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Summary

We propose four approaches to solve time-harmonic Maxwell’s equations in R3 through the

Finite Element Method (FEM) in a bounded region encompassing parameter inhomogeneities,

coupled with theMultipleMultipole Program (MMP) in the unbounded complement.

MMP belongs to the class of methods of auxiliary sources and of Trefftz methods, as it employs

point sources that spawn exact solutions of the homogeneous equations. Each of these sources is

anchored at a point that, if singular, is placed outside the respective domain of approximation.

In the MMP domain we assume that material parameters are piecewise constant, which induces

a partition into one unbounded subdomain and other bounded, but possibly very large, subdo-

mains, each requiring its ownMMP trial space. Hence, in addition to the transmission conditions

between the FEM andMMP domains, one also has to impose transmission conditions connecting

theMMP subdomains.

Coupling approaches arise from seeking stationary points of Lagrangian functionals that both

enforce the variational form of the equations in the FEM domain and match the different trial

functions across subdomain interfaces:

1. Least-squares-based coupling using techniques from PDE-constrained optimization.

2. Discontinuous Galerkin coupling between themeshed FEMdomain and the single-entity

MMP subdomains.

3. Multi-field variational formulation in the spirit of mortar finite elementmethods.

4. Coupling through theDirichlet-to-Neumann operator.

Wecompare these approaches in a series of numerical experimentswithdifferent geometries and

material parameters, including examples that exhibit triple-point singularities and infinite layered

media.

KEYWORDS:

finite element method, multiple multipole program, method of auxiliary sources, Trefftz method,
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1 PRELIMINARIES

We consider the following second-order vector elliptic boundary value problem:




∇×
[
M

−1
µ (x)∇× u

]
− ω2Mǫ(x)u+∇φ = j

∇ · u = 0

inR3, (1a)

∇× u× x− ık‖x‖u = 0 for ‖x‖ → ∞ uniformly, (1b)

whichmodels time-harmonicMaxwell’s equations (frequency-domain electromagnetic wave propagation) expressed in terms of amagnetic vector

potential subject to the Coulomb gauge.

• u : R3 → C3 represents themagnetic vector potential. The first equation in (1a) is the Ampère’s law, the second the Coulomb gauge.

• φ : R3 → C represents the electric scalar potential, which also acts as a Lagrangemultiplier to impose theCoulomb gauge.φmust be subject

to a further constrain such that it is uniquely defined by (1a). In the scope of this work, we set
∫
R3 φ dx = 0.

• Mµ,Mǫ : R3 → C3,3 are symmetric, bounded, uniformly positive-definite matrices that correspond to an inhomogeneous, anisotropic

permeability and permittivity, respectively. We assume that bothMµ(x) = µ I andMǫ(x) = ǫ I ∀x ∈ R3 \ Ω⋆, given a bounded domain

Ω⋆ ⊂ R3, and µ, ǫ are piecewise constant inR3 \ Ω⋆.

• ω ∈ R is the angular frequency, while k := ω
√
µǫ the piecewise-constant wavenumber in R3 \ Ω⋆. It is implicitly assumed that k 6= 0;

otherwise, if, e.g.,ω = 0, we would be in amagnetostatic regime. This case is discussed in [1].

• j : R3 → R3, with∇ · j = 0, represents the stationary current that generates the electromagnetic field. j has compact support inΩ⋆.

• (1b) is the Silver-Müller radiation condition; please refer to [2, p. 195, Definition 6.6].

1.1 Domain Decomposition

Piecewise-constantµ, ǫ inR3 \Ω⋆ induce a natural partition ofR3 \Ω⋆ intom+1 subdomainsΩi, i = 0, . . . ,m, such that the pair (µ, ǫ) ∈ C2 (and

therefore the wavenumber k) is constant in eachΩi. We denote the constant wavenumber for each subdomain with ki, i = 0, . . . ,m, and assume

that there is only one unbounded domain in this partition, which we refer to asΩ0.

To simplify the exposition andwithout loss of generality, from now onwe assume thatm = 1, i.e. thatΩ0 ∪Ω1 = R3 \Ω⋆, with constant k0 ∈ C

in the unbounded domainΩ0 and constant k1 ∈ C in the boundedΩ1. Generalization tom > 1 is immediate.

