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Abstract

We construct several classes of neural networks with ReLU and BiSU (Binary Step
Unit) activations, which exactly emulate the lowest order Finite Element (FE) spaces
on regular, simplicial partitions of polygonal and polyhedral domains Ω ⊂ R

d, d = 2, 3.
For continuous, piecewise linear (CPwL) functions, our constructions generalize previous
results in that arbitrary, regular simplicial partitions of Ω are admitted, also in arbitrary
dimension d ≥ 2.

Vector-valued elements emulated include the classical Raviart-Thomas and the first
family of Nédélec edge elements on triangles and tetrahedra. Neural Networks emulating
these FE spaces are required in the correct approximation of boundary value problems of
electromagnetism in nonconvex polyhedra Ω ⊂ R

3, thereby constituting an essential ingre-
dient in the application of e.g. the methodology of “physics-informed NNs” or “deep Ritz
methods” to electromagnetic field simulation via deep learning techniques. They satisfy
exact (De Rham) sequence properties, and also spawn discrete boundary complexes on ∂Ω
which satisfy exact sequence properties for the surface divergence and curl operators divΓ

and curlΓ, respectively, thereby enabling “neural boundary elements” for computational
electromagnetism.

We indicate generalizations of our constructions to higher-order compatible spaces and
other, non-compatible classes of discretizations in particular the Crouzeix-Raviart elements
and Hybridized, Higher Order (HHO) methods.
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1 Introduction

Recent years have seen the emergence of Deep Neural Network (DNN) based methods for the
numerical approximation of solutions to partial differential equations (PDEs for short). In one
class of proposed methods, DNNs serve as approximation architectures in a suitable, weak form
of the PDE of interest. In [14], for elliptic, self-adjoint PDEs the variational principle associated
to the PDE is computationally minimized over suitable DNNs, so that the energy functional of
the physical system of interest gives rise to a consistent loss function for the training of the DNN.
Numerical solutions obtained from training the approximating DNN in this way correspond to
approximate variational solutions of the PDE under consideration.

The recently promoted “physics-informed NNs” (PiNNs), e.g. [24, 27] and references there,
insert DNN approximations with suitably smooth activations (e.g. softmax or tanh) as approx-
imation architecture into the strong form of the governing PDE. Approximate solutions are
obtained by numerical minimization of loss functions obtained by discretely enforcing smallness
of the residual at collocation points in the spatio-temporal domain. While empirically successful
in a large number of test cases, also DNN based approximations are subject to the fundamental
paradigm that “stability and consistency implies convergence”. A key factor of recent success-
ful DNN deployment in numerical PDE solution is their excellent approximation properties, in
particular on high-dimensional state- and parameter-spaces, e.g. [23, 20, 26] and the references
there. High smoothness of DNNs with smooth activations may, however, preclude convergence
of so-called “deep Ritz” approaches where loss functions in DNN training are derived from
energies in variational principles [14], even for linear, deterministic and well posed PDEs.

1.1 Previous work

The connection between DNNs with Rectified Linear Unit (ReLU for short) activation and
continuous piecewise linear (CPwL for short) spline approximation spaces has been known
for some time: nodal discretizations based on CPwL Finite Element Methods (FEM) can be
emulated by ReLU NNs (e.g. as introduced in [3] and [18]). When applied to, for example, weak
formulations of the Maxwell equations, they are known to converge, generally, only for convex
polygons or polyhedra: if Ω admits re-entrant corners or edges, the H1(Ω) fields in XN , the
space of electric fields u in Ω with square integrable curl and divergence, satisfying the perfect
conductor boundary condition u× n = 0 on the boundary ∂Ω, are closed in XN without being
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dense, see, e.g., [10, 12]. Since any discrete conforming space based on a standard nodal finite
element method is contained in H1(Ω), nodal FEM generally converges to a wrong solution
as the meshwidth tends to zero (respectively as the width of the corresponding NN tends to
infinity) in this situation [11]. Similar issues will arise for PiNN numerical approximations
of low-regularity solutions for H0(curl,Ω)-based PDEs such as the time-harmonic Maxwell
equations. They will persist also for DNN surrogates with more regular activation functions
such as ReLUk and sigmoidal or softmax activations.

A second, broad class of variational models, where continuous, nodal FEM in approximation
of minimizers of energy functionals are known to incur problems, arises for “deep Ritz” type
approaches as in [14] applied to certain nonconvex energy functionals in the calculus of varia-
tions. Here, the so-called “Lavrentiev gap” incurred by CPwL approximation architectures is
known to be a fundamental obstruction to obtain convergent families of discrete minimizers.
Again, relaxing continuity below H1-conformity is known to remedy this issue; see, e.g. [5] and
the discussion and references there. Accordingly, in the present paper we present CR-Net, a
DNN emulation of the Crouzeix-Raviart element, on general regular, simplicial partitions which,
when used in a deep Ritz method style approach for variational problems, affords convergent
sequences of DNN approximations of minimizers. CR-Net will also afford advantages in image
segmentation (e.g. [8] and the references there).

The ability of PiNNs to represent accurately geometric or physical invariances, in the PDE
context e.g. H0(curl,Ω)-conformity and divergence-preservation, see [29], has proved crucial
for the wide deployment of the “PiNN” [24] and the “deep Ritz” [14] neural network based
simulation methodologies in computational science and engineering.

1.2 Contributions

To leverage the methodology of PiNNs and e.g. the variational Ritz method for computational
electromagnetics, computational magneto-hydrodynamics etc., structure-preserving DNNs must
be adopted. We provide here, therefore, De Rham complex compatible DNN emulations of the
standard, lowest order FE spaces on regular, simplicial triangulations of polytopal domains Ω
in two and three space dimensions.

Specifically, let us assume that Ω ⊂ R
3 is a simply connected Lipschitz domain with con-

nected boundary ∂Ω. Then, it is well-known that the following sequence is exact (e.g. [16,
Proposition 16.14]):

R
i

// H1(Ω)
grad

// H0(curl,Ω)
curl

// H0(div,Ω)
div

// L2(Ω)
o

// {0}. (1.1)

Here, the tag i denotes ’injection’ and the tag o denotes the zero operator.
Finite dimensional subspaces preserving this structure are usually required to fit into a

Discrete De Rham complex (e.g. [16, Proposition 16.15])

R
i

// S1(T ,Ω)
grad

// N0(T ,Ω)
curl

// RT0(T ,Ω)
div

// S0(T ,Ω)
o

// {0}. (1.2)

Here, for a given triangulation T of a domain Ω, S1(T ,Ω) stands for the class of continuous
piecewise linear functions, S0(T ,Ω) stands for the class of piecewise constant functions, and
RT0(T ,Ω), N0(T ,Ω) are the lowest order Raviart-Thomas and Nédélec spaces respectively (see
Section 3.2 and Section 3.3 for precise definitions). The design of DNNs which emulate exactly,
on arbitrary regular, simplicial partitions of polytopal domains Ω ⊂ R

d, d = 2, 3, the FE spaces
S1(T ,Ω), N0(T ,Ω), RT0(T ,Ω) is the purpose of the present paper. We provide constructions
of DNNs based on a combination of ReLU and BiSU (Binary Step Unit) activations, which
emulate the classical, lowest-order FE spaces in the De Rham complex on a regular, simplicial
partition T of Ω. We underline that our construction of NNs which emulate, in particular,
the classical “Courant Finite Elements” S1(T ,Ω), as well as S0(T ,Ω) and RT0(T ,Ω) apply
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on polytopal domains Ω of any dimension d ≥ 2. For the practically relevant space S1(T ,Ω),
we provide DNN constructions based on ReLU activation only, which work in arbitrary, finite
dimension d ≥ 2 (the univariate case d = 1 being trivial).

Our constructions accommodate general, regular simplicial partitions T of Ω. In particular,
apart from regularity of the simplicial partition T of Ω, no further constraints of geometric
nature are imposed on T . Our results therefore unify and generalize earlier ones such as in [18],
which covered only CPwL FE spaces on particular triangulations of Ω.

1.3 Layout

The structure of this paper is as follows. In Section 2, we recapitulate notation and basic
definitions for the NNs which we consider. We also review a basic NN calculus that shall be
used subsequently in order to derive several properties of the proposed NN architectures.

Sections 3 and 4 contain the core material of the paper: in Section 3, using ReLU and
BiSU activations, we provide explicit constructions of emulations for all bases of the FE spaces
considered in this paper, without geometric conditions on the triangulations T of Ω. In Section
4 we show that for the special case of the emulation of CPwL functions, networks employing
solely ReLU activations are sufficient.

In Section 5 we discuss the implications of our results for function approximation by NNs
in the respective Sobolev spaces. Section 6 provides a construction of NN emulations for
compatible spaces on the boundary Γ = ∂Ω of the polytopal domains. These spaces are required
in the deep neural network approximation of boundary integral equations in electromagnetics,
among others, as discussed in [7, 6] and the references there. Finally, in Section 7 we present
conclusions and explain how our analysis may be extended to higher order polynomial spaces
and to certain Finite Element families which are non-compatible with (1.1).

2 Neural network definitions

To accommodate for both continuous components and discontinuous components in the func-
tions we want to emulate, we consider neural networks where several different activation func-
tions are used throughout the network. We define neural networks as a collection of parameters
and for each position in the network (also called neuron or unit) we specify the activation func-
tion used. Associated to such a neural network is a function, called realization, which is the
iterated composition of affine transformations defined in terms of the parameters and non-linear
activation functions.

Definition 2.1 For d, L ∈ N, a neural network Φ with input dimension d ≥ 1 and number
of layers L ≥ 1, comprises a finite collection of activation functions ̺ = {̺ℓ}

L
ℓ=1 and a finite

sequence of matrix-vector tuples, i.e.

Φ = ((A1, b1, ̺1), (A2, b2, ̺2), . . . , (AL, bL, ̺L)).

For N0 := d and numbers of neurons N1, . . . , NL ∈ N per layer, for all ℓ = 1, . . . , L it holds
that Aℓ ∈ R

Nℓ×Nℓ−1 and bℓ ∈ R
Nℓ , and that ̺ℓ is a list of length Nℓ of activation functions

(̺ℓ)i : R→ R, i = 1, . . . , Nℓ, acting on node i in layer ℓ.
The realization of Φ : RN0 → R

NL as a map is the function

R(Φ) : Rd → R
NL : x→ xL,

where

x0 := x,

xℓ := ̺ℓ(Aℓxℓ−1 + bℓ), for ℓ = 1, . . . , L− 1,

xL := ALxL−1 + bL.
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Here, for ℓ = 1, . . . , L− 1, the list of activation functions ̺ℓ of length Nℓ is effected componen-
twise: for y = (y1, . . . , yNℓ

) ∈ R
Nℓ we denote ̺ℓ(y) = ((̺ℓ)1(y1), . . . , (̺ℓ)Nℓ

(yNℓ
)). I.e., (̺ℓ)i is

the activation function applied in position i of layer ℓ.
We call the layers indexed by ℓ = 1, . . . , L − 1 hidden layers, in those layers activation

functions are applied. No activation is applied in the last layer of the NN. For consistency of
notation, we define ̺L := Id

R
NL .

