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Abstract. We prove weighted analytic regularity of Leray-Hopf variational solutions for the stationary, incompressible Navier-
Stokes Equations (NSE) in plane polygonal domains, subject to analytic body forces.

We admit mixed boundary conditions which may change type at each vertex, under the assumption that homogeneous Dirich-
let (“no-slip”) boundary conditions are prescribed on at least one side at each vertex of the domain. The weighted analytic regular-
ity results are established in Hilbertian Kondrat’ev spaces with homogeneous corner weights. The proofs rely on a priori estimates
for the corresponding linearized boundary value problem in sectors in corner-weighted Sobolev spaces and on an induction argu-
ment for the weighted norm estimates on the quadratic nonlinear term in the NSE, in a polar frame.

1. Introduction. The regularity properties of viscous, incompressible flow governed by the incom-
pressible Navier-Stokes Equations (NSE) have attracted considerable attention since their introduction.
We mention only the intense research in recent years around the Onsager conjecture and on the bound-
edness of the velocity field of Leray solutions in three space dimensions.

Regularity results of weak, Leray-Hopf solutions in Sobolev and Besov scales in domains are at the
core of the numerical analysis of the NSE. The stationary NSE, being for large values of the viscosity
parameter, a perturbation of its linearization, the Stokes Equation, is an elliptic system in the sense of
Agmon-Douglis-Nirenberg and affords analytic regularity in interior points of domains, for analytic forc-
ing [20], see also [16]. This local analyticity of the velocity and the pressure extend to analytic parts of
the boundary.

However, it is also classical that in the vicinity of corner points (in space dimension d = 2) and
near edges and vertices (for polyhedra in space dimension d = 3), analyticity is lost, even if all other
data of the stationary NSE is analytic. See, e.g., [5, 8, 21, 19, 4] and the references there. The reason is
the appearance of corner singularities (in space dimension d = 2) and of corner- and edge-singularities (in
polyhedra in space dimension d = 3). While singular solutions of the Stokes equation are well known
to encode physically relevant effects (see, e.g., [18, 19]), they do obstruct large elliptic regularity shifts
in standard (Besov or Triebel-Lizorkin) scales of function spaces and, consequently, high convergence
rates of numerical discretizations. This has initiated the investigation of regularity of solutions in the
presence of non smooth boundaries. One, in a sense, minimally regular situation is the assumption of
mere Lipschitz regularity of the boundary. For the mixed boundary conditions of interest here, some
regularity of velocity and pressure of Leray solutions in Sobolev spaces have been obtained in [6]. In the
mentioned polygonal and polyhedral domains, it has been known for some time that the velocity fields of
stationary solutions for the incompressible NSE in plane, polygonal domains allow higher regularity in
so-called corner-weighted Sobolev spaces. Here, weight functions which vanish in the corners of the polygon
to a suitable power compensate for the loss of regularity in the vicinity of the corner. The corresponding
Mellin calculus goes back to [12]. See, e.g., [8, 21] and the references there. In [17], an authoritative
account of these results, also for NSE in polyhedra, has been given. The results in [17] provide regularity
shifts in weighted spaces of finite order. To prove weighted, analytic regularity for velocity field u and
the pressure field p in P of the stationary, incompressible NSE in polygons is the purpose of the present
paper.

Specifically, in a bounded polygon P C R? whose boundary 9P consists of a finite number n of
straight sides, we consider the analytic regularity of solutions of the viscous, incompressible Navier-
Stokes equations. Extending and revisiting our work [15] which addressed homogeneous Dirichlet (“no-
slip”) boundary conditions, we consider here the NSE in plane polygonal domains P with mixed boundary
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conditions, where now also slip and so-called “open” boundary parts are admitted. These conditions arise
in numerous configurations in engineering and the sciences. The specific geometric condition which lim-
its generality in the present paper is that we assume throughout the present paper that so-called mixed boundary
conditions are imposed on 0P. This is to say that at least one edge at each vertex of P will carry homoge-
neous Dirichlet boundary conditions. With this constraint (i.e., at least one “no-slip edge” abutting each
corner) the elliptic regularity can be developed still in homogeneous corner-weighted spaces, i.e., in the
the functional setting of [15]. Fully general BCs will require extension to weighted Kondrat’ev func-
tion spaces with non-homogeneous weights. Furthermore, our present proof of the weighted analytic
regularity requires a proof technique which differs from the approach used in [15]. As the correspond-
ing analysis for plane, linearized elasticity in [10], it is based on regularity results for the linearization
(the Stokes problem) in a sector built on the Agranovich-Vishik theory of complex-parametric operator
pencils which was already used in [9] and [10] to obtain a priori estimates and shift theorems in corner-
weighted spaces. The present paper provides a proof of weighted analytic regularity for the velocity
and the pressure field p of the stationary, incompressible Navier-Stokes equations in a polygon P, sub-
ject to mixed boundary conditions on the sides of P. It is distinct from the argument in our previous
work [15] even for pure Dirichlet boundary conditions. In [15], a bootstrapping argument based on lo-
cal, Caccioppoli estimates on balls and scaling was proposed. Furthermore, the proof proposed in [15]
was incomplete; the gap is closed by the argument in the present paper, which provides, in the case of
homogeneous Dirichlet (so-called “no-slip”) boundary conditions the weighted analytic regularity re-
sult in [15] which was used in [22] to prove exponential rates of convergence of a certain hp-DGFEM
discretization of the stationary NSE in polygons.

Analytic regularity results for solutions in corner-weighted Kondrat’ev-Sobolev spaces imply, as is
well-known, exponential convergence rate bounds for numerical approximations by so-called hp-Finite El-
ement Methods and also by model order reduction methods. We refer to [22] and to the references
there for recent results on exponential convergence for the Navier-Stokes equations, for discontinuous
Galerkin discretizations, and also to the discussion in [15, Section 2.2] for exponential rates for certain
model order reduction approaches to the NSE in P.

1.1. Contributions. We establish weighted, analytic regularity results for Leray-Hopf solutions of
the NSE in bounded, connected polygonal domains P C R? with finitely many, straight sides. We gener-
alize the analytic regularity results stated in [15] from the pure Dirichlet (also referred to as “no-slip”)
boundary conditions as studied in [15] to the case of mixed boundary conditions at any two sides of P
which meet at one common vertex of 9P. As in [15] we work under a small data hypothesis, ensuring
in particular the uniqueness of weak solutions. We also develop the regularity theory based on a priori
estimates of solutions for a linearization, the Stokes problem, in weighted, Hilbertian Sobolev spaces in
a sector. The result contains the analytic regularity result in [15] as a special case, and its proof proceeds
in a way that is fundamentally different from [15]. As mentioned, it is based on a regularity analysis in
corner-weighted spaces and a novel bootstrapping argument in the quadratic nonlinearity in weighted
Kondrat’ev spaces. Asin [9, 10], the weighted a priori estimates for the velocity field and the bounds on
the quadratic nonlinearity near corners ¢ are obtained for the projection of the velocity components in a
polar frame centered at ¢, rather than for their Cartesian components.

The main result of the present paper is stated in Theorem 4.8. Specifically, under the small data
hypothesis and the stated assumptions on the boundary conditions (see Assumption 1 for details), we
show that there exist A > 0 and v € (0,1) such that the Leray-Hopf solutions (u,p) to the NSE satisty,
for all j,k € {0,1,...}, and for any corner ¢ of P
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1.2. Layout. Asis well-known (e.g. [13] and the references there) the analysis of point singulari-
ties near corners of solutions of elliptic PDEs is based on polar coordinates centered at the corner. For
elliptic systems of PDEs such as those of interest here, as in [10, 9] in addition we require projections
of Cartesian components of the vector-valued solutions to a polar frame. In Section 1.3, we collect the
corresponding notation for partial derivatives and solution fields. Section 2 presents strong formulations
of the boundary value problems under consideration, detailing in particular also the boundary opera-
tors. Furthermore, the corner-weighted, Kondrat’ev spaces that appear in the statement of the analytic
regularity shifts are introduced. Section 3 then presents a key technical step for the subsequent analytic
regularity proof: a priori estimates in corner-weighted Sobolev norms in a sector for the linearized Stokes
boundary value problem are recapitulated, from [9]. Importantly, they hold for several combinations of
boundary conditions on the sides of the sector, and for the velocity field in a polar coordinate frame.
With this in hand, Section 4 addresses the proof of the principal analytic regularity result for the NSE,
Theorem 4.8, which is also the main result of the present paper. The key novel step in its proof is an
inductive bootstrap argument for the quadratic nonlinear term in the NSE, in corner-weighted spaces
and for the velocity field in a polar frame at each corner of P. This is developed in Section 4.1.

