM Table 7) and are completely consistent with those observed
for the Darcy flow problem (Table 1). The only difference being that the amplitude of test errors
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is significantly lower than that of the Darcy flow. This is explained by the fact that the underlying
operator is easier to learn in this case.

Navier-Stokes equations. In the final numerical experiment, we consider the incompressible
Navier-Stokes equations (3.7), with viscosity ν = 10−3 on the spatial domain D = [0, 1]2 with
periodic boundary conditions. We choose the initial condition from the underlying measure N(0,C)
with covariance operator C = 73/2(−∆ + 49I)−2.5, using the code from [16]. The training (and
test) data are generated with a spectral method in space and a third-order Runge-Kutta method in time
[7] that approximates the fluid velocity and pressure. The resulting vorticity (curl of the velocity)
can be readily computed. We seek to approximate the operator G that maps the initial vorticity to the
vorticity at a final time T = 5, see SM Figure 5 for examples of the input-output for this operator.
The results for VIDON (and baselines) for different sensor configurations are presented in Table 3
(see standard deviations in SM Table 8) and are qualitatively consistent with those obtained for the
Darcy flow and Allen-Cahn equation. The main difference being that the amplitude of the error for
both VIDON as well as the baselines is larger, corresponding to the fact that the underlying operator
is harder to learn. Nevertheless, VIDON can learn with comparable accuracy to baselines at the
idealized configuration, the operator for both missing data as well as perturbed sensor locations.
The error is higher for random and variable random locations, but less than a factor of 2 over the
DeepONet baseline for the regular grid.

Table 3: Mean relative Test errors in L2(D) for the Navier-Stokes PDE for different configurations
of sensors. The symbol "-" implies that the model could not be used for this configuration.

Configuration # (Sensors) FNO DeepONet VIDON

Regular Grid 33× 33 3.49% 4.20% 5.22%
Irregular Grid 332 = 1089 - 4.33% 5.45%
Missing Data [871, 1089] - - 5.64%
Perturbed Grid [980, 1198] - - 5.34%
Random Locations 1089 - - 8.35%
Variable Random Locations [980, 1198] - - 8.28%

5 Discussion

State of the art architectures for operator learning, such as DeepONets [21] and FNOs [16], are
significantly restricted in their applicability as they require the number and/or location of input
sensors (whether on a Cartesian grid or randomly chosen) to be the same for every training and
test sample. This implies that they cannot deal with realistic sources of data and calls into question
whether having inputs as vectors of fixed length constitutes operator learning. Thus, it is desirable to
design an operator learning framework that can deal with flexible inputs, where number of sensors
and their locations vary across samples. We address this need by proposing VIDON (2.6), a novel
operator learning framework that allows for such flexible inputs. Moreover, VIDON is designed to
be permutation-invariant. We prove that VIDON is universal as well as efficient at approximating
operators arising in PDEs. Numerical experiments show that VIDON is comparable in performance
to DeepONet, when the latter can be applied. However, the main distinguishing feature of VIDON
is its ability to handle inputs with variable number and location of sensors. We observe empirically
that for these configurations, VIDON provides robust numerical performance and approximates the
underlying operators accurately. At this juncture, we would like to point out some limitations of
VIDON, the most prominent being the fact that it is a heavier architecture than DeepONets as well as
FNOs, requires more storage as well as training time. This seems to be the price to pay for its ability
to handle flexible inputs. Moreover, the trunk net of VIDON, as in DeepONet, needs to be learned
from data. In future work, one could fix the trunk nets (Fourier basis) or pretrain them [22] to further
reduce the training time. Finally, a fixed positional encoding (as in transformers) could replace the
learnable encoding, further reducing computational cost.
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A Notation and preliminaries

We introduce notation and preliminary results regarding Sobolev spaces and the Fourier basis, as well
as some auxiliary lemmas.

A.1 Glossary of used notation

Table 4: Glossary of used notation.

Symbol Description Section

d spatial dimension of domain
D,U general d-dimensional spatial domain 2

X input function space of the operator G; X ⊂ L2(D;Rdv ) 2

Y output function space of the operator G; Y ⊂ L2(U ;Rdu) 2
G operator of interest, G : X → Y 2

X
≤M the set of subsets of a set X containing at most M ∈ N elements 2

X
F the set of all finite subsets of a set X 2

E encoder that maps a function f : D → X to X
F , cf. (2.2) 2

Em encoder that maps a function f : D → X to X
m, cf. (2.2) 2

N Variable-Input Deep Operator Network (VIDON); N : E(X )→ Y 2

Td periodic torus, identified with [0, 2π)d 3
Hs Sobolev space of smoothness s, with norm ∥ · ∥Hs A.2

Ḣs Sobolev space with zero mean, with norm ∥ · ∥Ḣs A.2

W k,p Sobolev space of smoothness k, with norm ∥ · ∥Wk,p A.2

Ck space of k times continuously differentiable functions A.2

L2
N L2

N ⊂ L2 trigonometric polynomials of degree ≤ N A.3

A.2 Sobolev spaces

Let d ∈ N, k ∈ N0, 1 ≤ p ≤ ∞ and let Ω ⊆ Rd be open. For a function f : Ω → R and a
(multi-)index α ∈ Nd

0 we denote by

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαd

d

(A.1)

the classical or distributional (i.e. weak) derivative of f . We denote by Lp(Ω) the usual Lebesgue

space and for we define the Sobolev space W k,p(Ω) as

W k,p(Ω) = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for all α ∈ Nd
0 with |α| ≤ k}. (A.2)

For p <∞, we define the following seminorms on W k,p(Ω),

|f |Wm,p(Ω) =


 ∑

|α|=m

∥Dαf∥pLp(Ω)




1/p

for m = 0, . . . , k, (A.3)

and for p =∞ we define

|f |Wm,∞(Ω) = max
|α|=m

∥Dαf∥L∞(Ω) for m = 0, . . . , k. (A.4)

Based on these seminorms, we can define the following norm for p <∞,

∥f∥Wk,p(Ω) =




k∑

m=0

|f |pWm,p(Ω)




1/p

, (A.5)

and for p =∞ we define the norm

∥f∥Wk,∞(Ω) = max
0≤m≤k

|f |Wm,∞(Ω). (A.6)
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The space W k,p(Ω) equipped with the norm ∥·∥Wk,p(Ω) is a Banach space.

