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WEIGHTED ANALYTIC REGULARITY FOR THE INTEGRAL FRACTIONAL
LAPLACIAN IN POLYGONS

MARKUS FAUSTMANN*, CARLO MARCATI!, JENS MARKUS MELENK*, AND CHRISTOPH SCHWABT

Abstract. We prove weighted analytic regularity of solutions to the Dirichlet problem for the integral fractional
Laplacian in polygons with analytic right-hand side. We localize the problem through the Caffarelli-Silvestre extension and
study the tangential differentiability of the extended solutions, followed by bootstrapping based on Caccioppoli inequalities
on dyadic decompositions of vertex, edge, and edge-vertex neighborhoods.
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1. Introduction. In this work, we study the regularity of solutions to the Dirichlet problem for
the integral fractional Laplacian

(1.1) (=A)°u= fonQ, u=0onR\Q,

with 0 < s < 1, where we consider the case of a polygonal 2 and a source term f that is analytic. We
derive weighted analytic-type estimates for the solution u, with vertex and edge weights that vanish on
the domain boundary 0f).

Unlike their integer order counterparts, solutions to fractional Laplace equations are known to lose
regularity near 9, even when the source term and 02 are smooth (see, e.g., [Grulb]). After the
establishment of low-order Hélder regularity up to the boundary for C1'! domains in [ROS14], solutions
to the Dirichlet problem for the integral fractional Laplacian have been shown to be smooth (after
removal of the boundary singularity) in C*° domains [Grulb]. Subsequent results have filled in the
gap between low and high regularity in Sobolev [AG20] and Hélder spaces [ARO20], with appropriate
assumptions on the regularity of the domain. Besov regularity of weak solutions u of (1.1) has recently
been established in [BN21] in Lipschitz domains €. Finally, for polygonal €2, the precise characterization
of the singularities of the solution in vertex, edge, and edge-vertex neighborhoods is the focus of the
Mellin-based analysis of [GSS21, Sto20].

For smooth geometries, [Grul5] characterizes the mapping properties of the integral fractional Lapla-
cian, exhibiting in particular the anisotropic nature of solutions near the boundary. Interior regularity
results have been obtained in [Coz17, BWZ17, FKM20]| and, under analyticity assumptions on the right-
hand side, (interior) analyticity of the solution has been derived even for certain nonlinear problems
[KRS19, DFSS12, DF®S13]. The loss of regularity near the boundary can be accounted for by weights
in the context of isotropic Sobolev spaces [AB17]. While all the latter references focus on the Dirichlet
integral fractional Laplacian, which is also the topic of the present work, corresponding regularity results
for the Dirichlet spectral fractional Laplacian are also available, see, e.g., [CS16].

The purpose of the present work is a description of the regularity of the solution of (1.1) for piecewise
analytic input data that reflects both the interior analyticity and the anisotropic nature of the solution
near the boundary. This is achieved in Theorem 2.1 through the use of appropriately weighted Sobolev
spaces. Unlike local elliptic operators in polygons, for which vertex-weighted spaces allow for regularity
shifts (e.g., [BG88, MR10]), fractional operators in polygons require additionally edge-weights [Grul5|.

An observation that was influential in the analysis of elliptic fractional diffusion problems is their
localization through a local, divergence form, elliptic degenerate operator in higher dimension. First
pointed out in [CS07], it subsequently inspired many developments in the analysis of fractional problems.
While not falling into the standard elliptic setting (see, e.g., the discussion in [Grul5]), the localization
via a higher-dimensional local elliptic boundary value problem does allow one to leverage tools from
elliptic regularity theory. Indeed, the present work studies the regularity of the higher-dimensional local
degenerate elliptic problem and infers from that the regularity of (1.1) by taking appropriate traces.

Our analysis is based on Caccioppoli estimates and bootstrapping methods for the higher-dimensional
elliptic problem. Such arguments are well-known to require (under suitable assumptions on the data)
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a basic regularity shift for variational solutions from the energy space of the problem (in the present
case, a fractional order, nonweighted Sobolev space) into a slightly smaller subspace (with a fixed order
increase in regularity). This is subsequently used to iterate in a bootstrapping manner local regularity
estimates of Caccioppoli type on appropriately scaled balls in a Besicovitch covering of the domain. In
the classical setting of non-degenerate elliptic problems, the initial regularity shift (into a vertex-weighted
Sobolev space) is achieved by localization and a Mellin type analysis at vertices, as presented, e.g., in
[MR10] and the references there. The subsequent bootstrapping can then lead to analytic regularity as
established in a number of references for local non-degenerate elliptic boundary value problems (see, e.g.,
[BG88, GBI97a, GBI7b, CDN12] and the references there). The bootstrapping argument of the present
work structurally follows these approaches.

While delivering sharp ranges of indices for regularity shifts (as limited by poles in the Mellin
resolvent), the Mellin-based approach will naturally meet with difficulties in settings with multiple,
non-separated vertices (as arise, e.g., in general Lipschitz polygons). Here, an alternative approach to
extract some finite amount of regularity in nonweighted Besov-Triebel-Lizorkin spaces was proposed in
[Sav98]; it is based on difference-quotient techniques and compactness arguments. In the present work,
our initial regularity shift is obtained with the techniques of [Sav98]. In contrast to the Mellin approach,
the technique of [Sav98| leads to regularity shifts even in Lipschitz domains but does not, as a rule,
give better shifts for piecewise smooth geometries such as polygons. While this could be viewed as
mathematically non-satisfactory, we argue in the present note that it can be quite adequate as a base
shift estimate in establishing analytic regularity in vertex- and boundary-weighted Sobolev spaces, where
quantitative control of constants under scaling takes precedence over the optimal range of smoothness
indices.

1.1. Impact on numerical methods. The mathematical analysis of efficient numerical methods
for the numerical approximation of fractional diffusion has received considerable attention in recent years.
We only mention the surveys [DDGT20, BBNT18, BLN20, LPG™20] and the references there for broad
surveys on recent developments in the analysis and in the discretization of nonlocal, fractional models.
At this point, most basic issues in the numerical analysis of discretizations of linear, elliptic fractional
diffusion problems are rather well understood, and convergence rates of variational discretizations based
on finite element methods on regular simplicial meshes have been established, subject to appropriate
regularity hypotheses. Regularity in isotropic Sobolev/Besov spaces is available, [BN21], leading to cer-
tain algebraically convergent methods based on shape-regular simplicial meshes. As discussed above, the
expected solution behavior is anisotropic so that edge-refined meshes can lead to improved convergence
rates. Indeed, a sharp analysis of vertex and edge singularities via Mellin techniques is the purpose of
[GSQQI, StoQ()] and allows for unravelling the optimal mesh grading for algebraically convergent methods.
The analytic regularity result obtained in Theorem 2.1 captures both the anisotropic behavior of the
solution and its analyticity so that exponentially convergent numerical methods for integral fractional
Laplace equations in polygons can be developed in our follow-up work [FMMS21].

1.2. Structure of this text. After having introduced some basic notation in the forthcoming
subsection, in Section 2 we present the variational formulation of the nonlocal boundary value problem.
We also introduce the scales of boundary-weighted Sobolev spaces on which our regularity analysis is
based. In Section 2.2, we state our main regularity result, Theorem 2.1. The rest of this paper is devoted
to its proof, which is structured as follows.

Section 3 develops regularity estimates for the localized extension. In Section 4, we establish along
the lines of [Sav98], a local regularity shift for the tangential derivatives of the solution of the extension
problem, in a vicinity of (smooth parts of) the boundary. These estimates are combined in Section 5
with covering arguments and scaling to establish the weighted analytic regularity.

Section 6 provides a brief summary of our main results, and outlines generalizations and applications
of the present results.

1.3. Notation. Let @ C R? be a bounded Lipschitz domain with boundary 9. For ¢t € Ny, the
spaces H'(Q) are the classical Sobolev spaces of order ¢. For ¢t € (0, 1), fractional order Sobolev spaces

are given in terms of the Aronstein-Slobodeckij seminorm | - g+ (o) and the full norm || - || () by
v(@) —v(z)[? 2 2 2
a2 = dzde, ol = Ioley + ol
e zeJzeQ |z — z|d+2t e LA HHe
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where we denote the Euclidean norm in R? by | - |. Moreover, for ¢ € (0,1) we require the spaces
~ el 2 2 2
H'(Q) = {u € Ht(]Rd) :u=0on Rd\Q} , HUHE”(Q) = HU”Ht(Q) + Hv/rgQHLz(Q),

where r9q(z) = dist(z, 0§) denotes the Euclidean distance of a point z €  from the boundary 9. For
t € (0,1)\{3}, the norms H'”ﬁt(ﬂ) and [|-|| 7+ () are equivalent, see, e.g., [Grill]. Furthermore, for t > 0,
the space H~'(€2) denotes the dual space of H'(€), and we write (-, ) p2(o) for the duality pairing that
extends the L?(2)-inner product.

