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Abstra
t. We prove weighted analyti
 regularity of Leray-Hopf variational solutions for the stationary, in
ompressible Navier-

Stokes Equations (NSE) in plane polygonal domains, subje
t to analyti
 body for
es.

We admit mixed boundary 
onditions whi
hmay 
hange type at ea
h vertex, under the assumption that homogeneous Diri
h-

let (\no-slip") boundary 
onditions are pres
ribed on at least one side at ea
h vertex of the domain. Theweighted analyti
 regular-

ity results are established in Hilbertian Kondrat'ev spa
es with homogeneous 
orner weights. The proofs rely on a priori estimates

for the 
orresponding linearized boundary value problem in se
tors in 
orner-weighted Sobolev spa
es and on an indu
tion argu-

ment for the weighted norm estimates on the quadrati
 nonlinear term in the NSE, in a polar frame.

1. Introdu
tion. The regularity properties of vis
ous, in
ompressible 
ow governed by the in
om-

pressible Navier-Stokes Equations (NSE) have attra
ted 
onsiderable attention sin
e their introdu
tion.

We mention only the intense resear
h in re
ent years around the Onsager 
onje
ture and on the bound-

edness of the velo
ity �eld of Leray solutions in three spa
e dimensions.

Regularity results of weak, Leray-Hopf solutions in Sobolev and Besov s
ales in domains are at the


ore of the numeri
al analysis of the NSE. The stationary NSE, being for large values of the vis
osity

parameter, a perturbation of its linearization, the Stokes Equation, is an ellipti
 system in the sense of

Agmon-Douglis-Nirenberg and a�ords analyti
 regularity in interior points of domains, for analyti
 for
-

ing [20℄, see also [16℄. This lo
al analyti
ity of the velo
ity and the pressure extend to analyti
 parts of

the boundary.

However, it is also 
lassi
al that in the vi
inity of 
orner points (in spa
e dimension d = 2) and
near edges and verti
es (for polyhedra in spa
e dimension d = 3), analyti
ity is lost, even if all other

data of the stationary NSE is analyti
. See, e.g., [5, 8, 21, 19, 4℄ and the referen
es there. The reason is

the appearan
e of 
orner singularities (in spa
e dimension d = 2) and of 
orner- and edge-singularities (in

polyhedra in spa
e dimension d = 3). While singular solutions of the Stokes equation are well known

to en
ode physi
ally relevant e�e
ts (see, e.g., [18, 19℄), they do obstru
t large ellipti
 regularity shifts

in standard (Besov or Triebel-Lizorkin) s
ales of fun
tion spa
es and, 
onsequently, high 
onvergen
e

rates of numeri
al dis
retizations. This has initiated the investigation of regularity of solutions in the

presen
e of non smooth boundaries. One, in a sense, minimally regular situation is the assumption of

mere Lips
hitz regularity of the boundary. For the mixed boundary 
onditions of interest here, some

regularity of velo
ity and pressure of Leray solutions in Sobolev spa
es have been obtained in [6℄. In the

mentioned polygonal and polyhedral domains, it has been known for some time that the velo
ity �elds of

stationary solutions for the in
ompressible NSE in plane, polygonal domains allow higher regularity in

so-
alled 
orner-weightedSobolev spa
es. Here, weight fun
tions whi
h vanish in the 
orners of the polygon

to a suitable power 
ompensate for the loss of regularity in the vi
inity of the 
orner. The 
orresponding

Mellin 
al
ulus goes ba
k to [12℄. See, e.g., [8, 21℄ and the referen
es there. In [17℄, an authoritative

a

ount of these results, also for NSE in polyhedra, has been given. The results in [17℄ provide regularity

shifts in weighted spa
es of �nite order. To prove weighted, analyti
 regularity for velo
ity �eld u and

the pressure �eld p in P of the stationary, in
ompressible NSE in polygons is the purpose of the present

paper.

Spe
i�
ally, in a bounded polygon P ⊂ R
2
whose boundary ∂P 
onsists of a �nite number n of

straight sides, we 
onsider the analyti
 regularity of solutions of the vis
ous, in
ompressible Navier-

Stokes equations. Extending and revisiting ourwork [15℄ whi
h addressed homogeneousDiri
hlet (\no-

slip") boundary 
onditions, we 
onsider here theNSE in plane polygonal domainsP withmixed boundary
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onditions, where now also slip and so-
alled \open"boundary parts are admitted. These 
onditions arise

in numerous 
on�gurations in engineering and the s
ien
es. The spe
i�
 geometri
 
ondition whi
h lim-

its generality in the present paper is thatwe assume throughout the present paper that so-
alledmixed boundary


onditions are imposed on ∂P . This is to say that at least one edge at ea
h vertex of P will 
arry homoge-

neous Diri
hlet boundary 
onditions. With this 
onstraint (i.e., at least one \no-slip edge" abutting ea
h


orner) the ellipti
 regularity 
an be developed still in homogeneous 
orner-weighted spa
es, i.e., in the

the fun
tional setting of [15℄. Fully general BCs will require extension to weighted Kondrat'ev fun
-

tion spa
es with non-homogeneous weights. Furthermore, our present proof of the weighted analyti


regularity requires a proof te
hnique whi
h di�ers from the approa
h used in [15℄. As the 
orrespond-

ing analysis for plane, linearized elasti
ity in [10℄, it is based on regularity results for the linearization

(the Stokes problem) in a se
tor built on the Agranovi
h-Vishik theory of 
omplex-parametri
 operator

pen
ils whi
h was already used in [9℄ and [10℄ to obtain a priori estimates and shift theorems in 
orner-

weighted spa
es. The present paper provides a proof of weighted analyti
 regularity for the velo
ity u

and the pressure �eld p of the stationary, in
ompressible Navier-Stokes equations in a polygon P , sub-
je
t to mixed boundary 
onditions on the sides of P . It is distin
t from the argument in our previous

work [15℄ even for pure Diri
hlet boundary 
onditions. In [15℄, a bootstrapping argument based on lo-


al, Ca

ioppoli estimates on balls and s
aling was proposed. Furthermore, the proof proposed in [15℄

was in
omplete; the gap is 
losed by the argument in the present paper, whi
h provides, in the 
ase of

homogeneous Diri
hlet (so-
alled \no-slip") boundary 
onditions the weighted analyti
 regularity re-

sult in [15℄ whi
h was used in [22℄ to prove exponential rates of 
onvergen
e of a 
ertain hp-DGFEM
dis
retization of the stationary NSE in polygons.

Analyti
 regularity results for solutions in 
orner-weighted Kondrat'ev-Sobolev spa
es imply, as is

well-known, exponential 
onvergen
e rate bounds for numeri
al approximations by so-
alled hp-Finite El-
ement Methods and also by model order redu
tion methods. We refer to [22℄ and to the referen
es

there for re
ent results on exponential 
onvergen
e for the Navier-Stokes equations, for dis
ontinuous

Galerkin dis
retizations, and also to the dis
ussion in [15, Se
tion 2.2℄ for exponential rates for 
ertain

model order redu
tion approa
hes to the NSE in P .

1.1. Contributions. We establish weighted, analyti
 regularity results for Leray-Hopf solutions of

the NSE in bounded, 
onne
ted polygonal domains P ⊂ R
2
with �nitely many, straight sides. We gener-

alize the analyti
 regularity results stated in [15℄ from the pure Diri
hlet (also referred to as \no-slip")

boundary 
onditions as studied in [15℄ to the 
ase of mixed boundary 
onditions at any two sides of P
whi
h meet at one 
ommon vertex of ∂P . As in [15℄ we work under a small data hypothesis, ensuring

in parti
ular the uniqueness of weak solutions. We also develop the regularity theory based on a priori

estimates of solutions for a linearization, the Stokes problem, in weighted, Hilbertian Sobolev spa
es in

a se
tor. The result 
ontains the analyti
 regularity result in [15℄ as a spe
ial 
ase, and its proof pro
eeds

in a way that is fundamentally di�erent from [15℄. As mentioned, it is based on a regularity analysis in


orner-weighted spa
es and a novel bootstrapping argument in the quadrati
 nonlinearity in weighted

Kondrat'ev spa
es. As in [9, 10℄, the weighted a priori estimates for the velo
ity �eld and the bounds on

the quadrati
 nonlinearity near 
orners c are obtained for the proje
tion of the velo
ity 
omponents in a

polar frame 
entered at c, rather than for their Cartesian 
omponents.

The main result of the present paper is stated in Theorem 4.8. Spe
i�
ally, under the small data

hypothesis and the stated assumptions on the boundary 
onditions (see Assumption 1 for details), we

show that there exist A > 0 and γ ∈ (0, 1) su
h that the Leray-Hopf solutions (u, p) to the NSE satisfy,

for all j, k ∈ {0, 1, . . .}, and for any 
orner c of P

∥∥∥∥∥

(
∏

c∈C

| · −c|i+j−γ

)
∂j
x1
∂k
x2
u

∥∥∥∥∥
L2(P )

≤ Aj+k+1(j + k)!,
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and

∥∥∥∥∥

(
∏

c∈C

| · −c|i+j−γ−1

)
∂j
x1
∂k
x2
p

∥∥∥∥∥
L2(P )

≤ Aj+k+1(j + k)!.

1.2. Layout. As is well-known (e.g. [13℄ and the referen
es there) the analysis of point singulari-

ties near 
orners of solutions of ellipti
 PDEs is based on polar 
oordinates 
entered at the 
orner. For

ellipti
 systems of PDEs su
h as those of interest here, as in [10, 9℄ in addition we require proje
tions

of Cartesian 
omponents of the ve
tor-valued solutions to a polar frame. In Se
tion 1.3, we 
olle
t the


orresponding notation for partial derivatives and solution �elds. Se
tion 2 presents strong formulations

of the boundary value problems under 
onsideration, detailing in parti
ular also the boundary opera-

tors. Furthermore, the 
orner-weighted, Kondrat'ev spa
es that appear in the statement of the analyti


regularity shifts are introdu
ed. Se
tion 3 then presents a key te
hni
al step for the subsequent analyti


regularity proof: a priori estimates in 
orner-weightedSobolev norms in a se
tor for the linearized Stokes

boundary value problem are re
apitulated, from [9℄. Importantly, they hold for several 
ombinations of

boundary 
onditions on the sides of the se
tor, and for the velo
ity �eld in a polar 
oordinate frame.

With this in hand, Se
tion 4 addresses the proof of the prin
ipal analyti
 regularity result for the NSE,

Theorem 4.8, whi
h is also the main result of the present paper. The key novel step in its proof is an

indu
tive bootstrap argument for the quadrati
 nonlinear term in the NSE, in 
orner-weighted spa
es

and for the velo
ity �eld in a polar frame at ea
h 
orner of P . This is developed in Se
tion 4.1.