However, instead of considering the physical domainsΩ⋆,Ω0,Ω1 (see Figure 1a), we take a different partition for computations (see Figure 1b):

R
3 = Ωf ∪ Ω0

m ∪ Ω1
m ∪ Γf0 ∪ Γf1 ∪ Γ01, (2)

withΓf0 := ∂Ωf ∩ ∂Ω0
m,Γf1 := ∂Ωf ∩ ∂Ω1

m,Γ01 := ∂Ω0
m ∩ ∂Ω1

m andΩf ∩Ω0
m = ∅,Ωf ∩Ω1

m = ∅,Ω0
m ∩Ω1

m = ∅. We also defineΩm := Ω0
m ∪Ω1

m and

Γ := Γf0 ∪ Γf1 ∪ Γ01.

We demandΩ⋆ ⊆ Ωf, but not necessarilyΩ⋆ = Ωf. IfΩ⋆ 6= Ωf,Γf0 ∪ Γf1 = ∂Ωf is an artificial interface. Note thatΩf can be composed of disjoint

regions.

We also demand thatΩ0
m,Ω

1
m include different values of thematerial parameters of (1a):Ω

i
m ⊆ Ωi, i = 0, 1, i.e. constantwavenumbers k0, k1 for

Ω0
m,Ω

1
m.

We call Ωf, a bounded Lipschitz domain, the Finite Element Method (FEM) domain, whereas Ω0
m is the unbounded and Ω1

m the bounded Trefftz

domain. The terminology indicates the typeof approximationof theunknown tobeemployed in eachdomain. Couplingbetween theFEMandTrefftz

domains is done across the (artificial) interfaces Γfi, i = 0, 1, while coupling between the two Trefftz domains occurs across the physical interface

Γ01.

Given these computational domains and using f and m as subscripts for FEM and Trefftz methods, respectively, we can decomposeu, φ as

uf := u|Ωf
∈ H(curl,Ωf), u0

m := u|Ω0
m
∈ Hloc(curl,Ω

0
m), u1

m := u|Ω1
m
∈ H(curl,Ω1

m), (3a)

φf := φ|Ωf
∈ H1

∗(Ωf), φ0m := φ|Ω0
m
∈ H1

∗,loc(Ω
0
m), φ1m := φ|Ω1

m
∈ H1

∗(Ω
1
m), (3b)

0Abbreviations. FEM: Finite ElementMethod.MMP:MultipleMultipole Program. DtN:Dirichlet-to-Neumann. TPS: Triple-Point Singularity. PDE: Partial
Differential Equation. DG: Discontinuous Galerkin. DoF: Degree of Freedom. BEM: Boundary Element Method. Subscript f in formulas: FEM. Subscript m in

formulas: Trefftz method (MMP). Superscriptn in formulas: discrete.
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FIGURE 1 Physical domains (Figure 1a) do not necessarily correspond to computational domains (Figure 1b): Γf0,Γf1 can be artificial interfaces.

Different colors in the figure represent regions with different parameters µ, ǫ.

withH1
∗(Ωf) :=

{
ϕ ∈ H1(Ωf) :

∫
Ωf
ϕ dx = 0

}
. The subscript “loc” indicates that functions belong to the reported space after multiplication with

a compactly-supported smooth function [3, p. 230].

1.2 Discretization

By testing the integral form of (1a) onΩf with suitable functions and integrating by parts, we obtain

Seek uf ∈ H(curl,Ωf), φf ∈ H1
∗(Ωf) :




∫
Ωf

[(
M

−1
µ ∇× uf

)
· (∇× vf)− ω2 (Mǫuf) · vf

]
dx+

∑
i=0,1

∫
Γfi

γui
f · vf dS +

∫
Ωf

∇φf · vf dx =
∫
Ωf

j · vf dx ∀vf ∈ H(curl,Ωf),

∫
Ωf

uf · ∇ψf dx−
∑

i=0,1

∫
Γfi

(
n · ui

f

)
ψf dS = 0 ∀ψf ∈ H1

∗(Ωf),

(4)

given themagnetic trace γ [3, p. 59, (3.51)]

γ :





Hloc(curl curl,Ω�) → H̃− 1
2 (divΓ�

,Γ�),

v 7→ n×
(
M

−1
µ ∇× v

)
.

(5)

We define the terms appearing in (5):

• Ω� ∈
{
Ωf,Ω

0
m,Ω

1
m

}
andΓ� ∈ {Γf0,Γf1,Γ01}.

• Hloc(curl curl,Ω�) is the space of functionsv ∈ Hloc(curl,Ω�) for which∇× (∇× v) ∈ L2
loc(Ω�) :=

[
L2
loc(Ω)

]3
.

• H̃− 1
2 (divΓ�

,Γ�) [3, p. 59] is the dual space ofH− 1
2 (curlΓ�

,Γ�) [3, p. 59, (3.53)]. The tilde of H̃− 1
2 (divΓ�

,Γ�) takes into account that

Γ� is generally an open interface [4, p. 59, (2.90)].