We denote by R, the positive real numbers. For subsets w C R?, we will use the notation w* =
w x Ry. For any multi index 5 = (B1,...,B4) € N, we denote 92 = 9P --- 954 and |] = S0, B;. We

assume that empty sums are null, i.e., Z?:a ¢; = 0 when b < a.

Throughout this article, we use the notation < to abbreviate < up to a generic constant C' > 0 that
does not depend on critical parameters in our analysis.

2. Setting. There are several different ways to define the fractional Laplacian (—A)® for s € (0, 1).
A classical definition on the full space R is in terms of the Fourier transformation F, i.e., (F(—=A)%u)(§) =
|€]%¢ (Fu)(€). Alternative, equivalent definitions of (—A)® are, e.g., via spectral, semi-group, or operator
theory, [Kwal7] or via singular integrals.

In the following, we consider the integral fractional Laplacian defined pointwise for sufficiently smooth
functions w as the principal value integral

I'(s+d/2)
/20 (—s)’

%ﬂjﬁdz with  C(d, s) == —2%
R | — 2|

(2.1) (=A)u(x) = C(d,s) P.V.
where I'(+) denotes the Gamma function. We investigate the fractional differential equation
(2.2a) (=A)Y’u=f inQ,

(2.2b) u=0  inQ°:=R\Q,

where s € (0,1) and f € H*() is a given right-hand side. Equation (2.2) is understood as in weak
form: Find u € H*(Q) such that

(2.3) a(u,v) = (=A)"u,0) o gay = (F0) 1200y V0 € H(Q).

The bilinear form a has the alternative representation

@9 = SGY [ [ OO e @)

|I _ Z|d+2s

Existence and uniqueness of u € H* () follow from the Lax—Milgram Lemma for any f € H*(Q),
upon the observation that the bilinear form a(-,-) : H*(Q) x H*(2) — R is continuous and coercive.

2.1. The Caffarelli-Silvestre extension. A very influential interpretation of the fractional Lapla-
cian is provided by the so-called Caffarelli-Silvestre extension, due to [CS07]. Tt showed that the nonlocal

operator (—A)® can be be understood as a Dirichlet-to-Neumann map of a degenerate, local elliptic PDE
on a half space in R9+!. Throughout the following text, we let

(2.5) a=1-2s.

2.1.1. Weighted spaces for the Caffarelli-Silvestre extension. To describe the Caffarelli-
Silvestre extension, we introduce, for measurable subsets w C R¢, the weighted L?-norm

01y ey= [ v [ 0GP drdy,
yeR L cw

x

and denote by L2(w™) the space of square-integrable functions with respect to the weight y®. We
introduce the Beppo-Levi space HL(R? x Ry) = {U € L} (R x R,) : VU € L2(R¢ x Ry)}. For

loc
elements of H!(R? xR, ), one can give meaning to their trace at y = 0, which is denoted tr U. Recalling

a =1 — 2s, one has in fact trU € H*(R?) (see, e.g., [KM19, Lem. 3.8]) with
(2.6) (Ul e may S NVUll 2 (e xr, ) -

The implied constant in the above inequality depends on s.
3
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2.1.2. The Caffarelli-Silvestre extension. Given u € fIS(Q), let U = U(z,y) denote the min-
imum norm extension of u to R? x R, ie., U = argmin{HVUHZLZ(RdeH |U € HY(R? x Ry), trU =
win H*(R?)}. The function U is indeed unique in H}(R? x R ) (see, e.g., [KM19]).

The Euler-Lagrange equations are

(2.7a) div(y*VU) =0 in R? x (0, 00),
(2.7b) U(-0)=u  inR%
Henceforth, when referring to solutions of (2.7), we will additionally understand that U € H!(R? x R,).

The fractional Laplacian can be recovered as the Neumann data of the extension problem in the sense
of distributions, [CS07, Section 3], [CS16]:

(2.8) —ds lim y*0,U(z,y) = (—A)%u, dy = 22710 (s)/T(1 — s).
y—07F

2.2. Main result: weighted analytic regularity for polygonal domains in R2. The following
theorem is the main result of this article. It states that, provided the data f is analytic in , we obtain
analytic regularity for the solution u of (2.2) in a scale of weighted Sobolev spaces. In order to specify
these weighted spaces, we need additional notation.

Let Q C R? be a bounded, polygonal Lipschitz domain. By V, we denote the set of vertices of the
polygon Q C R? and by £ the set of its (open) edges. For v € V and e € &, we define the distance
functions

rv(z) = |z — Vv, re(x) = éréi |z —yl, Pve(x) = re(x)/rv ().

For each vertex v € V, we denote by &, := {e € £ : v € €} the set of all edges that meet at v. For any
e € &, we define Vo :={v €V : v € €} as set of endpoints of e. For fixed, sufficiently small £ > 0 and
for v eV, e € £, we define vertex, edge-vertex and edge neighborhoods by

W={reQ :r(r) <& A puelz)>€ Vec&},
wWhe={reQ ry(x) <& A pel(z) <€},
wWwE={reQ r(x)>€& A relz) <& Vv eEVe)

Figure 1 illustrates this notation near a vertex v € V of the polygon. Throughout the paper, we will
assume that ¢ is small enough so that w§ NwS, = @ for all v # v/, that w§ NwS, = 0 for all e # € and

v

W, ﬁwf,, o =0 for all v # v' and all e # €. We will also drop the superscript & unless strictly necessary.

Fig. 1: Notation near a vertex v.

Note that we can decompose each Lipschitz polygon into sectoral neighborhoods of vertices v which
are unions of vertex and edge-vertex neighborhoods (as depicted in Figure 1), edge neighborhoods (that
are away from a vertex) and an interior part Qiu, i.e.,

Q= U (wVU U wve> U UweUth.

vey ecéy ecé

We stress that each sectoral and edge neighborhood may have a different value £. However, since only
finitely many different neighborhoods are needed to decompose the polygon, the interior part i,y C
has a positive distance from the boundary.
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In a given edge neighborhood we or an edge-vertex neighborhood wye, we let e and e, be two unit
vectors such that e is tangential to e and e is normal to e. We introduce the differential operators

DIHU =e| - Vv, Dy vi=e; Vv

corresponding to differentiation in the tangential and normal direction. Inductively, we can define higher

order tangential and normal derivatives by D} v = D, (D} 'v) and D} v:= D, (D 'v) for j > L.

Our main result provides local analytic regularity in edge- and vertex-weighted Sobolev spaces.

THEOREM 2.1. Let Q C R? be a bounded polygonal Lipschitz domain. Let the data f € C°()
satisfy

(2.9) Z 108 fll 22y < V}Hjj Vi €N
1Bl=4
with a constant vy > 0. Let v € V, e € £ and wy, wye, We be fized vertex, edge-vertex and edge-
neighborhoods.
Then, there is v > 0 depending only on vy, s, and Q such that for every € > 0 there exists C; > 0
(depending only on € and ) such that for allp € N

(2.10a) Hr; VEre gty U’ < CAPHp?,
I L2 (wve)
(lTLd, fO?” all P S NO; plL € N with Dy +p1 =p,
(2.10Db) ’ 7‘5*_1/2_3+5T€”+5D§iD§‘|‘|u‘ ) < Oty
Wye

Moreover, for all p € N and 8 € N3 with |3| = p and all p| € No, p1. € N with p| +pL =p,

(2.11) T€—1/275+585u’ o < CAPHipp,
> e epz Dl < ot
For p € N we have

o vl e

Finally, for the interior part Qin and all p € N and B € N with |5| = p, we have

(2.14) |07 ull 2 g,y < AP

)

Remark 2.2. (i) Using Stirling’s formula, we may employ the estimate p? < CpleP. Therefore,
there exists a constant C. such that

(2.15) Hrglﬂﬁr"fs“Dp u’

ol

o
Lz(wve)SCE(ve) pl.

In the same way, the factors vPp? in Theorem 2.1 can be replaced by (ye)Pp!.
ii) We note that (p; +p. )PITPL < pllpPrePitPL Together with p? < Cple? (using Stirling’s formula),
Il | PL

one can also formulate the estimates (2.10b) and (2.12) as follows: There are constants C. and
7 > 0 such that for all p| € No, p1 € N

(2.16) ‘ < AP Pip Ly,

_ _ p|+e P
Té” 1/2 s+ervu DPLDPIy,
T II L2(wye)

(2.17)

Tglfl/2fs+ngi Di‘\‘\UHLz(M < Cg?PLJrPle! pH!'

