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WEIGHTED ANALYTICITY OF HARTREE-FOCK EIGENFUNCTIONS

YVONMADAY†,∗ AND CARLOMARCATI⋄

Abstract. We prove analytic-type estimates in weighted Sobolev spaces on the eigenfunctions of
a class of elliptic and nonlinear eigenvalue problems with singular potentials, which includes the
Hartree-Fock equations. Going beyond classical results on the analyticity of the wavefunctions away
from the nuclei, we prove weighted estimates locally at each singular point, with precise control of
the derivatives of all orders.

Our estimates have far-reaching consequences for the approximation of the eigenfunctions of the
problems considered, and they can be used to prove a priori estimates on the numerical solution of
such eigenvalue problems.

1. Introduction

The Hartree-Fock equations are one of the most studied and used models in ab initio quantum
chemistry in order to approximate the behavior of many-body quantum system [SO12]. Due
to their (relative) simplicity, they constitute a starting point both for the analysis and for the
computation of the state of many complex systems. The precise characterization of their solutions
is therefore a subject of great theoretical and practical interest.

In this paper, we prove analytic-type estimates in weighted Sobolev spaces on the wave func-
tions of a class of elliptic, nonlinear systems, which includes the Hartree-Fock model. Specifically,
we consider operators that contain potentials that are singular (divergent) at a set of isolated
points (physically, the locations of the nuclei) in R

d, d ∈ {2, 3}, but that are regular otherwise.
Due to the presence of these singularities, the eigenfunctions will not, in general, be regular in
classical Sobolev spaces and are well known [Kat57] to exhibit cusps at the point singularities.
The regularity of functions with point singularities is better described in the context of weighted
Sobolev spaces, in which higher order derivatives are multiplied by a weight representing the
distance from the singularity. In these spaces, under some assumptions on the potential, we
can therefore derive analytic-type bounds on the growth of the norms of the eigenfunctions of
the nonlinear elliptic systems under consideration. Essentially, we refine the known result on
analyticity of the wavefunctions away from the nuclei (see, e.g., [FHHØ02, Lew04]) and show
how the radius of convergence of Taylor series associated to the wavefunction decreases to zero
in the vicinity of the singular points.

The theory of weighted Sobolev spaces of the kind we consider here has its roots in the
analysis of elliptic problems in non smooth domains and was initiated in the second half of the
twentieth century [Kon67]. Analytic regularity of solutions to linear elliptic systems in polygons
and polyhedra has been analyzed, e.g, in [GS06, CDN12]. Concerning nonlinear problems,
we mention our work on nonlinear Schrödinger equations [MM19a] and on the Navier-Stokes
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equation in plane polygons [MS20]. For a general theory of elliptic regularity in weighted spaces,
we refer the reader to, e.g., [Gri85, KMR97, KMR01,MR10], and the recent work [DHSS19]. Here,
we try to make our exposition as independent as possible from the usual notation of weighted,
Kondratev-type Sobolev spaces and introduce them only in the appendix. The theory of regularity
in those spaces is, nonetheless, ultimately central to the derivation of our estimates.

The techniques used in the present paper are heavily inspired by those used in [DFØS12] to
prove analyticity away from the nuclei of the solution to the relativistic Hartree-Fock equations.
Here, we transport those techniques in a weighted framework, and use them to estimate higher
order norms of the nonlinear terms. The analysis of linear, many-body Schrödinger-type operators
has been carried out, among others, in [ACN12, FØ18] in a functional setting very similar to
the one considered here. An asymptotic analysis at the nuclei for the Hartree-Fock equation
with Coulomb potential is carried out, with different tools, in [FSS08]; the electron-electron
singularities emerging in many-body models are analyzed in [FH11, FHS15]. Here, we only
consider two and three dimensional nonlinear models with isolated point singularities; we
furthermore take into account a wider class of potentials than Coulomb ones, as we allow for
more general weighted analytic potentials. The technique used in this paper can also be rather
directly extended to deal with the nonlinear part of other types of operators, once the behavior of
the linear part of the operator is well understood: see, for example, the application to Navier-
Stokes equations in [MS20].

We will discuss, in the next subsection, some of the consequences of the weighted analytic
regularity of the eigenfunctions, in particular from the point of view of their numerical approxi-
mation, through linear and nonlinear techniques. Then, after having clarified our notation, we
shortly introduce the Hartree-Fock equations and the more general nonlinear elliptic system, in
Section 2. In the following Section 3, specifically in Theorem 1, we introduce the main result
of this paper, and most of the section will be devoted to its proof. We conclude by introducing,
for the sake of completeness, the definition of weighted, homogeneous and non homogeneous,
Sobolev spaces and some technical results, in Appendix A.

1.1. Consequences of weighted analytic regularity. The weighted analytic regularity of the
solutions to Hartree-Fock and more general elliptic problems has important and far-reaching
consequences for the numerical solution of those problems. We can, indeed, obtain exponential
rates of convergence of solutions obtained via numerical methods based on finite elements,
see [SSW13b, SSW13a] for a general approximation theory and [MM19b, MM19a, HSW19] for
applications to linear and nonlinear eigenvalue problems, and on virtual elements [ČGM+20]. In
addition, nonlinear approximation techniques based on tensor compression and on the solution
of partial differential equation in tensor-formatted form also provide exponentially convergent
solutions to problems with weighted analytic solutions [MRS19]. Similarly, for such functions,
neural networks with ReLU activation function can be constructed so that their size is bounded
polylogarithmically with respect to the error (or, equivalently, the error converges exponentially
with respect to the size) [MPOS20]. The present analytic-type regularity results, therefore, allow
for an a priori analysis of multiple numerical methods which have proven and will probably prove
useful for applications.

1.2. Notation. Let the space dimension be d ∈ {2, 3}. We denote by N the set of positive integers,
with N0 = {0} ∪ N. For k ∈ N and 1 ≤ p ≤ ∞, Sobolev spaces are denoted by W k,p, with
their Hilbertian version written Hk = W k,2. For two multi indices α = (α1, . . . , αd) ∈ N

d and
β = (β1, . . . , βd) ∈ N

d, we write |α| =
∑

i αi, α! = α1! · · ·αd!, α+ β = (α1 + β1, . . . , αd + βd), and

(1)
(
α

β

)
=

α!

β!(α− β)!
.
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We recall from [Kat96] that
∑

|β|=n
β≤α

(
α

β

)
=

(|α|
n

)
.

Let x = (x1, . . . , xd): we indicate by ∂i the partial derivative with respect to xi, and for α =
(α1, . . . , αd) ∈ N

d
0, ∂

α = ∂α1
1 · · · ∂αd

d .

2. The Hartree-Fock equations

Let N,Nn ∈ N be the number of electrons and nuclei of a system, let ci, i = 1, . . . , Nn be
isolated points in R

3 representing the positions of the nuclei, and let Zi > 0 be the charges of the
nuclei, for all i = 1, . . . , Nn. the Hartree-Fock problem consists in finding the smallest eigenvalues
λι and associated orthonormal eigenfunctions ϕι, ι = 1, . . . , N of the equations

(2) − 1

2
∆ϕι + VCϕι +

(
ρΦ ⋆

1

| · |

)
ϕι −

∫

R3

τΦ(·, y)
| · −y| ϕι(y)dy = λιϕι ι = 1, . . . , N in R

3

where VC is the potential

VC(x) = −
Nn∑

i=1

Zi

|x− ci|
,

and

τΦ(x, y) =

N∑

ι=1

ϕι(x)ϕι(y), ρΦ(x) = τΦ(x, x).

