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Quotient-Space Boundary Element
Methods for Scattering

at Complex Screens

Abstract

Xavier Claeys1, Lorenzo Giacomel2, Ralf Hiptmair3, Carolina Urzúa-Torres4

A complex screen is an arrangement of panels that may not be even locally orientable
because of junction lines. A comprehensive trace space framework for first-kind
variational boundary integral equations on complex screens has been established in
[ X. CLAEYS AND R. HIPTMAIR, Integral equations on multi-screens, Integral Equations
and Operator Theory, 77 (2013), pp. 167–197] for the Helmholtz equation, and in
[X. CLAEYS AND R. HIPTMAIR, Integral equations for electromagnetic scattering at multi-
screens, Integral Equations and Operator Theory, 84 (2016), pp. 33–68] for Maxwell’s
equations in frequency domain. The gist is a quotient space perspective that allows to
make sense of jumps of traces as factor spaces of multi-trace spaces modulo single-
trace spaces without relying on orientation. This paves the way for formulating
first-kind boundary integral equations in weak form posed on energy trace spaces.

In this article we extend that idea to the Galerkin boundary element (BE) dis-
cretization of first-kind boundary integral equations. Instead of trying to approxi-
mate jumps directly, the new quotient space boundary element method employs a
Galerkin BE approach in multi-trace boundary element spaces. This spawns discrete
boundary integral equations with large null spaces comprised of single-trace func-
tions. Yet, since the right-hand-sides of the linear systems of equations are consis-
tent, Krylov subspace iterative solvers like GMRES are not affected by the presence
of a kernel and still converge to a solution. This is strikingly confirmed by numerical
tests.

Keywords. Complex screens, Galerkin Boundary Element Method, Quotient Space
Boundary Element Method

1 Scattering at Multi-Screens

We are concerned with the scattering of acoustic or electromagnetic waves at ob-
jects like those displayed in Figure 1.1, i.e. geometries composed of essentially
two-dimensional piecewise smooth surfaces joined together. These objects can be
regarded as non-penetrable, more precisely: sound-soft, sound-hard, or perfectly
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2 Chapter 1. Scattering at Multi-Screens

conducting, respectively. This implies vanishing traces of some fields on their “sur-
face”. We face boundary value problems posed on the unbounded complement of
the scattering object. Our goal is to solve them, that is, to compute the scattered
wave by means of a Galerkin boundary element method (BEM).

FIGURE 1.1: Two examples of multi-screen geometries; junctions lines
colored red

To that end, we recast the boundary value problems as variational boundary in-
tegral equations (BIEs) posed in spaces of functions on the surface of the scattering
object. For simple screens this is well established [19, Section 3.5.3]. Here, we call a
simple screen an orientable, piecewise smooth two-dimensional bounded manifold
Γ embedded in 3D space R3. In this case, coercive variational first-kind boundary
integral equations arise, known as weakly singular and hypersingular BIEs in the
acoustic setting [20, 11, 10], and as Electric Field Integral Equation (EFIE) for electro-
magnetics [3]. These BIEs are set in Sobolev spaces of jumps of suitable field traces,

in H̃−
1
2 (Γ) and H̃

1
2 (Γ), respectively, for acoustics [17, Ch. 3], and in H̃−

1
2 (curlΓ, Γ)

for the EFIE. For these trace spaces, conforming boundary element subspaces are
readily available, and they give rise to Galerkin approximations whose numerical
analysis is fairly mature [4].

Obviously, for two-dimensional objects Γ, like those shown in Figure 1.1, which
are not globally orientable, the notion of jumps becomes problematic. It is not
straightforward how to adapt the jump trace spaces from the simple-screen setting to
more general situations. A breakthrough was achieved in [8] for the BIEs of acoustic
scattering, and in [7] towards generalizing the EFIE. The main idea was to consis-
tently view trace spaces, including those for jumps, from the perspective of quotient
spaces and to start from multi-valued traces. We survey these results in Section 2.

An important step in [8] and [7] was the rigorous characterization of geometries
as those of Figure 1.1. The authors introduced the class of multi-screens and defined
them as follows, see [8, Section 2] for more details:

Definition 1 (Lipschitz Partition [8, Definition 2.2]). A Lipschitz partition of Rd, d =
2, 3, is a finite collection of Lipschitz open sets

(
Ωj

)
j=0...n

such that Rd = ∪n
j=0Ωj and

Ωj ∩Ωk = ∅, if j 6= k.

Definition 2 (Multi-screen [8, Definition 2.3]). A multi-screen is a subset Γ ⊂ Rd such
that there exists a Lipschitz partition Rd denoted

(
Ωj

)
j=0...n

satisfying Γ ⊂ ∪n
j=0∂Ωj

and such that for each j = 0 . . . n, we have Γ ∩ ∂Ωj = Γj where Γj ⊂ ∂Ωj is some
Lipschitz screen in the sense of Buffa-Christiansen [3, section 1.1].

We want to take the cue from the theoretical investigations to develop Galerkin
BEM for multi-screens in 3D (d = 3). Of course, application of the BEM entails
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FIGURE 1.2: Two examples of triangulated multi-screens: triple- and
quadruple junctions

restricting the set of admissible multi-screens. We confine ourselves to those that
are the union of (closed) triangles such that the intersection of two triangles is either
empty, a single point, or a common edge of both. Fittingly, we call these shapes
triangulated multi-screens, and some of them are rendered in Figure 1.2.

We are going to present an approach that will yield a Galerkin BEM discretiza-
tion of the boundary integral equations for acoustic and electromagnetic scattering
at general triangulated multi-screens. We rely on minimal information about the
geometry and no special treatment of “junction lines” or ”joints” is necessary. More-
over, assembly of the linear systems of equations arising from Galerkin BEM can
be farmed out to codes designed for closed surfaces. No modifications nor aug-
mentations of these linear systems is required, nor is user interaction in the form of
marking special edges or nodes, see the core Section 4 of this article.

We stress this benefit, because it sets our method apart from the heuristics em-
ployed in computational acoustics and electromagnetics so far. For these approaches
the underlying intuition is that the unknowns of the first-kind BIEs still represent
local jumps of field variables. For instance, for the geometric situation of a triple-
junction of Figure 1.1 (left) and a scalar field, this means that the three jumps have
to add to zero at the junction line, which gives rise to an algebraic constraint on the
level of boundary-element degrees of freedom. Similarly, for electromagnetic scat-
tering, simulation codes impose a sort of Kirchhoff law at junction lines: the equiva-
lent surface currents have to satisfy some linear constraints, see [18, Section V], [21,
Section 3.4], [5, Section 3], and [9, Section I]. Alternatively, in [13] the authors im-
pose essential Krichhoff conditions in the trial space, while [9] proposes to enforce
the Kirchhoff condition weakly on the discrete level in the spirit of mortar finite ele-
ment techniques. A rigorous mathematical underpinning for these approaches and
analysis in suitable trace spaces has not been provided thus far.

