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Abstrat. We prove weighted analyti regularity of Leray-Hopf variational solutions for the stationary, inompressible Navier-

Stokes Equations (NSE) in plane polygonal domains, subjet to analyti body fores.

We admit mixed boundary onditions whihmay hange type at eah vertex, under the assumption that homogeneous Dirih-

let (\no-slip") boundary onditions are presribed on at least one side at eah vertex of the domain. Theweighted analyti regular-

ity results are established in Hilbertian Kondrat'ev spaes with homogeneous orner weights. The proofs rely on a priori estimates

for the orresponding linearized boundary value problem in setors in orner-weighted Sobolev spaes and on an indution argu-

ment for the weighted norm estimates on the quadrati nonlinear term in the NSE, in a polar frame.

1. Introdution. The regularity properties of visous, inompressible ow governed by the inom-

pressible Navier-Stokes Equations (NSE) have attrated onsiderable attention sine their introdution.

We mention only the intense researh in reent years around the Onsager onjeture and on the bound-

edness of the veloity �eld of Leray solutions in three spae dimensions.

Regularity results of weak, Leray-Hopf solutions in Sobolev and Besov sales in domains are at the

ore of the numerial analysis of the NSE. The stationary NSE, being for large values of the visosity

parameter, a perturbation of its linearization, the Stokes Equation, is an ellipti system in the sense of

Agmon-Douglis-Nirenberg and a�ords analyti regularity in interior points of domains, for analyti for-

ing [20℄, see also [16℄. This loal analytiity of the veloity and the pressure extend to analyti parts of

the boundary.

However, it is also lassial that in the viinity of orner points (in spae dimension d = 2) and
near edges and verties (for polyhedra in spae dimension d = 3), analytiity is lost, even if all other

data of the stationary NSE is analyti. See, e.g., [5, 8, 21, 19, 4℄ and the referenes there. The reason is

the appearane of orner singularities (in spae dimension d = 2) and of orner- and edge-singularities (in

polyhedra in spae dimension d = 3). While singular solutions of the Stokes equation are well known

to enode physially relevant e�ets (see, e.g., [18, 19℄), they do obstrut large ellipti regularity shifts

in standard (Besov or Triebel-Lizorkin) sales of funtion spaes and, onsequently, high onvergene

rates of numerial disretizations. This has initiated the investigation of regularity of solutions in the

presene of non smooth boundaries. One, in a sense, minimally regular situation is the assumption of

mere Lipshitz regularity of the boundary. For the mixed boundary onditions of interest here, some

regularity of veloity and pressure of Leray solutions in Sobolev spaes have been obtained in [6℄. In the

mentioned polygonal and polyhedral domains, it has been known for some time that the veloity �elds of

stationary solutions for the inompressible NSE in plane, polygonal domains allow higher regularity in

so-alled orner-weightedSobolev spaes. Here, weight funtions whih vanish in the orners of the polygon

to a suitable power ompensate for the loss of regularity in the viinity of the orner. The orresponding

Mellin alulus goes bak to [12℄. See, e.g., [8, 21℄ and the referenes there. In [17℄, an authoritative

aount of these results, also for NSE in polyhedra, has been given. The results in [17℄ provide regularity

shifts in weighted spaes of �nite order. To prove weighted, analyti regularity for veloity �eld u and

the pressure �eld p in P of the stationary, inompressible NSE in polygons is the purpose of the present

paper.

Spei�ally, in a bounded polygon P ⊂ R
2
whose boundary ∂P onsists of a �nite number n of

straight sides, we onsider the analyti regularity of solutions of the visous, inompressible Navier-

Stokes equations. Extending and revisiting ourwork [15℄ whih addressed homogeneousDirihlet (\no-

slip") boundary onditions, we onsider here theNSE in plane polygonal domainsP withmixed boundary
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onditions, where now also slip and so-alled \open"boundary parts are admitted. These onditions arise

in numerous on�gurations in engineering and the sienes. The spei� geometri ondition whih lim-

its generality in the present paper is thatwe assume throughout the present paper that so-alledmixed boundary

onditions are imposed on ∂P . This is to say that at least one edge at eah vertex of P will arry homoge-

neous Dirihlet boundary onditions. With this onstraint (i.e., at least one \no-slip edge" abutting eah

orner) the ellipti regularity an be developed still in homogeneous orner-weighted spaes, i.e., in the

the funtional setting of [15℄. Fully general BCs will require extension to weighted Kondrat'ev fun-

tion spaes with non-homogeneous weights. Furthermore, our present proof of the weighted analyti

regularity requires a proof tehnique whih di�ers from the approah used in [15℄. As the orrespond-

ing analysis for plane, linearized elastiity in [10℄, it is based on regularity results for the linearization

(the Stokes problem) in a setor built on the Agranovih-Vishik theory of omplex-parametri operator

penils whih was already used in [9℄ and [10℄ to obtain a priori estimates and shift theorems in orner-

weighted spaes. The present paper provides a proof of weighted analyti regularity for the veloity u

and the pressure �eld p of the stationary, inompressible Navier-Stokes equations in a polygon P , sub-
jet to mixed boundary onditions on the sides of P . It is distint from the argument in our previous

work [15℄ even for pure Dirihlet boundary onditions. In [15℄, a bootstrapping argument based on lo-

al, Caioppoli estimates on balls and saling was proposed. Furthermore, the proof proposed in [15℄

was inomplete; the gap is losed by the argument in the present paper, whih provides, in the ase of

homogeneous Dirihlet (so-alled \no-slip") boundary onditions the weighted analyti regularity re-

sult in [15℄ whih was used in [22℄ to prove exponential rates of onvergene of a ertain hp-DGFEM
disretization of the stationary NSE in polygons.

Analyti regularity results for solutions in orner-weighted Kondrat'ev-Sobolev spaes imply, as is

well-known, exponential onvergene rate bounds for numerial approximations by so-alled hp-Finite El-
ement Methods and also by model order redution methods. We refer to [22℄ and to the referenes

there for reent results on exponential onvergene for the Navier-Stokes equations, for disontinuous

Galerkin disretizations, and also to the disussion in [15, Setion 2.2℄ for exponential rates for ertain

model order redution approahes to the NSE in P .

1.1. Contributions. We establish weighted, analyti regularity results for Leray-Hopf solutions of

the NSE in bounded, onneted polygonal domains P ⊂ R
2
with �nitely many, straight sides. We gener-

alize the analyti regularity results stated in [15℄ from the pure Dirihlet (also referred to as \no-slip")

boundary onditions as studied in [15℄ to the ase of mixed boundary onditions at any two sides of P
whih meet at one ommon vertex of ∂P . As in [15℄ we work under a small data hypothesis, ensuring

in partiular the uniqueness of weak solutions. We also develop the regularity theory based on a priori

estimates of solutions for a linearization, the Stokes problem, in weighted, Hilbertian Sobolev spaes in

a setor. The result ontains the analyti regularity result in [15℄ as a speial ase, and its proof proeeds

in a way that is fundamentally di�erent from [15℄. As mentioned, it is based on a regularity analysis in

orner-weighted spaes and a novel bootstrapping argument in the quadrati nonlinearity in weighted

Kondrat'ev spaes. As in [9, 10℄, the weighted a priori estimates for the veloity �eld and the bounds on

the quadrati nonlinearity near orners c are obtained for the projetion of the veloity omponents in a

polar frame entered at c, rather than for their Cartesian omponents.

The main result of the present paper is stated in Theorem 4.8. Spei�ally, under the small data

hypothesis and the stated assumptions on the boundary onditions (see Assumption 1 for details), we

show that there exist A > 0 and γ ∈ (0, 1) suh that the Leray-Hopf solutions (u, p) to the NSE satisfy,

for all j, k ∈ {0, 1, . . .}, and for any orner c of P

∥∥∥∥∥

(
∏

c∈C

| · −c|i+j−γ

)
∂j
x1
∂k
x2
u

∥∥∥∥∥
L2(P )

≤ Aj+k+1(j + k)!,
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and

∥∥∥∥∥

(
∏

c∈C

| · −c|i+j−γ−1

)
∂j
x1
∂k
x2
p

∥∥∥∥∥
L2(P )

≤ Aj+k+1(j + k)!.

1.2. Layout. As is well-known (e.g. [13℄ and the referenes there) the analysis of point singulari-

ties near orners of solutions of ellipti PDEs is based on polar oordinates entered at the orner. For

ellipti systems of PDEs suh as those of interest here, as in [10, 9℄ in addition we require projetions

of Cartesian omponents of the vetor-valued solutions to a polar frame. In Setion 1.3, we ollet the

orresponding notation for partial derivatives and solution �elds. Setion 2 presents strong formulations

of the boundary value problems under onsideration, detailing in partiular also the boundary opera-

tors. Furthermore, the orner-weighted, Kondrat'ev spaes that appear in the statement of the analyti

regularity shifts are introdued. Setion 3 then presents a key tehnial step for the subsequent analyti

regularity proof: a priori estimates in orner-weightedSobolev norms in a setor for the linearized Stokes

boundary value problem are reapitulated, from [9℄. Importantly, they hold for several ombinations of

boundary onditions on the sides of the setor, and for the veloity �eld in a polar oordinate frame.

With this in hand, Setion 4 addresses the proof of the prinipal analyti regularity result for the NSE,

Theorem 4.8, whih is also the main result of the present paper. The key novel step in its proof is an

indutive bootstrap argument for the quadrati nonlinear term in the NSE, in orner-weighted spaes

and for the veloity �eld in a polar frame at eah orner of P . This is developed in Setion 4.1.

1.3. Notation. We de�ne N = {1, 2, . . .} as the set of positive natural numbers and N0 = N ∪ {0}.
We refer to tuples α = (α1, α2) ∈ N

2
0 as multi-indies and we write |α| = α1 + α2. For k ∈ N0, we write

∑

|α|≤k

=
∑

α∈N2
0:|α|≤k

.

Given Cartesian oordinates (x1, x2) and polar oordinates (r, ϑ), whose origin will be lear from the

ontext, we denote derivatives as ∂α = ∂α1
x1

∂α2
x2

and Dα = ∂α1
r ∂α2

ϑ .