The analyticity of the wave functions away from the positions of the nuclei (i.e., the singularities
of V ) is classical, see, e.g., [FHHØ02, Lew04]. In this setting we consider instead the parts of the
domain containing the nuclei, in order to deduce the weighted estimates.

Let now V : Rd → R be a potential to be specified later; we consider the nonlinear elliptic
system given by

(3)
(−∆+ V )ϕι +

N∑

σ,a,b=1

cισabuabϕσ = λιϕι ι = 1, . . . , N

−∆uab = 4πϕaϕb a, b = 1, . . . , N.

with cισab ∈ R for all ι, σ, a, b = 1, . . . , N and λι ∈ R for all ι = 1, . . . , N . The Hartree-Fock
equations can be rewritten under the form (3), with V = VC . The nonlinear elliptic eigenvalue
problem (3) is the one we will analyze in the following.

3. Weighted analyticity of eigenfunctions

In this section, we present and prove our regularity result. We will widen our scope from
the Hartree-Fock equations and analyze the behavior of the eigenfunctions near the singular
points of the potential for solutions to (3) in a d-dimensional domain for d = 2, 3. Our results,
furthermore, will hold for a class of weighted analytic potential, including Coulomb potentials.

Given a set of isolated points C in R
d such that there exists D > 0 such that

(4) |ci − cj | ≥ 4D > 0 ∀ ci, cj ∈ C,

we introduce the weight function r : Rd → R such that

(5) r(x) = |x− c| in BD(c), for all c ∈ C, r(x) ≡ 1 in

(
⋃

c∈C

B2D(c)

)C

,
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and r is smooth in R
d \ C. The dependence of r in x will be mostly omitted.

Theorem 1. Let ε ∈ (0, 1), d ∈ {2, 3}, r be defined as in (5) for a collection of isolated points C ⊂ R
d

such that (4) holds and let V be such that

(6) ‖r2−ε+|α|∂αV ‖L∞(Rd) ≤ CVA
|α|
V |α|!, for all α ∈ N

d
0,

and that there exists a unique solution Φ = {ϕι}Nι=1 ∈ (H1(Rd))N to (3). Then, for any η < ε there exist
A > 0 such that

(7) |∂αϕι(x)| ≤ r(x)min(η−|α|,0)A|α|+1|α|!, ι = 1, . . . , N,

for all x ∈ ⋃
c∈C

BD(c) and α ∈ N
d
0.

FromTheorem 1 and classical results on the analyticity of theHartree-Fockwavefunctions away
from the singular points [Lew04], we directly obtain the following estimate on the wavefunctions
of (2). Note that (6) holds for VC for any ε < 1.

Corollary 1. Let Zi be such that there exist a unique solution Φ = {ϕι}Nι=1 ∈ (H1(R3))N to the
Hartree-Fock problem (2), with negative eigenvalues. Then, for any η < 1 there exists A > 0 such that

|∂αϕι(x)| ≤ r(x)min(η−|α|,0)A|α|+1|α|!, ι = 1, . . . , N,

for all x ∈ R
3 and α ∈ N

3
0.

Remark 1. The result of Corollary 1 can also be obtained via the arguments in [FSS08] or in [FHHØ09].
Nonetheless, the result in Theorem 1 allows for a more general class of singular potentials, and the techniques
used in the proof are of independent interest, as they can be extended rather straightforwardly to other
nonlinear, elliptic systems.

The rest of this manuscript will be devoted to the proof of Theorem 1.

3.1. Proof of Theorem 1. Hereafter, we suppose that the potential V has only one singularity, i.e,
C = {c}, set R ≤ 1 and place ourselves in a ball BR = BR(c) centered in c, with r(x) = |x− c| in
BR. The generalization to the case where V has a set of isolated singularities is straightforward.

Let us formulate the induction assumption that will be used in the sequel.

Induction Assumption. Let Φ = {ϕι}Nι=1, 2 ≤ p <∞, γ ∈ R, k ∈ N, and CΦ, AΦ > 0. We say that
HΦ(p, γ, k, CΦ, AΦ) holds if for all ι = 1, . . . , N , ϕι ∈ H1(BR) ∩ L∞(BR), CΦ ≥ ‖ϕι‖L∞(BR), and

(8)
∑

|α|=j

‖r|α|−γ∂αϕι‖Lp(BR−kρ) ≤ CΦA
j
Φ(kρ)

−jjj

for all j ∈ N such that 1 ≤ j ≤ k and ρ ∈ (0, R/(2k)].

We introduce some lemmas where—under the induction assumption—we estimate the norms
of ϕi (Lemma 2), of products ϕaϕb (Lemma 3), of uab (Lemma 4), of the product uabϕι (Lemma
5), and of V ϕι (Lemma 6).

Lemma 2 (Bounds on L3p norms of eigenfunctions). Let p ≥ 2d/3, 0 < γ−d/p < min(ε, 2). There
exists Cinterp > 0 such that, for all CΦ, AΦ ≥ 1, for all k ∈ N, k ≥ 2, if HΦ(p, γ, k, CΦ, AΦ) holds,
(9)∑

|α|=j

‖r 2−γ
3 +|α|∂αϕι‖L3p(BR−kρ) ≤ (d+ 1)Cinterpe

ϑCΦA
j+ϑ
Φ (kρ)−j−ϑjj(j + 1)ϑ, ι = 1, . . . , N,

for all 1 ≤ j ≤ k − 1, for all ρ ∈ (0, R/(2k)], and with ϑ = 2
3
d
p .



WEIGHTED ANALYTICITY OF HARTREE-FOCK EIGENFUNCTIONS 5

Proof. For any ι ∈ {1, . . . , N}, denote ϕ = ϕι. First, we use equation (45) of Lemma 9 in the
Appendix in order to go back to integrals in Lp: for any j ∈ {1, . . . , k − 1} and for any |α| = j,

‖r 2−γ
3 +|α|∂αϕ‖L3p(BR−kρ) ≤ Cinterp‖r|α|−γ∂αϕ‖1−ϑ

Lp(BR−kρ)

{
(|α|+ 1)ϑ‖r|α|−γ∂αϕ‖ϑLp(BR−kρ)

+

d∑

i=1

‖r|α|+1−γ∂α∂iϕ‖ϑLp(BR−kρ)

}
.

By the Cauchy-Schwarz inequality,

∑

|α|=j

‖r|α|−γ∂αϕ‖1−ϑ
Lp(BR−kρ)

(|α|+ 1)ϑ‖r|α|−γ∂αϕ‖ϑLp(BR−kρ)

≤


∑

|α|=j

‖r|α|−γ∂αϕ‖Lp(BR−kρ)




1−ϑ
∑

|α|=j

(|α|+ 1)‖r|α|−γ∂αϕ‖Lp(BR−kρ)




ϑ

and,

∑

|α|=j

(
‖r|α|−γ∂αϕ‖1−ϑ

Lp(BR−kρ)

d∑

i=1

‖r|α|+1−γ∂α∂iϕ‖ϑLp(BR−kρ)

)

≤
d∑

i=1


∑

|α|=j

‖r|α|−γ∂αϕ‖Lp(BR−kρ)




1−ϑ
∑

|α|=j

‖r|α|+1−γ∂α∂iϕ‖Lp(BR−kρ)




ϑ

Then, hypothesis (8) implies

∑

|α|=j

‖r|α|−γ∂αϕ‖Lp(BR−kρ)




1−ϑ

≤ C1−ϑ
Φ A

j(1−ϑ)
Φ ρ−j(1−ϑ)

(
j

k

)j(1−ϑ)

and

(j + 1)ϑ


∑

|α|=j

‖rj−γ∂αϕ‖Lp(BR−kρ)




ϑ

+

d∑

i=1


∑

|α|=j

‖rj+1−γ∂α∂iϕ‖Lp(BR−kρ)




ϑ

≤ Cϑ
Φ(j + 1)ϑAjϑ

Φ ρ−jϑ

(
j

k

)jϑ

+ dCϑ
ΦA

(j+1)ϑ
Φ ρ−(j+1)ϑ

(
j + 1

k

)(j+1)ϑ

.

