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ON THE APPROXIMATION OF ROUGH FUNCTIONS WITH

DEEP NEURAL NETWORKS

T. DE RYCK, S. MISHRA, AND D. RAY

Abstract. Deep neural networks and the ENO procedure are both efficient
frameworks for approximating rough functions. We prove that at any order,
the ENO interpolation procedure can be cast as a deep ReLU neural network.
This surprising fact enables the transfer of several desirable properties of the
ENO procedure to deep neural networks, including its high-order accuracy at
approximating Lipschitz functions. Numerical tests for the resulting neural

networks show excellent performance for approximating solutions of nonlinear
conservation laws and at data compression.

Contents

1. Introduction 1
2. Deep neural networks 3
3. ENO interpolation 3
4. ENO reconstruction 4
5. ENO as a ReLU DNN 6
6. ENO-SR interpolation 10
7. Numerical results 12
8. Discussion 23
References 24
Appendix A. ENO coefficients 25
Appendix B. Multi-resolution representation of functions for data

compression 25
Appendix C. Proof of Theorem 6.1 27

1. Introduction

Rough functions i.e, functions which are at most Lipschitz continuous and could
even be discontinuous, arise in a wide variety of problems in physics and engineer-
ing. Prominent examples include (weak) solutions of nonlinear partial differential
equations. For instance, solutions of nonlinear hyperbolic systems of conservation
laws such as the compressible Euler equations of gas dynamics, contain shock waves
and are in general discontinuous, [Daf10]. Similarly, solutions to the incompress-
ible Euler equations would well be only Hölder continuous in the turbulent regime,
[ES06]. Moreover, solutions of fully non-linear PDEs such as Hamilton-Jacobi equa-
tions are in general Lipschitz continuous, [Eva98]. Images constitute another class
of rough or rather piecewise smooth functions as they are often assumed to be no
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2 APPROXIMATING ROUGH FUNCTIONS WITH DEEP NEURAL NETWORKS

more regular than functions of bounded variation on account of their sharp edges,
[AK06].

Given this context, the efficient and robust numerical approximation of rough
functions is of great importance. However, classical approximation theory has se-
vere drawbacks when it comes to the interpolation (or approximation) of such rough
functions. In particular, it is well known that standard linear interpolation pro-
cedures degrade to at best first-order of accuracy (in terms of the interpolation
mesh width) as soon as the derivative of the underlying function has a singularity,
[ACDD05] and references therein. This order of accuracy degrades further if the un-
derlying function is itself discontinuous. Moreover approximating rough functions
with polynomials can lead to spurious oscillations at points of singularity. Hence,
the approximation of rough functions poses a formidable challenge.

Artificial neural networks, formed by concatenating affine transformations with
pointwise application of nonlinearities, have been shown to possess universal ap-
proximation properties, [HSW89, Bar93, Cyb88] and references therein. This im-
plies that for any piecewise smooth function, there exists a neural network that
approximates it with very high accuracy. However, the precise architecture of this
network is not specified in these universality results. Recently [Yar17] was able to
construct deep neural networks with ReLU activation functions that can approx-
imate Lipschitz functions to second-order accuracy. He was able to provide very
precise estimates on the type and architecture of the underlying networks. Even
more surprisingly, in a very recent paper, [YZ] were able to construct deep neural
networks with alternating ReLU and Sine activation functions that can approximate
Lipschitz (or Hölder continuous) functions to exponential accuracy.

The afore-mentioned results of Yarotsky clearly illustrate the power of deep
neural networks in approximating rough functions. However, there is a practical
issue in the use of these deep neural networks as they are mappings from the space
coordinate x ∈ D ⊂ R

d to the output f∗(x) ∈ R, with the neural network f∗

approximating the underlying function f : D → R. Hence, for every given function
f , the neural network f∗ has to be trained i.e, its weights and biases determined by
minimizing a suitable loss function with respect to some underlying samples of f ,
[GBC16]. Although it makes sense to train networks for each individual function
f in high dimensions, for instance in the context of uncertainty quantification of
PDEs, [LMR] and references therein, doing so for every low-dimensional function
is unrealistic. Moreover, in a large number of contexts, the goal of approximating a
function is to produce an interpolant f̃ , given the vector {f(xi)} at sampling points
xi ∈ D. Hence, one would like to construct neural networks that map the input
vector into an output interpolant (or its evaluation at certain sampling points). It
is unclear if the networks proposed by Yarotsky can be adapted to this setting.

On the other hand, data dependent interpolation procedures have been devel-
oped in the last decades to deal with the interpolation of rough functions. A
notable example of these data dependent procedure is provided by the essentially
non-oscillatory (ENO) procedure. First developed in the context of reconstruc-
tion of non-oscillatory polynomials from cell averages in [HEOC87], ENO was also
adapted for interpolating rough functions in [SO89] and references therein. Once
augmented with a sub-cell resolution (SR) procedure of [Har89], it was provided
in [ACDD05] that the ENO-SR interpolant also approximated (univariate) Lips-
chitz functions to second-order accuracy. Moreover, ENO was shown to satisfy a
subtle non-linear stability property, the so-called sign property, [FMT13]. Given
these desirable properties, it is not suprising that the ENO procedure has been ev-
ery successfully employed in the numerical approximation of hyperbolic systems of
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conservation laws [HEOC87], Hamilton-Jacobi equations [SO91] and in data com-
pression in image processing, [HEOC97, ACDD05] and references therein.

As both deep neural networks and ENO procedure seem to provide frameworks
for the efficient approximation of rough functions, it is natural to explore links
between these two a priori disconnected concepts. This article attempts to do so
and we present the following results herein,

• We prove that for any order, the ENO interpolation (and the ENO recon-
struction) procedure can be cast as a suitable deep ReLU neural network.

• We prove that a variant of the piecewise linear ENO-SR (sub-cell resolution)
procedure of [Har89] can be cast as a deep ReLU neural network. Thus,
we prove that there exists a deep ReLU neural network that approximates
piecewise smooth (say Lipschitz) functions to second-order accuracy.

• The above theorems provide the requisite architecture for the resulting deep
neural networks and we train them to obtain what we term as DeLENO
(deep learning ENO) approximation procedures for rough functions. We
test this procedure in the context numerical methods for conservation laws
and for data and image compression.

2. Deep neural networks

We consider an underlying function L : M ⊂ R
m → N ⊂ R

n and we assume
access to a set of labelled data S ⊂ {(X,L(X)) : X ∈ M}, using which we wish to

select an approximation L̂ from a parametrized function class {Lθ : θ ∈ Θ} that
predicts the outputs of L on M with a high degree of accuracy.

One possible function class is those of deep neural networks. In particular,
we consider multilayer perceptrons (MLPs) in which the basic computing units
(neurons) are stacked in multiple layers to form a feedforward network. The input
is fed into the source layer and flows through a number of hidden layers to the
output layer. An example of an MLP with two hidden layers is shown in Figure 1.

In our terminology, an MLP of depth L consists of an input layer, L − 1 hid-
den layers and an output layer. We denote the vector fed into the input layer by
X = Z0. The l-th layer (with nl neurons) receives an input vector Zl−1 ∈ R

nl−1

and transforms it into the vector Zl ∈ R
nl by first applying an affine linear trans-

formation, followed by a component-wise (non-linear) activation function Al,

(2.1) Zl = Al(W lZl−1 + bl), W l ∈ R
nl×nl−1 , bl ∈ R

nl , 1 6 l 6 L,

with Zl serving as the input for the (l+1)-th layer. For consistency, we set n0 = m
and nL = n. In (2.1), W l and bl are respectively known as the weights and biases
associated with the l-th layer. The parameter space Θ then consists of all possible
weights and biases. A neural network is said to be deep if L > 3 and such a deep
neural network (DNN) is denoted as a ReLU DNN if the activation functions are
defined by the very popular rectified linear (ReLU) function,

(2.2) Al(Z) = (Z)+ = max(0, Z) for 1 6 l 6 L− 1 and AL(Z) = Z.

Additionally, the signal vector ZL may have to pass through an output function S
to convert the signal into a meaningful form. For instance in classification problems
[GBC16], a suitable choice is the softmax function

S(Z)i =
eZi

∑n

j=1 e
Zj

, i = 1, ..., n.
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Figure 1. An MLP with 2 hidden layers. The source layer trans-
mits the signal X to the first hidden layer. The final output of the
network is Ŷ .

3. ENO interpolation

Let f be a function on Ω = [c, d] ⊂ R that is at least p times continuously
differentiable. We define a sequence of nested uniform (for simplicity) grids {T k}Kk=0

on Ω, where

(3.1) T k = {xk
i }

Nk

i=0, I
k
i = [xk

i−1, x
k
i ], x

k
i = c+ ihk, hk =

(d− c)

Nk

, Nk = 2kN0,

for 0 6 i 6 Nk, 0 6 k 6 K and some positive integer N0. Furthermore we define
fk = {f(x) : x ∈ T k}, fk

i = f(xk
i ) and we let fk

−p+2, ..., f
k
−1 and fk

Nk+1, ...f
k
Nk+p−2

be suitably prescribed ghost values. We are interested in finding an interpolation
operator Ihk such that

Ihkf(x) = f(x) for x ∈ T k and
∥∥Ihkf − f

∥∥
∞

= O(hp
k) for k → ∞.