(iii) The data f is assumed to be analytic on §. Inspection of the proof (in particular Lemma 5.5 and
Lemma 5.7) shows that f could be admitted to be in vertex or edge-weighted classes of analytic
functions. For simplicity of exposition, we do not explore this further.

(iv) Inspection of the proofs also shows that, for fixed p, only finite regularity of the data f is required.
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3. Regularity results for the extension problem. In this section, we derive local (higher order)
regularity results for solutions to the Caffarelli-Silvestre extension problem. As the techniques employed
are valid in any space dimension, we formulate our results for general d € N.

Let data F € C°(R%*!) and f € C*°(Q) be given. We consider the problem: Find the minimizer
U =U(z,y) with z = (21,...,24) € R? and y € R of the problem

(3.1) minimize F on K,

where K = H} ((RY xRy ) ={U € H{(R* xRy) : trU =0 on Q°} and

B2 FO)= w0 - [

FU dxdy — / ftrUdz, bUYV)= / y*VU - VV dzx dy.
R4 xR Q RE xR

The minimization problem (3.1) has a unique solution with the a priori estimate

(3.3) IVUlzz ey < C |I1Flls oy + 1@

with constant C' dependent on s € (0,1).

Remark 3.1. The term [|[F'[|f2 (gaxg,) in (3.3) could be replaced with an appropriate dual norm for
Fe (HL (R x Ry)). .
The Euler-Lagrange equations corresponding to (3.1) are: Find U € Hé’O(Rd x R, ) such that

(3.4a) —div(y*VU) = F in R x (0, 00),
(3.4b) o U(0) = f in Q,
(3.4¢) trU =0 on Q°,

where 0, U(x,0) = —d, limy_,o y*0,U(z,y). In view of (2.8) together with the fractional PDE (—A)%u =
f, this is a Neumann-type Caffarelli-Silvestre extension problem with an additional source F'.

3.1. Global regularity: a shift theorem. The following lemma provides additional regularity
of the extension problem in the xz—direction. The argument uses the technique developed in [Sav98]
that has recently been used in [BN21] to show a closely related shift theorem for the Dirichlet fractional
Laplacian; the technique merely assumes € to be a Lipschitz domain in R?. On a technical level, the
difference between [BN21] and Lemma 3.2 below is that Lemma 3.2 studies (tangential) differentiability
properties of the extension U, whereas [BN21] focuses on the trace u = tr U.

For functions U, F, f, it is convenient to introduce the abbreviation
(3.5)

N2(U, F, f) = (IVUI3 goxey ) + IFllz s VU

ra gy + 1@ VU 2 e, ) -

In view of the a priori estimate (3.3), we have the simplified bound (with updated constant C)
(3.6) N*(U,F, f)<C (||f||12r11—s(9) + ”FH%Z’_Q(RdXRJr)) '

LEMMA 3.2. Let Q C R? be a bounded Lipschitz domain, and let By C R? be a ball with Q C Bg. For
t €10,1/2), there is Cy > 0 (depending only on t, 0, and R) such that for f € C*°(Q), F € C>(R41)
the solution U of (3.1) satisfies

| v 19U, Ay < CNAUL. £)
Ry
with N2(U, F, f) given by (3.5).

Proof. The idea is to apply the difference quotient argument from [Sav98| only in the a-direction.

For h € R? denote Ty U := nUy, + (1 — n)U, where Uy, (z,y) = U(z + h,y) and 7 is a cut-off function
that localizes to a suitable ball Ba,(z0), i.e, 0 < n <1, 7 =1 on B,(xo) and suppn C Ba,(xp). In
Steps 1-5 of this proof, we will abbreviate B,y for B,/ (z) for p’ > 0.

6
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The main result of [Sav98| is that estimates for the modulus w(U) defined with the quadratic func-
tional F as in (3.2) by

F(TwU) - F(U)

wU) = sup it = wy(U) +wp(U) +wp (U),
heD\{0} |hl
1 WT,U, TWU) — b(U, U
wp(U) = 3 (TwU, Th h) ( )’
heD\{0} |h|
F(IWU -U) w(TU — U
wp(U) = sup Lo h , w(U) = sup Jo S r(hh )7
heD\{0} Al he D\ {0} 7]

can be used to derive regularity results in Besov spaces.
Here, D C R? denotes a set of admissible directions h. These directions are chosen such that the
function T, U is an admissible test function, i.e., T,U € H(;O(Rd x R). For this, we have to require

supp tr(TpU) C Q. In [Sav98, (30)] a description of this set is given in terms of a set of admissible outward
pointing vectors O,(zg), which are directions h with |h| < p such that the translation Bs,(zo)\Q2 + th
for all t € [0,1] is completely contained in Q°.

Step 1. (Estimate of wy(U)). The definition of the bilinear form b(-,-), h € D, and the definition of
Ty give

W(THU, T,U) — b(U,U) = / Yy (IVTLU? — |VU|?) dx dy

Re xR

- / (VU = U) + TyVUP = [VUP) da dy
RdXR+
- / Y (VU — D) + 21,V U - (U — U)) de dy
Re xR
+/ Y (ITWVU* = |VU?) da dy
RexXR4

= T1 + TQ.

For the first integral Ty, we use the support properties of n and that ||U(-,y) — Uh('>y)||L2(B2p)
| ||VU('7?/)HL2(33P)7 which gives

~

2 2
T, < /R AR IVU ) sy + LIV )l o TRV G o s,0)
+
<H / Y [VU dedy.
B;p

For the term T3, we use |T,VU|*> < 7 |VU,|*> + (1 — ) |[VU|? since 0 < 5 < 1 and the variable transfor-
mation z = x + h together with Bs,(xo) + h C Bs, (o) to obtain

T, :/ Y (|TWVU? = |VU?) da dy g/ / Yo n(|VUL|* — |VU|?) dz dy
RdXR+ RJr sz

<[ [ va-n-a@)VUP dedy S hl [ VP dody.
R, JBs, B3,
Altogether we get from the previous estimates that

@) 5 [y IVUP dod.

B,

Step 2. (Estimate of wp(U)). Using the definition of T}, we can write U — TR,U = n(U — Up,), and
suppn C Ba,(zo) implies

/ F(U = T,U) dz dy
Re xR,

/ Fn(U — Uyp,) dz dy
R xRy

(3.7 < |hl HFHLZ_Q(B;;) ||VU||L§¥(B§‘,) )

< FN ez 83y U = Unllz sz

7
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which produces
wr(U) S ”FHL{(!(B;,))HVUHLa(B;rp)‘

Step 3. (Estimate of w¢(U)). For the trace term, we use a second cut-off function 7 with 77 =1 on
Bs,(x0) and supp(7) C Bs,(zo) and get with the trace inequality (see, e.g., [KM19, Lemma 3.3])

[ raw-n0yds = | [ pouw-vids| = | [ (n=(fn)-) u) ds
Q B2p BSp
<|fn- (fn)*h”H*S(ng) ||tr(77U)HHs(ng)
(3.5) S0y 9 2 -
where the estimate || fn — (fn)-nllgz—+8,,) S [Pl flz1-+(B,,) can be seen, for example, by interpolating

the estimates | — ()l i+(gey < 00l cage) and | — (Fm)—sll ooy < Bl flan ). We have
thus obtained

Wf(U) S ||f||H1*S(B4p)HVU”Lg(ij)'

Step 4. (Application of the abstract framework of [Sav98]). We introduce the seminorms [U]? :=
fRdx]R+ y*|VU|? dzdy. By the coercivity of b(-,-) on H} o(R? x Ry ) with respect to []? and the abstract

estimates in [Sav98, Sec. 2], we have

[Sav98]
[U-TwUP < w@)h] < [0 (ws(U) +wr(U) +ws (U))

steps 1-3
B (IO s+ 1F N2 ) 19U s gy + 1o I VU Nz )
= |h| C?J,F,f‘

Using that n =1 on B (x0), we get

(3.9) /+yo‘|VU—VUh|2d:cdy g/ Y|V (U — nUy)[? dzdy = [U — ToU)* < |h| CE 5 ;-
B} R

dxR4

Step 5: (Removing the restriction h € D). The set D contains a truncated cone C' = {x € R? :
|z - ep| > §lx|} N Br/(0) for some unit vector ep and 6 € (0,1), R’ > 0. Geometric considerations
then show that there is ¢p > 0 sufficiently large such that for arbitrary A € R? sufficiently small,
h+ cplhlep € D. For a function v defined on R?, we observe

v(x) —vp(z) =v(z) —v(x+ h) =v(x) —v(x + (h+cplhlep)) + v((x + h) + eplhlep) — v(z + h).
We may integrate over B,/ (zo) and change variables to get
2 2 2
o =vall2s,,) <2 [0 = Vhtepinlen HLQ(BP/) +2[v = vepjen HL2(Bp/+h) :
Selecting p’ = p/2 and for |h| < p/2, we obtain
2 2 2
lv = vnllzas, ) < 2|V = Vnteninten| 2,y + 210 = vepinien | L2s,) -