Therefore, multiplying the right hand sides of the two last inequalities,
∑

|α|=j

‖r 2−γ
3 +|α|∂αu‖L3p(BR−kρ) ≤ (d+ 1)CinterpCΦA

j+ϑ
Φ (kρ)−j−ϑjj(1−ϑ)(j + 1)(j+1)ϑ.

We finally need to bound the last two terms in the multiplication above:

jj(1−ϑ)(j + 1)(j+1)ϑ = jj(j + 1)ϑ
(
1 +

1

j

)ϑj

≤ jj(j + 1)ϑeϑ.

�
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Lemma 3 (Bounds on norms of products of eigenfunctions). Let p ≥ 2d/3, 0 < γ−d/p < min(ε, 2)

and CΦ, AΦ ≥ 1. Let also ϑ = 2
3
d
p and

(10) C1 =
(d+ 1)2

2
C2

interpe
2ϑ+1C2

Φ + 2(d+ 1)(4π)1/2dCinterpe
ϑC2

Φ.

For all k ∈ N, k ≥ 2, if HΦ(p, γ, k, CΦ, AΦ) holds, then

(11)
∑

|α|=j

‖r 2
3 (2−γ)+|α|∂α(ϕιϕκ)‖L3p/2(BR−kρ) ≤ C1A

j+2ϑ
Φ ρ−j−2ϑ

(
j

k

)j

j1/2, ι, κ = 1, . . . , N,

for all 1 ≤ j ≤ k − 1 and ρ ∈ (0, R/(2k)].

Proof. Denote ϕ = ϕι and ψ = ϕκ. By Leibniz’s rule and the Cauchy-Schwarz inequality,

(12) ‖r 2
3 (2−γ)+|α|∂α(ϕψ)‖L3p/2(BR−kρ)

≤
∑

0<β<α

(
α

β

)
‖r 2−γ

3 +|β|∂βϕ‖L3p(BR−kρ)‖r
2−γ
3 +|α|−|β|∂α−βψ‖L3p(BR−kρ)

+ ‖r 2
3 (2−γ)+|α|∂αϕ‖L3p/2(BR−kρ)‖ψ‖L∞(BR−kρ)

+ ‖r 2
3 (2−γ)+|α|∂αψ‖L3p/2(BR−kρ)‖ϕ‖L∞(BR−kρ)

Consider the sum over 0 < β < α. By manipulation on the sums and using (1),
∑

|α|=j

∑

0<β<α

(
α

β

)
‖r 2−γ

3 +|β|∂βϕ‖L3p(BR−kρ)‖r
2−γ
3 +|α|−|β|∂α−βψ‖L3p(BR−kρ)

=

j−1∑

i=1

∑

|β|=i

∑

|α|=j
α>β

(
α

β

)
‖r 2−γ

3 +|β|∂βϕ‖L3p(BR−kρ)‖r
2−γ
3 +|α|−|β|∂α−βψ‖L3p(BR−kρ)

≤
j−1∑

i=1

(
j

i

) ∑

|β|=i

∑

|α|=j
α>β

‖r 2−γ
3 +|β|∂βϕ‖L3p(BR−kρ)‖r

2−γ
3 +|α|−|β|∂α−βψ‖L3p(BR−kρ)

=

j−1∑

i=1

(
j

i

) ∑

|β|=i

∑

|ξ|=j−i

‖r 2−γ
3 +|β|∂βϕ‖L3p(BR−kρ)‖r

2−γ
3 +|ξ|∂ξψ‖L3p(BR−kρ)

Hence, using Lemma 2 and Stirling’s inequality on the last line above gives
∑

|α|=j

∑

0<β<α

(
α

β

)
‖r 2−γ

3 +|β|∂βϕ‖L3p(BR−kρ)‖r
2−γ
3 +|α|−|β|∂α−βψ‖L3p(BR−kρ)

≤ (d+ 1)2C2
interpe

2ϑC2
ΦA

j+2ϑ
Φ (kρ)−j−2ϑ

j−1∑

i=1

(
j

i

)
ii(j − i)j−i(i+ 1)ϑ(j − i+ 1)ϑ

≤ (d+ 1)2C2
interpe

2ϑC2
Φ

1

2π
Aj+2ϑ

Φ (kρ)−j−2ϑej
j−1∑

i=1

(
j

i

)
i!(j − i)!(i+ 1)ϑ(j − i+ 1)ϑ

1√
i(j − i)

Now, for any i = 1, . . . , j − 1 and since j ≤ k − 1, there holds (i + 1)ϑ(j − i + 1)ϑ ≤ k2ϑ. In
addition as already used in [DFØS12], by comparing the Riemann sum with the integral,

j−1∑

i=1

1√
i(j − i)

≤
∫ j

0

1√
i(j − i)

di = π,
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hence

(d+ 1)2C2
interpe

2ϑC2
Φ

1

2π
Aj+2ϑ

Φ (kρ)−j−2ϑej
j−1∑

i=1

(
j

i

)
i!(j − i)!(i+ 1)ϑ(j − i+ 1)ϑ

1√
i(j − i)

≤ (d+ 1)2

2
C2

interpe
2ϑC2

ΦA
j+2ϑ
Φ ρ−j−2ϑk−jejj!.

Using again Stirling’s inequality,

∑

|α|=j

∑

0<β<α

(
α

β

)
‖r 2−γ

3 +|β|∂βϕ‖L3p(BR−kρ)‖r
2−γ
3 +|α|−|β|∂α−βψ‖L3p(BR−kρ)

≤ (d+ 1)2

2
C2

interpe
2ϑ+1C2

ΦA
j+2ϑ
Φ ρ−j−2ϑk−jjj

√
j.

The two remaining terms at the right hand side of (12) are controlled using Lemma 2 and the
boundedness of the functions in Φ. Indeed

‖r 2
3 (2−γ)+|α|∂αϕ‖L3p/2(BR−kρ) ≤ ‖r 2−γ

3 ‖L3p(BR−kρ)‖r
2−γ
3 +|α|∂αϕ‖L3p(BR−kρ)

≤ (4π)1/3pR
2−(γ−d/p)

3 ‖r 2−γ
3 +|α|∂αϕ‖L3p(BR−kρ)

≤ (4π)1/3p(d+ 1)Cinterpe
ϑCΦA

j+ϑ
Φ (kρ)−j−ϑjj(j + 1)ϑ

where we have used Lemma 2, the fact that γ − d/p < 2, and R ≤ 1. Then, since ‖ψ‖L∞(BR−kρ) ≤
CΦ by hypothesis and p ≥ 2d/3

‖r 2
3 (2−γ)+|α|∂αϕ‖L3p/2(BR−kρ)‖ψ‖L∞(BR−kρ) ≤ (4π)1/2d(d+1)Cinterpe

ϑC2
ΦA

j+ϑ
Φ (kρ)−j−ϑjj(j+1)ϑ.

