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Abstract

For Bayesian inverse problems with input-to-response maps given by well-posed partial
differential equations (PDEs) and subject to uncertain parametric or function space input,
we establish (under rather weak conditions on the “forward”, input-to-response maps) the
parametric holomorphy of the data-to-QoI map relating observation data δ to the Bayesian
estimate for an unknown quantity of interest (QoI). We prove exponential expression rate
bounds for this data-to-QoI map by deep neural networks with rectified linear unit (ReLU)
activation function, which are uniform with respect to the data δ taking values in a com-
pact subset of RK . Similar convergence rates are verified for polynomial and rational
approximations of the data-to-QoI map.

Key words: Deep ReLU neural networks, Bayesian inverse problems, approximation rates,
exponential convergence, Uncertainty Quantification
Subject Classification: 41A25, 41A10, 41A46

1 Introduction

In recent years, computational Bayesian inversion of partial differential equations (PDEs) sub-
ject to uncertain inputs from function spaces (“distributed random inputs”), subject to various
function space prior probability measures has received considerable attention. We refer for ex-
ample to [21, 5, 6] and to the references there. The currently most widely used computational
method for numerical Bayesian inversion with assimilation of noisy observation data is the
Markov Chain Monte Carlo (MCMC) algorithm, and its variants (e.g. [15, 14]). In practice,
it is obstructed by the low Monte Carlo (MC) convergence rate (at most 1/2 in terms of the
number of MCMC proposals) and the need to numerically solve a forward PDE problem of each
MCMC proposal, or also by a possibly extended burn-in phase of MCMC to reach asymptotic
convergence.

These arguments remain valid, in part, also for multilevel variants of MCMC, see e.g. [15, 14]
and the references there. Therefore, in recent years, alternative numerical methods have been
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proposed which offer the possibility to circumvent the burn-in phase, and which afford po-
tentially higher convergence rates than 1/2; see, e.g. [29, 8, 7, 12] and the references there.
Parametrization of the function space of uncertain PDE inputs, for example by means of a
(Riesz- or Schauder) basis, and constructing a prior measure on the corresponding coordinate
domain converts the Bayesian inverse problem (BIP) for the forward PDE with uncertain func-
tion space input into a parametric PDE inverse problem on high- or even infinite-dimensional
parameter spaces, rendering the BIP amenable to deterministic numerical methods. The high-
dimensionality of the parameter spaces obstructs the use of standard numerical methods and
has, classically, been addressed computationally by adopting MC-based numerical methods,
such as MCMC and its variants, for the numerical solution of PDE BIPs.

1.1 Previous Work

In recent years, efficient deterministic numerical methods capable of overcoming the men-
tioned curse of dimensionality in Bayesian PDE inversion and of providing higher (dimension-
independent) convergence rates than the rate 1/2 afforded by MC-based methods have been
developed. We mention in particular Quasi-Monte Carlo (QMC) (see, e.g., [8, 7]), and Sparse-
grid, resp. (adaptive) Smolyak-type numerical integration schemes, see, e.g., [29, 9, 37] and
the references there for an analysis of these methods in the presently considered forward and
Bayesian inverse uncertainty quantification. The mentioned numerical methods do retain their
significance in the context of training algorithms for deep neural network surrogates (DNNs) for
data-to-QoI maps which are numerically approximated by “standard” schemes such as MCMC
methods (see, e.g., [15] and the references there) as we will analyze in [11].

1.2 Contributions

In the present paper, we show that the data-to-QoI map which results from Bayesian inversion
of a (well-posed) PDE with uncertain input data from function spaces and subject to addi-
tive, centered Gaussian observation noise can be expressed by deep neural networks (DNNs)
with rectified linear unit (ReLU) activation function, and certain other, multivariate approx-
imation methods, with exponential rate which is independent of the number of coordinates in
the parametrization of the uncertain input from function spaces. These mathematical results
are based on the strong, regularizing effect of the Gaussian weight in the high-dimensional in-
tegration in Bayesian posterior expectation. Due to Bayes’ theorem, the appearance of the
Gaussian in the Bayesian posterior expectation is a consequence of the (assumed) centered,
Gaussian law of the observation noise in the data. As we show here, the strong smoothing
property of a convolution with a Gaussian (or, equivalently, under a heat-flow) will imply ex-
ponential expression rates of the corresponding data-to-QoI maps in (Bayesian) inverse UQ.
Importantly, this is valid under rather weak assumptions on the parameter-to-response map
in forward UQ. Similar smoothing effects have, earlier, been identified by some of us to fa-
cilitate high approximation rates for statistical moments of in general discontinuous solution
of nonlinear conservation laws [30]. As a “byproduct” of the present expression rate analysis,
we also obtain quantitative bounds on the expression of the data-to-QoI maps by multivariate
polynomial and rational surrogate maps in Section 5.2. These approximation rate bounds are
of independent interest, as they also justify other approximations (different from the presently
considered, DNN-based constructions of surrogates, such as tensor-structured surrogates) of
these maps. The approximation of the map x 7→ 1/x by ReLU NNs analyzed in Appendix C
(needed in our analysis) could also be of independent interest.

The proven expression rate bounds by rational models will imply generalization error bounds
in either the worst-case or in the mean-square sense. In “learning” data-to-QoI maps, there
arises the practically significant question of how the DNN (or the mentioned alternative archi-
tectures) should be “trained”. I.e., calibrated on a set of (possibly synthetic) “training data”
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and observables of varying levels of fidelity.
Our analysis will yield, in particular, guidelines for in a sense minimal sets of synthetic

training data which are sufficient for the calibration of the (polynomial, tensor-structured, or
deep ReLU NN) surrogates. In the task of Bayesian PDE inversion considered here, “exact”
Bayesian expectations for training the surrogate architectures are usually not available. As
mentioned, reference values for surrogate training are rather assumed to be furnished by a
numerical algorithm for Bayesian PDE inversion which, being based on PDE discretization
and approximate posterior sampling, incurs modeling and discretization errors. Typically, then,
several levels of accuracy (or “fidelity”) of the reference values are accessible numerically, at
corresponding cost. These extensions will be developed in [11].

1.3 Outline

The outline of the present paper is as follows. In Section 2 we present the general setting for
the presently considered class of Bayesian PDE constrained inverse problems. We recapitulate
abstract results from [6] and from the references there to delineate sufficient conditions for
its well-posedness. We distinguish uncertain inputs from finite and from infinite-dimensional
spaces. In Section 3, we present examples of Bayesian inverse problems for two exemplary PDEs
(elliptic, with level-set models for uncertain coefficient interfaces, and nonlinear hyperbolic
PDEs with uncertain flux functions) which we show to fit into the abstract setting. The
holomorphy of the mappings relating observation data δ to the Bayesian posterior expectation
and to the normalization constant is shown, for nondegenerate Gaussian observation noise,
in Section 4.2. In Section 5.1 we introduce the DNNs considered in the ensuing expressive
power bounds. Section 5.2 discusses polynomial and rational approximation of data-to-QoI
maps, and Section 5.3 contains the statement and the proof of our main result: exponential
expression rate bounds for deep ReLU NNs for the data-to-QoI maps in Bayesian inverse UQ
for partial differential equations. Section 6 contains some conclusions and straightforward
generalizations of the present results, in particular an exponential expression rate bound for the
finite-dimensional setting in Section 2.1 and additive noise distributed according to a Lipschitz
density ρ with respect to Lebesgue measure. In Appendix C, Lemma C.1, we prove a novel
bound for the error of expressing the map [x 7→ 1

x ] by ReLU DNNs.
In [11], we will address bounds on the DNN generalization error for observables in forward

UQ and for unobservable quantities of interest in Bayesian inverse UQ constrained by forward
PDE models with uncertain inputs from function spaces. There, we also furnish an error analysis
of DNN training based on generic, randomized “coaching” routines for Bayesian inversion, such
as the mentioned multilevel MCMC algorithms (e.g., [15]) or QMC integration with randomly
shifted lattice rules (e.g. [10]).

1.4 Notation

We adopt standard notation. Let | · | denote the Euclidean norm on RK , K ∈ N. For r > 0
we denote by Br(0) the closed ball with radius r in either RK (with respect to the Euclidean
norm) or in a Banach space X (which case is meant shall be clear from the context). By π0 we
shall generically denote a prior probability measure on a (assumed polish) space of uncertain
PDE inputs u. Observation data will be denoted by the symbol δ and is assumed to take values
in RK for some finite value of K. The symbols Z, Z ′ shall denote certain quantities in the
Bayesian estimate and, with various sub- and superscripts, bounds on these.

2 Bayesian Inverse Problems

In order to develop the holomorphic dependence of the Bayesian estimate on the observation
data (vector) in some generality, we present an abstract setting of BIP, accommodating in
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particular forward problems given by PDEs with random field (“distributed”) uncertain input
from function spaces. A reference on the mathematical setting and the well-posedness can be [6]
and the references therein. We briefly recapitulate its mathematical setting, as our subsequent
analysis will be based on its properties. For ease of presentation we first address the finite-
dimensional case, before generalizing to infinite dimensions, as required by PDE constrained
Bayesian inversion with uncertain function space inputs.

2.1 Finite-Dimensional Case

We wish to infer uncertain input data u ∈ Rn from noisy observation data δ ∈ RK . We assume
that the noiseless response δ is related to the uncertain input u by a data-to-observable map
δ = G(u). Assuming δ is only accessible up to additive, centered observation noise denoted by
a mean-zero random variable η ∼ Q0, we postulate

δ = G(u) + η , η ∼ Q0. (1)

We model uncertainty in the input by furthermore assuming that u ∈ Rn is a random
variable (RV) whose law admits a Borel measurable prior density ρ0 w.r. to the Lebesgue
measure λn, i.e.,

u ∼ π0 := ρ0(u)λ
n . (2)

We assume in (1) that the forward map [G : Rn → RK : u 7→ δ] is Borel measurable and that
the observation noise η ∼ Q0 is independent of the uncertain input u. In the case that the law
Q0 of η admits a density ρ w.r. to λK , the pair (u, δ) ∈ Rn ×RK is a RV with product density
ρ(δ − G(u))ρ0(u). The distribution of the RV u|δ (read “u given observation data δ”) is then
given by the following result.

Theorem 2.1 (Bayes’ Theorem) Assume that the data δ ∈ RK is such that

Z = Z(δ) :=

∫

Rn

ρ(δ −G(u))ρ0(u)du > 0 . (3)

Then, u|δ is a RV on Rn distributed according to the posterior πδ. The posterior πδ admits the
density

ρδ(u) =
1

Z
ρ(δ −G(u))ρ0(u) , u ∈ Rn (4)

with respect to the Lebesgue measure λn on Rn.

The expression (u, δ) 7→ ρ(δ−G(u)) in (3), (4) is also referred to as the likelihood. The negative
log-likelihood, denoted by Φ, will be referred to as Bayesian potential, i.e.