We refer to L(Φ) := L as the depth of Φ. For ℓ = 1, . . . , L we denote by Mℓ(Φ) :=
‖Aℓ‖0 + ‖bℓ‖0 the size of layer ℓ, which is the number of nonzero components in the weight

matrix Aℓ and the bias vector bℓ, and call M(Φ) :=
∑L

ℓ=1 Mℓ(Φ) the size of Φ. Moreover, we
call d and NL the input dimension and the output dimension, and denote by Min(Φ) := M1(Φ)
and Mout(Φ) := ML(Φ) the size of the first and the last layer, respectively.

Our networks will use two different activation functions. Firstly, we use the Rectified Linear
Unit (ReLU ) activation

ρ(x) = max{0, x}.

Networks which only contain ReLU activations realize continuous, piecewise linear functions.
By ReLU NNs we refer to NNs which only have ReLU activations, including networks of depth 1,
which do not have hidden layers and realize affine transformations. Secondly, for the emulation
of discontinuous functions, we in addition use the Binary Step Unit (BiSU ) activation

σ(x) =

{

0 if x ≤ 0,

1 if x > 0,
(2.1)

which is also called Heaviside function. BiSU NNs are defined analogously to ReLU NNs.
Alternatively, the BiSU can be defined to equal 1

2 in x = 0. That function, which we denote by
σ̃, can be written as an affine combination of activation functions σ: 2σ̃(x) = σ(x)+ 1− σ(−x)
for all x ∈ R. Hence, for every NN with σ̃ as activation function, there exists a network with
σ-activations instead, with proportional depth and size.

In the following sections, we will construct NNs from smaller networks using a ReLU-based
calculus of NNs, which we now recall from [23]. The results cited from [23] were derived for NNs
which only use the ReLU activation function, but they also hold for networks with multiple
activation functions without modification.

Proposition 2.2 (Parallelization of NNs [23, Definition 2.7]) For d, L ∈ N let Φ1 =
(

(A
(1)
1 , b

(1)
1 , ̺

(1)
1 ), . . . , (A

(1)
L , b

(1)
L , ̺

(1)
L )
)

and Φ2 =
(

(A
(2)
1 , b

(2)
1 , ̺

(2)
1 ), . . . , (A

(2)
L , b

(2)
L , ̺

(2)
L )
)

be two

NNs with input dimension d and depth L. Let the parallelization P(Φ1,Φ2) of Φ1 and Φ2 be
defined by

P(Φ1,Φ2) := ((A1, b1, ̺1), . . . , (AL, bL, ̺L)),

A1 =

(

A
(1)
1

A
(2)
1

)

, Aℓ =

(

A
(1)
ℓ 0

0 A
(2)
ℓ

)

, for ℓ = 2, . . . L,

bℓ =

(

b
(1)
ℓ

b
(2)
ℓ

)

, ̺ℓ =

(

̺
(1)
ℓ

̺
(2)
ℓ

)

, for ℓ = 1, . . . L.

Then,

R(P(Φ1,Φ2))(x) = (R(Φ1)(x),R(Φ2)(x)), for all x ∈ R
d,

L(P(Φ1,Φ2)) = L, M(P(Φ1,Φ2)) = M(Φ1) +M(Φ2).

The parallelization of more than two NNs is handled by repeated application of Proposition
2.2.
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Proposition 2.3 (Sum of NNs) For d,N,L ∈ N let Φ1 =
(

(A
(1)
1 , b

(1)
1 , ̺

(1)
1 ), . . . , (A

(1)
L , b

(1)
L , ̺

(1)
L )
)

and Φ2 =
(

(A
(2)
1 , b

(2)
1 , ̺

(2)
1 ), . . . , (A

(2)
L , b

(2)
L , ̺

(2)
L )
)

be two NNs with input dimension d, output di-

mension N and depth L. Let the sum Φ1 +Φ2 of Φ1 and Φ2 be defined by

Φ1 +Φ2 := ((A1, b1, ̺1), . . . , (AL, bL, ̺L)),

A1 =

(

A
(1)
1

A
(2)
1

)

, b1 =

(

b
(1)
1

b
(2)
1

)

, ̺1 =

(

̺
(1)
1

̺
(2)
1

)

,

Aℓ =

(

A
(1)
ℓ 0

0 A
(2)
ℓ

)

, bℓ =

(

b
(1)
ℓ

b
(2)
ℓ

)

, ̺ℓ =

(

̺
(1)
ℓ

̺
(2)
ℓ

)

, for ℓ = 2, . . . L− 1.

AL =
(

A
(1)
L A

(2)
L

)

, bL = b
(1)
L + b

(2)
L , ̺L = IdRN .

Then,

R(Φ1 +Φ2)(x) =R(Φ1)(x) + R(Φ2)(x), for all x ∈ R
d,

L(Φ1 +Φ2) =L, M(Φ1 +Φ2) ≤M(Φ1) +M(Φ2).

Next, we define the concatenation of two NNs, which realizes exactly the composition of the
realizations of the two networks. It uses the fact that we allow the ReLU activation.

Proposition 2.4 (Sparse Concatenation of NNs [23, Remark 2.6]) For L(1), L(2) ∈ N,

let Φ1 =
(

(A
(1)
1 , b

(1)
1 , ̺

(1)
1 ), . . . , (A

(1)

L(1) , b
(1)

L(1) , ̺
(1)

L(1))
)

and Φ2 =
(

(A
(2)
1 , b

(2)
1 , ̺

(2)
1 ), . . . , (A

(2)

L(2) , b
(2)

L(2) , ̺
(2)

L(2))
)

be two NNs with depths L(1) and L(2), respectively, such that N
(2)

L(2) = N
(1)
0 , i.e. the output di-

mension of Φ2 equals the input dimension of Φ1. Let the sparse concatenation Φ1 ⊙ Φ2 of Φ1

and Φ2 be a NN of depth L := L(1) + L(2) defined by

Φ1 ⊙ Φ2 := ((A1, b1, ̺1), . . . , (AL, bL, ̺L)),

(Aℓ, bℓ, ̺ℓ) = (A
(2)
ℓ , b

(2)
ℓ , ̺

(2)
ℓ ), for ℓ = 1, . . . , L(2) − 1,

AL(2) =

(

A
(2)

L(2)

−A
(2)

L(2)

)

, bL(2) =

(

b
(2)

L(2)

−b
(2)

L(2)

)

, ̺L(2) =







ρ
...
ρ






,

AL(2)+1 =
(

A
(1)
1 −A

(1)
1

)

, bL(2)+1 = b
(1)
1 , ̺L(2)+1 = ̺

(1)
1 ,

(Aℓ, bℓ, ̺ℓ) = (A
(1)

ℓ−L(2) , b
(1)

ℓ−L(2) , ̺
(1)

ℓ−L(2)), for ℓ = L(2) + 2, . . . , L(1) + L(2).

Then, it holds that

R(Φ1 ⊙ Φ2) =R(Φ1) ◦ R(Φ2), L(Φ1 ⊙ Φ2) = L(1) + L(2),

M(Φ1 ⊙ Φ2) ≤M(Φ1) +Min(Φ
1) +Mout(Φ

2) +M(Φ2) ≤ 2M(Φ1) + 2M(Φ2).

Proposition 2.2 only applies to networks of equal depth. To parallelize two networks of
unequal depth, the shallowest can be concatenated with a network that emulates the identity
using Proposition 2.4. One example of ReLU NNs that emulate the identity are provided by
the following proposition.

Proposition 2.5 (ReLU NN emulation of IdRd [23, Remark 2.4]) For all d, L ∈ N, there
exists a ReLU NN ΦId

d,L with input dimension d, output dimension d and depth L which satisfies

R(ΦId
d,L) = IdRd , L(ΦId

d,L) = L and M(ΦId
d,L) ≤ 2dL.
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To emulate exactly shape functions of lowest order, conforming FEM in the function spaces
introduced in Section 3, we will need ReLU NNs which emulate the minimum or maximum
of d ∈ N inputs. These are provided in Lemma 2.6. We also need to multiply values from a
bounded interval [−κ, κ] for κ > 0 by values from the discrete set {0, 1}, which is the range of the
BiSU defined in (2.1). A ReLU NN which emulates such multiplications exactly is constructed
in the proof of Proposition 2.8 below.

Lemma 2.6 (ReLU NN emulation of min and max, [18, Proof Theorem 3.1]) For all
d ∈ N, there exist ReLU NNs Φmax

d and Φmin
d which satisfy

R(Φmax
d )(x) = max{x1, . . . , xd}, for all x ∈ R

d,

R(Φmin
d )(x) = min{x1, . . . , xd}, for all x ∈ R

d,

L(Φmax
d ) =L(Φmin

d ) ≤ 2 + log2(d), M(Φmax
d ) = M(Φmin

d ) ≤ Cd.

Here, the constant C > 0 is independent of d and of the NN sizes and depths.

Remark 2.7 The network Φmax
d is obtained by repeated applications of Φmax

2 , which itself can
for instance be constructed as

Φmax
2 :=













1 −1
0 1
0 −1



 ,





0
0
0



 ,





ρ
ρ
ρ







 ,
((

1 1 −1
)

, 0, IdR
)



 .

We point out that this construction of Φmax
2 leads to a slightly more efficient representation of

Φmax
d than the one given in [18, Theorem 3.1], as it requires less neurons, weights and biases.

However, this will merely improve the constant C in Lemma 2.6, but not the stated asymptotic
d-dependence of L(Φmax

2 ) and M(Φmax
2 ).

The d-dependence can be completely avoided by admitting recurrent neural nets (RNNs),
i.e., RNNs can express the maximum of d inputs with a network of size, depth and width O(1).
We shortly sketch the idea: An RNN allows for information to flow backwards, i.e., we can take
the output of Φmax

2 in time step t as one of its inputs at time step t+1. With the initialization
x̃0 := x1, this leads to the iteration

x̃t = Φmax
2 (x̃t−1, xt),

where the network receives in step t the input xt. Then the network’s output x̃n in step n equals
max{x1, . . . , xn}.

The whole remark applies verbatim to min networks.

The following proposition provides the exact ReLU NN emulation of products of elements
from a bounded interval [−κ, κ] for κ > 0 by elements from the discrete set {0, 1}. The network
depth and size are independent of κ.

Proposition 2.8 For all d ∈ N and κ > 0 there exists a ReLU NN Φ×
d,κ

R(Φ×
d,κ)(x1, . . . , xd, y) =xy = (x1y, . . . , xdy)

⊤, for all x ∈ [−κ, κ]d and y ∈ {0, 1},

L(Φ×
d,κ) ≤ 2, M(Φ×

d,κ) ≤ 12d.

Proof. This proof is given in two steps. In Step 1, we define a function of x, y that computes
the desired output for d = 1. In Step 2, we describe a NN which exactly emulates that function
d times and estimate its depth and size.

Step 1. For x, y ∈ R let

f(x, y) := 1
2 (ρ(x+ y) + ρ(−x− y)− ρ(x− y)− ρ(−x+ y)) .

7



Note that for all x ∈ [−1, 1] and y ∈ [0, 1] such that |x| ≤ y ≤ 1 it holds that f(x, y) =
1
2ρ(x + y) + 0 − 0 − 1

2ρ(−x + y) = x and that for all x ∈ [−1, 1] it holds that f(x, 0) =
1
2ρ(x) +

1
2ρ(−x)−

1
2ρ(−x)−

1
2ρ(x) = 0. Hence, f satisfies

f(x, y) =xy, for all x ∈ [−1, 1] and y ∈ {0, 1},

and thus for all x ∈ [−κ, κ] and y ∈ {0, 1} it follows that

κf(xκ , y) = xy.