1.3. Notation. We define N = {1,2,...} as the set of positive natural numbers and Ng = NU {0}.
We refer to tuples a = (aq, ) € N2 as multi-indices and we write |a| = a1 + as. For k € Ny, we write

2= >

la|<k  aeNZ:|a|<k

Given Cartesian coordinates (z1,z2) and polar coordinates (r,1), whose origin will be clear from the
context, we denote derivatives as 0% = 051052 and D* = 071 0y*.
For any vector field 4 with components in Cartesian coordinates

(1.1) = (Z;) = Au .

where

cos?d  sindd
(12) A= (—sinﬁ cosz?)

denotes the transformation matrix. Here and throughout, vector-valued quantities such as u shall be
understood as column vectors, with u " denoting the transpose vector, which accordingly denotes a row
vectors. The symbol Lg¢ shall denote the Stokes operator, with various super- and subscripts indicating
Cartesian or polar coordinates and frame, i.e. we write Lg;, for its projection onto polar coordinates acting
on the corresponding velocity components.

All quantities which occur in this paper are real-valued. The overline symbol which will indicate
polar-coordinate representation of vectors is therefore non-ambiguous.
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We denote with an underline n-dimensional tuples § = (f1,...,8,) € R™ and suppose arithmetic
operations and inequalities such asy < § are understood component-wise: e.g., 5+k = (B1+k, ..., B+
k) for all k € N; furthermore, we indicate, e.g., 3 > 0if 3; > O foralli € {1,...,n}.

Finally, for a € R, we denote its nonnegative real part as [a]; = max(0, a).

For summability index 1 < r < oo, the usual Lebesgue spaces in P shall be denoted by L"(P), with
norm defined also for vector fields v : P — R? as [|v[|7.p) = [p [[v][j-. We denote the usual Sobolev

spaces of differentiation order s > 0 by W*"(P); we write H*(P) in the Hilbertian case r = 2.

2. The Navier-Stokes equations and functional setting. After the introduction of the polygonal
domain in Section 2.1, in Section 2.2 we state the strong form of the boundary value problems, and of the
boundary operators, in Cartesian coordinates. Section 2.3 is devoted to the saddle point variational form
of the boundary value problems of interest. It also reviews statements on existence and uniqueness of
weak solutions, under the small data hypothesis. In Section 2.5 we introduce the corner-weighted spaces
on which the weighted analytic regularity results will be based.

2.1. Geometry of the domain. Let P be a polygon with straight sides and n > 3 corners € =
{c1,...,¢cn}. Let T'p, Ty, and T'¢ be a disjoint partition of the boundary I' = 9P of P comprising each
ofnp > 1, ny > 0 and ng > 0 many sides of P, respectively, with n = np + ny + ng. We denote
by n : I' — R? the exterior unit normal vector to P, defined almost everywhere on I', which belongs to
[L>°(T))?, and by ¢ : T' — R? correspondingly the unit tangent vector to I', pointing in counterclockwise
tangential direction.

2.2. The Navier-Stokes boundary value problems. We assume that a kinematic viscosity v > 0 is
given. For a velocity field u : P — R? and a scalar p : P — R, define

1
e(u) = B (Vu + VuT) , o(u,p) = 2ve(u) — plds,

where Ids is the 2 x 2 identity matrix.
With this notation, we consider in P, the stationary, incompressible Navier-Stokes equations

—V-o(u,p)+ (u-Viu=f inP,

V-u=0 inP,

(2.1) u=0 onlp,
olu,p)n =0 onTy ,

(oc(u,p)n) - t=0andu-n=0 onTlg.

Remark 2.1.From the identity
(2.2) 2V -e(u) = Au+ V(V - u),
the boundary value problem (2.1) is equivalent to
—vAu+ (u-Vu+Vp=f inP,
V-u=0 inP,
(2.3) u=0 onIp,
olu,p)n =0 onTy,
(o(u,p)n) - t=0andu-n=0 onTlg.
2.3. Variational Formulation. Weak solution of the NSE (2.1) in the sense of Leray-Hopf satisfy the

NSE (2.1) in variational form. To state it, we introduce standard Sobolev spaces in P. Throughout the
remainder of this article, we shall work under
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Assumption 1. The boundary value problems (2.1), (2.3) satisfy the following conditions.
1. Pis abounded, connected polygon with a finite number of straight sides, and Lipschitz bound-
ary I' =0P.
2. For each corner ¢ € €, at least one of the two sides of P meeting in ¢ is a Dirichlet side with
no-slip BCs.
3. All interior opening angles at corners of P are in (0, 27). In particular, slit domains which corre-
spond to opening angle 27 are excluded.

Assumption 1 implies that the Dirichlet case considered in [15] is a special case of the present setting.
Furthermore, since Item 2 implies that np > 1, it also ensures that the linearization of the Navier-Stokes
equations, i.e., the Stokes problem, admits unique variational velocity field solutions u, possibly with
pressure p unique up to constants if I' = I'p.

We denote henceforth the space of velocity fields of variational solutions to the Navier-Stokes equa-
tions (2.1) as

(2.4) W={ve[H(P))?:v=00nTp,v-n=00nT¢}.

We denote by W* C [H~1(P))? its dual, with identification of L?(P)? ~ [L?(P)?]*. We also define
Q = L*(P)if |Tp| < |T| (i.e., if not the entire boundary is a Dirichlet boundary) and set Q = L3(P) :=
L?(P)/Rin the case that T = T'p.

We are interested in variational solutions (u, p) of (2.1). To state the corresponding variational for-
mulation, we introduce the usual bi- and trilinear forms:

Awo) = 2w [ Y E@ll@)yds.

ij=1
(2.5) B(u,p) := —/ pV - udz
P
O(w;u,v) = / (w-V)u) - vde .
P
With these forms, we state the variational formulation of (2.1): find (u,p) € W x @ such that
Alu,) + Owsw, ) + B(w.p) = [ fvie.
(2.6) »
B(u,q) = 0,

forallv € W and all ¢ € Q.

2.4. Existence and uniqueness of solutions to the NS equations. We introduce the coercivity con-
stant of the viscous (diffusion) term

2

Ccocr = inf 2 Z [6(v)]ij [6(v)]ij

veW P

[0l 1 (py=1 i,j=1

and the continuity constant for the trilinear transport term
Coomt = sup [ (@ vw)-w.

u,v,we
”u”Hl(P):”””Hl(P):”w”Hl(P):l

We denote a ball of bounded functions in W

CCOCYV
M = W < .
{vew:lolme < g2}
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The following existence and uniqueness result is classical, see e.g. [21, Theorem 3.2].

2 2
Theorem 2.2. Suppose that Assumption 1 holds and assume that || f|jw+ < igﬁ. There exists a solution

(u,p) € W x L?(P) to (2.1) with right hand side f. The velocity field u is unique in M.

Remark 2.3.From Assumption 1, Item 1, and from known regularity results for the Navier-Stokes
equations in Lipschitz domains (e.g. [6]) it follows that the velocity field u has Cartesian components
which are continuous in P and thus in particular in a vicinity of each corner ¢ € € of P.