The same holds for the last term of (12), thus concluding the proof. �

Lemma 4 (Bounds on norms of the potentials uab). Let Φ = {ϕ1, . . . , ϕN} and let uab, a, b =
1, . . . , N be the solution in R

d, d = 2, 3, to

(13) −∆uab = 4πϕaϕb.

Let also p ≥ 2d/3, 0 < γ − d/p < min(ε, 2), and CΦ, AΦ ≥ 1 such that

(14) CΦ ≥ max
a,b=1,...,N

‖uab‖L∞(Rd), AΦ ≥ 4πCreg, 3p2

1 +
√
5

2
.

There exists C2,p > 0 independent of AΦ such that, for all k ∈ N, k ≥ 2, if HΦ(p, γ, k, CΦ, AΦ) holds,
then

(15)
∑

|α|=j

‖rj−γ̃∂αuab‖L3p/2(BR−kρ) ≤ C2,pA
j+2ϑ
Φ ρ−j−2ϑ

(
j

k

)j

for all integers 1 ≤ j ≤ k and all ρ ∈ (0, R/(2k)], and where γ̃ = 2
3 (γ − 2) and ϑ = 2

3
d
p .

Proof. Suppose j ≥ 3. We start by considering j + 1 concentric balls

B̃i = BR−k j−i
j ρ, i = 0, . . . , j,

see Figure 1. Clearly, BR−kρ = B̃0 ⊂ B̃1 ⊂ · · · ⊂ B̃j = BR. Now, for all i = 0, . . . , j − 2, using
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Figure 1. Concentric balls Bi.

Proposition 7 in the Appendix (with k replaced by j − i− 1, j replaced by j − i− 1, ρ replaced
by k

j ρ and γ replaced by γ̃) and equation (13) we find
(16)
∑

|α|=j−i

‖r−γ̃+|α|∂αuab‖L3p/2(B̃i)
≤ Creg, 3p2


4π

∑

|α|=j−i−2

‖r−γ̃+2+|α|∂α(ϕaϕb)‖L3p/2(B̃i+1)

+

(
ρ
k

j

)−1 ∑

|α|=j−i−1

‖r−γ̃+|α|∂αuab‖L3p/2(B̃i+1)
+

(
ρ
k

j

)−2 ∑

|α|=j−i−2

‖r−γ̃+|α|∂αuab‖L3p/2(B̃i+1)


 .

We also write

si = Ci
reg, 3p2

(
k

j
ρ

)−i ∑

|α|=j−i

‖r−γ̃+|α|∂αuab‖L3p/2(B̃i)
i = 0, . . . , j

and

ti = (4πCreg, 3p2
)i+1

(
k

j
ρ

)−i ∑

|α|=j−i−2

‖r−γ̃+2+|α|∂α(ϕaϕb)‖L3p/2(B̃i+1)
i = 0, . . . , j − 2.

Then, since Creg, 3p2
≥ 1 and B̃i+1 ⊂ B̃i+2, equation (16) implies

si ≤ ti + si+1 + si+2.

Let now Fi denote the ith Fibonacci number (with F0 = F1 = 1). Iterating on the above, one
obtains

s0 ≤
j−2∑

i=0

Fiti + Fj−1sj−1 + Fj−2sj .

Denoting f = 1+
√
5

2 and remarking that Fi ≤ fi,
(17)
∑

|α|=j

‖r−γ̃+|α|∂αuab‖L3p/2(B̃0)
≤

j−2∑

i=0

(4πCreg, 3p2
f)i+1

(
k

j
ρ

)−i ∑

|α|=j−i−2

‖r−γ̃+2+|α|∂α(ϕaϕb)‖L3p/2(B̃i+1)

+
∑

|α|=0,1

(Creg, 3p2
f)j−|α|

(
k

j
ρ

)−j+|α|
‖r−γ̃+|α|∂αuab‖L3p/2(B̃j−|α|)

.
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We consider the first term at the right hand side of the above equation: ϕa and ϕb satisfy the
hypotheses of Lemma 3 (with ρ̃ = j−i−1

j ρ), thus, when 0 ≤ i ≤ j − 3

∑

|α|=j−i−2

‖r−γ̃+2+|α|∂α(ϕaϕb)‖L3p/2(B̃i+1)

≤ ‖r2‖L∞(BR)

∑

|β|=j−i−2

‖r|β|−γ̃∂β(ϕaϕb)‖L3p/2(B̃i+1)

≤ 4πC1A
j−i−2+2ϑ
Φ k−j+i+2

(
j − i− 1

j
ρ

)−j+i+2−2ϑ

(j − i− 2)j−i−2(j − i− 2)1/2.

When i = j − 2 in the sum above, instead, we have the term

(18)
‖r−γ̃+2ϕaϕb‖L3p/2(B̃i+1)

≤ ‖ϕaϕb‖L∞(BR)‖r−γ̃+2‖L3p/2(B̃i+1)
≤ R−γ̃+2+ϑ4πC2

Φ ≤ R24πC2
Φ

≤ 4πC2
Φ,

where we have used that γ̃ ≤ ϑ and R < 1. Hence, since AΦ ≥ 4πCreg, 3p2
f and indicating by ζ(·)

the Riemann zeta function,

(19)
j−3∑

i=0

(4πCreg, 3p2
f)i+1

(
k

j
ρ

)−i ∑

|α|=j−i−2

‖r−γ̃+2+|α|∂α(ϕaϕb)‖L3p/2(B̃i+1)

≤ 4πC1A
j−1+2ϑ
Φ ρ−j+2−2ϑk−j+2jj

j−3∑

i=0

j2ϑ−2

(
j − i− 2

j − i− 1

)j−i−2

(j − i− 1)−2ϑ(j − i− 2)1/2

≤ 4πC1A
j−1+2ϑ
Φ ρ−j+2−2ϑk−j+2jj

j−3∑

i=0

(
j − i− 2

j − i− 1

)j−i(
j − i− 1

j

)2−2ϑ

(j − i− 2)−3/2

≤ πC1ζ(3/2)A
j+2ϑ
Φ ρ−j−2ϑk−jjj ,

where we have also used the facts that kρ ≤ 1
2 , and ϑ ≤ 1.

We still need to bound the second term at the right hand side of (17). There holds

(20) ‖r−γ̃uab‖L3p/2(B̃j)
≤ ‖r−γ̃‖L3p/2(BR)‖uab‖L∞(BR) ≤ 4πCΦ,

by hypothesis (14). Furthermore, note that by the hypotheses on γ and p, we have 1− γ̃ ≥ 0. By
classical elliptic regularity in Sobolev spaces [DFØS12, Corollary D.4], there exists a constant
CS,p dependent only on p such that

(21)

∑

α≤2

‖∂αuab‖L3p/2(B̃j−1)
≤ CS, 3p2

(
‖ϕaϕb‖L3p/2(BR+1) + ‖uab‖L3p/2(BR+1)

)

≤ |BR+1|2/(3p)CS, 3p2

(
‖ϕaϕb‖L∞(Rd) + ‖uab‖L∞(Rd)

)

≤ (4π)2/(3p)(R+ 1)ϑCS, 3p2

(
‖ϕaϕb‖L∞(Rd) + ‖uab‖L∞(Rd)

)

≤ 16πCS, 3p2
C2

Φ

where we have also used 2/(3p) ≤ 1, R ≤ 1, and (14). Hence,

(22)
∑

|α|=1

‖r1−γ̃∂αuab‖L3p/2(B̃j−1)
≤ ‖r1−γ̃‖L∞(BR)

∑

|α|=1

‖∂αuab‖L3p/2(B̃j−1)
≤ 16πCS, 3p2

C2
Φ.
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Now, combining (17), (18), (19), (20), and (22), we obtain

∑

|α|=j

‖r−γ̃+|α|∂αuab‖L3p/2(BR−kρ)

≤ (4πC2
Φ + πC1ζ(3/2) + 16πCS, 3p2

C2
Φ + 4πCΦ)A

j+2ϑ
Φ ρ−j−2ϑk−jjj

when j ≥ 3. The cases j = 0, 1, 2 are easily treated using (20) and (21). �

Lemma 5 (Bounds on products of eigenfunctions and electronic potentials). LetΦ = {ϕ1, . . . , ϕN}
and let uab, a, b = 1, . . . , N be solution to (13). Let furthermore p ≥ 2d/3, 0 < γ − d/p < min(ε, 2),
and CΦ, AΦ ≥ 1 such that

(23) CΦ ≥ max
a,b=1,...,N

‖uab‖L∞(Rd), AΦ ≥ 4πCreg, 3p2

1 +
√
5

2
.