For any vetor �eld u with omponents in Cartesian oordinates

u =

(
u1

u2

)
,

we denote its polar oordinate frame projetion as

(1.1) u :=

(
ur

uϑ

)
= Au .

where

(1.2) A :=

(
cosϑ sinϑ
− sinϑ cosϑ

)

denotes the transformation matrix. Here and throughout, vetor-valued quantities suh as u shall be

understood as olumn vetors, with u⊤
denoting the transpose vetor, whih aordingly denotes a row

vetors. The symbol LSt shall denote the Stokes operator, with various super- and subsripts indiating

Cartesian or polar oordinates and frame, i.e. we writeLSt for its projetion onto polar oordinates ating

on the orresponding veloity omponents.

All quantities whih our in this paper are real-valued. The overline symbol whih will indiate

polar-oordinate representation of vetors is therefore non-ambiguous.
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We denote with an underline n-dimensional tuples β = (β1, . . . , βn) ∈ R
n
and suppose arithmeti

operations and inequalities suh as γ < β are understood omponent-wise: e.g., β+k = (β1+k, . . . , βn+
k) for all k ∈ N; furthermore, we indiate, e.g., β > 0 if βi > 0 for all i ∈ {1, . . . , n}.

Finally, for a ∈ R, we denote its nonnegative real part as [a]+ = max(0, a).
For summability index 1 ≤ r ≤ ∞, the usual Lebesgue spaes in P shall be denoted by Lr(P ), with

norm de�ned also for vetor �elds v : P → R
2
as ‖v‖rLr(P ) =

∫
P
‖v‖rℓr . We denote the usual Sobolev

spaes of di�erentiation order s > 0 byW s,r(P ); we write Hs(P ) in the Hilbertian ase r = 2.

2. The Navier-Stokes equations and funtional setting. After the introdution of the polygonal

domain in Setion 2.1, in Setion 2.2 we state the strong form of the boundary value problems, and of the

boundary operators, in Cartesian oordinates. Setion 2.3 is devoted to the saddle point variational form

of the boundary value problems of interest. It also reviews statements on existene and uniqueness of

weak solutions, under the small data hypothesis. In Setion 2.5 we introdue the orner-weighted spaes

on whih the weighted analyti regularity results will be based.

2.1. Geometry of the domain. Let P be a polygon with straight sides and n ≥ 3 orners C =
{c1, . . . , cn}. Let ΓD, ΓN , and ΓG be a disjoint partition of the boundary Γ = ∂P of P omprising eah

of nD ≥ 1, nN ≥ 0 and nG ≥ 0 many sides of P , respetively, with n = nD + nN + nG. We denote

by n : Γ → R
2
the exterior unit normal vetor to P , de�ned almost everywhere on Γ, whih belongs to

[L∞(Γ)]2, and by t : Γ → R
2
orrespondingly the unit tangent vetor to Γ, pointing in ounterlokwise

tangential diretion.

2.2. The Navier-Stokes boundary value problems. We assume that a kinemati visosity ν > 0 is

given. For a veloity �eld u : P → R
2
and a salar p : P → R, de�ne

ε(u) :=
1

2

(
∇u+∇u⊤

)
, σ(u, p) := 2νε(u)− p Id2,

where Id2 is the 2× 2 identity matrix.

With this notation, we onsider in P , the stationary, inompressible Navier-Stokes equations

(2.1)

−∇ · σ(u, p) + (u · ∇)u = f in P ,

∇ · u = 0 in P ,

u = 0 on ΓD,

σ(u, p)n = 0 on ΓN ,

(σ(u, p)n) · t = 0 and u · n = 0 on ΓG.

Remark 2.1.From the identity

(2.2) 2∇ · ε(u) = ∆u+∇(∇ · u),

the boundary value problem (2.1) is equivalent to

(2.3)

−ν∆u+ (u · ∇)u +∇p = f in P ,

∇ · u = 0 in P ,

u = 0 on ΓD ,

σ(u, p)n = 0 on ΓN ,

(σ(u, p)n) · t = 0 and u · n = 0 on ΓG.

2.3. Variational Formulation. Weak solution of the NSE (2.1) in the sense of Leray-Hopf satisfy the

NSE (2.1) in variational form. To state it, we introdue standard Sobolev spaes in P . Throughout the

remainder of this artile, we shall work under
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Assumption 1. The boundary value problems (2.1), (2.3) satisfy the following onditions.

1. P is a bounded, onneted polygon with a �nite number of straight sides, and Lipshitz bound-

ary Γ = ∂P .

2. For eah orner c ∈ C, at least one of the two sides of P meeting in c is a Dirihlet side with

no-slip BCs.

3. All interior opening angles at orners of P are in (0, 2π). In partiular, slit domains whih orre-

spond to opening angle 2π are exluded.

Assumption 1 implies that the Dirihlet ase onsidered in [15℄ is a speial ase of the present setting.

Furthermore, sine Item 2 implies that nD ≥ 1, it also ensures that the linearization of the Navier-Stokes

equations, i.e., the Stokes problem, admits unique variational veloity �eld solutions u, possibly with

pressure p unique up to onstants if Γ = ΓD.

We denote heneforth the spae of veloity �elds of variational solutions to the Navier-Stokes equa-

tions (2.1) as

(2.4) W =
{
v ∈ [H1(P )]2 : v = 0 on ΓD, v · n = 0 on ΓG

}
.

We denote by W ∗ ⊂ [H−1(P )]2 its dual, with identi�ation of L2(P )2 ≃ [L2(P )2]∗. We also de�ne

Q = L2(P ) if |ΓD| < |Γ| (i.e., if not the entire boundary is a Dirihlet boundary) and set Q = L2
0(P ) :=

L2(P )/R in the ase that Γ = ΓD.

We are interested in variational solutions (u, p) of (2.1). To state the orresponding variational for-

mulation, we introdue the usual bi- and trilinear forms:

(2.5)

A(u,v) := 2ν

∫

P

2∑

i,j=1

[ε(v)]ij [ε(v)]ijdx ,

B(u, p) := −
∫

P

p∇ · udx ,

O(w;u,v) :=

∫

P

((w · ∇)u) · vdx .

With these forms, we state the variational formulation of (2.1): �nd (u, p) ∈ W ×Q suh that

(2.6)

A(u,v) +O(u;u,v) +B(v, p) =

∫

P

f · vdx ,

B(u, q) = 0 ,

for all v ∈ W and all q ∈ Q.

2.4. Existene and uniqueness of solutions to the NS equations. We introdue the oerivity on-

stant of the visous (di�usion) term

Ccoer := inf
v∈W

‖v‖H1(P )=1

2

∫

P

2∑

i,j=1

[ε(v)]ij [ε(v)]ij

and the ontinuity onstant for the trilinear transport term

Ccont := sup
u,v,w∈W

‖u‖H1(P )=‖v‖H1(P )=‖w‖H1(P )=1

∫

P

((u · ∇)w) ·w.

We denote a ball of bounded funtions inW

M :=

{
v ∈ W : ‖v‖H1(P ) ≤

Ccoerν

2Ccont

}
.
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The following existene and uniqueness result is lassial, see e.g. [21, Theorem 3.2℄.

Theorem 2.2. Suppose that Assumption 1 holds and assume that ‖f‖W ∗ ≤ C2
coerν

2

4Ccont
. There exists a solution

(u, p) ∈ W × L2(P ) to (2.1) with right hand side f . The veloity �eld u is unique inM.

Remark 2.3.From Assumption 1, Item 1, and from known regularity results for the Navier-Stokes

equations in Lipshitz domains (e.g. [6℄) it follows that the veloity �eld u has Cartesian omponents

whih are ontinuous in P and thus in partiular in a viinity of eah orner c ∈ C of P .

From Assumption 1, Item 2, it follows that for all orners c ∈ ∂P , the weak solution u satis�es

u(c) = 0.

As we assumed above nD ≥ 1, there is always at least one side of P where homogeneous Dirihlet

(\no-slip") BCs are imposed.

2.5. Funtional setting. For x ∈ P and for i ∈ {1, . . . , n}, let ri(x) := dist(x, ci). We de�ne the orner

weight funtion

Φβ(x) :=

n∏

i=1

rβi

i (x).

We next introdue the orner-weighted funtion spaes to be used for the regularity analysis. As the

notation used in the literature dealing with weighted Sobolev spaes is not always uniform, we introdue

slightly di�erent de�nitions of the spaes and disuss how they relate for the range of weight exponents

that is relevant to the present work.

2.5.1. Corner-weighted funtion spaes in P . In the polygon P , for j, k ∈ N0 and γ ∈ R
n
, we

introdue homogeneous orner-weighted seminorms and assoiated norms given by

(2.7) |v|2
Kj

γ(P )
:=
∑

|α|=j

‖Φ|α|−γ∂
αv‖2L2(P ), ‖v‖2Kk

γ(P ) :=

k∑

j=0

|v|2
Kj

γ(P )
.

Furthermore, we also require non-homogeneous, orner-weighted Sobolev norms. They are, for ℓ ∈ N0,

k ∈ N with k > ℓ, and β ∈ R
n
given by

(2.8) ‖v‖2
Hk,ℓ

β
(P )

:= ‖v‖2Hℓ−1(P ) +
∑

ℓ≤|α|≤k

‖Φβ+|α|−ℓ∂
αv‖2L2(P ),

with the onvetion that the �rst term gets dropped when ℓ = 0. We therefore de�ne the homoge-

neous, orner-weighted Sobolev spaesKk
γ(P ) and the non-homogeneous, orner-weighted Sobolev spa-

es Hk,ℓ
β (P ) as the spaes of, respetively, weakly di�erentiable funtions with bounded Kk

γ(P ) and

Hk,ℓ
β (P ) norms. Finally, we introdue weighted analyti lasses

(2.9) Bℓ
β(P ) :=

{
v ∈

⋂

k≥ℓ

Hk,ℓ
β (P ) : ∃C,A > 0 s. t.

‖Φβ+|α|−ℓ∂
αv‖L2(P ) ≤ CA|α|−ℓ(|α| − ℓ)!, ∀|α| ≥ ℓ

}
,

and

(2.10) K̟
γ (P ) :=

{
v ∈

⋂

k∈N0

Kk
γ(P ) : ∃C,A > 0 s. t. ‖Φ|α|−γ∂

αv‖L2(P ) ≤ CAkk!, ∀k ∈ N0

}
.
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The aforementioned weighted analyti lasses are de�ned in terms of two onstants C > 0 and A > 0.
Evidently, the onstantC > 0 quanti�es the size of a funtion in terms of linear saling of norms, whereas

the onstant A > 0 relates to the size of the domain of analytiity.