Step 2. For d = 1, let

Φ×
1,κ :=

























1
κ 1
− 1

κ −1
1
κ −1
− 1

κ 1









,









0
0
0
0









,









ρ
ρ
ρ
ρ

















,
((

κ
2

κ
2 −κ

2 −κ
2

)

, 0, IdR
)









,

which satisfies

R(Φ×
1,κ)(x, y) =κf(xκ , y) for all (x, y) ∈ R

2,

L(Φ×
1,κ) = 2, M(Φ×

1,κ) = 8 + 4 = 12.

Similarly, with u1 := ( 1κ ,−
1
κ ,

1
κ ,−

1
κ )

⊤, u2 := (1,−1,−1, 1)⊤ and u3 := (κ2 ,
κ
2 ,−

κ
2 ,−

κ
2 ), we

define for d > 1 the following network with layer sizes N0 = d+ 1, N1 = 4d and N2 = d:

Φ×
d,κ :=



















u1 u2

. . .
...

u1 u2






,







0
...
0






,







ρ
...
ρ












,













u3

. . .

u3






,







0
...
0






,







IdR
...

IdR


















,

which satisfies

R(Φ×
d,κ)(x1, . . . , xd, y) = (κf(x1

κ , y), . . . , κf(xd

κ , y))⊤ ∈ R
d, for all (x, y) ∈ R

d × R,

L(Φ×
d,κ) = 2, M(Φ×

d,κ) = 12d.

✷

Lemma 2.9 (Emulation of indicator functions) For d,N ∈ N and k ∈ {0, . . . , N}, let
A1, . . . , AN ∈ R

1×d and b1, . . . , bN ∈ R
1 be such that

Ω :=
⋂

i=1,...,k

{x ∈ R
d : Aix+ bi = 0} ∩

⋂

i=k+1,...,N

{x ∈ R
d : Aix+ bi > 0} 6= ∅.

Let the NN Φ✶

Ω with layer sizes N0 = d, N1 = N + k and N2 = 1 = N3 be defined as

Φ✶

Ω :=





















































































A1

−A1

...
Ak

−Ak

Ak+1

...
AN





























,





























b1
−b1
...
bk
−bk
bk+1

...
bN





























,





























σ
σ
...
σ
σ
σ
...
σ

























































, (A, b, ̺), (1, 0, IdR)





























,

A :=
(

−1 · · · −1 1 · · · 1
)

∈ R
1×(N+k), b := −(N − k − 1

4 ) ∈ R
1, ̺ := σ,

8



where the first 2k elements of A equal −1 and the last N − k equal 1.
Then, for all x ∈ R

d

R(Φ✶

Ω)(x) =

{

1 if x ∈ Ω,

0 otherwise,
L(Φ✶

Ω) = 3, M(Φ✶

Ω) ≤ (d+ 2)(N + k) + 2.

Proof. From

1− σ(y)− σ(−y) =

{

1 if y = 0,

0 otherwise,
for all y ∈ R,

it follows that for all x ∈ R
d

R(Φ✶

Ω)(x) =σ

(

k
∑

i=1

(1− σ(Aix+ bi)− σ(−Aix− bi)) +
N
∑

i=k+1

σ(Aix+ bi)− (N − 1
4 )

)

=

{

1 if x ∈ Ω,

0 otherwise,

L(Φ✶

Ω) = 3, M(Φ✶

Ω) ≤ ((N + k)d+ (N + k)) + ((N + k) + 1) + 1 = (d+ 2)(N + k) + 2.

✷

3 NN emulation of lowest order conforming Finite Ele-

ment shape functions

Consider a bounded polytopal domain Ω ⊂ R
d, d ∈ N\{1}. For k ∈ {0, . . . , d} we define a

k-simplex T by T = conv({a0, . . . , ak}) ⊂ R
d, for some a0, . . . , ak ∈ R

d which do not all lie in
one affine subspace of dimension k − 1, and where

conv(Y ) :=







x =
∑

y∈Y

λyy : λy > 0 and
∑

y∈Y

λy = 1







denotes the open convex hull. We consider a simplicial mesh T on Ω of d-simplices, which
satisfies that Ω =

⋃

T∈T T and T ∩ T ′ = ∅, for all T 6= T ′. We assume that T is a regular

partition, i.e. for all distinct T, T ′ ∈ T it holds that T ∩ T ′ is the closure of a k-subsimplex of
T for some k ∈ {0, . . . , d− 1}, i.e. there exist a0, . . . , ad ∈ Ω such that T = conv({a0, . . . , ad})
and T ∩ T ′ = conv({a0, . . . , ak}).

Moreover, we define the shape-regularity constant Csh := Csh(T ) of a mesh T by Csh :=
maxT∈T

hT

rT
> 0 where hT := diam(T ) and rT is the radius of the largest ball contained in T .

Let V be the set of vertices of T . We also let F , E be the sets of (d− 1)- and 1-subsimplices
of T , whose elements are called faces and edges, respectively, that is

F := {f ⊂ Ω : ∃T = conv({a0, . . . , ad}) ∈ T , ∃i ∈ {0, . . . , d} with f = conv({a0, . . . , ad}\{ai})},

E := {e ⊂ Ω : ∃T = conv({a0, . . . , ad}) ∈ T , ∃i, j ∈ {0, . . . , d}, i 6= j, with e = conv({ai, aj})}.

We denote the skeleton by ∂T :=
⋃

T∈T ∂T .
Below, we will present neural network emulations of the lowest order conforming FEM

spaces for H1(Ω), H0(curl,Ω), H0(div,Ω) and L2(Ω). These finite-dimensional spaces appear
naturally in discretizations of the the De Rham complex and will be defined in (3.27), (3.22),
(3.6) and (3.3) below. For each type of shape function, we explicitly define a network which
emulates that shape function exactly. Global approximations can be obtained by taking a linear
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combination of these shape functions using Proposition 2.3, (scalar multiples of shape functions
are obtained by scaling all weights and biases of the output layer).

For shape functions which are discontinuous after extending them to Ω by the value zero
outside their domain of definition, we use Lemma 2.9 based on BiSU activation to emulate
indicator functions of (parts of) their domain of definition. We then use Proposition 2.8 based
on ReLU activation to multiply a continuous, piecewise linear function, which is equal to the
shape function on part of Ω, by the indicator function of that part of the domain.

The following lemma provides NN emulations of possibly discontinuous, piecewise linear
functions, and will be used in the following sections.

Lemma 3.1 (Emulation of piecewise linear functions) For d, s, k ∈ N let Ω ⊂ R
d be a

bounded Lipschitz polytope and T be a regular, simplicial partition of Ω with s = #(T ) elements,
T = {Ti}i=1,...,s. Let u : Ω → R

k be a function which for all i = 1, . . . , s satisfies u|Ti
∈ [P1]

k

and u|Ti
(x) = A(i)x+ b(i), x ∈ Ti.

Then

ΦPwL
u :=

s
∑

i=1

Φ×
k,κ ⊙ P

(

ΦId
k,2 ⊙

((

A(i), b(i), IdRk

))

,Φ✶

Ti

)

(3.1)

satisfies u(x) = R
(

ΦPwL
u

)

(x) for a.e. x ∈ Ω, for any

κ ≥ max
i=1,...,s

sup
x∈Ti

‖A(i)x+ b(i)‖∞. (3.2)

Moreover, if ‖A(i)‖0 + ‖b
(i)‖0 ≤ m for all i = 1, . . . , s, then

L(ΦPwL
u ) = 5 , M(ΦPwL

u ) ≤Cs(k +m+ d2).

Proof. Firstly, we observe that indeed u(x) = R
(

ΦPwL
u

)

(x) for a.e. x ∈ Ω.
Secondly, we estimate

L(ΦPwL
u ) =L(Φ×

k,κ) + L(Φ✶

Ti
) = 5,

M(ΦPwL
u ) ≤ s

(

2M
(

Φ×
k,κ

)

+ 2M
(

P
(

ΦId
k,2 ⊙

((

A(i), b(i), IdRk

))

,Φ✶

Ti

)))

≤ s
(

2M
(

Φ×
k,κ

)

+ 4M(ΦId
k,2) + 4M

(((

A(i), b(i), IdRk

)))

+ 2M
(

Φ✶

Ti

)

)

≤ s(Ck + Ck + Cm+ Cd2) ≤ Cs(k +m+ d2).

✷

3.1 Piecewise constants S0

The lowest order approximation space for L2(Ω) is the finite dimensional subspace

S0(T ,Ω) := {v ∈ L2(Ω) : v|T ≡ cT ∈ R, ∀T ∈ T } ⊂ L2(Ω). (3.3)

A basis is given by {θST }T∈T , whose elements are indicator functions θST := ✶T and can be
expressed by applying Lemma 2.9 with N = d+1 and k = 0: for all T = conv({a0, . . . , ad}) ∈ T ,
we define (Ai, bi) ∈ R

1×(d+1), i = 1, . . . , d+ 1 by the relations

(Ai, bi)











(a0)1 (ad)1
. . .

(a0)d (ad)d
1 · · · 1











= e
⊤
i , for all i = 1, . . . , d+ 1, (3.4)

where (ei)j = δij , so that T =
⋂

i=1,...,d+1{x ∈ R
d : Aix + bi > 0}. Then there exists C > 0

such that

θST = R(Φ✶

T ), L(Φ✶

T ) = 3, M(Φ✶

T ) ≤ (d+ 2)(d+ 1) + 2 ≤ Cd2. (3.5)
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3.2 Raviart-Thomas elements RT0

Define the vector-valued polynomial space RT0 = (P0)
d⊕ xP0 and, for all f ∈ F , let nf denote

a unit normal to the face f . The Raviart-Thomas finite element space of lowest order is (e.g.
[16, Section 14.1])

RT0(T ,Ω) := {v ∈ (L1(Ω))d : v|T ∈ RT0 ∀T ∈ T and [v · nf ]f = 0 ∀f ∈ F} ⊂ H0(div,Ω).
(3.6)

This space has one degree of freedom per face f ∈ F .

For f ⊂ ∂Ω, we define θRT
f (x) := |f |

d|T | (x − a)✶T , where f ⊂ T , T ∈ T and a is the only

vertex of T that does not belong to f .1 For interior faces f ⊂ Ω we construct θRT
f by assembling

local shape functions of the neighboring simplices T1, T2 with f = T1∩T2, [16, Equation (14.3)]

θRT
f (x) :=











|f |
d|T1|

(x− a1) if x ∈ T1,

− |f |
d|T2|

(x− a2) if x ∈ T2,

0 if x /∈ T1 ∩ T2,

(3.7)

where a1, a2 are the the only vertices of T1, T2, respectively, not belonging to f . The functions
{θRT

f }f∈F form a basis of RT0(T ,Ω) (see, e.g., [16, Proposition 14.1]).