From Assumption 1, Item 2, it follows that for all corners ¢ € 9P, the weak solution u satisfies
u(c) = 0.

As we assumed above np > 1, there is always at least one side of P where homogeneous Dirichlet
(“no-slip”) BCs are imposed.

2.5. Functional setting. Forx € Pandfori € {1,...,n},let r;(z) = dist(x, ¢;). We define the corner
weight function

We next introduce the corner-weighted function spaces to be used for the regularity analysis. As the
notation used in the literature dealing with weighted Sobolev spaces is not always uniform, we introduce
slightly different definitions of the spaces and discuss how they relate for the range of weight exponents
that is relevant to the present work.

2.5.1. Corner-weighted function spaces in P. In the polygon P, for j,k € Np and v € R", we
introduce homogeneous corner-weighted seminorms and associated norms given by

k
(2.7) |U|;CJ 1(P) = Z H(I)Ia\fjaaU”ZL?(P)v ||U||2IC§(P) = 23'“'?{&(13)
j=

lee| =4

Furthermore, we also require non-homogeneous, corner-weighted Sobolev norms. They are, for £ € Ny,
k € Nwith k >/, and 8 € R" given by

(2.8) ||U||HH = ol my + Y, (1®asia1—e00]|72(p),

<|a|<k
with the convection that the first term gets dropped when ¢ = 0. We therefore define the homoge-
neous, corner-weighted Sobolev spaces IC,”; (P) and the non-homogeneous, corner-weighted Sobolev spa-
ces HS’Z(P) as the spaces of, respectively, weakly differentiable functions with bounded IC’V“(P) and

Hg’é(P) norms. Finally, we introduce weighted analytic classes

(29) B§(P) = {ve ﬂﬂff :3C, A > 0s. t.
k>0
@5+ 10| -0 2Py < CAII (|| — 0)!, V]a| > é},
and
(2.10) K (P) = {v €N K5(P):3C, A > 0. t.[|®)4) 40| 12(p) < CA™R!, Wk € NO} .
keNy
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The aforementioned weighted analytic classes are defined in terms of two constants C' > 0 and A > 0.
Evidently, the constant C' > 0 quantifies the size of a function in terms of linear scaling of norms, whereas
the constant A > 0 relates to the size of the domain of analyticity.

2.5.2. Corner-weighted spaces in sectors. We shall require function spaces in plane sectors Qs (¢)
of opening w € (0,27), radius 6 € (0, o] and with vertex ¢ € R?, defined as

Qs,w(c) = {z € R* : r(z,¢) € (0,0), ¥(z) € (0,w)} .

We do not indicate the dependence on the vertex ¢ when this is clear from the context.
For all k € Ny and 8 € R, we introduce the (homogeneous) corner-weighted, Hilbertian Kondratev
space Wé’“ (Qs.w) of functions v in Qs «(c) with bounded norm given by

(2.11) ||v||‘;‘Vg(Qw = 3 a2, o
la|<k

Here, D* = 020, denotes the partial derivative of order o € Ny in polar coordinates. We write Lg =
Wg. For k,/ € Ny with & > ¢ and for 8 € R, HE’Z(Q(M) denote the space of functions with finite norm

003y = W1 @sy + D2 1P 7 D0l g
jal>¢

where the first term is dropped if £ = 0. For ¢ € Ny and § € R, the corner-weighted analytic class with
weak derivatives in polar coordinates is given by
(2.12)

B5(Qsw) = v € [ HE Qo) 1 3C, A > 05t [r* F07ED% | 2, ) < CAII(Ja] — 0)1, Vo] > 5} .
k=¢

In the sector Qs (¢), the definition of the spaces HE’E(Q(M(C)) and Bé(stﬁw(c)) follows from (2.9) by
replacing @ (o ¢ in (2.8) and (2.9) with (-, ¢)#H1*I=¢_ Similarly, the corner-weighted spaces K% (Qs.., (c))l
and K5 (Qs,..(c)) can be defined by replacing @4~ in (2.7) and (2.10) with r(-, ¢)lel=,

2.5.3. Relation between corner-weighted spaces. In this section we collect results on imbeddings
between some of the corner-weighted spaces we introduced. They are of independent interest, and will
be required at various stages in the ensuing proofs of the analytic regularity shifts.

We postpone all proofs, for ease of reading, to Appendix A. The following implication between polar
frame velocity components @ in (1.1) and Cartesian components w holds.

Lemma 2.4. Forall 0 < § < 1,w € (0,27),¢c € R? ¢ € {0,1,2},and 8 € (0,1),ifuw € Bg(Q57w(c)) and
%(c) = 0 when £ = 2, then there holds u € B(Qs..)-

The reverse implication, in the case £ = 0, is treated in the following statement.

Lemma 2.5. Forall0 < § < 1, w € (0,27), ¢ € R? and 8 € (0,1),if v € [Bg(QJ,w(C))]Q then v €
Bg(Qé,w(c))-
The following two lemmas about equivalence and imbedding between weighted spaces will be used

later. For the proof of the first lemma see [2, Theorem 1.1, Theorem 2.1, Lemma A.2], and for the proof
of the second lemma see [2, Lemma 1.1, Lemma A.1, Lemma A.2] and [3, Section 2].

Lemma 2.6. Let 0 < § < 1, w € (0,27), B8 € (0,1), ¢ € R2. Then the following equivalence relations hold
forany £ € {0,1,2} and Ny 3 k > ¢:
L ve Hy (Qsw(c) <= v € My (Qsu(c)).
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2. v € B§(Qs.,(c)) <= v € B(Qs.(c))-
3. ve Hé’l(Q57w(c)) =€ Wé(thyw(c)).
Lemma 2.7. Let 0 < 6 < 1, w € (0,27), B € (0,1), ¢ € R2. Then the following imbedding relations hold:
L Wg(Qé,w(c)) C H§72(Q6,w(c)) C C%(Qs.0(c))-
2. Ifv € Hy*(Qs.(c)) and v(c) =0, then v € W2(Qs..(c)).-
The following lemma asserts that functions that belong to corner-weighted Kondrat’ev spaces with
non-homogeneous weights for a certain range of indices, with the additional requirement of the function

vanishing at the vertex for second order spaces, also belong to the corresponding spaces with homoge-
neous weights. We refer to [13, Section 7.1] for an in-depth presentation.

Lemma28.Let 0 < 6 < 1,w € (0,2m), B € (0,1), ¢ € R%, k € {1,2}, and v € Hy"(Qs.(c)). Let
furthermore v(¢) = 0 when k = 2. Then, v € IC’,:_B(Q[;)W(C)).

3. The Stokes equation in a sector. Cousider, for ¢ € 9P, § € (0,1) and w € (0,27), the sector
Qs..(c). Denote by I'y := {z € R? : r(z,¢) € (0,0), (x) = 0} and I'y := {x € R? : r(z,¢) € (0,9), I(z) =
w} the two edges meeting at ¢. Let also I's = T'; UT2. As all the results in this section are independent of
¢, we omit the dependence of the sector in the notation and write Q5. = Qs,.(¢).

We consider variational solutions to the Stokes problem in Qs .,

L (u,p) = (f;) inQsw, B(V,u,p)=0 onT;.

This reads in components
-V U(u,p) = f in Q5,w
V-u=h inQsu
(3.1 u=0 onl?%
o(u,p)n=g onT%
(o(u,p)n) -t =0and u-n=0 onTlg,
where I'%), '3, T2, € {@,T'1,T2} are pairwise disjoint and such that T', UT}, UT2 = T's. We observe
that in (3.1) we did not include inhomogeneous boundary data on Fg, as this is the physical case of
the “no-slip” BCs. We also observe that the nonzero boundary data g on l"% will appear in the analytic
regularity shift argument in the proof of Lemma 4.7.
For the Stokes problem in Qs.,,, the following regularity result is a slight extension of [9, Theorem
5.2]. The proofis along the lines of that of the cited theorem, by localizing u and p near each corner ¢ and

solving a Stokes problem in a corresponding infinite sector; for a detailed development, see [11, Lemma
5.1.1].