Applying this estimate with v = VU and using that h + cp|hlep € D and cplhlep € D, we get from
(3.9) that

) ~
VU — VUh||Lg(B;/2) S0l G py-

The fact that Q is a Lipschitz domain implies that the value of p and the constants appearing in the

definition of the truncated cone C' can be controlled uniformly in zg € €. Hence, covering the ball B,z

(with twice the radius as the ball Bg) by finitely many balls B, /5, we obtain with the constant N (U, F, f)
of (3.5)

(3.10) IVU = VU725, S b N*(U, F, f)

8
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for all h € R? with |h| < &' for some fixed §' > 0.
Step 6: (H'(Bjy)-estimate). For t < 1/2, we estimate with the Aronstein-Slobodecki seminorm

VU (z + h,y) — VU(z,y)|?
/ VU)o, dy < / / / _ TG dh dz dy.
Ry Ry JzeBg J|h|<R

The integral in h is split into the range |h| < e for some fixed € > 0, for which (3.10) can be brought to

bear, and € < |h| < E, for which a triangle inequality can be used. We obtain

| VUG ey dy S NAOES) [ VU i,y [
+ |h|<e e<|h|<R
SN2(U,F, f),
which is the sought estimate. 0

Remark 3.3. The regularity assumptions on F' and f can be weakened by interpolation techniques
as described in [Sav98, Sec. 4]. For example, by linearity, we may write U = Up + Uy, where Ur and Uy
solve (3.4) for data (F,0) and (0, f). The a priori estimate (3.3) gives [|[VUy|| 12 maxr,) < Cllfllz-+(a)
so that we have

/R VU (- y) s dy < Co (HVUf||2Lg(Rde+) + ”fHHl*S(Q)||VUf||L§(Rde+))
+
S sy + I L@ 1l @) S Il I fll -2 0)-

By, e.g., [Tar07, Lemma 25.3], the mapping f + Uy then satisfies
2 2
[ U rngy 5 Ol

where 321,/1278(9) = (H™%(2),H'*(2))1/2,1 is an interpolation space (K-method). We mention that
B21’/12_S(Q) C HY?757¢(Q) for every € > 0.

A similar estimate could be obtained for Up, where, however, the pertinent interpolation space is
less tractable. .

3.2. Interior regularity for the extension problem. In the following, we derive localized inte-
rior regularity estimates, also called Caccioppoli inequalities, for solutions to the extension problem (3.4),
where second order derivatives on some ball Br(z¢) C €2 can be controlled by first order derivatives on
some ball with a (slightly) larger radius.

The following Caccioppoli type inequality provides local control of higher order z-derivatives and is
structurally similar to [FMP21, Lem. 4.4].

LEMMA 3.4 (Interior Caccioppoli inequality). Let Br := Bgr(zo) C 2 C R? be an open ball of
radius R > 0 centered at xo € Q, and let B.r be the concentric scaled ball of radius cR with ¢ € (0,1).
Let ¢ € C§°(Bg) with 0 < ¢ <1 and ¢ =1 on Beg as well as |V By < Ce((1—c¢)R)™! for some
C¢ > 0 independent of ¢, R. Let U satisfy (3.4a), (3.4b) with given data f and F.

Then, there is Ciny > 0 independent of R and ¢ such that fori € {1,...,d}

(B11) 110 (VU225 < OB (1= R 2 IVUIS 1) + 1600 S0y + 1F I ()) -

In particular, ||C0z, fllr—+) < ClocllOz, fllz2(Bg) for some Cioc > 0 independent of R and f (cf.
Lemma A.1).

Proof. The function ¢ is defined on R?: through the constant extension we will also view it as a
function on R? x R,. With the unit vector e,, in the z;-coordinate and 7 € R\{0}, we define the
difference quotient

w(x + Tey,) — w(x)

DI w(z) =

Tq
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For |7| sufficiently small, we may use the test function V' = D_7(¢(>*D7 U) in the weak formulation of
(3.4) and compute

V= 5 (P~ ren)(u(e) — ule — ex,) + @) u(e)  ul + 7es,))) = DT (DL ).

Integration by parts in (3.4) over R? x R, and using that the Neumann trace (up to the constant d
from (2.8)) produces the fractional Laplacian gives

1
/ FVdxdy — T (—A)’utrVdx = / y*VU - VVdz dy
Re xRy s JR4 RIxR4

~ [ DLV DL drdy
Re xR

= / LYDLL(VU) (C*VDL U +2¢V(D] U) dz dy
B

R

= / YD (VU) - D (VU) dedy + / . 29°CVC- D} (VU)D} U da dy.
B B,

R

We recall that by, e.g., [Eva98, Sec. 6.3], we have uniformly in 7

(3.12) ||D;iv||L2(Rd><R+) N Haxziv||L2(Rd><R+)'

Using the equation (—A)*u = f on 2, Young’s inequality, and the Poincaré inequality together with the
trace estimate (2.6), we get the existence of constants C; > 0, j € {1,...,5}, such that
T 2 (0} T T
<Dz (VO[22 (5, < C ( ‘ / _YCVC- DL (VU)DLU dady| +
S B

)

1
1 HCD;(VU)H;(B;) +C2 ( ||V<Hi°°(BR) HD;UHQL(%(BU

/ F D,7¢*DI U dx dy
ReXR, ’ ’

+ ‘ / D7 f(¢*D] u) dx
R '

IN

FUF N2 195, (D30 s gy + [CDE S

)

1
5 [CDL (VO[22 e +C3(”V<|L°°<Bn VUL gy HIF e o)

)

2.6) 1
< 5 HCD VU HL2 (B+) + C4(||V<L°°(BR)||VUHL2 B*) + HFH B*)

IN

+ 1607 Sl -

16D i) IV P s )
3

n HCDT (VU) HL2 (B)

o

+ C5(HVC”%OQ(BR)||VU||igL(B;) + HFHQLZa(B*) + HCD fHH $(Q) )

Absorbing the first term of the right-hand side in the left-hand side and taking the limit 7 — 0, we
obtain the sought inequality for the second derivatives since ||V(||pw(p,) < ((1— c)R)~L. O

Remark that the constant Ci, of (3.11) depends on s, due to the usage of (2.6) in the proof above.
The Caccioppoli inequality in Lemma 3.4 can be iterated on concentric balls to provide control of
higher order derivatives by lower order derivatives locally, in the interior of the domain.

COROLLARY 3.5 (High order interior Caccioppoli inequality). Let Br := Bgr(zo) C Q C R be an
open ball of radius R > 0 centered at xy € 2, and let B.r be the concentric scaled ball of radius cR with
€ (0,1). Let U satisfy (3.4a), (3.4b) with given data f and F.

10
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427 Then, there is v > 0 (depending only on s, Q, and c) such that for all B € N& with || =p > 1, we
428  have
129

2 _
50 (313)  [07VU s g ) < (0)PRTP VU L2 (51

P
431 + > (yp)* PR <|mfl" 102 22z + mece [02F 22 (B;)) :
432 i=1 e e

433 Proof. We start by fixing p € N and a multi index /3 such that |3| = p. As the z-derivatives commute

434 with the differential operator in (3.4), we have that 9°U solves equation (3.4) with data O2F and 92 f.
435 For given ¢ > 0, let
1-c

436 ci=c+(i—1) , i=1,...,p+ 1
p

437  Then, we have ¢, 1R — ¢;R = % and c;R = cR as well as ¢,41 R = R. For ease of notation and

438 without loss of generality, we assume that 8, > 0. Applying Lemma 3.4 iteratively on the sets B:; g for
439 1 > 1 provides

2 2 2
" g 2 2 p —2” (B1-1,62) ’ 2 (198 £||? H (B1—1,82) ‘
10 02V UL (57, < G ((1—c)2R % VOl + Cloc 1021115, + 2 Fllze ot
2 €2
, CintP o —_2 2 2 £ Cintp =2 —op42j 2
" <({2h) IRV v mtg) BT maslliee, .0
=
p—1 Cintp 2p—25—2
. int —2p+2j+2 2
442 + R™“PT4 T2 max |0 F + .
443 jZO ((1 - C)> [n|=j | HLZ"(B%—J'HR)
444 Choosing v = max(CZ ., 1)Cint/(1 — ¢) concludes the proof. |

445 4. Local tangential regularity for the extension problem in 2d. Lemma 3.2 provides global
446 regularity for the solution U of (3.4). In this section, we derive a localized version of Lemma 3.2 for
447  tangential derivatives of U, where we solely consider the case d = 2.