Proposition 3.2 Given f ∈ F , f ⊂ ∂Ω, let T ∈ T be the simplex adjacent to f and a :=
(V ∩ T ) \ f ∈ R

d.
Then

ΦRT
f := Φ×

d,κ ⊙ P
(

ΦId
d,2 ⊙

((

|f |
d|T | Idd×d,−

|f |
d|T |a, IdRd

))

,Φ✶

T

)

(3.8)

satisfies θRT
f (x) = R(ΦRT

f )(x) for a.e. x ∈ Ω, for any

κ ≥ sup
x∈T

|f |
d|T |‖x− a‖∞. (3.9)

Given f ∈ F , f ⊂ Ω, let T1, T2 be the simplices adjacent to f and let ai := (V ∩Ti)\f ∈ R
d, i =

1, 2. Then

ΦRT
f :=

∑

i=1,2

(−1)i−1Φ×
d,κ ⊙ P

(

ΦId
d,2 ⊙

((

|f |
d|Ti|

Idd×d,−
|f |

d|Ti|
ai, IdRd

))

,Φ✶

Ti

)

(3.10)

satisfies θRT
f (x) = R(ΦRT

f )(x) for a.e. x ∈ Ω, for any

κ ≥ max
i=1,2

sup
x∈Ti

|f |
d|Ti|
‖x− ai‖∞. (3.11)

In addition, there exists an absolute constant C > 0 such that for all f ∈ F

L(ΦRT
f ) = 5, M(ΦRT

f ) ≤ Cd2.

Remark 3.3 We note that the right-hand sides of (3.9) and (3.11) are bounded from above by
a constant which only depends on the shape regularity constant Csh.

Proof of Proposition 3.2. Firstly, we observe that indeed θRT
f (x) = R

(

ΦRT
f

)

(x) for all

x ∈ Ω \ ∂T , where ∂T :=
⋃

T∈T ∂T .
Secondly, we apply Lemma 3.1 with k = d and m = 2d, and with s = 1 in (3.8) and s = 2

in (3.10). ✷

1 We use a different normalization of the shape functions than in [16, Section 14.1]. This has no consequences
for the analysis that follows.
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Alternatively, we can build the same shape functions by enforcing strongly, via ReLU ac-
tivation, continuity of the component normal to f , as imposed in (3.6). We select the unit
normal vector nf to f pointing towards T2 and an orthonormal system {t1, . . . , td−1} spanning
the hyperplane tangent to f . Then, we decompose

θRT
f (x) = (θRT

f (x) · nf )nf +
d−1
∑

j=1

(θRT
f (x) · tj)tj . (3.12)

Thus, it suffices to compute separately θRT
f (x)·nf and θRT

f (x)·tj and take the linear combination
(3.12) in the last layer.

Proposition 3.4 Given f ∈ F , f ⊂ ∂Ω, let T ∈ T be the simplex adjacent to f . Then there
exist Anf

∈ R
1×d, bnf

∈ R such that

ΦRT,n
f := Φ×

1,1 ⊙ P
(

ΦId
1,2 ⊙

(

(Anf
, bnf

, IdR)
)

,Φ✶

T +Φ✶

f

)

(3.13)

satisfies θRT
f (x) · nf = R

(

ΦRT,n
f

)

(x) for a.e. x ∈ Ω and every x ∈ f . Also, there exist

Atj ∈ R
1×d, btj ∈ R, j = 1, . . . , d− 1 such that

Φ
RT,tj
f := Φ×

1,κ ⊙ P
(

ΦId
1,2 ⊙

(

(Atj , btj , IdR)
)

,Φ✶

T

)

(3.14)

satisfies θRT
f (x) · tj = R

(

Φ
RT,tj
f

)

(x) for a.e. x ∈ Ω, where

κ ≥ max
j=1,...,d−1

sup
x∈T
‖Atjx+ btj‖∞. (3.15)

Given f ∈ F , f ⊂ Ω, let T1, T2 be the simplices adjacent to f . Then there exist A
(i)
nf ∈

R
1×d, b

(i)
nf ∈ R, i = 1, 2 such that

ΦRT,n
f := Φ×

1,1 ⊙ P

(

Φmin
2 ⊙

(((

A
(1)
nf

A
(2)
nf

)

,

(

b
(1)
nf

b
(2)
nf

)

, IdR2

))

,Φ✶

T1
+Φ✶

f +Φ✶

T2

)

(3.16)

satisfies θRT
f (x) · nf = R

(

ΦRT,n
f

)

(x) for a.e. x ∈ Ω and every x ∈ f . There also exist

A
(i)
tj ∈ R

1×d, b
(i)
tj ∈ R, i = 1, 2, j = 1, . . . , d− 1 such that

Φ
RT,tj
f :=

∑

i=1,2

Φ×
1,κ ⊙ P

(

ΦId
1,2 ⊙

(

(A
(i)
tj , b

(i)
tj , IdR)

)

,Φ✶

Ti

)

(3.17)

satisfies θRT
f (x) · tj = R

(

Φ
RT,tj
f

)

(x) for a.e. x ∈ Ω, where

κ ≥ max
i=1,2

j=1,...,d−1

sup
x∈Ti

∣

∣

∣A
(i)
tj x+ b

(i)
tj

∣

∣

∣ . (3.18)

In addition, there exists a constant C > 0 such that

L(ΦRT,n
f ) = 5, L(Φ

RT,tj
f ) = 5,

M(ΦRT,n
f ) ≤Cd2, M(Φ

RT,tj
f ) ≤Cd2.
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Proof. Below, we prove the result for f ⊂ Ω. The case f ⊂ ∂Ω follows analogously.
Observe that we can write Ti = conv({ai, p1, . . . , pd}) where {p1, . . . , pd} := V ∩ f . The

point values θRT
f (pi) · nf = 1, ∀i = 1, . . . , d are well-defined by continuity of θRT

f · nf across f .

Therefore, we can take A
(i)
nf ∈ R

1×d, b
(i)
nf ∈ R, i = 1, 2 to be the matrices and vectors solving

(A(i)
nf
, b(i)nf

)











(ai)1 (p1)1 (pd)1
...

. . .

(ai)d (p1)d (pd)d
1 1 · · · 1











= (0, 1, . . . , 1), (3.19)

where (0, 1, . . . , 1) = (−1)i−1 |f |
d|Ti|

(0, (p1 − ai) · nf , . . . , (pd − ai) · nf ). With this choice, since

(θRT
f (x) ·nf ) ∈ [0, 1] for x ∈ T1∪T2∪f , it holds that θ

RT
f (x) ·nf = R

(

ΦRT,n
f

)

(x) for a.e. x ∈ Ω

and every x ∈ f . On the other hand, the discontinuous tangential component can be assembled

element by element, as in Proposition 3.2: matrices and vectors (A
(i)
tj , b

(i)
tj ) ∈ R

1×(d+1), i = 1, 2
and j = 1, . . . , d − 1 which only depend on Ti and tj can be computed as in (3.19), but with

different right-hand sides, namely (−1)i−1 |f |
d|Ti|

(0, (p1 − ai) · tj , . . . , (pd − ai) · tj) ∈ R
1×d+1.

Finally, we estimate the network depth and size. For d = 2, as in Remark 2.7 let

Φmin
2 :=













−1 1
0 1
0 −1



 ,





0
0
0



 ,





ρ
ρ
ρ







 ,
((

−1 1 −1
)

, 0, IdR
)





L(Φmin
2 ) = 2, M(Φmin

2 ) = 7.

In particular, we use that L(Φmin
2 )+1 = L(Φ✶

T1
+Φ✶

f +Φ✶

T2
) = 3, i.e. in (3.16) both components

in the parallelization have equal depth. Also, because the networks defined in Equations (3.13)
and (3.14) have smaller sizes than those defined in (3.16) and (3.17), we will only estimate the
sizes of the latter. In the bound on the size of Φ✶

T1
+ Φ✶

f + Φ✶

T2
in (3.16), we use for T1, T2

Lemma 2.9 with N = d + 1 and k = 0, whereas for f we use Lemma 2.9 with N = d + 1 and
k = 1. The size of the network in (3.17) is estimated using Lemma 3.1 with k = 1, m = d+ 1
and s = 2.

L(ΦRT,n
f ) =L(Φ×

1,1) + L(Φ✶

T1
+Φ✶

f +Φ✶

T2
) = 5,

M(ΦRT,n
f ) ≤ 2M(Φ×

1,1) + 2M

(

P

(

Φmin
2 ⊙

(((

A
(1)
nf

A
(2)
nf

)

,

(

b
(1)
nf

b
(2)
nf

)

, IdR2

))

,Φ✶

T1
+Φ✶

f +Φ✶

T2

))

≤ 2M(Φ×
1,1) + 4M(Φmin

2 ) + 4M

((((

A
(1)
nf

A
(2)
nf

)

,

(

b
(1)
nf

b
(2)
nf

)

, IdR2

)))

+ 2M(Φ✶

T1
) + 2M(Φ✶

f ) + 2M(Φ✶

T2
)

≤C(C + C + Cd+ Cd2 + Cd2 + Cd2) ≤ Cd2.

✷

Remark 3.5 The right-hand sides of Equations (3.15) and (3.18) are bounded from above by
a constant which only depends on the shape regularity constant Csh of the mesh T .

Corollary 3.6 The network

ΦRT,∗
f := ((nf , 0, IdRd))⊙ ΦRT,n

f +

d−1
∑

j=1

((tj , 0, IdRd))⊙ Φ
RT,tj
f (3.20)
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satisfies θRT
f (x) = R

(

ΦRT,∗
f

)

(x) for a.e. x ∈ Ω and (θRT
f (x) · nf )nf = R

(

ΦRT,∗
f

)

(x) for all

x ∈ f . In addition, it holds that

L(ΦRT,∗
f ) = 6, M(ΦRT,∗

f ) ≤ Cd3.

Proof. We estimate the network size and depth as follows:

L(ΦRT,∗
f ) = 6,

M(ΦRT,∗
f ) ≤ 2M (((nf , 0, IdRd))) + 2M(ΦRT,n

f )

+

d−1
∑

j=1

(

2M (((tj , 0, IdRd))) + 2M(Φ
RT,tj
f )

)

≤ Cd3.

✷

3.3 Nédélec elements N0

In this section we restrict ourselves to the space dimension d ∈ {2, 3}. For d = 2, the two-
dimensional curl is defined as curl v = (−∂1v2, ∂2v1) and we can relate the Nédélec basis func-
tions to the Raviart-Thomas basis. In fact, one can verify that, for an edge f ∈ E = F (which
is also a face), the finite element basis {θNE

f }f∈F for N0 satisfies

θNE
f · tf = θRT

f · nf , and θNE
f · nf = −θRT

f · tf , (3.21)

where nf := ((nf )1, (nf )2) is a unit normal vector to f as in (3.12) and tf = (−(nf )2, (nf )1) is
a unit vector tangent to f . Hence, a NN emulation for θNE

f can be derived from Proposition
3.2 or Corollary 3.6.