2.5.2. Corner-weighted spaes in setors. We shall require funtion spaes in plane setorsQδ,ω(c)
of opening ω ∈ (0, 2π), radius δ ∈ (0,∞] and with vertex c ∈ R

2
, de�ned as

Qδ,ω(c) =
{
x ∈ R

2 : r(x, c) ∈ (0, δ), ϑ(x) ∈ (0, ω)
}
.

We do not indiate the dependene on the vertex c when this is lear from the ontext.

For all k ∈ N0 and β ∈ R, we introdue the (homogeneous) orner-weighted, Hilbertian Kondratev

spaeW k
β (Qδ,ω) of funtions v in Qδ,ω(c) with bounded norm given by

(2.11) ‖v‖2Wk
β (Qδ,ω) =

∑

|α|≤k

‖rβ−k+α1Dαv‖2L2(Qδ,ω).

Here, Dα = ∂α1
r ∂α2

ϑ denotes the partial derivative of order α ∈ N0 in polar oordinates. We write Lβ =

W 0
β . For k, ℓ ∈ N0 with k ≥ ℓ and for β ∈ R,Hk,l

β (Qδ,ω) denote the spae of funtions with �nite norm

‖v‖2
Hk,ℓ

β (Qδ,ω)
:= ‖v‖2Hℓ−1(Qδ,ω) +

∑

|α|≥ℓ

‖rα1+β−ℓDαv‖2L2(Qδ,ω),

where the �rst term is dropped if ℓ = 0. For ℓ ∈ N0 and β ∈ R, the orner-weighted analyti lass with

weak derivatives in polar oordinates is given by

(2.12)

Bℓ
β(Qδ,ω) =

{
v ∈

∞⋂

k=ℓ

Hk,ℓ
β (Qδ,ω) : ∃C,A > 0 s. t. ‖rα1+β−ℓDαv‖L2(Qδ,ω) ≤ CA|α|−ℓ(|α| − ℓ)!, ∀|α| ≥ ℓ

}
.

In the setorQδ,ω(c), the de�nition of the spaesH
k,ℓ
β (Qδ,ω(c)) andBℓ

β(Qδ,ω(c)) follows from (2.9) by

replaingΦβ+|α|−ℓ in (2.8) and (2.9) with r(·, c)β+|α|−ℓ
. Similarly, the orner-weightedspaesKk

γ(Qδ,ω(c))

and K̟
γ (Qδ,ω(c)) an be de�ned by replaing Φ|α|−γ in (2.7) and (2.10) with r(·, c)|α|−γ

.

2.5.3. Relation between orner-weighted spaes. In this setion we ollet results on imbeddings

between some of the orner-weighted spaes we introdued. They are of independent interest, and will

be required at various stages in the ensuing proofs of the analyti regularity shifts.

We postpone all proofs, for ease of reading, to Appendix A. The following impliation between polar

frame veloity omponents u in (1.1) and Cartesian omponents u holds.

Lemma 2.4. For all 0 < δ ≤ 1, ω ∈ (0, 2π), c ∈ R
2
, ℓ ∈ {0, 1, 2}, and β ∈ (0, 1), if u ∈ Bℓ

β(Qδ,ω(c)) and

u(c) = 0 when ℓ = 2, then there holds u ∈ Bℓ
β(Qδ,ω).

The reverse impliation, in the ase ℓ = 0, is treated in the following statement.

Lemma 2.5. For all 0 < δ ≤ 1, ω ∈ (0, 2π), c ∈ R
2
, and β ∈ (0, 1), if v ∈ [B0

β(Qδ,ω(c))]
2
then v ∈

B0
β(Qδ,ω(c)).

The following two lemmas about equivalene and imbedding between weighted spaes will be used

later. For the proof of the �rst lemma see [2, Theorem 1.1, Theorem 2.1, Lemma A.2℄, and for the proof

of the seond lemma see [2, Lemma 1.1, Lemma A.1, Lemma A.2℄ and [3, Setion 2℄.

Lemma 2.6. Let 0 < δ ≤ 1, ω ∈ (0, 2π), β ∈ (0, 1), c ∈ R
2
. Then the following equivalene relations hold

for any ℓ ∈ {0, 1, 2} and N0 ∋ k ≥ ℓ:

1. v ∈ Hk,ℓ
β (Qδ,ω(c)) ⇐⇒ v ∈ Hk,ℓ

β (Qδ,ω(c)).
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2. v ∈ Bℓ
β(Qδ,ω(c)) ⇐⇒ v ∈ Bℓ

β(Qδ,ω(c)).

3. v ∈ H1,1
β (Qδ,ω(c)) ⇐⇒ v ∈ W 1

β (Qδ,ω(c)).

Lemma 2.7. Let 0 < δ ≤ 1, ω ∈ (0, 2π), β ∈ (0, 1), c ∈ R
2
. Then the following imbedding relations hold:

1. W 2
β (Qδ,ω(c)) ⊂ H2,2

β (Qδ,ω(c)) ⊂ C0(Qδ,ω(c)).

2. If v ∈ H2,2
β (Qδ,ω(c)) and v(c) = 0, then v ∈ W 2

β (Qδ,ω(c)).

The following lemma asserts that funtions that belong to orner-weighted Kondrat'ev spaes with

non-homogeneous weights for a ertain range of indies, with the additional requirement of the funtion

vanishing at the vertex for seond order spaes, also belong to the orresponding spaes with homoge-

neous weights. We refer to [13, Setion 7.1℄ for an in-depth presentation.

Lemma 2.8. Let 0 < δ ≤ 1, ω ∈ (0, 2π), β ∈ (0, 1), c ∈ R
2
, k ∈ {1, 2}, and v ∈ Hk,k

β (Qδ,ω(c)). Let

furthermore v(c) = 0 when k = 2. Then, v ∈ Kk
k−β(Qδ,ω(c)).

3. The Stokes equation in a setor. Consider, for c ∈ ∂P , δ ∈ (0, 1) and ω ∈ (0, 2π), the setor

Qδ,ω(c). Denote by Γ1 := {x ∈ R
2 : r(x, c) ∈ (0, δ), ϑ(x) = 0} and Γ2 := {x ∈ R

2 : r(x, c) ∈ (0, δ), ϑ(x) =
ω} the two edges meeting at c. Let also Γδ = Γ1 ∪Γ2. As all the results in this setion are independent of

c, we omit the dependene of the setor in the notation and write Qδ,ω = Qδ,ω(c).
We onsider variational solutions to the Stokes problem in Qδ,ω

Lσ
St(u, p) =

(
f

h

)
in Qδ,ω , B(∇,u, p) = 0 on Γδ .

This reads in omponents

(3.1)

−∇ · σ(u, p) = f in Qδ,ω

∇ · u = h in Qδ,ω

u = 0 on ΓS
D

σ(u, p)n = g on ΓS
N

(σ(u, p)n) · t = 0 and u · n = 0 on ΓS
G,

where ΓS
D,ΓS

N ,ΓS
G ∈ {∅,Γ1,Γ2} are pairwise disjoint and suh that ΓS

D ∪ ΓS
N ∪ ΓS

G = Γδ. We observe

that in (3.1) we did not inlude inhomogeneous boundary data on ΓS
G, as this is the physial ase of

the \no-slip" BCs. We also observe that the nonzero boundary data g on ΓS
N will appear in the analyti

regularity shift argument in the proof of Lemma 4.7.

For the Stokes problem in Qδ,ω, the following regularity result is a slight extension of [9, Theorem

5.2℄. The proof is along the lines of that of the ited theorem, by loalizingu and p near eah orner c and
solving a Stokes problem in a orresponding in�nite setor; for a detailed development, see [11, Lemma

5.1.1℄.

Theorem 3.1. Let ω ∈ (0, 2π) and βf ∈ (0, 1). There exists a onstant β ∈ (βf , 1) suh that, for all δ > 0,
there exists a onstant Csec > 0 suh that for all f ∈ Lβf

(Qδ,ω) and (u, p) satisfying (3.1) inQδ,ω and with right

hand side (f , 0),

(3.2) ‖u‖W 2
β (Qδ/2,ω) + ‖p‖W 1

β (Qδ/2,ω)

≤ Csec

(
‖f‖Lβ(Qδ,ω) + ‖u‖H1(Qδ,ω\Qδ/2,ω) + ‖p‖L2(Qδ,ω\Qδ/2,ω) + ‖g‖

W
1/2
β (ΓS

N )

)

Remark 3.2.By relation (2.2), if (u, p) ∈ [W 2
β (Qδ,ω)]

2 ×W 1
β (Qδ,ω) is a solution of

L∆
St(u, p) =

(
f + ν∇h

h

)
in Qδ,ω , B(u, p) =




0

g

0




on ΓS
D × ΓS

N × ΓS
G,
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or, in omponents,

(3.3)

−ν∆u+∇p = f + ν∇h in Qδ,ω

∇ · u = h in Qδ,ω

u = 0 on ΓS
D

σ(u, p)n = g on ΓS
N

(σ(u, p)n) · t = 0 and u · n = 0 on ΓS
G,

then it is also a solution of (3.1). Estimate (3.2) therefore also holds for solutions of (3.3) when h = 0.

4. Analyti regularity of solutions to the NS equations. We now prove our main result, i.e., the

weighted analytiity of solutions to the Navier-Stokes equations (2.1) . First, we will devote our attention

to the nonlinear transport term, as treating this term is, obviously, the main diÆulty with respet to the

analysis of the Stokes problem.

4.1. Estimate of the nonlinear term. We start by rewriting the quadrati nonlinearity (u · ∇)u in

polar oordinates and projeting its Cartesian omponents into the polar frame as in (1.1). We note here

that the gradient operator in Cartesian oordinates is projeted to a polar-frame by (f. (1.1))

(4.1) ∇ = A−1

(
∂r

r−1∂ϑ

)
.

Lemma 4.1. The following equality holds:

(4.2) (u · ∇)u =

(
ur∂rur +

1
r (uϑ∂ϑur − u2

ϑ)
ur∂ruϑ + 1

r (uϑ∂ϑuϑ + uruϑ)

)
.