In standard approximation theory, this is achieved by defining Ihkf on Iki as the
unique polynomial pki of degree p−1 that agrees with f on a chosen set of p points,
including xk

i−1 and xk
i . The linear interpolant (p = 2) can be uniquely obtained

using the stencil {xk
i−1, x

k
i }. However, there are several candidate stencils to choose

from when p > 2. The ENO interpolation procedure considers the stencil sets

Sr
i = {xk

i−1−r+j}
p−1
j=0 , 0 6 r 6 p− 2,

where r is called the (left) stencil shift. The smoothest stencil is then selected based
on the local smoothness of f using Newton’s undivided differences. Algorithm 1
describes how the stencil shift rki corresponding to this stencil can be obtained.
Note that rki uniquely defines the polynomial pki . We can then write the final
interpolant as

Ihkf(x) =

Nk∑

i=1

pki (x)✶[xk
i−1

,xk
i
)(x).

In many applications, one is only interested in predicting the values of fk+1

given fk. In this case, there is no need to calculate Ihkf and evaluate it on T k+1.
Instead, one can use Lagrangian interpolation theory to see that there exist fixed
coefficients Cp

r,j
such that

Ihkf(xk+1
2i−1) =

p−1∑

j=0

Cp

rk
i
,j
fk
i−rk

i
+j

for 1 6 i 6 Nk and

Ihkf(xk+1
2i ) = fk+1

2i = fk
i for 0 6 i 6 Nk,

(3.2)

where rki is the stencil shift corresponding to the smoothest stencil for interval Iki .
The coefficients Cp

r,j are listed in Table 5 in Appendix A.
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Remark 3.1. ENO was initially introduced by [HEOC87] for high-order accurate
piecewise polynomial reconstruction, given cell averages of a function. This allows
to develop high-order accurate numerical methods for hyperbolic conservation laws,
the so-called ENO schemes. ENO reconstruction can be loosely interpreted as ENO
interpolation applied to the primitive function and is discussed in Section 4.

Remark 3.2. The prediction of fk+1 from fk can be framed in the context of
multi-resolution representations of functions, which are useful for data compression
[HEOC97]. As we will use ENO interpolation for data compression in Section 7,
we refer to Appendix B for details on multi-resolution representations.

Algorithm 1: ENO interpolation stencil selection

Input: ENO order p, input array ∆0 = {fk
i+j}

p−2
j=−p+1, for any 0 6 i 6 Nk.

Output: Stencil shift r.
Evaluate Newton undivided differences:
for j = 1 to p− 1 do

∆j = ∆j−1[2 : end]−∆j−1[1 : end− 1]

Find shift:
r = 0
for j = 2 to p− 1 do

if |∆j [p− 2− r]| < |∆j [p− 1− r]| then
r = r + 1

return r

4. ENO reconstruction

In this section we present ENO reconstruction, which is very similar to ENO
interpolation as presented in Section 3. Let V be a function on [c, d]. We define a
uniform mesh T on [c, d] with N cells,

(4.1) T = {Ii}
N
i=1, Ii = [xi− 1

2
, xi+ 1

2
],

{
xi = c+ (2i− 1)

h

2

}N

i=0

, h =
(d− c)

N
,

where xi and xi± 1
2
denote the cell center and cell interfaces of the cell Ii, respec-

tively. We are given the cell averages

V i =
1

h

ˆ x
i+1

2

x
i− 1

2

V (ξ)dξ, 1 6 i 6 N

and we define V −p+2, ..., V 0 and V N+1, ..., V N+p−1 to be ghost values that need to
be suitably prescribed. The goal is to find a local interpolation operator Ih

i such
that ∥∥Ih

i V − V
∥∥
∞,Ii

= O(hp) for h → 0.

For this purpose, let V̂ be the primitive function of V and note that we have access
to the value of V̂ at the cell interfaces,

V̂ (xi+ 1
2
) = h

i∑

j=0

V j where V̂ (x) =

ˆ x

c

V (ξ)dξ.

Next let Pi be the unique polynomial of degree p that agrees with V̂ on a chosen
set of p + 1 cell interfaces that includes xi− 1

2
and xi+ 1

2
. The ENO reconstruction

procedure considers the stencil sets

Sr
i = {xi− 1

2
−r+j}

p
j=0, 0 6 r 6 p− 1,
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where r is called the (left) stencil shift. The smoothest stencil is then selected based
on the local smoothness of f using Newton’s undivided differences. Algorithm 2
describes how the stencil shift ri corresponding to this stencil can be obtained.
Note that ri uniquely defines the polynomial Pi. We then define Ih

i V to be the
first derivative of Pi, one can check that this polynomial is indeed a p-th order
accurate approximation. Note that the interpolants on two adjacent intervals do
not need to agree on the mutual cell interface.

Algorithm 2: ENO reconstruction stencil selection

Input: ENO order p, input array ∆0 = {V i+j}
p−1
j=−p+1, for any 1 6 i 6 N .

Output: Stencil shift r.
Evaluate Newton undivided differences:
for j = 1 to p− 1 do

∆j = ∆j−1[2 : end]−∆j−1[1 : end− 1]

Find shift:
r = 0
for j = 1 to p− 1 do

if |∆j [p− 1− r]| < |∆j [p− r]| then
r = r + 1

return r

In order to implement an ENO scheme, one only needs the values of Ih
i V at the

cell interfaces xi− 1
2
and xi+ 1

2
. Analogously to equation (3.2), these can be directly

obtained by calculating

(4.2) Ih
i V (xi+ 1

2
) =

p−1∑

j=0

C̃p
ri,j

V i−ri+j and Ih
i V (xi− 1

2
) =

p−1∑

j=0

C̃p
ri−1,jV i−ri+j ,

where ri is stencil shift corresponding to the smoothest stencil for interval Ii and
with the coefficients C̃p

r,j listed in Table 6 in Appendix A.

5. ENO as a ReLU DNN

We now present one of the main results of this paper. The following theorem
states that the stencil selection of p-th order ENO interpolation can be exactly
obtained by a ReLU DNN for every order p.

Theorem 5.1. There exists a ReLU neural network consisting of p+
⌈
log2

( p−2

⌊ p−2

2
⌋

)⌉

hidden layers and a suitable output function, that takes input ∆0 = {fk
i+j}

p−2
j=−p+1

and leads to exactly the same stencil shift as the one obtained by Algorithm 1.

Proof. We look for the ENO stencil shift r := rki corresponding to the interval
Iki . Let k ∈ N and define ∆0

j = fk
i+j for −p + 1 6 j 6 p − 2 and 0 6 i 6 Nk,

where fk
−p+1, . . . , f

k
−1 and fk

Nk+1, . . . , f
k
Nk+p−2 are suitably defined ghost values.

Furthermore we define ∆s
j = ∆s−1

j −∆s−1
j−1 for s odd and ∆s

j = ∆s−1
j+1 −∆s−1

j for s

even. In what follows, we use Y l and Zl to denote the values of the l-th layer of
the neural network before and after activation, respectively. We use the notation
X l for an auxiliary vector needed to calculate Y l.

Step 1. Take the input to the network to be

Z0 = [∆0
−p+1, . . . ,∆

0
p−2] ∈ R

2(p−1).

These are all the candidate function values considered in Algorithm 1.
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Step 2. We want to obtain all quantities ∆s
j that are compared in Algorithm

1, as shown in Figure 2. We therefore choose the first layer (before activation) to
be

Y 1 =

[
Y∆

−Y∆

]
∈ R

2M where Y∆ =



∆2

0

∆2
−1
...


 ∈ R

M

is the vector of all the terms compared in Algorithm 1 andM = p(p−1)
2 −1. Note that

every undivided difference is a linear combination of the network input. Therefore
one can obtain Y 1 from Z0 by taking a null bias vector and weight matrix W 1 ∈
R

2M×(2p−2). After applying the ReLU activation function, we obtain

Z1 =

[
(Y∆)+
(−Y∆)+

]
.

Step 3. We next construct a vector X2 ∈ R
L, where L = (p−2)(p−1)

2 , that
contains all the quantities of the if-statement in Algorithm 1. This is ensured by
setting,

X2 =




|∆2
−1| − |∆2

0|
|∆3

0| − |∆3
1|

|∆3
−1| − |∆3

0|
...


 .

Keeping in mind that |a| = (a)+ + (−a)+ for a ∈ R we see that there is a matrix

W̃ 2 ∈ R
L×2M such that X2 = W̃ 2Z1. We wish to quantify for each component of

X2 whether it is strictly negative or not (cf. the if-statement of Algorithm 1). For
this reason, we define the functions H1 : R → R and H2 : R → R by

H1(x) =





0 x 6 −1

x+ 1 −1 < x < 0

1 x > 0

and H2(x) =





−1 x 6 0

x− 1 0 < x < 1

0 x > 1

.

The key property of these functions is that H1 and H2 agree with the Heaviside
function on x > 0 and x < 0, respectively. When x = 0 the output is respectively
+1 or −1. Now note that H1(x) = (x+1)+−(x)+ and H2(x) = (x)+−(x−1)+−1.
This motivates us to define

Y 2 =



X2 + 1
X2

X2 − 1


 ∈ R

3L,

which can be obtained from Z1 by taking weight matrix W 2 ∈ R
3L×2K and bias

vector b2 ∈ R
3L,

W 2 =





1
1
1


⊗ IL


 · W̃ 2 and b2j =





1 1 6 j 6 L

0 L+ 1 6 j 6 2L

−1 2L+ 1 6 j 6 3L

where IL denotes the L×L unit matrix. After activation we obtain Z2 = (Y 2)+ =
(W 2Z1 + b2)+.