We now focus on the case d = 3. Define NE0 = (P0)
3 ⊕ x × (P0)

3 and for all f ∈ F , let
nf denote a unit vector normal to the face f . Then the Nédélec finite element space of lowest
order [16, Section 15.1] reads

N0(T ,Ω) := {v ∈ (L1(Ω))3 : v|T ∈ NE0 ∀T ∈ T and [v × nf ]f = 0 ∀f ∈ F} ⊂ H0(curl,Ω).
(3.22)

This space has one degree of freedom per edge e ∈ E .
A basis {θNE

e }e∈E for N0(T ,Ω) can be constructed by assembling local shape functions of
all simplices T1 . . . , Ts(e), s(e) ∈ N sharing an edge e. We fix e ∈ E and a unit vector te tangent
to e, and denote the midpoint of e by me. We denote by ẽ(i) the only edge of Ti that does not
share a vertex with e, and let tẽ(i) be a unit vector tangent to ẽ(i), directed in such a way that
te · [(me −mẽ(i))× tẽ(i)] > 0. Then,

θNE
e (x) :=

{

(x−mẽ(i))×tẽ(i)
te·[(me−mẽ(i))×tẽ(i)]

if x ∈ Ti, i = 1, . . . , s(e),

0 if x /∈
⋃

i=1...,s(e) Ti.
(3.23)

Note that
s(E) := max

e∈E
s(e) (3.24)

is bounded from above by a constant only dependent on the shape regularity constant Csh of
T .

Proposition 3.7 Given e ∈ E, let A
(i)
e ∈ R

3×3, b
(i)
e ∈ R

3 be such that for i = 1, . . . , s(e)

A(i)
e x :=

x× tẽ(i)

te · [(me −mẽ(i))× tẽ(i)]
∀x ∈ R

3, b(i)e := −
mẽ(i) × tẽ(i)

te · [(me −mẽ(i))× tẽ(i)]
,
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Then

ΦNE
e :=

s(e)
∑

i=1

Φ×
3,κ ⊙ P

(

ΦId
3,2 ⊙

((

A(i)
e , b(i)e , IdR3

))

,Φ✶

Ti

)

(3.25)

satisfies θNE
e (x) = R

(

ΦNE
e

)

(x) for a.e. x ∈ Ω, for any κ such that

κ ≥ max
i=1,...,s(e)

sup
x∈Ti

‖(x−mẽ(i))× tẽ(i)‖∞

te · [(me −mẽ(i))× tẽ(i)]
. (3.26)

Moreover,

L(ΦNE
e ) = 5, M(ΦNE

e ) ≤ Cs(E).

Proof. Firstly, we observe that indeed θNE
e (x) = R

(

ΦNE
e

)

(x) for all x ∈ Ω \ ∂T . Secondly,
we use Lemma 3.1 with k = d = 3, m = d2 + d = 12 and s = s(e). ✷

3.4 CPwL elements S1

In this section, we provide a construction based on element-by-element assembly of the shape
functions, similar to that in the previous sections, using both ReLU and BiSU activations. Let

S1(T ,Ω) := {v ∈ H1(Ω) : v|T ∈ P1, ∀T ∈ T } ⊂ H1(Ω) (3.27)

be the FE space of continuous piecewise linear functions on T . A basis {θPL
p }p∈V of this space

is uniquely defined by the relations θPL
pi

(pj) = δij , for pi, pj ∈ V . Define n(p) := |{T ∈ T : p ∈

T}| ∈ N. Note that
n(V) := max

p∈V
n(p) (3.28)

is bounded from above by a constant only dependent on the shape regularity constant Csh of
T . The following proposition is analogous to Propositions 3.2 and 3.7.

Proposition 3.8 Given p ∈ V, let T1, . . . Tn(p) ∈ T , n(p) ∈ N be the simplices adjacent to p.

Let A
(i)
p ∈ R

1×d, b
(i)
p ∈ R

1 for i = 1, . . . , n(p) be such that

(A(i)
p , b(i)p )











p1 (ai,1)1 (ai,d)1
...

. . .

pd (ai,1)d (ai,d)d
1 1 · · · 1











= (1, 0, . . . , 0),

where the points ai,j ∈ R
d are such that Ti = conv(p, ai,1, . . . , ai,d). Then

ΦPL
p :=

n(p)
∑

i=1

Φ×
1,1 ⊙ P

(

ΦId
1,2 ⊙

(

A(i)
p , b(i)p , IdR

)

,Φ✶

Ti

)

(3.29)

satisfies θPL
p (x) = R(ΦPL

p )(x) for a.e. x ∈ Ω. Moreover,

L(ΦPL
p ) = 5, M(ΦPL

p ) ≤ Cn(V)d2.

Proof. Observing that θPL
p (x) = R(ΦPL

p )(x) for all x ∈ Ω\∂T , we use Lemma 3.1 with k = 1,
m = d+ 1 and s = n(p) to estimate the NN size. ✷
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4 CPwL elements using ReLU NNs

For continuous shape functions which vanish on the boundary of their domain of definition,
one can use the ReLU activation function alone, as shown in [18] for a class of meshes with
convex patches. The purpose of this section is to extend the results from [18] to more general,
shape-regular simplicial meshes. In the sequel, for a vertex p ∈ V we write

ω(p) :=
⋃

i=1...,n(p)

T i, (4.1)

where T1, . . . Tn(p) ∈ T denote the simplices adjacent to p. We call ω(p) a patch. One key
assumption in [18] was that ω(p) is convex for all vertices p ∈ V.

Removing this assumption is the main topic of the Section 4.2. We remark that the con-
struction given in Section 3.4 also does not require convexity of the patches and, since no
minimum is computed, the depth of the network is independent of the input dimension d and
the maximum number of elements meeting in one point n(V). However, in this section we avoid
the use of BiSU activations, which is unnatural for continuous functions in S1(T ,Ω).

4.1 Meshes with convex patches

Under the assumption of convexity of patches, the hat basis functions {θPL
p }p∈V ⊂ S1(T ,Ω)

satisfy [18, Lemma 3.1]

θPL
p (x) = max

{

0, min
i=1,...,n(p)

A(i)
p x+ b(i)p

}

, (4.2)

with A
(i)
p ∈ R

1×d, b
(i)
p ∈ R

1 such that A
(i)
p x+ b

(i)
p = θPL

p |Ti
(x) for all Ti ⊂ ω(p), i = 1, . . . , n(p).

We now recall the emulation of the shape functions from [18], and show the dependence of
the constants on d. We remark that the d-dependence was not studied in [18].

Proposition 4.1 ([18, Theorem 3.1]) Consider p ∈ V for which ω(p) is convex and let

T1, . . . Tn(p) ∈ T , n(p) ∈ N be the simplices adjacent to p. Let (A
(i)
p , b

(i)
p ) ∈ R

d+1,1, i =
1, . . . , n(p) be as in (4.2).

Then

ΦCPL
p :=

(

(1, 0, ρ) , (1, 0, IdR)
)

⊙ Φmin
n(p) ⊙

























A
(1)
p

...

A
(n(p))
p









,









b
(1)
p

...

b
(n(p))
p









, IdRn(p)

















satisfies R(ΦCPL
p )(x) = θPL

p (x) for all x ∈ Ω and

L(ΦCPL
p ) = 5 + log2(n(p)), M(ΦCPL

p ) ≤ Cdn(p).
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Proof. The network depth and size can be bounded as

L(ΦCPL
p ) =L

((

(1, 0, ρ) , (1, 0, IdR)
))

+ L(Φmin
n(p))

+ L

































A
(1)
p

...

A
(n(p))
p









,









b
(1)
p

...

b
(n(p))
p









, IdRn(p)

























≤ 2 + (2 + log2(n(p))) + 1 ≤ 5 + log2(n(p)),

M(ΦCPL
p ) ≤CM

((

(1, 0, ρ) , (1, 0, IdR)
))

+ CM(Φmin
n(p))

+ CM

































A
(1)
p

...

A
(n(p))
p









,









b
(1)
p

...

b
(n(p))
p









, IdRn(p)

























≤C(2 + n(p) + n(p)(d+ 1)) ≤ Cdn(p).

✷

The preceding result can be used to construct emulations of shape functions on non-convex
patches which only use the ReLU activation.

4.2 Meshes including non-convex patches

We now extend the result from Sec. 4.1 to the case of non-convex patches, i.e. we show that
ReLU NNs can emulate CPwL functions on arbitrary simplicial meshes in d ∈ N dimensions.
Our proof strategy is to write a non-convex patch as a suitable union of convex ones, and
thereby reduce the problem to the convex case.

Lemma 4.2 For d ∈ N, let T = conv({a0, . . . , ad}) be a simplex and δ > 0. Define q :=

a0 + δ
∑d

i=1(a0 − ai). Then Tδ := conv({q, a1, . . . , ad}) is a simplex and a0 ∈ Tδ.

Proof. Without loss of generality, a0 = 0. To show that Tδ is a simplex, it suffices to verify
a0 = 0 ∈ Tδ, as it then follows that T ⊂ Tδ, i.e. Tδ has nonempty interior and is thus a simplex.
By definition,

Tδ =

{

α0

(

δ

d
∑

i=1

−ai

)

+

d
∑

i=1

αiai :

d
∑

i=0

αi = 1 and αi > 0

}

.

Therefore, a0 ∈ Tδ is equivalent to

α0δ

d
∑

i=1

ai =

d
∑

i=1

αiai,

which holds if and only if α0δ = αi for all i = 1, . . . , d. A viable choice satisfying
∑d

i=0 αi = 1
and αi > 0 is α0 = (1 + dδ)−1 and αi = δ(1 + dδ)−1 for all i = 1, . . . , d, and thus a0 ∈ Tδ. ✷

Proposition 4.3 Given a simplex T = conv({a0, . . . , ad}) and a point p ∈ T , let

Ti := conv({p, a0, . . . , ad} \ {ai}) for all i ∈ {0, . . . , d}.

Then
⋃

i∈{0,...,d}

Ti = T (4.3)

and this is a patch.

17



Proof. Let p ∈ T , i.e.

p =

d
∑

i=0

αiai, αi > 0 and
d
∑

i=0

αi = 1.

First we show that T0 is a simplex, which by symmetry implies that Ti is a simplex for all
i ∈ {0, . . . , d}. It suffices to check that p − a1 /∈ span{a2 − a1, . . . , ad − a1}, since then {p −
a1, a2−a1, . . . , ad−a1} is a set of linearly independent vectors. This is true since {a0−a1, a2−
a1, . . . , ad − a1} are linearly independent vectors, α1 = 1−

∑

i 6=1 αi and thus

p− a1 =
∑

i 6=1

αi(ai − a1),

with α0 > 0 does not belong to span{a2 − a1, . . . , ad − a1}. Furthermore,
⋃

i∈{0,...,d} Ti ⊂ T

follows by the fact that p ∈ T implies Ti ⊂ T for all i ∈ {0, . . . , d}.

Next we show
⋃

i∈{0,...,d} Ti ⊃ T . Fix p̄ :=
∑d

j=0 γjaj with γj ≥ 0 satisfying
∑d

j=0 γj = 1,

i.e. p̄ is an arbitrary point in T . We wish to show that p̄ ∈ T i for some i ∈ {0, . . . , d}, i.e.

d
∑

j=0

γjaj =

d
∑

j 6=i

βjaj + βi

d
∑

j=0

αjaj for some βj ≥ 0,

d
∑

j=0

βj = 1.