2 Trace Spaces: Quotient-Space View

We briefly review the new perspective on trace spaces on multi-screens developed
in [8, Section 4-6] and [7, Section 3-5]. The underlying ideas will inspire the construc-
tion of boundary element spaces in Section 4.
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2.1 Acoustic Scattering: Scalar Trace Spaces

Given a multi-screen we consider the following chains of nested Sobolev spaces of
functions/vectorfields1

H1
0,Γ(R

d) ⊂ H1(Rd) ⊂ H1(Rd\Γ), (2.1a)

H0,Γ(div, R
d) ⊂ H(div, R

d) ⊂ H(div, R
d \ Γ), (2.1b)

where a subscript X0,Γ indicates a space obtained as the closure in X of smooth
functions/vectorfields compactly supported in Rd \ Γ. All inclusions in (2.1) de-
fine closed subspaces, which renders the associated quotient spaces Hilbert spaces.
A particular pair of them, called multi-trace spaces [8, Section 5], is

H
+ 1

2 (Γ) := H1(Rd\Γ)/H1
0,Γ(R

d), (2.2a)

H
− 1

2 (Γ) := H(div, R
d\Γ)/H0,Γ(div, R

d). (2.2b)

We will tag the elements of these spaces with a dot on top (e.g. u̇, ṗ), and the
symbol under the ˙ should be regarded as a representative function ∈ H1(Rd\Γ) or
H(div, Rd \ Γ), respectively. Another pair of quotient spaces, the single-trace spaces

[8, Section 6.1], are defined as

H+ 1
2 ([Γ]) := H1(Rd)/H1

0,Γ(R
d), (2.3a)

H−
1
2 ([Γ]) := H(div, R

d)/H0,Γ(div, R
d). (2.3b)

From [8, Proposition 6.2] we learn that the spaces H+ 1
2 ([Γ]) and H−

1
2 ([Γ]) are closed

subspaces of H+ 1
2 (Γ) and H−

1
2 (Γ), respectively. This allows us to introduce the

jump spaces [8, Section 6.2]

H̃+ 1
2 ([Γ]) := H

+ 1
2 (Γ)/H+ 1

2 ([Γ]) and H̃−
1
2 ([Γ]) := H

− 1
2 (Γ)/H−

1
2 ([Γ]). (2.4)

Trace-like operators for functions in H1(Rd\Γ) and H(div, Rd\Γ) are supplied by
the canonical surjections

πD : H1(Rd\Γ)→ H
1
2 (Γ) and πN : H(div, R

d\Γ)→ H
− 1

2 (Γ). (2.5)

Restricted to H1(Rd) and H(div, Rd) they give rise to traces onto H+ 1
2 ([Γ]) and

H−
1
2 ([Γ]), respectively.

Remark 3. As explained in [8, Section 5.2], if Γ = ∂Ω, Ω ⊂ Rd a Lipschitz domain,
then then the multi-trace spaces agree with product spaces of traces from inside and
outside,

H
+ 1

2 (Γ) = H
1
2 (∂Ω)× H

1
2 (∂Ω) and H

− 1
2 (Γ) = H−

1
2 (∂Ω)× H−

1
2 (∂Ω),

whereas the single-traces spaces coincide with the standard trace spaces,

H+ 1
2 ([Γ]) = H

1
2 (∂Ω) and H−

1
2 ([Γ]) = H−

1
2 (∂Ω),

1See [12, Section 1.1] for an introduction to the relevant Sobolev spaces.
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and so do the jump spaces:

H̃+ 1
2 ([Γ]) = H

1
2 (∂Ω) and H̃−

1
2 ([Γ]) = H−

1
2 (∂Ω).

Remark 4. Let us convey an intuitive grasp of the trace spaces introduced above.
We start with the multi-trace spaces and the observation that H(div, Rd \ Γ) is a

space of functions attaining different values on both sides of Γ. Thus functions in

the multi-trace space H+ 1
2 (Γ) are multi-valued on Γ: they are given independently

on both sides of Γ. A way to understand this is to imagine an “infinitesimally in-

flated” screen, see Figure 2.1 for a 2D rendering. Then H+ 1
2 (Γ) can be viewed as a

standard Dirichlet trace space on the surface of the inflated screen. The same consid-

erations apply to H−
1
2 (Γ), where we now deal with normal component traces onto

the inflated screen.

Γ

⇒

FIGURE 2.1: Inflating a 2D multi-screen

The single-trace space H+ 1
2 ([Γ]) is easier to understand: it simply comprises

single-valued functions on Γ. More care has to be taken to arrive at the right in-

terpretation of H−
1
2 ([Γ]), because we have to fix a local normal n on Γ in order to

make sense of a single-valued normal component.

Following [8, Section 5.1] we introduce a bilinear pairing on H+ 1
2 (Γ)×H−

1
2 (Γ):

≪ u̇, ṗ≫:=
∫

[Γ]
u̇ ṗ dσ :=

∫

Rd\Γ
p · ∇u + udiv(p) dx, (2.6)

with u ∈ H1(Rd \ Γ) and p ∈ H(div, Rd \ Γ). According to [8, Prop. 5.1] this pairing

induces an isometric duality between H+ 1
2 (Γ) and H−

1
2 (Γ). From [8, Section 6.2]

we also learn that ≪ u̇, ṗ ≫ spawns isometric dualities connecting H+ 1
2 ([Γ]) and

H̃−
1
2 ([Γ]), and H−

1
2 ([Γ]) and H̃+ 1

2 ([Γ]), respectively.
The bilinear pairing also offers a characterization of single-trace spaces through

self-polarity:

Proposition 5 ([8, Proposition 6.3]). For u̇ ∈ H+ 1
2 (Γ) and ṗ ∈ H−

1
2 (Γ) the following

equivalences hold true:

u̇ ∈ H+ 1
2 ([Γ]) ⇐⇒

∫
[Γ] u̇q̇ dσ = 0 ∀q̇ ∈ H−

1
2 ([Γ]),

ṗ ∈ H−
1
2 ([Γ]) ⇐⇒

∫
[Γ] v̇q̇ dσ = 0 ∀v̇ ∈ H+ 1

2 ([Γ]).



6

2.2 Electromagnetic Scattering: Tangential Vectorial Trace Spaces

In the context of electromagnetic scattering we start from the chain of nested closed
subspaces

H0,Γ(curl, R
3) ⊂ H(curl, R

3) ⊂ H(curl, R
3\Γ). (2.7)

Parallel to Section 2.1 we introduce the quotient spaces of “tangential vector fields”

multi-trace space: H
− 1

2 (curlΓ, Γ) := H(curl, R
3\Γ)/H0,Γ(curl, R

3), (2.8)

single-trace space: H−
1
2 (curlΓ, [Γ]) := H(curl, R

3)/H0,Γ(curl, R
3), (2.9)

jump space: H̃−
1
2 (curlΓ, [Γ]) := H

− 1
2 (curlΓ, Γ)/H−

1
2 (curlΓ, [Γ]), (2.10)

with associated canonical surjection πT : H(curl, R3\Γ) → H−
1
2 (curlΓ, Γ), which

supplies a generalized tangential trace operator. More details can be found in [7,
Section 4.3], [7, Def. 4.4], and [7, Def. 4.6], respectively.