1.3. Notation. We de�ne N = {1, 2, . . .} as the set of positive natural numbers and N0 = N ∪ {0}.
We refer to tuples α = (α1, α2) ∈ N

2
0 as multi-indi
es and we write |α| = α1 + α2. For k ∈ N0, we write

∑

|α|≤k

=
∑

α∈N2
0:|α|≤k

.

Given Cartesian 
oordinates (x1, x2) and polar 
oordinates (r, ϑ), whose origin will be 
lear from the


ontext, we denote derivatives as ∂α = ∂α1
x1

∂α2
x2

and Dα = ∂α1
r ∂α2

ϑ .

For any ve
tor �eld u with 
omponents in Cartesian 
oordinates

u =

(
u1

u2

)
,

we denote its polar 
oordinate frame proje
tion as

(1.1) u :=

(
ur

uϑ

)
= Au .

where

(1.2) A :=

(
cosϑ sinϑ
− sinϑ cosϑ

)

denotes the transformation matrix. Here and throughout, ve
tor-valued quantities su
h as u shall be

understood as 
olumn ve
tors, with u⊤
denoting the transpose ve
tor, whi
h a

ordingly denotes a row

ve
tors. The symbol LSt shall denote the Stokes operator, with various super- and subs
ripts indi
ating

Cartesian or polar 
oordinates and frame, i.e. we writeLSt for its proje
tion onto polar 
oordinates a
ting

on the 
orresponding velo
ity 
omponents.

All quantities whi
h o

ur in this paper are real-valued. The overline symbol whi
h will indi
ate

polar-
oordinate representation of ve
tors is therefore non-ambiguous.
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We denote with an underline n-dimensional tuples β = (β1, . . . , βn) ∈ R
n
and suppose arithmeti


operations and inequalities su
h as γ < β are understood 
omponent-wise: e.g., β+k = (β1+k, . . . , βn+
k) for all k ∈ N; furthermore, we indi
ate, e.g., β > 0 if βi > 0 for all i ∈ {1, . . . , n}.

Finally, for a ∈ R, we denote its nonnegative real part as [a]+ = max(0, a).
For summability index 1 ≤ r ≤ ∞, the usual Lebesgue spa
es in P shall be denoted by Lr(P ), with

norm de�ned also for ve
tor �elds v : P → R
2
as ‖v‖rLr(P ) =

∫
P
‖v‖rℓr . We denote the usual Sobolev

spa
es of di�erentiation order s > 0 byW s,r(P ); we write Hs(P ) in the Hilbertian 
ase r = 2.

2. The Navier-Stokes equations and fun
tional setting. After the introdu
tion of the polygonal

domain in Se
tion 2.1, in Se
tion 2.2 we state the strong form of the boundary value problems, and of the

boundary operators, in Cartesian 
oordinates. Se
tion 2.3 is devoted to the saddle point variational form

of the boundary value problems of interest. It also reviews statements on existen
e and uniqueness of

weak solutions, under the small data hypothesis. In Se
tion 2.5 we introdu
e the 
orner-weighted spa
es

on whi
h the weighted analyti
 regularity results will be based.

2.1. Geometry of the domain. Let P be a polygon with straight sides and n ≥ 3 
orners C =
{c1, . . . , cn}. Let ΓD, ΓN , and ΓG be a disjoint partition of the boundary Γ = ∂P of P 
omprising ea
h

of nD ≥ 1, nN ≥ 0 and nG ≥ 0 many sides of P , respe
tively, with n = nD + nN + nG. We denote

by n : Γ → R
2
the exterior unit normal ve
tor to P , de�ned almost everywhere on Γ, whi
h belongs to

[L∞(Γ)]2, and by t : Γ → R
2

orrespondingly the unit tangent ve
tor to Γ, pointing in 
ounter
lo
kwise

tangential dire
tion.

2.2. The Navier-Stokes boundary value problems. We assume that a kinemati
 vis
osity ν > 0 is

given. For a velo
ity �eld u : P → R
2
and a s
alar p : P → R, de�ne

ε(u) :=
1

2

(
∇u+∇u⊤

)
, σ(u, p) := 2νε(u)− p Id2,

where Id2 is the 2× 2 identity matrix.

With this notation, we 
onsider in P , the stationary, in
ompressible Navier-Stokes equations

(2.1)

−∇ · σ(u, p) + (u · ∇)u = f in P ,

∇ · u = 0 in P ,

u = 0 on ΓD,

σ(u, p)n = 0 on ΓN ,

(σ(u, p)n) · t = 0 and u · n = 0 on ΓG.

Remark 2.1.From the identity

(2.2) 2∇ · ε(u) = ∆u+∇(∇ · u),

the boundary value problem (2.1) is equivalent to

(2.3)

−ν∆u+ (u · ∇)u +∇p = f in P ,

∇ · u = 0 in P ,

u = 0 on ΓD ,

σ(u, p)n = 0 on ΓN ,

(σ(u, p)n) · t = 0 and u · n = 0 on ΓG.

2.3. Variational Formulation. Weak solution of the NSE (2.1) in the sense of Leray-Hopf satisfy the

NSE (2.1) in variational form. To state it, we introdu
e standard Sobolev spa
es in P . Throughout the

remainder of this arti
le, we shall work under
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Assumption 1. The boundary value problems (2.1), (2.3) satisfy the following 
onditions.

1. P is a bounded, 
onne
ted polygon with a �nite number of straight sides, and Lips
hitz bound-

ary Γ = ∂P .

2. For ea
h 
orner c ∈ C, at least one of the two sides of P meeting in c is a Diri
hlet side with

no-slip BCs.

3. All interior opening angles at 
orners of P are in (0, 2π). In parti
ular, slit domains whi
h 
orre-

spond to opening angle 2π are ex
luded.

Assumption 1 implies that the Diri
hlet 
ase 
onsidered in [15℄ is a spe
ial 
ase of the present setting.

Furthermore, sin
e Item 2 implies that nD ≥ 1, it also ensures that the linearization of the Navier-Stokes

equations, i.e., the Stokes problem, admits unique variational velo
ity �eld solutions u, possibly with

pressure p unique up to 
onstants if Γ = ΓD.

We denote hen
eforth the spa
e of velo
ity �elds of variational solutions to the Navier-Stokes equa-

tions (2.1) as

(2.4) W =
{
v ∈ [H1(P )]2 : v = 0 on ΓD, v · n = 0 on ΓG

}
.

We denote by W ∗ ⊂ [H−1(P )]2 its dual, with identi�
ation of L2(P )2 ≃ [L2(P )2]∗. We also de�ne

Q = L2(P ) if |ΓD| < |Γ| (i.e., if not the entire boundary is a Diri
hlet boundary) and set Q = L2
0(P ) :=

L2(P )/R in the 
ase that Γ = ΓD.

We are interested in variational solutions (u, p) of (2.1). To state the 
orresponding variational for-

mulation, we introdu
e the usual bi- and trilinear forms:

(2.5)

A(u,v) := 2ν

∫

P

2∑

i,j=1

[ε(v)]ij [ε(v)]ijdx ,

B(u, p) := −
∫

P

p∇ · udx ,

O(w;u,v) :=

∫

P

((w · ∇)u) · vdx .

With these forms, we state the variational formulation of (2.1): �nd (u, p) ∈ W ×Q su
h that

(2.6)

A(u,v) +O(u;u,v) +B(v, p) =

∫

P

f · vdx ,

B(u, q) = 0 ,

for all v ∈ W and all q ∈ Q.

2.4. Existen
e and uniqueness of solutions to the NS equations. We introdu
e the 
oer
ivity 
on-

stant of the vis
ous (di�usion) term

Ccoer := inf
v∈W

‖v‖H1(P )=1

2

∫

P

2∑

i,j=1

[ε(v)]ij [ε(v)]ij

and the 
ontinuity 
onstant for the trilinear transport term

Ccont := sup
u,v,w∈W

‖u‖H1(P )=‖v‖H1(P )=‖w‖H1(P )=1

∫

P

((u · ∇)w) ·w.

We denote a ball of bounded fun
tions inW

M :=

{
v ∈ W : ‖v‖H1(P ) ≤

Ccoerν

2Ccont

}
.
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The following existen
e and uniqueness result is 
lassi
al, see e.g. [21, Theorem 3.2℄.

Theorem 2.2. Suppose that Assumption 1 holds and assume that ‖f‖W ∗ ≤ C2
coerν

2

4Ccont
. There exists a solution

(u, p) ∈ W × L2(P ) to (2.1) with right hand side f . The velo
ity �eld u is unique inM.

Remark 2.3.From Assumption 1, Item 1, and from known regularity results for the Navier-Stokes

equations in Lips
hitz domains (e.g. [6℄) it follows that the velo
ity �eld u has Cartesian 
omponents

whi
h are 
ontinuous in P and thus in parti
ular in a vi
inity of ea
h 
orner c ∈ C of P .

From Assumption 1, Item 2, it follows that for all 
orners c ∈ ∂P , the weak solution u satis�es

u(c) = 0.

As we assumed above nD ≥ 1, there is always at least one side of P where homogeneous Diri
hlet

(\no-slip") BCs are imposed.

2.5. Fun
tional setting. For x ∈ P and for i ∈ {1, . . . , n}, let ri(x) := dist(x, ci). We de�ne the 
orner

weight fun
tion

Φβ(x) :=

n∏

i=1

rβi

i (x).

We next introdu
e the 
orner-weighted fun
tion spa
es to be used for the regularity analysis. As the

notation used in the literature dealing with weighted Sobolev spa
es is not always uniform, we introdu
e

slightly di�erent de�nitions of the spa
es and dis
uss how they relate for the range of weight exponents

that is relevant to the present work.

2.5.1. Corner-weighted fun
tion spa
es in P . In the polygon P , for j, k ∈ N0 and γ ∈ R
n
, we

introdu
e homogeneous 
orner-weighted seminorms and asso
iated norms given by

(2.7) |v|2
Kj

γ(P )
:=
∑

|α|=j

‖Φ|α|−γ∂
αv‖2L2(P ), ‖v‖2Kk

γ(P ) :=

k∑

j=0

|v|2
Kj

γ(P )
.

Furthermore, we also require non-homogeneous, 
orner-weighted Sobolev norms. They are, for ℓ ∈ N0,

k ∈ N with k > ℓ, and β ∈ R
n
given by

(2.8) ‖v‖2
Hk,ℓ

β
(P )

:= ‖v‖2Hℓ−1(P ) +
∑

ℓ≤|α|≤k

‖Φβ+|α|−ℓ∂
αv‖2L2(P ),

with the 
onve
tion that the �rst term gets dropped when ℓ = 0. We therefore de�ne the homoge-

neous, 
orner-weighted Sobolev spa
esKk
γ(P ) and the non-homogeneous, 
orner-weighted Sobolev spa-


es Hk,ℓ
β (P ) as the spa
es of, respe
tively, weakly di�erentiable fun
tions with bounded Kk

γ(P ) and

Hk,ℓ
β (P ) norms. Finally, we introdu
e weighted analyti
 
lasses

(2.9) Bℓ
β(P ) :=

{
v ∈

⋂

k≥ℓ

Hk,ℓ
β (P ) : ∃C,A > 0 s. t.