Proof.We have

(u · ∇)u = A

((
u · (A−⊤A−1

(
∂r

r−1∂ϑ

)
)

)
A−1u

)

= A

((
u ·
(

∂r
r−1∂ϑ

))
A−1u

)

= A

[(
cosϑur∂rur − sinϑur∂ruϑ

sinϑur∂rur + cosϑur∂ruϑ

)

+
1

r

(
cosϑuϑ∂ϑur − sinϑuϑur − sinϑuϑ∂ϑuϑ − cosϑu2

ϑ

sinϑuϑ∂ϑur + cosϑuϑur + cosϑuϑ∂ϑuϑ − sinϑu2
ϑ

)]

=

(
ur∂rur +

1
r (uϑ∂ϑur − u2

ϑ)
ur∂ruϑ + 1

r (uϑ∂ϑuϑ + uruϑ)

)
.

In order to treat the individual nonlinear terms arising from the polar representation of the transport

term of the Navier-Stokes equation obtained above, we need a tehnial result on weighted interpolation

estimates in plane setors. This is the following statement, the polar version of [15, Lemma 1.10℄.

Lemma 4.2. Let δ, ω ∈ R suh that 0 < δ ≤ 1 and ω ∈ (0, 2π). For all β̃2, β̃1 ∈ R suh that β̃2 ≥ β̃1 + 1/2,
there exists a onstant Cint > 0 suh that, for all α ∈ N

2
0 and all funtions ϕ suh that

max
|η|≤1

‖rβ̃1+α1+η1Dα+ηϕ‖L2(Qδ,ω) < ∞,
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the following bound holds:

‖rβ̃2+α1Dαϕ‖L4(Qδ,ω) ≤ Cint‖rβ̃1+α1Dαϕ‖1/2L2(Qδ,ω)

×



∑

|η|≤1

‖rβ̃1+α1+η1Dα+ηϕ‖1/2L2(Qδ,ω) + α
1/2
1 ‖rβ̃1+α1Dαϕ‖1/2L2(Qδ,ω)


 .

Proof.We set δ = 1. Consider the dyadi partition given by the sets

Sj :=
{
x ∈ Q1,ω : 2−j−1 < r(x) < 2−j

}
, j ∈ N0,

and denote the linear maps Ψj : Sj → S0
. Denote ϕ̂j := ϕ ◦ Ψ−1

j : S0 → R and write D̂α
for derivation

with respet to polar oordinates (r, ϑ) in S0
. Then, by saling, for any q ∈ [1,∞),

(4.3) ‖rβ̃2+α1Dαϕ‖Lq(Sj) = 2−j(β̃2+2/q)‖rβ̃2+α1D̂αϕ̂‖Lq(S0).

Furthermore, the following interpolation inequality holds in S0
: there exists C0 > 0 suh that

(4.4) ‖v‖L4(S0) ≤ C0‖v‖1/2H1(S0)‖v‖
1/2
L2(S0)

holds for all v ∈ H1(S0). Sine in addition by (4.1) holds∇ = B∇̄, there also holds, for all v ∈ H1(S0),

(4.5) ‖v‖2H1(S0) ≤ 16
(
‖v‖2L2(S0) + ‖∂rv‖2L2(S0) + ‖∂ϑv‖2L2(S0)

)
.

Combining (4.4) and (4.5) and hoosing v = rα1Dαϕ gives

‖rα1Dαϕ‖L4(S0)

≤ 2C0‖rα1Dαϕ‖1/2L2(S0)


∑

|η|≤1

‖Dη(rα1Dαϕ)‖2L2(S0)




1/4

≤ 2C0‖rα1Dαϕ‖1/2L2(S0)


∑

|η|≤1

‖rα1Dα+ηϕ‖2L2(S0) + α2
1‖rα1−1Dαϕ‖2L2(S0)




1/4

Therefore, using the bound 2−[a]+ ≤ r(x)a ≤ 2[a]+ valid for all x ∈ S0
and all a ∈ R,

‖rβ̃2+α1Dαϕ‖L4(S0) ≤ 2[β̃2]++[β̃1]++1/22C0‖rβ̃1+α1Dαϕ‖1/2L2(S0)

×



∑

|η|≤1

‖rβ̃1+α1+η1Dα+ηϕ‖2L2(S0) + α2
1‖rβ̃1+α1Dαϕ‖2L2(S0)




1/4

.
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We denote C1 := 2[β̃2]++[β̃1]++1/22C0. Using this last inequality and (4.3) twie,

‖rβ̃2+α1Dαϕ‖L4(Sj)

≤ 2−j(β̃2+1/2)‖rβ̃2+α1D̂αϕ̂‖L4(S0)

≤ 2−j(β̃2+1/2)C1‖rβ̃1+α1D̂αϕ̂j‖1/2L2(S0)

×


∑

|η|≤1

‖rβ̃1+α1+η1D̂α+ηϕ̂j‖2L2(S0) + α2
1‖rβ̃1+α1D̂αϕ̂j‖2L2(S0)




1/4

≤ C12
−j(β̃2−β̃1−1/2)‖rβ̃1+α1Dαϕ‖1/2L2(Sj)

×



∑

|η|≤1

‖rβ̃1+α1+η1Dα+ηϕ‖2L2(Sj) + α2
1‖rβ̃1+α1Dαϕ‖2L2(Sj)




1/4

.

Sine β̃2 − β̃1 − 1/2 ≥ 0, we an onlude that

∑

j∈N0

‖rβ̃2+α1Dαϕ‖4L4(Sj) ≤ C4
1


∑

j∈N0

‖rβ̃1+α1Dαϕ‖2L2(Sj)




×


∑

|η|≤1

∑

j∈N0

‖rβ̃1+α1+η1Dα+ηϕ‖2L2(Sj) + α2
1

∑

j∈N0

‖rβ̃1+α1Dαϕ‖2L2(Sj)


 .

Taking the fourth root of both sides of the inequality above onludes the proof for the ase δ = 1. The
general ase δ ∈ (0, 1] follows by saling (with onstant Cint depending on δ).

Using the interpolation result obtained above, we an estimate, under a regularity assumption on u, the

individual terms appearing in (4.2). This is done in the following Lemma 4.3 and Corollary 4.4.

Lemma 4.3. Let β ∈ (0, 1), 0 < δ ≤ 1, ω ∈ (0, 2π). There exists Cd > 0 suh that for all u ∈ W 2
β (Qδ,ω)

suh that ‖u‖W 2
β(Qδ,ω) ≤ 1 and suh that there exists Au, Eu > 1 and k ∈ N suh that

(4.6) ‖rβ+α1−2Dαu‖L2(Qδ,ω) ≤ A|α|−2
u Eα2

u (|α| − 2)!, ∀α ∈ N
2
0 : 2 ≤ |α| ≤ k + 1,

and for all α, η ∈ N
2
0 suh that |η| ≤ 1 and |α| ≤ k − |η|,

(4.7) ‖rβ/2−1+α1Dα(rη1Dηu)‖L4(Qδ,ω) ≤ Cd(|α|+ 1)1/2A[|α|+|η|−3/2]+
u Eα2+η2+1/2

u [|α|+ |η| − 2]+!.

Proof.We start by proving the ase |η| = 0. Applying Lemma 4.2 with β̃2 = β/2− 1 and β̃1 = β − 2

(note that β ∈ (0, 1) implies β̃2 > β̃1 + 1/2), for all |α| ≤ k,

(4.8)

‖rβ/2−1+α1Dαu‖L4(Qδ,ω) ≤ Cint‖rβ−2+α1Dαu‖1/2L2(Qδ,ω)

×



∑

|η|≤1

‖rβ−2+α1+η1Dα+ηu‖1/2L2(Qδ,ω) + α
1/2
1 ‖rβ−2+α1Dαu‖1/2L2(Qδ,ω)


 .
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When |α| ≥ 2, using (4.6) , we have

‖rβ/2−1+α1Dαu‖L4(Qδ,ω)

≤ CintA
|α|−3/2
u Eα2+1/2

u (2(|α| − 1)!1/2 + (1 + α
1/2
1 )(|α| − 2)!1/2)(|α| − 2)!1/2

≤ CintA
|α|−3/2
u Eα2+1/2

u (2(|α| − 1)1/2 + 1 + α
1/2
1 )(|α| − 2)!

≤ CintA
|α|−3/2
u Eα2+1/2

u 4|α|1/2(|α| − 2)!.

If |α| ≤ 1, instead, it follows from ‖u‖W 2
β
(Qδ,ω) ≤ 1 and (4.8) that

‖rβ/2−1+α1Dαu‖L4(Qδ,ω) ≤ Cint(2 + α
1/2
1 ) ≤ 4Cint.

This proves (4.7) for |η| = 0, i.e., that for all |α| ≤ k,

(4.9) ‖rβ/2−1+α1Dαu‖L4(Qδ,ω) ≤ 4CintA
[|α|−3/2]+
u Eα2+1/2

u (|α| + 1)1/2[|α| − 2]+!.

Consider now the ase |η| = 1. We have

‖rβ/2−1+α1Dα(rη1Dηu)‖L4(Qδ,ω) ≤ ‖rβ/2−1+α1+η1Dα+ηu‖L4(Qδ,ω) + α1η1‖rβ/2−1+α1Dαu‖L4(Qδ,ω).

For all |α| ≤ k − 1, we an apply (4.9) to the two terms at the right hand side above:

α1‖rβ/2−1+α1Dαu‖L4(Qδ,ω) ≤ 4CintA
[|α|−3/2]+
u Eα2+1/2

u (|α|+ 1)1/2α1[|α| − 2]+!

≤ 4CintA
[|α|−1/2]+
u Eα2+η2+1/2

u (|α|+ 1)1/22[|α| − 1]+!,

and

‖rβ/2−1+α1+η1Dα+ηu‖L4(Qδ,ω) ≤ 4CintA
[|α|−1/2]+
u Eα2+η2+1/2

u (|α|+ 1)1/2[|α| − 1]+!.

Hene, for all |α| ≤ k − 1 and all |η| = 1,

‖rβ/2−1+α1Dα(rη1Dηu)‖L4(Qδ,ω) ≤ 12CintA
[|α|−1/2]+
u Eα2+η2+1/2

u (|α|+ 1)1/2[|α| − 1]+!,

whih onludes the proof, with Cd = 12Cint.

Corollary 4.4. Let β ∈ (0, 1), 0 < δ ≤ 1, ω ∈ (0, 2π), and let u ∈ W 2
β (Qδ,ω) suh that ‖u‖W 2

β(Qδ,ω) ≤ 1.