• n is the normal vector onΓ�.

We use standard finite element spaces to discretize (4) inΩf ⊇ Ω⋆, whereMµ,Mǫ may vary in space. These discrete spaces are built on tetra-

hedral meshesMf onΩf. More specifically, we discretizeuf ∈ H(curl,Ωf)with the lowest-orderH(curl,Ωf)-conforming edge elements of the first

family due to Nédélec [3, p. 126, Section 5.5], i.e.

Vn(Mf) := R1(Mf) :=
{
vn ∈ H0(curl,Ωf) : v

n|K (x) = aK + bK × x, aK ,bK ∈ R
3, x ∈ K ∀K ∈ Mf

}
, (6a)

and φf ∈ H1
∗(Ωf)with piecewise-linear Lagrangian finite elements [3, p. 143, Section 5.6], i.e.

V n(Mf) := S0
1 (Mf) :=

{
vn ∈ C0(Ωf) : vn|K (x) = aK + bK · x, aK ∈ R, bK ∈ R

3, x ∈ K ∀K ∈ Mf

}
. (6b)
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On each discrete function φnf ∈ H1
∗(Ωf) discretized by V

n(Mf) ⊂ H1(Ωf)we impose the condition
∫
Ωf
φnf dx = 0 by means of a scalar Lagrange

multiplier.

However, in the partition of R3 \ Ωf, induced by piecewise-constant material parameters µ, ǫ and giving rise to the unbounded domainΩ
0
m and

the (possibly very large) domain Ω1
m (Figure 1a), we do not intend to employ mesh-based basis functions, as required by Ω⋆. Indeed, given the

computational domainsΩ0
m,Ω

1
m introduced in Section 1.1, the weak solutionu

0
m ∈ Hloc(curl,Ω

0
m) of (1) is sought in the continuous Trefftz space

T (Ω0
m) :=

{
v ∈ Hloc(curl,Ω

0
m) : ∇× (∇× v)− k20 u = 0 , k0 ∈ C , ∇ · v = 0 ,

v satisfies the radiation condition (1b)
}
, (7a)

which is composed of exact solutions of (1) inΩ0
m. Correspondingly,u

1
m ∈ H(curl,Ω1

m) is sought in

T (Ω1
m) :=

{
v ∈ H(curl,Ω1

m) : ∇× (∇× v)− k21 u = 0 , k1 ∈ C , ∇ · v = 0
}
. (7b)

Trefftzmethods seek to approximate theunknown inΩ0
m,Ω

1
m usingfinite-dimensional (discrete) subspaces ofT (Ω0

m),T (Ω1
m).Whilemesh-based

methods like FEM suffer from the well-known pollution effect [5] with time-harmonicMaxwell’s equations,T (Ω0
m),T (Ω1

m) contain oscillating basis

functions, whichmay achieve better approximation properties than the classical piecewise-polynomial spaces of FEM [6]. Specifically, our approach

usesmultipole expansions centered in points outside eachΩi, i = 0, 1, which is being approximated; see Section 2 for details.

1.3 State of the Art

Several approaches to couple FEM and a Trefftz method for the Poisson’s equation in both 2D and 3D have been discussed by the authors from the

perspective of numerical analysis in [7]. Existence, uniqueness, and stability of all coupling approaches is formally proven in that work, which only

deals with scalar unknown functions. We offered numerical evidence for the feasibility of the coupling for Maxwell’s equations (vector unknown

functions) in [1, 8], which illustrate numerical convergence results for themagnetostatic and eddy-current equations, respectively.

[9] generalizes one of the coupling approaches, the Dirichlet-to-Neumann-based coupling (DtN-based coupling, Section 3.3.2), to any numerical

method based on volume meshes. The particular case of the coupling with the cell method, a technique based on both a primal and a dual volume

mesh [10], is illustrated theoretically and through numerical experiments performed with iterative solvers applied to the Schur complement of the

coupling systems (Trefftz degrees of freedom are eliminated).

Finally, [11] assumes thatmaterial parameters are piecewise constant in the Trefftz domain, similarly towhat is done in thiswork, to solve the 2D

Helmholtz equation. The approacheswe propose here to realize the coupling between FEMandmore than one Trefftz domain have been described

there for the first time.

The coupling between FEM and a Trefftz method has also been addressed before in [12]. However, a different methodology for the coupling is

used in thatwork: FEMandTrefftz field values, theDirichlet data, arematched in selectedpoints on the interface between their domains (collocation

method), while the Neumann data enter through a boundary term of the variational form. The resulting overdetermined system of equations is

solved in the least-squares sense.