We denote by Ck(Ω) the space of functions that are k times continuously differentiable and equip
this space with the norm ∥f∥Ck(Ω) = ∥f∥Wk,∞(Ω).

Lemma A.1 (Continuous Sobolev embedding). Let d, ℓ ∈ N and let k ≥ d/2 + ℓ. Then there exists

a constant C > 0 such that for any f ∈ Hk(Td) it holds that

∥f∥Cℓ(Td) ≤ C∥f∥Hk(Td). (A.7)

A.3 Notation and results for Fourier series

Using the notation from [14], we introduce the following “standard” real Fourier basis {eκ}κ∈Zd in d
dimensions. For κ = (κ1, . . . , κd) ∈ Zd, we let σ(κ) be the sign of the first non-zero component of
κ and we define

eκ := Cκ





1, σ(κ) = 0,

cos
(
⟨κ, x⟩

)
, σ(κ) = −1,

sin
(
⟨κ, x⟩

)
, σ(κ) = 1,

(A.8)

where the factor Ck > 0 ensures that eκ is properly normalized, i.e. that ∥eκ∥L2(Td) = 1. Next, let

κ : N → Zd be a fixed enumeration of Zd, with the property that j 7→ |κ(j)|∞ is monotonically
increasing, i.e. such that j ≤ j′ implies that |κ(j)|∞ ≤ |κ(j′)|∞. This will allow us to introduced an
N-indexed version of the Fourier basis,

ej(x) := e
κ(j)(x), (j ∈ N). (A.9)

For N ∈ N, we define the following two sets

JN = {0, . . . , 2N + 1}d, KN = {−N, . . . , N}d, (A.10)

following notation from [12]. Furthermore, we denote by L2
N (Td) the space of trigonometric

polynomials of degree at most N and we define the following L2-orthogonal projection on L2
N (Td),

PN : L2(Td)→ L2
N (Td) :

∑

k∈Zd

ckek 7→
∑

k∈KN

ckek. (A.11)

In particular, it holds that if u ∈ Hs(Td) for s ≥ 0 then there exists a constant C = C(s, d) > 0
such that for any 0 ≤ ℓ ≤ s it holds that,

∥u− PNu∥Hℓ(Td) ≤ CN ℓ−s∥u∥Hs(Td). (A.12)

Similarly, one can define ṖN : L2(Td)→ L̇2
N (Td) : u 7→ PNu−

ffl

Td u(x)dx.

Finally, we denote by IN : C(Td)→ L2
N (Td) the pseudo-spectral projection onto L2

N (Td) i.e., INu
is defined as the unique trigonometric polynomial in L2

N (Td) such that INu(xj) = u(xj) for all
j ∈ JN . One can verify that INu is of the form,

INu(x) =
1

|KN |
∑

k∈KN

∑

j∈JN

ak,ju(xj)ek(x) (A.13)

for fixed ak,j . For s, k ∈ N0 with s > d/2 and s ≥ k, and u ∈ C(Td) ∩Hs(Td) it holds that [12]

∥u− INu∥Hk(Td) ≤ C(s, d)N−(s−k)∥u∥Hs(Td), (A.14)

for a constant C(s, d) > 0 that only depends on s and d.

A.4 Auxiliary results

Lemma A.2. Let p ∈ [2,∞), d,m ∈ N, let (Ω,F ,P) be a probability space, and let Xi : Ω →
Rd, i ∈ {1, . . . ,m}, be i.i.d. random variables with E

[
∥X1∥

]
<∞. Then it holds that


E




∥∥∥∥∥∥
E [X1]−

1

m

m∑

i=1

Xi

∥∥∥∥∥∥

p






1/p

≤ 2

√
p− 1

m

(
E

[∥∥E [X1]−X1

∥∥p
])1/p

. (A.15)
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Proof. This result is [8, Corollary 2.5].

Lemma A.3. Let p ∈ [2,∞), q,m ∈ N, let (Ω,F ,P) and (D,A, µ) be probability spaces, and
let for every q ∈ D the maps Xq

i : Ω → R, i ∈ {1, . . . ,m}, be i.i.d. random variables with

E

[∣∣Xq
1

∣∣
]
<∞. Then it holds that

E






ˆ

D

∣∣∣∣∣∣
E
[
Xq

1

]
− 1

m

m∑

i=1

Xq
i

∣∣∣∣∣∣

p

µ(dq)




1/p

 ≤ 2

√
p− 1

m

(
ˆ

D

E

[∣∣∣E
[
Xq

1

]
−Xq

1

∣∣∣
p
]
µ(dq)

)1/p

.

(A.16)

Proof. The proof involves Hölder’s inequality, Fubini’s theorem and Lemma A.2. The calculation is
as in [8, eq. (226)].

Lemma A.4. Let ε > 0, let (Ω,F ,P) be a probability space, and let X : Ω → R be a random

variable that satisfies E
[
|X|
]
≤ ε. Then it holds that P(|X| ≤ ε) > 0.

Proof. This result is [8, Proposition 3.3].

Lemma A.5. Let s, d, p ∈ N. For any ε > 0, there exists a neural network τ : Rd → Rp with 2

hidden layers of width O(p d+1
d + ps ln

(
psε−1

)
) and such that

p3/2 max
j=1,...,p

∥τj − ej∥Cs([0,2π]d) ≤ ε, (A.17)

where e1, . . . , ep denote the first p elements of the Fourier basis, as in Appendix A.3. For fixed s, the

number of non-zero weights and biases grows as O(p d+2
d ).