Φ(u; δ) := − log ρ(δ −G(u)) . (5)

Denoting for δ ∈ RK the measure with density ρδ in (4) as πδ, we may write (3), (4) as

dπδ

dπ0
=

1

Z
exp(−Φ(u; δ)), Z :=

∫

u∈Rn

exp(−Φ(u; δ))π0(du) . (6)

Remark 2.2 The assumptions imply that the map [δ 7→ Z(δ)] is a probability density: the RV
(δ, u) admits the joint density ρ(δ − G(u))ρ0(u). The marginal density [δ 7→ Z(δ)] is given by
Z(δ) =

∫
ρ(δ −G(u))ρ0(u) du.
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Example 2.3 (Gaussian observation noise) Assume that in (1), the observation noise η is
centered, nondegenerate Gaussian observation noise on RK . Then Q0 ∼ N(0,Σ) with symmet-
ric, positive definite covariance matrix Σ ∈ RK×K

sym , so that

ρ :

{
RK → R

ζ 7→ (2π)−K/2det(Σ)−1/2 exp(−ζ⊤Σ−1ζ/2),

whence

Φ(u; δ) = − log ρ(δ −G(u)) =
1

2
(δ −G(u))⊤Σ−1(δ −G(u)) +

1

2
log((2π)Kdet(Σ)), (7)

i.e. the Bayesian potential is the negative log-likelihood, respectively the (observation noise)
covariance-weighted data-to-prediction misfit functional.

For any given, measurable QoI φ : Rn → R, the expected value under the posterior, given
the data δ ∈ RK , is

Eπδ

[φ] = Eπ0

[
dπδ

dπ0
φ

]
=

1

Z

∫

u∈Rn

exp(−Φ(u; δ))φ(u)π0(du) . (8)

2.2 Infinite-dimensional Case

We denote by X and Y real, separable Banach spaces, equipped with the Borel sigma-algebra.
In the finite-dimensional setting of the preceding section, X = Rn denotes the space of uncertain
inputs and Y = RK denotes the data space. Here, we retain Y = RK finite-dimensional, but
admit X to be a real, separable Banach space corresponding to uncertain function space input
for PDEs.

The forward (“input-to-observation”) map will again be denoted by G : X → Y . We assume
G be measurable and consider again the BIP: given noisy observation data δ ∈ Y , find u ∈ X
such that

δ = G(u) + η . (9)

Here, η denotes a Y -valued RV which describes additive observation noise on the data δ. As-
sumption (9) renders (u, δ) ∈ X × Y a RV with respect to the product sigma algebra.

We are interested in the law of u|δ. To calculate it, we place a (Bayesian) prior probability
measure π0 on (X,B(X)), and a probability measure Q0 on (Y,B(Y )) corresponding to the
distribution of η. We assume Q0 to be centered, and the RVs u and η to be independent.
Then, the product probability measure ν0 = π0 ⊗ Q0 is well-defined. To derive the law of
(u, δ) ∈ X ×Y , we observe that given u ∈ X, δ|u is a RV taking values in Y with law Qu being
Q0 translated by G(u). We assume

Qu ≪ Q0 π0-a.e. u ∈ X . (10)

This assumption implies that for π0-a.e. u ∈ X the nonnegative Radon-Nikodym derivative dQu

dQ0

exists and we denote it by exp(−Φ(u; δ)) with the log-likelihood −Φ(·; δ) : X → R, i.e.

dQu

dQ0
= exp(−Φ(u; δ)) . (11)

Then, for π0-a.e. u ∈ X, Φ(u, ·) : Y → R is measurable with EQ0 [exp(−Φ(u; ·))] = 1. Further-
more, the law of the RV (u, δ) is ν = π0 ⊗Qu and ν ≪ ν0 with

dν

dν0
= exp(−Φ(u; δ)) .
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Theorem 2.4 Assume that Φ : X × Y → R is ν0-measurable with

Z :=

∫

X

exp(−Φ(u; δ))π0(du) > 0 Q0-a.e. δ ∈ Y . (12)

Then the law of u|δ, denoted as πδ, exists for Q0-a.e. δ, and π
δ ≪ π0. Moreover, for ν-a.e.

(u, δ) holds
dπδ

dπ0
=

1

Z
exp(−Φ(u; δ)) . (13)

We refer to [6, Theorem 3.4] for a proof.

3 Examples

Throughout this section we use several times the following: if the forward solution operator G :
X ′ → RK is continuous, thenG is Borel-Borel measurable and thus the map (u, δ) 7→ ρ(δ−G(u))
is Borel-Borel measurable provided the density ρ : RK → R is Borel-Borel measurable. Since ρ
is a Lebesgue density, ρ is in general only Lebesgue-Borel measurable. However, in all examples
considered below, ρ is actually continuous and thus also Borel-Borel measurable.

With this prerequisite in mind, the preceding, abstract setting accommodates a wide range
of Bayesian inverse problems. Before addressing DNN expression rate bounds, we illustrate in
this section the scope of the present setting by verifying the above, general assumptions for a
selection of parametric PDE problems with uncertain PDE inputs from (subsets X ′ of) function
spaces X. The prior probability measure π0 in (10) will, in this case, be a pushforward of a
probability measure P on a measurable space (Ω,F), to a separable subset X ′ of a Banach space
X of admissible inputs for the PDE under consideration. Specifically, we suppose that u : Ω →
X is strongly measurable. This implies by Pettis’ theorem that there exists a measurable subset
Ω′ ⊂ Ω such that P(Ω′) = 1 and {u(ω) : ω ∈ Ω′} is separable in X, cf. [36, Theorem V.4].
We refer to [5, Section 2] for a detailed derivation of such priors π0 for linear, well-posed
elliptic PDEs with uncertain coefficients. Rather than covering the most general case, we opt
for developing two PDE models and also discuss examples of priors, which we construct as
the law of a strongly measurable random field u. More PDE problems are admissible in our
framework, for example the problem to recover the unknown conductivity from noisy boundary
measurements in Calderón problems, see [1] and the references therein.

3.1 PDE models

We will consider forward data-to-solution maps which are realized through the solution of
a governing PDE for uncertain function space input. Generally, the uncertain function space
input is denoted by u ∈ X, which should be constrained such that the PDE under consideration
is well-posed for this input data. For that reason, we may restrict the function space X to a
subset X ′. The unique solution given input u is denoted by q ∈ V and the forward solution
map is denoted by S, i.e., u 7→ q = S(u) ∈ V , where V is a Banach space.

In numerical Bayesian inversion of a PDE, we aim at computing a conditional expectation
of a Quantity of Interest (“QoI” for short) φ ∈ V ∗, which is here assumed to be a linear
functional. To this end, we assume at hand (noisy) observations O◦S(u)+η where O ∈ (V ∗)K ,
and, as before, η ∈ RK is a RV on RK whose law admits a Borel measurable density ρ. In
this case the input-to-observation map G in (9) is given by G = O ◦ S. We assume that the
prior π0 is the law of a random field u : Ω → X ′, which is strongly measurable with respect
to the topology of X. Moreover, we assume that the forward solution operator S : X ′ → V
is continuous. Then, as a composition of two continuous maps the data-to-observation map
O ◦ S : X ′ → Y is also continuous. The strong measurability of u : Ω → X ′ implies that the
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observable [G : Ω → Y : u 7→ (O ◦ S)(u)] is a RV, i.e. measurable with respect to the Borel
sigma algebra of Y = RK . Let us assume that

Eπ0 [|φ|] =
∫

X

|(φ ◦ S)(u)|π0(du) <∞. (14)

Then, given noisy observation data δ ∈ Y , the posterior expectation of the QoI φ takes the
form

Eπδ

[φ] =
1

Z

∫

X

(φ ◦ S)(u)ρ(δ −G(u))π0(du) . (15)

This expression is well-defined by the (assumed) measurability of the density ρ with respect to
the Borel sigma-algebra.

3.1.1 Diffusion equations

In a bounded Lipschitz domain D ⊂ Rd, given a (assumed uncertain) coefficient u ∈ L∞(D)
and a deterministic (i.e., deterministic assumed known with certainty) source term f ∈ L2(D),
as a forward model, we are interested in finding q ∈ H1

0 (D) such that

f +∇ · (u∇q) = 0 in H−1(D) , q|∂D = 0 . (16)

As is well-known, for every u ∈ L∞(D) such that ess infx∈D u(x) > 0, the forward problem (16)
admits a unique variational solution q ∈ H1

0 (D). Here V = H1
0 (D). For fixed f in (16), the

input-to-solution map

S : {u ∈ L∞(D) : ess inf
x∈D

u(x) > 0} → V : u 7→ q (17)

induced by (16) satisfies

‖S(u)‖V ≤ ‖f‖V ∗

ess infx∈D{u(x)} . (18)

The map S is Lipschitz continuous which implies measurability of the likelihood as follows. For
any u, u′ ∈ {u ∈ L∞(D) : ess infx∈D u(x) > 0} such that S(u) ∈ W 1,r(D) for some r ∈ [2,∞),
there holds

‖S(u)− S(u′)‖V ≤ ‖∇S(u)‖Lr(D)

ess infx∈D{u′(x)}‖u− u′‖L2r/(r−2)(D) . (19)

For X ′ ⊂ {u ∈ L∞ : ess infx∈D{u(x)} > 0} being (Borel) measurable, we endow X ′ with
the L∞(D)-norm and suppose that X ′ is separable with respect to the L∞(D)-norm. In this
case, r′ = 2r/(r − 2) = ∞ and r = 2. Note that S(u) ∈ W 1,r(D) is satisfied by (18). Thus,
by (19), the forward operator S : X ′ → V is Lipschitz continuous. But the verification of the
condition (14) becomes non-trivial and shall be discussed in the particular construction of the
prior (see ahead Section 3.2.3).

Suppose there exists C > 0 such that

X ′ = {u ∈ L∞(D) : C−1 ≤ ess inf
x∈D

{u(x)} ≤ ‖u‖L∞(D) ≤ C} .

Then, there exists r > 2 such that S(u) ∈W 1,r(D) for every u ∈ X ′ if also f ∈ (W
1,r/(r−1)
0 (D))∗,

cf. [2, Proposition 1] (the conditions of [2, Proposition 1] are verified for example by [20,
Theorems 1.1 and 1.3]). Note that the earlier assumption f ∈ L2(D) implies that f ∈
(W

1,r/(r−1)
0 (D))∗ for d = 1, 2 and for d > 2 if r < 2d/(d − 2). We endow X ′ with the

Lr′(D)-norm for r′ = 2r/(r − 2). Thus, by (19), S : X ′ → V is Lipschitz continuous. In this
case the condition (14) is always satisfied, which follows by (18).
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3.1.2 Scalar hyperbolic conservation law

We consider the Cauchy problem for the scalar, nonlinear hyperbolic conservation law

∂tq + ∂x(u(q)) = 0 , q|t=0 = q0 . (20)

The initial condition q0 ∈ L1(R) has bounded variation and is assumed known, i.e., de-
terministic. Denote by M := ‖q0‖L∞(R) and note the maximum principle satisfied by the
(unique) entropy solutions, cf. e.g. [16, Theorem 2.14(i)]. The Lipschitz continuous flux func-
tion u ∈ W 1,∞([−M,M ]) in (20) is assumed to be uncertain. For any fixed realization
u ∈ W 1,∞([−M,M ]) of the flux function u in (20), there exists a unique entropy solution
q to (20) by [16, Theorem 2.14]. For fixed t > 0, let us denote by St the operator u 7→ q(t),
for fixed initial data q0, i.e., q(t) = St(u). The L1(R)-norm of the entropy solution at time
t > 0 is bounded in terms of the data. Specifically, by [16, Theorem 2.14(vi)] and the triangle
inequality

‖St(u)‖L1(R) ≤ ‖q0‖L1(R) + tTV(q0)‖∂xu‖L∞([−M,M ]). (21)

Furthermore, the entropy solution q depends Lipschitz continuously on the flux function u:
by [16, Theorem 2.13], for any two Lipschitz flux functions u, ũ ∈ W 1,∞([−M,M ]) and for
every t > 0 holds

‖St(u)− St(ũ)‖L1(R) ≤ tTV(q0)‖∂x(u− ũ)‖L∞([−M,M ]). (22)

Thus, for every t > 0, the forward (“flux-to-entropy solution”) map St : W 1,∞([−M,M ]) →
L1(R) is continuous. Hence, we are in the abstract setting for Bayesian inversion with X =
W 1,∞([−M,M ]) and V = L1(R).