‖Φβ+|α|−ℓ∂
αv‖L2(P ) ≤ CA|α|−ℓ(|α| − ℓ)!, ∀|α| ≥ ℓ

}
,

and

(2.10) K̟
γ (P ) :=

{
v ∈

⋂

k∈N0

Kk
γ(P ) : ∃C,A > 0 s. t. ‖Φ|α|−γ∂

αv‖L2(P ) ≤ CAkk!, ∀k ∈ N0

}
.
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The aforementioned weighted analyti
 
lasses are de�ned in terms of two 
onstants C > 0 and A > 0.
Evidently, the 
onstantC > 0 quanti�es the size of a fun
tion in terms of linear s
aling of norms, whereas

the 
onstant A > 0 relates to the size of the domain of analyti
ity.

2.5.2. Corner-weighted spa
es in se
tors. We shall require fun
tion spa
es in plane se
torsQδ,ω(c)
of opening ω ∈ (0, 2π), radius δ ∈ (0,∞] and with vertex c ∈ R

2
, de�ned as

Qδ,ω(c) =
{
x ∈ R

2 : r(x, c) ∈ (0, δ), ϑ(x) ∈ (0, ω)
}
.

We do not indi
ate the dependen
e on the vertex c when this is 
lear from the 
ontext.

For all k ∈ N0 and β ∈ R, we introdu
e the (homogeneous) 
orner-weighted, Hilbertian Kondratev

spa
eW k
β (Qδ,ω) of fun
tions v in Qδ,ω(c) with bounded norm given by

(2.11) ‖v‖2Wk
β (Qδ,ω) =

∑

|α|≤k

‖rβ−k+α1Dαv‖2L2(Qδ,ω).

Here, Dα = ∂α1
r ∂α2

ϑ denotes the partial derivative of order α ∈ N0 in polar 
oordinates. We write Lβ =

W 0
β . For k, ℓ ∈ N0 with k ≥ ℓ and for β ∈ R,Hk,l

β (Qδ,ω) denote the spa
e of fun
tions with �nite norm

‖v‖2
Hk,ℓ

β (Qδ,ω)
:= ‖v‖2Hℓ−1(Qδ,ω) +

∑

|α|≥ℓ

‖rα1+β−ℓDαv‖2L2(Qδ,ω),

where the �rst term is dropped if ℓ = 0. For ℓ ∈ N0 and β ∈ R, the 
orner-weighted analyti
 
lass with

weak derivatives in polar 
oordinates is given by

(2.12)

Bℓ
β(Qδ,ω) =

{
v ∈

∞⋂

k=ℓ

Hk,ℓ
β (Qδ,ω) : ∃C,A > 0 s. t. ‖rα1+β−ℓDαv‖L2(Qδ,ω) ≤ CA|α|−ℓ(|α| − ℓ)!, ∀|α| ≥ ℓ

}
.

In the se
torQδ,ω(c), the de�nition of the spa
esH
k,ℓ
β (Qδ,ω(c)) andBℓ

β(Qδ,ω(c)) follows from (2.9) by

repla
ingΦβ+|α|−ℓ in (2.8) and (2.9) with r(·, c)β+|α|−ℓ
. Similarly, the 
orner-weightedspa
esKk

γ(Qδ,ω(c))

and K̟
γ (Qδ,ω(c)) 
an be de�ned by repla
ing Φ|α|−γ in (2.7) and (2.10) with r(·, c)|α|−γ

.

2.5.3. Relation between 
orner-weighted spa
es. In this se
tion we 
olle
t results on imbeddings

between some of the 
orner-weighted spa
es we introdu
ed. They are of independent interest, and will

be required at various stages in the ensuing proofs of the analyti
 regularity shifts.

We postpone all proofs, for ease of reading, to Appendix A. The following impli
ation between polar

frame velo
ity 
omponents u in (1.1) and Cartesian 
omponents u holds.

Lemma 2.4. For all 0 < δ ≤ 1, ω ∈ (0, 2π), c ∈ R
2
, ℓ ∈ {0, 1, 2}, and β ∈ (0, 1), if u ∈ Bℓ

β(Qδ,ω(c)) and

u(c) = 0 when ℓ = 2, then there holds u ∈ Bℓ
β(Qδ,ω).

The reverse impli
ation, in the 
ase ℓ = 0, is treated in the following statement.

Lemma 2.5. For all 0 < δ ≤ 1, ω ∈ (0, 2π), c ∈ R
2
, and β ∈ (0, 1), if v ∈ [B0

β(Qδ,ω(c))]
2
then v ∈

B0
β(Qδ,ω(c)).

The following two lemmas about equivalen
e and imbedding between weighted spa
es will be used

later. For the proof of the �rst lemma see [2, Theorem 1.1, Theorem 2.1, Lemma A.2℄, and for the proof

of the se
ond lemma see [2, Lemma 1.1, Lemma A.1, Lemma A.2℄ and [3, Se
tion 2℄.

Lemma 2.6. Let 0 < δ ≤ 1, ω ∈ (0, 2π), β ∈ (0, 1), c ∈ R
2
. Then the following equivalen
e relations hold

for any ℓ ∈ {0, 1, 2} and N0 ∋ k ≥ ℓ:

1. v ∈ Hk,ℓ
β (Qδ,ω(c)) ⇐⇒ v ∈ Hk,ℓ

β (Qδ,ω(c)).
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2. v ∈ Bℓ
β(Qδ,ω(c)) ⇐⇒ v ∈ Bℓ

β(Qδ,ω(c)).

3. v ∈ H1,1
β (Qδ,ω(c)) ⇐⇒ v ∈ W 1

β (Qδ,ω(c)).

Lemma 2.7. Let 0 < δ ≤ 1, ω ∈ (0, 2π), β ∈ (0, 1), c ∈ R
2
. Then the following imbedding relations hold:

1. W 2
β (Qδ,ω(c)) ⊂ H2,2

β (Qδ,ω(c)) ⊂ C0(Qδ,ω(c)).

2. If v ∈ H2,2
β (Qδ,ω(c)) and v(c) = 0, then v ∈ W 2

β (Qδ,ω(c)).

The following lemma asserts that fun
tions that belong to 
orner-weighted Kondrat'ev spa
es with

non-homogeneous weights for a 
ertain range of indi
es, with the additional requirement of the fun
tion

vanishing at the vertex for se
ond order spa
es, also belong to the 
orresponding spa
es with homoge-

neous weights. We refer to [13, Se
tion 7.1℄ for an in-depth presentation.

Lemma 2.8. Let 0 < δ ≤ 1, ω ∈ (0, 2π), β ∈ (0, 1), c ∈ R
2
, k ∈ {1, 2}, and v ∈ Hk,k

β (Qδ,ω(c)). Let

furthermore v(c) = 0 when k = 2. Then, v ∈ Kk
k−β(Qδ,ω(c)).

3. The Stokes equation in a se
tor. Consider, for c ∈ ∂P , δ ∈ (0, 1) and ω ∈ (0, 2π), the se
tor

Qδ,ω(c). Denote by Γ1 := {x ∈ R
2 : r(x, c) ∈ (0, δ), ϑ(x) = 0} and Γ2 := {x ∈ R

2 : r(x, c) ∈ (0, δ), ϑ(x) =
ω} the two edges meeting at c. Let also Γδ = Γ1 ∪Γ2. As all the results in this se
tion are independent of

c, we omit the dependen
e of the se
tor in the notation and write Qδ,ω = Qδ,ω(c).
We 
onsider variational solutions to the Stokes problem in Qδ,ω

Lσ
St(u, p) =

(
f

h

)
in Qδ,ω , B(∇,u, p) = 0 on Γδ .

This reads in 
omponents

(3.1)

−∇ · σ(u, p) = f in Qδ,ω

∇ · u = h in Qδ,ω

u = 0 on ΓS
D

σ(u, p)n = g on ΓS
N

(σ(u, p)n) · t = 0 and u · n = 0 on ΓS
G,

where ΓS
D,ΓS

N ,ΓS
G ∈ {∅,Γ1,Γ2} are pairwise disjoint and su
h that ΓS

D ∪ ΓS
N ∪ ΓS

G = Γδ. We observe

that in (3.1) we did not in
lude inhomogeneous boundary data on ΓS
G, as this is the physi
al 
ase of

the \no-slip" BCs. We also observe that the nonzero boundary data g on ΓS
N will appear in the analyti


regularity shift argument in the proof of Lemma 4.7.

For the Stokes problem in Qδ,ω, the following regularity result is a slight extension of [9, Theorem

5.2℄. The proof is along the lines of that of the 
ited theorem, by lo
alizingu and p near ea
h 
orner c and
solving a Stokes problem in a 
orresponding in�nite se
tor; for a detailed development, see [11, Lemma

5.1.1℄.

Theorem 3.1. Let ω ∈ (0, 2π) and βf ∈ (0, 1). There exists a 
onstant β ∈ (βf , 1) su
h that, for all δ > 0,
there exists a 
onstant Csec > 0 su
h that for all f ∈ Lβf

(Qδ,ω) and (u, p) satisfying (3.1) inQδ,ω and with right

hand side (f , 0),

(3.2) ‖u‖W 2
β (Qδ/2,ω) + ‖p‖W 1

β (Qδ/2,ω)

≤ Csec

(
‖f‖Lβ(Qδ,ω) + ‖u‖H1(Qδ,ω\Qδ/2,ω) + ‖p‖L2(Qδ,ω\Qδ/2,ω) + ‖g‖

W
1/2
β (ΓS

N )

)

Remark 3.2.By relation (2.2), if (u, p) ∈ [W 2
β (Qδ,ω)]

2 ×W 1
β (Qδ,ω) is a solution of

L∆
St(u, p) =

(
f + ν∇h

h

)
in Qδ,ω , B(u, p) =




0

g

0




on ΓS
D × ΓS

N × ΓS
G,
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or, in 
omponents,

(3.3)

−ν∆u+∇p = f + ν∇h in Qδ,ω

∇ · u = h in Qδ,ω

u = 0 on ΓS
D

σ(u, p)n = g on ΓS
N

(σ(u, p)n) · t = 0 and u · n = 0 on ΓS
G,

then it is also a solution of (3.1). Estimate (3.2) therefore also holds for solutions of (3.3) when h = 0.