448 Lemma 3.4 is formulated as an interior regularity estimate as the balls are assumed to satisfy
149 Br(zo) C §. Since u = 0 on Q° (i.e., u satisfies “homogeneous boundary conditions”), one obtains
450  estimates near 0f) for derivative in the direction of an edge.

451 LEMMA 4.1 (Boundary Caccioppoli inequality). Let e C 9Q be an edge of Q. Let Br := Br(xo) be
152 an open ball with radius R > 0 and center x¢ € e such that Br(xo) N is a half-ball, and let B.r be the
453 concentric scaled ball of radius cR with ¢ € (0,1). Let ¢ € C§°(Bgr) be a cut-off function with 0 < ( <1
154 and ¢ =1 on Beg as well as [|[V{|| L5y < Cc((1 = ¢)R)™! for some Cc > 0 independent of ¢, R. Let
455 U satisfy (3.4a), (3.4b), (3.4¢) with given data f and F.

456 Then, there exists a constant C > 0 (independent of R, ¢, and the data F, f) such that
57 (4.1 D, VU|? <c(((1-eR)2|VU|? D, f|I? F|?
JI;'\ ( . ) H z| HLi(BjR) - (( - C) ) || ||L3(B;) + HC waHH_s(Q) + || HL’{Q(B;) :

159 In particular, ||(Dy, fllz-+) < Ciocll Dz fllL2(Brna) for some Cioc > 0 independent of R (cf. Lemma A.1).
Proof. The proof is almost verbatim the same as that of Lemma 3.4. The key observation is that
V=D;" (¢2DZ U) with the difference quotient

z|

w(z + 7€) — w(x)

D7 w(z) = -
460 is an admissible test function. O
461 Iterating the boundary Caccioppoli equation provides an estimate for higher order tangential deriv-
462 atives.
463 COROLLARY 4.2 (High order boundary Caccioppoli inequality). Let e C 92 be an edge of 2. Let

464  Bpr = Bgr(xq) be an open ball with radius R > 0 and center xog € e such that Br(xzo) NQ is a half-ball,
11
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and let Ber be the concentric scaled ball of radius cR with ¢ € (0,1). Let U satisfy (3.4a), (3.4b), (3.4c)
with given data f and F'.
Let p € N. Then, there is v > 0 independent of p and R and the data f, F such that

(42) DL VUL, e ) < GR)PRZIVUIR, )

M=

+ > () F I R (1D, FI3a sy + 1D FI2e () -

j=1

Proof. The statement follows from Lemma 4.1 in the same way as Corollary 3.5 follows from
Lemma 3.4. ]

The term |[VU]||,. (Bf) I (4.2) is actually small for R — 0 in the presence of regularity of U, which
was asserted in Lemma 3.2; this is quantified in the following lemma.

LEMMA 4.3. Let Sgp = {z € Q : raa(z) < R} be the tubular neighborhood of 0Q of width R > 0.
Then, fort € [0,1/2), there exists Creg > 0 depending only on t and Q0 such that the solution U of (3.1)
satisfies

(4.3) R7#IVUL, sty < 0 VUL r) < CregCiN? (U, F, ).

with the constant Cy > 0 from Lemma 3.2 and N2(U, F, f) given by (5.5).

Proof. The first estimate in (4.3) is trivial. For the second bound, we start by noting that the shift
result Lemma 3.2 gives the global regularity

(4.4) | IVUC) gy dy < CNU ..
Ry

For t € [0,1/2) and any v € H'(Q), we have by, e.g., [Grill, Thm. 1.4.4.3] the embedding result
||7"5§tlv||Lz(Q) < Cregl|v|| (). Applying this embedding to VU(-,y), multiplying by y*, and integrating
in y yields (4.3). |

The following lemma provides a shift theorem for localizations of tangential derivatives of U.

LEMMA 4.4 (High order localized shift theorem). Let U be the solution of (5.4). Let xp € e
for an edge e, R € (0,1/2], and assume that Br(xo) N Q is a half-ball. Let n € C§°(Br(xo)) with
V70l L (Br(ze)) < CoR™, j € {0,1,2}, with a constant Cy, > 0 independent of R. Then, for t €

[0,1/2), there is C > 0 independent of R and xo such that, for each p € N, the function U® = anuU
satisfies

(4.5) / K

where vy is the constant in Corollary 4.2 and

"~ 2 2
46)  NO(ES) = 1l @) + 1Pl 2 @e ey )
p+1

2
. < —2p—1+42t 2p
)y < OR () (1 + )N, £),

+Z (vp)~ (2] maX ||8 fHL2(Q +2771 lﬁrlnax ||8BFHL2 R2xR+)>'
In addition,
(4.7) /R Y s VU ()13 dy < CRP 72 (4p) (1 4+ yp) NW(F, f).
+

Proof. We abbreviate UQEIH)) = DP U, UP)(z,y) = n(x) D}, Uz, y), Fz(H) DE F, and £ =

Throughout the proof we will use the fact that, for all j € N and all sufficiently smooth functlons v, We
have

|DJ

K|

v] < 29/ max |0%v].
|Bl=34
12
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529

530

Step 1. (Localization of the equation). Using that U solves the extension problem, we obtain that
the function U®) = nUQEZH) ) satisfies the equation

div(y®VU®) = y* div, (V,UP) + 8, (y*0,U™)
=y ((AamUD + 29,0 V,UD +0AUD ) + 10, (5°0,U))
=y (AU + 2V, VUL ) +ndiv(y VUD)
=y (AU + 2V, V,UD) + FE) = FO
as well as the boundary conditions
On U@ (-,0) = nD? f =: f@) on Q,
trU® =0 on §2°.

By Lemma 3.2, for all ¢ € [0,1/2), there is a Cy > 0 such that
(4.9 [ 1IN0 )l iy < CN TP, W, ),
Ry

where By is a ball containing Q. By (3.5), we have to estimate NZ((}(”), F®), ]7(1’)), ie., ||V(7(p) 22 (r2xR.)>
||ﬁ(p)||L3 (R2 xR, ): and Hf(p)”Hlfs(Q). Let v be the constant introduced in Corollary 4.2. We note that
by (3.6) there exists C'y > 0 such that, for all p € N,

(4.9) N*(U,F, f) < CxNPU(F, f).
Step 2. (Estimate of ||Vﬁ(p)||Lg(R2X]R+)). We write
||VU(p)H%g(R2x1R+) <2[[(Van) - Vngﬁ 1)HL2 R2xR,) T 2| VU 2| ||Lz(B;)

(4.10) < 2CRVUEDZ, o +2AVUD |2, e

We employ Corollary 4.2 with a ball Bag and ¢ = 1/2 as well as Lemma 4.3 to obtain
IVUDIZ, () < (2R)" 2P<vp>2p(||vv|m ot Z 2R) (3p) % (1103, £33y + 1D F IR )))

< <zR>—2p<w>2p(||VU|iQ o)

p
R Y (2R () (2 max 102 s, + 2 o 1212, ) )
j=1

R<1/2,1.4.3 ~
< R (p)¥ (CrsCiR* N (U, F, f) + CR*N®(F, )

(4.11)
t<1/2,(4.9) L o
< (2R) (1) (CregCiCn + 4)R*NW)(F, ).