Suppose that there exists Au, Eu > 1 and k ∈ N suh that

‖rβ+α1−2Dαu‖L2(Qδ,ω) ≤ A|α|−2
u Eα2

u (|α| − 2)!, ∀α ∈ N
2
0 : 2 ≤ |α| ≤ k + 1.

Then, for all α ∈ N
2
0 suh that |α| ≤ k

(4.10) ‖rβ/2−1+α1Dα(ru)‖L4(Qδ,ω) ≤ 4Cd(|α|+ 1)1/2A[|α|−3/2]+
u Eα2+1/2

u [|α| − 2]+!.

Proof.We start from the bound

‖rβ/2−1+α1Dα(ru)‖L4(Qδ,ω) ≤ ‖rβ/2+α1Dαu‖L4(Qδ,ω) + α1‖rβ/2−1+α1D(α1−1,α2)u‖L4(Qδ,ω),

where the seond term is absent if α1 = 0. From Lemma 4.3, it follows that

‖rβ/2+α1Dαu‖L4(Qδ,ω) ≤ δCd(|α|+ 1)1/2A[|α|−3/2]+
u Eα2+1/2

u [|α| − 2]+!
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and that (when α1 ≥ 1)

α1‖rβ/2−1+α1D(α1−1,α2)u‖L4(Qδ,ω)

≤ δα1|α|1/2A[|α|−5/2]+
u Eα2+1/2

u [|α| − 3]+!

≤ max
j∈N

(
j3/2

(j + 1)1/2 max(j − 2, 1)

)
(|α|+ 1)1/2A[|α|−3/2]+

u Eα2+1/2
u [|α| − 2]+!

≤ 3

2

√
3(|α|+ 1)1/2A[|α|−3/2]+

u Eα2+1/2
u [|α| − 2]+!

Equation (4.10) follows from the above, bounding 1 + 3
2

√
3 ≤ 4 for ease of notation.

We are now in position to estimate the weighted norms of the nonlinear term in the setorQδ,ω(c), under
the assumptions of analyti bounds on the weighted norms of u. Initially, we do this under the assump-

tion that u ∈ W 2
β (Qδ,ω(c))

2
(whih implies that u vanishes at the vertex of the setor) in Lemma 4.5.

Lemma 4.5 (Weighted analyti estimates for the quadrati nonlinearity in polar frame).

Assume that β ∈ (0, 1), 0 < δ ≤ 1, ω ∈ (0, 2π).
Then, there exists Ct > 0 suh that for all w : Qδ,ω → R

2
, all k ∈ N, and all Aw, Ew ≥ 1 suh that

‖w‖W 2
β (Qδ,ω) ≤ 1 and

{
‖rα1+β−2Dαwr‖L2(Qδ,ω) ≤ A|α|−2

w Eα2
w (|α| − 2)!

‖rα1+β−2Dαwϑ‖L2(Qδ,ω) ≤ A|α|−2
w Eα2

w (|α| − 2)!,
for all2 ≤ |α| ≤ k + 1,

the following inequality holds:

‖rα1+β−2Dα(r2(w · ∇)w))‖L2(Qδ,ω) ≤ CtA
|α|−1
w Eα2+2

w |α|!, ∀α ∈ N
2
0 : 1 ≤ |α| ≤ k.

Proof. By Lemma 2.7, the bound ‖w‖W 2
β (Qδ,ω) ≤ 1 implies w ∈ [C0(Qδ,ω)]

2
and thus ‖w‖L∞(Qδ,ω) <

+∞.

Next, we reall from Lemma 4.1 that

(4.11) r2(w · ∇)w =

(
r2wr∂rwr + r(wϑ∂ϑwr − w2

ϑ)
r2wr∂rwϑ + r(wϑ∂ϑwϑ + wrwϑ)

)
.

We will estimate the individual terms.

Estimate of rw2
ϑ and rwrwϑ. Let v ∈ {wr, wϑ}. From (4.10), Lemma 4.3 and Corollary 4.4 it follows

that

‖rα1+β−2Dα(rwϑv))‖L2(Qδ,ω)

≤
|α|∑

j=0

∑

|η|=j,η≤α

(
α

η

)
‖rη1+β/2−1Dη(rv)‖L4(Qδ,ω)‖rα1−η1+β/2−1Dα−ηwϑ‖L4(Qδ,ω)

≤
|α|∑

j=0

∑

|η|=j,η≤α

(
α

η

)
4C2

d(|η|+ 1)1/2A[|η|−3/2]+
w Eη2+1/2

w [|η| − 2]+!

× (|α| − |η|+ 1)1/2A[|α|−|η|−3/2]+
w Eα2−η2+1/2

w [|α| − |η| − 2]+!

≤ 4C2
dA

[|α|−3/2]+
w Eα2+1

w

×
|α|∑

j=0

∑

|η|=j,η≤α

(
α

η

)
j!(|α| − j)!

(j + 1)1/2(|α| − j + 1)1/2

max(j(j − 1), 1)max((|α| − j)(|α| − j − 1), 1)
.
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Here we have used [|η| − 3/2]+ + [|α| − |η| − 3/2]+ ≤ [|α| − 3/2]+ for all η ≤ α.
Now, for all j ∈ N0,

(j + 1)1/2

max(j(j − 1), 1)
=

(j + 1)1/2 max(j, 1)1/2

max(j − 1, 1)

1

max(j, 1)3/2
≤

√
6

1

max(j, 1)3/2
.

In addition,

∑

|η|=j,η≤α

(
α

η

)
=

(|α|
j

)
.

Therefore,

‖rα1+β−2Dα(rwϑv))‖L2(Qδ,ω)

≤ 24C2
dA

[|α|−3/2]+
w Eα2+1

w

|α|∑

j=0

j!(|α| − j)!
1

max(j, 1)3/2 max(|α| − j, 1)3/2

∑

|η|=j,η≤α

(
α

η

)
.

≤ 24C2
dA

[|α|−3/2]+
w Eα2+1

w |α|!
|α|∑

j=0

1

max(j, 1)3/2 max(|α| − j, 1)3/2
.

We have, by the Cauhy-Shwarz inequality,

|α|∑

j=0

1

max(j, 1)3/2 max(|α| − j, 1)3/2
≤

|α|∑

j=0

1

max(j, 1)3
≤ 1 + ζ(3) ≤ 5

2
.

We onlude that

(4.12) ‖rα1+β−2Dα(rw2
ϑ))‖L2(Qδ,ω) ≤ 60C2

dA
[|α|−3/2]+
w Eα2+1

w |α|!

and

(4.13) ‖rα1+β−2Dα(rwϑwr))‖L2(Qδ,ω) ≤ 60C2
dA

[|α|−3/2]+
w Eα2+1

w |α|!.

Estimate of the remaining terms. Let v, w ∈ {wr, wϑ} and let ξ ∈ N
2
0 suh that |ξ| = 1. We have

(4.14)

‖rα1+β−2Dα(r1+ξ1wDξv))‖L2(Qδ,ω)

≤
|α|∑

j=1

∑

|η|=j,η≤α

(
α

η

)
‖rη1+β/2−1Dη(rw)‖L4(Qδ,ω)‖rα1−η1+β/2−1Dα−η(rξ1Dξv)‖L4(Qδ,ω)

+ ‖rα1+β−1wDα(rξ1Dξv)‖L2(Qδ,ω)

= (I) + (II).

We bound the sum in term (I) by similar tehniques as above, using Lemma 4.3 and Corollary 4.4:

(I) ≤
|α|∑

j=1

∑

|η|=j,η≤α

(
α

η

)
4C2

d(|η|+ 1)1/2A[|η|−3/2]+
w Eη2+1/2

w [|η| − 2]+!

× (|α| − |η|+ 1)1/2A[|α|−|η|−1/2]+
w Eα2−η2+ξ2+1/2

w [|α| − |η| − 1]+!

≤ 4C2
dA

[|α|−3/2]+
w Eα2+1+ξ2

w

|α|∑

j=1

∑

|η|=j,η≤α

(
α

η

)
j!(|α| − j)!

(j + 1)1/2(|α| − j + 1)1/2

max(j(j − 1), 1)max(|α| − j, 1)
,
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where we have used that

[|η| − 3/2]+ + [|α| − |η| − 1/2]+ ≤ [|α| − 3/2]+, ∀η ≤ α : |η| ≥ 1.

Sine

(j + 1)1/2

max(j, 1)
=

(j + 1)1/2

max(j, 1)1/2
1

max(j, 1)1/2
≤

√
2

1

max(j, 1)1/2
,

and using H
�
older's inequality, we obtain

(4.15)

(I) ≤ 8C2
dA

[|α|−3/2]+
w Eα2+ξ2+1

w |α|!
|α|∑

j=1

1

max(j − 1, 1)max(j, 1)1/2 max(|α| − j, 1)1/2

≤ 8C2
dA

[|α|−3/2]+
w Eα2+ξ2+1

w |α|!
|α|∑

j=1

1

max(j − 1, 1)3/2max(|α| − j, 1)1/2

≤ 8C2
dA

[|α|−3/2]+
w Eα2+ξ2+1

w |α|!


1 +

|α|−1∑

j=1

j−2




3/4
1 +

|α|−1∑

j=1

j−2




1/4

≤ 24C2
dA

[|α|−3/2]+
w Eα2+ξ2+1

w |α|!,

where we have used 1 + ζ(2) ≤ 3. We now estimate term (II) in (4.14). Remark that

(4.16) (II) ≤ ‖rw‖L∞(Qδ,ω)‖rα1+β−2Dα(rξ1Dξv)‖L2(Qδ,ω).

In addition,

‖rα1+β−2Dα(rξ1Dξv)‖L2(Qδ,ω)

≤ ‖rα1+ξ1+β−2Dα+ξv‖L2(Qδ,ω) + α1ξ1‖rα1+β−2Dαv‖L2(Qδ,ω)

≤ A|α|−1
w Eα2+ξ2

w (|α| − 1)! + ξ1|α|A|α|−1
w Eα2

w [|α| − 2]+!

≤ 3A|α|−1
w Eα2+ξ2

w (|α| − 1)!.

Hene, from (4.16),

(4.17) (II) ≤ 3δ‖w‖L∞(Qδ,ω)A
|α|−1
w Eα2+ξ2

w (|α| − 1)!.