Step 4. We first define X3 ∈ R
2L by

X3
j =

{
H1(X

2
j ) = Z2

j − Z2
L+j 1 6 j 6 L

H2(X
2
j−L) = Z2

j − Z2
L+j − 1 L+ 1 6 j 6 2L.

This is clearly for every j an affine transformation of the entries of Z2. For this

reason there exist a matrix W̃ 3 ∈ R
2L×3L and a bias vector b̃3 ∈ R

2L such that
X3 = W̃ 3Z2 + b̃3. In order to visualize the next steps, we arrange the elements of
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into directed acyclic
graph.

X3 in a triangular directed acyclic graph, shown in Figure 3, where every node Nj

corresponds to the tuple (X3
j , X

3
j+L) = (H1(X

2
j ), H2(X

2
j )). We note that this tuple

is either of the form (+1, H2(X
2
j )) or (H1(X

2
j ),−1). Algorithm 1 is equivalent to

finding a path from the top node to one of the bins on the bottom. Starting from
N1, we move to the closest element to the right in the row below (i.e. N2) if N1

is of the form (+1, H2(X
2
j )). If N1 is of the form (H1(X

2
j ),−1), we move to the

closest element to the left in the row below (i.e. N3). If N1 is of the form (+1,−1),
then it is not important in which direction we move. Both paths lead to a suitable
ENO stencil shift. Repeating the same procedure at each row, one ends up in one
of the p− 1 bins at the bottom representing the stencil shift r.

There are 2p−2 paths from the top to one of the bins at the bottom. In order
to represent the path using a (p − 2)-tuple of entries of X3, one needs to choose
between H1(X

2
j ) and H2(X

2
j ) at every node of the path, leading to 2p−2 variants

of each path. At least one of these variants only takes the values +1 and −1 on
the nodes and is identical to the path described above; this is the variant we wish
to select. Counting all variants, the total number of paths is 22p−4.

Consider a path P = (X3
j1
, . . . , X3

jp−2
) that leads to bin r. We define for this

path a weight vector W ∈ {−1, 0, 1}2L whose elements are set as

Wj =





+1 if X3
j = +1 and j = js for some 1 6 s 6 p− 2

−1 if X3
j = −1 and j = js for some 1 6 s 6 p− 2

0 otherwise.

For this particular weight vector and for any possible X3 ∈ R
2L we have W ·X3 6

p − 2, with equality achieved if and only if the entries of X3 appearing in P are
assigned the precise values used to construct W . One can construct such a weight

vector for each of the 22p−4 paths. We next construct the weight matrix Ŵ 3 ∈

R
22p−4×2L in such a way that the first 2p−2 ·

(
p−2
0

)
rows correspond to the weight

vectors for paths reaching r = 0, the next 2p−2 ·
(
p−2
1

)
for paths reaching r = 1 et

cetera. We also construct the bias vector b̂3 ∈ R
22p−4

by setting each element to

p − 2 and we define X̂3 = Ŵ 3X3 + b̂3 = Ŵ 3(W̃ 3Z2 + b̃3) + b̂3. By construction,

X̂3
j = 2p − 4 if and only if path j corresponds to a suitable ENO stencil shift,

otherwise 0 6 X̂3
j < 2p− 4.
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Step 5. Finally we define the final output vector by taking the maximum of all
components of X̂3 that correspond to the same bin,

Ŷj = max

{
X̂3

(
1 + 2p−2 ·

j−2∑

k=0

(
p− 2

k

))
, . . . , X̂3

(
2p−2 ·

j−1∑

k=0

(
p− 2

k

))}
,

for j = 1, . . . , p − 1 and where X̂3(j) := X̂3
j . Note that Ŷj is the maximum of

2p−2 ·
(
p−2
j−1

)
real positive numbers. Using the observation that max{a, b} = (a)+ +

(b−a)+ for a, b > 0, one finds that the calculation of Ŷ requires p−2+
⌈
log2

( p−2

⌊ p−2

2
⌋

)⌉

additional hidden layers. By construction, it is true that Ŷj = 2p− 4 if and only if

the (j − 1)-th bin is reached. Furthermore, Ŷj < 2p− 4 if the (j − 1)-th bin is not
reached. The set of all suitable stencil shifts R and the unique stencil shift r from
Algorithm 1 are then respectively given by

(5.1) R = argmaxj Ŷj − 1 and r = minR = min argmaxj Ŷj − 1.

�

Remark 5.2. The neural network constructed in the above theorem is local in the
sense that for each cell, it provides a stencil shift. These local neural networks can
be concatenated to form a single neural network that takes as its input, the vector fk

of sampled values and returns the vector of interpolated values that approximates
fk+1. The global neural network combines the output stencil shift of each local
neural network with a simple linear mapping (3.2).

Although the previous theorem provides a network architecture for every order
p, the obtained networks are excessively large for small p. We therefore present
alternative constructions for ENO interpolation of orders p = 3, 4.

Algorithm 1 for p = 3 can be exactly represented by the following ReLU network
with a single hidden layer, whose architecture is given by:

• Input X = (∆0
−2,∆

0
−1,∆

0
0,∆

0
1)

⊤.
• The first hidden layer is identical to the one described in the original proof
of Theorem 5.1 for p = 4, with a null bias vector and W 1 ∈ R

4×4,

(5.2) W 1 =




0 1 −2 1
1 −2 1 0
0 −1 2 −1
−1 2 −1 0


 , b1 =




0
0
0
0


 .

• Output layer:

(5.3) W 2 =

(
−1 1 −1 1
1 −1 1 −1

)
, b2 =

(
0
0

)
.

• The shift is determined using (5.1), since

Ŷ =

(
|∆2

−1| − |∆2
0|

|∆2
0| − |∆2

−1|

)
.

For p = 4, Algorithm 1 can be represented by following ReLU network with 3
hidden layers:

• Input X = (∆0
−3,∆

0
−2,∆

0
−1,∆

0
0,∆

0
1,∆

0
2)

⊤.
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• The first hidden layer is identical to the one described in the original proof
of Theorem 5.1 for p = 4, with a null bias vector and W 1 ∈ R

10×6,

(5.4) W 1 =

(
W̃ 1

−W̃ 1

)
∈ R

10×6 where W̃ 1 =




0 0 1 −2 1 0
0 1 −2 1 0 0
0 0 −1 3 −3 1
0 −1 3 −3 1 0
−1 3 −3 1 0 0




.

• The second hidden layer has a null bias and the weight vector
(5.5)

W 2 =

(
W̃ 2

−W̃ 2

)
∈ R

6×10 where W̃ 2 =



−1 1 0 0 0 −1 1 0 0 0
0 0 −1 1 0 0 0 −1 1 0
0 0 0 −1 1 0 0 0 −1 1


 .

Note that W̃ 2 ∈ R
3×10 is as in the original proof of Theorem 5.1 for p = 4.

• The third hidden layer:

(5.6) W 3 =




1 1 1 0 0 1
1 0 1 0 1 1
−1 1 0 1 0 −1
0 1 0 1 1 1


 , b3 =




0
0
0
0


 .

• Output layer:

(5.7) W 4 =



1 0 0 0
0 1 1 0
0 0 0 1


 , b4 =

(
0
0

)
.

• After an elementary, yet tedious case study, one can show that the shift
can again be determined using (5.1).

Remark 5.3. Similarly, one can show that Algorithm 2 for p = 2 can be exactly
represented by a ReLU DNN with one hidden layer of width 4. The input and
output dimension are 3 and 2, respectively. For p = 3, Algorithm 2 can be shown to
correspond to a ReLU DNN with three hidden layers of dimensions (10, 6, 4). Input
and output dimension are 5 and 4, respectively.

6. ENO-SR interpolation

By itself, the ENO interpolation procedure degrades to first-order accuracy for
piecewise smooth functions i.e, functions with a singularity in the second deriv-
ative. However, following [Har89], one can use sub-cell resolution, together with
ENO interpolation, to obtain second-order accurate approximation of such func-
tions [ACDD05]. Our goal is recast a variant of this procedure as a deep neural
network in order to ensure second-order accurate approximation. In the following,
we assume f to be a continuous function that is two times differentiable except at
a single point z where the first derivative has a jump of size [f ′] = f ′(z+)−f ′(z−).

6.1. Adapted second-order ENO-SR algorithm. The first step is to label in-
tervals that might contain the singular point z as B (bad), other intervals get the la-
bel G (good). We use second order differences ∆2

hf(x) := f(x−h)−2f(x)+f(x+h)
as smoothness indicators. The rules of the ENO-SR detection mechanism are the
following:

(1) The intervals Iki−1 and Iki are labelled B if

|∆2
hk
f(xk

i−1)| > max
n=1,2,3

|∆2
hk
f(xk

i−1±n)|.
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(2) Interval Iki is labelled B if

|∆2
hk
f(xk

i )| > max
n=1,2

|∆2
hk
f(xk

i+n)| and |∆2
hk
f(xk

i−1)| > max
n=1,2

|∆2
hk
f(xk

i−1−n)|.