3.2 Priors

We present several constructions of parametric function space priors, for which our results
apply. These constructions are by no means meant to be exhaustive; they are merely listed,
with references, in order to illustrate the scope of applicability of our principal results on DNN
expression rate bounds for PDE constrained Bayesian inverse problems.

3.2.1 Level set priors

We shall discuss in some detail a class of uncertain u such that u is piecewise constant and
attains known values (or levels) at uncertain locations in the spatial domain D, i.e.,

u =

n∑

i=1

ui✶Di
(23)

for certain numbers ui ∈ (0,∞), i = 1, . . . , n, and uncertain subsets Di of D such that D =⋃n
i=1Di and Di ∩ Di′ = ∅ for i 6= i′. Suppose that g : Ω → C0(D) is a strongly measurable

Gaussian random field on an auxiliary probability space (Ω,A,P). For constants −∞ = c0 <
c1 < . . . < cn = ∞, define the function F : R → (0,∞) by

F =

n∑

i=1

ui✶[ci−1,ci).

It follows that u := F (g) satisfies (23) with the uncertain sets Di defined by

Di := {x ∈ D : ci−1 ≤ g(x) < ci}, i = 1, . . . , n.
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Lemma 3.1 The level set random field u : Ω → Lr(D) defined by ω 7→ u(ω) := F (g(ω)) is
strongly measurable with respect to the topology of Lr(D) for every r ∈ [1,∞).

Proof. By definition of strong measurability, cf. e.g. [36, Definition V.4.1], there exist functions

gNi ∈ C0(D) and measurable, disjoint sets ΩN
i ⊂ Ω such that ‖g −∑N

i=1 g
N
i ✶ΩN

j
‖C0(D) → 0

as N → ∞ P-a.s. This is to say that
∑N

i=1 g
N
i ✶ΩN

j
is “finitely valued”. We observe that

F (
∑N

i=1 g
N
i ✶ΩN

j
) =

∑N
i=1 F (g

N
i )✶ΩN

j
is also finitely valued, since the sets ΩN

i , i = 1, . . . , N , are

disjoint.
We state the fact that v 7→ F ◦ v is a mapping from C0(D) to Lr(D) for every r ∈ [1,∞).

This map is continuous at some v ∈ C0(D) if and only if {x ∈ D : v(x) = ci} is a nullset with
respect to the Lebesgue measure for every i = 2, . . . , n− 1, cf. e.g. [19, Proposition 2.6].

By [19, Proposition 7.2], P({ω ∈ Ω : |{x ∈ D : g(ω)(x) = ci}| = 0}) = 1, i = 1, . . . , n − 1.

This implies with the aforementioned fact that ‖F (g)−∑N
i=1 F (g

N
i )✶ΩN

j
‖Lr(D) → 0 as N → ∞

P-a.s. Thus, the composition F ◦ g is strongly measurable with respect to Lr(D). ✷

Diffusion equations

In the setting of Section 3.1.1 we let X := L∞(D), X ′ := {u ∈ L∞(D) : min{u1, . . . , un} ≤
u(x) ≤ max{u1, . . . , un} a.e. x ∈ D} and V := H1

0 (D). There exists r′ ∈ [2,∞) in dependence
of min{u1, . . . , un} and max{u1, . . . , un} such that S : X ′ → V is continuous, see Section 3.1.1,
where we endowedX ′ with the Lr′(D)-norm. By Lemma 3.1, u : Ω → X ′ is strongly measurable
and we define the prior on X ′ as the law of u, i.e., π0(A) = P((F ◦ g)−1(A)) for all Borel
measurable A ⊆ X ′.

3.2.2 Affine parametric priors

For m ∈ {0, 1} fixed, we assume at hand a nominal coefficient u0 ∈Wm,∞(D) and a countable
representation system Ψ = {ψj}j≥1 ⊂ X =Wm,∞(D) such that

∑

j≥1

‖ψj‖Wm,∞(D) <∞. (24)

Then we consider the parametric coefficient u given by

u(x,y) = u0(x) +
∑

j≥1

yjψj(x) , x ∈ D, y = (yj)j≥1 ∈ Ω := [−1, 1]∞ . (25)

By our assumptions, for every fixed y ∈ Ω the infinite series (25) converges in Wm,∞(D). We
denote by X ′ ⊂ X the set of all limits in X of the parametric expansion (25), X ′ = {u : u =
u0 +

∑
j≥1 yjψj for some y ∈ Ω}.

We now construct a prior measure π0 on the set X ′ ⊂ X. Again, we start by introducing an
auxiliary probability space (Ω,A,P), where Ω = [−1, 1]∞, A = ⊗j∈NB([−1, 1]) is the product
Borel sigma algebra, and P := ⊗j≥1λ/2 is the (countable) product probability measure, where
λ/2 denotes the scaled Lebesgue measure on [−1, 1]. The measure π0 is defined as the pushfor-
ward of P under u : Ω → X ′ as in (25), i.e. π0(A) = P(u−1(A)) for all measurable A ⊆ X ′. The
sigma-algebra on X ′ ⊆ X is again the Borel sigma-algebra. The set Ω = [−1, 1]∞ is compact
when equipped with the product topology, by Tychonoff’s theorem (e.g. [28, Theorem A3]). In
this case the Borel-sigma algebra on Ω coincides with the product sigma-algebra ⊗j∈NB([−1, 1]).

Diffusion equations

For the diffusion equation (16), we let m = 0 so that X = L∞(D) and V = H1
0 (D). Fur-

thermore, we impose X ′ ⊂ {u ∈ L∞ : ess infx∈D{u(x)} > 0} to ensure well-posedness of the
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forward problem. Suppose in addition that u0 satisfies

ess inf
x∈D

u0 ≥ umin > 0.

Then
inf

u∈X′
ess inf

x∈D
u = inf

y∈Ω
ess inf

x∈D
u(x,y) ≥ (1− κ)umin > 0 ,

which implies X ′ ⊂ {u ∈ L∞ : ess infx∈D u(x) > (1 − κ)umin}. By (18), condition (14) is
satisfied for every QoI φ ∈ V ∗.

Scalar conservation laws

For the scalar conservation law in (20), we let m = 1, X = W 1,∞(D) and D = [−M,M ],
where we recall that M = ‖q0‖L∞(R) and q0 is the initial data. Furthermore V = L1(R). The
condition (14) is satisfied as a consequence of (21) and (24) for every QoI φ ∈ V ∗.

3.2.3 Log-Besov parametric priors

Let m ∈ {0, 1}. Consider now u taking log-affine form, i.e.

u(x,y) = u0(x) + exp



∑

j≥1

yjψj(x)


 x ∈ D. (26)

where u0 ∈ X = Wm,∞(D) satisfies ess infx∈D{u0(x)} ≥ 0. We assume again summability of
the function system Ψ = (ψj)j≥1, i.e.,

∑

j≥1

‖ψj‖Wm,∞(D) <∞.

For p ∈ [1, 2], we define P as the product measure

P(dy) :=
⊗

j≥1

p

2p1/pΓ(1/p)
e−

|yj |
p

p dyj

on Ω := R∞, where Γ denotes the Gamma function. We suppose that y in (26) is distributed
according to P, and Ω is equipped with the product Borel sigma algebra. As a consequence [10,
Proposition 3.2], it holds that

ess inf
x∈D

{u(x,y)} > 0 P− a.e. y ∈ Ω,

where for p = 1 we require supj≥1 ‖ψj‖L∞ < 1.
Here, X ′ = {u ∈ Wm,∞(D) : u = u0 + exp(

∑
j≥1 yjψj),P − a.e. y ∈ Ω}. By [10, Proposi-

tion 3.2], in the case p ∈ (1, 2]

∫

Ω

‖u(y)‖Wm,∞(D)P(dy) <∞, (27)

which also holds for p = 1 if supj≥1{‖ψj‖Wm,∞(D)} < 1. Also by [10, Proposition 3.2], u :
Ω → X ′ is strongly measurable. We construct the Besov prior π0 as the law of u, i.e., π0(A) :=
P(u−1(A)) for every measurable A ⊂ X ′.

Diffusion equations

For the PDE model (16), m = 0, X = L∞(D) and V = H1
0 (D). The condition (14) is satisfied

by (27) and (18) for every QoI φ ∈ V ∗.
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Scalar conservation laws

For the PDE model (20), m = 1, X = W 1,∞(D) and D = [−M,M ], where we recall that
M = ‖q0‖L∞(R) and q0 is the initial condition. Furthermore V = L1(R). The condition (14) is
satisfied by (27) and (21) for every QoI φ ∈ V ∗.

Remark 3.2 For p = 2 and u0 ≡ 0, we recover the widely used case of parametric log-Gaussian
diffusion coefficients u as a special case of the constructed log-Besov priors. Hence, BIPs with
Gaussian priors are also covered by the present results.

4 Regularity of the Data-to-QoI Map

We now investigate the regularity of the data-to-QoI map δ 7→ Eπδ

[φ]. This regularity is crucial,
on the one hand, for the ensuing DNN expression rate analysis and, on the other hand, will be
seen to determine to some extent the DNN architecture. As we show, this regularity is strongly
dependent on the regularity of the density ρ of the observation noise η in the additive model
(1).

4.1 Lipschitz Regularity

We assume we are in the finite-dimensional case described in Theorem 2.1 and that the density
function ρ in (3), (4) is globally Lipschitz continuous.

Example 4.1 Consider the function ρ : RK → R : ζ 7→ exp(−‖ζ‖1) where, for ζ ∈ RK ,
‖ζ‖1 = |ζ1|+ ...+ |ζK |. Then ρ is globally Lipschitz, since for ζ, ζ ′ ∈ RK holds

|ρ(ζ)− ρ(ζ ′)| = | exp(−‖ζ‖1)− exp(−‖ζ ′‖1)| ≤ |‖ζ‖1 − ‖ζ ′‖1| ≤ ‖ζ − ζ ′‖1 .

The Lipschitz property of ρ is inherited by the data-to-QoI map δ 7→ Eπδ

[φ] in (8).

Proposition 4.2 In the setting of Theorem 2.1, assume that ρ ∈ Lip(RK) with respect to some
norm ‖ ◦ ‖ on RK . Suppose in addition that the QoI φ satisfies φ ∈ L1(X ′, π0).