To the best of our knowledge, apart from these papers, little research has been devoted to the investigation of strategies combining Trefftz

methods with conventional finite element methods. It is worth mentioning the infinite element method [13], primarily used for exterior Helmholtz

problems, which employs standard FEM in a bounded domain and infinite elements in the unbounded exterior. Given a spherical coordinate sys-

tem, the radial component of infinite elements is expressed by a multipole expansion, which can be used as Trefftz basis functions (see Section 2).

Conversely, the spherical component is approximated by standard polynomial finite element shape functions.

The novelty of the present work lies in using FEM with more than one Trefftz domain to solve nontrivial problems involving time-harmonic

Maxwell’s equations, while [11] is confined to 2DHelmholtz.

Having multiple Trefftz domains allows to treat piecewise-constant material parameters on potentially very large regions, while using aminimal

volume mesh for the FEM domain. This mesh can be so small that it only surrounds points where the field is singular, like Triple-Point Singulari-

ties (TPS), which emerge at the junction of three different materials [14] (Section 4.2). At the same time, one also needs to impose transmission

conditions between neighboring Trefftz domains, which requires amesh on the interfaces separating them.

This work also includes a numerical example involving infinite layered media [15] (Section 4.2.2).

2 TREFFTZMETHODS

The main feature that characterizes a Trefftz method is its own discrete Trefftz space. Hence, the functional form of the corresponding discrete

basis functions leads to different types of Trefftz methods:
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• Plane waves or (generalized) harmonic polynomials constitute themost common choice [6].

• If Trefftz basis functions solve an inhomogeneous problem, thenwe obtain themethod of fundamental solutions [16].

• Conversely, if they are point sources solving homogeneous equations (the right-hand side can be expressed by a knownoffset function), then
we get theMethod of Auxiliary Sources (MAS) [17].

In spite of this diversity, all Trefftzmethods share a desirable feature and a drawback. The former is the exponential convergence of their approx-

imation error if the field is smooth (see Section 2.2). The drawback is that, as exact solutions of a PDE are global functions and simple choices for a

basis of T (Ω0
m),T (Ω1

m)may be affected by near-linear dependence, Trefftz basis functions typically lead to ill-conditioned dense matrices. Stabil-

ity is therefore an issue. Related is the need of heuristic rules to build the discrete Trefftz spaces when the unknown is difficult to model, e.g., when

close to singularities: instability can have such a large impact that the numerical solution becomes useless.

The numerical examples of Section 4 show that coupling a Trefftz methodwith FEM can be away to overcome this issue. These examples rely on

a special case of MAS. Specifically, we use spaces spanned bymultipoles and refer to this discretization as theMMP approximation after the Trefftz

method known asMultiple Multipole Program.

2.1 MultipleMultipole Program

The concept of theMultiple Multipole Programwas proposed by Ch. Hafner in his dissertation [18] and popularized by his free code OpenMaXwell

[19] for 2D axisymmetric problems. Hafner’s MMP is in turn based on the much older work of G. Mie and I. N. Vekua [20, 21]. Essentially, the Mie-

Vekua approach expands some scalar field in a 2D multiply-connected domain by a multipole expansion supplemented with generalized harmonic

polynomials. Extending these ideas, MMP introduces more basis functions (multiple multipoles) than required according to Vekua’s theory [21] to

span theMMPTrefftz spaces (7).

Multipoles are potentials spawned by (anisotropic) point sources. For this reason, MMP belongs to the class of methods of auxiliary sources.

These point sources are taken from the exact solutions of the homogeneous PDEs (1a) that can be subject to the decay condition (1b), depending on

whether they are used to approximate the solution inΩ0
m.

A multipole can generally be written as v (x) := f (rxc) g (θxc, ϕxc) in a spherical coordinate system inR3 (r ∈ [0,∞), θ ∈ [0, 2π), ϕ ∈ [0, π])

with respect to its center c ∈ R3 (x, c ∈ R3 are position vectors in Cartesian coordinates). Here, (rxc, θxc, ϕxc)
⊤ are spherical coordinates of the

vectorxc := x− c.

The radial dependence f (rxc)may induce a central singularity, |f (r)| → ∞ for r → 0, and, when needed, the desired decay condition at infinity.

If they feature a singularity, multipoles are centered outside the domain in which they are used for approximation.

On theother hand, the spherical dependenceg is usually formulated in termsof vector spherical harmonics [22, p. 289]. The additional constraint

of the Coulomb gauge in (1a) is taken into account by selecting a subset of vector spherical harmonics to express g.