There exists C3,p independent of AΦ such that, for all k ∈ N, if HΦ(p, γ, k, CΦ, AΦ) holds , then

(24)
∑

|α|=j

‖r2−γ+j∂α(uabϕι)‖Lp(BR−kρ) ≤ C3,pA
j+3ϑ
Φ ρ−j−3ϑ

(
j

k

)j

j, a, b, ι = 1, . . . , N,

for all integer 1 ≤ j ≤ k, all ρ ∈ (0, R/(2k)], and where ϑ = 2
3
d
p .

Proof. Denote u = uab, ϕ = ϕj . We have

(25)
∑

|α|=j

‖r2−γ+|α|∂α(uϕ)‖Lp(BR−kρ)

≤
∑

|α|=j

∑

β≤α

(
α

β

)
‖r 2−γ

3 +|β|∂βϕ‖L3p(BR−kρ)‖r
2
3 (2−γ)+|α|−|β|∂α−βu‖L3p/2(BR−kρ).

Using (11) we follow the same procedure as in the proof of Lemma 3. When 0 < β < α in the
sum above, using Lemmas 2 and 4,

∑

|α|=j

∑

0<β<α

(
α

β

)
‖r 2−γ

3 +|β|∂βϕ‖L3p(BR−kρ)‖r
2
3 (2−γ)+|α|−|β|∂α−βu‖L3p/2(BR−kρ)

≤
j−1∑

i=1

(
j

i

) ∑

|β|=i

∑

|ξ|=j−i

‖r 2−γ
3 +|β|∂βϕ‖L3p(BR−kρ)‖r

2
3 (2−γ)+|ξ|∂ξu‖L3p(BR−kρ)

≤ (d+ 1)Cinterpe
ϑCΦC2,pA

j+3ϑ
Φ ρ−j−3ϑk−j−ϑ

j−1∑

i=1

(
j

i

)
ii(j − i)j−i(i+ 1)ϑ

≤ (d+ 1)Cinterpe
ϑCΦC2,p

1

2π
Aj+3ϑ

Φ ρ−j−3ϑk−j−ϑej
j−1∑

i=1

(
j

i

)
i!(j − i)!(i+ 1)ϑ

1√
i(j − i)

.

≤ d+ 1

2
Cinterpe

ϑCΦC2,pA
j+3ϑ
Φ ρ−j−3ϑk−jejj!.

≤ d+ 1

2
Cinterpe

ϑ+1CΦC2,pA
j+3ϑ
Φ ρ−j−3ϑk−jjj+1/2,
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where the last inequalities stem from the same arguments as in the proof of Lemma 3. The terms
in the sum in (25) where β = 0 and β = α give a similar bound: firstly, by HΦ and Lemma 4

∑

|α|=j

‖r 2−γ
3 ϕ‖L3p(BR−kρ)‖r

2
3 (2−γ)+|α|∂αu‖L3p/2(BR−kρ)

≤ ‖r 2−γ
3 ‖L3p(BR)‖ϕ‖L∞(BR−kρ)

∑

|α|=j

‖r 2
3 (2−γ)+|α|∂αu‖L3p/2(BR−kρ)

≤ 4πCΦC2,pA
j+2ϑ
Φ ρ−j−2ϑjjk−j .

In addition, by Lemma 2 and since CΦ ≥ ‖u‖L∞(Rd)

∑

|α|=j

‖r 2−γ
3 +|α|∂αϕ‖L3p(BR−kρ)‖r

2
3 (2−γ)u‖L3p/2(BR−kρ)

≤ (d+ 1)Cinterpe
ϑCΦA

j+ϑ
Φ (kρ)−j−ϑjj(j + 1)ϑ‖r 2

3 (2−γ)‖L3p/2(BR−kρ)‖u‖L∞(BR−kρ)

≤ (d+ 1)4πCinterpCΦe
ϑCΦA

j+ϑ
Φ ρ−j−ϑk−jjj

and choosing

C3,p =
d+ 1

2
Cinterpe

ϑ+1CΦC2,p + 4πCΦC2,p + (d+ 1)4πCinterpCΦe
ϑCΦ

concludes the proof. �

Lemma 6 (Bounds on products of singular potential and eigenfunction). Let Φ = {ϕ1, . . . , ϕN}
and let V : Rd → R such that (6) holds. Let then p ≥ 2d/3, 0 < γ − d/p < min(ε, 2), and CΦ, AΦ ≥ 1
such that

(26) AΦ ≥ AV

For all k ∈ N, if HΦ(p, γ, k, CΦ, AΦ) holds, then

(27)
∑

|α|=k−1

‖r2−γ+|α|∂α(V ϕι)‖Lp(BR−kρ) ≤ C4A
k−1
Φ ρ−k+1k−k+1(k − 1)k, ι = 1, . . . , N,

for all ρ ∈ (0, R/(2k)], with C4 =
(

1
2
√
2π
e+ 4πe+ 1

)
CV CΦ.

Proof. There holds

(28)
∑

|α|=k−1

‖r2−γ+|α|∂α(V ϕι)‖Lp(BR−kρ)

≤
∑

|α|=k−1

∑

0<β<α

(
α

β

)
‖r2−ε+|β|∂βV ‖L∞(BR−kρ)‖rε−γ+|α|−|β|∂α−βϕι‖Lp(BR−kρ)

+ ‖r2−εV ‖L∞(BR−kρ)

∑

|α|=k−1

‖rε−γ+|α|∂αϕι‖Lp(BR−kρ)

+
∑

|α|=k−1

‖r2−ε+|α|∂αV ‖L∞(BR−kρ)‖rε−γϕi‖Lp(BR−kρ)
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By the usual manipulations,

∑

|α|=k−1

∑

0<β<α

(
α

β

)
‖r2−ε+|β|∂βV ‖L∞(BR−kρ)‖rε−γ+|α|−|β|∂α−βϕι‖Lp(BR−kρ)

≤ CV CΦ

k−2∑

j=1

(
k − 1

j

)
Aj

VA
k−1−j
Φ j!(k − 1− j)k−1−j(kρ)−k+1+j

≤ 1√
2π
CV CΦA

k−1
Φ (k − 1)!ek−1

k−2∑

j=1

(k − 1− j)−1/2(kρ)−k+1+j

≤ 1√
2π
CV CΦA

k−1
Φ (k − 1)!ek−1(kρ)−k+2

≤ 1

2
√
2π
eCV CΦA

k−1
Φ (k − 1)k−1/2(kρ)−k+1

The bound on the second to last term in (28) is straightforward, while for the last term we note
that ε− γ > −d/p thus ‖rε−γϕι‖Lp(BR) ≤ 4πCΦ and

∑

|α|=k−1

‖r2−ε+|α|∂αV ‖L∞(BR−kρ)‖rε−γϕi‖Lp(BR−kρ) ≤ 4πCϕCVA
k−1
V (k − 1)!