It follows from (4.14), (4.15), and (4.17) that, for any v, w ∈ {wr, wϑ} and any multi-index ξ suh that

|ξ| = 1,

(4.18) ‖rα1+β−2Dα(r1+ξ1wDξv))‖L2(Qδ,ω) ≤ (24C2
d + 3‖w‖L∞(Qδ,ω))A

|α|−1
w Eα2+1+ξ2

w |α|!.

The ombination of the formulation (4.11) and of the bounds (4.12), (4.13), and (4.18) onludes the

proof, with

Ct = 6max
(
60C2

d, 24C
2
d + 3‖w‖L∞(Qδ,ω)

)
.
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4.2. Analyti regularity in the polygon P . We an now prove the main result of this paper. With

analytiity in the interior and up to edges of P being lassial, we onentrate on the setors near the

orners of the domain. We de�ne for δ ∈ (0, 1),

(4.19) Si
δ := Qδ,ωi(ci), i = 1, . . . , n.

We prepare the bootstrapping argument required for establishing analyti regularity by proving the reg-

ularity of the solution (u, p) in the weighted spaes [W 2
β (S

i
δ)]

2 ×W 1
β (S

i
δ).

Lemma 4.6. Let β
f
∈ (0, 1)n and f ∈ [Lβ

f
(P )]2 ∩W ∗

suh that ‖f‖W ∗ ≤ C2
coerν

2

4Ccont
. Suppose that Assump-

tion 1 holds. Let (u, p) be the solution to (2.1) with right hand side f .

Then, there exists β = (β1, . . . , βn) ∈ (0, 1)n suh that for all 0 < δ ≤ 1 with δ < 1
4 mini,j |cj − ci| holds

(u, p) ∈ [W 2
βi
(Si

δ)]
2 ×W 1

βi
(Si

δ), ∀i ∈ {1, . . . , n}.

Proof. For all s ∈ (1, 2) and for t = (1/s− 1/2)−1
,

‖f‖Ls(P ) ≤ ‖Φ−β
f
‖Lt(P )‖Φβ

f
f‖L2(P ).

Therefore f ∈ [Lβ
f
(P )]2 implies

f ∈ [Ls(P )]2, ∀s ∈
(
1,

2

1 + maxβ
f

)
.

In addition, u ∈ [H1(P )]2 implies by Sobolev imbedding u ∈ [Lt(P )]2 for all t ∈ [1,∞). By H
�
older's

inequality, hoosing t ∈ [1,∞) and s = (1/2 + 1/t)−1
,

‖(u · ∇)u‖Ls(P ) ≤ ‖u‖Lt(P )‖∇u‖L2(P ) < ∞

whih implies (u · ∇)u ∈ [Ls(P )]2, for all s ∈ [1, 2). It follows from [21, Corollary 4.2℄ that there exists

q > 1 suh that (u, p) ∈ [W 2,q(P )]2×W 1,q(P ). This in turn implies, by Sobolev imbedding, u ∈ [L∞(P )]2

hene (u · ∇)u ∈ [L2(P )]2. We an onlude by applying Theorem 3.1 to eah orner setor: for eah

i ∈ {1, . . . , n}, there exists β ∈ ((β
f
)i, 1) suh that

‖u‖W 2
β (Si

δ)
+ ‖p‖W 1

β(S
i
δ)

≤ Csec

(
‖f‖Lβ(Si

δ)
+ ‖(u · ∇)u‖Lβ(Si

δ)
+ ‖u‖H1(P ) + ‖p‖L2(P )

)
.

Now, sine f ∈ [Lβ
f
(P )]2 and (u · ∇)u ∈ [L2(P )]2, it holds that f ∈ [Lβ(S

i
δ)]

2
and (u · ∇)u ∈ [Lβ(S

i
δ)]

2
;

hene, the right hand side of the inequality above is bounded. Using [10, Corollary 4.2℄ to bound the

norm of the Cartesian version of the ux onludes the proof.

We prove weighted analyti estimates in eah orner setor.

Lemma 4.7. Let β
f
∈ (0, 1)n and f ∈ [B0

β
f

(P )]2∩W ∗
suh that ‖f‖W ∗ ≤ C2

coerν
2

4Ccont
. Suppose that Assump-

tion 1 holds and let (u, p) be the solution to (2.1) with right hand side f .

Then, there exists β ∈ (0, 1)n, with β ≥ β
f
, δ ∈ (0, 1], and Au, Eu > 0 suh that, for all i ∈ {1, . . . , n},

‖rβi+α1−2
i Dαu‖L2(Si

δ/2
) ≤ A|α|−2

u E[α2−4/3]+
u (|α| − 2)!, ∀α ∈ N

2
0 : |α| ≥ 2,

and

‖rβi+α1−1
i Dαp‖L2(Si

δ/2
) ≤ A|α|−1

u Eα2
u (|α| − 1)!, ∀α ∈ N

2
0 : |α| ≥ 1.



ANALYTIC REGULARITY FOR NS IN POLYGONSWITHMIXED BC 17

Proof. Choose β = (β1, . . . , βn) ∈ (0, 1)n, βi ≥ (β
f
)i, suh that, for all i ∈ {1, . . . , n}, Theorem 3.1

holds in Q1,ωi(ci) with β = βi. Fix 0 < δP ≤ 1 suh that δP < 1
4 mini,j |cj − ci| and suh that

(4.20) ‖u‖W 2
βi

(Si
δP

) ≤ 1, ‖p‖W 1
βi

(Si
δP

) ≤ 1, ∀i ∈ {1, . . . , n}.

Note that this is possible thanks to Lemma 4.6. The proof proeeds by indution, in eah of the orner

setors. Fix i ∈ {1, . . . , n}. We write r(x) := ri(x) = |x− ci| for ompatness.

Before setting up the indutive bootstrap argument, we rewrite the NSE in polar oordinates and

rearrange the equations in the setor Si
δP

as

L∆
St(u, p) =

(
A(f − (u · ∇)u)

0

)
in Si

δP ,(4.21a)

B(u, p) = 0 on Γδ,(4.21b)

This set of equations has the following spei� form:

− 1

r2

(
ν((r∂r)

2 + ∂2
ϑ − 1) −2ν∂ϑ

2ν∂ϑ ν((r∂r)
2 + ∂2

ϑ − 1)

)(
ur

uϑ

)
+

1

r

(
r∂r
∂ϑ

)
p = f − (u · ∇)u in Si

δP ,(4.22)

1

r
((r∂r + 1)ur + ∂ϑuϑ) = 0 in Si

δP ,(4.23)

u = 0 on ∂Si
δP ∩ ΓD.(4.24)

On ∂Si
δP

∩ ΓN and ∂Si
δP

∩ ΓG, respetively, there holds

(
ν(r−1∂ϑur + ∂ruϑ − r−1uϑ

−p+ 2νr−1(∂ϑuϑ + ur))

)
= 0(4.25)

and

(
uϑ

ν(∂ruϑ + 1
r∂ϑur − 1

ruϑ)

)
= 0 .(4.26)

See Appendix B for details of the derivation.

The analytiity ofu and p inP \
(⋃n

i=1 S
i
δP /2

)
and the analytiity assumption onf , i.e., f ∈ [B0

β
f

(P )]2 ⊂
[B0

β(P )]2 (whene f ∈ [B0
βi
(Si

δP
)]2 by Lemma 2.5), imply that there existsA1 > 0 suh that, for all |α| ≥ 1,

‖rβi+α1−2Dα(r2f )‖L2(Si
δP

) ≤ A
|α|
1 |α|!,(4.27a)

‖rβi+α1−2Dα(r2(u · ∇)u)‖L2(Si
δP

\Si
δP /2

) ≤ A
|α|
1 |α|!,(4.27b)

‖rβi+α1−1Dαp‖L2(Si
δP

\Si
δP /2

) ≤ A
|α|−1
1 (|α| − 1)!,(4.27)

and, for all k ∈ N,

(4.27d) ‖rk∂k
ru‖H1(Si

δP
\Si

δP /2
) ≤ Ak

1k!.

De�ne the onstants

(4.28a) Eu = max

(
2, 8

(
1 +

1

ν

)3/2

, (8ν)3/2

)
,
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and

(4.28b) Au = max

(
22CsecA1, 2Csec(Ct + 9)E2

u,
4

ν
A1, 4

(
1

ν
(Ct + 2) + 4

)
E4/3

u ,

4A1, 4(Ct + 1 + 3ν)Eu, 2

)
.

We now formulate our indution assumption.

Indution assumption. For k̂ ∈ N and k2 ∈ N with k2 ≤ k̂, we sayHk̂,k2
holds if

(4.29a)

‖rβi+α1−2
i Dαur‖L2(Si

δP /2
) ≤ A|α|−2

u E[α2−4/3]+
u (|α| − 2)!,

‖rβi+α1−2
i Dαuϑ‖L2(Si

δP /2
) ≤ A|α|−2

u E[α2−4/3]+
u (|α| − 2)!,

∀α ∈ N
2
0 :

{
2 ≤ |α| ≤ k̂ + 1,

α2 ≤ k2 + 1,

and

(4.29b) ‖rβi+α1−1
i Dαp‖L2(Si

δP /2
) ≤ A|α|−1

u Eα2
u (|α| − 1)!, ∀α ∈ N

2
0 :

{
1 ≤ |α| ≤ k̂,

α2 ≤ k2,

where Au and Eu are the onstants in (4.28b) and (4.28a).

Strategy of the proof. The proof of the statement will be omposed of two main steps. H1,1 holds due

to Lemma 4.6 and to (4.20). We will show that, for all k ∈ N,

(4.30) Hk,k =⇒ Hk+1,1.

Then, in the following step, we will show that, for all k ∈ N and all j ∈ N suh that j ≤ k,

(4.31) Hk,k and Hk+1,j =⇒ Hk+1,j+1.

Combining (4.30) and (4.31), we obtain that

(4.32) Hk,k =⇒ Hk+1,k+1,

We infer from (4.32) that Hk,k is veri�ed for all k ∈ N. This will onlude the proof.

Step 1: proof of (4.30) . We �x k ∈ N and suppose that Hk,k holds. De�ne

(4.33) v := rk∂k
ru, q := rk∂k

r p.

Then, for all |η| ≤ 2,

(4.34) rη1Dηv = rk∂k
r (r

η1Dηu)

and

(4.35) Dηq = rk−2∂k
r (r

η1+1Dηp)− krk−1∂k−1
r Dηp− η1k(k − 1)rk−2∂k−1

r p.