Theorem 3.1. Let w € (0,27) and 8y € (0,1). There exists a constant 8 € (8, 1) such that, for all 6 > 0,
there exists a constant Csec > 0 such that for all f € Lg,(Qs.) and (u, p) satisfying (3.1) in Q5 ., and with right
hand side (f,0),

3.2)  Elwz(qs)n.) T IPIwi Qs

< Cuee ([Tl La(@s0) + 10l 2@5.\@ 2.0 + IPIL2(@5\@u ) + ||§||W51/2(Flsv))
Remark 3.2. By relation (2.2), if (u, p) € [W3(Qs5.)]* x W;(Qs.) is a solution of

0
+vVh .
LsAc(Uap)Z(f hy ) in Qs , Bu,p)=1| g on TP x 'Y, x T'g,
0
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or, in components,

—vAu+Vp=Ff+vVh in Qs
V-u=h inQs
(3.3) u=0 onT?%
o(u,p)n =g onT%

(o(u,p)n)-t=0and u-n=0 onTlg,

then it is also a solution of (3.1). Estimate (3.2) therefore also holds for solutions of (3.3) when A = 0.

4. Analytic regularity of solutions to the NS equations. We now prove our main result, i.e., the
weighted analyticity of solutions to the Navier-Stokes equations (2.1) . First, we will devote our attention
to the nonlinear transport term, as treating this term is, obviously, the main difficulty with respect to the
analysis of the Stokes problem.

4.1. Estimate of the nonlinear term. We start by rewriting the quadratic nonlinearity (u - V)u in
polar coordinates and projecting its Cartesian components into the polar frame asin (1.1). We note here
that the gradient operator in Cartesian coordinates is projected to a polar-frame by (cf. (1.1))

(4.1) V=4 (T_af“aﬂ) :

Lemma 4.1. The following equality holds:

—=— [ wOru, + %(Uﬂaﬂur — U%)
(4.2) (- V)u = (uraruﬁ + %(uﬁaﬂuﬁ +upug) )

Proof. We have

_ 4l (o8 Y, Opu, — sin du,Optty
o sin Yu, 0,1, + cos Y, Optiy

1 (cos Yugdyu, — sin Yugu, — sin Vuydyuy — cos Ju3
r \ sinYuyOyu, + cos Juyt, + cos Yuydyuy — sin 19u129

| uOpuy + %(uﬂ&gur —u?) 0
T\ Orug + 2(ugByuy + urug) )

In order to treat the individual nonlinear terms arising from the polar representation of the transport
term of the Navier-Stokes equation obtained above, we need a technical result on weighted interpolation
estimates in plane sectors. This is the following statement, the polar version of [15, Lemma 1.10].

Lemma 4.2. Let §,w € R such that 0 < 6 <1 and w € (0, 27). For all B2, B1 € R such that 3 > B1 + 1/2,
there exists a constant Ci,; > 0 such that, for all & € Ng and all functions ¢ such that

max ||TBl +o1+m Da+n

< 00,
<1 Pllez(@s) < o0
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the following bound holds:

[P+ Dl Ly < CianllrP D] M2, |

1/2 al/? 1/2
X Z ||7”61+0‘1+’71D°‘+77<P||L/2 (@50) T A ||L/2(Qa,w)
Inl<1

Proof. We set 6 = 1. Consider the dyadic partition given by the sets

SJ = {:1: €EQ1w: 277 <r(x) < 27j} , j € Ny,

and denote the linear maps ¥; : S7 — S%. Denote p; == po \If;1 : §% — R and write D* for derivation
with respect to polar coordinates (r,19) in S°. Then, by scaling, for any ¢ € [1, o),

(4.3) ||rﬁz+alpa(p||m(sj) — 2‘j<52+2/q>||rf§2+a1ﬁ°‘$||m(so)_
Furthermore, the following interpolation inequality holds in S: there exists Cy > 0 such that

1/2
(4.4) ||U||L4(S°) < COHU”H/l(SO)HU”Lz (S9)

holds for all v € H'(S°). Since in addition by (4.1) holds V = BV, there also holds, for all v € H'(S°),

(4.5) [0l (g0 < 16 (||U||%2(50) + 110,0[1 7250y + ||519U||%2(50)> :
Combining (4.4) and (4.5) and choosing v = r** D% gives

I DY Lagso)
1/4
« (03 1 2 « (03
< 2C0[Ir DY g0y | D 1D D%0)F2(s0y
[n|<1

1/4

e o4 1/2 (e} [e% a1 — «
< 20| D fargoy | S IIF D432 50y + 03 1 1 D132 50
[n|<1

Therefore, using the bound 2[4+ < r(z)* < 214+ valid for all z € S° and all a € R,

||Tﬁ2+alpa<ﬂ||L4(SU) < 2[52]++[ﬁ1]++1/220 ||Tﬁ1+a1Dagp||2/2250

1/4
x| 20 et D gl gy + afllr P Dl
[n<1
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We denote Cy = 2082+ +(B11++1/290  Using this last inequality and (4.3) twice,
[rP2 D0 La(ss)
< 2—j(ﬂ2+1/2)||T62+a1ﬁa¢\||L4 (5)
< 971Gt/ 0y | pPrten pog, ”;/2250
1/4
x [ 30 IrPrrertm D2, o) + adllrP D5 Fa sy
Inl<1
< 279 (B2—B1—1/2) ||7‘ﬂ1+0‘1’D0‘g0||2/22SJ
1/4
% Z ||7.B1+a1+771pa+77s0||%2(5j) 4 O‘%HTBP‘FQPDQQDH%%SJ')
[n]<1

Since Bg — Bl —1/2 > 0, we can conclude that

oD Lageny < CH L Y P Dl 2 6y
J€ENg J€ENo

% Z Z ”Tﬂl+a1+mDa+n@”2L2(Sj) —|—0¢% Z ||T61+Q1Da80”2L2(5j)
Inl<1j€No j€No

Taking the fourth root of both sides of the inequality above concludes the proof for the case 6 = 1. The
general case § € (0, 1] follows by scaling (with constant Ci,; depending on §). O

Using the interpolation result obtained above, we can estimate, under a regularity assumption on u, the
individual terms appearing in (4.2). This is done in the following Lemma 4.3 and Corollary 4.4.

Lemma 4.3. Let # € (0,1),0 < 6 < 1,w € (0,2n). There exists Cq > 0 such that for all u € W§(Qs.w)
such that ||u||W§(Qa,w) < 1 and such that there exists A,, E,, > 1 and k € N such that

(46) [+ 2D o g, ) < AR 2B (o] ~2)l, Ya € NB:2< ol k41,
and for all a, n € N3 such that || < 1 and |a] < k — |7,
(A7) PP D )| 1, ) < Callal + 1) 2AYFIITS2 gt o) 4y — 2]

Proof. We start by proving the case || = 0. Applying Lemma 4.2 with 3> = 3/2 — 1 and 5; = § — 2
(note that 8 € (0,1) implies B2 > 51 + 1/2), for all |o| < &,

827D g, ) < Cruellr® 2D Y2,

_ 1/2 o172 1/2
o e I RR R L e
[n|<1
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When |a| > 2, using (4.6) , we have