Then, for every r > 0 the map [δ 7→ Eπδ

[φ]] ∈ Lip(Br(0)), i.e, there exists a constant
C(r, φ) > 0 such that

∀δ, δ′ ∈ Br(0) :
∣∣∣Eπδ

[φ]− Eπδ′

[φ]
∣∣∣ ≤ C ‖δ − δ′‖ .

Proof. Let for the moment δ, δ′ ∈ RK be arbitrary realizations of the observation data. Fur-

thermore, denote Z ′(δ) := Z(δ)Eπδ

[φ] and Z ′(δ′) := Z(δ′)Eπδ′

[φ]. Then,

∣∣∣∣
Z ′(δ)

Z(δ)
− Z ′(δ′)

Z(δ′)

∣∣∣∣ ≤
|Z ′(δ)− Z ′(δ′)|

Z(δ)
+

|Z ′(δ′)||Z(δ′)− Z(δ)|
Z(δ)Z(δ′)

. (28)

By assumption the density ρ is globally Lipschitz on RK with constant CLip > 0. Thus by
definition of Z in (6),

|Z(δ)− Z(δ′)| ≤ CLip‖δ − δ′‖
∫

X

π0(du) = CLip‖δ − δ′‖.

Similarly, |Z ′(δ)− Z ′(δ′)| ≤ CLipE
π0 [|φ|]‖δ − δ′‖. For every r > 0, define

Zmin,r := inf
δ′′∈Br(0)

Z(δ′′) and Z ′
max,r := sup

δ′′∈Br(0)

Z ′(δ′′).
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Since we have proven already that the nonnegative mappings [δ → Z(δ)] and [δ → Z ′(δ)] are
Lipschitz continuous on RK , they achieve their minimum and maximum on the compact set
Br(0) ⊂ RK so that 0 < Zmin,r, Z

′
max,r <∞. The assertion now follows with

C = CLip

(
Eπ0 [|φ|]
Zmin,r

+
Z ′
max,r

Z2
min,r

)
.

✷

4.2 Holomorphy

We now establish one core result of the present paper, namely the holomorphy of the data-
to-QoI map which results from the expectation under the Bayesian posterior, for the negative
log-likelihood Φ in (5) being a quadratic. This corresponds to the important assumption that
the additive observation noise η in (1) is centered, Gaussian.

As we admit vector-valued data δ ∈ RK for some integer K ≥ 1 and as the QoI φ is assumed
to be scalar, taking values in R (or, upon complexification, in C), this amounts to verifying
holomorphy of a scalar function of K complex variables. Based on standard results (e.g. [17])
on functions of several complex variables, we shall verify this first in the univariate case (i.e.,
for K = 1) and subsequently infer holomorphy of the multivariate map by means of Hartogs’
theorem.

We shall use the following technical result on averages of holomorphic maps, which is asser-
tion C3 of the Theorem in [23].

Proposition 4.3 Let (Ω,A, π) be a measure space and let G ⊂ C be an open set. Suppose that
the functions f : Ω×G→ C satisfies

(i) [Ω ∋ ω 7→ f(ω, z)] is measurable with respect to A for every z ∈ G.

(ii) [G ∋ z 7→ f(ω, z)] is holomorphic for every ω ∈ Ω.

(iii) for every z0 ∈ G, there is δ > 0 such that supz∈G,|z−z0|≤δ

∫
Ω
|f(ω, z)|π(dω) <∞.

Then, [G ∋ z 7→
∫
Ω
f(ω, z)π(dω)] is holomorphic.

Proof. This is assertion C3 of the theorem in [23]. ✷

4.2.1 Univariate Data (K = 1)

Lemma 4.4 In the setting of Theorem 2.4 let K = 1 and assume that φ ∈ L1(X ′, π0) and
Φ(u; δ) = (δ −G(u))(δ −G(u))/(2σ2) for some σ > 0.

Then the map

δ 7→
∫

X′

φ(u) exp(−Φ(u; δ))π0(du)

is holomorphic on C.

Proof. We shall verify assumptions (i), (ii) and (iii) in Proposition 4.3. Since u 7→ Φ(u; δ) is
measurable for every δ ∈ C and δ 7→ Φ(u; δ) is holomorphic for π0-a.e. u ∈ X ′, the same is true
for the map (u, δ) 7→ exp(−Φ(u; δ)). This completes the verification of assumptions (i) and (ii)
in Proposition 4.3.

It remains to show that
∫
X′ φ(u) exp(−Φ(u; δ))π0(du) is locally bounded for every δ ∈ C. It

holds 2σ2Φ(u; δ) = δ2 − 2δG(u) +G(u)2. For some δ0 ∈ C, consider arbitrary δ ∈ C such that
|δ − δ0| ≤ 1. By the triangle inequality,

| exp(−Φ(u; δ))| ≤ | exp(−δ2/(2σ2))| exp(−(G(u)2 − 2|G(u)|[|δ0|+ 1])/(2σ2)).
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By maximizing the quadratic polynomial G(u) 7→ −G(u)2 + 2G(u)(|δ0|+ 1) we get

| exp(−Φ(u; δ))| ≤ | exp(−δ2/(2σ2))| exp
(
(|δ0|+ 1)2

2σ2

)
,

where we used that G(u) ∈ R for u ∈ X ′. Thus, for every δ0 ∈ C,

sup
δ∈C,|δ−δ0|≤1

∫

X′

|φ(u)|| exp(−Φ(u; δ))|π0(du)

≤ sup
δ∈C,|δ−δ0|≤1

| exp(−δ2/(2σ2))| exp
(
(|δ0|+ 1)2

2σ2

)
Eπ0(|φ|) <∞.

This verifies assumption (iii) in Proposition 4.3, i.e., δ 7→
∫
X′ |φ(u)|| exp(−Φ(u; δ))|π0(dy) is

locally bounded for every δ ∈ C. The assertion of the lemma is then implied Proposition 4.3.
✷

4.2.2 Multivariate Case (K > 1)

Lemma 4.5 In the setting of Theorem 2.4 let 1 < K ∈ N and assume that φ ∈ L1(X ′, π0) and
Φ(u; δ) = (δ −G(u))⊤Σ−1(δ −G(u))/2 for some SPD matrix Σ ∈ RK×K .

Then, for each fixed δ̃ ∈ RK−1, the mapping

δ 7→
∫

X′

φ(u) exp(−Φ((δ; δ̃);u))π0(du)

is holomorphic on C.

Proof. The assertion is proven similarly to Lemma 4.4 and is also a consequence of Proposi-
tion 4.3. In the ensuing argument, for δ ∈ CK we denote by |δ| = +

√
δHδ the modulus with

respect to the Euclidean norm on CK and, for a K ×K real, symmetric matrix Σ, we denote
by ‖Σ‖ its spectral norm.

The mapping C ∋ δ →
∫
X′ exp(−Φ(u; δ))π0(du) satisfies assumptions (i) and (ii) in Propo-

sition 4.3.
For the verification of assumption (iii) in Proposition 4.3, let us denote δ := (δ; δ̃) ∈ CK

for any δ ∈ C and δ̃ ∈ CK−1. We observe that 2Φ(u; δ) = (δ⊤Σ−1δ − 2δ⊤Σ−1G(u) +
G(u)⊤Σ−1G(u)). Moreover, it holds that

| exp(δ⊤Σ−1G(u))| = exp(δ⊤ReΣ
−1G(u))) ≤ exp(‖Σ−1‖|δRe||G(u)|).

Let δ̃ ∈ CK−1 and δ0 ∈ C be arbitrary and denote δ0 := (δ0; δ̃). Denote by σ > 0 the largest
eigenvalue of Σ1/2. For every δ ∈ C such that |δ − δ0| ≤ 1,

| exp(−Φ(u; δ))|
≤ | exp(−δ⊤Σ−1δ/2)|| exp(−|G(u)|2/(2σ2) + ‖Σ−1‖(|δ̃|+ |δ0|+ 1)|G(u)|)|.

Similar as in the proof of Lemma 4.4, maximizing the polynomial s 7→ −s2/(2σ2)+‖Σ−1‖(|δ̃|+
|δ0|+ 1)s, we get

| exp(−Φ(u; δ))| ≤ | exp(−δ⊤Σ−1δ/2)| exp
(
(|δ̃|+ |δ0|+ 1)2σ2‖Σ−1‖2

2

)
.

Thus

sup
δ∈C,|δ−δ0|≤1

∫

X′

|φ(u)|| exp(−Φ(u; δ))|π0(du) <∞,

which establishes the local boundedness of δ →
∫
X′ φ(u) exp(−Φ(u; δ))π0(du), i.e., assumption

(iii) in Proposition 4.3. The assertion of this lemma then follows from Proposition 4.3. ✷
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Proposition 4.6 In the setting of Theorem 2.4 let 1 < K ∈ N and assume that φ ∈ L1(X ′, π0)
and Φ(u; δ) = (δ −G(u))⊤Σ−1(δ −G(u))/2 for some SPD matrix Σ ∈ RK×K .

Then the map

δ 7→
∫

X′

φ(u) exp(−Φ(u; δ)π0(du)

is holomorphic on CK .

Proof. Lemma 4.5 implies holomorphy in every coordinate δi, i = 1, . . . ,K. The assertion now
follows by Hartogs’ theorem, cf. [17, Theorem 2.2.8]. ✷

Corollary 4.7 In the setting of Theorem 2.4 and Proposition 4.6, and for every finite r > 0,
the map

[−r, r]K ∋ δ 7→ Eπδ

[φ] ∈ R (29)

admits a holomorphic extension to some open set E such that [−r, r]K ⊂ E ⊂ CK .

Proof. By Proposition 4.6 the maps

δ 7→ Z ′(δ) =

∫

X′

φ(u) exp(−Φ(u; δ))π0( du), δ 7→ Z(δ) =

∫

X′

exp(−Φ(u; δ))π0( du),

admit (unique) holomorphic extensions to all of CK . Furthermore Z(δ) > 0 for Q0-a.e. δ ∈ RK .
Since Q0 is a Gaussian measure and Z is continuous (even analytic) as a function of δ ∈ RK , we
conclude Z(δ) > 0 for every δ ∈ RK . Hence there is a bounded set E ⊂ CK strictly containing

[−r, r]K such that the map δ 7→ Eπδ

[φ] = Z ′(δ)/Z(δ) admits an holomorphic extension to E . ✷

5 Exponential DNN Expression Rate

Using the holomorphy of the data-to-QoI map [δ 7→ Eπδ

[φ]] established in Section 2 (for addi-
tive, centered Gaussian observation noise η in (1)), in this section we prove for this map and
deep ReLU NNs an exponential expression rate bound in term of the overall NN size. As a
byproduct of the proof, we also show exponential convergence rates for polynomial and rational
approximations.

The approximation of the data-to-QoI map [δ 7→ Eπδ

[φ]] by ReLU NNs will be developed for
observation data δ in compact subsets of RK . We immediately point out that in the (assumed)
observation noise model (1), i.e. δ = G(u) + η, the RV δ can take arbitrarily large values with
positive probability. This may be due to the unboundedness of the uncertain input u (see
for example Section 3.2.3) or due to the unboundedness of the additive noise η, e.g. additive
Gaussian noise. However, bounds on the tails of these distributions entail that the RV δ takes
values in a compact set with high probability. Specifically, in the case of a prior measure
with bounded support, the probability of data δ outside of a compact box [−r, r]K decays
double exponentially, i.e., upper bounded by C exp(−r2K/(2λmax)), where λmax is the largest
eigenvalue of the covariance matrix of the additive Gaussian observation noise and C > 0 is a
constant that does not depend on r, cf. [18, Theorem 1]. The approximation of the data-to-QoI
map by ReLU NNs will be developed on compact subsets of RK .