This is equivalent to
d
∑

j=0

(γj − βiαj)aj =

d
∑

j 6=i

βjaj . (4.4)

We now show that there exist (βj)
d
j=0 for which this holds. Let

i ∈ argmin
j∈{0,...,d}

γj
αj

, (4.5)

which is well-defined because γj ≥ 0 and αj > 0 for all j ∈ {0, . . . , d}. Since
∑d

j=0 αj =

1 =
∑d

j=0 γj , for i in (4.5) it must hold γi

αi
≤ 1. Equation (4.4) holds if γi − βiαi = 0 and

γj−βiαj = βj for all j 6= i. The former is satisfied for βi =
γi

αi
∈ [0, 1] and the latter is satisfied

if βj = γj − βiαj , which implies βj = αj(
γj

αj
− γi

αi
) ≥ 0 and βj = αj(

γj

αj
− γi

αi
) ≤ γj ≤ 1. It is

left to show that
∑d

j=0 βj = 1. We have

d
∑

j 6=i

βj + βi =

d
∑

j 6=i

αj(
γj

αj
− γi

αi
) + γi

αi
=

d
∑

j 6=i

γj +
γi

αi



1−
d
∑

j 6=i

αj



 =

d
∑

j 6=i

γj +
γi

αi
αi = 1.

We found i ∈ {0, . . . , d} and (βj)
d
j=0 for which (4.4) holds. Thus p̄ ∈ Ti, and

⋃

i∈{0,...,d} Ti ⊃ T .

It is left to show that for all m 6= n ∈ {0, . . . , d} the intersection of Tm and Tn is the closure
of a sub-simplex of both. Consider

Tm =







d
∑

j 6=m

βjaj + βmp :

d
∑

j=0

βj = 1 and βj ≥ 0







,

Tn =







d
∑

j 6=n

βjaj + βnp :

d
∑

j=0

βj = 1 and βj ≥ 0







.
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Then

Tm ∩ Tn =







d
∑

j 6=m,n

βjaj + βp : β +

d
∑

j 6=m,n

βj = 1 and β, βj ≥ 0







,

which, by definition, is the closure of a sub-simplex of both Tm and Tn. ✷

For a set S ⊂ R
d, in the following we call x ∈ S a star point of S iff for all y ∈ S \ {x} holds

conv({x, y}) ⊂ S.

Lemma 4.4 Let p ∈ V ∩ intΩ and let T1, . . . Tn(p) ∈ T be the simplices adjacent to p. For each
j = 1, . . . , n(p), we denote by PTj

the hyperplane passing through all vertices of Tj except p.
Then, any x ∈ intω(p) that is on the same side of the hyperplane PTj

as p for all j = 1, . . . , n(p)
is a star point for the patch ω(p).

Proof. We divide the claim in two steps:

Step 1. We claim that ∂ω(p) ⊂
⋃n(p)

j=1 PTj
for all p ∈ V∩ intΩ. Define a regular partition T ′

of Rd that extends T , i.e. such that T ⊂ T ′. For every point z on ∂ω(p), z is on the boundary
of an element T ⊂ ω(p) and of an element T ′ ⊂ R

d \ ω(p), T, T ′ ∈ T ′. By regularity of T ′,
T ∩ T ′ is the closure of a subsimplex f of both T and T ′. Because T is a simplex with p as
one of its vertices, if z is not in PT , then f touches p, which implies that T ′ ⊂ ω(p) and gives
a contradiction.

Step 2. Assume that x ∈ intω(p) is not a star point of ω(p). Then there exists q ∈ ω(p)
and t ∈ [0, 1] such that tx+ (1− t)q /∈ ω(p). Therefore, there exist t, t̄ ∈ [0, 1] satisfying t < t̄,
and T ∈ T , T ⊂ ω(p), such that, using Step 1, t̄x + (1 − t̄)q ∈ PT and sx + (1 − s)q ∈ T ,
∀s ∈ (t, t̄). Since p and T lie on the same side of PT , sx+ (1− s)q lies on the other side of PT

than p for all s ∈ (t̄, 1]. For s = 1, this implies that x is on the other side of the hyperplane
PT than p. Thus if x ∈ intω(p) is not a star point, it lies on the other side of at least one
hyperplane PTj

than p. Therefore, if a point x ∈ intω(p) is on the same side of PTj
as p for all

j = 1, . . . , n(p), then x is a star point for ω(p), by contradiction. ✷

Remark 4.5 The converse implication of Lemma 4.4 holds as well: the set of all star points

of the patch ω(p) coincides with the intersection
⋂n(p)

j=1 Hj of all closed half-spaces Hj, where

Hj ⊂ R
d is defined as the set of all points that lie on the same side of PTj

as p.

In the following, denote by Bǫ(p) ⊂ R
d the ball of radius ǫ > 0 centered at p ∈ R

d, with
respect to the Euclidean norm.

Lemma 4.6 For all p ∈ V ∩ intΩ, there exists ǫ > 0 such that Bǫ(p) ⊂ ω(p) and such that
every x ∈ Bǫ(p) is a star point of ω(p).

Proof. For j = 1, . . . , n(p) denote by Hj ⊂ R
d the open half-space containing all points that

lie on the same side of PTj
as p. Then

⋂n(p)
j=1 Hj is open, contains p and is a subset of the set

of all star-points of ω(p) by Lemma 4.4. ✷

Lemma 4.7 Given p ∈ V ∩ intΩ, let T1, . . . Tn(p) ∈ T be the simplices adjacent to p. For all

j = 1, . . . , n(p), let a0 := p and a1, . . . , ad ∈ R
d be such that Tj = conv({a0, . . . , ad}) and let

qj := p+ δj
∑d

i=1(p− ai) for some sufficiently small δj > 0. With

T̃ij :=

{

conv({qj , a0, . . . , ad} \ {ai}) if i ∈ {1, . . . , d}

Tj if i = 0,
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p

Tj

(a) ω(p)

p

Tj

qj

(b) ω̃j(p)

Figure 4.1: The patches ω(p) and (shaded) ω̃j(p) ⊂ ω(p) in Lemma 4.7.

set

ω̃j(p) :=

d
⋃

i=0

T̃ij .

Then ω̃j(p) is convex and Tj ⊂ ω̃j(p) ⊂ ω(p). The sets {T̃ij}i=0,...,d form a regular partition of
ω̃j(p).

Proof. For ǫ > 0 as in Lemma 4.6, let δj > 0 in the definition of qj be such that ‖qj − p‖2 =
ǫ
2 . Then qj ∈ Bǫ(p) ⊂ ω(p) is a star point of ω(p) by Lemma 4.6. Therefore, T̃ij ⊂ ω(p)

for all i = 1, . . . , d, and thus ω̃j(p) ⊂ ω(p). It also holds that Tj = T̃ 0j ⊂ ω̃j(p). After
observing that int ω̃j(p) = (Tj)δj in the notation of Lemma 4.2, Lemma 4.2 shows that ω̃j(p) is

a simplex and thus convex. The sets {T̃ij}i=0,...,d form a regular partition of ω̃j(p) by Lemma
4.3 (qj , a1, . . . , ad, p in the notation of this proof correspond to a0, . . . , ad, p in the notation of
the lemma). ✷

Corollary 4.8 Let ω̃j(p) be as in Lemma 4.7, then

ω(p) =

n(p)
⋃

j=1

ω̃j(p).

Proof. Using Tj ⊂ ω̃j(p) ⊂ ω(p) for all j = 1, . . . , n(p) we have

ω(p) =

n(p)
⋃

j=1

Tj ⊂

n(p)
⋃

j=1

ω̃j(p) ⊂ ω(p).

✷

Corollary 4.9 In the notation of Lemma 4.7, for p ∈ V ∩ intΩ and j = 1, . . . , n(p), let
θ̃PL
p,j ∈ C0(Ω) be the function defined by θ̃PL

p,j (p) = 1 and θ̃PL
p,j (q) = 0 for all other vertices q of

ω̃j(p), such that θ̃PL
p,j |T̃ij

∈ P1 for all i = 0, . . . , d, and θ̃PL
p,j |Ω\ω̃j(p) = 0.

20



For all p ∈ V ∩ intΩ and j = 1, . . . , n(p), these functions can be written as

θ̃PL
p,j (x) = max

{

0, min
i=0,...,d

Ã(i,j)
p x+ b̃(i,j)p

}

, x ∈ Ω,

where each x 7→ Ã
(i,j)
p x+b̃

(i,j)
p is a globally linear function fulfilling (Ã

(i,j)
p x+b̃

(i,j)
p )|T̃ij

= θ̃PL
p,j |T̃ij

.

Proof. Since ω̃j(p) is a convex patch, the statement follows by Prop. 4.1 (which corresponds

to [18, Theorem 3.1]). The function x 7→ Ã
(i,j)
p x + b̃

(i,j)
p in our notation corresponds to gk in

the notation of [18], and θ̃PL
p,j corresponds to φi. ✷

Lemma 4.10 For all p ∈ V, j, k = 1, . . . , n(p) and i = 0, . . . , d, let x 7→ Ã
(i,j)
p x + b̃

(i,j)
p be as

defined in Corollary 4.9 and let x 7→ A
(k)
p x+ b

(k)
p be the function defined by (A

(k)
p x+ b

(k)
p )|Tk

=
θPL
p |Tk

. Then,

0 ≤ Ã(i,j)
p x+ b̃(i,j)p ≤ A(k)

p x+ b(k)p , ∀x ∈ Tk ∩ T̃ij ,

for all j, k = 1, . . . , n(p) and i = 0, . . . , d.

Proof. First consider p ∈ V ∩ intΩ, such that p ∈ intω(p). For all j, k ∈ {1, . . . , n(p)} and

i ∈ {0, . . . , d}, we first note that Ã
(i,j)
p p+ b̃

(i,j)
p = A

(k)
p p+ b

(k)
p = 1 as well as Ã

(i,j)
p y + b̃

(i,j)
p = 0

for all y on the face of T̃ij opposite to p. Similarly, A
(k)
p y + b

(k)
p = 0 for all y on the face of Tk

opposite to p. Next, let x ∈ Tk ∩ T̃ij in case this set is nonempty. Let L be the halfline starting
in p through x. Note that p ∈ int ω̃j(p) ⊂ intω(p) is a star point of both ω̃j(p) and ω(p). It
follows from ω̃j(p) ⊂ ω(p) that the intersection point y1 ∈ L ∩ ∂ω̃j(p) is closer to p than (or

equal to) the intersection point y2 ∈ L∩∂ω(p). Because y 7→ Ã
(i,j)
p y+ b̃

(i,j)
p linearly interpolates

between the value 1 in p and 0 in y1, and y 7→ A
(k)
p y + b

(k)
p linearly interpolates between 1 in

p and 0 in y2, it follows that Ã
(i,j)
p y + b̃

(i,j)
p ≤ A

(k)
p y + b

(k)
p for all points y between p and y1,

which includes x. Finally, the first inequality in the lemma follows from Corollary 4.9.
For p ∈ V ∩ ∂Ω, we can apply the argument above after extending T to a regular, simplicial

partition of all of Rd, of which only the elements touching p are relevant. ✷

Theorem 4.11 For all p ∈ V, let T1, . . . Tn(p) ∈ T , n(p) ∈ N be the simplices adjacent to p.
Then, for all p ∈ V and all x ∈ ω(p)

θPL
p (x) = max

j=1,...,n(p)
θ̃PL
p,j (x) = max

j=1,...,n(p)
max

{

0, min
i∈{0,...,d}

Ã(i,j)
p x+ b̃(i,j)p

}

, (4.6)

where each x 7→ Ã
(i,j)
p x+b̃

(i,j)
p is a globally linear function fulfilling (Ã

(i,j)
p x+b̃

(i,j)
p )|T̃ij

= θ̃PL
p,j |T̃ij

for T̃ij defined in Lemma 4.7 and θ̃PL
p,j defined in Corollary 4.9.