≤ 4πCϕCV eA
k−1
V (k − 1)k−1/2e−k+1.

Therefore,

∑

|α|=k−1

‖r2−γ+|α|∂α(V ϕι)‖Lp(BR−kρ) ≤
(

1

2
√
2π
e+ 4πe+ 1

)
CV CΦA

k−1
Φ (k − 1)k(kρ)−k+1

and this concludes the proof. �

Proof of Theorem 1. First, we remark that ϕa, ϕb ∈ H1(Rd) implies uab ∈W 2,3(BR) via the second
equation of (3). Due to (6), there exists q > d/2 such that V ∈ Lq(BR), and, by classical
elliptic regularity arguments [Sta65], Φ ∈ (L∞(BR))

N . Hence, for all a, b ∈ {1, . . . , N}, ϕaϕb ∈
H1(BR) ∩L∞(BR). Therefore, by (3) again, uab ∈ H3(BR) ⊂W 1,∞(BR) for all 1 ≤ p <∞. This

implies that Φ ∈
(
J 2
ξ (BR)

)N
, for all ξ − d/2 < ε. We can conclude that, for all a, b ∈ {1, . . . , N}

and all ι ∈ {1, . . . ,∞}, there holds uabϕι ∈ J 2
γ (BR), which in turn implies Φ ∈

(
J 4
ξ

)N
, for all

ξ − d/2 < ε. This implies furthermore, by [MM19b, Lemma 3.1],

∑

|α|=2

‖r2−γ∂αϕι‖Lp(BR) <∞

for all p > 1, γ < d/p+ ε, and ι = 1, . . . , N . Hence, for all 1 < p <∞ and γ − d/p < ε, there exist
C,A > 0 (dependent on p and γ) such that HΦ(p, γ, 2, C,A) holds.

Induction step. We proceed by induction and impose a restriction on p; specifically, we fix a
finite p⋆ such that

(29) p⋆ ≥ 2d.
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We denote the corresponding ϑ⋆ = 2
3

d
p⋆
. Let us now also fix γ⋆ ∈ R such that 0 < γ⋆ − d/p⋆ <

min(ε, 2). Let then CΦ, AΦ ≥ 1 such that HΦ(p⋆, γ⋆, 2, CΦ, AΦ) holds, and that
(30)
CΦ ≥ max

a,b=1,...,N
‖uab‖L∞(Rd)

AΦ ≥ max

(
AV , 4πCreg, 3p⋆2

1 +
√
5

2
, Creg,p⋆

(
C4 +N3 max

a,b,σ,ι
|cισab|C3,p⋆

+ (N max
ι

|λι|+ 2)CΦ

))
.

Note that such constants fulfill the hypotheses of Lemmas 2 to 6. Suppose now that the induction
hypothesis HΦ(p⋆, γ⋆, k, CΦ, AΦ) holds for a k ∈ N, k ≥ 2: we will show that HΦ(p⋆, γ⋆, k +
1, CΦ, AΦ) holds.

We start by remarking that, for all ρ ∈ (0, R/(2(k + 1))], there exists ρ̃ = k+1
k ρ, so that, by

induction hypothesis, for all j = 1, . . . , k and all ι = 1, . . . , N .
∑

|α|=j

‖r|α|−γ∂αϕι‖Lp(BR−(k+1)ρ) =
∑

|α|=j

‖r|α|−γ∂αϕι‖Lp(BR−kρ̃) ≤ CΦA
j
Φ(kρ̃)

−jjj

= CΦA
j
Φ((k + 1)ρ)−jjj .

We still have to show that

(31)
∑

|α|=k+1

‖r|α|−γ∂αϕι‖Lp(BR−(k+1)ρ) ≤ CΦA
k+1
Φ ρ−(k+1), ι = 1, . . . , N.

From (3) and (40), for all ι = 1, . . . , N ,

(32)
∑

|α|=k+1

‖rk+1−γ∂αϕι‖Lp⋆ (BR−(k+1)ρ)

≤ Creg,p⋆


 ∑

|α|=k−1

‖rk+1−γ∂α

(
V ϕι +

N∑

σ=1

∑

a<b

cισabuabϕσ − λιϕι

)
‖Lp⋆ (BR−kρ)

+
∑

|α|=k−1,k

ρ|α|−k−1‖r|α|−γ∂αϕι‖Lp⋆ (BR−|α|ρ)


 .

Due to Lemma 6,

(33)
∑

|α|=k−1

‖rk+1−γ∂α (V ϕι) ‖Lp⋆ (BR−kρ) ≤ C4A
k−1
Φ ρ−k+1k−k+1(k − 1)k ≤ C4A

k−1
Φ ρ−k,

where we have used k ≤ 1/ρ Furthermore, from Lemma 5,

(34)
N∑

σ=1

∑

a<b

|cισab|
∑

|α|=k−1

‖r2−γ+|α|∂α (uabϕσ) ‖Lp(BR−kρ)

≤ N3 max
a,b,ι,σ

|cισab|C3,p⋆
Ak−1+3ϑ⋆

Φ ρ−k+1−3ϑ⋆(k − 1)k−1k−k+1(k − 1)

≤ N3 max
a,b,ι,σ

|cισab|C3,p⋆
Ak−1+3ϑ⋆

Φ ρ−k+1−3ϑ⋆(k − 1)

≤ N3 max
a,b,ι,σ

|cισab|C3,p⋆
Ak−1+3ϑ⋆

Φ ρ−k−3ϑ⋆

≤ N3 max
a,b,ι,σ

|cισab|C3,p⋆
Ak

Φρ
−k−1,

wherewe have used, in the last two inequalities, the facts that k−1 ≤ 1/ρ and that 3ϑ⋆ = 2d/p⋆ ≤ 1
due to (29).



WEIGHTED ANALYTICITY OF HARTREE-FOCK EIGENFUNCTIONS 14

Finally, from the induction hypothesis,

(35)
∑

|α|=k−1

N∑

σ=1

|λι,σ|‖rk+1−γ⋆∂αϕσ‖Lp⋆ (BR−kρ) ≤ N max
ι

|λι|CΦA
k−1
Φ ρ−k+1

and

(36)
∑

|α|=k−1,k

ρ|α|−k−1‖r|α|−γ∂αϕι‖Lp⋆ (BR−kρ) ≤ CΦA
k−1
Φ ρ−k−1 + CΦA

k
Φρ

−k−1.

From (32), using the triangular inequality, and inequalities (33), (34), (35), and (36), we obtain

∑

|α|=k+1

‖rk+1−γ∂αϕι‖Lp⋆ (BR−(k+1)ρ)

≤ Creg,p⋆

(
C4 +N3 max

a,b,σ,ι
|cισab|C3,p⋆ + (N max

ι
|λι|+ 2)CΦ

)
Ak

Φρ
−k−1.