4. Analyti
 regularity of solutions to the NS equations. We now prove our main result, i.e., the

weighted analyti
ity of solutions to the Navier-Stokes equations (2.1) . First, we will devote our attention

to the nonlinear transport term, as treating this term is, obviously, the main diÆ
ulty with respe
t to the

analysis of the Stokes problem.

4.1. Estimate of the nonlinear term. We start by rewriting the quadrati
 nonlinearity (u · ∇)u in

polar 
oordinates and proje
ting its Cartesian 
omponents into the polar frame as in (1.1). We note here

that the gradient operator in Cartesian 
oordinates is proje
ted to a polar-frame by (
f. (1.1))

(4.1) ∇ = A−1

(
∂r

r−1∂ϑ

)
.

Lemma 4.1. The following equality holds:

(4.2) (u · ∇)u =

(
ur∂rur +

1
r (uϑ∂ϑur − u2

ϑ)
ur∂ruϑ + 1

r (uϑ∂ϑuϑ + uruϑ)

)
.

Proof.We have

(u · ∇)u = A

((
u · (A−⊤A−1

(
∂r

r−1∂ϑ

)
)

)
A−1u

)

= A

((
u ·
(

∂r
r−1∂ϑ

))
A−1u

)

= A

[(
cosϑur∂rur − sinϑur∂ruϑ

sinϑur∂rur + cosϑur∂ruϑ

)

+
1

r

(
cosϑuϑ∂ϑur − sinϑuϑur − sinϑuϑ∂ϑuϑ − cosϑu2

ϑ

sinϑuϑ∂ϑur + cosϑuϑur + cosϑuϑ∂ϑuϑ − sinϑu2
ϑ

)]

=

(
ur∂rur +

1
r (uϑ∂ϑur − u2

ϑ)
ur∂ruϑ + 1

r (uϑ∂ϑuϑ + uruϑ)

)
.

In order to treat the individual nonlinear terms arising from the polar representation of the transport

term of the Navier-Stokes equation obtained above, we need a te
hni
al result on weighted interpolation

estimates in plane se
tors. This is the following statement, the polar version of [15, Lemma 1.10℄.

Lemma 4.2. Let δ, ω ∈ R su
h that 0 < δ ≤ 1 and ω ∈ (0, 2π). For all β̃2, β̃1 ∈ R su
h that β̃2 ≥ β̃1 + 1/2,
there exists a 
onstant Cint > 0 su
h that, for all α ∈ N

2
0 and all fun
tions ϕ su
h that

max
|η|≤1

‖rβ̃1+α1+η1Dα+ηϕ‖L2(Qδ,ω) < ∞,
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the following bound holds:

‖rβ̃2+α1Dαϕ‖L4(Qδ,ω) ≤ Cint‖rβ̃1+α1Dαϕ‖1/2L2(Qδ,ω)

×



∑

|η|≤1

‖rβ̃1+α1+η1Dα+ηϕ‖1/2L2(Qδ,ω) + α
1/2
1 ‖rβ̃1+α1Dαϕ‖1/2L2(Qδ,ω)


 .

Proof.We set δ = 1. Consider the dyadi
 partition given by the sets

Sj :=
{
x ∈ Q1,ω : 2−j−1 < r(x) < 2−j

}
, j ∈ N0,

and denote the linear maps Ψj : Sj → S0
. Denote ϕ̂j := ϕ ◦ Ψ−1

j : S0 → R and write D̂α
for derivation

with respe
t to polar 
oordinates (r, ϑ) in S0
. Then, by s
aling, for any q ∈ [1,∞),

(4.3) ‖rβ̃2+α1Dαϕ‖Lq(Sj) = 2−j(β̃2+2/q)‖rβ̃2+α1D̂αϕ̂‖Lq(S0).

Furthermore, the following interpolation inequality holds in S0
: there exists C0 > 0 su
h that

(4.4) ‖v‖L4(S0) ≤ C0‖v‖1/2H1(S0)‖v‖
1/2
L2(S0)

holds for all v ∈ H1(S0). Sin
e in addition by (4.1) holds∇ = B∇̄, there also holds, for all v ∈ H1(S0),

(4.5) ‖v‖2H1(S0) ≤ 16
(
‖v‖2L2(S0) + ‖∂rv‖2L2(S0) + ‖∂ϑv‖2L2(S0)

)
.

Combining (4.4) and (4.5) and 
hoosing v = rα1Dαϕ gives

‖rα1Dαϕ‖L4(S0)

≤ 2C0‖rα1Dαϕ‖1/2L2(S0)


∑

|η|≤1

‖Dη(rα1Dαϕ)‖2L2(S0)




1/4

≤ 2C0‖rα1Dαϕ‖1/2L2(S0)


∑

|η|≤1

‖rα1Dα+ηϕ‖2L2(S0) + α2
1‖rα1−1Dαϕ‖2L2(S0)




1/4

Therefore, using the bound 2−[a]+ ≤ r(x)a ≤ 2[a]+ valid for all x ∈ S0
and all a ∈ R,

‖rβ̃2+α1Dαϕ‖L4(S0) ≤ 2[β̃2]++[β̃1]++1/22C0‖rβ̃1+α1Dαϕ‖1/2L2(S0)

×



∑

|η|≤1

‖rβ̃1+α1+η1Dα+ηϕ‖2L2(S0) + α2
1‖rβ̃1+α1Dαϕ‖2L2(S0)




1/4

.
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We denote C1 := 2[β̃2]++[β̃1]++1/22C0. Using this last inequality and (4.3) twi
e,

‖rβ̃2+α1Dαϕ‖L4(Sj)

≤ 2−j(β̃2+1/2)‖rβ̃2+α1D̂αϕ̂‖L4(S0)

≤ 2−j(β̃2+1/2)C1‖rβ̃1+α1D̂αϕ̂j‖1/2L2(S0)

×


∑

|η|≤1

‖rβ̃1+α1+η1D̂α+ηϕ̂j‖2L2(S0) + α2
1‖rβ̃1+α1D̂αϕ̂j‖2L2(S0)




1/4

≤ C12
−j(β̃2−β̃1−1/2)‖rβ̃1+α1Dαϕ‖1/2L2(Sj)

×



∑

|η|≤1

‖rβ̃1+α1+η1Dα+ηϕ‖2L2(Sj) + α2
1‖rβ̃1+α1Dαϕ‖2L2(Sj)




1/4

.

Sin
e β̃2 − β̃1 − 1/2 ≥ 0, we 
an 
on
lude that

∑

j∈N0

‖rβ̃2+α1Dαϕ‖4L4(Sj) ≤ C4
1


∑

j∈N0

‖rβ̃1+α1Dαϕ‖2L2(Sj)




×


∑

|η|≤1

∑

j∈N0

‖rβ̃1+α1+η1Dα+ηϕ‖2L2(Sj) + α2
1

∑

j∈N0

‖rβ̃1+α1Dαϕ‖2L2(Sj)


 .

Taking the fourth root of both sides of the inequality above 
on
ludes the proof for the 
ase δ = 1. The
general 
ase δ ∈ (0, 1] follows by s
aling (with 
onstant Cint depending on δ).

Using the interpolation result obtained above, we 
an estimate, under a regularity assumption on u, the

individual terms appearing in (4.2). This is done in the following Lemma 4.3 and Corollary 4.4.

Lemma 4.3. Let β ∈ (0, 1), 0 < δ ≤ 1, ω ∈ (0, 2π). There exists Cd > 0 su
h that for all u ∈ W 2
β (Qδ,ω)

su
h that ‖u‖W 2
β(Qδ,ω) ≤ 1 and su
h that there exists Au, Eu > 1 and k ∈ N su
h that

(4.6) ‖rβ+α1−2Dαu‖L2(Qδ,ω) ≤ A|α|−2
u Eα2

u (|α| − 2)!, ∀α ∈ N
2
0 : 2 ≤ |α| ≤ k + 1,

and for all α, η ∈ N
2
0 su
h that |η| ≤ 1 and |α| ≤ k − |η|,

(4.7) ‖rβ/2−1+α1Dα(rη1Dηu)‖L4(Qδ,ω) ≤ Cd(|α|+ 1)1/2A[|α|+|η|−3/2]+
u Eα2+η2+1/2

u [|α|+ |η| − 2]+!.

Proof.We start by proving the 
ase |η| = 0. Applying Lemma 4.2 with β̃2 = β/2− 1 and β̃1 = β − 2

(note that β ∈ (0, 1) implies β̃2 > β̃1 + 1/2), for all |α| ≤ k,

(4.8)

‖rβ/2−1+α1Dαu‖L4(Qδ,ω) ≤ Cint‖rβ−2+α1Dαu‖1/2L2(Qδ,ω)

×



∑

|η|≤1

‖rβ−2+α1+η1Dα+ηu‖1/2L2(Qδ,ω) + α
1/2
1 ‖rβ−2+α1Dαu‖1/2L2(Qδ,ω)


 .



12 HE ANDMARCATI AND SCHWAB

When |α| ≥ 2, using (4.6) , we have

‖rβ/2−1+α1Dαu‖L4(Qδ,ω)

≤ CintA
|α|−3/2
u Eα2+1/2

u (2(|α| − 1)!1/2 + (1 + α
1/2
1 )(|α| − 2)!1/2)(|α| − 2)!1/2

≤ CintA
|α|−3/2
u Eα2+1/2

u (2(|α| − 1)1/2 + 1 + α
1/2
1 )(|α| − 2)!

≤ CintA
|α|−3/2
u Eα2+1/2

u 4|α|1/2(|α| − 2)!.

If |α| ≤ 1, instead, it follows from ‖u‖W 2
β
(Qδ,ω) ≤ 1 and (4.8) that

‖rβ/2−1+α1Dαu‖L4(Qδ,ω) ≤ Cint(2 + α
1/2
1 ) ≤ 4Cint.

This proves (4.7) for |η| = 0, i.e., that for all |α| ≤ k,

(4.9) ‖rβ/2−1+α1Dαu‖L4(Qδ,ω) ≤ 4CintA
[|α|−3/2]+
u Eα2+1/2

u (|α| + 1)1/2[|α| − 2]+!.

Consider now the 
ase |η| = 1. We have

‖rβ/2−1+α1Dα(rη1Dηu)‖L4(Qδ,ω) ≤ ‖rβ/2−1+α1+η1Dα+ηu‖L4(Qδ,ω) + α1η1‖rβ/2−1+α1Dαu‖L4(Qδ,ω).

For all |α| ≤ k − 1, we 
an apply (4.9) to the two terms at the right hand side above:

α1‖rβ/2−1+α1Dαu‖L4(Qδ,ω) ≤ 4CintA
[|α|−3/2]+
u Eα2+1/2

u (|α|+ 1)1/2α1[|α| − 2]+!