(3) All other intervals are labelled G.

Note that neither detection rule implies the other and that an interval can be
labelled B by both rules at the same time. In the following, we will denote by
pki : [c, d] → R : x 7→ aix+ bi the linear interpolation of the endpoints of Iki , where
we write ai and bi instead of aki and bki to simplify notation. The interpolation
procedure is as follows:

(1) If Iki was labelled as G, then we take the linear interpolation on this interval
as approximation for f ,

Ihk

i f(x) = pki (x).

(2) If Iki was labelled as B, we use pki−2 and pki+2 to predict the location of the
singularity. If both lines intersect at a single point y, then we define

Ihk

i f(x) = pki−2(x)✶[c,y)(x) + pki+2(x)✶[y,d](x).

Otherwise we treat Iki as a good interval and let Ihk

i f(x) = pki (x).

The theorem below states that our adaptation of ENO-SR is indeed second-order
accurate.

Theorem 6.1. Let f be a globally continuous function with a bounded second deriv-
ative on R\{z} and a discontinuity in the first derivative at a point z. The adapted
ENO-SR interpolant Ihf satisfies

∥∥f − Ihf
∥∥
∞

6 Ch2 sup
R\{z}

|f ′′|

for all h > 0, with C > 0 independent of f .

Proof. The proof is an adaptation of the proof of Theorem 1 in [ACDD05] and can
be found in Appendix C. �

6.2. Second-order ENO-SR as DNN. Assume the setting of Section 3. We
will now prove that a second-order accurate prediction of fk+1 can be obtained
given fk using a ReLU DNN. The proof we present can be directly generalized to
interpolation at points other than the midpoints of the cells, e.g. retrieving cell
boundary values for reconstruction purposes. Equation (3.2) shows that we only

need to calculate Ihk

i f(xk+1
2i−1) for every 1 6 i 6 Nk. From the ENO-SR interpo-

lation procedure it is clear that for every i there exists rki ∈ {−2, 0, 2} such that

Ihk

i f(xk+1
2i−1) = pk

i+rk
i

(xk+1
2i−1). It is thus straightforward to calculate Ihk

i f(xk+1
2i−1)

from rki .

Theorem 6.2. There exists a ReLU neural network with a discontinuous output
function, input fk and output (rk1 , . . . , r

k
Nk

) as defined above.

Proof. Instead of explicitly constructing a ReLU DNN, we will prove that we can
write the output vector as a composition of functions that can be written as pure
ReLU DNNs with linear output functions. Such functions include the rectifier func-
tion, absolute value, maximum and the identity function. The network architecture
of a possible realisation of the network of this proof can be found after the proof.
Furthermore we will assume that the discontinuity is not located in the first four or
last four intervals. This can be achieved by taking k large enough, or by introducing
suitably prescribed ghost values. We also assume without loss of generality that
xk
i = i for 0 6 i 6 Nk.
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The input of the DNN will be the vector X0 ∈ R
Nk+1 with X0

i+1 = f(xk
i ) for all

0 6 i 6 Nk. Using a simple affine transformation, we can obtain X1 ∈ R
Nk−1 such

that X1
i = ∆2

hk
f(xk

i ) for all 1 6 i 6 Nk−1. We now define the following quantities,
(6.1)
Mi = max

n=1,2,3
|∆2

hk
f(xk

i±n)| = max
n=1,2,3

|X1
i±n|, N±

i = max
n=1,2

|∆2
hk
f(xk

i±n)| = max
n=1,2

|X1
i±n|,

where 4 6 i 6 Nk − 4. Next, we construct a vector X2 ∈ R
Nk such that every

entry corresponds to an interval. For 1 6 i 6 Nk, we want X2
i > 0 if and only if

the interval Iki is labelled as B by the adapted ENO-SR detection mechanism. We
can achieve this by defining

X2
i = (min{|X1

i | −N+
i , |X1

i−1| −N−
i−1})+ + (|X1

i | −Mi)+ + (|X1
i−1| −Mi−1)+

(6.2)

for 5 6 i 6 Nk − 4. Furthermore we set X2
1 = X2

2 = X2
3 = X2

4 = X2
Nk−3 =

X2
Nk−2 = X2

Nk−1 = X2
Nk

= 0. Note that the first term of the sum will be strictly

positive if Iki is labelled bad by the second rule of the detection mechanism and
one of the other terms will be strictly positive if Iki is labelled bad by the first rule.
Good intervals Iki have X2

i = 0.
Now define ni,l = l+4(i− 1) for 1 6 i 6 Nk and 1 6 l 6 4. Using this notation,

i refers to the interval Iki . Define X3 ∈ R
4Nk in the following manner:

X3
ni,1

= X2
i , X3

ni,3
=
(
|bi−2 − bi+2| − xk+1

2i−1|ai−2 − ai+2|
)
+
,

X3
ni,2

= |ai−2 − ai+2|, X3
ni,4

=
(
−|bi−2 − bi+2|+ xk+1

2i−1|ai−2 − ai+2|
)
+
,

(6.3)

for 5 6 i 6 Nk−4. We set X3
ni,l

= 0 for 1 6 l 6 4 and 1 6 i 6 4 or Nk−3 6 i 6 Nk.

We can now define the output Ŷ ∈ R
Nk of the ReLU neural network by

(6.4) Ŷi = min argmin16l64X
3
ni,l

.

It remains to prove that rki can be obtained from Ŷi. Note that Ŷi = 1 if and only

if Iki was labelled G. Therefore Ŷi = 1 corresponds to rki = 0. If Ŷi = 2, then
Iki was labelled B and the interpolants pki−2 and pki+2 do not intersect, leading to

rki = 0 according to the interpolation procedure. Next, Ŷi = 3, 4 corresponds to the
case where Iki was labelled B and the interpolants pki−2 and pki+2 do intersect. This

intersection point is seen to be y = bi+2−bi−2

ai−2−ai+2
. If Ŷi = 3, then xk+1

2i−1 is right of y and

therefore rki = 2. Analogously, Ŷi = 4 corresponds to rki = −2, which concludes the
proof.

�

Now that we have established that our adaptation of the second-order ENO-SR
algorithm can be written as a ReLU DNN with a discontinuous output function,
we can present a possible architecture of a DNN that calculates the output Ŷi from
fk. The network we present has five hidden layers, of which the widths vary from
6 to 20, and an output layer of 4 neurons. The network is visualized in Figure
4. We now give some more explanation about how each layer in Figure 4 can be
calculated from the previous layer, where we use the same notation as in the proof
of Theorem 5.1. In addition, we define and note that

γi−2,i+2(z) = |bi−2 − bi+2| − z|ai−2 − ai+2|,(6.5a)

max{x, y} = x+ (y − x)+.(6.5b)

A.B. It is easy to see that all quantities of the first layer are linear combinations of
the input neurons. C. Application of |x| = (x)+ + (−x)+ and definition (6.5a) on
±(bi−2 − bi+2) and ±(ai−2 − ai+2). D. Straightforward application of the identity
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f(xk
i+q) for −5 ≤ q ≤ 4

10 neurons

±∆q for −4 ≤ q ≤ 3,
16 neurons

|∆−2|, |∆−1|, |∆1|, |∆0|,
|∆−3| − |∆−2|,|∆3| − |∆−1|,
|∆2| − |∆1|,|∆−4| − |∆0|

8 neurons

|∆−1|, |∆0|, |∆1|,
(|∆−4| − |∆0|)+,(|∆3| − |∆−1|)+,(|∆2| − |∆1|)+,

max{|∆−2|, |∆−3|} −max{|∆1|, |∆2|},
max{|∆−2|, |∆−3|} −max{|∆−1|, |∆3|},

|∆0| −max{|∆1|, |∆2|} − |∆−1|+max{|∆−2|, |∆−3|}
9 neurons

(±γi−2,i+2(x
k+1
2i−1))+,

|ai−2 − ai+2|
3 neurons

±γi−2,i+2(x
k+1
2i−1),

|ai−2 − ai+2|
3 neurons

±(bi−2 − bi+2) and ±(ai−2 − ai+2)
4 neurons

max{|∆1|, |∆2|, |∆−2|, |∆−3|} −max{|∆0|, |∆−4|},
max{|∆−1|, |∆3|, |∆−2|, |∆−3|} −max{|∆−1|, |∆3|},

min{|∆0| −N+
0 , |∆−1| −N+

−1},
(|∆3| − |∆−1|)+,(|∆−4| − |∆0|)+, |∆0|, |∆1|

7 neurons

(±γi−2,i+2(x
k+1
2i−1))+,

|ai−2 − ai+2|
3 neurons

|∆−1| −M−1, |∆0| −M0,
min{|∆0| −N+

0 , |∆−1| −N−
−1}

3 neurons

(±γi−2,i+2(x
k+1
2i−1))+,

|ai−2 − ai+2|
3 neurons

X3
ni,l

for 1 ≤ l ≤ 4
4 neurons

Ŷi

1 neuron

A B

C

E

G

I

K

D

F

H

J

K

L

Figure 4. Flowchart of a ReLU DNN to calculate Ŷi from fk.