By [7, Prop. 4.2] an isometric self-duality of H−
1
2 (curlΓ, Γ) is induced by the bilinear

form≪ ·, · ≫×: H−
1
2 (curlΓ, Γ)×H−

1
2 (curlΓ, Γ) 7→ C defined as

≪ u̇, v̇≫×:=
∫

[Γ]
(u̇× n) · v̇ dσ :=

∫

R3\Γ
curl(u) · v− u · curl(v) dx, (2.11)

u, v ∈ H(curl, R3\Γ). This pairing also gives rise to an isometric duality of H−
1
2 (curlΓ, [Γ])

and H̃−
1
2 (curlΓ, [Γ]), cf. [7, Lemma 4.7]. A result analogous to Proposition 5 holds as

well:

Proposition 6 ( [7, Proposition 4.5]). For u̇ ∈ H−
1
2 (curlΓ, Γ), we have

u̇ ∈ H−
1
2 (curlΓ, [Γ]) ⇐⇒ ≪ u̇, v̇≫×= 0 ∀v̇ ∈ H−

1
2 (curlΓ, [Γ])

The variational formulations of boundary integral equations for electromagnetic
scattering rely on surface differential operators. To begin with we define the surface

gradient gradΓ : H
1
2 (Γ)→ H

1
2 (curlΓ, Γ) through the formula

gradΓ(πD(p)) := πT(grad p) ∀p ∈ H1(R3\Γ), (2.12)

and the surface curl operator curlΓ : H−
1
2 (curlΓ, Γ)→ H−

1
2 (Γ) using the formula

curlΓ(πT(u)) := πN(curl(u)) ∀u ∈ H(curl, R
3\Γ). (2.13)

By restriction and duality the surface differential can also be defined for tangential
single-trace and jump spaces, see the commuting diagram of [7, Lemma 5.3].

Remark 7. In line with Remark 3 we find H−
1
2 (curlΓ, Γ) = H−

1
2 (curlΓ, Γ)×H−

1
2 (curlΓ, Γ)

and H−
1
2 (curlΓ, [Γ]) = H−

1
2 (curlΓ, Γ) for Γ = ∂Ω, Ω a 3D Lipschitz domain.

The gist of the interpretation suggested in Remark 4 carries over to the vectorial
case too.
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3 Boundary Integral Equations on Multi-Screens

We summarize the contents of [8, Section 8] and [7, Section 7-9], which introduced
and analyzed representation formulas and boundary integral operators for acous-
tic and electromagnetic scattering at multi-screens. We restrict ourselves to multi-
screens in 3D, d = 3.

3.1 Weakly Singular and Hypersingular Scalar BIEs

We first study acoustic wave propagation governed by the Helmholtz equation−∆u−
κ2u = 0 in Rd \ Γ, Γ a multi-screen, κ ∈ C, Re κ ≥ 0, the wave number. The two
relevant trace operators are the1

Dirichlet trace: γD : H1(Rd \ Γ)→ H
+ 1

2 (Γ) , γD := πD ,

Neumann trace: γN : H1(∆, R
d \ Γ)→ H

− 1
2 (Γ) , γN := πN ◦ ∇ ,

where we used the canonical surjections from (2.5). By means of two potentials
we can state the boundary representation formula [8, (8.3)] for solutions of the ho-
mogeneous Helmholtz equation satisfying Sommerfeld radiation conditions. These
potentials are the

single-layer potential: SLκ(q̇)(x) :=
∫

[Γ]
γD(Gκ,x)q̇ dσ , q̇ ∈ H

− 1
2 (Γ),

double-layer potential: DLκ(v̇)(x) :=
∫

[Γ]
γN(Gκ,x)v̇ dσ , v̇ ∈ H

+ 1
2 (Γ),

x 6∈ Γ,

where Gκ,x(y) = Gκ(x− y), with Gκ(z) := exp(ıκ‖z‖)
4π‖z‖ being the radiating fundamental

solution of the Helmholtz equation in R3 .
A key novel feature of the layer potentials for multi-screens are their non-trivial

kernels that even allow a precise characterization:

Lemma 8 ([8, Lemma 8.6]). The kernels of the layer potentials coincide with the single-
trace subspaces:

ṗ ∈ H
− 1

2 (Γ) : SLκ( ṗ) = 0 ⇔ ṗ ∈ H−
1
2 ([Γ]) ,

v̇ ∈ H
− 1

2 (Γ) : DLκ(v̇) = 0 ⇔ v̇ ∈ H
1
2 ([Γ]).

By the regularity of the potentials and the pertinent jump relations the following
boundary integral operators (BIOs) are well-defined and continuous:

Weakly singular BIO: Vκ := γD ◦ SLκ : H
− 1

2 (Γ)→ H
+ 1

2 (Γ), (3.1)

Hypersingular BIO: Wκ := γN ◦DLκ : H
+ 1

2 (Γ)→ H
− 1

2 (Γ). (3.2)

1Notation: H1(∆, Rd \ Γ) := {v ∈ H1(Rd \ Γ), ∆v ∈ L2(Rd \ Γ)}
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For sufficiently regular arguments the weakly singular BIO can be stated in integral
form

(Vκφ̇)(x) =
∫

[Γ]
Gκ(x− y)φ̇(y) dσ(y) , φ̇ ∈ H

− 1
2 (Γ) ∩L

∞(Γ), (3.3)

where integration is carried out over the virtual inflated screen, cf. Figure 2.1.
Both integral operators occur in first-kind boundary integral equations (BIE) related

to exterior boundary value problems (BVPs) for the Helmholtz equation. If u ∈
H1

loc(R
d \ Γ) is a solution of the exterior Helmholtz Dirichlet BVP





−∆u− κ2u = 0 in Rd\Γ,

γDu = ġD ∈ H+ 1
2 ([Γ]) on Γ,

lim
r→∞

r
(

∂u
∂r (x)− iκu(x)

)
= 0, r := ‖x‖,

(3.4)

then the unknown Neumann trace γN(u) ∈ H−
1
2 (Γ) can be found by solving

φ̇ ∈ H
− 1

2 (Γ) : Vκ(φ̇) = ġD. (3.5)

This BIE can be cast in equivalent variational form as follows: find φ̇ ∈ H−
1
2 (Γ) such

that
≪ Vκφ̇, ψ̇≫=≪ ġD, ψ̇≫ ∀ψ̇ ∈ H

− 1
2 (Γ). (3.6)