P72 DY | La gy,

< O A2 B301/2(2(a] = 1P 4 (1 + ad/ ) (Jal — 212 o] - 22
< G A2 BT 22l = 1) 1+ ay*) (Ja] - 2)!
< O Al2I73/2 Bo2t1/2410| 2 (|| — 2)1.
If |a| < 1, instead, it follows from H“HWg(Qa,w) <1 and (4.8) that
”TB/Z?IJFO‘IIDQUHL“(Q(;M) < Cint(2+a]]:/2) < AC,,.
This proves (4.7) for |n| = 0, i.e., that for all |o| < k,
(4.9) [rP727 D L, ) < A0 AR B2 (Jaf + 1)1 [|af — 241,
Consider now the case |n| = 1. We have
||Tﬂ/2_1+a1@a(7"mpnu)||L4(Q5,w) < ||T'8/2_1+a1+n1Da+nu||L4(Q5,w) + alnl||TB/2_1+Q1Dau||L4(Q5’w)-
For all |a] < k — 1, we can apply (4.9) to the two terms at the right hand side above:
a1||rﬂ/2_1+o‘1Dau||L4(QM) < 4CimAgo‘|_3/2]+E32+1/2(|04| + 1)1/2a1[|a| —2]4!
< ACi ATV B2 (o] 4 1) 22 o] — 1)1,

and
||7,ﬂ/2—1+a1+mDa+nu||L4(QM) < 4CintAﬂa|—1/2]+E32+"2+1/2(|a| + 1)1/2[|a| — 1]yl
Hence, for all |a| < k — 1 and all || =1,
[P35 D (1 D) sy < 12Cha ALV B2 (0] 4 1) o] — 1],

which concludes the proof, with Cyq = 12C}ut. a

Corollary 4.4. Let 8 € (0,1),0 <6 <1,w € (0,27), and let u € Wg(Q[;)w) such that ||u||W§(Qs,w) <1.
Suppose that there exists A,, F,, > 1 and k£ € N such that

||7“B+0‘1_2’D0‘u||L2(QM) < Al=2gez(jo) —2)1, VaeN2:2<|a| <k+1.
Then, for all « € N3 such that |a| < k
(4.10) PP/ D () || Lo, ) < 4Ca(|e] + 1)Y2 Al =33 Boat1/2] 0] — 2], 1,
Proof. We start from the bound
[rP/2 71D ()| Ly ) < PP D Ul g, ) + a2 ODIO TRy g, ),
where the second term is absent if &y = 0. From Lemma 4.3, it follows that

27240 D%u g, ) < 6Ca(|a] + 1)V/2AL1=3/2 Bt /2 ja] — 2,1
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and that (when ay > 1)

an [[rPAT IR DE Ty

< Say[af'/2 AR5/ BRat 12| — 3] !

j3/2

<
= e ((j T 12 max(j — 2,1)
< SVA(Jal + 1)/l Bt 2] 9],

)l + 17172413/ =12 - 21

Equation (4.10) follows from the above, bounding 1 + 2+/3 < 4 for ease of notation. 0

We are now in position to estimate the weighted norms of the nonlinear term in the sector Qs ., (c), under
the assumptions of analytic bounds on the weighted norms of w. Initially, we do this under the assump-
tion that w € ng(Q(;’w(c))2 (which implies that w vanishes at the vertex of the sector) in Lemma 4.5.

Lemma 4.5 (Weighted analytic estimates for the quadratic nonlinearity in polar frame).
Assume that 3 € (0,1),0 <6 < 1,w € (0, 2m).

Then, there exists C; > 0 such that for all w : Qs — R2, all k € N, and all A, F, > 1 such that
[@llw2(qs,.) < 1and

e tB=2D %y, || 2 < All=2 gz (o) — 2)!
{H l22(@s) < (la] =2) for all2 < [a] < k+ 1.

||T‘a1+672'Daw19||Lz(Q5M) < AB|72E$2(|04| — 2)!,
the following inequality holds:
||1‘a1+6_2’D0‘(7‘2(w . V)’w))HL?(Q(;,w) < CtAf‘_lE$2+2|a|!, Va € Ng 1< |a| <k.

Proof. By Lemma 2.7, the bound ||m||W§(Qa,w) < 1 implies W € [C°(Qs,.,)]? and thus |||~ (g, .,) <
+00.
Next, we recall from Lemma 4.1 that

72w, Opw,. + 1(wyDyw, — w3)

T T —
(4.11) r2(w - V)w (rQwTBTwﬂ+r(w19619w19+wTw19)>'

We will estimate the individual terms.
Estimate of rw? and rw,wy. Let v € {w,, wy}. From (4.10), Lemma 4.3 and Corollary 4.4 it follows
that

17582 D (o)) | 2050
[
« _ a1 — — a—
SN ( )Hrm“’” LD (00) | 13 g [ 2D s
=0 [n|=j,n<a
req]
@] _
<> > ()4C§<|n|+1>1/2A£L"' 8/2L4 g2 ) — 9],
J=0|n|=7,n<a
% (la] — || + 1)V/2 Allel=Inl=8/21+ pae—nat1/2[|g] || — 2]

< 4C§A£L°‘|*3/2]+E$2+1
la . |

“)jt(la] - i G+ 1DY2(al —j + )V
X Z Z (77>J!(|04| J)!maX(j(j —1), D max((Ja| — 5)(Jo| —j —1),1)

J=0|n|=jn<a
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Here we have used [|n| — 3/2]+ + [|a] — 9] — 3/2]+ < [|a| — 3/2]+ for alln < a.
Now, for all j € Ny,

G+DY2 G+ max(, )2 1 < V6 1 _
max(j(j —1),1) max(j — 1,1) max(j,1)3/2 — ° “max(j, 1)3/2
In addition,
> (0)=0)
nl=gm<a N i)

Therefore,

||Ta1+ﬁ72'Da ('rwﬂv)) ||L2(Q6,w)

||

1 a
< 2402A[|a\73/2]+E0¢2+1 i — )\ .
= 4w w ;0] (ol = 4) max(j, 1)3/2 max(|a| — 7,1)3/2 il Z< n
— nl=jn<a

||

1
< 2402 Alle1=3/2+ poa+1) ) .
< UGy el G T maxal — 5D

We have, by the Cauchy-Schwarz inequality,

|| ||

| Ot

1
< <1+4¢((3) <
2 G 0Pl ~ 7 2 Gy < L)

We conclude that

(4.12) 7o TA=2DY (rwd))| L2 (;..) < 60CT ALY =3/21 Eotliq)l
and
(4.13) [P FB=2D (rwyw, )| L2 (q;.,) < 60CFALM=3/2+ Eatl|qL,

Estimate of the remaining terms. Let v, w € {w,,wy} and let & € N2 such that |¢| = 1. We have

”,ra1+3—2’D0‘ (r1+51 ’ng'U)) ||L2(Q5,w)
la|

« _ a1 — — a—
<> D0 ( )HTWFB/? "D (rw)|| L@y ) 7T ETIDA T (18 DE) | a5

(4.14) =1 Inl=gm<a
+ ”,ral—',-B—lera (Tﬁlpg’l})HLz(Qéyw)
=(I)+ (II).
We bound the sum in term (I) by similar techniques as above, using Lemma 4.3 and Corollary 4.4:

o
<> > <a> ACK (In| + 1) /2 AR =32 B2 1] — 2]
i=1 nl=jn<a
% (|af = |n| + 1) /2 A== 2 ezt &t R o) — | — 1],

||

) o G (al =+ )
< 4 2A[|a\ 3/2]+Ea2+1+f2 @ | — ! (j
<4C3Ay w Z Z J (|a| j) max(j(j — 1), 1) max(|a| -7, 1)7

J=1n|=jn<a
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where we have used that
(Inl =3/2]+ +[lal = [n| = 1/2]4 <[la] =3/2]y, Vn<a:|p/ =1
Since

G+ G+ 1 1
max(j,1)  max(j, 1)1/2 max(j,1)1/2 = * “max(j,1)1/2’

and using Hélder’s inequality, we obtain

el

1
1) < 8C2 Allel=3/2]+ paz+éa+1) 1)
() < 8CeAy w ol j;max(j— 1,1) max(j, 1)/2 max(|a] — j, 1)1/2
||
1
< 8C2 Allel=3/2l+ pazt+&a+1)
(4.15) - A v o ]2 max(j —1,1)3/2 max(|a| — j,1)1/2
-1 3/4 -1 1/4
SgchLLa\—3/2]+Egz+£z+l|a|! 1+ Z j2 1+ Z j2
Jj=1 j=1