Therefore, (31) holds thanks to (30), i.e.,

HΦ(p⋆, γ⋆, k + 1, CΦ, AΦ)

holds. Therefore, by induction, HΦ(p⋆, γ⋆, k, CΦ, AΦ) holds for all k ∈ N.
Analytic estimates in the L∞ norm. By Lemma 10 and since we have shown that (8) holds

for all k ∈ N,

‖r−η+|α|∂αϕι‖L∞(BR−kρ) ≤ CΦ|α|2A|α|
Φ (kρ)−|α||α||α|,

for all |α| ∈ N and ρ ∈ (0, R/(2k)]. Therefore, due to Stirling’s inequality and since R− kρ ≥ R/2,
for all 0 < η < ε there exist constants C̃, Ã > 0 such that

(37) ‖r−η+|α|∂αϕi‖L∞(BR/2(c)) ≤ C̃Ã|α||α|!.

�

Appendix A. Technical tools in weighted spaces

The results presented in this paper rely heavily on the theory of Kondrat’ev-typeweighted Sobo-
lev spaces, thatwe introduce here. We also recall—mostly from [MM19a], for self-containedness—
a series of technical results that are ultimately necessary for the proof of Theorem 1.

We denote by Ω ⊂ R
d, d = 2, 3, a bounded domain with smooth boundary and consider the

case of a single singular point c ∈ Ω lying in the interior of the domain. The generalization to
the case of multiple singular points is straightforward. We denote by r(x) = |x− c| the distance
of a point x ∈ R

d from the singular point. In the whole appendix, we denote by BR = BR(c)
d-dimensional balls centered in c of radius R > 0. Finally, for k ∈ N0 and 1 ≤ p ≤ ∞, we denote
byW k,p(Ω) the classical Lp(Ω)-based Sobolev spaces of order k.

A.1. Weighted Sobolev spaces. For integer k ∈ N0, a real weight exponent γ ∈ R, and summa-
bility exponent 1 ≤ p <∞, we introduce the homogeneous weighted Sobolev spaces Kk,p

γ (Ω). Given
the seminorm

(38) |w|Kk,p
γ (Ω) =


∑

|α|=k

‖r|α|−γ∂αw‖pLp(Ω)




1/p

,
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so that the spaces Kk,p
γ (Ω) are normed by

‖w‖Kk,p
γ (Ω) =




k∑

j=0

|w|pKj,p
γ (Ω)




1/p

.

We denote the weighted Kondrat’ev type spaces of infinite regularity by

K∞,p
γ (Ω) =

⋂

k∈N

Kk,p
γ (Ω).

Furthermore, for constants C,A > 0we introduce the homogeneous weighted analytic-type class

K̟,p
γ (Ω;A) =

{
v ∈ K∞,p

γ (Ω) : |v|Kk,p
γ (Ω) ≤ Ak+!k!, for all k ∈ N0

}
.

Consider a continuous function u: we remark that, if γ > d/p, then u ∈ K0,p
γ (Ω) only if u(c) = 0.

This condition is clearly not fulfilled by solutions to (2), which are, in general, nonzero at the
singular point of the potential. For this reason, our focus will be mostly on non-homogeneous
weighted Sobolev spaces The non-homogeneous analytic classes are given by

(39) J̟,p
γ (Ω;A) =

{
v ∈W ⌊γ−d/p⌋,p(Ω) : |v|Kk,p

γ (Ω) ≤ Ak+1k!, for all k ∈ N0 : k > γ − d/p
}
.

For a detailed analysis of the relationship between homogeneous and non homogeneous spaces,
we refer the reader to [KMR97] and [CDN10].

Remark 2. Using definition (39), the thesis of Theorem 1 can be restated as: for all η < ε, there exists
A > 0 such that

ϕι ∈ J̟,∞
η (∪c∈CBD(c);A), ∀ ι = 1, . . . , N.

A.2. Local elliptic estimate. We report here, for the sake of self-containedness, a result on local
weighted elliptic regularity. This has already been introduced in [MM19a], and has been proven,
as an intermediate result, in [CDN12]. We denote the commutator by square brackets, i.e., we
write

[A,B] = AB −BA.

Proposition 7. Let 1 < p <∞, R > 0, and γ ∈ R. Then, there exists Creg,p ≥ 1 such that for all k ∈ N

and ρ ∈ (0, R
2(k+1) ]. and j ∈ N such that 1 ≤ j ≤ k,

(40)
∑

|α|=k+1

‖rk+1−γ∂αu‖Lp(BR−(j+1)ρ) ≤ Creg,p


 ∑

|β|=k−1

‖rk+1−γ∂β(∆u)‖Lp(BR−jρ)

+
∑

|α|=k

ρ−1‖r|α|−γ∂αu‖Lp(BR−jρ) +
∑

|α|=k−1

ρ−2‖r|α|−γ∂αu‖Lp(BR−jρ).




For the proof of Proposition 7, we introduce a smooth cutoff function η ∈ C∞
0 (BR−jρ) such

that for α ∈ N
d, |α| ≤ 2

(41) 0 ≤ η ≤ 1, η = 1 on BR−(j+1)ρ, |∂αη| ≤ Cηρ
−|α|,

and we introduce an auxiliary estimate (see [MM19a] for the proof)

Lemma 8. [MM19a, Lemma 9] Let 1 < p <∞, R > 0, and γ ∈ R . There exists C > 0 such that, for
all β ∈ N

d
0, ρ ∈ (0, R

2(|β|+2) ], and j ∈ N such that 1 ≤ j ≤ |β|+ 1,

(42)
∑

|α|=2

‖
[
∂α, r|β|+2−γ

]
η∂βu‖Lp(BR−jρ) ≤ C

∑

|α|≤1

ρ−2+|α|‖r|β|+|α|−γ∂α+βu‖Lp(BR−jρ),
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and C depends only on γ, R.

Proof of Proposition 7. Let us consider a multiindex β. First,

(43)
∑

|α|=2

‖r|β|+2−γ∂α+βu‖Lp(BR−(j+1)ρ) ≤
∑

|α|=2

{
‖∂α

(
r|β|+2−γ∂βu

)
‖Lp(BR−(j+1)ρ)

+‖
[
∂α, r|β|+2−γ

]
∂βu‖Lp(BR−(j+1)ρ)

}
.

We consider the first term at the right hand side: using (41)
∑

|α|=2

‖∂α
(
r|β|+2−γ∂βu

)
‖Lp(BR−(j+1)ρ) ≤

∑

|α|=2

‖∂α
(
r|β|+2−γη∂βu

)
‖Lp(BR−jρ)

and by elliptic regularity and using the triangular inequality, there exists C∆ depending only on
p and R such that
∑

|α|=2

‖∂α
(
r|β|+2−γη∂βu

)
‖Lp(BR−jρ)

≤ C∆‖∆
(
r|β|+2−γη∂βu

)
‖Lp(BR−jρ)

≤ C∆

(
‖r|β|+2−γη∆∂βu‖Lp(BR−jρ) + ‖

[
∆, r|β|+2−γ

]
η∂βu‖Lp(BR−jρ) + ‖r|β|+2−γ [∆, η] ∂βu‖Lp(BR−jρ)

)
.

Combining the last inequality with (43) we obtain

(44)
∑

|α|=2

‖r|β|+2−γ∂α+βu‖Lp(BR−(j+1)ρ)

≤ C∆

(
‖r|β|+2−γη∂β (∆u) ‖Lp(BR−jρ) +

d∑

i=1

‖r|β|+2−γ (∂iiη) ∂
βu‖Lp(BR−jρ)

+2
d∑

i=1

‖r|β|+2−γ (∂iη) ∂
β∂iu‖Lp(BR−jρ)

)
+ (1 + C∆)

∑

|α|=2

‖
[
∂α, r|β|+2−γ

]
∂βu‖Lp(BR−jρ).