We can proceed similarly for the Helmholtz-Neumann BVP





−∆u(x)− κ2u = 0 in Rd\Γ,

γNu = ḣN ∈ H−
1
2 ([Γ]) on Γ,

limr→∞ r
(

∂u
∂r (x)− iκu(x)

)
= 0, r = ‖x‖,

(3.7)

for which the unknown Dirichlet data γD(u) ∈ H+ 1
2 (Γ) solve the BIE

v̇ ∈ H
+ 1

2 (Γ) : Wκ(v̇) = ḣN . (3.8)

Also this BIE can be written in variational form and it results in the problem

Find v̇ ∈ H
+ 1

2 (Γ) such that ≪ Wκ v̇, ṗ≫=≪ ḣN , ṗ≫ ∀ ṗ ∈ H
+ 1

2 (Γ). (3.9)

The bilinear form on the left-hand side can be conveniently expressed by integration
by parts as shown in [19, Section 3.3]. For sufficiently regular argument functions
we find the integral representation through an improper integral over the virtual
inflated screen:

≪ Wκ v̇, ṗ≫=
∫

[Γ]

∫

[Γ]
Gκ(y− x)

{
(gradΓ v̇× n)(y) · (gradΓ ṗ× n)(x)

− κ2n(y) · n(y)v̇(y) ṗ(x)
}

dσ(y)dσ(x).
(3.10)

Lemma 8 has the direct implication that also the BIOs Vκ and Wκ have non-trivial
kernels given by single-trace functions.

Lemma 9 (Kernels of boundary integral operators). The kernels of Vκ and Wκ agree

with H−
1
2 ([Γ]) and H+ 1

2 ([Γ]), respectively.

Hence, Vκ and Wκ remain well-defined on the quotient spaces H̃−
1
2 ([Γ]) and
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H̃+ 1
2 ([Γ]), respectively. They even enjoy coercivity on jump spaces: there exist com-

pact operators KV : H̃−
1
2 ([Γ]) → H+ 1

2 ([Γ]) and KW : H̃+ 1
2 ([Γ]) → H−

1
2 ([Γ]) such

that the following Gårding inequalities are satisfied [8, Prop. 8.8]

Re

{∫

[Γ]
q̇(Vκ +KV) ¯̇q dσ

}
≥ C‖q̇‖2

H̃−
1
2 ([Γ])

∀q̇ ∈ H̃−
1
2 ([Γ]), (3.11)

Re

{∫

[Γ]
v̇(Wκ +KW) ¯̇v dσ

}
≥ C‖v̇‖2

H̃+ 1
2 ([Γ])

∀v̇ ∈ H̃+ 1
2 ([Γ]), (3.12)

with C > 0 depending only on κ and Γ.
We remark that the presence of non-trivial kernels thwarts uniqueness of solu-

tions of (3.6) and (3.9). Yet, Proposition 5 still gives us existence, since ġD ∈ H+ 1
2 ([Γ])

and ḣN ∈ H−
1
2 ([Γ]) ensures consistency of the right-hand side linear forms: they

vanish on the single-trace spaces.

3.2 Electric-Field Integral Equations

The complex amplitudes of the electric and magnetic fields for time-harmonic elec-
tromagnetic waves propagating in empty space satisfy the homogeneous Maxwell’s
equations curl curlE− κ2E = 0, with wave number κ > 0. This second order partial
differential equation induces two key trace operators:

Electric trace: γT : H(curl, R
3\Γ)→ H

− 1
2 (curlΓ, Γ), γT := πT , (3.13a)

Magnetic trace: γR :H(curl2, R
3\Γ)→ H

− 1
2 (curlΓ, Γ), γR := πT ◦ curl , (3.13b)

where πT is the canonical surjection implied by the definition (2.8) of H−
1
2 (curlΓ, Γ).

Both trace operators are continuous and surjective. They are instrumental in the def-
inition of Maxwell single- and double-layer potentials, here given in distributional

form as in [7, Section 7.1]: for u̇ ∈ H−
1
2 (curlΓ, Γ),

SLκ(u̇) = −Gκ ∗ γ′T(u̇) + κ−2∇(Gκ ∗ γ′D · curlΓ(u̇)), (3.14)

DLκ(u̇) = −Gκ ∗ γ′R(u̇). (3.15)

Slightly abusing notation, the operator Gκ∗ is the Newton potential for the vecto-
rial Helmholtz operator with wave number κ > 0 [19, Section 3.1.1]. From [7, Sec-
tion 7.2] we know that the single-layer potential SLκ maps continuously the space

H−
1
2 (curlΓ, Γ) into Hloc(curl, R3) and the double-layer potential DLκ maps continu-

ously the space H−
1
2 (curlΓ, Γ) into Hloc(curl, R3\Γ).

We consider the exterior boundary value problem modeling electromagnetic scat-
tering at the screen Γ:





curl curlE− κ2E = 0 in Rd\Γ,

γTE = ġ ∈ H−
1
2 (curlΓ, [Γ]) on Γ,

lim
r→∞

r
(
curlE(x)× x

‖x‖ − iκE(x)
)

= 0, r := ‖x‖,
(3.16)

Introducing the boundary integral operator Tκ := γT ◦ SLκ : H−
1
2 (curlΓ, Γ) →
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H−
1
2 (curlΓ, Γ) we find that the magnetic trace ṗ := γR(E) ∈ H−

1
2 (curlΓ, Γ) of the so-

lution E of (3.16) solves the first-kind boundary integral equation

Tκṗ = ġ in H
− 1

2 (curlΓ, Γ), (3.17)

called the electric field integral equation (EFIE), which can be cast into weak form: Seek

ṗ ∈ H−
1
2 (curlΓ, Γ) such that

≪ Tκ(ṗ), q̇≫×=≪ ġ, q̇≫× ∀q̇ ∈ H
− 1

2 (curlΓ, Γ) . (3.18)

It is possible to give a more explicit form to the left-hand side of the EFIE by plugging
into it the definition of the single layer potential:

≪ Tκ(ṗ), q̇≫×

= κ−2 ≪ γD · Gκ ∗ γ′D(curlΓṗ), curlΓq̇≫ − ≪ γT · Gκ ∗ γ′T(ṗ), q̇≫×, (3.19)

which, for sufficiently regular ṗ, q̇ ∈ H−
1
2 (curlΓ, Γ), can be written explicitly as

≪ γD · Gκ ∗ γ′D(curlΓṗ), curlΓq̇≫

=
∫

[Γ]

∫

[Γ]
Gκ(x− y)curlΓṗ(x)curlΓq̇(y)dσ(x)dσ(y), (3.20)

≪ γT · Gκ ∗ γ′T(ṗ), q̇≫×

=
∫

[Γ]

∫

[Γ]
Gκ(x− y)(n(x)× ṗ(x)) · (n(y)× q̇(y))dσ(x)dσ(y). (3.21)

The weak EFIE possesses a unique solution in the jump space H̃−
1
2 (curlΓ, [Γ]), since

its associated bilinear form satisfies a generalized Gårding inequality, see [7, Section

9]. Conversely, solutions in H−
1
2 (curlΓ, Γ) cannot be unique:

Lemma 10 (Kernel of EFIE boundary integral operator, [7, Lemma 7.9]). The kernel

of Tκ coincides with the single-trace space H−
1
2 (curlΓ, [Γ]).