The structure of the section is as follows: in Section 5.1, we recapitulate notation and define
the architecture for the ReLU DNN approximations to be analyzed. The main reference here
is [25], and also [26, 31]. We remark in passing that alternative, more involved architectures
could afford better expression rate bounds; we refer to [35] and to the discussion in Section
6 ahead. Next, in Section 5.2 we show exponential convergence of polynomial and rational
approximations, with a slightly better result in the latter case. Finally, in Section 5.3, we infer
the expression rate bounds, based on holomorphy (δ 7→ Z ′(δ) and δ 7→ Z(δ) are holomorphic
on all of CK) of the data-to-QoI map in Bayesian inversion.
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5.1 Definitions and Architecture of Deep ReLU NNs

We consider feed-forward deep neural networks (DNNs). These DNNs are obtained as iterated
compositions of linear transformations followed by a nonlinearity. This nonlinearity is specified
via the so-called activation function σ : R → R of the DNN. The architecture of the DNN
comprises a fixed number of hidden layers L ∈ N, numbers Nℓ ∈ N of computation nodes in
layer ℓ ∈ {0, . . . , L}, the map f : RN0 → RNL+1 is said to be realized by a feedforward neural
network, if for certain weights wℓ

i,j ∈ R, and biases bℓj ∈ R it holds for all x = (xi)
N0
i=1

z1j = σ

(
N0∑

i=1

w1
i,jxi + b1j

)
, j ∈ {1, . . . , N1} , (30)

and

zℓ+1
j = σ

(
Nℓ∑

i=1

wℓ+1
i,j zℓi + bℓ+1

j

)
, ℓ ∈ {1, . . . , L− 1}, j ∈ {1, . . . , Nℓ+1} , (31)

and finally

f(x) = (zL+1
j )

NL+1

j=1 =

(
NL∑

i=1

wL+1
i,j zLi + bL+1

j

)NL+1

j=1

. (32)

In this case n = N0 is the dimension of the NN input, and m = NL+1 is the dimension of
the output. Furthermore zℓj denotes the output of unit j in layer ℓ. The weight wℓ

i,j has the
interpretation of connecting the ith unit in layer ℓ− 1 with the jth unit in layer ℓ. We do not
distinguish between the network (which is defined through σ, the wℓ

i,j and bℓj) and the function

f : RN0 → RNL+1 it realizes although such distinction is mathematically at times mandatory
(we refer to the discussion in [26, Definition 2.1]. The number of hidden layers L of a NN is
referred to as depth of the DNN. We shall in particular consider DNNs with the so-called ReLU
activation σ = σ1 given by x 7→ σ1(x) := max{0, x}. Let us also denote the tensor of weights
by w and of biases by b.

5.2 Polynomial and Rational Approximation

We have seen in the previous sections that the data-to-QoI map with respect to the unnor-
malized posterior density, i.e., δ 7→

∫
X′ φ(u) exp(−Φ(u; δ))π0(du) can be extended to an entire

function on CK under the assumption of additive, nondegenerate Gaussian observation noise.
Holomorphy implies fast convergence of Taylor expansions as we recall this in the next theorem.
The proof (which is based on standard arguments) is provided in Appendix A.

Theorem 5.1 Let K ∈ N, and assume that f : CK → C is holomorphic. Then, for every
κ > 1 and every r > 0, there exists Cκ,f,r > 0 such that for every n ∈ N it holds

sup
δ∈[−r,r]K

∣∣∣∣∣∣
f(δ)−

∑

‖ν‖ℓ∞≤n

∂νf(0)

ν!
δν

∣∣∣∣∣∣
≤ Cκ,f,r exp(−κn). (33)

Note that {ν ∈ NK
0 : ‖ν‖ℓ∞ ≤ n} has cardinality cn := (n+ 1)K . With respect to the number

cn of terms in the Taylor expansion, the error in (33) thus decreases exponentially, namely like

exp(−κc1/Kn ).

In the following we show two approximation results for the data-to-QoI map [δ 7→ Eπδ

[φ]].
As earlier, for every δ ∈ RK we denote

Z ′(δ) := Eπδ

[φ]Z(δ) and Z(δ) :=

∫

X′

exp(−Φ(u; δ))π0(du). (34)

15



It is classical, that holomorphic (but not necessarily entire) functions can be approximated
at an exponential rate with polynomial functions (see for example [24, Theorem 3.5]). As a
consequence of Corollary 4.7 we thus have the following statement.

Proposition 5.2 Suppose the setting of Theorem 2.4 and Section 4.2 (i.e. the observation
noise η in (1) is Gaussian). Let r > 0 and K ∈ N. Then there exist constants κ > 0 and
Cr > 0 (depending also on the observation noise covariance Σ) such that for every n ∈ N there
exists a polynomial pn ∈ span{yν : ‖ν‖ℓ∞ ≤ n} such that

sup
δ∈[−r,r]K

∣∣∣Eπδ

[φ]− pn(δ)
∣∣∣ ≤ Cr exp(−κn).

Using Theorem 5.1, we can improve this statement using a rational rather than a polynomial
approximation (note that, contrary to Proposition 5.2, κ in Proposition 5.3 can be arbitrarily
large).

Proposition 5.3 Suppose the setting of Theorem 2.4 and Section 4.2 (i.e. the observation
noise η in (1) is Gaussian). Let r > 0 and K ∈ N. For every κ > 0 there exists Cr,κ > 0
(depending also on the observation noise covariance Σ) and n0 ∈ N such that for all n ≥ n0

sup
δ∈[−r,r]K

∣∣∣∣∣∣∣
Eπδ

[φ]−




∑

‖ν‖ℓ∞≤n

∂νZ ′(0)

ν!
δν






∑

‖ν‖ℓ∞≤n

∂νZ(0)

ν!
δν




−1
∣∣∣∣∣∣∣
≤ Cr,κ exp(−κn).

Proof. Recall that Eπδ

[φ] = Z ′(δ)/Z(δ), where Z ′(δ) and Z(δ) are defined in (34). By Propo-
sition 4.6 and Theorem 5.1, for every κ > 0, there exists a constant Cr,κ > 0 such hat for every
n ∈ N,

sup
δ∈[−r,r]K





∣∣∣∣∣∣
Z ′(δ)−

∑

‖ν‖ℓ∞≤n

∂νZ ′(0)

ν!
δν

∣∣∣∣∣∣
+

∣∣∣∣∣∣
Z(δ)−

∑

‖ν‖ℓ∞≤n

∂νZ(0)

ν!
δν

∣∣∣∣∣∣



 ≤ Cr,κ exp(−κn).

(35)
Since Z(δ) > 0 for every δ ∈ RK , it holds that Zmin := infδ∈[−r,r]K Z(δ) > 0, where we used

that [RK ∋ δ 7→ Z(δ)] is continuous by Proposition 4.6. Thus by (35), there exists n0 ∈ N such
that for every n ≥ n0 and every δ ∈ [−r, r]K

Zmin

2
≤

∑

‖ν‖ℓ∞≤n

∂νZ(0)

ν!
δν .

Thus,

∣∣∣∣∣∣∣
Eπδ

[φ]−




∑

‖ν‖ℓ∞≤n

∂νZ ′(0)

ν!
δν






∑

‖ν‖ℓ∞≤n

∂νZ(0)

ν!
δν




−1
∣∣∣∣∣∣∣

≤
|Z ′(δ)−∑‖ν‖ℓ∞≤n

∂νZ′(0)
ν! δν |

Zmin
+

|∑‖ν‖ℓ∞≤n
∂νZ′(0)

ν! δν ||Z(δ)−∑‖ν‖ℓ∞≤n
∂νZ(0)

ν! δν |
1
2 (Zmin)2

,

which follows similarly as (28). The asserted estimate follows now by (35). ✷
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5.3 Deep ReLU Approximation

The following result is an improvement of the exponential convergence rate in [25, Theorem
3.7] for the (smaller) class of entire, analytic functions. The proof is similar to the argument
in [25], being mainly based on the NN approximation results of [34]. For convenience of the
reader, we provide a proof in Appendix B.

Theorem 5.4 Let K ∈ N and assume that f : CK → C is holomorphic such that f : RK → R.
Then for all κ > 1, r > 0 there exists a constant Cf,r,κ > 0 such that for all n ∈ N there exists

a ReLU NN f̃n : [−r, r]K → R with

sup
δ∈[−r,r]K

|f(δ)− f̃n(δ)| ≤ Cf,r,κ exp(−κn).

Moreover, there exists a constant C > 0 which is independent of κ such that depth(f̃n) ≤
C(1 + n log(n)), and size(f̃n) ≤ C(1 + n)K+1 for all n ∈ N .

In the following we use again the notation

Z ′(δ) =

∫

X′

φ(u) exp(−Φ(u; δ))π0( du), Z(δ) =

∫

X′

exp(−Φ(u; δ))π0( du),

so that Eπδ

[φ] = Z ′(δ)/Z(δ). Furthermore, we define the (finite, under the made assumptions)
constants

Zmin := inf
δ∈[−r,r]K

Z(δ), Zmax := sup
δ∈[−r,r]K

Z(δ) (36a)

and
Z ′
min := inf

δ∈[−r,r]K
Z ′(δ), Z ′

max := sup
δ∈[−r,r]K

Z ′(δ). (36b)

While of independent interest, the preceding Theorem 5.4 is a key ingredient in the proof of
the following result, which is a principal result of the present paper.

Theorem 5.5 Suppose the setting of Theorem 2.4 and Section 4.2 (in particular that the ob-
servation noise η in (1) is Gaussian). Let r > 0 and K ∈ N. Then there holds

(i) For K = 1, there exist κ > 0 (independent of r, Z and Z ′) and a constant Cκ > 0
(depending on κ, r, Z, Z ′, Σ) such that for all n ∈ N there exists a ReLU NN f̃n :
[−r, r]K → R such that

sup
δ∈[−r,r]K

∣∣∣Eπδ

[φ]− f̃n(δ)
∣∣∣ ≤ Cκ exp

(
− κ√

⌈log(Zmax/Zmin)⌉
n

)
. (37)

Furthermore, there exists a constant C > 0 (independent of Z, Z ′) such that for every
n ∈ N holds

depth(f̃n) ≤ C(1 + n log(n) + log3(n)) ,

size(f̃n) ≤ C[1 + n2(log(n) + log(⌈
√
log(Zmax/Zmin)⌉))].