Proof. We note that each element in the (real) trigonometric basis e1, . . . , ep can be expressed in the
form

ej(x) = cos(κ · x), or ej(x) = sin(κ · x), (A.18)

for κ = κ(j) ∈ Zd with |κ|∞ ≤ N , where N is chosen as the smallest natural number such that

p ≤ (2N + 1)d. We focus only focus on the first form, as the proof for the second form is entirely

similar. Define f : [0, 2π]d → R : x 7→ κ · x and g : [−2πdN, 2πdN ] → R : x 7→ cos(x).
As f([0, 2π]d) ⊂ [−2πdN, 2πdN ], the composition g ◦ f is well-defined and one can see that it
coincides with a trigonometric basis function ej . Moreover, the linear map f is a trivial neural
network without hidden layers. Approximating ej by a neural network τj therefore boils down to
approximating g by a suitable neural network.

From [4, Theorem 5.1] it follows that the function g there exists an independent constant R > 0 such
that for large enough t ∈ N there is a tanh neural network ĝt with two hidden layers and O(t+N)
neurons such that

∥g − ĝt∥Cs([−2πdN,2πdN ]) ≤ 4(8(s+ 1)3R)s exp(t− s). (A.19)

This can be proven from [4, eq. (74)] by setting δ ← 1
3 , k ← s, s← t, N ← 2 and using ∥g∥Cs = 1

and Stirling’s approximation to obtain

1

(t− s)!

(
3

2 · 2

)t−s

≤ 1√
2π(t− s)

(
e

t− s

)t−s

≤ exp(s− t) for t > s+ e2. (A.20)

Setting t = O(ln
(
η−1

)
+ s ln(s)) then gives a neural network ĝt with ∥g − ĝt∥Cs < η. Next, it

follows from [4, Lemma A.7] that

∥g ◦ f − ĝt ◦ f∥Cs([0,2π]d) ≤ 16(e2s4d2)s∥g − ĝt∥Cs([−2πdN,2πdN ])∥f∥
s
Cs([0,2π]d)

≤ 16(e2s4d2)sη(2πdN)s.
(A.21)

From this follows that we can obtain the desired accuracy (A.17) if we set τj = ĝt(η) ◦ f with

η =
εp−3/2

16(2πNd3e2s4)s
, (A.22)
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which amounts to t = O(s ln
(
sNε−1

)
). As a consequence, the tanh neural network τj has two

hidden layers with O(s ln
(
sNε−1

)
+ N) neurons and therefore, by recalling that p ∼ Nd, the

combined network τ has two hidden layers with

O(p(s ln
(
sNε−1

)
+N)) = O(ps ln

(
psε−1

)
+ p

d+1
d ) (A.23)

neurons. For fixed s, the number of non-zero weights and biases grows as O(2 · p ·N2) = O(p d+2
d ).

Lemma A.6. Let d, ℓ,K,N ∈ N, v ∈ Hℓ(Td), let (Ω,F , P ) be a probability space and let

X1, X2, . . . : Ω → D be iid random variables that are uniformly distributed on Td. Define
VK,N : Ω→ C∞(D) by,

VK,N (ω)(x) =
∑

|k|
∞

≤K

ĉk,N (ω)ek(x), where ĉk,N (ω) =

∣∣Td
∣∣

N

N∑

n=1

v(Xn(ω)) · ek(Xn(ω)).

(A.24)
Then there exists a constant C(ℓ, d) > 0 such that for all s ∈ N0 with s ≤ ℓ it holds that,

E

[∥∥v − VK,N

∥∥
Hs(Td)

]
≤ C(ℓ, d)∥v∥Hℓ(Td)(K

s−ℓ +Ks+dN−1/2). (A.25)

Proof. It holds that v can be written as a Fourier series, v(x) =
∑

k∈Zd ckek(x). We can then define

vK(x) =
∑

|k|
∞

≤K

ckek(x) where ck =

ˆ

Td

v(x)ek(x)dx. (A.26)

Using (A.12), we find that,

∥v − vK∥Hs(Td) ≤ C(ℓ, d)∥v∥Hℓ(Td)K
−(ℓ−s). (A.27)

By Lemma A.2 it holds that,

(
E

[∣∣ck − ĉk,N
∣∣2
])1/2

≤
2∥v∥L2(Td)√

N
. (A.28)

Consequently, we find that

E

[∥∥vK − VK,N

∥∥
Hs(Td)

]
= E







∑

α∈Nd
0 ,∥α∥1≤s

ˆ

Td

(DαvK(x)−DαVK,N (x))2dx




1/2



≤ 2(ed)s/2Ks
∣∣∣T d
∣∣∣
1/2 ∑

|k|
∞

≤K

E

[(
(ck − ĉk,N )2

)1/2]

≤ 2(ed)s/2Ks
∣∣∣T d
∣∣∣
1/2 ∑

|k|
∞

≤K

(
E

[
(ck − ĉk,N )2

])1/2

≤ 4(ed)s/2Ks
∣∣∣T d
∣∣∣
1/2

(2K + 1)d∥v∥L2(Td)N
−1/2.

(A.29)

In the first inequality, we used that the number of terms in the sum over α is bounded by 2(ed)s [4,
Lemma 2.1], the triangle inequality for the sum over k and the fact that ∥Dα

ek∥C0 ≤ Ks for all k
(both in the definition of vK and VK,N ). Jensen’s inequality proves the second inequality. The third
inequality follows from (A.28).

As a result, we find that there exists a constant C(ℓ, d) > 0 such that

E

[∥∥v − VK,N

∥∥
Hs(Td)

]
≤ C(ℓ, d)∥v∥Hℓ(Td)(K

s−ℓ +Ks+dN−1/2). (A.30)
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B Proofs of Section 3

Remark B.1. We will quantify the size of the branch net using the following estimates,

depth(β) ≲ depth(Ψ) + depth(ω) + max
ℓ

depth(ν̃(ℓ)) + depth(Φ),

width(β) ≲ width(Ψ) + width(ω) +
∑H

ℓ=1 width(ν̃
(ℓ)) + width(Φ),

size(β) ≲ size(Ψ) + size(ω) +
∑H

ℓ=1 size(ν̃
(ℓ)) + size(Φ),

(B.1)

where we define the size of a neural network as its number of non-zero weights and biases. The size
of the Variable-Input Deep Operator Network can be estimated by size(N ) ≤ size(β) + size(τ ).
Note that these sizes reflect the total number of unique parameters, rather than the computational
complexity of evaluating a Variable-Input Deep Operator Network, as the latter will also depend on
the number of sensors m.