Fortunately, as ġ ∈ H−
1
2 (curlΓ, [Γ]), the right-hand side of (3.18) is consistent

thanks to Proposition 6.

4 Quotient-Space Boundary-Element Methods

We aim for a conforming Galerkin discretization of the variational boundary integral
equations (3.6), (3.9), and (3.18), employing piecewise polynomial subspaces of the

multi-trace spaces H+ 1
2 (Γ), H−

1
2 (Γ), and H−

1
2 (curlΓ, Γ).

Functions belonging to multi-traces spaces can have different values on “oppo-
site sides” of parts of a multi-screen. In the spirit of Remark 4 we adopt the perspec-
tive of a virtual inflated screen as indicated in Figure 2.1 for a 2D situation. On such
an inflated screen [Γ], in a combinatorial sense, a “virtual surface mesh” T consisting
of smooth panels can be defined as if [Γ] was the surface of a domain, see Figure 2.1
right. In terms of geometry, different panels may overlap or even coincide, of course.

We restrict ourselves to triangulated multi-screens embedded in 3D space as al-
ready adressed in the Introduction. For the sake of simplicity we assume that the
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Γ

⇒

Γ

FIGURE 4.1: 2D multi-screen and inflated screen equipped with a
mesh: the blue strokes represent nodes of the mesh.

multi-screen Γ is composed of flat parts only and that all meshes comprise only flat
triangular panels.

4.1 Oriented Multi-Screen Surface Triangulations

Let T0 be a triangulation of Γ, that is, a set of open flat triangles, T0 = {K}, such that

(I) Γ0 =
⋃
{K : K ∈ T0},

(II) the triangles K are mutually disjoint: K, K′ ∈ T0, K 6= K′ implies K ∩ K′ = ∅,

(III) for K, K′ ∈ T0, K 6= K′, the intersection K ∩ K′ is either empty or a common
vertex or edge of both,

(IV) and no triangle of T0 has more than one edge on the boundary ∂Γ.

The notion of “edges”, “boundary edges”, and “nodes” of T0 should be clear. Re-
quirement (IV) has been included merely to simplify the presentation of the algo-
rithm below. Further, we designate

• by E(K) the set of the three edges of a triangle K ∈ T0,

• and by T (e) the set of triangles abutting an edge e of T0.

We equip every triangle K with a fixed orientation by ordering its vertices or,
equivalently, prescribing a unit normal vector nK ∈ R3. We also endow every edge
of T0 with an intrinsic direction and write oK,e ∈ {−1,+1} for the relative orientation
of the edge e ∈ E(K) and the triangle K.

For two adjacent triangles K, K′ ∈ T0 with joint edge e := ∂K ∩ ∂K′ we set oK,K′ =
−oK,e · oK′,e, that is oK,K′ = 1 tells us that both triangles are oriented consistently.
Then we can define the angle enclosed by K and K′, 6 (K, K′) ∈ [0, 2π), as the angle
of the counterclockwise rotation around the common edge ∂K ∩ ∂K′ that transforms
oK,K′ · nK′ into −nK, see Figure 4.2.

In a first step for every K ∈ T0 we create two copies K+ and K− with the same
geometry but to be regarded as different entities. The reader may imagine K+ and
K− as the two sides of K with nK pointing from K− to K+. These sides form the set
underlying what we call the virtual surface mesh for Γ:

T := {K+, K− : K ∈ T0} . (4.1)
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6 (K, K′)K′

K

enK′

nK

FIGURE 4.2: Definition of the angle between two (oriented) triangles
sharing an edge: case of consistently oriented triangles

In addition, K+ will be endowed with the unit normal nK, whereas the unit normal
−nK is assigned to K−. This defines the orientation for every triangle of T .

Now we present an algorithm that constructs the incidence information for T in
the form of the symmetric adjacency relation adjT ⊂ T ×T for T : (K1, K2) ∈ adjT , if
and only if these two triangles have a common edge in T . With adjT at our disposal
the edge and vertex sets for T can be built.

1 foreach K ∈ T0 {
2 foreach e ∈ E(K) {
3 i f (♯T (e) = 1) { // Test for boundary edge

4 adjT ← adjT ∪{(K
+, K−), (K−, K+)} ;

5 }
6 else { // Geometric test for finding adjacent sides

7 Tmin := argminT{ 6 (K, T) : T ∈ T (e) \ {K}} ;
8 Tmax := argmaxT{ 6 (K, T) : T ∈ T (e) \ {K}} ;

9 adjT ← adjT ∪{(K
+, T

oK,Tmin
min )} ; // “upper side”

10 adjT ← adjT ∪{(K
−, T

−oK,Tmax
max )} ; // “lower side”

11 }}}

The asymptotic computational effort for running this algorithm is O(♯T0) for
♯T0 → ∞. It yields a relation adjT such that

♯{(T, T′) : ∃T′ ∈ T , (T, T′) ∈ adjT } = 3 ∀T ∈ T ,

that is, every triangle has three neighbors and every edge of T belongs to two tri-
angles. This is characteristic of a triangulation of the closed surface of a volume do-
main. Furthermore, using the normal directions for panels of T as detailed above,
those turn out to be oriented consistently: their normals all point into the exterior of
the virtual inflated screen.

4.2 Boundary-Element Spaces

We take for granted the availability of a triangular virtual surface mesh T as built in
Section 4.1. On this mesh we introduce the standard lowest-order piecewise polyno-
mial boundary element spaces

• S0
1 (T ) ⊂ C0([Γ]) of T -piecewise linear “continuous” functions on the inflated

screen [Γ], and

• S−1
0 (T ) ⊂ L2([Γ]) of T -piecewise constant functions on [Γ].
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We equip these spaces with the usual minimally suported local basis functions

S0
1 (T ) = span{bi}

NV(T )
i=1 , NV(T )=̂ no. of nodes of T , (4.2)

S−1
0 (T ) = span{βi}

NT(T )
i=1 , NT(T )=̂ no. of triangles of T . (4.3)

These spaces supply finite-dimensional subspaces of the multi-trace spaces:

S0
1 (T ) ⊂ H

+ 1
2 (Γ) , S−1

0 (T ) ⊂ H
− 1

2 (Γ) , (4.4)

which qualifies them as trial and test spaces for boundary element Galerkin dis-
cretization of the variational problems (3.9) and (3.6), respectively.