More specifically, themultipoles chosen for the numerical experiments of Section 4 have the forms

(r, θ, ϕ) 7→





bℓ(krxc)Φℓm(θxc, ϕxc),

ℓ(ℓ+ 1)
bℓ(krxc)

krxc
Yℓm(θxc, ϕxc) +

[
b′ℓ(krxc) +

bℓ(krxc)

krxc

]
Ψℓm(θxc, ϕxc),

ℓ = 1, . . . ,∞, m = −l, . . . , l,

(8)

given vector spherical harmonics defined as

Yℓm(θ, ϕ) := er Yℓm(θ, ϕ), er=(1, 0, 0)⊤, (9a)

Φℓm(θ, ϕ) := r×∇sphYℓm(θ, ϕ), r =(r, 0, 0)⊤, (9b)

Ψℓm(θ, ϕ) := r∇sphYℓm(θ, ϕ), (9c)

here with spherical components.

• bℓ is a spherical Hankel function of the first kind h
(1)
ℓ
[23, p. 281] or a spherical Bessel function of the first kind jℓ [23, p. 279], depending on

whether the Trefftz space is subject to the Silver-Müller radiation condition (1b).

• k := ω
√
µǫ ∈ C is the piecewise-constant wavenumber: k = ki inΩ

i
m, i = 0, 1.

• ∇sph denotes the gradient in spherical coordinates and Ylm(θ, ϕ) the spherical harmonics [23, p. 250]. It can be shown thatΦℓm,Ψℓm do

not depend on r despite its presence in their definitions (9b) and (9c).
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Each multipole from (8) is characterized by a location, i.e. its center c, and parameters ℓ (degree) and m (subdegree). When we place several

multipoles at a given location up to a certain order, which is themaximumdegree ofmultipoleswith that center, we use the termmultipole expansion.

Summing the number of terms of all multipole expansions used for approximation yields the total number of degrees of freedom of the discretized

Trefftz spaceT n(Ωi
m) ⊂ T (Ωi

m) of (7), i = 0, 1.

2.2 Approximation Error

For the Poisson’s equation in an unbounded domain R2 \ Ω⋆, with Ω⋆ bounded domain, it can be proven that the approximation error in theH1-

normdecreases exponentiallywith respect to the number of degrees of freedomof the correspondingMMPTrefftz space if the unknownpossesses

an analytic extension beyond the Trefftz domain [7, p. 3, Proposition 1]. The proof relies on the fact that (generalized) harmonic polynomials also

achieve exponential convergence in Hi-seminorms, i = 0, . . . , j, j ∈ N0, when solving 2D Poisson in a bounded domain that satisfies certain

assumptions [24, p. 61, Theorem 3.2.5].

A corresponding result for R3 remains elusive, even if [25, p. 261, Section 5.1] provides estimates for Trefftz approximations of functions with

limited smoothness. However, here we present a numerical experiment showing that exponential convergence also holds for (1).

We consider the equations∇ × (∇× u) − k2 u = 0, ∇ · u = 0 subject to the Silver-Müller radiation condition (1b). The domain is R3 with

a unit ball: we call this subdomainΩ1
m and the complementΩ

0
m (see Section 1.1). In each of them, the wavenumber k is referred to as k1 and k0. In

Ω0
m we also assume that the solutionu is decomposable asuinc + uref, withuinc := exp(ık0z) (0, 1, 0)

⊤ (with z third Cartesian coordinate) a known

plane wave that gives rise to the right-hand side of the problem anduref to be determined.

Assuming piecewise-constant k, we need to use different Trefftz spaces for each subdomain.Multipoles are then chosen according to (8): Hankel

functions are used on the unbounded domainΩ0
m, Bessel functions on the bounded domainΩ

1
m.

We consider two configurations of multipoles:

1. Multipole expansions up to a fixed order 1 uniformly located on unit cubes centered in the origin. Side lengths are 2.6 and 0.8 forΩ1
m andΩ

0
m,

respectively. During the convergence test we increase the number of expansions.

2. For each subdomain, onemultipole expansion of a given order placed in the origin. During the test we increase this order.

We solve this problem by collocation, imposing transmission conditions (11) between ui
m, i = 0, 1, denoting theMMP solution inΩi

m; inΩ
0
m, u

0
m

is shifted by the plane wave exp(ık0z) (0, 1, 0)
⊤. From now on,Γ01 refers to the boundaryΩ0

m ∩ Ω1
m.