Proof. For all j = 1, . . . , n(p), applying Lemma 4.10 for all i = 0, . . . , d and all k = 1, . . . , n(p)
shows that 0 ≤ θ̃PL

p,j (x) ≤ θPL
p (x) for all x ∈ ω̃j(p). Together with θ̃PL

p,j (x) = 0 for all x ∈

Ω\ω̃j(p), this shows that 0 ≤ θ̃PL
p,j (x) ≤ θPL

p (x) for all x ∈ Ω. To finish the proof, recall that
for all j = 1, . . . , n(p) and x ∈ Tj

θPL
p (x) = A(j)

p x+ b(j)p = Ã(0,j)
p x+ b̃(0,j)p = θ̃PL

p,j (x).

The first and the last equality hold by definition, and the second holds because both functions
are linear and equal the value 1 in p and 0 in the other vertices of Tj . ✷

21



Theorem 4.12 For all p ∈ V let T1, . . . Tn(p) ∈ T , n(p) ∈ N be the simplices adjacent to p.

For θ̃PL
p,j , j = 1, . . . , n(p) defined in Corollary 4.9, let Φ̃CPL

p,j , j = 1, . . . , n(p) be the NNs from

Proposition 4.1 satisfying R(Φ̃CPL
p,j ) = θ̃PL

p,j on Ω.
Then

ΦCPL
p := Φmax

n(p) ⊙ P(Φ̃CPL
p,1 , . . . , Φ̃CPL

p,n(p)) (4.7)

satisfies R(ΦCPL
p )(x) = θPL

p (x) for all x ∈ Ω and

L(ΦCPL
p ) ≤ 7 + log2(n(p)) + log2(d+ 1), M(ΦCPL

p ) ≤ Cd2n(p).

Proof. Because ω̃j(p) = ∪
d
i=0T̃ ij is a regular partition of the convex set ω̃j(p) by Lemma 4.7,

we can apply Proposition 4.1 and it follows that for all j = 1, . . . , n(p)

L(Φ̃CPL
p,j ) ≤ 5 + log2(d+ 1), M(Φ̃CPL

p,j ) ≤ Cd(d+ 1) ≤ Cd2

The fact that R(ΦCPL
p )(x) = θPL

p (x) for all x ∈ Ω follows from Theorem 4.11, and the network
depth and size are bounded as follows:

L(ΦCPL
p ) =L(Φmax

n(p)) + L(Φ̃CPL
p,1 ) ≤ 2 + log2(n(p)) + 5 + log2(d+ 1),

M(ΦCPL
p ) ≤ 2M(Φmax

n(p)) + 2

n(p)
∑

j=1

M(Φ̃CPL
p,j ) ≤ Cn(p) + n(p)Cd2 ≤ Cd2n(p).

✷

5 Approximation results

Since we defined explicit constructions of shape functions for all finite elements in the discrete
De Rham complex of the lowest polynomial order (1.2), we now lift known approximation
results for finite elements to obtain constructive NN approximations of arbitrary functions in
the Sobolev spaces belonging to the De Rham complex (1.1).

We apply the previous results to shape-regular families of meshes {Th}h>0 in dimension
d = 2, 3. For V = H1(Ω), H0(curl,Ω) for d = 3, H0(div,Ω) or L2(Ω), define the template for
the respective smoothness spaces V • ⊂ V as follows

V = H1(Ω)←→ V • = H2(Ω),

for d = 3 : V = H0(curl,Ω)←→ V • = H1(curl,Ω) := {v ∈ [H1(Ω)]d : curl v ∈ [H1(Ω)]d},

V = H0(div,Ω)←→ V • = H1(div,Ω) := {v ∈ [H1(Ω)]d : div v ∈ H1(Ω)},

V = L2(Ω)←→ V • = H1(Ω).

(5.1)

Then we get the following result.

Theorem 5.1 Given a bounded, simply connected polytopal Lipschitz domain Ω ⊂ R
d, d = 2, 3,

assume that V ∈ {H1(Ω), H0(curl,Ω), H0(div,Ω), L2(Ω)}, that V • is as in (5.1) and that d = 3
if V = H0(curl,Ω). Then there exists a constant C > 0 such that, for all h > 0, a NN Φh can
be constructed satisfying

‖v − R(Φh)‖V ≤ Ch‖v‖V • ∀v ∈ V •, (5.2)

and
L(Φh) ≤ 6, M(Φh) ≤ Ch−d.
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Proof. Let {Th}h>0 be a family of quasi-uniform meshes on Ω with mesh-width h > 0 and shape
regularity constant Csh > 0 independent of h. Define Vh ∈ {S1(Th,Ω),N0(Th,Ω),RT0(Th,Ω), S0(Th,Ω)}
corresponding to (in this order) V ∈ {H1(Ω), H0(curl,Ω), H0(div,Ω), L2(Ω)}. Then

∀vh ∈ Vh : vh(x) =

dim(Vh)
∑

i=1

viθi(x), (5.3)

where θi, i = 1, . . . , dim(Vh) are the shape functions for Vh and v ∈ R
dim(Vh) . Therefore, due

to Equation (3.5) and Propositions 3.2, 3.7, 3.8, for all vh ∈ Vh, we get an explicit construction
of a NN Φh such that vh(x) = R(Φh)(x) for a.e. x ∈ Ω. In particular,

‖v − R(Φh)‖V = ‖v − vh‖V .

For v ∈ V •, we can apply the approximation results e.g. [16, Theorem 11.13] for V = H1(Ω),
[1, Equations (5.7) and (5.8)] for V = H0(curl,Ω) in case d = 3, [16, Theorem 16.4] for V =
H0(div,Ω) and Poincaré’s inequality for V = L2(Ω). More precisely, there exist interpolation
operators Ih : V

• → Vh such that for a constant C only dependent on d, Csh

inf
vh∈Vh

‖v − vh‖V ≤ ‖v − Ihv‖V ≤ Ch‖v‖V • . (5.4)

The upper bound on L(Φh) follows from the corresponding bounds in (3.5) and Propositions
3.2, 3.7, 3.8, adding one extra layer to evaluate the linear combination (5.3). In addition, the size
M(Φh) depends on d, Csh and, to evaluate (5.3), grows linearly with respect to dim(Vh) ∼ h−d

as h ↓ 0. ✷

Remark 5.2 The choice of interpolation operators Ih : V
• → Vh in Theorem 5.1 is made

to have the approximation property (5.4). However, other interpolation or quasi-interpolation
operators in Vh can be equally emulated with NNs. In [15, Corollary 5.3], the authors give a par-
ticular definition of quasi-interpolation for Vh ∈ {S1(Th,Ω),N0(Th,Ω),RT0(Th,Ω)}, requiring
minimal regularity of the function v, that yields

‖v − R(Φh)‖Lp(Ω) ≤ Chr|v|W r,p(Ω) ∀v ∈ [W r,p(Ω)]dL , (5.5)

for any p ∈ [1,∞], r ∈ {0, 1} or any p ∈ [1,∞), r ∈ (0, 1), where dL = d if Vh = RT0(Th,Ω) or
Vh = N0(Th,Ω) and dL = 1 otherwise.

6 Neural emulation of trace spaces

In the previous sections, we have developed ReLU NN emulations of the lowest order, De
Rham compatible Finite Elements on cellular complexes in the bounded Lipschitz polyhedral
domains Ω ⊂ R

3. In certain applications, however, corresponding boundary complexes are
required; we mention only variational boundary integral equations which arise in computational
electromagnetism (e.g. [7, 6] and the references there). We approximate traces on the boundary
Γ = ∂Ω, which is a finite union of plane sides, with the network constructions developed in
Sections 4.1, 3.2 and 3.1 for d = 2. As has been emphasized e.g. in [6] trace spaces of the
spaces occurring in the De Rham complex satisfy exact sequence properties derived from the
compatibility of the corresponding sequences in Ω.
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We recall the trace operators (e.g. from [6, Definition 2.1]):

γ0 : H1(Ω)→ H1/2(Γ) : γ0(u)(x0) = lim
x→x0

u(x), (6.1a)

γ̆0 : H0(curl,Ω)→ H−1/2(curlΓ,Γ) : γ̆0(u)(x0) = lim
x→x0

u(x)− (u(x) · nx0)nx0 , (6.1b)

γt : H
0(curl,Ω)→ H

−1/2
× (divΓ,Γ) : γt(u)(x0) = lim

x→x0

u(x)× nx0
, (6.1c)

γn : H0(div,Ω)→ H−1/2(Γ) : γn(u)(x0) = lim
x→x0

u(x) · nx0
, (6.1d)

for almost all x0 ∈ Γ, where we use x to denote points in Ω, and where nx0 denotes the outward
unit normal to Γ in x0. These trace operators render the diagram in Figure 6.1 commutative
(e.g. [6]).

H1(Ω)

γ0

��

grad
// H0(curl,Ω)

γ̆0

��

curl
//

γt

!!

H0(div,Ω)

γn

��

H−1/2(curlΓ,Γ)

·×n

��

curlΓ

**
H1/2(Γ)

gradΓ

55

curlΓ

))

H−1/2(Γ)

H
−1/2
× (divΓ,Γ)

divΓ

55

Figure 6.1: Boundary complex

Given a regular simplicial partition T of Ω, for each face f of Ω, the set Tf = {int(f ∩ T ) :
T ∈ T } is a regular, simplicial triangulation of f (where the interior int(. . .) is defined with
respect to the subspace topology on the face f). Discretizations of the trace spaces can be
defined as the traces in the sense of (6.1) of the finite element spaces on Ω (see [17, Section
1.6]). The corresponding diagram for the lowest order conforming FEM spaces also commutes
(Figure 6.2).

S1(T ,Ω)

γ0|f

��

grad
// N0(T ,Ω)

γ̆0|f

��

curl
//

γt|f

""

RT0(T ,Ω)

γn|f

��

N0(Tf , f)

·×n

��

curlΓ

))
S1(Tf , f)

gradΓ

55

curlΓ

))

S0(Tf , f)

RT0(Tf , f)

divΓ

55

Figure 6.2: Discrete boundary complex

Upon parametrizing the faces of Ω by a polygon in R
2, we can construct NN approximations

of the traces on f . We parametrize each face f by an affine bijection Ff : Df → f for some
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polygon Df ⊂ R
2, which can be partitioned by TDf

:= {F−1
f (T ) : T ∈ Tf}. Functions in

S1(Tf , f), RT0(Tf , f) and S0(Tf , f) can be pulled back to Df . In particular,

{u ◦ Ff : u ∈ S1(Tf , f)} = S1(TDf
, Df ), {u ◦ Ff : u ∈ S0(Tf , f)} = S0(TDf

, Df ).

NN emulations of these spaces have already been provided in Sections 4.1 and 3.1. The spaces
RT0(Tf , f) and RT0(TDf

, Df ) are related by the Piola transform. For J denoting the Jacobian
of Ff ,

{det(J)J−1(u ◦ Ff ) : u ∈ RT0(Tf , f)} = RT0(TDf
, Df ).