For the Galerkin discretization of the EFIE (3.18) we rely on the standard edge
element space on T [4, Section 8]

N0(T ) ⊂ H
− 1

2 (curlΓ, Γ), (4.5)

also known as Rao-Wilton-Glisson (RWG) boundary element space in computational
engineering. For the edge-associated local basis functions with minimal supports we
write η1, . . . , ηNE(T ), where NE(T ) is the total number of edges of T .

These boundary element spaces enjoy the customary approximation properties.
In particular, they are asymptotically dense. To state the result, we consider a uni-
formly shape-regular sequence {Tℓ}ℓ∈N

of meshes with hℓ → 0 for ℓ→ ∞, where hℓ
stands for the mesh width hℓ := max

K∈Tℓ
diam K.

Lemma 11 (Asymptotic density of boundary element spaces).

∀v̇ ∈ H
+ 1

2 (Γ) : inf
vh∈S

0
1 (Tℓ)
‖v̇− vh‖

H
+ 1

2 (Γ)
→ 0,

∀ϕ̇ ∈ H
− 1

2 (Γ) : inf
ϕh∈S

−1
0 (Tℓ)

‖ϕ̇− ϕh‖
H
− 1

2 (Γ)
→ 0,

∀ṗ ∈ H
− 1

2 (curlΓ, Γ) : inf
ph∈N0(Tℓ)

‖ṗ− ph‖
H
− 1

2 (curlΓ,Γ)
→ 0

for ℓ→ ∞.

The proof relies on the fact that, using the notations of Definition 2, the space

X∞ :=
{

v ∈ C∞(R3 \ Γ), v |Ωj
∈ C∞(Ωj)

}

is dense in H1(R3 \Γ), and that (X∞)3 is dense in both H(div, R3 \Γ) and H(curl, R3 \
Γ). Then standard approximation estimates for traces of smooth functions yields
asymptotic density.

Remark 12. Our considerations can easily be extended to boundary element spaces
of higher polynomial degree. We do not elaborate on this just for the sake of a concise
presentation.
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4.3 Assembly of BE Galerkin Matrices

We explain the approach in the case of (3.9) for Re κ≥0 using S0
1 (T ) as trial and test

space. Invoking (3.10) the entries of the Galerkin matrix AWκ ∈ CNV(T ),NV(T ) are

(AW,κ)k,ℓ = ∑
K1∈T

∑
K2∈T

∫

K1

∫

K2

Gκ(y− x)
{

gradΓ bk(y)× n(y) · gradΓ bℓ(x)× n(x)

− κ2n(y) · n(y)bk(y)bℓ(x)
}

dσ(y)dσ(x),

(4.6)

for 1 ≤ k, ℓ ≤ NV , where bk, bℓ are “tent basis functions” of S0
1 (T ). Note that n(y)

and n(x) stand for the “exterior” unit normals on K2 and K1, respectively, as intro-
duced above. The Galerkin matrices AV,κ ∈ CNT(T ),NT(T ) and AT,κ ∈ CNE(T ),NE(T )

for the variational weakly singular BIE (3.6) and EFIE (3.18) are given by analogous
formulas based on (3.3) and (3.20), (3.21). We skip the details.

Remark 13. The integrals in (4.6) are standard weakly singular integrals over pairs
of panels. They can be evaluated using the established quadrature policy from [19,
Chapter 5]. If BEM software is available that can compute contributions of pairs
of panels to Galerkin BEM matrices, it can be used without further adaption. The
only requirement is that the result, up to the last digit, depends exclusively on the
geometry of K1 and K2 and in no way on their internal representation (like the order-
ing of vertices, etc.). If this condition is not met, one might arrive at linear systems
of equations that are not consistent. This will disrupt the convergence of iterative
solvers.

4.4 Kernels of Discretized Boundary Integral Operators

According to Lemma 9 the kernels of the weakly singular and hypersingular bound-
ary integral operators Vκ and Wκ coincide with single-trace spaces. We immediately
conclude that

kern(AW,κ) ←→ ZW(T ) := S0
1 (T ) ∩ H+ 1

2 ([Γ]),

kern (AV,κ) ←→ ZV(T ) := S−1
0 (T ) ∩ H−

1
2 ([Γ]),

kern(AT,κ) ←→ ZT(T ) := N0(T ) ∩ H−
1
2 (curlΓ, [Γ]).

(4.7)

Here,←→ means that the nullspace of the matrix on the left consists of the vectors
of basis expansion coefficients of all functions belonging to the BE function space on
the right.

In light of the interpretation of the single-trace spaces as spaces of “uni-valued
traces” we find that these kernels are the span of locally supported basis functions as-
sociated with the non-inflated screen mesh T0. Writing NV(T0), NE(T0), and NT(T0)
for the number of nodes, edges, and triangles in T0, respectively, we conclude

dim kern(AW,κ) = NV(T0) ,
dim kern(AV,κ) = NT(T0) ,
dim kern(AT,κ) = NE(T0) .

(4.8)

Remark 14. If the multi-screen consists of a few flat parts, some contributions to the
kernels of the Galerkin matrices can be identified easily. Let us examine S0

1 (T ) ∩

H+ 1
2 ([Γ]): Let k and ℓ be the indices of those two distinct nodes of T spawned by a
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single node of T0. Then,

bk + bℓ ∈ H+ 1
2 ([Γ]) , bk − bℓ 6∈ H+ 1

2 ([Γ]) .

Thus, for the sake of Galerkin discretization of the hypersingular BIE, we can replace
the two basis functions bk and bℓ by their difference bk − bℓ in the boundary element
space. Similarly, if a node of T0 lies on ∂Γ and, therefore, spawns only a single node

of T with index m, then bm ∈ H+ 1
2 ([Γ]) and this basis function can be dropped

altogether. This results in a reduced boundary element space visualized in Figure 4.3
for a 2D setting.

Γ

0

00

Γ

FIGURE 4.3: Reduced boundary element space on T by eliminating

certain functions in S0
1 (T ) ∩ H+ 1

2 ([Γ]). Red squares represent (re-

tained) basis functions of S0
1 (T ), magenta bullets differences of basis

functions.

4.5 Convergence of Galerkin solutions

From [8, Prop. 8.9] we learn that the variational boundary integral equations (3.6)

and (3.9) have unique solutions in H̃−
1
2 ([Γ]) and H̃+ 1

2 ([Γ]), respectively. The analo-
gous result for (3.18) is given in [7, Prop. 6.6] and claims uniqueness of solutions in

H̃−
1
2 (curlΓ, [Γ]).
Uniqueness of solutions combined with the coercivity estimates (3.11) and (3.12)

paves the way for using the abstract result of [19, Theorem 4.2.9] in the jump spaces

H̃−
1
2 ([Γ]) and H̃+ 1

2 ([Γ]). Thus we conclude asymptotic quasi-optimality of Galerkin
solutions with respect to the norms of the jump spaces.