14 APPROXIMATING ROUGH FUNCTIONS WITH DEEP NEURAL NETWORKS

|x| = (x)++(−x)+ on±∆q, followed by taking linear combinations. E.G.I. Passing
by values. F. The first six quantities were passed by from the previous layer. The
other ones are applications of equation (6.5b), where the order of the arguments
of the maximums is carefully chosen. H. Equation (6.5b) was used, where we use
that min{x, y} = −max{−x,−y}. J. Application of equation (6.1). K. The result
follows from combining definitions (6.2) and (6.3). L. As can be seen in definition

(6.4), Ŷi is obtained by applying the output function min argmin on the output
layer.

Remark 6.3. The second-order ENO-SR method as proposed in [ACDD05] can also
be written as a ReLU DNN, but it leads to a neural network that is considerably
larger than the one presented above.

7. Numerical results

From sections 5 and 6, we know that there exist deep ReLU neural networks, of a
certain architecture (number of hidden layers and neurons per layer) that will mimic
the ENO-p and the second-order ENO-SR-2 algorithms for interpolating rough
functions. Next, we proceed to find such networks, which we label as DeLENO
(deep learning ENO) and DeLENO-SR, using the following training procedure.

7.1. Training procedure. The training of these networks involves finding a pa-
rameter θ (the weights and biases of the network) that approximately minimizes
a certain loss function that measures the error in the network’s predictions. For
classification problems, the cross-entropy function with regularization term

(7.1) J (θ; S, λ) = −
1

#S

∑

(Xi,Y i)∈S

n∑

j=1

Y i
j log(Ŷ i

j ) + λR(θ),

is a suitable loss function. The cross-entropy functions measures the discrepancy
between the probability distributions of the true outputs and the predictions. It is
common to add a regularization term λR(θ) to prevent overfitting of the data and
thus improve the generalization capabilities of the network [GBC16]. The network
hyper-parameter λ > 0 controls the extent of regularization. Popular choices of θ
include the sum of some norm of all the weights of the network. Details on the
training of the DeLENO networks can be found in subsections 7.1.1 and 7.1.2.

To monitor the generalization capability of the network, it is useful to split S

into a training set T and a validation set V and minimize J (θ;T, λ) instead of
J (θ; S, λ). The validation set V is used to evaluate the generalization error. The
accuracy of network Lθ on T is measured as

(7.2) Tacc =

#

{
(X,Y ) ∈ T | Ŷ = Lθ(X), arg max

16j6n
Ŷj = arg max

16j6n
Yj

}

#T
,

with a similar expression for Vacc. The accuracies for DeLENO interpolation and
reconstruction are listed in Table 1. It can be seen that DeLENO and ENO agree
almost perfectly on the data set.

7.1.1. Training DeLENO-p. We want to construct a suitable training data set S to
train DeLENO-p for interpolation purposes. For small orders p = 3, 4 one can take
the network architectures described in the beginning of Section 5, for larger orders
one can use the architecture from the proof of Theorem 5.1. The network will take
an input from R

m, m = 2p− 2, and predicts the stencil shift r. We generate a data
set S of size 460,200-200m using Algorithm 1 with inputs given by the samples
below.
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(a) DeLENO interpolation

p hidden layer sizes Tacc Vacc

3 4 99.36% 99.32%
4 10,6,4 99.22% 99.14%
SR 20,11,12,10,6 99.74% 99.81%

(b) DeLENO reconstruction

p hidden layer sizes Tacc Vacc

2 4 99.96% 99.97%
3 10, 6, 4 99.65% 99.65%

Table 1. Shape of DeLENO-p and DeLENO-SR networks with
their accuracies for the interpolation and reconstruction problem.

• A total of 400,000 samples X ∈ R
m, with each component Xj randomly

drawn from the uniform distribution on the interval [−1, 1].
• The set

{(ul, ..., ul+m)⊤| 0 6 l 6 N −m, 0 6 q 6 39, N = {100, 200, 300, 400, 500}}

where ul is defined as

ul := sin

(
(q + 1)π

l

N

)
, 0 6 l 6 N.

The input data needs to be appropriately scaled before being fed into the net-
work, to ensure faster convergence during training and improve the networks ability
to generalize. We use the following scaling for each input X,

(7.3) Scale(X) =

{
2X−(b+a)

b−a
if X 6= 0

(1, ..., 1)⊤ ∈ R
m otherwise

, a = min
j

(Xj), b = max
j

(Xj),

which scales the input to lie in the box [−1, 1]m.

Remark 7.1. When the input data is scaled using formula (7.3), then Newton’s
undivided differences are scaled by a factor 2(b − a)−1 as well. Therefore scaling
does not alter the stencil shift obtained using Algorithm 1 or 2.

The loss function J is chosen as (7.1), with an L2 penalization of the network
weights and λ = 7.8 · 10−6. The minimization is generally performed using an
iterative gradient algorithm. It is common to use a stochastic version in which the
data set is shuffled and split into a number of mini-batches of size M , followed by
taking an optimization step over each mini-batch. Once all the mini-batches are
exhausted, the training is said to have completed one epoch. After each epoch,
the data set is reshuffled and new mini-batches are created. Introducing such a
stochasticity further assists the training algorithm to escape local minima. A single
(generic) optimization step is of the form

(7.4) θt+1 = θt − ηt∇θJ (θt;Bk, λ),

where ηt is the learning rate and Bk is a mini-batch of the data set. Several
stochastic optimizers have been developed, among which a popular algorithm is
the ADAM optimizer [KB14]. We used the ADAM optimizer with a mini-batch
size of 1024 and the learning rate adapted at the end of each epoch as

(7.5) ηt = ηt−1
1

1 + βt
, η0 = 1.0 · 10−3, β = 1.0 · 10−5.
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The network is retrained using 5 times for 2000 epochs each, with the weights
and biases initialized using a random normal distribution. The last 20% of S is set
aside to be used as the validation set V. For each p, we denote by DeLENO-p the
network with the highest accuracy Vacc at the end of the training. The accuracies
achieved for DeLENO interpolation networks are given in Table 1.

The training of the DeLENO reconstruction networks was performed entirely
analogously, with the only difference that now m = 2p− 1. The accuracies on the
test and validation sets can be found in Table 1.

We can now compare the weights and biases of the trained networks to the
theoretical ones from Section 5. As the networks do not have an accuracy of 100%,
it comes as no surprise that these do not agree. We list the obtained weights and
biases for the trained third-order DeLENO interpolation network.

W 1 =




1.1951 2.0433 −11.7410 5.6383
2.9216 −2.8703 −2.5077 2.4624
−2.2775 7.6890 −7.2667 2.4914
3.2909 −5.8431 −5.6085 3.4171


 , b1 =




−0.1069
−0.3615
0.0389
0.0605


 ,

W 2 =

(
−11.6122 4.2986 10.7356 8.1240
11.5929 −4.2767 −10.7357 −8.1316

)
, b2 =

(
−2.5193
2.4493

)
.

(7.6)

The theoretical counterparts can be found in equations (5.2) and (5.3). Below we list
the obtained weights and biases for the trained fourth-order DeLENO interpolation
network.

W 1 =




−0.0559 −1.0026 1.1115 1.001 1− 1.0569 −0.0001
−0.3547 0.3557 −0.8777 2.0707 −1.1983 −0.0051
−0.0060 −0.6155 1.6342 −1.4526 0.4599 −0.0370

0 0 0 0 0 0
0.0011 −0.1965 0.7964 −1.1817 0.7805 −0.1913
−0.3324 1.2088 −1.6946 1.0632 −0.2479 −0.0043
0.1432 −0.6459 0.9448 −0.5434 0.1271 −0.0154
−0.0076 −0.4239 0.8604 −0.0248 −0.8755 0.4517
0.0196 −0.1527 0.6286 −0.9194 0.6069 −0.1619
−0.0088 −0.2571 1.0627 −1.6288 1.0899 −0.2714




, b1 =




−0.0005
0.0029
−0.0005
−0.1217
0.0012
0.0007
−0.0010
0.0010
0.0027
−0.0005




,

W 2 =




0 1.6803 0.2910 −3.1738 0 1.5946
0 −1.9935 −0.7975 3.2015 0 −1.9124
0 −0.3125 2.7085 0.7264 0 −0.2819
0 0 0 0 0 0
0 −1.3886 0.6976 0.6071 0 −1.3514
0 2.1097 0.8511 −3.6655 0 2.0568
0 0.6645 0.1485 −1.2784 0 0.5052
0 −0.0061 −1.4376 −0.0073 0 −0.0082
0 0.4580 −1.0432 0.0474 0 0.4542
0 0.6597 −2.6379 −0.4588 0 0.7357




T

, b2 =




−0.0349
0.0993
0.0463
0.0284
−0.0570
0.0438




,

W 3 =




0 0 0 0 0 0
0 0 0 0 0 0
0 8.0933 0.6463 −5.7734 0 8.3502
0 2.0780 −10.0148 −0.3565 0 1.8241


 , b2 =




−0.0316
−0.0432
−0.3800
0.4131


 ,

W 4 =



0 0 2.3377 −11.5452
0 0 2.2965 11.1520
0 0 −12.6485 −0.8555


 , b4 =




1.6841
−7.5807
8.2575


 .

(7.7)
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Note that these matrices and vectors again differ significantly from the theoretical
weights and biases from equations (5.4-5.7). This shows that there are multiple
neural networks which can approximate the ENO interpolation procedure very well.