B.1 Proof of Theorem 3.1 (Universal approximation)

Proof. Let x1, . . . xM be iid random variables on D, let Em : X → Rm : u0 7→ {(xj , u0(xj))}mj=1,
1 ≤ m ≤M , be encoders and let Dm : Rm → X be the corresponding decoders as defined in [14,
(3.38)]. We can then define another encoder E : X × {1, . . . ,M} → R≤M : (u0,m) → Em(u0)
and the corresponding decoder D : R≤M → X : X → D|X|(X). The continuity of D (where we
interpret the continuity of a function of sets as in [27, Section A.2]) follows from its definition in [14,
(3.38)] and the continuity of the Moore-Penrose inverse on the set of matrices of fixed size with full
rank.

We will prove that there exists a Variable-Input Deep Operator Network of the form N = R ◦ A,
where A : R≤M → Rp is an approximation operator and R : Rp → C(U) is a reconstruction
operator, both of which will be exactly defined later on. We write P : C(U)→ Rp for the projection
operator corresponding toR. Such a decomposition has been proposed and studied in [14]. Moreover,
it holds that E ◦ D = Id, D ◦ E ≈ Id, P ◦ R = Id andR ◦ P ≈ Id. In particular, it has been proven
that the DeepONet error decomposes in the following way [14, Lemma 3.4],

∥∥G(u0)−N (E(u0))
∥∥
L2(µ)

≤ CLipα(G)Lip(R ◦ P)(ÊE)
α + Lipα(R)ÊA + ÊR, (B.2)

where ÊE , ÊA, ÊR are the errors related to E , A, R, respectively (see [14, Section 3.2.1] for exact
definitions). We will now prove an upper bound for each separate term.

First, we use [14, Theorem 3.7] to conclude that ÊE can be bounded in terms of the eigenvalues of
the covariance operator,

ÊE ≤ C


 ∑

j>m/C log(m)

λj




α/2

=: η(m) (with probability 1). (B.3)

Next, we chooseR to be a Fourier-based reconstruction operator,

R : Rp → C(U) : (α1, . . . , αp) 7→
p∑

j=1

αj êj , (B.4)

where the êj are neural network approximations of the Fourier basis {ej}j (Appendix A.3 and

Lemma A.5). Using [14, Theorem 3.5], we find that ÊR ≤ Cp−s/d and Lip(R ◦ P),Lipα(R) ≤ C.
We thus can rewrite (B.2) as,

∥∥G(u0)−N (E(u0))
∥∥
L2(µ)

≤ C(η(m) + ÊA + p−s/d) (with probability 1), (B.5)

where η is monotonically decreasing in m and converging to 0, as in (B.3).

It remains to bound the approximation error ÊA, which quantifies how wellA approximates P◦G◦D :
R≤M → Rp. By definition and because of the choice of random sensors, P ◦ G ◦ D is a continuous
permutation-invariant function. It then follows from [27, Theorem 4.4] (which builds upon the
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work of [29]) that P ◦ G ◦ D is continuously sum-decomposable via RM , meaning that there exist
continuous functions φ : R → RM and ρ : RM → Rp such that for every X ∈ R≤M it holds that

(P ◦ G ◦ D)(X) = ρ
(∑

x∈X φ(x)
)

. By the universal approximation property of neural networks,

for arbitrary δ, ε > 0 there exist networks φ̂ε and ρ̂δ such that

∥φ− φ̂ε∥C0 < ε and ∥ρ− ρ̂δ∥C0 < δ. (B.6)

Moreover, ρ̂δ is Lipschitz continuous with Lipschitz constant Lδ. We can then define A(X) =

ρ̂δ

(∑
x∈X φ̂ε(x)

)
for every X ∈ R≤m. Using the triangle inequality then gives that for any

X ∈ R≤M and y :=
∑

x∈X φ(x),

∣∣A(X)− (P ◦ G ◦ D)(X)
∣∣ ≤ Cδ

∑

x∈X

∣∣φ̂ε(x)− φ(x)
∣∣+
∣∣ρ̂δ(y)− ρ(y)

∣∣

≤ CδMε+ δ.

(B.7)

Combining with (B.5) then gives us,

∥∥G(u0)−N (E(u0))
∥∥
L2(µ)

≤ C(η(m) + CδMε+ δ + p−s/d) (with probability 1). (B.8)

Setting ε = δ/(CδM) and δ = p−s/d then gives us the error estimate from the statement.

We conclude the proof by observing that N = R ◦ A indeed fits in the proposed architecture of
Section 2. For the branch net we set denc := dv, Ψc := 0, Ψv ≈ Id, ω := 1, ν̃ := φ̂ε, H := 1 and
Φ := ρ̂δ . The trunk nets are given by τj := êj for all j.

Remark B.2. If we assume that the function ρ : Rm → Rp from the above proof of Theorem 3.1
is Lipschitz continuous, then it can be proven that one needs a network (roughly) of size O(ε−m)
to approximate ρ to an accuracy ε > 0, using a result in the sense of [28, 4]. Using the function
η : N → [0,∞) from (B.3), we define its approximate inverse ξ : (0,∞) → N : ε 7→ inf{n ∈
N | η(n) < ε}, which quantifies the needed number of sensors to obtain a certain accuracy. As a

result, a lower bound for the network size to approximate ρ is given by O(ε−ξ(ε)). Depending on
the chosen measure, this can grow rapidly. For the Gaussian setting of Corollary 3.2 it holds that

ξ(ε) ∼
√

log
(
1/ε
)
.