Matching points for collocation on Γ01 are found through the intersections of meshes on the ballΩ1
m: these meshes are more refined depending

on the number of degrees of freedom of T n(Ωi
m), i = 0, 1, such that the number of matching points is always larger than the sum of the dimen-

sions of the discrete Trefftz spaces (leading to overdetermined systems solved in a least-squares sense by QR decomposition). We use volume

meshes to identify matching points on boundaries Γ01 because we also want to track a volume error; specifically, the relative approximation error

inH(curl,Ω1
m)-seminorm ∫

Ω1
m

∥∥∇×
(
u− u1m

)∥∥2
ℓ2

dx (10)

on the bounded domainΩ1
m. (10) is approximated by a Gaussian quadrature rule that is exact for polynomials of degree 2 (order 3). As benchmark

uwe rely on the numerical solution thatMMP provides with a number of degrees of freedom substantially higher than the highest number used in

the convergence study.

We take constant parameters k1 = 1.59 k0 and k0 = 3.33 radm−1. Figure 2 shows the corresponding relative H(curl)-errors: it hints at

exponential convergence, as in this example the solution possesses analytic extensions beyond the interface. Yet, the same error is reached by the

multipoles on cubes with a much larger number of degrees of freedom than the single expansions: this is due to the higher instability of the former

configuration compared to the latter (the aforementioned heuristics issue).

As a matter of fact, one could expand the incident plane wave in terms of vector spherical harmonics and obtain coefficients for the resulting

fields inΩ0
m,Ω

1
m asmultipole expansions centered in the origin – see Section 4.1. At the same time, considering a full planewave as excitation, as we

do in Figure 2, and choosing a slightly higher wavenumber k0 = 7.86 radm−1 (higher frequency), one can observe a photonic nanojet [26, p. 1985,

Fig. 4.a] in Figure 3, which illustrates the magnitude of the real component of u along the XZ-plane: given that exp(ık0z) (0, 1, 0)
⊤ propagates

along the z-axis, we can in fact see a beamon the pointwhere the planewave first hitsΩ1
m, i.e. whereΓ01 intersects the positive z-axis.Wewill again

observe this phenomenon in Section 4.1 with the FEM–MMP coupling.

However, MMP without modifications cannot properly handle more complicated situations than those explored here, such as triple-point

singularities, and preserve its exponential behavior. There are twoways to copewith these situations:

1. Augmenting the Trefftz spaces with basis functions that capture the singularities [27]. However, explicit knowledge of the form of such

singularities is required.
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FIGURE 2 p-refinement semi-log error plots for Maxwell’s equations without TPS solved with two MMP domains: exponential convergence in

H(curl,Ω1)-seminorm. Parameters are k1 = 1.59 k0 and k0 = 3.33 radm−1.

FIGURE 3Magnitude of the real component ofu along theXZ-plane for k1 = 1.59 k0 and k0 = 7.86 radm−1. The beam on the surface of the ball

is the photonic nanojet.

2. Coupling MMP with a method based on volume meshes, like FEM, and applying the latter to a locally-refined mesh that encompasses both

the singularities and their immediate surrounding regions. By truncating the mesh at an auxiliary boundary that does not coincide with any

physical discontinuity, MMP can be applied to a region where the field is sufficiently easy to approximate that heuristics on the placement

of multipoles (relevant for, e.g., the two configurations of Figure 2) does not impact much on the quality of the solution. This is the approach

followed by this work.



8 D. CASATI ET AL

3 COUPLING STRATEGIES

Relying on the formalism introduced in Sections 1.1 and 1.2, we can write the transmission conditions that the restrictions of the solution of (1) have

to satisfy acrossΓfi, i = 0, 1 [3, p. 107, Lemma 5.3]:

n× uf
∣∣
Γfi

= n× ui
m

∣∣
Γfi
, (11a)

γuf
∣∣
Γfi

= γui
m

∣∣
Γfi
, (11b)

n · uf
∣∣
Γfi

= n · ui
m

∣∣
Γfi
. (11c)

(11a) and (11b) stem from the first line of (1a), (11c) from the second line (Coulomb gauge).1 Analogous conditions also have to hold acrossΓ01.

transmission conditions (11) on Γf0,Γf1,Γ01 and the weak form (4) of (1a) inΩf are all the ingredients to obtain a FEM–Trefftz coupled solution

of (1). By inserting (11b) and (11c) onΓf0,Γf1 into the boundary integrals of (4), we obtain

Seek uf ∈ HΓ(curl,Ωf), u
0
m ∈ T (Ω0

m), u
1
m ∈ T (Ω1

m), φf ∈ H1
∗(Ωf) :




∫
Ωf

[(
M

−1
µ ∇× uf

)
· (∇× vf)− ω2 (Mǫuf) · vf

]
dx+

∑
i=0,1

∫
Γfi

γui
m · vf dS +

∫
Ωf

∇φf · vf dx =
∫
Ωf

j · vf dx ∀vf ∈ H(curl,Ωf),

∫
Ωf

uf · ∇ψf dx−
∑

i=0,1

∫
Γfi

(
n · ui

m

)
ψf dS = 0 ∀ψf ∈ H1

∗(Ωf).