7.1.2. Training DeLENO-SR. Next, we construct a suitable training data set S to
train second-order DeLENO-SR for interpolation purposes. The network architec-
ture is described in Section 6. The network will take an input from R

10 and predicts
the stencil shift r. Recall that ENO-SR is designed to interpolate continuous func-
tions f that are two times differentiable, except at a single point z ∈ R where the
first derivative has a jump of size [f ′]. Locally, these functions look like piecewise
linear functions. Based on this observation, we create a data set using functions of
the form

(7.8) f(x) = a(x− z)− + b(x− z)+,

where a, b, c ∈ R. For notational simplicity we assume that the x-values of the
stencil that serves as input for the ENO-SR algorithm (Section 6) are 0, 1, . . . , 9.
The interval of interest is then [4, 5] and the goal of ENO-SR is to find an approx-
imation of f at x = 4.5. We generate 100,000 samples, where we choose a, b, z in
the following way:

• The parameters a and b are drawn from the uniform distribution on the
interval [−1, 1]. Note that any interval that is symmetric around 0 could
have been used, since the data will be scaled afterwards.

• For 25,000 samples, z is drawn from the uniform distribution on the interval
[4, 5]. This simulates the case where the discontinuity is inside the interval
of interest.

• For 75,000 samples, z is drawn from the uniform distribution on the interval
[−9, 9], which also includes the case in which f is smooth on the stencil.

The training of DeLENO-SR was performed in a very similar fashion to the
training of DeLENO-p (Section 7.1.1), only this time we retrained the DeLENO-SR
network 5 times for 5000 epochs each. Furthermore we used 8-fold cross-validation
on a data set of 20,000 samples to select the optimal regularization parameter,
resulting in the choice λ = 1 · 10−8.

Remark 7.2. Note that the detection mechanism of the ENO-SR interpolation
method (Section 6) labels an interval as bad when α−β > 0 for some numbers α, β ∈
R. This approach causes poor approximations in practice due to numerical errors.
When for example α = β, rounding can have as a consequence that round(α−β) >
0, leading to an incorrect label. This deteriorates the accuracy of the method and
is very problematic for the training. Therefore we used in our code the alternative
detection criterion α− β > ǫ, where for example ǫ = 10−10.

7.2. Applications.

7.2.1. Function approximation. As a first example, we demonstrate the approxi-
mating ability of the DeLENO interpolation method using the function

(7.9) q(x) =





−x if x < 0.5,

3 sin(10πx) if 0.5 < x < 1.5,

−20(x− 2)2 if 1.5 < x < 2.5,

3 if 2.5 < x,

which consists of jump discontinuities and smooth high-frequency oscillations. We
discretize the domain [0, 3] and generate a sequence of nested grids of the form (3.1)
by setting N0 = 16 and K = 4. We use the data on the grid T k, and interpolate it
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onto the grid T k+1 for 0 6 k < K. As shown in Figure 5, the interpolation with
ENO-4 and DeLENO-4 is identical on all grids, for this particular function.
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Figure 5. Interpolating the function (7.9) using ENO and DeLENO.

Next we investigate the order of accuracy for DeLENO and DeLENO-SR proce-
dures, for the piecewise smooth function

(7.10) f(x) = −2
(
x−

π

6

)
✶[0,π

6
)(x) +

(
x−

π

6

)2
✶[π

6
,1](x).

Note that the first derivative of this function has a jump at π
6 . In Figure 6, the

order of accuracy of second-order ENO-SR-2 and DeLENO-SR-2 are compared with
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those of ENO-3 and DeLENO-3 for a sequence of grids with N0 = 16 and K = 11.
As shown in Theorem 6.1, ENO-SR-2 and DeLENO-SR-2 are indeed second-order
accurate, whereas ENO and DeLENO reduce to first-order accuracy. Furthermore
DeLENO-SR-2 performs better than ENO-SR-2 on coarse grids.

10 1 10 2 10 3 10 4

N
k

10 -8

10 -6

10 -4

10 -2

10 0

L
-e

rr
or

ENO-SR-2
DeLENO-SR-2
(DeL)ENO-3

Figure 6. Comparison of orders of (DeL)ENO-SR-2 and
(DeL)ENO-3 for function (7.10).

7.2.2. Data compression. We now apply the multi-resolution representation frame-
work of Appendix B to use DeLENO to compress the function (7.9). We construct
a nested sequence of meshes on [0, 3] by choosing N0 = 9 and K = 5 in (B.1).
We use Algorithm 3 to obtain the multi-resolution representation of the form (B.5)
and decode the solution using Algorithm 4 to obtain the approximation q̂K . The
compression thresholds needed for the encoding procedure are set using (B.6).

Figure 7 provides a comparison of the results obtained using different values for

the threshold parameters ǫ, and shows the non-zero coefficients d̂k for each mesh

level k. A higher value of ǫ can truncate a larger number of d̂k components, as is
evident for p = 3. However, there is no qualitative difference between q̂K obtained
for the two ǫ values considered. Thus, it is beneficial to use the larger ǫ, as it
leads to a sparser multi-resolution representation without deteriorating the overall
features. The solutions obtained with ENO and DeLENO are indistinguishable.
We refer to Table 2 for the errors of the two methods.

p ǫ
‖qK − q̂K‖1 ‖qK − q̂K‖2 ‖qK − q̂K‖∞

ENO DeLENO ENO DeLENO ENO DeLENO

3
0.5 5.125e-2 5.125e-2 8.701e-2 8.701e-2 3.281e-1 3.281e-1
1.0 2.072e-1 2.072e-1 2.421e-1 2.421e-1 4.102e-1 4.102e-1

4
0.5 1.032e-1 1.038e-1 1.268e-1 1.274e-1 3.027e-1 3.027e-1
1.0 1.122e-1 1.122e-1 1.356e-1 1.356e-1 3.947e-1 3.947e-1

Table 2. 1D compression errors for (7.9).

The compression ideas used for one-dimensional problems can be easily extended
to handle functions defined on two-dimensional tensorized grids. We consider a
sequence of grids T k with (Nx

k + 1) × (Ny
k + 1) nodes, where Nx

k = 2kNx
0 and

Ny
k = 2kNx

0 , for 0 6 k 6 K. Let qk be the data on grid T k and denote by q̂k+1

the compressed interpolation on grid T k+1. To obtain q̂k+1, we first interpolate
along the x-coordinate direction to obtain an intermediate approximation q̃k+1 of



20 APPROXIMATING ROUGH FUNCTIONS WITH DEEP NEURAL NETWORKS

0 1 2 3
x

-6

-4

-2

0

2

4

u

Exact
ENO-3
DeLENO-3

(a) ǫ = 0.5, p = 3

0 0.5 1 1.5 2 2.5 3
x

0

1

2

3

4

5

6

k

ENO-3
DeLENO-3

(b) ǫ = 0.5, p = 3

0 1 2 3
x

-6

-4

-2

0

2

4

u

Exact
ENO-4
DeLENO-4

(c) ǫ = 0.5, p = 4

0 0.5 1 1.5 2 2.5 3
x

0

1

2

3

4

5

6

k

ENO-4
DeLENO-4

(d) ǫ = 0.5, p = 4

0 1 2 3
x

-6

-4

-2

0

2

4

u

Exact
ENO-3
DeLENO-3

(e) ǫ = 1, p = 3

0 0.5 1 1.5 2 2.5 3
x

0

1

2

3

4

5

6

k

ENO-3
DeLENO-3

(f) ǫ = 1, p = 3

0 1 2 3
x

-6

-4

-2

0

2

4

u

Exact
ENO-4
DeLENO-4

(g) ǫ = 1, p = 4

0 0.5 1 1.5 2 2.5 3
x

0

1

2

3

4

5

6

k

ENO-4
DeLENO-4

(h) ǫ = 1, p = 4

Figure 7. Data compression of (7.9) using ENO and DeLENO
with N0, L = 5 and t = 0.5. Comparison of thresholded decom-
pressed data with the actual data on the finest level (left); Non-zero

coefficients d̂k at each level (right).

size (Nx
k+1+1)× (Ny

k +1). Then we use q̃k+1 to interpolate along the y-coordinate

direction to obtain the final approximation q̂k+1.
We use ENO and DeLENO to compress an image with 705× 929 pixels, shown

in Figure 8(a). We set K = 5, ǫ = 1, t = 0.2 in equation (B.6). Once again, ENO
and DeLENO give similar results, as can be seen from the decompressed images in
Figure 8 and the relative errors in Table 3. In this table we additionally listed the
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compression rate

(7.11) cr = 1−
#
{
dki,j |d

k
i,j > ǫk, 1 6 k 6 K

}

(Nx
L + 1)(Ny

L + 1)− (Nx
0 + 1)(Ny

0 + 1)
,

which represents the fraction of coefficients set to null.

p Scheme Rel. L1 Rel. L2 Rel. L∞ cr

3
ENO 5.346e-2 8.368e-2 5.194e-1 0.996
DeLENO 5.343e-3 8.365e-2 5.194e-1 0.996

4
ENO 5.422e-2 8.485e-2 5.581e-1 0.996
DeLENO 5.422e-2 8.492e-2 5.581e-1 0.996

Table 3. Image compression errors.