≤ 4CintA
[|α|−1/2]+
u Eα2+η2+1/2

u (|α|+ 1)1/22[|α| − 1]+!,

and

‖rβ/2−1+α1+η1Dα+ηu‖L4(Qδ,ω) ≤ 4CintA
[|α|−1/2]+
u Eα2+η2+1/2

u (|α|+ 1)1/2[|α| − 1]+!.

Hen
e, for all |α| ≤ k − 1 and all |η| = 1,

‖rβ/2−1+α1Dα(rη1Dηu)‖L4(Qδ,ω) ≤ 12CintA
[|α|−1/2]+
u Eα2+η2+1/2

u (|α|+ 1)1/2[|α| − 1]+!,

whi
h 
on
ludes the proof, with Cd = 12Cint.

Corollary 4.4. Let β ∈ (0, 1), 0 < δ ≤ 1, ω ∈ (0, 2π), and let u ∈ W 2
β (Qδ,ω) su
h that ‖u‖W 2

β(Qδ,ω) ≤ 1.

Suppose that there exists Au, Eu > 1 and k ∈ N su
h that

‖rβ+α1−2Dαu‖L2(Qδ,ω) ≤ A|α|−2
u Eα2

u (|α| − 2)!, ∀α ∈ N
2
0 : 2 ≤ |α| ≤ k + 1.

Then, for all α ∈ N
2
0 su
h that |α| ≤ k

(4.10) ‖rβ/2−1+α1Dα(ru)‖L4(Qδ,ω) ≤ 4Cd(|α|+ 1)1/2A[|α|−3/2]+
u Eα2+1/2

u [|α| − 2]+!.

Proof.We start from the bound

‖rβ/2−1+α1Dα(ru)‖L4(Qδ,ω) ≤ ‖rβ/2+α1Dαu‖L4(Qδ,ω) + α1‖rβ/2−1+α1D(α1−1,α2)u‖L4(Qδ,ω),

where the se
ond term is absent if α1 = 0. From Lemma 4.3, it follows that

‖rβ/2+α1Dαu‖L4(Qδ,ω) ≤ δCd(|α|+ 1)1/2A[|α|−3/2]+
u Eα2+1/2

u [|α| − 2]+!
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and that (when α1 ≥ 1)

α1‖rβ/2−1+α1D(α1−1,α2)u‖L4(Qδ,ω)

≤ δα1|α|1/2A[|α|−5/2]+
u Eα2+1/2

u [|α| − 3]+!

≤ max
j∈N

(
j3/2

(j + 1)1/2 max(j − 2, 1)

)
(|α|+ 1)1/2A[|α|−3/2]+

u Eα2+1/2
u [|α| − 2]+!

≤ 3

2

√
3(|α|+ 1)1/2A[|α|−3/2]+

u Eα2+1/2
u [|α| − 2]+!

Equation (4.10) follows from the above, bounding 1 + 3
2

√
3 ≤ 4 for ease of notation.

We are now in position to estimate the weighted norms of the nonlinear term in the se
torQδ,ω(c), under
the assumptions of analyti
 bounds on the weighted norms of u. Initially, we do this under the assump-

tion that u ∈ W 2
β (Qδ,ω(c))

2
(whi
h implies that u vanishes at the vertex of the se
tor) in Lemma 4.5.

Lemma 4.5 (Weighted analyti
 estimates for the quadrati
 nonlinearity in polar frame).

Assume that β ∈ (0, 1), 0 < δ ≤ 1, ω ∈ (0, 2π).
Then, there exists Ct > 0 su
h that for all w : Qδ,ω → R

2
, all k ∈ N, and all Aw, Ew ≥ 1 su
h that

‖w‖W 2
β (Qδ,ω) ≤ 1 and

{
‖rα1+β−2Dαwr‖L2(Qδ,ω) ≤ A|α|−2

w Eα2
w (|α| − 2)!

‖rα1+β−2Dαwϑ‖L2(Qδ,ω) ≤ A|α|−2
w Eα2

w (|α| − 2)!,
for all2 ≤ |α| ≤ k + 1,

the following inequality holds:

‖rα1+β−2Dα(r2(w · ∇)w))‖L2(Qδ,ω) ≤ CtA
|α|−1
w Eα2+2

w |α|!, ∀α ∈ N
2
0 : 1 ≤ |α| ≤ k.

Proof. By Lemma 2.7, the bound ‖w‖W 2
β (Qδ,ω) ≤ 1 implies w ∈ [C0(Qδ,ω)]

2
and thus ‖w‖L∞(Qδ,ω) <

+∞.

Next, we re
all from Lemma 4.1 that

(4.11) r2(w · ∇)w =

(
r2wr∂rwr + r(wϑ∂ϑwr − w2

ϑ)
r2wr∂rwϑ + r(wϑ∂ϑwϑ + wrwϑ)

)
.

We will estimate the individual terms.

Estimate of rw2
ϑ and rwrwϑ. Let v ∈ {wr, wϑ}. From (4.10), Lemma 4.3 and Corollary 4.4 it follows

that

‖rα1+β−2Dα(rwϑv))‖L2(Qδ,ω)

≤
|α|∑

j=0

∑

|η|=j,η≤α

(
α

η

)
‖rη1+β/2−1Dη(rv)‖L4(Qδ,ω)‖rα1−η1+β/2−1Dα−ηwϑ‖L4(Qδ,ω)

≤
|α|∑

j=0

∑

|η|=j,η≤α

(
α

η

)
4C2

d(|η|+ 1)1/2A[|η|−3/2]+
w Eη2+1/2

w [|η| − 2]+!

× (|α| − |η|+ 1)1/2A[|α|−|η|−3/2]+
w Eα2−η2+1/2

w [|α| − |η| − 2]+!

≤ 4C2
dA

[|α|−3/2]+
w Eα2+1

w

×
|α|∑

j=0

∑

|η|=j,η≤α

(
α

η

)
j!(|α| − j)!

(j + 1)1/2(|α| − j + 1)1/2

max(j(j − 1), 1)max((|α| − j)(|α| − j − 1), 1)
.
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Here we have used [|η| − 3/2]+ + [|α| − |η| − 3/2]+ ≤ [|α| − 3/2]+ for all η ≤ α.
Now, for all j ∈ N0,

(j + 1)1/2

max(j(j − 1), 1)
=

(j + 1)1/2 max(j, 1)1/2

max(j − 1, 1)

1

max(j, 1)3/2
≤

√
6

1

max(j, 1)3/2
.

In addition,

∑

|η|=j,η≤α

(
α

η

)
=

(|α|
j

)
.

Therefore,

‖rα1+β−2Dα(rwϑv))‖L2(Qδ,ω)

≤ 24C2
dA

[|α|−3/2]+
w Eα2+1

w

|α|∑

j=0

j!(|α| − j)!
1

max(j, 1)3/2 max(|α| − j, 1)3/2

∑

|η|=j,η≤α

(
α

η

)
.

≤ 24C2
dA

[|α|−3/2]+
w Eα2+1

w |α|!
|α|∑

j=0

1

max(j, 1)3/2 max(|α| − j, 1)3/2
.

We have, by the Cau
hy-S
hwarz inequality,

|α|∑

j=0

1

max(j, 1)3/2 max(|α| − j, 1)3/2
≤

|α|∑

j=0

1

max(j, 1)3
≤ 1 + ζ(3) ≤ 5

2
.

We 
on
lude that

(4.12) ‖rα1+β−2Dα(rw2
ϑ))‖L2(Qδ,ω) ≤ 60C2

dA
[|α|−3/2]+
w Eα2+1

w |α|!

and

(4.13) ‖rα1+β−2Dα(rwϑwr))‖L2(Qδ,ω) ≤ 60C2
dA

[|α|−3/2]+
w Eα2+1

w |α|!.

Estimate of the remaining terms. Let v, w ∈ {wr, wϑ} and let ξ ∈ N
2
0 su
h that |ξ| = 1. We have

(4.14)

‖rα1+β−2Dα(r1+ξ1wDξv))‖L2(Qδ,ω)

≤
|α|∑

j=1

∑

|η|=j,η≤α

(
α

η

)
‖rη1+β/2−1Dη(rw)‖L4(Qδ,ω)‖rα1−η1+β/2−1Dα−η(rξ1Dξv)‖L4(Qδ,ω)

+ ‖rα1+β−1wDα(rξ1Dξv)‖L2(Qδ,ω)

= (I) + (II).

We bound the sum in term (I) by similar te
hniques as above, using Lemma 4.3 and Corollary 4.4:

(I) ≤
|α|∑

j=1

∑

|η|=j,η≤α

(
α

η

)
4C2

d(|η|+ 1)1/2A[|η|−3/2]+
w Eη2+1/2

w [|η| − 2]+!

× (|α| − |η|+ 1)1/2A[|α|−|η|−1/2]+
w Eα2−η2+ξ2+1/2

w [|α| − |η| − 1]+!

≤ 4C2
dA

[|α|−3/2]+
w Eα2+1+ξ2

w

|α|∑

j=1

∑

|η|=j,η≤α

(
α

η

)
j!(|α| − j)!

(j + 1)1/2(|α| − j + 1)1/2

max(j(j − 1), 1)max(|α| − j, 1)
,
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where we have used that

[|η| − 3/2]+ + [|α| − |η| − 1/2]+ ≤ [|α| − 3/2]+, ∀η ≤ α : |η| ≥ 1.

Sin
e

(j + 1)1/2

max(j, 1)
=

(j + 1)1/2

max(j, 1)1/2
1

max(j, 1)1/2
≤

√
2

1

max(j, 1)1/2
,

and using H
�
older's inequality, we obtain

(4.15)

(I) ≤ 8C2
dA

[|α|−3/2]+
w Eα2+ξ2+1

w |α|!
|α|∑

j=1

1

max(j − 1, 1)max(j, 1)1/2 max(|α| − j, 1)1/2

≤ 8C2
dA

[|α|−3/2]+
w Eα2+ξ2+1

w |α|!
|α|∑

j=1

1

max(j − 1, 1)3/2max(|α| − j, 1)1/2

≤ 8C2
dA

[|α|−3/2]+
w Eα2+ξ2+1

w |α|!


1 +

|α|−1∑

j=1

j−2




3/4
1 +

|α|−1∑

j=1

j−2




1/4

≤ 24C2
dA

[|α|−3/2]+
w Eα2+ξ2+1

w |α|!,

where we have used 1 + ζ(2) ≤ 3. We now estimate term (II) in (4.14). Remark that

(4.16) (II) ≤ ‖rw‖L∞(Qδ,ω)‖rα1+β−2Dα(rξ1Dξv)‖L2(Qδ,ω).

In addition,

‖rα1+β−2Dα(rξ1Dξv)‖L2(Qδ,ω)

≤ ‖rα1+ξ1+β−2Dα+ξv‖L2(Qδ,ω) + α1ξ1‖rα1+β−2Dαv‖L2(Qδ,ω)

≤ A|α|−1
w Eα2+ξ2

w (|α| − 1)! + ξ1|α|A|α|−1
w Eα2

w [|α| − 2]+!