< 24C3AllI3/2 poattetl g,
where we have used 1 + ((2) < 3. We now estimate term (I7) in (4.14). Remark that
(4.16) (11) < [lrwl Lo (s [l 772D (14 D w) | 125, -
In addition,

[P P2 D (r 9 D) || L2(5.)
< ||7“°‘1+§1+ﬁ72'Da+EU||L2(Q5,w) +alé_l||Ta1+ﬁ72,DaU||L2(Q5M)
< AITTERTE (o) — 1)+ Gl AT ER [Jaf — 2]
< 3AlITtpaatea (o) — 1)L,

Hence, from (4.16),
(4.17) (I1) < 36)@ gy A1~ ES2+€(Ja] — 1)1

It follows from (4.14), (4.15), and (4.17) that, for any v,w € {w,, wy} and any multi-index £ such that
€l =1,

(4.18) 7o FA2D (P T D)) || 12(gy.) < (2407 + 3| oo (5 )AL TLES2 TS o1,

The combination of the formulation (4.11) and of the bounds (4.12), (4.13), and (4.18) concludes the
proof, with

Cy = 6max (60C3,24CT + 3||W|| 1= (q;..)) -
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4.2. Analytic regularity in the polygon P. We can now prove the main result of this paper. With
analyticity in the interior and up to edges of P being classical, we concentrate on the sectors near the
corners of the domain. We define for ¢ € (0,1),

(4.19) Si = Qs i (ci), i=1,...,n.

We prepare the bootstrapping argument required for establishing analytic regularity by proving the reg-
ularity of the solution (u, p) in the weighted spaces [W3(S5)]* x W3(S5).

Lemma 4.6. Let 8, € (0,1)" and f € [Lﬁf (P)]?NW* such that || f||w~ < % Suppose that Assump-

tion 1 holds. Let (u,p) be the solution to (2.1) with right hand side f.
Then, there exists 8 = (81, ..., ) € (0,1)™ such that for all 0 < § < 1 with § < 3 min; ; |¢; — ¢;| holds
(u,p) € (W3 (S5)]* x W5, (S5),  Vie{l,...,n}.

Proof. For all s € (1,2) and for t = (1/s — 1/2)71,

[Fllzey < N1@-p ey [Ps, Fllzp)-

Therefore f € [Léf (P)]? implies

2
L*(P))? L,—.
Fe (P vse ( 71+mang>
In addition, w € [H'(P)]? implies by Sobolev imbedding u € [L!(P)]? for all ¢t € [1,00). By Hélder’s
inequality, choosing t € [1,00) and s = (1/2 + 1/¢)71,

1(w - Vullpspy < lullpp) IVullrzp) < oo

which implies (u - V)u € [L*(P)]?, for all s € [1,2). It follows from [21, Corollary 4.2] that there exists

q > 1suchthat (u,p) € [W%9(P)]? x Wh4(P). This in turn implies, by Sobolev imbedding, u € [L>°(P)]?
hence (u - V)u € [L?(P)]?. We can conclude by applying Theorem 3.1 to each corner sector: for each

i€ {l,...,n}, there exists 8 € ((ﬁf)i, 1) such that

||ﬂ||wg(sg) + ||p||wg(sg) < Oscc(”f”Lﬂ(sg) + [(w - V)ull,si) + l[ullmp) + ||p||L2(P))-

Now, since f € [Lﬁf (P))? and (u - V)u € [L%(P)]?, it holds that f € [Lg(SE)]? and (u - V)u € [Lg(S)]?;
hence, the right hand side of the inequality above is bounded. Using [10, Corollary 4.2] to bound the

norm of the Cartesian version of the flux concludes the proof. d

We prove weighted analytic estimates in each corner sector.

Lemma 4.7. Let 8, € (0,1)" and f € (B3 (P)]>NW* such that || f[|w~ < %. Suppose that Assump-
— f cont

tion 1 holds and let (u, p) be the solution to (2.1) with right hand side f.
Then, there exists 3 € (0,1)", with § > ﬁf, 0 € (0,1], and A,, E, > 0such that, foralli € {1,...,n},

||rl/_3i+a1—2pau||L2(5§/2) < Alel=2gloa=4/311 (|| — 2)1, Vo € N2 ¢ || > 2,
and

Hrfwm_lpapup(sg/z) < ALQ\—1E32(|a| -1y Vo € Nﬁ el > 1.
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Proof. Choose 8 = (B1,...,8a) € (0,1)", B > (ﬁf)i, such that, for all i € {1,...,n}, Theorem 3.1
holds in Q1 w, (¢;) with 8 = f;. Fix 0 < §p < 1 such that dp < %mini)j |c; — ¢;] and such that

(4'20) Hﬁ"ng(SgP) <1 ||p||W§i(S§P) <1, Vi e {17 . '7n}'

Note that this is possible thanks to Lemma 4.6. The proof proceeds by induction, in each of the corner
sectors. Fix ¢ € {1,...,n}. We write r(z) = r;(x) = |z — ¢;| for compactness.

Before setting up the inductive bootstrap argument, we rewrite the NSE in polar coordinates and
rearrange the equations in the sector Sj  as

0
(4.21b) B(u,p) =0 onTy,

(4.21a) L_SAt(ﬁ,p) = (A(‘f —(u- V)u)) in Sgp ,

This set of equations has the following specific form:

L (v((ro,)> +0% —1) —2v0y Uy 1 (ro,
(422) -5 ( 20, (9,2 + 0% —1) ) \ug) 7 Ly )P
(4.23) l ((r@r + 1) Uy + 819u19) =0in Sgp,

T
(4.24) uw=0o0n0dS;, NTp.

f—(u-Vuin Sj,,

On dS; NTy and 8S5, NTg, respectively, there holds

v(r=t0su, + Orug — 1 tuy B
(4.25) < —p+2vr Y (Opug +uy)) ) 0
and
Uy o
(4.26) (V(arw T L0y, - %w)> =0.

See Appendix B for details of the derivation.
The analyticity of wand pin P \ (U?:l Sgp/2> and the analyticity assumption on f, i.e., f € [B§ (P)] CI
_ , 2y
[B3(P)]? (whence f € [BY (S;,,)]* by Lemma 2.5), imply that there exists A; > 0 such that, for all [a] > 1,

(4.27a) PP+ 2D (7 F) | agsy ) < AL al!
(4.27b) [ 2D (2 (- V)u) | asy sy, < AV all
i+ — e al—1
(4.27c) [P D] sy vsz, < AT (ol = DL

and, for all k € N,

(4.27d) ||r’fajfﬁ||Hl(S§P\Si ) < AT

5p/2

Define the constants

1 3/2
(428&) Eu = max <27 8 (1 + _) ) (8V)3/2> )
14
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and
4 1
(4.28b) A, = max (2205%,41, 2Csec(Cy +9)E2, — Ay, 4 (;(Ct +2) + 4) EA3,
4A1,4(Cy + 14 3v)E,y, 2).

We now formulate our induction assumption.
Induction assumption. For k € Nand k; € N with ky < k, we say Hy , holds if

o1 —2mya al— g — N

. ||Ti6 tar-2p uT”LZ(Sf%pm) < AL \ 2EL 2 4/3]+(|a| —2), . 2< ol <h+1,
. a « .
PP D g sy ) < ARITEEREYI (o] - 2)1, P as < ke 1,
P

and

o 1<|a| <k
4.29b firar—lpa L < AT gez ) — 1) VaeN2 { =1T="
( ) (g8 p||L2(55P/2) < Ay o (lef = 1), a €Ny o < ko,

where A, and E,, are the constants in (4.28b) and (4.28a).
Strategy of the proof. The proof of the statement will be composed of two main steps. H; ; holds due
to Lemma 4.6 and to (4.20). We will show that, for all k € N,

(4.30) Hyr = Hiy1,1.