(a) Original (b) ENO-3 (c) DeLENO-3 (d) ENO-4 (e) DeLENO-4

Figure 8. Image compression.

As an additional example of two-dimensional data compression, we consider the
function

(7.12) q(x, y) =





−10 if (x− 0.5)2 + (y − 0.5)2 < 0.0225

30 if |x− 0.5| > 0.8 or |y − 0.5| > 0.8

40 otherwise

,

where (x, y) ∈ [0, 1] × [0, 1], and generate a sequence of meshes by setting K = 4,
Nx

0 = 16 and Ny
0 = 16. The threshold for data compression is chosen according to

(B.6), with ǫ = 10 and t = 0.5. The non-zero d̂k coefficients are plotted in Figure
9, while the errors and compression rate (7.11) are listed in Table 4. Overall, ENO
and DeLENO perform equally well, with DeLENO giving marginally smaller errors.

p Scheme Rel. L1 Rel. L2 Rel. L∞ cr

3
ENO 3.341e-3 2.442e-2 4.302e-1 0.989
DeLENO 3.246e-3 2.367e-2 4.302e-1 0.989

4
ENO 3.816e-3 3.237e-2 5.876e-1 0.989
DeLENO 3.681e-3 3.130e-2 5.876e-1 0.989

Table 4. 2D compression errors for (7.12).
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(a) ENO-3, k = 1 (b) ENO-3, k = 2 (c) ENO-3, k = 3 (d) ENO-3, k = 4

(e) DeLENO-3, k = 1 (f) DeLENO-3, k = 2 (g) DeLENO-3, k = 3 (h) DeLENO-3, k = 4

(i) ENO-4, k = 1 (j) ENO-4, k = 2 (k) ENO-4, k = 3 (l) ENO-4, k = 4

(m) DeLENO-4, k = 1 (n) DeLENO-4, k = 2 (o) DeLENO-4, k = 3 (p) DeLENO-4, k = 4

Figure 9. Non-zero coefficients d̂k for data compression of (7.12)
using ENO and DeLENO for mesh level 1 6 k 6 4.

7.2.3. Conservation laws. We compare the performance of ENO and DeLENO re-
construction, when used to approximate solutions of conservation laws. We work
in the framework of high-order finite difference schemes with flux-splitting and we
use a fourth-order Runge-Kutta scheme for the time integration.

As an example, we consider the system of conservation laws governing compress-
ible flows given by

∂t



ρ
v
p


+ ∂x




ρv
ρv2 + p
(E + p)v


 = 0, E =

1

2
ρv2 +

p

γ − 1
,

where ρ, v and p denote the fluid density, velocity and pressure, respectively. The
quantity E represents the total energy per unit volume where γ = cp/cv is the
ratio of specific heats, chosen as γ = 1.4 for our simulations. We consider the
shock-entropy problem [SO89], which describes the interaction of a right moving
shock with a smooth oscillatory waves. The initial conditions for this test case are
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prescribed as

(ρ, v, p) =

{
(3.857143, 2.629369, 10.33333) if x < −4

(1 + 0.2 sin(5x), 0, 1) if x > −4
,

on the domain [−5, 5]. Due to the generation of high frequency physical waves, we
solve the problem on a fine mesh with N = 200 cells upto Tf = 1.8 with CFL = 0.5.
A reference solution is obtained with ENO-4 on a mesh with N = 2000 cells. As
can be seen in Figure 10, ENO-p and DeLENO-p perform equally well depending
on the order p.
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Figure 10. Solution for Euler shock-entropy problem with ENO-
p and DeLENO-p on a mesh with N = 200 cells.

Next we solve the Sod shock tube problem [Sod78], whose initial conditions are
given by

(ρ, v, p) =

{
(1, 0, 1) if x < 0

(0.125, 0, 0.1) if x > 0
,

on the domain [−5, 5]. The solution consists of a shock wave, a contact discontinuity
and a rarefaction. The mesh is descretized with N = 50 cells and the problem is
solved till Tf = 2 with a CFL = 0.5. The solutions obtained with ENO-p and
DeLENO-p are identical, as depicted in Figure 11.

8. Discussion

In this paper, we considered efficient interpolation of rough or piecewise smooth
functions. A priori, both deep neural networks (on account of universality) and the
well-known ENO (and ENO-SR) interpolation procedure (due to its data dependent
nature), are able to interpolate rough functions efficiently. We proved here that the
ENO interpolation (and the ENO reconstruction) procedure as well as a variant of
the second-order ENO-SR procedure can be cast as deep ReLU neural networks,
at least for univariate functions. This surprising fact provides a different perspec-
tive on the ability of neural networks in approximating functions and reveals their
enormous expressive power as even a highly non-linear, data dependent procedure
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Figure 11. Solution for Euler Sod shock tube problem with ENO-
p and DeLENO-p on a mesh with N = 50 cells.

such as ENO is nothing more than a ReLU neural network. On the other hand, the
impressive function approximation results, for instance of [Yar17, YZ], might have
limited utility in practice as the neural network might need to be trained for every
function that has to be interpolated. By interpreting ENO as a neural network,
we provide a natural framework for recasting the problem of interpolation in terms
of pre-trained neural networks such as DeLENO, where the input vector of sample
values are transformed by the network into the output vector of interpolated val-
ues. Thus, these networks are trained once and do not need to retrained for every
new underlying function. This interpretation of ENO as a neural network allows
us to possibly extend ENO type interpolations into several space dimensions on
unstructured grids.
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Appendix A. ENO coefficients

Table 5 and Table 6 respectively list the ENO coefficients used for ENO inter-
polation (Section 3) and ENO reconstruction (Section 4). More information on the
calculation of these coefficients can be found in [CS89].

r s j = 0 j = 1 j = 2 j = 3

3
0 3/8 3/4 -1/8 -
1 -1/8 3/4 3/8 -

4
0 5/16 15/16 -5/16 1/16
1 -1/16 9/16 9/16 -1/16
2 1/16 -5/16 15/16 5/16

Table 5. Coefficients for ENO interpolation for p > 2 used in (3.2).

Appendix B. Multi-resolution representation of functions for data

compression

To describe the multi-resolution representation of functions, we use notations and
operators similar to those introduced in [AD00]. We define a sequence of nested
uniform meshes {T k}Kk=0 on Ω = [c, d], where
(B.1)

T k = {Iki }
Nk

i=1, Iki = [xk
i−1, x

k
i ], {xk

i = c+ihk}
Nk

i=0, hk =
(d− c)

Nk

, Nk = 2kN0,

http://www.deeplearningbook.org
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p s j = 0 j = 1 j = 2 j = 3

2
-1 3/2 -1/2 - -
0 1/2 1/2 - -
1 -1/2 3/2 - -

3

-1 11/6 -7/6 1/3 -
0 1/3 5/6 -1/6 -
1 -1/6 5/6 1/3 -
2 1/3 -7/6 11/6 -

4

-1 25/12 -23/12 13/12 -1/4
0 -1/4 13/12 -5/12 1/12
1 -1/12 7/12 7/12 -1/12
2 1/12 -5/12 13/12 -1/4
3 -1/4 13/12 -23/12 25/12

Table 6. Coefficients for ENO reconstruction used in (4.2).

for 0 6 k 6 K and where N0 is some positive integer. We call {xk
i }

Nk

i=0 the nodes of
the mesh T k. Let BΩ be the set of bounded functions on Ω and Vn the space of real-
valued finite sequences of length n. We define the following operators associated
with the various meshes:

• The discretizer Dk : BΩ 7→ VNk+1 defined by

Dkf = qk := {qki }
Nk

i=0 = {q(xk
i )}

Nk

i=0, ∀ q ∈ BΩ.

• The reconstructor Rk : VNk+1 7→ BΩ satisfying DkRkq
k = qk for qk ∈

VNk+1. Thus, (Rkq
k)(x) interpolates the members of qk at the nodes of

T k.
• The decimator Dk−1

k : VNk+1 7→ VNk−1+1 defined by Dk−1
k := Dk−1Rk.

For q ∈ BΩ, we have

(B.2) qk−1
i = (Dk−1

k qk)i = qk2i, 0 6 i 6 Nk−1.

In other words, the decimator helps in extracting the function values on a
given mesh from a finer one.

• The predictor P k
k−1 : VNk−1+1 7→ VNk+1 defined by P k

k−1 := DkRk−1. The

predictor tries to recover the function values qk from the coarser data qk−1,
for q ∈ BΩ.

The prediction error is given by

eki = qki − (P k
k−1q

k−1)i, 0 6 i 6 Nk.

Clearly ek2i = 0 for 0 6 i 6 Nk−1 = Nk/2. Thus, the interpolation error is
essentially evaluated at the nodes in T k \ T k−1, which we denote as

(B.3) dki = ek2i−1 = qk2i−1 − (P k
k−1q

k−1)2i−1, 1 6 i 6 Nk−1.

Given qk−1 and dk, we can recover qk using (B.2) and (B.3). By iteratively applying
this procedure, the data qk on the finest mesh can be fully encoded using the multi-
resolution representation

(B.4) {q0, d1, d2, ..., dK}.

This multiresolution representation (B.4) for a function f ∈ BΩ is convenient to
perform data compression. The easiest compression strategy [AD00] corresponds
to setting the coefficients dki in (B.3) to zero based on a suitable threshold ǫk > 0:

d̂ki = G(dki ; ǫ
k) =

{
0 if |dki | 6 ǫk

dki otherwise.
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The compressed representation is then given by

(B.5) {f0, d̂1, d̂2, ..., d̂K}.