For p = 1, the term ||VU£IH’ b ||L2 (B) reduces to ||VU||L2 ()

(4.9) gives the desired estimate. For p > 1, we employ Corollary 4.2 for the (p—1)-derivative as in (4.11)
and obtain

and, as above, Lemma 4.3 together with

|vUp—D

@ ||L2(B+) (2R) 2PV (3(p — 1))’ (CregCiCn + 4)R*NPV(F, f)

(4.12) < (2R) 2P~ D (9p) P (CregCiCn + A R*NW(F, f).
Inserting (4.11) and (4.12) into (4.10) provides the estimate
IVUPZg gexr,y < CR™F2(p) " NPU(F, f)

13
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543  with a constant C' > 0 depending only on the constants Cleg, Ct, Cy, and Cy.
544 Step 3. (Estimate of |[F®)| .2 (R2xR,))- We treat the three terms appearing in |F®)]| 2 (R?xR.)
545 separately. With (4.11), we obtain

2
546 - v, 0| = [V V. v’ szHvz U

’ ‘y " Il (R2xRy) m I Lz (R2xRy ) TR? I lLz (B}

(4.11) -
547 < (2R)"*(7p)*C}(CregCiCn + 4)R™*THNPN(F, f).
549  Similarly, we get
oA @] An® | (p-1)
550 «n)U, = H «n)U. HVU
9] ( 77) ZD” LEQ(]R2><]R+) ( n) a:” Li(B;) ’I’]R4 ZH L2 (B;)
(4.12) -
584 < (2R) " (p)*C} (CregCiCOn + 4) R NWI(F, ).
553 Finally, we estimate
554 InFP72 (e <IEPNZ. ey <27 max IOZF |22 ey < (vp)PP2NUE, ).
Eee o NL2  (R2xRy) = Wy lln2 (B) 1B|= +BH =
556 Step 4. (Estimate of ||J’E'(p)HH175(Q).> Here, we use Lemma A.1 and R < 1/2 together with s < 1 to
557 obtain
558 Hf(p)”Hl s = 2Cloc 202 (9R23 2||Dchf||L2‘ @ t |D;1;Hf|§11*s(§z))
559 <CCE.,C?R*? (ZP max |07 f||%2,q) + 2P max ||07 |2 )
< CCge 205 IB\:pH e fll22 (@) Anax, 195 fll720)

369 < CORe 2 CRR¥ 72 ()™ (1 + (vp)* ) NP, f)

562 with a constant C' > 0 depending only on 2 and s.
563 Step 5. (Putting everything together.) Combining the above estimates, we obtain that there exists
564 a constant C' > 0 depending only on Cleg, Cy, Cy, Cn, and Cioc 2 such that

565 N2(UW F@) )

566 = (||VU(p)||2L§(]R2><R+) + ||VU(p)HL3(R2xR+)\|F(p)||L3a(R2xR+) +[V Q(R2xR+)||f(p)||Hlfs(Q))
567 < C (R (p)* + R (yp)PR™P (yp)P (1 +p) + R (yp)PR*~ (3p)P (1 + yp)) NP)(F, f)
R<1,t<1/2

569 < CR™*72(yp)* (14 4p) NP)(E, f).
570 Inserting this estimate in (4.8) concludes the proof of (4.5).
571 Step 6: The estimate (4.7) follows from [Grill, Thm. 1.4.4.3], which gives
572 | 10D o) e dy < € [ 190D ) e

Ry Ry
573 and from (4.5). |
574 5. Weighted HP-estimates in polygons. In this section, we derive higher order weighted reg-
575 ularity results, at first for the extension problem and finally for the fractional PDE. This is our main
576  result, Theorem 2.1.

577 5.1. Coverings. A main ingredient in our analysis are suitable localizations of vertex neighborhoods
578wy and edge-vertex neighborhoods wye near a vertex v and of edge neighborhoods we near an edge e. This
579 is achieved by covering such neighborhoods by balls or half-balls with the following two properties:
580 a) their diameter is proportional to the distance to vertices or edges and b) scaled versions of these
581 balls/half-balls satisfy a locally finite overlap property.

582 We start by recalling a lemma that follows from Besicovitch’s Covering Theorem:

14

This manuscript is for review purposes only.



583
584
585
586
587
588
589

590
591
592
593
594
595
596
597
598

599

Fig. 3: Covering of wye. Left: the half-balls H; constructed in Lemma 5.3. Right: covering of H; by
balls B;; such that the larger balls B;; are contained in a ball H;. For better illustration, only the larger

balls Eij are shown, the balls B;; are included therein and still provide a covering of H;.

LEMMA 5.1 ([MW12, Lemma A.1], [HMW13, Lemma A.1]). Letw C R? be bounded open and M be
closed. Fiz c, ( € (0,1) such that 1 —c(1+() =t ¢ > 0. For each x € w, let By '= B qist(z,m)() be the
closed ball of radius cdist(x, M) centered at x, and let B, = §(1+<)cdist(;p,M)($) be the stretched closed
ball of radius (1 + ¢)cdist(x, M) centered at x. Then, there is a countable set (x;)icz C w (for some
suitable index set T C N) and a number N € N depending solely on d, ¢, ¢ with the following properties:

1. (covering property) \J; Bz, D w.
2. (finite overlap) for x € R? there holds card{i |z € B,,} < N.
Proof. The lemma is taken from [MW12, Lemma A.1] except that there M C @ is assumed and that

T € w in the condition of finite overlap is assumed. Inspection of the proof shows that both conditions
can be relaxed as given here. 0

In the next lemma, we introduce a covering of wy,, see Figure 2.

LEMMA 5.2 (covering of wy). Given & > 0 there are 0 < ¢ < ¢ < 1 and points (z;)ien C wy Such
that the collections B := {B; = B, gist(x,,v)(z:) | i € N} and B:= {EZ = Badist(z:,v)(%i) | i € N} of (open)
balls satisfy the following conditions: the balls from B cover wy; the balls from B satisfy a finite overlap
property with overlap constant N depending only on the spatial dimension d =2 and c, ¢; the balls from

B are contained in Q2. Furthermore, for every § > 0 there is Cs > 0 (depending additionally on §) such
that with the radii R; = cdist(x;,v) there holds

(5.1) > R} < Cs.

Proof. Apply Lemma 5.1 with M = {v} and sufficiently small parameters ¢, ¢ > 0. Note that by
possibly slightly increasing the parameter ¢, one can ensure that the open balls rather than the closed
balls given by Lemma 5.1 cover wy,. Also, since ¢ < 1, the index set Z of Lemma 5.1 cannot be finite so
that Z = N.

To see (5.1), we compute with the spatial dimension d = 2

finite overlap

Z RS = ZRf*de < Z /A o= dg < / = dr < co. O
i i i /B 2

We now introduce a covering of edge-vertex neighborhoods wye. We start by a covering of half-balls
resting on the edge e and with size proportional to the distance from the vertex, see Figure 3 (left).

15
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LEMMA 5.3 (covering of wye). Given v € V, e € E(v) there is £ > 0 and parameters 0 < ¢ <c¢ <1
as well as points (;);en C € such that the following holds:

(i) the sets H; = B gist(w,,v) (i) N are half-balls and the collection B = {H;|i € N} covers wye (with
wye defined by the parameter £).

(ii) The collection B = {Bl = Badist(z;,v) (i) N Q} is a collection of half-balls and satisfies a finite
overlap property, i.e., there is N > 0 depending only on the spatial dimension d = 2 and the
parameters c, ¢ such that for all x € R? there holds card{i|z € H;} < N.

Furthermore, for every 6 > 0 there is Cs > 0 such that for the radii R; = ¢dist(z;,v)(x;) there holds
> Rf < Cs.

Proof. Let € be the (infinite) line containing e. We apply Lemma 5.1 to the 1D line segment
e N Be¢(v) (for some sufficiently small ) and M := {v} and the parameter ¢ sufficiently small so that
B dist(a,v) () N Q is a half-ball for all 2 € e N B¢(v). Lemma 5.1 provides a collection (x;);en C € such
the balls B; := B qist(s;,v)(i) C R? and the stretched balls B; = Be(14¢) dist(z:,v) (i) C R? (for suitable,
sufficiently small {) satisfy the following: the intervals {B; N'e|i € N} cover B¢(v) Ne and the intervals
{B, Ne|i € N} satisfy a finite overlap condition on €. By possibly slightly increasing the parameter
¢ (e.g., by replacing ¢ with ¢(1 + (/2)), the newly defined balls B; then cover a set wye for a possibly
reduced £. It remains to see that the balls B satisfy a finite overlap condition on R?: given = € R?, its
projection xe onto € satisfies o € B; since x; € e C €. This implies that the overlap constants of the
balls B in R2 is the same as the overlap constant of the intervals B Ne in €. The half-balls H; :== B; N
and HZ = Bz N have the stated properties.

Finally, the convergence of the sum ), R? is shown by the same arguments as in Lemma 5.2. 0

We will also need a covering of the half-balls H; constructed in Lemma 5.3, which we introduce in the
next lemma. See also Figure 3 (right).