(ii) For K > 1, for every κ > 0 there exists a constant Cκ > 0 (depending on κ, r, Z, Z ′, Σ)
such that for all n ∈ N there exists a ReLU NN f̃n : [−r, r]K → R such that

sup
δ∈[−r,r]K

∣∣∣Eπδ

[φ]− f̃n(δ)
∣∣∣ ≤ Cκ exp(−κn). (38)

Furthermore, there exists a positive constant C > 0 such that for every n ∈ N holds

depth(f̃n) ≤ C(1 + n3/2 log(n)), size(f̃n) ≤ C(1 + n)K+1 .
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Proof. Step 1. We provide the proof for K > 1. Fix κ > 1 (arbitrarily large). Due to the
compactness of [−r, r]K and the continuity (even analyticity) of δ 7→ Z(δ) and δ 7→ Z ′(δ), we
have (cf. (36))

0 < Zmin, Zmax <∞, −∞ < Z ′
min, Z ′

max <∞.

To approximate Eπδ

[φ] as a function of δ ∈ [−r, r]K we will combine the following NNs:

(i) Z̃n : [−r, r]K → [Zmin − εZ , Zmax + εZ ]: By Proposition 4.6 and Theorem 5.4 there exists
a constant Cr,κ, C > 0 and a network Z̃n such that

sup
δ∈[−r,r]K

|Z(δ)− Z̃n(δ)| ≤ Cr,κ exp(−κn) =: εZ , (39a)

and depth(Z̃n) ≤ C(1 + n log(n)) and size(Z̃n) ≤ C(1 + n)K+1.

(ii) Z̃ ′
n : [−r, r]K → [Z ′

min − εZ′ , Z ′
max + εZ′ ]: By Proposition 4.6 and by Theorem 5.4, there

exists a constant Cr,κ, C > 0 and a network Z̃ ′
n such that

sup
δ∈[−r,r]K

|Z ′(δ)− Z̃ ′
n(δ)| ≤ Cr,κ exp(−κn) =: εZ′ , (39b)

and depth(Z̃ ′
n) ≤ C(1+n log(n)) and size(Z̃ ′

n) ≤ C(1+n)K+1 (without loss of generality
we use here the same symbol for the constant Cr,κ as in (i)).

(iii) d̃n : [Zmin/2, 2Zmax] → [(2Zmax)
−1 − εd, (Zmin/2)

−1 + εd]: The map x 7→ 1/x is analytic
on C\{0}. Hence, by [25, Theorem 3.7] there exists κ0, C > 0 and a NN d̃n such that

|x−1 − d̃n(x)| ≤ exp(−κ0n) =: εd ∀x ∈ [Zmin/2, 2Zmax], (39c)

with size(d̃n) ≤ C(1 + n)2 and depth(d̃n) ≤ C(1 + n log(n)).

(iv) m̃n : [Z ′
min/2, 2Z

′
max] × [(4Zmax)

−1, (Zmin/4)
−1] → R: by [31, Proposition 3.1] (this is a

variation of the original result from [34]), there exists κ0 > 0 and a ReLU NN m̃n such
that

|xy − m̃n(x, y)| ≤ exp(−κ0n) ∀(x, y) ∈ [̃Z ′
min/2, 2Z

′
max]× [(4Zmax)

−1, (Zmin/4)
−1]

(without loss of generality we use here the same symbol for the constant κ0 as in (iii)).
Furthermore, there is a constant C > 0 such that for every n ∈ N holds size(m̃n) ≤ Cn
and depth(m̃n) ≤ Cn.

Now consider
f̃n(δ) := m̃⌈n3/2⌉(Z̃

′
n(δ), d̃⌈n3/2⌉(Z̃n(δ))). (40)

As a consequence of (39), the terms εZ , ε
′
Z and εd tend to 0 as n → ∞. Hence there exists

n0 ∈ N (depending on κ, κ0, Z and Z ′), such that for the composition of networks in (40), the
output of each network belongs to the domain of the network it is composed with.

We now bound the approximation error. For every δ ∈ [−r, r]K and for all n ≥ n0

|Eπδ

[φ]− f̃n(δ)| ≤ |m̃⌈n3/2⌉(Z̃
′
n(δ), d̃⌈n3/2⌉(Z̃n(δ)))− Z̃ ′

n(δ)d̃⌈n3/2⌉(Z̃n(δ))|

+ |d̃⌈n3/2⌉(Z̃n(δ))− Z̃n(δ)
−1||Z̃ ′

n(δ)|+
∣∣∣∣∣
Z̃ ′
n(δ)

Z̃n(δ)
− Z ′

n(δ)

Zn(δ)

∣∣∣∣∣ ,
(41)

which implies

|Eπδ

[φ]− f̃n(δ)| ≤ exp(−κ0⌈n3/2⌉) + exp(−κ0⌈n3/2⌉)|Z̃ ′
n(δ)|+

∣∣∣∣∣
Z̃ ′
n(δ)

Z̃n(δ)
− Z ′

n(δ)

Zn(δ)

∣∣∣∣∣ .
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We have
|Z̃ ′

n(δ)| ≤ |Z ′(δ)− Z̃ ′
n(δ)|+ |Z ′(δ)| ≤ Cr,κ exp(−κn) + Z ′

max.

Hence

exp(−κ0⌈n3/2⌉) + exp(−κ0⌈n3/2⌉)|Z̃n(δ)| ≤ (1 + Cr,κ + Zmax) exp(−κ0⌈n3/2⌉)
≤ (1 + Cr,κ + Zmax) exp(−κn),

as long as ⌈n3/2⌉κ0 ≥ κn, which is ensured by the conditionn ≥ (κ/κ0)
2. Next, using that for

arbitrary a, b, c, d ∈ R it holds |a/b− c/d| = |ad− cb|/|bd| and |ad− cb| = |(a− c)d+(d− b)c| ≤
|a− c||d|+ |d− b||c|, we find

∣∣∣∣∣
Z̃ ′
n(δ)

Z̃n(δ)
− Z ′

n(δ)

Zn(δ)

∣∣∣∣∣ ≤
Z̃max|Z̃ ′

n(δ)− Z ′(δ)|+ Z ′
max|Z̃n(δ)− Z(δ)|

Z̃minZmin

≤ Cr,κ exp(−κn)
Z ′
max + Z̃max

Z̃minZmin

.

(42)
In all

|Eπδ

[φ]− f̃n(δ)| ≤
(
1 + Cr,κ + Zmax + Cr,κ

Z̃max + Z ′
max

ZminZ̃min

)
exp(−κn),

provided that n ≥ max{n0, (κ/κ0)
2}. In the complementary case n < max{n0, (κ/κ0)

2}, we set
f̃n := 0 so that

|Eπδ

[φ]− f̃n(δ)| ≤
supδ∈[−r,r]K |Eπδ

[φ]|
exp(−κmax{n0, (κ/κ0)2})

exp(−κn).

Hence, with

Cκ := max

{
supδ∈[−r,r]K |Eπδ

[φ]|
exp(−κmax{n0, (κ/κ0)2})

, 1 + Cr,κ + Zmax + Cr,κ
Z̃max + Z ′

max

ZminZ̃min

}
(43)

we have |Eπδ

[φ]− f̃n(δ)| ≤ Cκ exp(−κn) for all n ∈ N.
Next we bound the size of the network. Since K ≥ 2, there exists a constant such that it

holds for all n ∈ N

size(f̃n) ≤ C(size(Z̃n) + size(Z̃ ′
n) + size(m̃⌈n3/2⌉) + size(d̃⌈n3/2⌉))

≤ C
(
(1 + n)K+1 + (1 + n)K+1 + (1 + n3/2)2 + n3/2

)

≤ C(1 + n)K+1.

Here, the positive constant C is independent also of κ. Similarly, one verifies the claimed bound
on the depth of f̃n. This completes the proof for K ≥ 2.

For K = 1, the proof will differ in the approximation of the map [x 7→ 1/x]. By Lemma C.1,
there exists a constant C > 0, κ̄ > 0 (C, κ are independent of Zmin, Zmax) such that for every
n ∈ N there exists a ReLU NN p̃n such that

sup
x∈[Zmin/2,2Zmax]

|x−1 − p̃n(x)|

≤ C
⌈log(Zmax/Zmin)⌉

Zmin

(
1 +

1

Zmax − Zmin

)
exp

(
− κ̄n√

⌈log(Zmax/Zmin)⌉

)

=: C̃ exp

(
− κ̄n√

⌈log(Zmax/Zmin)⌉

)
.
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Moreover, there exists a constant C̄ > 0 such that depth(p̃n) ≤ C̄(1 + n log(n) + log3(n)) and
such that size(p̃n) ≤ C̄[1 + n2(log(n) + log(

√
⌈log(Zmax/Zmin)⌉))] . In this case we consider

f̃n(δ) := m̃n(Z̃
′
n(δ), p̃n(Z̃n(δ))). (44)

By a version of (41) (obtained by replacing d̃⌈n3/2⌉ by p̃n and m̃⌈n3/2⌉ by m̃n) and (42), there
exists a constant C (independent of n) such that

|Eπδ

[φ]− f̃n(δ)| ≤ C exp

(
− min{κ, κ0, κ̄}n√

⌈log(Zmax/Zmin)⌉

)

Finally, we bound the size of the network. There exists a constant C > 0 such that it holds

size(f̃n) ≤ C(size(Z̃n) + size(Z̃ ′
n) + size(m̃⌈n⌉) + size(p̃⌈n⌉))

≤ C
(
(1 + n)2 + (1 + n)2 + (1 + n)2 + 1 + n2(log(n) + log(

√
⌈log(Zmax/Zmin)⌉))

)

≤ C(1 + n2(log(n) + log(
√
⌈log(Zmax/Zmin)⌉))).

Similarly, one verifies the claimed bound on the depth of f̃n. ✷

The appearance of the exponent 3/2 in the depth of ReLU NN in Theorem 5.5 (ii) is
an artifact of the proof technique. In (40), n3/2 may be replaced by nϕ(n) for any strictly
increasing function ϕ : [1,∞) → [1,∞) which tends to infinity as n → ∞. Possible choices
include ϕ(n) = nε for 0 < ε ≪ 1 or ϕ(n) = log(n) + 1 (in Theorem 5.5 (ii) ϕ(n) = n1/2

was used). This would result in depth(f̃) ≤ C(1 + nϕ(n) log(n)), but would also result in a
potentially larger constant Cκ with (κ/κ0)

2 replaced by ϕ−1(κ/κ0) in (43).

6 Conclusions and Extensions

We established the holomorphy of the data-to-(Bayesian) prediction (aka. “data-to-QoI”) map
for a finite-dimensional quantity of interest in PDE-constrained Bayesian inverse problems.
It is applicable to general well-posed PDEs with uncertain input from function spaces, for
observation data δ subject to additive Gaussian observation noise η. Based on the holomorphy
of this map, we inferred exponential bounds on the expression rate of deep ReLU NNs for these
maps.

We analyzed here in detail only the expression by deep ReLU NNs. As is well-known, this
implies also exponential expression rates for DNNs with more regular activation functions (see,
e.g. the discussion in [31, Section 3.3]).

We also showed that for more general, non-Gaussian observation noise models, the BIP is
still well-posed but holomorphy of the data-to-QoI map can, in general, not be expected. In
the particular case of finite-dimensional uncertain input and finite-dimensional observables, and
for observation noise with Lipschitz continuous density, we showed that the data-to-QoI map is
likewise Lipschitz continuous. In this case, exponential convergence rates can still be realized by
DNNs with more elaborate architectures. Let us give here only one illustrative result indicating
possible gains afforded by admitting DNN architectures with activation functions which are
more general than ReLU.