B.2 Proof of Theorem 3.3 (Darcy flow)

Proof. In the following, we let r := ℓ − d and we will use notation from Section A.3. For
K,N ∈ N, one can use Lemma A.6 to define a random variable aK,N for which it holds that

E

[∥∥a− aK,N

∥∥
Hd(Td)

]
≤ C(Kd−ℓ +K2dN−1/2). Using a Sobolev embedding theorem, we find

that, ∥∥a− aK,N

∥∥
L∞(Td)

≤ C
∥∥a− aK,N

∥∥
Hd(Td)

≤ C(K−r +K2dN−1/2). (B.9)

From this follows that infx∈Td aK,N (x) ≥ λ
2 > 0 if K and N are suitably chosen, given that

infx∈Td a(x) ≥ λ > 0. Combining this with [14, Lemma 4.7] then gives for the solution uK,N of
the Darcy flow with aK,N := aK,N (ω) (for a fixed ω ∈ Ω) instead of a, that,

∥∥u− uK,N

∥∥
L2(Td)

≤ C
∥∥a− aK,N

∥∥
L∞(Td)

≤ C(K−r +K2dN−1/2). (B.10)

It also holds that E
[∥∥aK,N

∥∥
Hℓ(Td)

]
≤ ∥a∥Hℓ(Td) + CKℓ+dN−1/2 ≤ λ−1 (from Lemma A.6)

and hence by letting N1/2 ≥ Kℓ+d we find E

[∥∥aK,N

∥∥
Hℓ(Td)

]
≤ λ−1 where λ might have to be

redefined (increased). By [12, Theorem 3.5], for any M ∈ N there exists a Ψ-FNO NΨ such that
∥∥uK,N −NΨ(aK,N )

∥∥
H1(Td)

≤ CM−r, (B.11)

where the width of NΨ grows as O(Md) and the depth grows as O(log(M)). A Ψ-FNO
is a discrete realizeation of an FNO [12, Definition 11] and maps {aK,N (xj)}j∈J2M

to
{NΨ(aK,N )(xj)}j∈JM

, then applies a linear mapping BM to obtain coefficients {βm(aK,N )}m∈KM
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such that NΨ(aK,N )(x) =
∑

j∈KM
βm(aK,N )ej(x). It is important to note that aK,N (xj) can be

written as

aK,N (ω)(xj) =

∣∣Td
∣∣

N

N∑

n=1

∑

|k|
∞

≤K

a(Xn(ω)) · ek(Xn(ω)) · ek(xj), (B.12)

which is permutation-invariant with respect to {Xn}n. Next, Lemma A.5 guarantees that there exist

a tanh neural network with two hidden layers, each with O(Kd ln
(
δ−1
)
+Kd+1) neurons, such that

∥ek − êk∥C0 ≤ δ. We then define âK,N by replacing ek by êk and the first multiplication in (B.12)

by a (fixed-size) neural network ×̂ that approximates the multiplication operator in C0-norm, which
can be done to arbitrary accuracy with a fixed size neural network [4]. More specifically, this leads to,

âK,N (ω)(xj) =

∣∣Td
∣∣

N

N∑

n=1

∑

|k|
∞

≤K

a(Xn(ω))×̂ êk(Xn(ω)) · ek(xj), (B.13)

Applying the Ψ-FNO NΨ and linear mapping BM as before then gives rise to the coefficients
{βm(âK,N )}m∈KM

. We then define N as,

N (ω)(a)(x) =
∑

|k|
∞

≤K

βm(âK,N )êk(x). (B.14)

By comparing (B.12) and (B.13), using the Lipschitz continuity ofNΨ and the accuracy of ×̂ and ek,
we find for a fixed a that,

∥∥N (ω)(a)−NΨ(ω)(aK,N )
∥∥
L2(Td)

≤ CKdδ. (B.15)

By redefining δ ← K−r−d and by setting the number of sensors points as m← N and the number
of branch nets as p← Kd =Md, we find the following total error estimate,

E

[∥∥N (a)− G(a)
∥∥
L2(Td)

]
≤ C(p−r/d + p2m−1/2). (B.16)

Finally, we see that N is indeed a Variable-Input Deep Operator Network by comparing with the
architecture in Section 2 with denc := d+ dv , Ψ ≈ Id, H := 1, ω := 1,

ν̃j((x, a(x))) = |Td| ·
∑

|k|
∞

≤K

ek(xj) · a(x) ×̂ êk(x) for every j ∈ JM , (B.17)

Φ := BM ◦ NΨ and τk := êk. The width and depth of Ψ and ω are O(1), furthermore it holds

that depth(ν̃) = 3 (2 for êk and 1 for ×̂), width(ν̃) = O(p ln(p) + p(d+1)/d) = O(p(d+1)/d) and

size(ν̃) = O(p(d+2)/d) (the latter as a result from Lemma A.5). Also, depth(Φ) = O(log(p)) and
width(Φ) = O(p) and therefore size(Φ) = O(p2 log(p)). Using (B.1) we find,

depth(β) = O(log(p)), width(β) = O(p(d+1)/d) and size(β) = O(p3), (B.18)

where we used the upper bound that p(d+2)/d + p2 log(p) ≲ p3. For the trunk net we find that

depth(τ ) = 2, width(τ ) = O(p(d+1)/d) and size(τ ) = O(p(d+2)/d) (as a result from Lemma A.5).

Moreover, if we want to obtain an accuracy of ε > 0, we need to set p := ε−d/r andm := ε−2(d+ℓ)/r.

This gives then rise to a total size (B.1) of size(N ) = O(ε−3d/r).