≤ 3A|α|−1
w Eα2+ξ2

w (|α| − 1)!.

Hen
e, from (4.16),

(4.17) (II) ≤ 3δ‖w‖L∞(Qδ,ω)A
|α|−1
w Eα2+ξ2

w (|α| − 1)!.

It follows from (4.14), (4.15), and (4.17) that, for any v, w ∈ {wr, wϑ} and any multi-index ξ su
h that

|ξ| = 1,

(4.18) ‖rα1+β−2Dα(r1+ξ1wDξv))‖L2(Qδ,ω) ≤ (24C2
d + 3‖w‖L∞(Qδ,ω))A

|α|−1
w Eα2+1+ξ2

w |α|!.

The 
ombination of the formulation (4.11) and of the bounds (4.12), (4.13), and (4.18) 
on
ludes the

proof, with

Ct = 6max
(
60C2

d, 24C
2
d + 3‖w‖L∞(Qδ,ω)

)
.
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4.2. Analyti
 regularity in the polygon P . We 
an now prove the main result of this paper. With

analyti
ity in the interior and up to edges of P being 
lassi
al, we 
on
entrate on the se
tors near the


orners of the domain. We de�ne for δ ∈ (0, 1),

(4.19) Si
δ := Qδ,ωi(ci), i = 1, . . . , n.

We prepare the bootstrapping argument required for establishing analyti
 regularity by proving the reg-

ularity of the solution (u, p) in the weighted spa
es [W 2
β (S

i
δ)]

2 ×W 1
β (S

i
δ).

Lemma 4.6. Let β
f
∈ (0, 1)n and f ∈ [Lβ

f
(P )]2 ∩W ∗

su
h that ‖f‖W ∗ ≤ C2
coerν

2

4Ccont
. Suppose that Assump-

tion 1 holds. Let (u, p) be the solution to (2.1) with right hand side f .

Then, there exists β = (β1, . . . , βn) ∈ (0, 1)n su
h that for all 0 < δ ≤ 1 with δ < 1
4 mini,j |cj − ci| holds

(u, p) ∈ [W 2
βi
(Si

δ)]
2 ×W 1

βi
(Si

δ), ∀i ∈ {1, . . . , n}.

Proof. For all s ∈ (1, 2) and for t = (1/s− 1/2)−1
,

‖f‖Ls(P ) ≤ ‖Φ−β
f
‖Lt(P )‖Φβ

f
f‖L2(P ).

Therefore f ∈ [Lβ
f
(P )]2 implies

f ∈ [Ls(P )]2, ∀s ∈
(
1,

2

1 + maxβ
f

)
.

In addition, u ∈ [H1(P )]2 implies by Sobolev imbedding u ∈ [Lt(P )]2 for all t ∈ [1,∞). By H
�
older's

inequality, 
hoosing t ∈ [1,∞) and s = (1/2 + 1/t)−1
,

‖(u · ∇)u‖Ls(P ) ≤ ‖u‖Lt(P )‖∇u‖L2(P ) < ∞

whi
h implies (u · ∇)u ∈ [Ls(P )]2, for all s ∈ [1, 2). It follows from [21, Corollary 4.2℄ that there exists

q > 1 su
h that (u, p) ∈ [W 2,q(P )]2×W 1,q(P ). This in turn implies, by Sobolev imbedding, u ∈ [L∞(P )]2

hen
e (u · ∇)u ∈ [L2(P )]2. We 
an 
on
lude by applying Theorem 3.1 to ea
h 
orner se
tor: for ea
h

i ∈ {1, . . . , n}, there exists β ∈ ((β
f
)i, 1) su
h that

‖u‖W 2
β (Si

δ)
+ ‖p‖W 1

β(S
i
δ)

≤ Csec

(
‖f‖Lβ(Si

δ)
+ ‖(u · ∇)u‖Lβ(Si

δ)
+ ‖u‖H1(P ) + ‖p‖L2(P )

)
.

Now, sin
e f ∈ [Lβ
f
(P )]2 and (u · ∇)u ∈ [L2(P )]2, it holds that f ∈ [Lβ(S

i
δ)]

2
and (u · ∇)u ∈ [Lβ(S

i
δ)]

2
;

hen
e, the right hand side of the inequality above is bounded. Using [10, Corollary 4.2℄ to bound the

norm of the Cartesian version of the 
ux 
on
ludes the proof.

We prove weighted analyti
 estimates in ea
h 
orner se
tor.

Lemma 4.7. Let β
f
∈ (0, 1)n and f ∈ [B0

β
f

(P )]2∩W ∗
su
h that ‖f‖W ∗ ≤ C2

coerν
2

4Ccont
. Suppose that Assump-

tion 1 holds and let (u, p) be the solution to (2.1) with right hand side f .

Then, there exists β ∈ (0, 1)n, with β ≥ β
f
, δ ∈ (0, 1], and Au, Eu > 0 su
h that, for all i ∈ {1, . . . , n},

‖rβi+α1−2
i Dαu‖L2(Si

δ/2
) ≤ A|α|−2

u E[α2−4/3]+
u (|α| − 2)!, ∀α ∈ N

2
0 : |α| ≥ 2,

and

‖rβi+α1−1
i Dαp‖L2(Si

δ/2
) ≤ A|α|−1

u Eα2
u (|α| − 1)!, ∀α ∈ N

2
0 : |α| ≥ 1.
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Proof. Choose β = (β1, . . . , βn) ∈ (0, 1)n, βi ≥ (β
f
)i, su
h that, for all i ∈ {1, . . . , n}, Theorem 3.1

holds in Q1,ωi(ci) with β = βi. Fix 0 < δP ≤ 1 su
h that δP < 1
4 mini,j |cj − ci| and su
h that

(4.20) ‖u‖W 2
βi

(Si
δP

) ≤ 1, ‖p‖W 1
βi

(Si
δP

) ≤ 1, ∀i ∈ {1, . . . , n}.

Note that this is possible thanks to Lemma 4.6. The proof pro
eeds by indu
tion, in ea
h of the 
orner

se
tors. Fix i ∈ {1, . . . , n}. We write r(x) := ri(x) = |x− ci| for 
ompa
tness.

Before setting up the indu
tive bootstrap argument, we rewrite the NSE in polar 
oordinates and

rearrange the equations in the se
tor Si
δP

as

L∆
St(u, p) =

(
A(f − (u · ∇)u)

0

)
in Si

δP ,(4.21a)

B(u, p) = 0 on Γδ,(4.21b)

This set of equations has the following spe
i�
 form:

− 1

r2

(
ν((r∂r)

2 + ∂2
ϑ − 1) −2ν∂ϑ

2ν∂ϑ ν((r∂r)
2 + ∂2

ϑ − 1)

)(
ur

uϑ

)
+

1

r

(
r∂r
∂ϑ

)
p = f − (u · ∇)u in Si

δP ,(4.22)

1

r
((r∂r + 1)ur + ∂ϑuϑ) = 0 in Si

δP ,(4.23)

u = 0 on ∂Si
δP ∩ ΓD.(4.24)

On ∂Si
δP

∩ ΓN and ∂Si
δP

∩ ΓG, respe
tively, there holds

(
ν(r−1∂ϑur + ∂ruϑ − r−1uϑ

−p+ 2νr−1(∂ϑuϑ + ur))

)
= 0(4.25)

and

(
uϑ

ν(∂ruϑ + 1
r∂ϑur − 1

ruϑ)

)
= 0 .(4.26)

See Appendix B for details of the derivation.

The analyti
ity ofu and p inP \
(⋃n

i=1 S
i
δP /2

)
and the analyti
ity assumption onf , i.e., f ∈ [B0

β
f

(P )]2 ⊂
[B0

β(P )]2 (when
e f ∈ [B0
βi
(Si

δP
)]2 by Lemma 2.5), imply that there existsA1 > 0 su
h that, for all |α| ≥ 1,

‖rβi+α1−2Dα(r2f )‖L2(Si
δP

) ≤ A
|α|
1 |α|!,(4.27a)

‖rβi+α1−2Dα(r2(u · ∇)u)‖L2(Si
δP

\Si
δP /2

) ≤ A
|α|
1 |α|!,(4.27b)

‖rβi+α1−1Dαp‖L2(Si
δP

\Si
δP /2

) ≤ A
|α|−1
1 (|α| − 1)!,(4.27
)

and, for all k ∈ N,

(4.27d) ‖rk∂k
ru‖H1(Si

δP
\Si

δP /2
) ≤ Ak

1k!.

De�ne the 
onstants

(4.28a) Eu = max

(
2, 8

(
1 +

1

ν

)3/2

, (8ν)3/2

)
,
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and

(4.28b) Au = max

(
22CsecA1, 2Csec(Ct + 9)E2

u,
4

ν
A1, 4

(
1

ν
(Ct + 2) + 4

)
E4/3

u ,

4A1, 4(Ct + 1 + 3ν)Eu, 2

)
.

We now formulate our indu
tion assumption.

Indu
tion assumption. For k̂ ∈ N and k2 ∈ N with k2 ≤ k̂, we sayHk̂,k2
holds if

(4.29a)

‖rβi+α1−2
i Dαur‖L2(Si

δP /2
) ≤ A|α|−2

u E[α2−4/3]+
u (|α| − 2)!,

‖rβi+α1−2
i Dαuϑ‖L2(Si

δP /2
) ≤ A|α|−2

u E[α2−4/3]+
u (|α| − 2)!,

∀α ∈ N
2
0 :

{
2 ≤ |α| ≤ k̂ + 1,

α2 ≤ k2 + 1,

and

(4.29b) ‖rβi+α1−1
i Dαp‖L2(Si

δP /2
) ≤ A|α|−1

u Eα2
u (|α| − 1)!, ∀α ∈ N

2
0 :

{
1 ≤ |α| ≤ k̂,

α2 ≤ k2,

where Au and Eu are the 
onstants in (4.28b) and (4.28a).

Strategy of the proof. The proof of the statement will be 
omposed of two main steps. H1,1 holds due

to Lemma 4.6 and to (4.20). We will show that, for all k ∈ N,

(4.30) Hk,k =⇒ Hk+1,1.

Then, in the following step, we will show that, for all k ∈ N and all j ∈ N su
h that j ≤ k,

(4.31) Hk,k and Hk+1,j =⇒ Hk+1,j+1.

Combining (4.30) and (4.31), we obtain that

(4.32) Hk,k =⇒ Hk+1,k+1,

We infer from (4.32) that Hk,k is veri�ed for all k ∈ N. This will 
on
lude the proof.

Step 1: proof of (4.30) . We �x k ∈ N and suppose that Hk,k holds. De�ne

(4.33) v := rk∂k
ru, q := rk∂k

r p.