Then, in the following step, we will show that, for all k € N and all j € N such that 7 < k,
(4.31) Hypand Hypyj = Hypg a1

Combining (4.30) and (4.31), we obtain that

(4.32) Hir = Hit1k41,

We infer from (4.32) that Hy, j is verified for all k¥ € N. This will conclude the proof.
Step 1: proof of (4.30). We fix k£ € N and suppose that Hy, ; holds. Define

(4.33) T = r*okm, q = 1r*0%p.

Then, for all |n| < 2,

(4.34) DTG = ko (1M D)
and
(4.35) Dlg = rk728f(r’71+ll)’7p) - krkflﬁfle"p —mk(k — 1)rk728f71p.

Furthermore, multiplying (4.23) by r and differentiating by 0¥ we obtain
(10 + (k +1))0%u, + 0F0puy = 0,
hence

(4.36) 0=r""10rd, + (k+1)0%u, + r* 19yd%uy = % ((ror + 1)v, + Oyvy)
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From (4.34), (4.35), and (4.36), it follows that the pair (U, ¢) as defined in (4.33) satisfies, with L_SAt and B

in polar frame and acting on the velocity field @ in polar frame as defined in (4.21a) and (4.21b) formally
the Stokes boundary value problem

St (7,9q) <f> in S5P,

B(v7Q) - g ) (8S§P ﬁFD) X (85[1513 ﬁFN) X (85};13 mFG), .
0

(4.37)

Here, f and (assuming that 955, NTn # @) g are defined by

439 F=r ol F T - wet o (PR VET) g ()
Using (4.27a), Lemma 4.5 with w = u, the inductive hypothesis Hy, 1, and the fact that for allv € L*(Sj )
lvll L2 (53,) vl L2(si i T [vllz2(s: \SE o)
we find from (4.38)
AN e, 5, ) < NP2 208 (2 F)llasy ) + I 5208 (r*Tu - V) | as; )
+ k||7”5"+k7135p||m(sgp) + k(k — 1)||Tﬁi+k72afflp||m(sgp)
+ k||7”ﬂ"+k_2af_13ﬁp||Lz(sgp)
< AVK! + (CoAETT B2 + AV KR! + k(AR 4 AV (k- 1)
+k(k—1) (AF2 4+ AF2) (k- 2)l + & (A5 B, + AFTY)
< (5AF + (Cy +3) AL E2) kL.

Furthermore,

18320, oy < K120 Dlwycss,

< k(I =200k sy ) + 10 Daplacsy ) + I 20l

= DI sy )
<4k (At + AEE,) (k- 1)
<4 (At + AR, KL
It follows from (4.37), Theorem 3.1, (4.27d), (4.27c), and the two inequalities above that

||5||ng(ng2 +llallwy, s o2

. < Cuce (Il 51,0+ 195 155, Wl 155, 0+ sy, o)
< Cyoe (11AY + (Cy + VAR E2) k1.
Now, for all |n| = 2,

D" = rF D + mkrt TR T T o + gy — 1] 1k (k — 1)rF 20k,

19
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Therefore, for all |n| = 2,

Bi+k4+n1—2 9k ynz+ )
I ntoy DnUHL?(Sng)
< ollwz si, )+ U1k||7"6i+k+m_335+"1_1332ﬁ||w(5gp/2) + k(k — 1)||7"Bi+k_23fﬁ||m(sgp/2)
< Choe (11AY + (Cy + ) AETVE2) Bl 4 284X (k — 1) + k(k — 1) A2 (k — 2)!

< Choe (11AY 4 (Cy + 9) A1 E2) K.
For all |n| =1,
Dq = r*OFDq + mkr* 1 0Fp,
hence

||7ﬁ"+k+m_1afpnp||L2(sgp/2) < ||Q||ng(sgp/2) + k||7“6i+k_15fp||m(sgp/2)

< Coee (1TAY + (Co + DAETTEZ) KV + kAR (K — 1))
< Coee (11AY + (C + 8)AET1E2) k1.

From (4.28Db) it follows that for every k € N

Bi+k+m —2gkpn . k Bit+k+nm—19k ) k
ma)§||7“ m BTD"u||L2(53P/2)§Auk!, \Ifyl\i)iur m BTD”pHLg(S;Pm)gAuk!,

[n|=

i.e., that Hyy1 1 holds. We have shown implication (4.30).
Step 2: proof of (4.31). Wenow fix j € {1,..., k} and we assume that Hy ;, and Hyy1 ; hold true.
Multiply (4.23) by 7 and differentiate by 9¥~78%"" to obtain

Taf+1_j8£+lur + (k N ])87]?—]81J9+1UT + af—jaé‘qulg =0.
Therefore, using Hy41 5,

o 49
||71181+]€ J 28f J(?fg-i- u19||L2(5§P/2)

< ||T5i+kfjflaqlf+lfjalﬂ9+1 ﬁi+kfj72af*jaé+1

urllpags ) kT
(4.40) < AFEITSE 4 kAR RIS (k- 1)

= 2AFEI—1/3)

< AFEI+2/3E1

Ur||L2(sgP/2)

This proves the estimate for uy. ‘
To prove the bound on u,, multiply the first equation in (4.22) by r? and differentiate by 9F 797, to
obtain
vOF 195 2 u, = —v (r20? + (2(k — j) + 1)ro, + (k — §)* — 1) 0579 0%u, — 2008700 uy
+ (207 + 2(k = §)ro + (k= j)(k —j = 1))a) 7 9fp
=~ 0} 10 (r*(F - (w-V)u), ).
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Therefore,
||Tﬁi+k7j72affj3§+zur||L2(sgp/2)
< (Agk! + 2k A, (k— D!+ k(k — 2)(k — 2)!) AR=2 =48l o AR RI=1/3( — 1)
41 (Ajjk! +2(k — DA (B — D) 4 (k — 1) (k — 2) AR 2(k — 2)!) EJ
(4.41) v

1 1 <
+ —Abgl 4 —C AR EIT 2R
1% 1%
1 k 1 k g 1 k—1 j+2 1 k—2 g
< ;A1+ 1+; AJE) + ;(Ot+2)+4 AT RIS 4 1+; AST°FE] ) K.
< AREIt2/3 ]

This provides the estimate for u,..
Last, consider the second equation of (4.22): multiplying by r? and differentiating by 9F—7 0% we
obtain

rOF 900 p = v (120 + (2(k — j) + 1)ro, + (k — §)? — 1+ 93) 0¥ 7 duy
+ 2u8f_j8§+1ur — (k- j)ﬁf_j_18§+lp + Bf_j(?f; (7“2(f — (u- V)uh) .

Hence,
PP O 0 pll sy
_ V<Aik! Ay (k= 1)+ k(k — 2)(k — 2)!> Ak—2 pli=4/3)+
(4.42) + vAREIT3 ) 4 oy ARV EITYS ( — 1) 4 (k — 1) AR 2 B (K — 2)!

+ AVk! 4+ C AR EIT 2
< (A’f + 2w AREITYS 4 (O 41+ 30) AL EIT2 4 Aij*?Eg“) k!
< AFEITIE,
Then, the estimates in (4.40), (4.41), and (4.42) imply that Hyy1 j+1 holds true. By the strategy outlined
above, this shows implication (4.32) and concludes the proof. O

Combining the estimates in each sector with classical results on the analyticity of the solution in the inte-
rior of the domain and on regular parts of the boundary, we obtain the weighted analyticity of solutions
to the Navier-Stokes equations, stated in the following theorem.