(12)

InΩf, imposing theCoulombgauge via the Lagrangemultiplierφf ∈ H1
∗(Ωf) allows (11c) to hold through the boundary integrals of the second line of

(12): if we set φf ∈ H1
0 (Ωf), such boundary integrals would in fact disappear. Conversely, the Coulomb gauge is already taken into account strongly

for functionsui
m ∈ T (Ωi

m), i = 0, 1.

We end up with four different coupling approaches depending on how we impose the additional transmission condition (11a) on Γf0,Γf1 and

all transmission conditions (11) on Γ01. These coupling approaches in the continuous and discrete cases are discussed in the following sections as

stationary problems for different Lagrangian functionals. The resulting linear variational saddle-point problems are also stated.

3.1 PDE-constrained Least-Squares Coupling

Wedetermine a quadratic minimization problem under a linear variational constraint by seekinguf ∈ H(curl,Ωf),u
0
m ∈ T (Ω0

m), andu
1
m ∈ T (Ω1

m)

that

1. minimize themismatch in the transmission conditions

JΓ(uf,u
0
m,u

1
m) :=

∥∥n×
(
uf − u0

m

)∥∥2
H

−
1
2 (divΓf0

,Γf0)
+
∥∥n×

(
uf − u1

m

)∥∥2
H

−
1
2 (divΓf1

,Γf1)
+

∥∥n×
(
u0
m − u1

m

)∥∥2
H

−
1
2 (divΓ01

,Γ01)
+

∥∥γ
(
u0
m − u1

m

)∥∥2
H

−
1
2 (divΓ01

,Γ01)
+
∥∥n ·

(
u0
m − u1

m

)∥∥2
H

−
1
2 (Γ01)

(13)

2. and satisfy the PDE-constraint (12).

Note that here the constraint is given by the variational form of the system of PDEs (1a) inΩf, while the functional JΓ to be minimized is based on

the transmission conditions not imposed by the variational form (12).

This problem can be rephrased as seeking a saddle point of the following Lagrangian:

L(uf,u
0
m,u

1
m, φf,pf, ξf) :=

1

2
JΓ(uf,u

0
m,u

1
m)+

∫

Ωf

[(
M−1

µ ∇× uf
)
· (∇× pf)− ω2 (Mǫuf) · pf

]
dx+

∑

i=0,1

∫

Γfi

γui
m · pf dS+

∫

Ωf

∇φf · pf dx−
∫

Ωf

j · pf +
∫

Ωf

uf · ∇ξf dx−
∑

i=0,1

∫

Γfi

(
n · ui

m

)
ξf dS.

(14)

• φf ∈ H1
∗(Ωf), as discussed in Section 1.1.

• pf ∈ H(curl,Ωf) is the Lagrangemultiplier imposing the first line of (12).

• ξf ∈ H1
∗(Ωf) is the Lagrangemultiplier imposing the second line of (12).

1At first sight, one could think of combining (11a) and (11c) and impose the continuity uf
∣∣
Γfi

= u
i
m

∣∣
Γfi
, i = 0, 1. However, this would only hold if each

restriction ofu lay inH1(Ω�) :=
[
H1(Ω�)

]3
.
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Saddle-Point Problem

The trace norms ‖·‖
H

−
1
2 (divΓ�

,Γ�)
, ‖·‖

H
−

1
2 (Γ�)

are nonlocal. Thus, for practicality we replace themwith theL2(Γ�) andL2(Γ�)-norms in (13),

respectively, and seek uf ∈ H∂Ωf
(curl,Ωf) :=

{
v ∈ H(curl,Ωf) : n× v|∂Ωf

∈ L2
t (∂Ωf)