B.3 Proof of Theorem 3.4 (Allen-Cahn)

Proof. For K,N ∈ N, one can use Lemma A.6 to define a random variable uK,N
0 , defined by,

uK,N
0 (ω)(x) =

∑

|k|
∞

≤K

ĉk,N (ω) · ek(x) where ĉk,N (ω) =

∣∣Td
∣∣

N

N∑

n=1

u0(Xn(ω)) · ek(Xn(ω)),

(B.19)

for which it holds that E

[∥∥∥u0 − uK,N
0

∥∥∥
Hs(Td)

]
≤ C(Ks−ℓ + Ks+dN−1/2) for any 0 ≤ s ≤

ℓ. Using a Sobolev embedding theorem we find (for a fixed realization of uK,N
0 = uK,N

0 (ω)
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that

∥∥∥u0 − uK,N
0

∥∥∥
C0(Td)

≤
∥∥∥u0 − uK,N

0

∥∥∥
Hd(Td)

. Lemma A.5 guarantees that there exist a tanh

neural network with two hidden layers, each with O(Kd ln
(
δ−1
)
+ Kd+1) neurons, such that

∥ek − êk∥C0 ≤ δ and in [4] it is proven that one can approximate the multiplication operator in

C0-norm to accuracy δ with a fixed size neural network ×̂. Using these definitions, we define

U0
j =

∣∣Td
∣∣

N

∑

|k|
∞

≤K

N∑

n=1

u0(Xn(ω))×̂ êk(Xn(ω)) · ek(xj) for j ∈ JM , M ∈ N, (B.20)

for which it holds that,

E

[
max

j

∣∣∣U0
j − u0(xj)

∣∣∣
]
≤ CKd(K−ℓ +KdN−1/2 + δ). (B.21)

Next, we will approximate all u(T, xj) for j ∈ JM , M ∈ N. In [25, Theorem 4.1] a finite difference

scheme was proposed that takes U0
j ≈ u0(xj) as input and returns an approximation Un

j ≈ u(T, xj)
for n ∈ N with T/n being the time step of the scheme. Using the refinement of this result from [14,
Theorem 4.14] we find the error estimate

E

[
max

j

∣∣∣Un
j − u(T, xj)

∣∣∣
]
≤ exp

(
CT∥u∥C(2,4)([0,T ]×Td)

)
·
(
n−1 +M−2 + E

[
max

j

∣∣∣U0
j − u0(xj)

∣∣∣
])

.

(B.22)
Following [14, Theorem 4.11] we emulate this finite difference scheme to create a neural network

approximation Ûn
j of Un

j . Using the results on function approximation by tanh neural networks from

[4] we find that there exists a tanh neural network ÛM of width O(Md) and depth O(n) that maps

{U0
j }j to {Ûn

j }j for which it holds that,

E

[
max

j

∣∣∣Ûn
j − u(T, xj)

∣∣∣
]
≤ C(n−1 +M−2 +Kd(K−ℓ +KdN−1/2 + δ)), (B.23)

where we used (B.22).

Now define vZ , Z ∈ N where Z is a divisor of M , as the trigonometric polynomial interpolation of
u(T ) at the points {xj}j∈JZ

⊂ {xj}j∈JM
(see Section A.3 for more information). One can then

define the function v̂Z by

v̂Z(x) =
1

|KZ |
∑

k∈KZ

∑

j∈JZ

ak,jÛ
M
j ek(x), (B.24)

which inspires us to define the Variable-Input Deep Operator Network by

N (u0)(x) =
1

|KZ |
∑

k∈KZ

∑

j∈JZ

ak,jÛ
n
j êk(x), (B.25)

where {êk}k is a tanh neural network with two hidden layers, each with widthO(Zd ln
(
ε−1
)
+Zd+1)

and size O(Zd ln
(
ε−1
)2

+ Zd+2), such that ∥ek − êk∥C0 ≤ ε (Lemma A.5). By comparing (B.24)
with (A.14) and combining this with (B.23) we find that,

E

[∥∥G(u0)−N (u0)
∥∥
L2(Td)

]
≲ C(Z−ℓ + Zd(n−1 +M−2 +Kd(K−ℓ +KdN−1/2 + δ) + ε)).

(B.26)

The error estimate from the statement then follows by redefining n ← Zd+ℓ, M ← Z(d+ℓ)/2,

K ← Z(ℓ+d)/(ℓ−d), δ ← K−ℓ, ε← Z−d−ℓ and by setting the number of sensors points as m← N
and the number of branch nets as p← Zd. Indeed, we find that,

E

[∥∥G(u0)−N (u0)
∥∥
L2(Td)

]
≤ C(p−ℓ/d + p3(ℓ+d)/(ℓ−d)m−1/2) (B.27)
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Finally, we see that N is indeed a Variable-Input Deep Operator Network by comparing with the
architecture in Section 2 with denc := d+ dv , Ψ ≈ Id, H := (M/Z)d, ω := 1,

ν̃(h)((x, u0(x))) = |Td| ·
∑

|k|
∞

≤K

α
(h)
k · u0(x)×̂ êk(x), 1 ≤ h ≤ H,

(B.28)

where the α
(h)
k are defined in such a way that the output of ν is equal to {U j

0}j as in (B.20). Finally

we set Φ := ÛM and τk := êk. The width and depth of Ψ and ω are O(1). It also holds that

depth(ν̃) = 3 (2 for êk and 1 for ×̂),

H∑

h=1

width(ν̃(h)) = O(H · Zd+1) = O(MdZ) = O(Zd(d+ℓ)/2+1) = O(p(d+ℓ)/2+1/d),

H∑

h=1

size(ν̃(h)) = O(H · 3 · Zd+2) = O(MdZ2) = O(Zd(d+ℓ)/2+2) = O(p(d+ℓ)/2+2/d).

(B.29)

Furthermore we find that depth(Φ) = O(n) = O(p1+ℓ/d) and width(Φ) = O(Md) = O(p(d+ℓ)/2).
Using (B.1) we find,

depth(β) = O(p1+ℓ/d), width(β) = O(p(d+ℓ)/2+1/d) and size(β) = O(p(d+ℓ)/2+2/d).
(B.30)

For the trunk net we find that depth(τ ) = 2, width(τ ) = O(p(d+1)/d) and size(τ ) = O(p(d+2)/d).

Moreover, if we want to obtain an accuracy of ε > 0, we need to set p := ε−d/ℓ and m :=
ε−2−6d(ℓ+d)/ℓ(ℓ−d). This gives then rise to a total size (B.1) of size(N ) = O(ε−d(d+ℓ)/2ℓ−2ℓ).