Furthermore, multiplying (4.23) by r and di�erentiating by ∂k
r we obtain

(r∂r + (k + 1))∂k
rur + ∂k

r ∂ϑuϑ = 0,

hene

(4.36) 0 = rk−1(r∂r + (k + 1))∂k
r ur + rk−1∂ϑ∂

k
ruϑ =

1

r
((r∂r + 1)vr + ∂ϑvϑ)
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From (4.34), (4.35), and (4.36), it follows that the pair (v, q) as de�ned in (4.33) satis�es, with L∆
St andB

in polar frame and ating on the veloity �eld ū in polar frame as de�ned in (4.21a) and (4.21b) formally

the Stokes boundary value problem

(4.37)

L∆
St(v, q) =

(
f̃

0

)
, in Si

δP ,

B(v, q) =




0

g̃

0


 , on (∂Si

δP ∩ ΓD)× (∂Si
δP ∩ ΓN )× (∂Si

δP ∩ ΓG), .

Here, f̃ and (assuming that ∂Si
δP

∩ ΓN 6= ∅) g̃ are de�ned by

(4.38) f̃ = rk−2∂k
r (r

2(f − (u · ∇)u))− krk−2

(
r∂k

r p+ (k − 1)∂k−1
r p

∂k−1
r ∂ϑp

)
, g̃ =

(
0

krk−1∂k−1
r p

)
.

Using (4.27a), Lemma 4.5 withw = u, the indutive hypothesisHk,k, and the fat that for all v ∈ L2(Si
δP
)

‖v‖L2(Si
δP

) ≤ ‖v‖L2(Si
δP /2

) + ‖v‖L2(Si
δP

\Si
δP /2

),

we �nd from (4.38)

‖f̃‖Lβi
(Si

δP
) ≤ ‖rβi+k−2∂k

r (r
2f)‖L2(Si

δP
) + ‖rβi+k−2∂k

r (r
2(u · ∇)u))‖L2(Si

δP
)

+ k‖rβi+k−1∂k
r p‖L2(Si

δP
) + k(k − 1)‖rβi+k−2∂k−1

r p‖L2(Si
δP

)

+ k‖rβi+k−2∂k−1
r ∂ϑp‖L2(Si

δP
)

≤ Ak
1k! +

(
CtA

k−1
u E2

u +Ak
1

)
k! + k

(
Ak−1

u +Ak−1
1

)
(k − 1)!

+ k(k − 1)
(
Ak−2

u +Ak−2
1

)
(k − 2)! + k

(
Ak−1

u Eu +Ak−1
1

)

≤
(
5Ak

1 + (Ct + 3)Ak−1
u E2

u

)
k!.

Furthermore,

‖g̃‖
W

1/2
β (∂Si

δP
∩ΓN )

≤ k‖rk−1∂k−1
r p‖W 1

β
(Si

δP
)

≤ k

(
‖rk−2+β∂k−1

r p‖L2(Si
δP

) + ‖rk−2+β∂k−1
r ∂ϑp‖L2(Si

δP
) + ‖rk−1+β∂k

r p‖L2(Si
δP

)

+ (k − 1)‖rk−2+β∂k−1
r p‖L2(Si

δP
)

)

≤ 4k
(
Ak−1

1 +Ak−1
u Eu

)
(k − 1)!

≤ 4
(
Ak−1

1 +Ak−1
u Eu

)
k!.

It follows from (4.37), Theorem 3.1, (4.27d) , (4.27), and the two inequalities above that

(4.39)

‖v‖W 2
βi

(Si
δP /2

) + ‖q‖W 1
βi

(Si
δP /2

)

≤ Csec

(
‖f̃‖Lβi

(Si
δP

) + ‖v‖H1(Si
δP

\Si
δP /2

) + ‖q‖L2(Si
δP

\Si
δP /2

) + ‖g̃‖
W

1/2
β (∂Si

δP
∩ΓN )

)

≤ Csec

(
11Ak

1 + (Ct + 7)Ak−1
u E2

u

)
k!.

Now, for all |η| = 2,

Dηv = rk∂k
rDηu+ η1kr

k−1∂k+η1−1
r ∂η2

ϑ u+ [η1 − 1]+k(k − 1)rk−2∂k
ru.
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Therefore, for all |η| = 2,

‖rβi+k+η1−2∂k
rDηu‖L2(Si

δP /2
)

≤ ‖v‖W 2
βi

(Si
δP /2

) + η1k‖rβi+k+η1−3∂k+η1−1
r ∂η2

ϑ u‖L2(Si
δP /2

) + k(k − 1)‖rβi+k−2∂k
ru‖L2(Si

δP /2
)

≤ Csec

(
11Ak

1 + (Ct + 7)Ak−1
u E2

u

)
k! + 2kAk−1

u (k − 1)! + k(k − 1)Ak−2
u (k − 2)!

≤ Csec

(
11Ak

1 + (Ct + 9)Ak−1
u E2

u

)
k!.

For all |η| = 1,

Dηq = rk∂k
rDηq + η1kr

k−1∂k
r p,

hene

‖rβi+k+η1−1∂k
rDηp‖L2(Si

δP /2
) ≤ ‖q‖W 1

βi
(Si

δP /2
) + k‖rβi+k−1∂k

r p‖L2(Si
δP /2

)

≤ Csec

(
11Ak

1 + (Ct + 7)Ak−1
u E2

u

)
k! + kAk−1

u (k − 1)!

≤ Csec

(
11Ak

1 + (Ct + 8)Ak−1
u E2

u

)
k!.

From (4.28b) it follows that for every k ∈ N

max
|η|=2

‖rβi+k+η1−2∂k
rDηu‖L2(Si

δP /2
) ≤ Ak

uk!, max
|η|=1

‖rβi+k+η1−1∂k
rDηp‖L2(Si

δP /2
) ≤ Ak

uk!,

i.e., that Hk+1,1 holds. We have shown impliation (4.30).

Step 2: proof of (4.31) . We now �x j ∈ {1, . . . , k} and we assume that Hk,k and Hk+1,j hold true.

Multiply (4.23) by r and di�erentiate by ∂k−j
r ∂j+1

ϑ to obtain

r∂k+1−j
r ∂j+1

ϑ ur + (k + 1− j)∂k−j
r ∂j+1

ϑ ur + ∂k−j
r ∂j+2

ϑ uϑ = 0.

Therefore, using Hk+1,j ,

(4.40)

‖rβi+k−j−2∂k−j
r ∂j+2

ϑ uϑ‖L2(Si
δP /2

)

≤ ‖rβi+k−j−1∂k+1−j
r ∂j+1

ϑ ur‖L2(Si
δP /2

) + k‖rβi+k−j−2∂k−j
r ∂j+1

ϑ ur‖L2(Si
δP /2

)

≤ Ak
uE

j−1/3
u k! + kAk−1

u Ej−1/3
u (k − 1)!

= 2Ak
uE

j−1/3
u k!

≤ Ak
uE

j+2/3
u k!.

This proves the estimate for uϑ.

To prove the bound on ur, multiply the �rst equation in (4.22) by r2 and di�erentiate by ∂k−j
r ∂j

ϑ, to

obtain

ν∂k−j
r ∂j+2

ϑ ur = −ν
(
r2∂2

r + (2(k − j) + 1)r∂r + (k − j)2 − 1
)
∂k−j
r ∂j

ϑur − 2ν∂k−j
r ∂j+1

ϑ uϑ

+ (r2∂2
r + 2(k − j)r∂r + (k − j)(k − j − 1))∂k−j−1

r ∂j
ϑp

− ∂k−j
r ∂j

ϑ

(
r2(f − (u · ∇)u)r

)
.
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Therefore,

(4.41)

‖rβi+k−j−2∂k−j
r ∂j+2

ϑ ur‖L2(Si
δP /2

)

≤
(
A2

uk! + 2kAu(k − 1)! + k(k − 2)(k − 2)!

)
Ak−2

u E[j−4/3]+
u + 2Ak−1

u Ej−1/3
u (k − 1)!

+
1

ν

(
Ak

uk! + 2(k − 1)Ak−1
u (k − 1)! + (k − 1)(k − 2)Ak−2

u (k − 2)!

)
Ej

u

+
1

ν
Ak

1k! +
1

ν
CtA

k−1
u Ej+2

u k!

≤
(
1

ν
Ak

1 +

(
1 +

1

ν

)
Ak

uE
j
u +

(
1

ν
(Ct + 2) + 4

)
Ak−1

u Ej+2
u +

(
1 +

1

ν

)
Ak−2

u Ej
u

)
k!.

≤ Ak
uE

j+2/3
u k!

This provides the estimate for ur.

Last, onsider the seond equation of (4.22): multiplying by r2 and di�erentiating by ∂k−j
r ∂j

ϑ we

obtain

r∂k−j
r ∂j+1

ϑ p = ν
(
r2∂2

r + (2(k − j) + 1)r∂r + (k − j)2 − 1 + ∂2
ϑ

)
∂k−j
r ∂j

ϑuϑ

+ 2ν∂k−j
r ∂j+1

ϑ ur − (k − j)∂k−j−1
r ∂j+1

ϑ p+ ∂k−j
r ∂j

ϑ

(
r2(f − (u · ∇)u)ϑ

)
.

Hene,

(4.42)

‖rβi+k−j−1∂k−j
r ∂j+1

ϑ p‖L2(Si
δP /2

)

≤ ν

(
A2

uk! + 2kAu(k − 1)! + k(k − 2)(k − 2)!

)
Ak−2

u E[j−4/3]+
u

+ νAk
uE

j+1/3
u k! + 2νAk−1

u Ej−1/3
u (k − 1)! + (k − 1)Ak−2

u Ej+1
u (k − 2)!

+Ak
1k! + CtA

k−1
u Ej+2

u k!

≤
(
Ak

1 + 2νAk
uE

j+1/3
u + (Ct + 1 + 3ν)Ak−1

u Ej+2
u +Ak−2

u Ej+1
u

)
k!

≤ Ak
uE

j+1
u k!.

Then, the estimates in (4.40), (4.41), and (4.42) imply thatHk+1,j+1 holds true. By the strategy outlined

above, this shows impliation (4.32) and onludes the proof.

Combining the estimates in eah setor with lassial results on the analytiity of the solution in the inte-

rior of the domain and on regular parts of the boundary, we obtain the weighted analytiity of solutions

to the Navier-Stokes equations, stated in the following theorem.