LEMMA 5.4. Let B = {H;|i € N} and B = {H, |i € N} be constructed in Lemma 5.3. Fiz a ¢ € (c,?)
with ¢, ¢ from Lemma 5.3 and deﬁne the collection B = {HZ = Bz, (2,)(w:) N Q|i € N} of half-balls

intermediate to the half-balls H; and HZ.
There are constants 0 < ¢ < ¢1 < 1 such that the following holds: for each i, there are points
(xlj)]eN C H; such that the collection B; == {Bjj = Be,r(z,,;)(Tij)} covers H; and the collection B; ==

{BU = Bairo(ay;)(Tij)} satisfies BU C H; for all j as well as a finite overlap property, i.e., there is
N > 0 independent of i such that for all x € R? there holds card{j |z € BU} <N.

Proof. We apply Lemma 5.1 with M = {e} and w = H;. The parameters ¢ and ¢ are chosen small
enough so that the balls B, in Lemma 5.1 satisfy B C H;. Then, the lemma follows from Lemma 5.1.0

5.2. Weighted HP-regularity for the extension problem. To illustrate the techniques, we
start with the simplest case of estimates in vertex neighborhoods wy,. It is worth stressing that we have
Te ~ Ty on wy.

The following lemma provides higher order regularity estimates in a vertex weighted norm for solutions
to the Caffarelli-Silvestre extension problem with smooth data.

LEMMA 5.5 (Weighted HP-regularity in wy). Let wy be given for some & > 0. Let U be the solution
of (3.1). There is v > 0 depending only on s, Q, and wy and for every e € (0,1), there exists C. > 0
depending on €, Q such that, for all 3 € N3 with || =p € N,

I 24208 VU2, sy < 05’72p+1p2p<||f||§{1(9) FIFIZ: g ny

—24 2 2
#2072 (|02 sy + 102 oo ) )

Jj=1

Proof. Let the covering wy, C |J; B; with B; = B qist(z,,v) (i) and stretched balls B = Bz dist(z; v (T4)
be given by Lemma 5.2. It will be convenient to denote R; = ¢dist(xz;, v) the radius of the ball B; and
note that, for some Cg > 0,

(5.2) VieN VoeeB; Cg'R;<r(z)<CpRi.
16
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We assume (for convenience) that R; < 1/2 for all i.

Let 3 be a multi index such that |3] = p. By (3.6) there is Cy > 0 such that N?(U,F, f) <
CNN(p)(F f) for all p € N, where N® is defined in (4.6). We employ Corollary 3.5 to the pair (B;,
B;) of concentric balls together with Lemma 4.3 for ¢t = 1/2 — £/2 and N2(U, F, f) < CyN®(F, f) to

obtain, for suitable v > 0,

||8BVU||L2 (B < 72p+1R e 2pN ( f)
Summation over i (with very generous bounds for the data f, F') and (5.2) provides

[ EH2OIV UL, gy < CF ”%ZR?P TEN0ZVUIL,

(w *) (B)

vQP“O?“pQP(ZRf) N@(F, f)

< C(yC) 1y 2p{||f|H1 o+ P12 o,

p+1

+Zp N (Taxll@ Al + o, 10F e <R2XR”) }

since ), R =: C. < oo by Lemma 5.2. Relabelling vCp as +y gives the result. 0
We continue with the more involved case of edge-vertex neighborhoods.

LEMMA 5.6 (Weighted HP-regularity in wye). Let & be sufficiently small. There exists v > 0
depending only on s, & and Q and for any € € (0,1), there exists C. > 0 depending additionally on &
such that the solution U of (3.4) satisfies, for all pj, p1 € No with p =pj +p1L > 1,

ppi=1/24e/2 pH+5DpleHvU’
“ L2 (w§e) )
p+1
—9; 2 2
< CoPrip?tt {Hf”?{l(g) + ||F||%3Q(RQXR+) +>p 2J(‘f7f71‘3_0§ 102 f 11220 + i 102F 22 (2xry) )}
j=1 B -

Proof. By Lemma 5.4, for sufﬁmently small ¢ there is a covering of wé, by half-balls (H;);eny with
corresponding stretched half-balls ( 1)161\1 and intermediate half-balls (HZ)ZGN such that each H; is cov-
ered by balls B; = {BU |j € N} with the stretched balls B” Satlsfymg a finite overlap condition and
being contamed in H;. We abbreviate the radii of the half-balls H and the balls Bw by R; and R;;
respectively. We note that the half-balls Hl and the balls B” satisfy for all 4, j:

(5.3) Vee H;:  Cg'R; <ry(z) <CpRi,
(54) Vo € B\ij : CglRij < Te(l') < CBRZ']‘

for some Cz > 0 depending only on w$,. For convenience, we assume that R; < 1/2 for all i and that
hence R;; < 1/2 for all 4, j.
Let p, p1L € No. Since the balls (Bj;); jen cover wé

ve’

we estimate using (5.3), (5.4)

+e
pPL=1/24e/2,P) DPLD;)“ ’

L3 (w$e) )
(5.5) < O N g g | pre D U

4,J

(BH)"

With the constant v > 0 from Corollary 3.5, we abbreviate

pL
R = 3 ) (02D o+ e [O2DEFI, s ).

ot [n|=n

. L 2

NEPO(E [) =" (wpr) ™" (13;335 102Dz f1I 2 7, + | max |02z} P <H+>)-
n=1
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Applying the interior Caccioppoli-type estimate (Corollary 3.5) for the pairs of concentric balls (B;;, B ;)

(which are fully contained in 2) and the function Dm"" U (noting that this function satisfies (3.4) Wlth
data Dg”f, Dg"" F) provides (we also use R; <1/2<1)

(5:6)  [|DEVDRU, ) < 27 max o2V i U2,

(Bf) = 18]= il 2(Bf)

_ 2
< o IO g + A E,)

(5.4) R -~ ~

< CFre(VaypL) - R (H 1/2+5/2VDP”UH e, T ETNGE, f)>~
Inserting this in (5.5), summing over all j, and using the finite overlap property as well as R;; < R;
yields

+e
ppL=1/24e/2, Pl DPLDZ” ‘

L2 (w¥e) )

2p1+2+42p+2 2p|+2 _ =
(5.7) < C’BPL || E(\@MDL)QM ZRipu e (||7“e 1/2+E/2VD£HUHL2 (H+ RZ'1+ENi(pL)(F7 f)) 7
i
with the implied constant reflecting the overlap constant. Using again R; < 1, we estimate the sum over

the Z\A]Z.(p +)(F, f) (generously) by

2p+2
>R RN, ) < 03 () (ﬁﬂax |02D2) ) + ||a"DZ"F||iQQ(QXR+)).

n=1

The term involving ||re UHEVDQH U||L2 () in (5.7) is treated with Lemma 4.3 for the case pj = 0 and
Lemma 4.4 for p > 0. Considering first the case p| = 0, we estimate using the finite overlap property

of the half-balls H; and roa < Te

finite overlap,p;=0

L. 4.3
2p+2 _ _
SR 22D U2 lrae T *VU |22 o) S N*(U,F.f).

L2 H+) ~
For p > 0, we use Lemma 4.4. To that end, we select, for each i € N, a cut-off function 7; € C§° (R?)
with suppn; N1 Q C H; and n; = 1 on H;. Applying Lemma 4.4 with ¢ = 1/2 — /2 there and using the
finite overlap property we get for ﬁi(p") = mDiH U and N®(F, f) from (4.6)

2p+2 _ 2p|+2 —1/24¢/2
DR S Y DU, ) < ZR i T bl
K3
2p+2e—2p —142(1/2—¢/2
< 30 RIS (3 21 (14 p ) NED(F, £) S ()P (14 4p) ) N@O(F, £);
here, we used that ), RS < co by Lemma 5.3.

Combining the above estimates we have shown the existence of Cy > 1 independent of p = p| + pL
such that

L2 (H)

H“’L Vze/2, 01 pre plil g ‘2
“l L2<<wse)+>

< O2p+1 [ ipL ﬁPHJrlN(pu (F, f) Jrzpmu —2n <max H@"Dg”f”m +| max H[)”DgHFHLZ R2><]R+)>‘| .

n=1

Using 1 <n <p,; and p; < p we estimate

p
S s [O2D2) ) < D) [02D2) iy < D 70 w011
n=1 n=1 J=14p) B

and analogously for the sum over the terms maxj,|—,_1 ||0} DggH F H . Also by similar arguments,

o (RZXR

we estimate pHp” N®D(F, f) < p*IN@)(F, f). Using pj+p. = pas Well as |D£‘|‘|v| < 27172 max 5, [020]

completes the proof of the edge-vertex case. O
18
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LEMMA 5.7 (Weighted HP-regularity in we). There is v depending only on s, ), and we such that
for every e € (0,1) there is C. > 0 depending additionally on & such that the solution U of (3.1) satisfies,
Jor all py, p1 € No withpy +pL=p=>1

2

R

FPL—1/24< ppL P VU‘
e T |

L2 (wd)

p
9j 2 2
< CEVQPPQP(HJCH%#(Q) + ||F||2L§Q(RZXR+) + ZP QJ(‘%@; 102 f 1720y + X 102 F N2 | (m2xr ) ))
=1

Proof. The proof is essentially identical to the case p = 0 in the proof of Lemma 5.5 using a covering
of we analogous to the covering of w,, given in Lemma 5.2 that is refined towards e rather than v, see
Figure 4. a

Fig. 4: Covering of edge-neighborhoods we.