The bounds on the derivatives of η given in (41) and the estimate of Lemma 8 applied to (44)
then imply the existence of a constant C dependent on p, γ, and R such that

∑

|α|=2

‖r|β|+2−γ∂α+βu‖Lp(BR−(j+1)ρ) ≤ C∆‖r|β|+2−γη∂β (∆u) ‖Lp(BR−jρ)

+ C
∑

|α|≤1

ρ−2+|α|‖r|β|+|α|−γ∂α+βu‖Lp(BR−jρ).

We can now sum over all multi indices β such that |β| = k − 1 to obtain the thesis (40). �

A.3. Weighted interpolation estimate.

Lemma 9. Let R > 0 such that BR ⊂ B1, γ − d/p ≥ −2/3, and p ≥ 2
3d. There exists a constant

Cinterp > 0 such that for all β ∈ N
d
0 and u ∈ K|β|+1,p

γ (BR) the following “interpolation” estimate holds

(45) ‖r 2−γ
3 +|β|∂βu‖L3p(BR) ≤ Cinterp‖r|β|−γ∂βu‖1−ϑ

Lp(BR)

{
(|β|+ 1)ϑ‖r|β|−γ∂βu‖ϑLp(BR)

+

d∑

i=1

‖r|β|+1−γ∂β∂iu‖ϑLp(BR)

}
,
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with ϑ = 2
3
d
p .

Proof. Consider a dyadic decomposition of B1 given by the sets

V j =
{
x ∈ B1 : 2−j ≤ |x| ≤ 2−j+1

}
, j = 1, 2, . . .

and decompose the ball BR into its intersections with the sets belonging to the decomposition,
i.e., into Bj = BR ∩ V j . Let us introduce the linear maps χj : V

1 → V j and write with a hat the
pullback of functions by χ−1

j , e.g, r̂ = r ◦ χ−1
j and B̂j = χ−1

j (Bj). Then,

‖r 2−γ
3 +|β|∂βu‖L3p(Bj) ≤ 2

j
3 (γ−2−d/p)‖r̂ 2−γ

3 +|β|∂̂β û‖L3p(B̂j)

We can now use the interpolation inequality

‖v‖L3p(B) ≤ C‖v‖1−ϑ
Lp(B)‖v‖

ϑ
W 1,p(B),

for B ⊂ R
d, v ∈W 1,p(B) and with ϑ defined as above, see [DFØS12]. Therefore,

(46) ‖r 2−γ
3 +|β|∂βu‖L3p(Bj) ≤ C2

j
3 (γ−2−d/p)‖r̂ 2−γ

3 +|β|∂̂β û‖1−ϑ

Lp(B̂j)

∑

|α|=1

‖∂̂αr̂ 2−γ
3 +|β|∂̂β û‖ϑ

Lp(B̂j)
.

Let us now consider the first norm in the product above. Since r̂ ∈ (1/2, 1), we can inject in the
norm a term r̂

2
3γ ≤ max(1, 2

2
3 |γ|) = C(γ), i.e.,

‖r̂ 2−γ
3 +|β|∂̂β û‖1−ϑ

Lp(B̂j)
≤ C‖r̂|β|−γ ∂̂β û‖1−ϑ

Lp(B̂j)
.

We now compute more explicitly the second norm in the product in (46):

∑

|α|=1

‖∂̂αr̂ 2−γ
3 +|β|∂̂β û‖ϑ

Lp(B̂j)
≤
(
|β|+ 2− γ

3

)ϑ

‖r̂ 2−γ
3 +|β|−1∂̂β û‖ϑ

Lp(B̂j)
+

d∑

i=1

‖r̂ 2−γ
3 +|β|∂̂β∂iû‖ϑLp(B̂j)

and we may adjust the exponents of r̂ and the term in 2−γ
3 introducing a constant that depends

on γ, d and p, obtaining

∑

|α|=1

‖∂̂αr̂ 2−γ
3 +|β|∂̂β û‖ϑ

Lp(B̂j)
≤ C (|β|+ 1)

ϑ ‖r̂|β|−γ ∂̂β û‖ϑ
Lp(B̂j)

+

d∑

i=1

‖r̂|β|−γ+1∂̂β∂iû‖ϑLp(B̂j)
.

Scaling everything back to Bj and adjusting the exponents,

‖r 2−γ
3 +|β|∂βu‖L3p(Bj) ≤ C2j(γ−d/p−2/3)‖r|β|−γ∂βu‖1−ϑ

Lp(Bj)

{
(|β|+ 1)

ϑ ‖r|β|−γ∂βu‖ϑLp(Bj)

+

d∑

i=1

‖r|β|−γ+1∂β∂iu‖ϑLp(Bj)

}
.

If γ − d/p ≥ −2/3 then we can sum over all j = 1, 2, . . . thus obtaining the estimate (40) on the
whole ball BR. �

A.4. An imbedding result.

Lemma 10. Let p ≥ 2, R > 0, and γ ∈ R such that γ − d/p > 0. Then, there exists C such that for all
ℓ ∈ N0 and all v ∈ K∞,p

γ (BR).

‖v‖Kℓ,∞
γ−d/p

(BR) ≤ C(ℓ+ 1)2‖v‖Kℓ+2,p
γ (BR).
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Proof. We prove the lemma for R = 1; the general case with R > 0 follows by homothety (with
constants depending on R). Consider the annuli

Γj =
{
x ∈ B1 : 2−j−1 < |x| < 2−j

}
, j ∈ N0

and let Γ̂ = Γ0. For all j ∈ N, let χj be the homothety from Γ̂ to Γj and denote with a hat the
quantities rescaled on Γ̂, e.g., v̂ = v ◦ χ. Then, by a scaling argument and since 1/2 < r̂|Γ̂ < 1, we
have

max
|α|≤ℓ

‖r|α|−γ+d/p∂αv‖L∞(Γj) ≤ 2j(γ−d/p) max
|α|≤ℓ

‖r̂|α|∂̂αv̂‖L∞(Γ̂).

By the embedding ofW 2,p(Γ̂) in L∞(Γ̂), then, there exists C > 0 independent of ℓ and j such that

max
|α|≤ℓ

‖r|α|−γ+d/p∂αv‖L∞(Γj) ≤ C2j(γ−d/p) max
|α|≤ℓ

‖r̂|α|∂̂αv̂‖W 2,p(Γ̂).

Hence, by a simple differentiation, injecting the necessary weight, using again that 1/2 < r̂|Γ̂ < 1,
and bounding the maximum over |α| ≤ ℓ with the respective sum, we arrive at

max
|α|≤ℓ

‖r|α|−γ+d/p∂αv‖L∞(Γj) ≤ C2j(γ−d/p)(ℓ+ 1)2


 ∑

|α|≤ℓ+2

‖r̂|α|−γ ∂̂αv̂‖p
Lp(Γ̂)




1/p

.

Scaling back to the original domain, we obtain the existence of C > 0 independent of ℓ and j
such that

max
|α|≤ℓ

‖r|α|−γ+d/p∂αv‖L∞(Γj) ≤ C(ℓ+ 1)2‖v‖Kℓ+2,p
γ (Γj)

,

hence there exists C > 0 such that for all ℓ ∈ N holds

‖v‖Kℓ,∞
γ−d/p

(B1)
= sup

j∈N0

‖v‖Kℓ,∞
γ−1(Γj)

≤ C(ℓ+ 1)2‖u‖Kℓ+2,p
γ (B1)

.

�
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