Theorem 4.8. Let 5. € (0,1)" and f € [BY (P)]2 N W* such that || fllw- < S2=  Suppose that
f B
- f

y ~ 4Ccont
Assumption 1 holds and let (u, p) be the solution to (2.6) with right hand side f.
Then, there exists 3 € (0,1)", with § > ﬁf such that

(u,p) €[ ?—E(P)]z x Ki7 5(P)

Proof. The analyticity of weak solutions (u, p) in the interior and up to analytic parts of the boundary
is classical, see, e.g., [16, 7].

It therefore remains to prove weighted analytic regularity near corners of P. To this end, we apply
Lemma 4.7 to obtain non-overlapping sectors Sgp such that

(@,p) € [B3,(S5, 2)]” x By, (S5,.,2),  Vie{l,...,n}.
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Furthermore, w(c) = 0 for all corners ¢ € 9P due to Assumption 1, Item 2. This implies, by Lemma 2.4,

(u,p) € [B3, (S’gp/z)F X Béi(Sgp/Q), Vie{l1,...,n}.
Thereforg, in particular, u € [HévQ(S;P/z)]Q and p € Hé*l(SgP/?). By Lemma 2.8, we obtain t_hat u €
[ICgfﬁ(kS’ng)]2 and that p € ICLﬁ(Sng). By definition, Bé(SgP/2) N Kffﬁ(Sng) = ICZB(SEP/z) and
this concludes the proof. 0
We remark that the argument in the proof, in particular, provides also
(u,p) € [BY(P)? x By(P).

5. Conclusion and Discussion. We have shown analytic regularity of Leray-Hopf solutions of the
stationary, viscous and incompressible Navier-Stokes equations in polygonal domains P, subject to suf-
ficiently small and analytic in P forcing. Our result holds under Assumption 1, which implies that for
each corner point of P, at least of the sides at that point has homogeneous Dirichlet (“no-slip”) BCs. We
proved analytic regularity in scales of corner-weighted, Kondrat’ev spaces with homogeneous weight func-
tions. The present setting of mixed BCs covers most of the example of interest in applications, such as,
e.g., channel flow with homogeneous Neumann condition at the outflow boundary. With the argument
in [15] containing a gap, in the particular case of homogeneous Dirichlet (“no-slip”) boundary condi-
tions on all of OP the present result implies that the result in [22] stands under the assumptions stated
in [22]. The analytic regularity in homogeneous weighted spaces implies, as explained in the discussion
in [22, Section 5], corresponding bounds on n-widths of solution sets which, in turn, imply exponential
convergence or reduced basis and of Model Order Reduction methods. Corresponding remarks imply
also in the present, more general situation, and we do not spell them out here. The present results also
imply, along the lines of [22] (where only the case of no-slip BCs on all of 9P was considered), exponen-
tial rates of convergence of hp-approximations. Details on the exponential convergence rate bounds for
further discretizations in the case of the presently considered mixed boundary conditions shall be elab-
orated elsewhere. Likewise, analytic regularity of flows for the remaining combinations of boundary
conditions not covered in the present analysis, can be established in a similar fashion. To that end, how-
ever, a different functional setting of corner-weighted Kondrat’ev spaces with nonhomogeneous weights
is necessary. The details, also of the bootstrapping analysis for the nonlinearity, will be developed else-
where.

Appendix A. Proofs of Section 2.5.3.

Proof of Lemma 2.4 The third item of Lemma 2.6 and the second item of Lemma 2.7 give that for any
¢ € {0, 1,2} there exists a constant Ay > 1 such that for any o € N3,

_ _ 1
5+ =D 12, (o) < AT !
Then we have

177~ ]| L2y (0) < 4lIPP T L2050 ()
and for all |a| > 1,

as
a1 —bya Qa2 j a1 —f ga; qa2—j
||T’6+ 1 ED ul”LQ(QJ,w(C)) S Z (] )||Bf9 COSQ9||LOQ(Q5M(C))||T§+ 1 Zar 18192 JUTHLQ(Q&W(C))
j=0
as
a2 j . a1 —f oy Qa2—7
+> (J’ ) 185 sin 9 oo (@ o (en 1770 =107 85> w | 12 0 (o))
j=0

<24 ol 30 a7 (%) < 220 .

J=0
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A similar estimate holds for us. By the above results and using the third item of Lemma 2.6 and the first
item of Lemma 2.7 we have u € [Bf; (Qs..,(¢))]?, which, by the second item of Lemma 2.6, is equivalent to

u € [Bf(Qs.0(c))]*. 0

Proof of Lemma 2.5From v € [Bg(Qs.(c))]? it follows that v € [B3(Qs,..(c))]* by [2, Theorem 1.1].
Then, there exists Ag > 1 such that, for all |a| > 1,

Q2
o o Qg ] a a1 §a2—]
I D, L2y < D (J’ >||3§ €08 V|l e (@5, (e 17 PO 052 01125, (01

Jj=0

s
(0%} i a a1 aa—7
+> <j )“859 $in 0|l oo (s () 17 P01 057 02| 12(05 (01
§=0

<24pa1d A (C?) < 2(240)! a1,

=0

The estimate for vy follows by the same argument. O

Proof of Lemma 2.8 Lemma 2.7 implies that v € Wé“ (Qs,w(c)). Elementary calculus yields

sin ¢

0z, = cos V0, — " Oy,
9
By, = sin 00, + 20 5y,
r

02, = cos? 002 + 2008192511&19&9 n sinzﬁar B 2608081]&08”9 n Sinzﬁﬁg,

T r r
6%2 = sin? 992 — 2COS19QSin19619 n cos219(9r n 2cosﬁsin196mg L cosjﬁaz,

r r r T
D, 0y, — cos D sin 00 + sin? ¥ —2cos2 19819 N cos? ¥ — sin? ﬁaw 3 sinﬁcosﬁar 3 sinﬁgosﬁas.

r r r r

Therefore there exists C > 0 (C = 7 when k = 2 and C' = 2 when k = 1 will suffice) such that for any
a € Ng with |a| <k,

1/2
[ 9% | L2 gp e < C Z ||Tﬁ7k+al,Dav||2L2(Q5,w(c)) = Clollws@s.u(e))-
loe| <k
By definition, it follows that v € KF_5(Qs..(c))- 0

Appendix B. Stokes operator in polar coordinates. Inthis appendix we provide the elementary cal-
culations to verify (4.22)-(4.26), which describe the NSE with boundary conditions in polar coordinates
and polar components. We recall the representation of the NSE in the Cartesian reference frame

(B.1) L& (u,p) = (f_ (%'V)“> in i,
(B.2) B(u,p) =0 onTI}.

The vector Laplacian in a polar reference frame reads [1, Equation (3.151)]

— 1 ((r9,)*+05 -1 —20y _
Au=5 ( 20y (ro,)?+02-1)"
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and [14, Equation (I1.4.C3)]

= [ Owp
Vp = (7“1619]9> .

The divergence of @ is [14, Equation (IL4.C5)] V& = L ((r0, + 1) u, + dguy), whence (4.22) and (4.23).
Regarding the boundary conditions (B.2), we start from the expression of the stress tensor in polar

coordinates and polar frame, see [14, Equation (I1.4.C9)],

—_— 6ru7‘ %(&u + T'_l(a Ur —U ))
(B.3) e(u) = <%(8Tu19 + 77 (Opur — uy)) Tﬂ_l(aﬂw j— uy) ' )

hence the stress tensor in a polar reference frame reads

20,1, Oy + 171 (Ogu, — uy) I
Oty + 171 (Opuy — uy) 2r =1 (Dguy + uy) pidz-

(B.4) o(u,p) =2ve(u) — pldy = v (

ﬁ:j:((l)), z=¢<(1)),

where the sign depends on the side of the sector being considered. Then, by matrix-vector multiplication,

—— Opug + 171 (Oyur — uy)
J(U,p)n =+v ( 27"71(319%9 + ur) —p

We have furthermore

and consequently

(o(u,p)n) - ¢ = ol p)m - E= —Bruty — ~(Byuy — up).
T

Finally, it follows from the definition that w - n =w -7 = tuy.
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