B.4 Proof of Theorem 3.5 (Navier-Stokes)

Definition B.3. Let T > 0, ν ≥ 0, d ≥ 2, r ≥ d/2 + 2. We define V ⊂
C([0, T ];Hr) ∩ C1([0, T ];Hr−2) as the set of solutions of the Navier-Stokes equations (3.7), such
that supu∈V ∥u∥L2 <∞, and

sup
u∈V

{
∥u∥Ct(Hr

x)
+ ∥u∥C1

t (H
r−2
x )

}
<∞. (B.31)

Proof of Theorem 3.5. The proof is rather similar to that of Theorem 3.3. To avoid too many indices,
we define a := u0. For K,N ∈ N, one can use Lemma A.6 to define a random variable aK,N for

which it holds that E
[∥∥a− aK,N

∥∥
Hs(Td)

]
≤ C(Ks−r +Ks+dN−1/2) for any 0 ≤ s ≤ r. By [12,

Theorem 3.12], for any M ∈ N there exits a Ψ-FNO N ∗
Ψ such that

∥∥u−N ∗
Ψ(a)

∥∥
L2(Td)

≤ CM−r, (B.32)

where the width of N ∗
Ψ grows as O(Md) and the depth grows as O(log(M)). In a similar way, we

can find a Ψ-FNO NΨ for which
∥∥u−N ∗

Ψ(aK,N )
∥∥
L2(Td)

is small. This can be done by making

the small adaptation in the proof in [12] of using ṖMI2MaK,N as input for the Ψ-FNO instead of

ṖMI2Ma. In [12, Section F.2.5] they use that
∥∥∥(1− ṖMI2M )a

∥∥∥
L2(Td)

≤M−r∥a∥Hr(Td). (B.33)

If we combine the estimate,
∥∥∥(1− ṖMI2M )aK,N

∥∥∥
L2(Td)

≤ CM−r
(
∥a∥Hr(Td) +

∥∥a− aK,N

∥∥
Hr(Td)

)
, (B.34)

with the properties of aK,N (i.e. Lemma A.6 with s = 0) then we find that

E

[∥∥∥a− ṖMI2MaK,N

∥∥∥
L2(Td)

]
≤ C(K−r +KdN−1/2 +M−r(C +Kr+dN−1/2)). (B.35)
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By replacing (B.33) with (B.35) in [12, Section F.2.5], we find that there exists a Ψ-FNO NΨ such
that ∥∥u−N ∗

Ψ(aK,N )
∥∥
L2(Td)

≤ C(K−r +KdN−1/2(1 +KrM−r)). (B.36)

The proof can be finished in a similar way to the proof of Theorem 3.3. In particular, we set m← N ,
p← Kd and M = K. The sizes of β and τ are the same in terms of p,m as in the proof of Theorem

3.3. However, if we want to obtain an accuracy of ε > 0, we now need to set p := ε−d/r and

m := ε−2−2d/r. This gives then rise to a total size (B.1) of size(N ) = O(p−3d/r).

C Details for Numerical experiments in Section 4

Figure 3: Illustration of sensor locations for configuration where sensors are not on a grid. See
Section 4 for the nomenclature. We consider two sample inputs for the Darcy flow test case. See
columns 2 and 3 in Figure 1 for illustrations of regular and irregular grids respectively and plot the
other sensor configurations here.

C.1 Training and Architecture Details

For each of the three problems we create a training set containing 1000 samples, a validation set
containing 32 samples and a test set containing 5000 samples. The datasets for each coordinate
configuration (regular grid, irregular grid, etc) use the same initial condition, so all models are trained
on the same underlying samples. For training and validation sets the inputs and outputs (where the
model is evaluated) use the same sensor coordinates. For example, when sensor points are drawn at
random then the output is only available at the sensor locations which were also used in the input.
This is intended to simulate physical measurements where data will only ever be available at the
given sensor locations. For the test sets the input is given at the respective sensor points but the output
is evaluated on a fine grid. This is done to get an accurate estimate of how well the models learn
the true solutions and to see how well the models generalize to arbitrary points in the domain. The
corresponding grid sizes for (training and) testing are given in table 5.

During the training process, optimization is performed using the ADAM optimizer with the mean
squared error loss. In every epoch the relative L2 error is monitored on the (very small) validation set.
The model that achieves the lowest relative L2 error on the validation set (during the training process)
is saved and selected for testing. We obtain the model hyperparameters described below, by running
grid searches over a range of hyperparameter values and selecting the hyperparameter configuration
with lowest error on the validation set. Correspondingly, the relative L2 test errors of these models,
with the best performing hyperparameters are reported in tables 6, 7 and 8.
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Table 5: The left columns describe the grid resolution on which training (for a the regular grid)
is performed. The right columns show the grid resolution on which inference or testing (for all
coordinate configurations) is performed. Note, for the Navier-Stokes problem the input to the FNO
must be available on a regular 65× 65 grid, this is not the case for the DeepONet and VIDON.

Problem Training Grid Test Grid
space time space time

Darcy Flow 51× 51 - 51× 51 -
Allen-Cahn 26× 26 21 76× 76 41
Navier-Stokes 33× 33 - 65× 65 -

We normalize the input and output data of the Darcy Flow and Navier-Stokes’ problems to lie in the
range [0, 1]. The data of the Allen-Cahn problem is already in this range and thus needs no additional
normalization.

Each training was run on one of the following GPUs: Nvidia GTX 1080, Nvidia GTX 1080 Ti, Nvidia
Tesla V100, Nvidia RTX 2080 Ti, Nvidia Titan RTX, Nvidia Quadro RTX 6000, Nvidia Tesla A100.

In the following we describe the detailed results (including error bars) and the training parameters
that were used to obtain these results. Exact information on the training settings can also be obtained
from the settings files in the accompanying code.

C.2 Detailed Results

Table 6: The mean ± standard deviation of relative test errors in L2(D) for the Darcy flow problem
for different configurations of sensors. The symbol "-" implies that the model could not be used for
this configuration.