Proposition 6.1 In the setting of Theorem 2.1, and for additive observation noise η ∈ RK in
(9) with law admitting a density ρ with respect to λK which is Lipschitz, ρ ∈ Lip(RK), for every
0 < r < ∞, there exist constants c1,K , C > 0 such that, for every W ∈ N, there exists a DNN

f̃W,r : [−r, r]K → R with both ReLU and sinusoidal activation functions and with at most W
nonzero weights such that

sup
δ∈[−r,r]K

∣∣∣Eπδ

[φ]− f̃W,r(δ)
∣∣∣ ≤ C exp

(
−c1,K

√
W
)
.
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Proof. The assumptions imply with Proposition 4.2 that the data-to-QoI map [δ 7→ Eπδ

[φ]] ∈
Lip([−r, r]K). The assertion follows from [35, Theorem 5.1] by scaling and translation from the
unit box [0, 1]K (which was studied in [35]) to [−r, r]K . ✷

We note that the proof of [35, Theorem 5.1] allows to infer information about the architecture
of the DNN f̃ which appears in Proposition 6.1. In particular, the constant c1,K will, in general,
be upper bounded by c/K, where K is the (finite) dimension of the data space and and c > 0
a generic constant independent of K, cf. [35, p. 7]. Furthermore, analyticity of the data-to-QoI
map f : Br(0) → R is not required for Proposition 6.1 to hold. However, the very accurate and
stable evaluation of the sinusoidal activations is crucial for the expression rate in Proposition
6.1 to materialize. As all DNNs are operated in finite float point precision, often with rather
short mantissas (e.g. when rather strong quantization of NN weights is employed), the scope of
Proposition 6.1 could be limited, in practice. Nevertheless, the result does cover, for example,
the finite dimensional setting in Theorem 2.1, where the law Q0 admits merely a Lipschitz
density w.r. to the Lebesgue measure λK on the space of observation data δ.

Remark 6.2 We remark that improved approximation rates when admitting a wider range of
activation functions in an otherwise fixed DNN architecture is not surprising. See, e.g., [27,
Theorem 7.1]. In practice, however, issues of DNN stability in finite precision arithmetic, in
particular under quantization, of DNNs with these rather intricate activation functions arise.

In the present paper, we analyzed the rates of expressive power of deep ReLU NN surrogates
for data-to-QoI maps for Bayesian inversion of well-posed PDEs subject to uncertain input data
from function spaces. The present analysis substantiates recent numerical evidence (e.g. in [22]
and the references there) that even for rather complex PDE models of physical systems, with
possible rough/ singular solutions, rather small DNNs can provide highly accurate surrogates for
input-to-observable maps in forward UQ and for data-to-QoI maps in Bayesian PDE inversion.
The mathematical convergence rate bounds in the present paper are a stepping stone to the
analysis of the generalization error, and to the mathematical analysis and the design of multi-
level training algorithms, which we shall provide in [11].

The constants in the expressive power estimates depend on the covariance Σ of the additive
Gaussian observation noise and on the dimension K of the data space. A detailed analysis of
the effect when Σ → 0 on the expressive power of ReLU NNs to approximate data-to-QoI maps
will be developed elsewhere.

A Proof of Theorem 5.1

Fix γ > 1. We provide the standard bound on the Taylor coefficients and assume first that
K = 1, i.e. f : C → C. Cauchy’s integral formula gives for every j ∈ N0

∣∣∣∣
f (j)(0)

j!

∣∣∣∣ =
∣∣∣∣∣
1

2πi

∫

|ξ|=γ

f(ξ)

ξj+1
dξ

∣∣∣∣∣ ≤
sup|ξ|=γ |f(ξ)|

γj
, (45)

where i =
√
−1 ∈ C denotes a complex root of −1. Here we used that f is holomorphic on C

which in particular contains the ball of radius γ around 0.
If K > 1, we repeatedly apply the estimate (45) in each variable to obtain for every ν ∈ NK

0
∣∣∣∣
∂νf(0)

ν!

∣∣∣∣ ≤
sup|ξi|=γ |f(ξ1, . . . , ξK)|

γ|ν|
. (46)

For ν ∈ NK
0 denote tν := ∂νf(0)/ν!. Since f is holomorphic it admits a convergent multivariate

Taylor expansion

f(δ) =
∑

ν∈Nk
0

tνδ
ν ∀δ ∈ CK . (47)
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We point out that with C̃f,γ := sup|ξ|=γ |f(ξ1, . . . , ξK)|, (46) shows |tν | ≤ C̃f,γγ
−|ν| and there-

fore
∑

ν∈NK
0

|tν | ≤ C̃f,γ

∑

ν∈NK
0

γ−|ν| = C̃f,γ

K∏

i=1



∑

j∈N0

γ−j


 <∞. (48)

Thus the order of summation in (47) does not matter, as the series is absolutely convergent for
all |δ| < γ.

Now let us estimate the error of the truncated Taylor expansion. Fix n ∈ N, r > 0 and
γ > r. Then

sup
δ∈[−r,r]K

∥∥∥∥∥∥
f(δ)−

∑

‖ν‖ℓ∞≤n

∂νf(0)

ν!
δν

∥∥∥∥∥∥
≤ C̃f,γ

∑

ν∈NK
0 \{0,...,n}K

(γ
r

)−|ν|

.

Next,

sup
δ∈[−r,r]K

∥∥∥∥∥∥
f(δ)−

∑

‖ν‖ℓ∞≤n

∂νf(0)

ν!
δν

∥∥∥∥∥∥
≤ C̃f,γ

∑

‖µ‖ℓ∞=n

∑

ν∈NK
0

(γ
r

)−|µ|−|ν|

≤ C̃f,γ

(γ
r

)−n

|{µ ∈ NK
0 : ‖µ‖ℓ∞ = n}|

∑

ν∈NK
0

(γ
r

)−|ν|

≤ C̃f,γ

(γ
r

)−n

(1 + n)K
∑

ν∈NK
0

(γ
r

)−|ν|

≤ C̃f,γ,r

(γ
r

)−n

(1 + n)K (49)

where C̃f,γ,r := C̃f,γ

∑
ν∈Nk

0
(γ/r)−|ν| is finite by the same argument as in (48).

For a given κ > 1 we can now choose γ > max{κ, r} so large that
(γ
r

)−n

(1 + n)K ≤ exp(−κn) ∀n ∈ N. (50)

The statement now follows by (49) and (50), which completes the proof of Theorem 5.1.

B Proof of Theorem 5.4

We prove the theorem for the case r = 1. The general case r > 0 follows by setting fr(δ) :=
f(rδ), and then approximating fr with a neural network f̃r,n on [−1, 1]K . Then f̃n(δ) :=

f̃r,n(δ/r) is a suitable network approximating f , since for every δ ∈ [−r, r]K it holds f(δ) −
f̃n(δ) = fr(δ/r)− f̃r,n(δ/r). Furthermore we assume for now K ≥ 2, and discuss the case K = 1
in the last step.

According to [31, Proposition 3.3], for every m ∈ N and every γ > 0 there exists a network∏̃
m,γ : [−2, 2]m → R of size C(1 +m log(m/γ)) and depth C(1 + log(m) log(m/γ)) such that

sup
|xi|≤2

∣∣∣∣∣∣

m∏

j=1

xj −
∏̃

m,γ
(x1, . . . , xm)

∣∣∣∣∣∣
≤ γ. (51)

Step 1. Using (51), for every i ∈ N0 and γ > 0 we define pi,γ : [−1, 1] → R by pi,γ(x) :=∏̃
i,γ(x, . . . , x). Then, there exists a constant C > 0 such that for every i ∈ N0 and γ > 0 holds

size(pi,γ) ≤ C(1 + i log(i/γ)) and

sup
|x|≤1

|pi,γ(x)− xi| ≤ γ.
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Fix n ∈ N, κ > 1 and set g(δ) :=
∑

‖ν‖ℓ∞≤n tνδ
ν , where tν = ∂νf(0)/ν. We have the

bound (33), i.e. sup|δ|≤r |f(δ) − g(δ)| ≤ Cf,r,κ exp(−κn). We now construct a neural network
approximation g̃ to g. We define

g̃(δ) :=
∑

‖ν‖ℓ∞≤n

tν
∏̃

K,γ
(pν1,γ(δ1), . . . , pνK ,γ(δK)), (52)

and fix here and throughout the rest of this proof

γ := exp(−κn) ≤ 1.

Since each pνj ,γ(δj) is the realization of a ReLU network, also g̃ is the realization of ReLU
network.

Step 2. We bound the error supδ∈[−1,1]K |g(δ)− g̃(δ)|. First, note that for any δ ∈ [−1, 1]K

holds |∏K
j=1 pνj ,γ(δj)| ≤ 2K since |pνj ,γ(δj)− δ

νj

j | ≤ γ ≤ 1 for all j. Thus for any δ ∈ [−1, 1]K

by (51)

|g(δ)− g̃(δ)| ≤
∑

‖ν‖ℓ∞≤n

|tν |

∣∣∣∣∣∣

K∏

j=1

δ
νj

j −
∏̃

K,γ
(pν1,γ(δ1), . . . , pνK ,γ(δK))

∣∣∣∣∣∣

≤
∑

‖ν‖ℓ∞≤n

|tν |


γ +

∣∣∣∣∣∣

K∏

j=1

δ
νj

j −
K∏

j=1

pνj ,γ(δj)

∣∣∣∣∣∣




≤
∑

‖ν‖ℓ∞≤n

|tν |


γ +

K∑

i=1

∣∣∣∣∣∣

i−1∏

j=1

δ
νj

j

∣∣∣∣∣∣
|δνi

i − pνi,γ(δi)|

∣∣∣∣∣∣

K∏

j=i+1

pνj ,γ(δj)

∣∣∣∣∣∣




≤
∑

‖ν‖ℓ∞≤n

|tν |(γ +K2Kγ)| ≤ γ(1 +K2K)
∑

ν∈NN
0

|tν |. (53)

Since f is an entire function, it holds
∑

ν∈NK
0
|tν | < ∞. This can be shown using bounds

on tν as for instance provided in the proof of Theorem 5.1 (cf. (46)). Hence we have shown
supδ∈[−1,1]K |g(δ)− g̃(δ)| ≤ Cγ = C exp(−κn).

Step 3. We estimate the size and depth of (one realization of) the network g̃.
Whereas it is easy to see that g̃ is the realization of a neural network, there are different ways

to construct such a network (i.e. having different network architecture). In order to provide
one, we first consider a network F : RK → RKn which takes as input δ ∈ RK and computes in
parallel the Kn dimensional output (pi,γ(δj))i=1,...,n;j=1,...,K . For each i = 1, . . . , n, as stated
above,

size(pi,γ) ≤ C(1 + i log(i/γ)), depth(pi,γ) ≤ C(1 + log(i) log(i/γ)).