Then, for all |η| ≤ 2,

(4.34) rη1Dηv = rk∂k
r (r

η1Dηu)

and

(4.35) Dηq = rk−2∂k
r (r

η1+1Dηp)− krk−1∂k−1
r Dηp− η1k(k − 1)rk−2∂k−1

r p.

Furthermore, multiplying (4.23) by r and di�erentiating by ∂k
r we obtain

(r∂r + (k + 1))∂k
rur + ∂k

r ∂ϑuϑ = 0,

hen
e

(4.36) 0 = rk−1(r∂r + (k + 1))∂k
r ur + rk−1∂ϑ∂

k
ruϑ =

1

r
((r∂r + 1)vr + ∂ϑvϑ)
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From (4.34), (4.35), and (4.36), it follows that the pair (v, q) as de�ned in (4.33) satis�es, with L∆
St andB

in polar frame and a
ting on the velo
ity �eld ū in polar frame as de�ned in (4.21a) and (4.21b) formally

the Stokes boundary value problem

(4.37)

L∆
St(v, q) =

(
f̃

0

)
, in Si

δP ,

B(v, q) =




0

g̃

0


 , on (∂Si

δP ∩ ΓD)× (∂Si
δP ∩ ΓN )× (∂Si

δP ∩ ΓG), .

Here, f̃ and (assuming that ∂Si
δP

∩ ΓN 6= ∅) g̃ are de�ned by

(4.38) f̃ = rk−2∂k
r (r

2(f − (u · ∇)u))− krk−2

(
r∂k

r p+ (k − 1)∂k−1
r p

∂k−1
r ∂ϑp

)
, g̃ =

(
0

krk−1∂k−1
r p

)
.

Using (4.27a), Lemma 4.5 withw = u, the indu
tive hypothesisHk,k, and the fa
t that for all v ∈ L2(Si
δP
)

‖v‖L2(Si
δP

) ≤ ‖v‖L2(Si
δP /2

) + ‖v‖L2(Si
δP

\Si
δP /2

),

we �nd from (4.38)

‖f̃‖Lβi
(Si

δP
) ≤ ‖rβi+k−2∂k

r (r
2f)‖L2(Si

δP
) + ‖rβi+k−2∂k

r (r
2(u · ∇)u))‖L2(Si

δP
)

+ k‖rβi+k−1∂k
r p‖L2(Si

δP
) + k(k − 1)‖rβi+k−2∂k−1

r p‖L2(Si
δP

)

+ k‖rβi+k−2∂k−1
r ∂ϑp‖L2(Si

δP
)

≤ Ak
1k! +

(
CtA

k−1
u E2

u +Ak
1

)
k! + k

(
Ak−1

u +Ak−1
1

)
(k − 1)!

+ k(k − 1)
(
Ak−2

u +Ak−2
1

)
(k − 2)! + k

(
Ak−1

u Eu +Ak−1
1

)

≤
(
5Ak

1 + (Ct + 3)Ak−1
u E2

u

)
k!.

Furthermore,

‖g̃‖
W

1/2
β (∂Si

δP
∩ΓN )

≤ k‖rk−1∂k−1
r p‖W 1

β
(Si

δP
)

≤ k

(
‖rk−2+β∂k−1

r p‖L2(Si
δP

) + ‖rk−2+β∂k−1
r ∂ϑp‖L2(Si

δP
) + ‖rk−1+β∂k

r p‖L2(Si
δP

)

+ (k − 1)‖rk−2+β∂k−1
r p‖L2(Si

δP
)

)

≤ 4k
(
Ak−1

1 +Ak−1
u Eu

)
(k − 1)!

≤ 4
(
Ak−1

1 +Ak−1
u Eu

)
k!.

It follows from (4.37), Theorem 3.1, (4.27d) , (4.27
), and the two inequalities above that

(4.39)

‖v‖W 2
βi

(Si
δP /2

) + ‖q‖W 1
βi

(Si
δP /2

)

≤ Csec

(
‖f̃‖Lβi

(Si
δP

) + ‖v‖H1(Si
δP

\Si
δP /2

) + ‖q‖L2(Si
δP

\Si
δP /2

) + ‖g̃‖
W

1/2
β (∂Si

δP
∩ΓN )

)

≤ Csec

(
11Ak

1 + (Ct + 7)Ak−1
u E2

u

)
k!.

Now, for all |η| = 2,

Dηv = rk∂k
rDηu+ η1kr

k−1∂k+η1−1
r ∂η2

ϑ u+ [η1 − 1]+k(k − 1)rk−2∂k
ru.
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Therefore, for all |η| = 2,

‖rβi+k+η1−2∂k
rDηu‖L2(Si

δP /2
)

≤ ‖v‖W 2
βi

(Si
δP /2

) + η1k‖rβi+k+η1−3∂k+η1−1
r ∂η2

ϑ u‖L2(Si
δP /2

) + k(k − 1)‖rβi+k−2∂k
ru‖L2(Si

δP /2
)

≤ Csec

(
11Ak

1 + (Ct + 7)Ak−1
u E2

u

)
k! + 2kAk−1

u (k − 1)! + k(k − 1)Ak−2
u (k − 2)!

≤ Csec

(
11Ak

1 + (Ct + 9)Ak−1
u E2

u

)
k!.

For all |η| = 1,

Dηq = rk∂k
rDηq + η1kr

k−1∂k
r p,

hen
e

‖rβi+k+η1−1∂k
rDηp‖L2(Si

δP /2
) ≤ ‖q‖W 1

βi
(Si

δP /2
) + k‖rβi+k−1∂k

r p‖L2(Si
δP /2

)

≤ Csec

(
11Ak

1 + (Ct + 7)Ak−1
u E2

u

)
k! + kAk−1

u (k − 1)!

≤ Csec

(
11Ak

1 + (Ct + 8)Ak−1
u E2

u

)
k!.

From (4.28b) it follows that for every k ∈ N

max
|η|=2

‖rβi+k+η1−2∂k
rDηu‖L2(Si

δP /2
) ≤ Ak

uk!, max
|η|=1

‖rβi+k+η1−1∂k
rDηp‖L2(Si

δP /2
) ≤ Ak

uk!,

i.e., that Hk+1,1 holds. We have shown impli
ation (4.30).

Step 2: proof of (4.31) . We now �x j ∈ {1, . . . , k} and we assume that Hk,k and Hk+1,j hold true.

Multiply (4.23) by r and di�erentiate by ∂k−j
r ∂j+1

ϑ to obtain

r∂k+1−j
r ∂j+1

ϑ ur + (k + 1− j)∂k−j
r ∂j+1

ϑ ur + ∂k−j
r ∂j+2

ϑ uϑ = 0.

Therefore, using Hk+1,j ,

(4.40)

‖rβi+k−j−2∂k−j
r ∂j+2

ϑ uϑ‖L2(Si
δP /2

)

≤ ‖rβi+k−j−1∂k+1−j
r ∂j+1

ϑ ur‖L2(Si
δP /2

) + k‖rβi+k−j−2∂k−j
r ∂j+1

ϑ ur‖L2(Si
δP /2

)

≤ Ak
uE

j−1/3
u k! + kAk−1

u Ej−1/3
u (k − 1)!

= 2Ak
uE

j−1/3
u k!

≤ Ak
uE

j+2/3
u k!.

This proves the estimate for uϑ.

To prove the bound on ur, multiply the �rst equation in (4.22) by r2 and di�erentiate by ∂k−j
r ∂j

ϑ, to

obtain

ν∂k−j
r ∂j+2

ϑ ur = −ν
(
r2∂2

r + (2(k − j) + 1)r∂r + (k − j)2 − 1
)
∂k−j
r ∂j

ϑur − 2ν∂k−j
r ∂j+1

ϑ uϑ

+ (r2∂2
r + 2(k − j)r∂r + (k − j)(k − j − 1))∂k−j−1

r ∂j
ϑp

− ∂k−j
r ∂j

ϑ

(
r2(f − (u · ∇)u)r

)
.
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Therefore,

(4.41)

‖rβi+k−j−2∂k−j
r ∂j+2

ϑ ur‖L2(Si
δP /2

)

≤
(
A2

uk! + 2kAu(k − 1)! + k(k − 2)(k − 2)!

)
Ak−2

u E[j−4/3]+
u + 2Ak−1

u Ej−1/3
u (k − 1)!

+
1

ν

(
Ak

uk! + 2(k − 1)Ak−1
u (k − 1)! + (k − 1)(k − 2)Ak−2

u (k − 2)!

)
Ej

u

+
1

ν
Ak

1k! +
1

ν
CtA

k−1
u Ej+2

u k!

≤
(
1

ν
Ak

1 +

(
1 +

1

ν

)
Ak

uE
j
u +

(
1

ν
(Ct + 2) + 4

)
Ak−1

u Ej+2
u +

(
1 +

1

ν

)
Ak−2

u Ej
u

)
k!.

≤ Ak
uE

j+2/3
u k!

This provides the estimate for ur.

Last, 
onsider the se
ond equation of (4.22): multiplying by r2 and di�erentiating by ∂k−j
r ∂j

ϑ we

obtain

r∂k−j
r ∂j+1

ϑ p = ν
(
r2∂2

r + (2(k − j) + 1)r∂r + (k − j)2 − 1 + ∂2
ϑ

)
∂k−j
r ∂j

ϑuϑ

+ 2ν∂k−j
r ∂j+1

ϑ ur − (k − j)∂k−j−1
r ∂j+1

ϑ p+ ∂k−j
r ∂j

ϑ

(
r2(f − (u · ∇)u)ϑ

)
.

Hen
e,

(4.42)

‖rβi+k−j−1∂k−j
r ∂j+1

ϑ p‖L2(Si
δP /2

)

≤ ν

(
A2

uk! + 2kAu(k − 1)! + k(k − 2)(k − 2)!

)
Ak−2

u E[j−4/3]+
u

+ νAk
uE

j+1/3
u k! + 2νAk−1

u Ej−1/3
u (k − 1)! + (k − 1)Ak−2

u Ej+1
u (k − 2)!

+Ak
1k! + CtA

k−1
u Ej+2

u k!

≤
(
Ak

1 + 2νAk
uE

j+1/3
u + (Ct + 1 + 3ν)Ak−1

u Ej+2
u +Ak−2

u Ej+1
u

)
k!

≤ Ak
uE

j+1
u k!.

Then, the estimates in (4.40), (4.41), and (4.42) imply thatHk+1,j+1 holds true. By the strategy outlined

above, this shows impli
ation (4.32) and 
on
ludes the proof.

Combining the estimates in ea
h se
tor with 
lassi
al results on the analyti
ity of the solution in the inte-

rior of the domain and on regular parts of the boundary, we obtain the weighted analyti
ity of solutions

to the Navier-Stokes equations, stated in the following theorem.