Configuration # (Sensors) FNO DeepONet VIDON

Regular Grid 51× 51 0.76%± 0.02% 1.48%± 0.01% 1.29%± 0.02%
Irregular Grid 512 = 2601 - 1.52%± 0.02% 1.48%± 0.07%
Missing Data [2081, 2601] - - 1.77%± 0.01%
Perturbed Grid [2341,2861] - - 1.68%± 0.01%
Random Locations 2601 - - 2.58%± 0.01%
Variable Random Locations [2341,2861] - - 2.55%± 0.01%

Table 7: Mean ± standard deviation of the relative test errors in L2(D × (0, T )) for the Allen-Cahn
PDE for different configurations of sensors. The symbol "-" implies that the model could not be used
for this configuration.

Configuration # (Sensors) DeepONet VIDON

Regular Grid 26× 26 0.34%± 0.01% 0.26%± 0.02%
Irregular Grid 262 = 676 0.34%± 0.01% 0.27%± 0.01%
Missing Data [541, 676] - 0.63%± 0.02%
Perturbed Grid [608,744] - 0.83%± 0.02%
Random Locations 676 - 1.21%± 0.03%
Variable Random Locations [608,744] - 1.20%± 0.03%

C.3 FNO Training Parameters

We use the implementation of the FNO model provided by the authors of [16] with some slight
adjustments to make the code compatible with ours.
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Table 8: Mean ± standard deviation of relative test errors in L2(D) for the Navier-Stokes PDE for
different configurations of sensors. The symbol "-" implies that the model could not be used for this
configuration.

Configuration # (Sensors) FNO DeepONet VIDON

Regular Grid 33× 33 3.49%± 0.09% 4.20%± 0.02% 5.22%± 0.12%
Irregular Grid 332 = 1089 - 4.33%± 0.04% 5.45%± 0.09%
Missing Data [871, 1089] - - 5.64%± 0.03%
Perturbed Grid [980, 1198] - - 5.34%± 0.02%
Random Locations 1089 - - 8.35%± 0.03%
Variable Random Locations [980, 1198] - - 8.28%± 0.03%

The FNO model for both Darcy Flow and the Navier-Stokes equations was trained using 12 modes
and width 32. The initial learning rate was set to 1e-3 and is halved every 100 epochs. Weight decay
is set to 1e-8 and training finishes after 500 epochs. It is well-known that the training time per epoch
for FNO can be significantly higher than that of DeepONet, however, FNO trains much faster i.e.,
with significantly fewer epochs [16, 22].

C.4 DeepONet Training Parameters

Table 9 shows the model sizes used for each problem and for each of the two applicable coordinate
configurations (Regular and irregular grids). Note, we use our own implementation of the DeepONet.
We run all trainings for a maximum of 100,000 epochs. Table 10 shows additional training parameters.

Table 9: Model sizes of the DeepONet used on each of the problems and for each of the two coordinate
configurations (regular and irregular grids). The notation [20, 20, 20] refers to three layers with 20
neurons each.

Problem p Branch Net Trunk Net

Darcy Flow 100 [250, 250, 250, 250] [250, 250, 250, 250]
Allen-Cahn 400 [400, 400, 400, 400] [500, 500, 500, 500]
Navier-Stokes 100 [250, 250, 250, 250] [250, 250, 250, 250]

Table 10: Training parameters of the DeepONets used on each of the the problems and for each of
the two coordinate configurations (regular and irregular grids). The third column indicates the epochs
at which the learning rate is halved.

Problem Initial Learning Rate Halved at Epochs Weight Decay

Darcy Flow 1e-4 5k, 30k, 60k, 90k 1e-9
Allen-Cahn 1e-4 20k, 40k, 60k, 80k 1e-9
Navier-Stokes 2e-4 5k, 30k, 60k, 90k 1e-7

C.5 VIDON Training Parameters

The following parameters are used in all trainings for all problems and coordinate configurations.
The number of heads H in VIDON (2.6) was set to 4 for each configuration. The coordinate and
sensor encodings in all trainings is set to four layers with 40 neurons each. The MLPs computing
weights and values in VIDON (2.6) have four layers of 128 neurons each. The MLP which combines
the concatenated output of each of the heads has four layers with 256 neurons each. The remaining
model parameters are presented in Table 11 and additional training parameters are shown in Table 12.
Moreover, the runtime between different sensor configurations, reported in Table 8 varies significantly
because in the first three, the trunk net has to be evaluated at significantly fewer points in the output
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domain than in the remaining configurations (where a large number of different, randomly chosen
points has to be evaluated).

Table 11: Model sizes used on each of the problems and for both of the two coordinate configurations
(regular and irregular grids). The notation [20, 20, 20] refers to three layers with 20 neurons each.

Problem p Output Neurons per Head Trunk Net

Darcy Flow 100 64 [250, 250, 250, 250]
Allen-Cahn 400 64 [500, 500, 500, 500]
Navier-Stokes 100 32 [250, 250, 250, 250]

Table 12: Training parameters of VIDON used on each of the problems and for both of the two
coordinate configurations (regular and irregular grids).

Problem Initial Learning Rate Halved at Epochs Weight Decay

Darcy Flow
Default 1e-4 20k, 40k, 60k, 80k 1e-9
Random / Variable Random Locations 1e-4 20k, 40k, 60k, 80k 1e-8

Allen-Cahn
Default 1e-4 20k, 40k, 60k, 80k 1e-9
Missing, Variable Random Locations 2e-4 20k, 40k, 60k, 80k 1e-9

Navier-Stokes
Default 1e-4 10k, 20k, 40k, 60k, 80k 1e-7
Random Locations 2e-4 10k, 20k, 40k, 60k, 80k 1.5e-7
Variable Random Locations 2e-4 10k, 20k, 40k, 60k, 80k 2e-7

C.6 Additional Figures

(a) Input (b) Output

Figure 4: A sample illustrating the solution operator for the Allen-Cahn equation (3.5). The input is
given by the initial conditions and the output is given by the time-history (up to time T = 0.05) of
the rotated travelling-wave solution (4.1) of the PDE.
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(a) Input (b) Output

Figure 5: A sample illustrating the operator for the Navier-Stokes equations (3.7). The input to the
operator is given by the initial vorticity and the output is the vorticity at time T = 5.
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