Theorem 4.8. Let β
f

∈ (0, 1)n and f ∈ [B0
β
f

(P )]2 ∩ W ∗
suh that ‖f‖W ∗ ≤ C2

coerν
2

4Ccont
. Suppose that

Assumption 1 holds and let (u, p) be the solution to (2.6) with right hand side f .

Then, there exists β ∈ (0, 1)n, with β ≥ β
f
suh that

(u, p) ∈ [K̟
2−β(P )]2 ×K̟

1−β(P )

Proof. The analytiity of weak solutions (u, p) in the interior and up to analyti parts of the boundary

is lassial, see, e.g., [16, 7℄.

It therefore remains to prove weighted analyti regularity near orners of P . To this end, we apply

Lemma 4.7 to obtain non-overlapping setors Si
δP

suh that

(u, p) ∈ [B2
βi
(Si

δP /2)]
2 × B1

βi
(Si

δP /2), ∀i ∈ {1, . . . , n}.
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Furthermore, u(c) = 0 for all orners c ∈ ∂P due to Assumption 1, Item 2. This implies, by Lemma 2.4,

(u, p) ∈ [B2
βi
(Si

δP /2)]
2 ×B1

βi
(Si

δP /2), ∀i ∈ {1, . . . , n}.

Therefore, in partiular, u ∈ [H2,2
β (Si

δP /2)]
2
and p ∈ H1,1

β (Si
δP /2). By Lemma 2.8, we obtain that u ∈

[K2
2−β(S

i
δP /2)]

2
and that p ∈ K1

1−β(S
i
δP /2). By de�nition, Bℓ

β(S
i
δP /2) ∩ Kℓ

ℓ−β(S
i
δP /2) = K̟

ℓ−β(S
i
δP /2) and

this onludes the proof.

We remark that the argument in the proof, in partiular, provides also

(u, p) ∈ [B2
β(P )]2 ×B1

β(P ) .

5. Conlusion and Disussion. We have shown analyti regularity of Leray-Hopf solutions of the

stationary, visous and inompressible Navier-Stokes equations in polygonal domains P , subjet to suf-
�iently small and analyti in P foring. Our result holds under Assumption 1, whih implies that for

eah orner point of P , at least of the sides at that point has homogeneous Dirihlet (\no-slip") BCs. We

proved analyti regularity in sales of orner-weighted, Kondrat'ev spaes with homogeneous weight fun-

tions. The present setting of mixed BCs overs most of the example of interest in appliations, suh as,

e.g., hannel ow with homogeneous Neumann ondition at the outow boundary. With the argument

in [15℄ ontaining a gap, in the partiular ase of homogeneous Dirihlet (\no-slip") boundary ondi-

tions on all of ∂P the present result implies that the result in [22℄ stands under the assumptions stated

in [22℄. The analyti regularity in homogeneous weighted spaes implies, as explained in the disussion

in [22, Setion 5℄, orresponding bounds on n-widths of solution sets whih, in turn, imply exponential

onvergene or redued basis and of Model Order Redution methods. Corresponding remarks imply

also in the present, more general situation, and we do not spell them out here. The present results also

imply, along the lines of [22℄ (where only the ase of no-slip BCs on all of ∂P was onsidered), exponen-

tial rates of onvergene of hp-approximations. Details on the exponential onvergene rate bounds for

further disretizations in the ase of the presently onsidered mixed boundary onditions shall be elab-

orated elsewhere. Likewise, analyti regularity of ows for the remaining ombinations of boundary

onditions not overed in the present analysis, an be established in a similar fashion. To that end, how-

ever, a di�erent funtional setting of orner-weightedKondrat'ev spaes with nonhomogeneous weights

is neessary. The details, also of the bootstrapping analysis for the nonlinearity, will be developed else-

where.

Appendix A. Proofs of Setion 2.5.3.

Proof of Lemma 2.4.The third item of Lemma 2.6 and the seond item of Lemma 2.7 give that for any

ℓ ∈ {0, 1, 2} there exists a onstant A0 > 1 suh that for any α ∈ N
2
0,

‖rβ+α1−ℓDαu‖L2(Qδ,ω(c)) ≤ A
|α|+1
0 |α|!.

Then we have

‖rβ−ℓu‖L2(Qδ,ω(c)) ≤ 4‖rβ−ℓu‖L2(Qδ,ω(c)),

and for all |α| ≥ 1,

‖rβ+α1−ℓDαu1‖L2(Qδ,ω(c)) ≤
α2∑

j=0

(
α2

j

)
‖∂j

ϑ cosϑ‖L∞(Qδ,ω(c))‖rβ+α1−ℓ∂α1
r ∂α2−j

ϑ ur‖L2(Qδ,ω(c))

+

α2∑

j=0

(
α2

j

)
‖∂j

ϑ sinϑ‖L∞(Qδ,ω(c))‖rβ+α1−ℓ∂α1
r ∂α2−j

ϑ uϑ‖L2(Qδ,ω(c))

≤ 2A
|α|+1
0 |α|!

α2∑

j=0

A−j
0

(
α2

j

)
≤ 2(2A0)

|α|+1|α|!.
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A similar estimate holds for u2. By the above results and using the third item of Lemma 2.6 and the �rst

item of Lemma 2.7 we have u ∈ [Bℓ
β(Qδ,ω(c))]

2
, whih, by the seond item of Lemma 2.6, is equivalent to

u ∈ [Bℓ
β(Qδ,ω(c))]

2
.

Proof of Lemma 2.5.From v ∈ [B0
β(Qδ,ω(c))]

2
it follows that v ∈ [B0

β(Qδ,ω(c))]
2
by [2, Theorem 1.1℄.

Then, there exists A0 > 1 suh that, for all |α| ≥ 1,

‖rα1+βDαvr‖L2(Qδ,ω(c)) ≤
α2∑

j=0

(
α2

j

)
‖∂j

ϑ cosϑ‖L∞(Qδ,ω(c))‖rα1+β∂α1
r ∂α2−j

ϑ v1‖L2(Qδ,ω(c))

+

α2∑

j=0

(
α2

j

)
‖∂j

ϑ sinϑ‖L∞(Qδ,ω(c))‖rα1+β∂α1
r ∂α2−j

ϑ v2‖L2(Qδ,ω(c))

≤ 2A
|α|
0 |α|!

α2∑

j=0

A−j
0

(
α2

j

)
≤ 2(2A0)

|α||α|!.

The estimate for vϑ follows by the same argument.

Proof of Lemma 2.8.Lemma 2.7 implies that v ∈ W k
β (Qδ,ω(c)). Elementary alulus yields

∂x1 = cosϑ∂r −
sinϑ

r
∂ϑ,

∂x2 = sinϑ∂r +
cosϑ

r
∂ϑ,

∂2
x1

= cos2 ϑ∂2
r +

2 cosϑ sinϑ

r2
∂ϑ +

sin2 ϑ

r
∂r −

2 cosϑ sinϑ

r
∂rϑ +

sin2 ϑ

r2
∂2
ϑ,

∂2
x2

= sin2 ϑ∂2
r − 2 cosϑ sinϑ

r2
∂ϑ +

cos2 ϑ

r
∂r +

2 cosϑ sinϑ

r
∂rϑ +

cos2 ϑ

r2
∂2
ϑ,

∂x1∂x2 = cosϑ sinϑ∂2
r +

sin2 ϑ− cos2 ϑ

r2
∂ϑ +

cos2 ϑ− sin2 ϑ

r
∂rϑ − sinϑ cosϑ

r
∂r −

sinϑ cosϑ

r2
∂2
ϑ.

Therefore there exists C > 0 (C = 7 when k = 2 and C = 2 when k = 1 will suÆe) suh that for any

α ∈ N
2
0 with |α| ≤ k,

‖rβ−k+|α|∂αv‖L2(Qδ,ω(c)) ≤ C



∑

|α|≤k

‖rβ−k+α1Dαv‖2L2(Qδ,ω(c))




1/2

= C‖v‖Wk
β (Qδ,ω(c)).

By de�nition, it follows that v ∈ Kk
k−β(Qδ,ω(c)).

Appendix B. Stokes operator in polar oordinates. In this appendix we provide the elementary al-

ulations to verify (4.22)-(4.26), whih desribe the NSE with boundary onditions in polar oordinates

and polar omponents. We reall the representation of the NSE in the Cartesian referene frame

L∆
St(u, p) =

(
f − (u · ∇)u

0

)
in Si

δP ,(B.1)

B(u, p) = 0 on Γδ.(B.2)

The vetor Laplaian in a polar referene frame reads [1, Equation (3.151)℄

∆u =
1

r2

(
(r∂r)

2 + ∂2
ϑ − 1 −2∂ϑ

2∂ϑ (r∂r)
2 + ∂2

ϑ − 1

)
u
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and [14, Equation (II.4.C3)℄

∇p =

(
∂rp

r−1∂ϑp

)
.

The divergene of u is [14, Equation (II.4.C5)℄∇·u = 1
r ((r∂r + 1)ur + ∂ϑuϑ), whene (4.22) and (4.23).

Regarding the boundary onditions (B.2), we start from the expression of the stress tensor in polar

oordinates and polar frame, see [14, Equation (II.4.C9)℄,

(B.3) ε(u) =

(
∂rur

1
2 (∂ruϑ + r−1(∂ϑur − uϑ))

1
2 (∂ruϑ + r−1(∂ϑur − uϑ)) r−1(∂ϑuϑ + ur)

)

hene the stress tensor in a polar referene frame reads

(B.4) σ(u, p) = 2νε(u)− p Id2 = ν

(
2∂rur ∂ruϑ + r−1(∂ϑur − uϑ)

∂ruϑ + r−1(∂ϑur − uϑ) 2r−1(∂ϑuϑ + ur)

)
− p Id2 .

We have furthermore

n = ±
(
0
1

)
, t = ∓

(
1
0

)
,

where the sign depends on the side of the setor being onsidered. Then, bymatrix-vetormultipliation,

σ(u, p)n = ±ν

(
∂ruϑ + r−1(∂ϑur − uϑ)
2r−1(∂ϑuϑ + ur)− p

)

and onsequently

(σ(u, p)n) · t = σ(u, p)n · t = −∂ruϑ − 1

r
(∂ϑur − uϑ).

Finally, it follows from the de�nition that u · n = u · n = ±uϑ.
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