Thus, for u ∈ RT0(Tf , f), a network that emulates u◦Ff : Df → R
3 is given by det(J−1)JΦ, for

a NN Φ from Section 3.2 emulating det(J)J−1(u◦Ff ) ∈ RT0(TDf
, Df ). Here, ReLU activations

imply that the affine transformation det(J−1)J can be emulated exactly either by applying this
transformation to the weights and biases of the output layer of Φ, or by concatenating Φ with
a ReLU NN of depth one. In both cases, the network size is increased by at most Cd2 (with
C > 0 independent of d and T ), and the network depth is increased by 0 respectively 1.

The shape functions of N0(Tf , f) equal those of RT0(Tf , f) up to a rotation. As explained in
Section 3.3, we can use results from Section 3.2 for the NN emulation of the N0(TDf

, Df ) shape
functions. Therefore, for u ∈ N0(Tf , f), a network that emulates u ◦ Ff : Df → R

3 is given by
det(J−1)JR(Φ), for a NN Φ from Section 3.2 emulating det(J)J−1(u ◦ Ff ) ∈ N0(TDf

, Df ).
The results of this section can be summarized as follows:

Proposition 6.1 Assume given a bounded polytopal domain Ω ⊂ R
3 with Lipschitz boundary

Γ = ∂Ω. For a regular, simplicial partition T on Ω, and for a side f ⊂ Γ of Ω, consider
the regular, simplicial partition Tf = {int(f ∩ T ) : T ∈ T } of f . Let Ff : Df → f be a
bijective affine parametrization of f for some polygonal parameter domain Df ⊂ R

2 partitioned
by TDf

:= {F−1
f (T ) : T ∈ Tf}. In the following, C only depends on the shape regularity

constant of the mesh Tf . Then:

(i) For all T ∈ Tf , there exists a DNN Φ of depth 3 and size at most 14, with only σ as
activation function, such that R(Φ) = θST ◦ Ff a.e. in Df .

(ii) For all edges e ⊂ f , there exist DNNs Φ,Φ′ of depth 5 and size at most C, with ρ and σ
as activation function, such that R(Φ) = θRT

e ◦ Ff a.e. in Df and R(Φ′) = θNE
e ◦ Ff a.e.

in Df . If e ⊂ f , there also exist networks Φ,Φ′ of depth 6 which in addition satisfy that
the normal respectively tangential component is continuous across e.

(iii) For all nodes p ∈ f , there exists a DNN Φ of depth C and size at most C, with ρ as
activation function, such that R(Φ) = θPL

p ◦ Ff everywhere in Df .

7 Extensions and conclusions

We conclude this paper by indicating some extensions of the main results, as well as further
possible directions of research.

7.1 Higher order polynomial spaces

For p ∈ N and d ≥ 2 denote in the following by Pp(R
d) := span{

∏d
j=1 x

νj

j :
∑d

j=1 νj ≤ p} the
space of multivariate polynomials of degree at most p. As has been observed in [19], networks
employing the “ReLUr”2 activation

ρr(x) := ρ(x)r = max{0, x}r

2Also referred to as “rectified power unit” (RePU).

25



for some fixed integer r ≥ 2, can be used to express multivariate polynomials in Pp(R
d) exactly.

We use here a formulation of this result from [21]3, extended to vector-valued polynomials by
parallelization:

Proposition 7.1 ([21, Proposition 2.14]) Fix d, k ∈ N, r ∈ N, r ≥ 2 and a polynomial
degree p ∈ N.

Then there exists a constant C > 0 independent of d, k and p but depending on r such that
for any multivariate polynomial f ∈ [Pp(R

d)]k there is a NN Φf , employing ReLUr activation,
such that R(Φf )(x) = f(x), for all x ∈ R

d and such that M(Φf ) ≤ Ck(p + 1)d and L(Φf ) ≤
Cd log2(p).

Combining Proposition 7.1 with Proposition 2.8 and Lemma 2.9, by a similar argument as
in Lemma 3.1 we obtain a generalization of this result to piecewise polynomial functions on
regular, simplicial partitions for all interelement-conformities which arise from compatibility
with the complex (1.1).

Proposition 7.2 (Emulation of piecewise higher order polynomial elements) Let r ∈
N, r ≥ 2. For d, s, k, p ∈ N let Ω ⊂ R

d be a bounded Lipschitz polytope and T be a regular,
simplicial partition of Ω with s = #(T ) elements, T = {Ti}i=1,...,s. Let u : Ω → R

k be a
function which for all i = 1, . . . , s satisfies that u|Ti

∈ [Pp(R
d)]k.

Then there exists a NN ΦPwP
u employing ReLU, ReLUr and BiSU activations and satisfies

u(x) = R
(

ΦPwP
u

)

(x) for a.e. x ∈ Ω. Moreover,

L(ΦPwP
u ) ≤ Cd log2(p) , M(ΦPwP

u ) ≤Csk(p+ 1)d.

Here the constant C is independent of d, s, k and p but depends on r.

Our results thus straightforwardly extend to piecewise polynomial spaces of arbitrarily high
order, covering all De Rham compatible element families on simplicial partitions on polytopes
as described in [17]. Importantly, as in the case of low-order finite elements, the network size
only scales linearly in the number s = #(T ) of simplices of the triangulation T . Similarly, also
the results of Section 6 extend to higher order polynomials.

Remark 7.3 ReLU NNs are known to be efficient at approximating multivariate polynomi-
als, see e.g. [22, 28]. Thus, also ReLU+BiSU (rather than ReLU+ReLUr+BiSU) networks
could be employed to extend our results to higher order polynomial spaces, however only in an
approximate sense.

7.2 Crouzeix-Raviart elements CR0

While this work focused on conformal discretization of functions in the compatible spaces in
(1.1), the result of Lemma 3.1 is more general and includes the non-conformal Crouzeix-Raviart
elements (e.g. [16, Section 7.5]) of lowest order for d ≥ 2. Due to the importance and widespread
use of the Crouzeix-Raviart elements (e.g. [13, 8, 5] and the references there), we state a NN
emulation result of these elements. The lowest order Crouzeix-Raviart FE space is defined as

CR0(T ,Ω) := {v ∈ L1(Ω) : v|T ∈ P1 ∀T ∈ T and

∫

f

[v]f = 0 ∀f ∈ F}. (7.1)

Analogously to the case of Raviart-Thomas FE, the space CR0(T ,Ω) has one degree of freedom
per face f ∈ F : the corresponding shape functions are, for f ⊂ ∂Ω, θCR

f (x) := d( 1d − (1 −

3We apply this result here with the multiindex set Λ := {(ν1, . . . , νd) ∈ N
d
0

:
∑d

j=1
νj ≤ p}, which has

cardinality bounded by (p+ 1)d.
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|f |(x−a)·nf

d|T | ))✶T , where f ⊂ T , T ∈ T and a is the only vertex of T that does not belong

to f . For interior faces f ⊂ Ω we construct θCR
f by assembling local shape functions of the

neighboring simplices T1, T2 with f = T1 ∩ T2,

θCR
f (x) :=











d( 1d − (1−
|f |(x−a1)·nf

d|T1|
)) if x ∈ T1,

d( 1d − (1 +
|f |(x−a2)·nf

d|T2|
)) if x ∈ T2,

0 if x /∈ T1 ∩ T2,

(7.2)

where a1, a2 are the the only vertices of T1, T2, respectively, not belonging to f .

Proposition 7.4 Given f ∈ F , f ⊂ ∂Ω, let T ∈ T be the simplex adjacent to f and a :=
(V ∩ T ) \ f ∈ R

d.
Then there exist Af,T ∈ R

1×d, bf,T ∈ R such that

ΦCR
f := Φ×

1,κ ⊙ P
(

ΦId
1,2 ⊙ ((Af,T , bf,T , IdR)) ,Φ

✶

T

)

(7.3)

satisfies θCR
f (x) = R(ΦCR

f )(x) for a.e. x ∈ Ω, for any

κ ≥ d− 1. (7.4)

Given f ∈ F , f ⊂ Ω, let T1, T2 be the simplices adjacent to f and let ai := (V ∩Ti)\f ∈ R
d, i =

1, 2. Then, there exist Af,Ti
∈ R

1×d, bf,Ti
∈ R, i = 1, 2 such that

ΦCR
f :=

∑

i=1,2

Φ×
1,κ ⊙ P

(

ΦId
1,2 ⊙ ((Af,Ti

, bf,Ti
, IdR)) ,Φ

✶

Ti

)

(7.5)

satisfies θCR
f (x) = R(ΦCR

f )(x) for a.e. x ∈ Ω, for any κ as in (7.4). In addition, there exists
an absolute constant C > 0 such that for all f ∈ F

L(ΦCR
f ) = 5, M(ΦCR

f ) ≤ Cd2.

Proof. The values of Af,Ti
, bf,Ti

can be read from (7.2) and also Af,T , bf,T can be read from

the definition of θCR
f . Similar to Proposition 3.2, θCR

f (x) = R
(

ΦCR
f

)

(x) for all x ∈ Ω \ ∂T ,

where ∂T :=
⋃

T∈T ∂T .
We conclude applying Lemma 3.1 with k = 1 and m = d + 1, and with s = 1 in (7.3) and

s = 2 in (7.5). ✷

The same idea carries over to higher order Crouzeix-Raviart elements and canonical hybrid
elements [16, Section 7.6], along the lines of Section 7.1.

7.3 Conclusions

The present construction of deep NN emulations of De Rham compatible Finite Element spaces
was given for the lowest order Finite Element families on regular, simplicial partitions T of
Ω. Generalizing recent work [18], we provided exact emulation of continuous piecewise linear
functions (“Courant” Finite Elements) on arbitrary, regular simplicial partitions in any space
dimension by ReLU networks. As shown, the network size in this construction merely scales
linearly with the number of elements.

As is well known (e.g. [17] and the reference there) the presently emulated, lowest order ele-
ment families are embedded in hierarchies of higher-order Finite Element families for arbitrary
polynomial order. We argued that admitting higher order, so-called ReLUr activations with
r ∈ N, r ≥ 2 allows to exactly emulate the higher order element families from [17] along the
lines of the present constructions.
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Compatible constructions similar to the ones developed here are also possible on affine
partitions T (comprising elements that are affine images of reference elements) which contain
other element shapes, in particular quadrilaterals (d = 2) and hexahedral elements (d = 3). We
refer to [17, Sec. 4 and 6] for details on the shape functions.

The present results, in particular Proposition 6.1, can be the basis to extend the recently
proposed frameworks of “PiNN” [24] and “DeepRitz” [14] for DNN discretization of PDEs to
larger classes of PDEs, and to corresponding boundary integral formulations (see, e.g., [25]
for such methods, and [4] for a realization of this approach for a model problem). While in
this paper we mainly concentrated on the De Rham formalism, our ideas and proofs naturally
extend also to compatible discretizations of more general structures, as occur in the so-called
Finite Element Exterior Calculus (FEEC) (e.g. [2] and the references there). Development of
details is beyond the scope of the present work.

Similarly, with Proposition 7.2 other nonconforming FEM such as Hybridized, High Or-
der (“HHO”) FEM can be emulated with appropriate functionals which account for element
interface unknowns and reduced interelement conformity, see, e.g. [9, Prop. 1.8].
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