The procedures for compressed encoding and decoding are listed in Algorithms 3
and 4.

Algorithm 3: Compressed encoding [AD00]

Input: Highest resolution data fK , number of levels K, number of points N0

on coarsest mesh, ENO order p, threshold parameters ǫ and t.

Output: Multi-resolution representation {f0, d̂1, ..., d̂K}.
for k = K to 1 do

fk−1 = Dk−1
k fk

f̂0 = f0

for k = 1 to K do

f̂k
0 = fK

0

Construct P k
k−1 using Algorithm 1 and equation (3.2)

f̃k = P k
k−1f̂

k−1

N = N02
k−1

for i = 1 to N do

dki = fk
2i−1 − f̃k

2i−1

ǫk = ǫtK−k

d̂ki = G(dki ; ǫ
k)

f̂k
2i−1 = f̃k

2i−1 + d̂ki
f̂k
2i = f̂k−1

i

return {f0, d̂1, ..., d̂K}

Algorithm 4: Decoding multi-resolution data [AD00]

Input: Multi-resolution representation {f0, d̂1, ..., d̂K}, number of levels K,
number of cells N0 on coarsest mesh, ENO order p.

Output: Decoded function f̂K .

f̂0 = f0

for k = 1 to K do

Construct P k
k−1 using Algorithm 1 and equation (3.2)

f̂k = P k
k−1f̂

k−1 + d̂k

return f̂K

The following result is known on the error bounds for the compressed encoding
in the form (B.5), the proof can be found in [AD00].

Proposition B.1. Let {Ωk}Kl=0 be a sequence of nested uniform meshes discretizing
the interval [c, d] generated according to (B.1) for some positive integer N0 > 1.
Assume that some f ∈ B[c, d] is encoded using thresholds

(B.6) ǫk = ǫtK−k, 0 < t < 1.

to give rise to the multi-resolution representation of the form (B.5). If f̂K is the
decoded data, then

(B.7) ‖fK − f̂K‖n 6 Cnǫ for n = ∞, 1, 2,
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where C∞ = (1 − t)−1, C1 = (b − a)(1 − t)−1 and C2 =
√

(b− a)(1− t2)−1. This
estimate is independent of the interpolation procedure used to encode and decode
the data.

Appendix C. Proof of Theorem 6.1

We present some properties of our adaptation of the ENO-SR algorithm. To
prove the second-order accuracy, we state some results due to [ACDD05] in a slightly
adapted form.

Lemma C.1. The groups of adjacent B intervals are at most of size 2. They are
separated by groups of adjacent G intervals that are at least of size 2.

Proof. Note that our detection algorithm is the same as the one in [ACDD05] for
m = 3. The result then follows from their Lemma 1. �

Lemma C.2. Let f be a globally continuous function with a bounded second deriv-
ative on R\{z} and a discontinuity in the first derivative at a point z. Define the
critical scale

(C.1) hc :=
|[f ′]|

4 supx∈R\{z}|f
′′(x)|

,

where [f ′] is the jump of the first derivative f ′ at the point z. Then for h < hc, the
interval that contains z is labelled B.

Proof. See Lemma 2 in [ACDD05]. �

Lemma C.3. There exist constants C > 0 and 0 < K < 1 such that for all
continuous f with uniformly bounded second derivative on R\{z} and for h < Khc

with hc defined by equation (C.1), the following holds:

(1) The singularity z is contained in an isolated B interval Iki or in a B-pair
(Iki , I

k
i+1).

(2) The two polynomials pki−2 and pki+2 (or pki−1 and pki+3) have only one inter-

section point y inside Iki or Iki ∪ Iki+1, respectively.
(3) The distance between z and y is bounded by

(C.2) |z − y| 6
C supx∈R\{z}|f

′′(x)|h2

|[f ′]|
.

Proof. This is a light adaptation of Lemma 3 in [ACDD05]. The proof remains the
same, after one minor change. We take I = [b, c] to be equal to I−1 ∪ I0 ∪ I1, which
does not affect equation (38) in the proof. In fact, all other steps of their proof
remain valid. It only must be noted that the constant C in equation (C.2) of this
paper and equation (37) in [ACDD05] do not necessarily agree. �

We now prove Theorem 6.1 of Section 6, based on the proof of Theorem 1 in
[ACDD05]. Let hc be as in Lemma C.2 and let K be as in Lemma C.3. Note that
we can write

f = f−✶(−∞,z] + f+✶(z,+∞)

where f−, f+ are C2 on R such that

sup
R\{z}

|f ′′
±| 6 sup

R\{z}

|f ′′|.

Let us consider some interval I0 = [b, c] = [b, b + h]. First consider the case
0 < h < Khc. Suppose it was labelled as good. Lemma C.2 then guarantees
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that I0 does not contain z. It then follows directly from the theory of Lagrange
interpolation that

(C.3) |f(x)− Ihf(x)| 6 Ch2 sup
R\{z}

|f ′′|

for all x ∈ I0. Now suppose that I0 was labelled bad. As a consequence of Lemma
C.1, I−2 and I2 are good intervals and therefore do not contain the discontinuity.
If in addition z 6∈ I−1 ∪ I0 ∪ I1, then equation (C.3) holds again for all x ∈ I0
since Ihf(x) is either equal to p−2(x), p0(x) or p2(x). On the other hand, if
z ∈ I−1 ∪ I0 ∪ I1 then Lemma C.3 guarantees the existence of a single intersection
point y ∈ I−1 ∪ I0 ∪ I1 of p−2 and p2. Assume now without loss of generality that
z 6 y. In this case, equation (C.3) holds for all x ∈ [b, z]∪ [y, c]. It thus remains to
treat the case z < x < y. For such x, we have

|f(x)− Ihf(x)| = |f+(x)− p−2(x)| 6 |f+(x)− f−(x)|+ |f−(x)− p−2(x)|

where the second term is again bounded by Ch2 supR\{z}|f
′′|. We can use a second-

order Taylor expansion for the first term to derive

|f+(x)− f−(x)| 6 (y − z)([f ′] + 2h sup
R\{z}

|f ′′|) 6
3

2
|[f ′]|(y − z)

where in the last inequality we used that h < hc. By invoking the third part of
Lemma C.3, we find indeed that equation (C.3) holds again. This concludes the
proof for the case h < Khc.

Now suppose that h > Khc. First define

f2(x) = f(x)− [f ′](x− z)+

for x ∈ R. Furthermore, by the definition of hc in Lemma C.2, we find that for
h > Khc,

(C.4) [f ′] = 4hc sup
R\{z}

|f ′′| 6 C0h sup
R\{z}

|f ′′|,

where C0 > 0 does not depend on f . We distinguish two cases.
Case 1: Ih(x) = p0(x) for all x ∈ I0. If z 6∈ I0, second-order accuracy as in

equation (C.3) is immediate. If not, more work is needed. Define

g1(x) =
[f ′](x0 − z)+

h
(x− x−1)

and note that p0−g1 is the linear interpolation between (x−1, f2(x−1)) and (x0, f2(x0)).
Since f2 is C2 we know that p0− g1 is a second-order accurate approximation of f2
on I0, such that equation (C.3) holds. We then calculate for x ∈ I0,

|f(x)− p0(x)| 6 |f2(x)− (p0(x)− g1(x))|+ |[f ′](x− z)+ − g1(x)|

6 C1h
2 sup
R\{z}

|f ′′|+ [f ′]

(
|(x− z)+|+

(x0 − z)+
h

|x− x−1|

)

6 C1h
2 sup
R\{z}

|f ′′|+ C0h sup
R\{z}

|f ′′|(h+ h)

= Ch2 sup
R\{z}

|f ′′|,

where we used inequality (C.4).
Case 2: Ih(x) = p−2(x)✶(−∞,y](x) + p2(x)✶(y,+∞)(x) for x ∈ I0, where y is

the intersection point of p−2 and p2. If z 6∈ ∪2
q=−2Iq, then inequality (C.3) follows

immediately for x ∈ I0. Consider now the case that z ∈ ∪2
q=−2Iq and assume

without loss of generality z 6 y. Let x ∈ I0 be arbitrary. It follows that equation
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(C.3) also holds immediately for this x if y 6 x or x 6 z. It suffices to find a bound
for when x−3 6 z 6 x 6 y. Define

g2(x) =
[f ′](x−2 − z)+

h
(x− x−3).

Note that p−2 − g2 is an affine function through (x−3, f2(x−3)) and (x−2, f2(x−2)).
It follows that

|f(x)− p−2(x)| 6 |f2(x)− (p−2 − g2(x))|+ |[f ′](x− z)+ − g2(x)|

6 C1h
2 sup
R\{z}

|f ′′|+ [f ′]

(
|(x− z)+|+

(x−2 − z)+
h

|x− x−3|

)

6 C1h
2 sup
R\{z}

|f ′′|+ C0h sup
R\{z}

|f ′′|(3h+ 3h)

= Ch2 sup
R\{z}

|f ′′|,

where we used again inequality (C.4) and the bounds |x− x−3| 6 3h and x−3 6 z.
This concludes the proof of Theorem 6.1.
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