Theorem 4.8. Let β
f

∈ (0, 1)n and f ∈ [B0
β
f

(P )]2 ∩ W ∗
su
h that ‖f‖W ∗ ≤ C2

coerν
2

4Ccont
. Suppose that

Assumption 1 holds and let (u, p) be the solution to (2.6) with right hand side f .

Then, there exists β ∈ (0, 1)n, with β ≥ β
f
su
h that

(u, p) ∈ [K̟
2−β(P )]2 ×K̟

1−β(P )

Proof. The analyti
ity of weak solutions (u, p) in the interior and up to analyti
 parts of the boundary

is 
lassi
al, see, e.g., [16, 7℄.

It therefore remains to prove weighted analyti
 regularity near 
orners of P . To this end, we apply

Lemma 4.7 to obtain non-overlapping se
tors Si
δP

su
h that

(u, p) ∈ [B2
βi
(Si

δP /2)]
2 × B1

βi
(Si

δP /2), ∀i ∈ {1, . . . , n}.
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Furthermore, u(c) = 0 for all 
orners c ∈ ∂P due to Assumption 1, Item 2. This implies, by Lemma 2.4,

(u, p) ∈ [B2
βi
(Si

δP /2)]
2 ×B1

βi
(Si

δP /2), ∀i ∈ {1, . . . , n}.

Therefore, in parti
ular, u ∈ [H2,2
β (Si

δP /2)]
2
and p ∈ H1,1

β (Si
δP /2). By Lemma 2.8, we obtain that u ∈

[K2
2−β(S

i
δP /2)]

2
and that p ∈ K1

1−β(S
i
δP /2). By de�nition, Bℓ

β(S
i
δP /2) ∩ Kℓ

ℓ−β(S
i
δP /2) = K̟

ℓ−β(S
i
δP /2) and

this 
on
ludes the proof.

We remark that the argument in the proof, in parti
ular, provides also

(u, p) ∈ [B2
β(P )]2 ×B1

β(P ) .

5. Con
lusion and Dis
ussion. We have shown analyti
 regularity of Leray-Hopf solutions of the

stationary, vis
ous and in
ompressible Navier-Stokes equations in polygonal domains P , subje
t to suf-
�
iently small and analyti
 in P for
ing. Our result holds under Assumption 1, whi
h implies that for

ea
h 
orner point of P , at least of the sides at that point has homogeneous Diri
hlet (\no-slip") BCs. We

proved analyti
 regularity in s
ales of 
orner-weighted, Kondrat'ev spa
es with homogeneous weight fun
-

tions. The present setting of mixed BCs 
overs most of the example of interest in appli
ations, su
h as,

e.g., 
hannel 
ow with homogeneous Neumann 
ondition at the out
ow boundary. With the argument

in [15℄ 
ontaining a gap, in the parti
ular 
ase of homogeneous Diri
hlet (\no-slip") boundary 
ondi-

tions on all of ∂P the present result implies that the result in [22℄ stands under the assumptions stated

in [22℄. The analyti
 regularity in homogeneous weighted spa
es implies, as explained in the dis
ussion

in [22, Se
tion 5℄, 
orresponding bounds on n-widths of solution sets whi
h, in turn, imply exponential


onvergen
e or redu
ed basis and of Model Order Redu
tion methods. Corresponding remarks imply

also in the present, more general situation, and we do not spell them out here. The present results also

imply, along the lines of [22℄ (where only the 
ase of no-slip BCs on all of ∂P was 
onsidered), exponen-

tial rates of 
onvergen
e of hp-approximations. Details on the exponential 
onvergen
e rate bounds for

further dis
retizations in the 
ase of the presently 
onsidered mixed boundary 
onditions shall be elab-

orated elsewhere. Likewise, analyti
 regularity of 
ows for the remaining 
ombinations of boundary


onditions not 
overed in the present analysis, 
an be established in a similar fashion. To that end, how-

ever, a di�erent fun
tional setting of 
orner-weightedKondrat'ev spa
es with nonhomogeneous weights

is ne
essary. The details, also of the bootstrapping analysis for the nonlinearity, will be developed else-

where.

Appendix A. Proofs of Se
tion 2.5.3.

Proof of Lemma 2.4.The third item of Lemma 2.6 and the se
ond item of Lemma 2.7 give that for any

ℓ ∈ {0, 1, 2} there exists a 
onstant A0 > 1 su
h that for any α ∈ N
2
0,

‖rβ+α1−ℓDαu‖L2(Qδ,ω(c)) ≤ A
|α|+1
0 |α|!.

Then we have

‖rβ−ℓu‖L2(Qδ,ω(c)) ≤ 4‖rβ−ℓu‖L2(Qδ,ω(c)),

and for all |α| ≥ 1,

‖rβ+α1−ℓDαu1‖L2(Qδ,ω(c)) ≤
α2∑

j=0

(
α2

j

)
‖∂j

ϑ cosϑ‖L∞(Qδ,ω(c))‖rβ+α1−ℓ∂α1
r ∂α2−j

ϑ ur‖L2(Qδ,ω(c))

+

α2∑

j=0

(
α2

j

)
‖∂j

ϑ sinϑ‖L∞(Qδ,ω(c))‖rβ+α1−ℓ∂α1
r ∂α2−j

ϑ uϑ‖L2(Qδ,ω(c))

≤ 2A
|α|+1
0 |α|!

α2∑

j=0

A−j
0

(
α2

j

)
≤ 2(2A0)

|α|+1|α|!.
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A similar estimate holds for u2. By the above results and using the third item of Lemma 2.6 and the �rst

item of Lemma 2.7 we have u ∈ [Bℓ
β(Qδ,ω(c))]

2
, whi
h, by the se
ond item of Lemma 2.6, is equivalent to

u ∈ [Bℓ
β(Qδ,ω(c))]

2
.

Proof of Lemma 2.5.From v ∈ [B0
β(Qδ,ω(c))]

2
it follows that v ∈ [B0

β(Qδ,ω(c))]
2
by [2, Theorem 1.1℄.

Then, there exists A0 > 1 su
h that, for all |α| ≥ 1,

‖rα1+βDαvr‖L2(Qδ,ω(c)) ≤
α2∑

j=0

(
α2

j

)
‖∂j

ϑ cosϑ‖L∞(Qδ,ω(c))‖rα1+β∂α1
r ∂α2−j

ϑ v1‖L2(Qδ,ω(c))

+

α2∑

j=0

(
α2

j

)
‖∂j

ϑ sinϑ‖L∞(Qδ,ω(c))‖rα1+β∂α1
r ∂α2−j

ϑ v2‖L2(Qδ,ω(c))

≤ 2A
|α|
0 |α|!

α2∑

j=0

A−j
0

(
α2

j

)
≤ 2(2A0)

|α||α|!.

The estimate for vϑ follows by the same argument.

Proof of Lemma 2.8.Lemma 2.7 implies that v ∈ W k
β (Qδ,ω(c)). Elementary 
al
ulus yields

∂x1 = cosϑ∂r −
sinϑ

r
∂ϑ,

∂x2 = sinϑ∂r +
cosϑ

r
∂ϑ,

∂2
x1

= cos2 ϑ∂2
r +

2 cosϑ sinϑ

r2
∂ϑ +

sin2 ϑ

r
∂r −

2 cosϑ sinϑ

r
∂rϑ +

sin2 ϑ

r2
∂2
ϑ,

∂2
x2

= sin2 ϑ∂2
r − 2 cosϑ sinϑ

r2
∂ϑ +

cos2 ϑ

r
∂r +

2 cosϑ sinϑ

r
∂rϑ +

cos2 ϑ

r2
∂2
ϑ,

∂x1∂x2 = cosϑ sinϑ∂2
r +

sin2 ϑ− cos2 ϑ

r2
∂ϑ +

cos2 ϑ− sin2 ϑ

r
∂rϑ − sinϑ cosϑ

r
∂r −

sinϑ cosϑ

r2
∂2
ϑ.

Therefore there exists C > 0 (C = 7 when k = 2 and C = 2 when k = 1 will suÆ
e) su
h that for any

α ∈ N
2
0 with |α| ≤ k,

‖rβ−k+|α|∂αv‖L2(Qδ,ω(c)) ≤ C



∑

|α|≤k

‖rβ−k+α1Dαv‖2L2(Qδ,ω(c))




1/2

= C‖v‖Wk
β (Qδ,ω(c)).

By de�nition, it follows that v ∈ Kk
k−β(Qδ,ω(c)).

Appendix B. Stokes operator in polar 
oordinates. In this appendix we provide the elementary 
al-


ulations to verify (4.22)-(4.26), whi
h des
ribe the NSE with boundary 
onditions in polar 
oordinates

and polar 
omponents. We re
all the representation of the NSE in the Cartesian referen
e frame

L∆
St(u, p) =

(
f − (u · ∇)u

0

)
in Si

δP ,(B.1)

B(u, p) = 0 on Γδ.(B.2)

The ve
tor Lapla
ian in a polar referen
e frame reads [1, Equation (3.151)℄

∆u =
1

r2

(
(r∂r)

2 + ∂2
ϑ − 1 −2∂ϑ

2∂ϑ (r∂r)
2 + ∂2

ϑ − 1

)
u
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and [14, Equation (II.4.C3)℄

∇p =

(
∂rp

r−1∂ϑp

)
.

The divergen
e of u is [14, Equation (II.4.C5)℄∇·u = 1
r ((r∂r + 1)ur + ∂ϑuϑ), when
e (4.22) and (4.23).

Regarding the boundary 
onditions (B.2), we start from the expression of the stress tensor in polar


oordinates and polar frame, see [14, Equation (II.4.C9)℄,

(B.3) ε(u) =

(
∂rur

1
2 (∂ruϑ + r−1(∂ϑur − uϑ))

1
2 (∂ruϑ + r−1(∂ϑur − uϑ)) r−1(∂ϑuϑ + ur)

)

hen
e the stress tensor in a polar referen
e frame reads

(B.4) σ(u, p) = 2νε(u)− p Id2 = ν

(
2∂rur ∂ruϑ + r−1(∂ϑur − uϑ)

∂ruϑ + r−1(∂ϑur − uϑ) 2r−1(∂ϑuϑ + ur)

)
− p Id2 .

We have furthermore

n = ±
(
0
1

)
, t = ∓

(
1
0

)
,

where the sign depends on the side of the se
tor being 
onsidered. Then, bymatrix-ve
tormultipli
ation,

σ(u, p)n = ±ν

(
∂ruϑ + r−1(∂ϑur − uϑ)
2r−1(∂ϑuϑ + ur)− p

)

and 
onsequently

(σ(u, p)n) · t = σ(u, p)n · t = −∂ruϑ − 1

r
(∂ϑur − uϑ).

Finally, it follows from the de�nition that u · n = u · n = ±uϑ.
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