For instance, if we adopt the setting of Lemma 11 and write
˙

φ ∈ H−
1
2 (Γ)/φℓ ∈

S−1
0 (Tℓ) for the solution/boundary element Galerkin solution of (3.6), then for suf-

ficiently large ℓ

‖φ̇− φℓ‖
H̃−

1
2 ([Γ])

≤ C inf
ϕℓ∈S

−1
0 (Tℓ)

‖φ̇− ϕℓ‖
H̃−

1
2 ([Γ])

,

with C > 0 independent of ℓ. A corresponding estimate holds true for (3.9).
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For the Galerkin discretization of the variational EFIE (3.18) the situation is more
complicated, since the sesqui-linear form merely satisfies a generalized Gårding in-

equality. Thus, we have to resort to Hodge-type splittings of H−
1
2 (curlΓ, Γ) induced

by regular decompositions of H(curl, R3 \ Γ), see [7, Section 9.2]. They possess dis-
crete counterparts and those can be used to verify asymptotic quasi-optimality of

Galerkin solutions in H̃−
1
2 (curlΓ, [Γ]), as elaborated in [4, Section 9.1], [1, Section 6],

and [2].

5 Numerical Results for Triangulated Multi-Screens

We investigate the performance of quotient-space BEM in a few numerical experi-
ments, which were carried out using the BETL library [15]. For each of the BIE we
report the dimensions of the discrete kernels, we compute the generalized condition
numbers of the Galerkin matrices (quotient of largest and smallest non-zero singular
values), and study the convergence of the Conjugate Gradient (GC) and General-
ized Minimal Residual (GMRES) iterative solvers. We stop the iterations once the
Euclidean norm of the residual has shrunk by a factor of 106.

The experiments were carried out for the multi-screens displayed in Figure 1.2: a
“triple junction” and a “quadruple junction”. That figure also displays the coarsest
mesh in each case. Table 5.1 provides information on the screen mesh T0 and the
associated virtual surface mesh T on different refinement levels. These refinement
levels were generated by uniform refinement of T0. As before, NT(M), NE(M) and
NV(M) denote the number of triangular panels, edges, and nodes, respectively, of
the screen triangulationM ∈ {T , T0}.

For each of the BIEs of interest, we summarize our results in a table and pro-
vide a plot of singular values of the resulting Galerkin matrices for the sequences
of meshes. The tables report, for each refinement level (Ref. Level): the number of
degrees of freedom (DoFs); the generalized condition number of the Galerkin matrices
(Gen. Condition Number); the number of Krylov-subspace iterative solver iterations
(CG It. or GMRES It.); and the dimensions of the discrete kernels.

Generalized condition numbers were computed as the quotient of largest and
smallest non-zero singular values. These quantities are of interest because they are
related to the condition numbers one would obtain if computing the Galerkin ma-
trices by discretizing the jump spaces directly. For this reason, we expect that they
behave like O(h−1) for AV,κ and AW,κ, and like O(h−2) for AT,κ, with mesh width
h → 0. We provide Table 5.2 at the end of this subsection to illustrate how these
quantities behave when the multi-screen is a unit disk, where the jump spaces can
be discretized with standard BEM. There we can see that the generalized condition
number of the quotient-space BEM matrices has the same growth as the condition
number of the standard BEM matrices.

For GMRES/CG, we chose as initial guess x0 = 0. As right hand side, we used
r := Az with z a random vector, and A the Galerkin matrix corresponding to the
associated BIE. Singular values, kernel dimensions and all plots were obtained using
MATLAB. Moreover, the generalized condition number was computed by regarding
every singular value smaller than 10−12 as zero. For simplicity, and given that the
size of the kernels (and thus the feasibility of our approach) does not depend on the
wavenumber κ, we take κ = 0 for the scalar BIEs and κ = 1 for the EFIE. This yields
symmetric positive definite Galerkin matrices in the scalar case and allows the use
of CG.



5.1. Scalar Case: Weakly Singular and Hypersingular BIEs 17

Complex
Screen

Ref.
Level

NT(T0) NE(T0) NV(T0) NT(T ) NE(T ) NV(T )

Triple
Junction

1 12 22 11 24 36 14
2 48 80 33 96 144 50
3 192 304 113 384 576 194

Quadruple
Junction

1 16 29 16 32 48 18
2 64 106 43 128 192 68
3 256 404 149 512 768 258

TABLE 5.1: Mesh data.

STANDARD BEM (T0) QUOTIENT-SPACE BEM (T )
Ref.
Level

DoFs
Condition
Number

DoFs Gen. Condition Number

AV,0

1 20 1.5211e+01 40 1.3040e+01
2 80 3.8415e+01 160 2.8897e+01
3 320 8.3753e+01 640 6.0478e+01

AW,0

1 6 1.4588e+00 12 1.1530e+02
2 31 2.6741e+00 62 2.3774e+02
3 141 5.4527e+00 282 7.7688e+02

AT,1

1 25 1.3588e+01 50 8.0738e+03
2 110 6.8064e+02 220 3.4855e+04
3 460 3.0432e+03 920 1.5103e+05

TABLE 5.2: Comparison of condition numbers for AV,0, AW,0 and AT,1

on unit disk discretized with standard BEM (T0) and quotient-space
BEM (T ).

Remark 15 (Iterative solvers for singular linear systems). We remind that Krylov-
subspace iterative solvers can be applied for solving linear systems with singular
system matrices as long as they possess a solution, that is, if the right-hand side
vector is consistent, see [16, 6] and [14, Sect. 6].

5.1 Scalar Case: Weakly Singular and Hypersingular BIEs

First we present the results for the weakly singular BIE. As discussed in Section 4.2,
we discretize with S−1

0 (T ). Furthermore, following the discussion in Section 4.4, it is
clear that dim kern(AV,κ) = NV(T0), which is exactly what we observe in Table 5.3.
Moreover, Figure 5.1 reveals the expected gap between the non-zero singular values

of AV,κ corresponding to discrete functions approximating H̃−
1
2 ([Γ]), and the singu-

lar values corresponding to the single-trace space H−
1
2 ([Γ]), which spawn the kernel

of AV,κ and are zero up to machine precision.
Table 5.3 also provides the computed generalized condition number, and the

number of CG and GMRES iterations. These quantities are consistent with our ex-
pectations, and they confirm that Krylov subspace iterative solvers manage to find
a solution to this singular yet consistent linear system.

Next we consider the hypersingular BIE. One may discretize AW,κ with S0
1 (T ) as

described in Section 4.2, or, as done in our implementation, one may use S0
1,0(T ) ⊂

C0([Γ]) of piecewise linear “continuous” functions on the inflated screen [Γ], which
are zero at the boundary of ∂Γ. We remark that this further simplification does not
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Complex
Screen

Ref.
Level

DoFs
Gen.

Condition
Number

CG
It.