Remark 5.8. The assumption that £ is sufficiently small in Lemma 5.6 can be dropped (as long as
wye is well defined, as per Section 2.2). Indeed, for all &1, & such that & > & > 0 there exists &3 > &
such that
(5.8) wsh C (Wi Uw§ Uws).

In addition, there exists a constant C¢, > 0 that depends only on {3 and € such that

Hré’k“”erﬁ“*epgiD”" VU||2L2 « < 9P |ré1|a:}; ||T£L—1/2+ET€\\+Ea§vUH2

(5.9) i w§)t) L2((«3*)T)
: p+1 —1/2+e9p 2
< 053 |%1|i)1(7 ||T'€ axVU||L§((w‘§,3)+)
and that
2
—1/2+e Pl te€ D 2 p+1 —1/2+ P
(:10) g BT DR DL VUL, oy, < OB e n Dl VUL

Given ¢ > 0, bounds in wSL can therefore be derived by choosing &, such that Lemma 5.6 holds in
w2, exploiting the decomposition (5.8), using Lemmas 5.5 and 5.6 in w$® and w§?, respectively, and

ve) e

concluding with (5.9) and (5.10). .

5.3. Proof of Theorem 2.1 — weighted HP? regularity for fractional PDE. In order to obtain
regularity estimates for the solution u of (—A)*u = f, we have to take the trace y — 0 in the weighted
H? estimates for the Caffarelli-Silvestre extension problem provided by the previous subsection.

Proof of Theorem 2.1. We only show the estimates (2.10a) and (2.10b) using Lemma 5.6. The
bounds (2.11) (using Lemma 5.5) and (2.12) (using Lemma 5.7) follow with identical arguments. The
bound in 24,4 follows directly from the interior Caccioppoli inequality, Corollary 3.5, and a trace estimate
as below.

Due to Lemma 5.6 and the analyticity of the data f and F', there exists a constant C' > 0 such that
for all 1, q € No and q1 + ¢ = q € N we have

2
(5.11) HrgJ_—l/Q-‘rET?IH+€DgiDg\|\lVU’ < O 20

L2 (wie)

19

This manuscript is for review purposes only.



The last step of the proof of [KM19, Lem. 3.7| gives the multiplicative trace estimate
2 1+«
(5.12) V(2,0 < Co [V, )5 10,V ()%

where for univariate v : Ry — R we write [[v[|7, g, ) = fyoio y*|v(y)|* dy. Suppose first p; > 1. Using

the trace estimate (5.12) with V' = DP+ Dﬁ“ U and additionally multiplying with the corresponding weight
(using that a = 1 — 2s) provides

P2 R | D DU, 0)]

1+«
S Ctr

l-« ’

—3/2 p|+e —1 P
e T DL DU )|

P2 D DY VU, )|

L2 (Ry) L2(Ry)’

where we have also used the fact that (D, v)? = (e, -V,v)? < |V,v|? for all sufficiently smooth functions
v. Integration over wye gives

_ — p||t+e 4
7‘£L 1/2 S+€TVH DPLD:E““ ‘

L2 (wye)

14+«
piL—1/2+¢, PITE np p U
< Ctr TeJ‘ / E’I"V” DEJ' Diﬂl\l\ v ‘

L2 (wie)

—3/2+ Pu+€ 1 Pl
‘ pL—3/2+€ DPJ. D’EHVU‘

L2 (wde)
(5.11)
< Ct (C2p 1p2p 1)(1 a)/2(02p+1 2p+1)(1+a)/2 Ctr02p+1+ap2p+a _ 72p+1p2p’
which is estimate (2.10b). If p; = 0, we have instead

— —s+te
Jre2veeer =

L2(wye)
< C Hr;1/2+57,€”—1+EVD£H_1U‘ 1-a r‘1/2+5 p”+5D§‘|‘|V ‘ 1+a .
L2 (wie) L2 (wie)
Again, inserting (5.11) into the right-hand side of the two inequalities provides (2.10a). d

6. Conclusions. We briefly recapitulate the principal findings of the present paper, outline gener-
alizations of the present results, and also indicate applications to the numerical analysis of finite element
approximations of (2.2). We established analytic regularity of the solution w in a scale of edge- and
vertex-weighted Sobolev spaces for the Dirichlet problem for the fractional Laplacian in a bounded poly-
gon ) C R? with straight sides, and for forcing f analytic in €.

While the analysis in Sections 4 and 5 was developed at present in two spatial dimensions, we
emphasize that all parts of the proof can be extended to higher spatial dimension d > 3, and polytopal
domains Q C R?. Details shall be presented elsewhere.

Likewise, the present approach is also capable of handling nonconstant, analytic coeflicients similar
to the setting considered (for the spectral fractional Laplacian) in [BMNT19]. Details on this extension
of the present results, with the presently employed techniques, will also be developed in forthcoming
work.

The weighted analytic regularity results obtained in the present paper can be used to establish
exponential convergence rates with the bound C exp(—bv/N) on the error for suitable hp-Finite Element
discretizations of (2.2), with N denoting the number of degrees of freedom of the discrete solution in .
This will be proved in the follow-up work [FMMS21]. Importantly, as already observed in [BMNT19],
achieving this exponential rate of convergence mandates anisotropic mesh refinements near the boundary

00.

Appendix A. Localization of Fractional Norms. The following elementary observation on
localization of fractional norms was used in several places.

LEMMA A.l. Let n € C3°(BgR) for some ball Br C Q of radius R and s € (0,1). Then,

(A1) nf | e+ s() < Crocllnll Lo BR)Hf||L2 (Br)>
(A.2) Infll-2@) < Croc2 [ (REIVAllLBr) + (R + Dl ) 1f 22
+ 10l oo (B [ f 1 1=2(00) ]+

where the constants Cloc, Cloc,2 depend only on 2 and s.
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Proof. (A.1) follows directly from the embedding L? C H~*. For (A.2), we use the definition of the
Slobodecki norm and the triangle inequality to write

2
iy = [, [ LSO

[ [ S [ O

The first term on the right-hand side can directly be estimated by ||1]| L (Bx)|f|z1-+(q). For the second
term, we split the integration over Q x ) into four subsets, Bagr x Bsg, Bag X B§p N Q, BSp NQ X Bp,
BS N x BN, here, we assume for simplicity for the concentric balls B C Baog C Bsg C £, otherwise
one has to intersect all balls with Q. For the last case, B5p N Q x Bf, N, we have that n(z) — n(z)
vanishes and the integral is zero. For the case Bar X BSp, we have |z — 2| > R there. This gives

(@) /() ~ ()1 (2) DFCIP
/BzR/gRﬁQ Ui xlzizrzZzz_zs dzdai—/BZR/ o |;z: |d+22 57 dzdx

—d—242s || |2 22 )17 :
< R42t? ||77HLoo<BR>/B /B mQ|f(Z)|2d2deR Sl ey 1112 ) -
2R 3

For the integration over BS, N x Br, we write using polar coordinates (centered at z)

f)P 1
/ / d+2 5 dzde = [ |n(2)f ()] s dwdz
<.NQ JBr \x Br BgpnQ |z — 2|

(o]
1 . 2 2
5/ In(Z)f(Z)I2/ 555 dvdz SR 72 |l e (5 111220 -
Br R T

Finally, for the integration over Bar X Bsg, we use that [n(z) — n(2)| < [|Vn|| (g, |2 — 2| and polar
coordinates (centered at z) to estimate

—n(2)f(2)? 1
/ / ) déf)%( W s < ||vn|\im(BR)/ |f(z)|2/ ———drdz
Bar Y B3r | Bsgr Bar \x — Z|

5R
2 — s 2 2 s
<1900 5 /B )P / 2z V2 g 12 B2
3R

The straightforward bound [|nf|z2) < [|7|lL(Bx) I fllz2(0) concludes the proof. d
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