Concatenating pi,γ with O(log(n) log(n/γ)−log(i) log(i/γ)) times the one layer identity network
x = σ(x)− σ(−x) (where σ(x) = max{0, x} is the ReLU), we find that F can be realized by a
network of size CKn(1 + n log(n/γ)) and depth C(1 + log(n) log(n/γ)). Using γ = exp(−κn)
we get

size(F ) ≤ CKn(1 + n log(n/γ)) ≤ C(1 + n3),

depth(F ) ≤ C(1 + log(n) log(n/γ)) ≤ C(1 + n log(n)),

for a constant C depending on K and κ.
Next, we concatenate the NN F with a NN G expressing g̃ in (52) given the output

(pi,γ(δj))i=1,...,n;j=1,...,K of F . By (52), the size of this second part of the network can be

bounded by (n+1)Ksize(
∏̃

K,γ)+ (n+1)K , where the last (n+1)K stems from the summation
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over the set {ν ∈ NK
0 : ‖ν‖ℓ∞ ≤ n} in (52), which has cardinality (1 + n)K . Hence (since

γ = exp(−κn))

size(G) ≤ (n+1)Ksize(
∏̃

K,γ
) + (n+1)K ≤ C(1+K log(K/γ))(n+1)K ≤ C̃(n+1)K+1 (54)

for constants C, C̃ depending on K and κ. For the depth of G we obtain 1 + depth(
∏̃

K,γ) ≤
C(1 + log(K) log(K/γ)) ≤ C̃(n+ 1) as an upper bound. In total

size(g̃) = size(G ◦ F ) ≤ C(n+ 1)K+1 + n3 ≤ C(n+ 1)K+1 (55)

is an upper bound of the complete network G ◦ F : RK → R realizing g̃ (here we used that
K ≥ 2). Together with the previous two steps we arrive at

sup
δ∈[−1,1]K

|f(δ)− g̃(δ)| ≤ sup
|δ|≤1

|f(δ)− g(δ)|+ sup
|δ|≤1

|g(δ)− g̃(δ)| ≤ C exp(−κn) .

Finally, depth(g̃) ≤ 1 + depth(F ) + depth(G) ≤ C(1 + n log(n)).
Step 4. We show the theorem in case K = 1. Fix again n ∈ N, κ > 0 and for δ ∈ [−1, 1]

set g(δ) =
∑n

j=0 tjδ
j where tj = g(j)(0)/j!. By Theorem 5.1 there exists Cκ,f,1 such that

sup|δ|≤1 |f(δ)− g(δ)| ≤ Cκ,f,1 exp(−κn).
Now we approximate g by a neural network f̃n up to the error γ := exp(−κn). First, since

f : C → C is an entire function, we have C0 :=
∑

j∈N0
|tj | < ∞. By [24, Proposition 4.2],

there exists a neural network f̃n : [−1, 1] → R such that sup|δ|≤1 |g(δ)− f̃n(δ)| ≤ γ, size(f̃n) ≤
C(1 + n log(C0/γ) + n log(n)) and depth(f̃n) ≤ C((1 + log(n)) log(C0/δ) + log(n)3) with C
independent of n and γ. With γ = exp(−κn) there exists a constant C > 0 such that for every
n ∈ N holds size(f̃n) ≤ C(1 + n2) and depth(f̃n) ≤ C(1 + n log(n)). This completes the proof
of Theorem 5.4. ✷

C ReLU Neural Network Approximation of x 7→ 1/x

The approximation of rational functions by ReLU NNs is studied in [33]. In the particular
approximation of the map [x 7→ 1/x], we apply a different proof technique. We first construct a
sequence of certain variable degree, free-knot continuous splines with exponential convergence
rate bounds. We re-express these spline approximations subsequently by a corresponding se-
quence of deep ReLU NNs, with exponential error bounds. The following lemma should be
compared to [33, Lemma 3.5] in the approximation of the mapping [x 7→ 1/x] on an interval
[a, 1] for 0 < a ≤ 1/2, where possibly a is close to zero. Specifically, to achieve an accuracy
0 < ε < 1 required in [33, Lemma 3.5]1 a ReLU NN with size O(⌈log(1/a)⌉4⌈log(1/ε)⌉3). In the
following lemma, we construct a ReLU NN with size O(⌈log(1/a)⌉[⌈log(1/ε)⌉2 + ⌈log(1/a)⌉2])
that achieves an accuracy 0 < ε < 1.

Lemma C.1 Let 0 < a < b < ∞. There exists κ > 0 and constants C,C1 > 0 that are
independent of a, b such that for every n ∈ N, there exists a ReLU NN f̃n such that

sup
x∈[a,b]

∣∣∣∣
1

x
− f̃n(x)

∣∣∣∣ ≤ C
⌈log(b/a)⌉

a

(
1 +

1

b− a

)
exp

(
− κ√

⌈log(b/a)⌉
n

)
.

Furthermore, it holds that depth(f̃n) ≤ C1(1 + n log(n) + log3(n)) and size(f̃n) ≤ C1[1 +
n2(log(n) + log(

√
⌈log(b/a)⌉))]

1The words “size” and “depth” in the statement of [33, Lemma 3.5] should be interchanged.
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Proof: The proof is structured in two steps.
In the first step, we construct a polynomial spline approximation and in the second step,

we apply approximation error bounds of ReLU NNs for splines, see [24].

The interval J := [a, b] is decomposed into J =
⋃L

i=1 Ji, where Ji = [a2i−1, a2i], i =
1, . . . , L − 1, and JL = [a2L−1, b] for L = ⌈log2(b/a)⌉. Note that dist(0, Ji)/|Ji| = 1, i =
1, . . . , L− 1, and dist(0, JL)/|JL| ≥ 1.

Let i = 1, . . . , L − 1 be arbitrary. Let Fi : Ji 7→ [−1, 1] be the unique affine bijection
with affine inverse F−1

i : [−1, 1] 7→ Ji. Specifically, Fi(x) = x/(a2i−2) − 3 and F−1
i (x) =

a(2i−2x+ 3 · 2i−2). Note that the zero of F−1
i is at x = −3 and neither depends on i nor on a.

Thus, the map [z 7→ 1/F−1
i (z)] is holomorphic on the ellipse E̺ = { z+z−1

2 : z ∈ C, |z| ≤ ̺} for

any ̺ ∈ (1, ̺0) with ̺0 := 3+2
√
2. It is easy to see that |F−1

i (z)| ≥ a2i−2(3− ̺+̺−1

2 ) for every
z ∈ E̺. By [25, Theorem 3.5] for every 0 < β < log(̺) < log(3) there exists a constant C > 0
that neither depends on a, b nor on i such that for every p ∈ N,

sup
x∈[−1,1]

∣∣∣∣
1

F−1
i (x)

− P i
p(x)

∣∣∣∣ ≤ C
1

a2i−2(3− ̺)
exp(−βp), i = 1, . . . , L− 1, (56)

where P i
p is the pth order Legendre expansion of the mapping [x 7→ 1/(F−1

i (x))]; we also used

that ̺ > (̺+ ̺−1)/2. Denote by P̄ i
p the Langrange interpolant of the mapping [[−1, 1] ∋ x 7→

1/(F−1
i (x))] using Gauss–Lobatto interpolation points. In particular, P̄ i

p(−1) = 1/(F−1
i (−1))

and P̄ i
p(1) = 1/(F−1

i (1)). Let us denote this Langrange interpolation operator by Ip. By [4,
Equation (1.14)], the Lebesgue constant of the first p+1 Gauss–Lobatto points in [−1, 1] satisfies
the bound (suboptimal, see [32], but sufficient for our purposes),

∀p ≥ 1, ∀f ∈ C0([−1, 1]) : ‖Ipf‖C0([−1,1]) ≤ 5(p+ 1)2 log(p+ 1)‖f‖C0([−1,1]). (57)

Since Ip(P
i
p) = P i

p, the estimate of the Lebesgue constant in (57) implies with (56) for every
i = 1, . . . , L− 1

sup
x∈[−1,1]

∣∣∣∣
1

F−1
i (x)

− P̄ i
p(x)

∣∣∣∣ ≤ sup
x∈[−1,1]

|P̄ i
p(x)− P i

p(x)|+ sup
x∈[−1,1]

∣∣∣∣
1

F−1
i (x)

− P i
p(x)

∣∣∣∣

≤ C
5(p+ 2)2 log(p+ 1)

a2i−2(3− ̺)
exp(−βp).

(58)

The case i = L follows similarly. Define the spline interpolant Ip,L : [a, b] 7→ R by Ip,L(x) :=
P̄ i
p(Fi(x)), x ∈ Ji, i = 1, . . . , L. Note that Ip,L is continuous and restricted to Ji a polynomial

of degree p and has in total (p + 1)L degrees of freedom. By the estimate (58), for every
0 < β < log(3) there exists a constant C > 0 that neither depends on a nor on b such that for
every p ∈ N

sup
x∈[a,b]

∣∣∣∣
1

x
− Ip,L(x)

∣∣∣∣ ≤ max
i=1,...,L

sup
x∈[−1,1]

∣∣∣∣
1

F−1
i (x)

− P̄ i
p(x)

∣∣∣∣ ≤
C

a
exp(−βp). (59)

In the second step, we approximate the continuous piecewise polynomial Ip,L by a ReLU NN.
We shall bound theW 1,1([a, b])-norm of Ip,L. By the Markov inequality, cf. [13, Equation (1.16)
and p. 736], for every polynomial g of degree p,

sup
x∈Ji

|g′(x)| ≤ 4ep2

|Ji|
sup
x∈Ji

|g(x)|.
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Thus, by the upper bound on the Lebesgue constant of the Gauss–Lobatto points in (57)

‖Ip,L‖W 1,1([a,b]) ≤
L∑

i=1

|Ji| sup
x∈Ji

|(Ip,L)′(x)|

≤ 4ep2
L∑

i=1

sup
x∈Ji

|P̄ i
p(x)| ≤ 20ep2(p+ 2)2 log(p+ 1)

⌈log(b/a)⌉
a

(60)

Continuous polynomial splines may be approximated by ReLU NNs due to [24, Proposi-
tion 5.1]. Specifically, by [24, Proposition 5.1] and by (60), there exists κ > 0 and constants,
C,C1 > 0 (κ,C,C1 are independent of a, b) such that for every n ∈ N, there exists a ReLU NN
f̃n such that

‖Ip,L − f̃n‖W 1,1([a,b]) ≤
C⌈log(b/a)⌉

a
exp

(
− κn√

⌈log(b/a)⌉

)
. (61)

Moreover, depth(f̃n) ≤ C1(1 + p log(p) + n log(p) + log3(p)) and size(f̃n) ≤ C1(⌈log(b/a)⌉p2 +
n
√
⌈log(b/a)⌉p log(p)). We recall that by the Sobolev embedding, cf. [3, Theorems 8.6 and 8.8],

there exists a constant C > 0 (independent of a, b) such that for every g ∈W 1,1([a, b]),

‖g‖L∞([a,b]) ≤ C

(
1 +

1

b− a

)
‖g‖W 1,1([a,b]). (62)

The asserted error estimate of this lemma follows by (59) and by (61) and by (62) using
the triangle inequality, where we choose p = ⌈κn/(β

√
⌈log(b/a)⌉)⌉. Thus, by this choice,

depth(f̃n) ≤ C1(1 + n log(n) + log3(n)) and size(f̃n) ≤ C1[1 + n2(log(n) + log(
√
⌈log(b/a)⌉))].

✷
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[17] L. Hörmander. An introduction to complex analysis in several variables, volume 7 of North-
Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, third edition,
1990.
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