GMRES
It.

dim kern(AV,κ)

Triple
Junction

1 24 1.09e+01 8 9 12
2 96 2.38e+01 13 15 48
3 384 4.89e+01 20 18 192

Quadruple
Junction

1 32 1.54e+01 9 10 16
2 128 3.25e+01 16 16 64
3 512 6.66e+01 21 18 256

TABLE 5.3: Results of the numerical experiments for AV,κ with κ = 0.
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FIGURE 5.1: Singular values for the weakly singular operator AV,κ

with κ = 0 over the different levels of refinement.

affect the algorithm, as the neglected boundary basis functions belong to S−1
0 (T ) ∩

H−
1
2 ([Γ]) and thus are contained in kern(AW,κ) (c.f. Remark 14). In other words, they

do not affect GMRES. However, due to this choice, the number of degrees of freedom
(DoFs) correspond only to the internal vertices of T , and dim kern(AW,κ) = N∗V(T0),
where N∗V(T0) denotes the set of internal vertices of T0. This is exactly what one sees
in Table 5.4.

Additionally, Figure 5.1 shows the singular values of AW,κ. There we note the
predicted gap between the non-zero singular values (corresponding to discrete func-
tions approximating H̃−1/2([Γ])), and the singular values that are numerically zero

(associated to the single-trace space S0
1,0(T0) ⊂ H−

1
2 ([Γ]), which is the kernel of AW,κ

under our discretization choice).
Table 5.3 also provides the computed generalized condition number, and the

number of CG and GMRES iterations. It is worth noticing that these quantities be-
have as expected and that both solvers converge.

5.2 Vectorial Case: EFIE

Finally, we study the EFIE. As for the hypersingular BIE, one may discretize AT,κ

with N0(T ) as in Section 4.2, or one may use N0,0(T ) ⊂ H−
1
2 (curlΓ, Γ) of edge

elements on the inflated screen [Γ], which vanish at the boundary of ∂[Γ]. As be-
fore, the algorithm is not affected by this further simplification, since the neglected

boundary basis functions belong to N0(T ) ∩H−
1
2 (curlΓ, [Γ]) and hence are part of



19

Complex
Screen

Ref.
Level

DoFs
Gen.

Condition
Number

CG
It.

GMRES
It.

dim kern(AW,κ) N∗V(T0))

Triple
Junction

1 6 5.76e+01 2 3 3 3
2 33 2.70e+02 7 8 16 16
3 159 1.15e+03 11 12 78 78

Quadruple
Junction

1 8 1.50e+00 2 3 4 4
2 44 9.35e+00 8 9 21 21
3 212 5.39e+01 33 34 103 103

TABLE 5.4: Results of the numerical experiments for AW,κ with κ = 0.
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FIGURE 5.2: Singular values for the hypersingular operator AW,κ with
κ = 0 over the different levels of refinement.

kern(AT,κ). Nevertheless, due to this implementation choice, the number of de-
grees of freedom (DoFs) in Table 5.3 are the internal edges of T . Consequently,
dim kern(AT) = N∗E(T0), with N∗E(T0) the set of internal edges of T0. This is veri-
fied by our numerical experiments.

We plot the singular values of AT,κ in Figure 5.3. As before, we find a clear dis-
tinction between the singular values belonging to the kernel and those correspond-
ing to the jump space. Similarly, Table 5.5 reveals that GMRES works as predicted
for this setting too.

Complex
Screen

Ref.
Level

DoFs
Gen.

Condition
Number

GMRES
It.

dim kern(AT,κ) N∗E(T0)

Triple
Junction

1 27 2.13e+01 14 13 13
2 126 4.07e+01 63 62 62
3 540 2.04e+02 207 268 268

Quadruple
Junction

1 36 4.53e+02 19 17 17
2 168 5.09e+02 80 82 82
3 720 1.78e+03 279 356 356

TABLE 5.5: Results of the numerical experiments for AT,κ with κ = 1.

.
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List of Symbols

H+ 1
2 (Γ) := H1(Rd\Γ)/H1

0,Γ(R
d), multi-trace space, (2.2a)

H−
1
2 (Γ) := H(div, Rd\Γ)/H0,Γ(div, Rd), multi-trace space, (2.2b)

H+ 1
2 ([Γ]) := H1(Rd)/H1

0,Γ(R
d), single-trace space, (2.3a)

H−
1
2 ([Γ]) := H(div, Rd)/H0,Γ(div, Rd), single-trace space, (2.3b)

H̃+ 1
2 ([Γ]) := H+ 1

2 (Γ)/H+ 1
2 ([Γ]), jump space, (2.4)

H̃−
1
2 ([Γ]) := H−

1
2 (Γ)/H−

1
2 ([Γ]), jump space, (2.4)

≪ u̇, ṗ≫:=
∫
[Γ] u̇ ṗ dσ, bilinear pairing on H+ 1

2 (Γ)×H−
1
2 (Γ), (2.6)

H−
1
2 (curlΓ, Γ) := H(curl, R3\Γ)/H0,Γ(curl, R3\Γ), multi-trace space, (2.8)

H−
1
2 (curlΓ, [Γ]) := H(curl, R3)/H0,Γ(curl, R3), single-trace space, (2.9)

H̃−
1
2 (curlΓ, [Γ]) := H−

1
2 (curlΓ, Γ)/H−

1
2 (curlΓ, [Γ]), jump space, (2.10)

≪ u̇, v̇≫×=
∫
[Γ](u̇× n) · v̇ dσ, bilinear pairing on H−

1
2 (curlΓ, Γ)×H−

1
2 (curlΓ, Γ), (2.11)

gradΓ: surface gradient, (2.12)
curlΓ: surface rotation/curl, (2.13)
γD/γN : Dirichlet/Neumann trace, Page 7
SLκ/DLκ : single-layer and double-layer potentials, Page 7
Vκ/Wκ : weakly singular and hypersingular BIO, (3.1), (3.2)
γT/γR: electric and magnetic trace, (3.13a) and (3.13b)
T0: triangulation of screen Γ, Page 11
T : triangulation of inflated screen, Page 11
S0

1 (T ) p.w. linear continuous functions on inflated screen, Page 12

S−1
0 (T ) p.w. constant functions on inflated screen, Page 12


	Scattering at Multi-Screens
	Introduction
	Trace Spaces: Quotient-Space View
	Acoustic Scattering: Scalar Trace Spaces
	Electromagnetic Scattering: Tangential Vectorial Trace Spaces

	Boundary Integral Equations on Multi-Screens
	Weakly Singular and Hypersingular Scalar BIEs
	Electric-Field Integral Equations

	Quotient-Space Boundary-Element Methods
	Oriented Multi-Screen Surface Triangulations
	Boundary-Element Spaces
	Assembly of BE Galerkin Matrices
	Kernels of Discretized Boundary Integral Operators
	Convergence of Galerkin solutions

	Numerical Results for Triangulated Multi-Screens
	Scalar Case: Weakly Singular and Hypersingular BIEs
	Vectorial Case: EFIE

	Bibliography