}
. Given this substitution, the necessary and sufficient

optimality conditions of (14) give rise to the saddle-point problem

Seek uf ∈ H∂Ωf
(curl,Ωf), u

0
m ∈ T (Ω0

m), u
1
m ∈ T (Ω1

m), φf ∈ H1
∗(Ωf), pf ∈ H(curl,Ωf), ξf ∈ H1

∗(Ωf) :




aLS[
(
uf,u

0
m,u

1
m

)
,
(
vf,v

0
m,v

1
m

)
] + bLS[

(
vf,v

0
m,v

1
m, ψf

)
, (pf, ξf)] = 0

bLS[
(
uf,u

0
m,u

1
m, φf

)
, (qf, ζf)] =

∫
Ωf

j · qf dx

∀vf ∈ H∂Ωf
(curl,Ωf), ∀v0

m ∈ T (Ω0
m), ∀v1

m ∈ T (Ω1
m), ∀ψf ∈ H1

∗(Ωf), ∀qf ∈ H(curl,Ωf), ∀ζf ∈ H1
∗(Ωf),

(15)

where

aLS
[(
uf,u

0
m,u

1
m

)
,
(
vf,v

0
m,v

1
m

)]
:=

∫

Γf0

[
n×

(
uf − u0

m

)]
·
[
n×

(
vf − v0

m

)]
dS +

∫

Γf1

[
n×

(
uf − u1

m

)]
·
[
n×

(
vf − v1

m

)]
dS+

∫

Γ01

{ [
n×

(
u0
m − u1

m

)]
·
[
n×

(
v0
m − v1

m

)]
+

[
γ
(
u0
m − u1

m

)]
·
[
γ
(
v0
m − v1

m

)]
+

[
n ·

(
u0
m − u1

m

)]
·
[
n ·

(
v0
m − v1

m

)] }
dS,

(16)

bLS
[ (

uf,u
0
m,u

1
m, φf

)
, (qf, ζf)

]
:=

∫

Ωf

[(
M−1

µ ∇× uf
)
· (∇× qf)− ω2 (Mǫuf) · qf

]
dx+

∑

i=0,1

∫

Γfi

γui
m · qf dS+

∫

Ωf

∇φf · qf +
∫

Ωf

uf · ∇ζf dx−
∑

i=0,1

∫

Γfi

(
n · ui

m

)
ζf dS.

(17)

We propose the following discretization for (15):

• uf,vf,pf,qf ∈ Vn(Mf), see (6a),

• φf, ψf, ξf, ζf ∈ V n(Mf), see (6b),

• u0
m,v

0
m ∈ T n(Ω0

m), and

• u1
m,v

1
m ∈ T n(Ω1

m).

3.2 Discontinuous Galerkin

Discontinuous Galerkin (DG) methods allow to use FEMwith nonconformingmeshes on different neighboring domains for the same boundary value

problem [28]. This is well-suited for the coupling because one can think of MMP as FEMwith special trial and test functions used on a “mesh” with

two entities:Ω0
m andΩ

1
m. More specifically, wewant to impose weak continuity of the tangential traces (11a) by a DGmethod [29].

Following this idea, the coupling can be expressed as a discrete stationary problem for the following Lagrangian:

L(un
f ,u

n,0
m ,un,1

m , φnf , φ
n,0
m , φn,1

m ) := JΩf
(un
f , φ

n
f ) + JΩm

(un,0
m ,un,1

m , φn,0
m , φn,1

m )+

∑

i=0,1

∫

Γfi

[
n×

(
un
f − u

n,i
m

)]
·Pn(un

f ,u
n,i
m ) dS+

∫

Γ01

[
n×

(
u
n,0
m − u

n,1
m

)]
·Pn(un,0

m ,un,1
m ) dS.

(18)

We propose un
f ∈ Vn(Mf) (6a), u

n,0
m ∈ T n(Ω0

m), u
n,1
m ∈ T n(Ω1

m), and φ
n
f ∈ V n(Mf) (6b). However, to discretize φ

n,0
m , φn,1

m , we first need to

discuss functionals JΩf
, JΩm

in the continuous case; the discrete operatorPn is discussed at a later stage.

Functionals JΩf
, JΩm

JΩf
expresses the saddle-point problem that corresponds to (1a) inΩf:

JΩf
(uf, φf) :=

1

2

∫

Ωf

[(
M−1

µ ∇× uf
)
· (∇× uf)− ω2 (Mǫuf) · uf

]
dx+

∫

Ωf

uf · ∇φf dx−
∫

Ωf

j · uf dx. (19a)

JΩm
foru0

m,u
1
m has a similar formulation, but for constant scalar coefficients and no sources:

JΩm
(u0
m,u

1
m, φ

0
m, φ

1
m) :=

1

2

∑

i=0,1

∫

Ωi
m

(
µ−1
i ‖∇ × ui

m‖2ℓ2 − ω2ǫi ‖ui
m‖2ℓ2

)
dx+

∑

i=0,1

∫

Ωi
m

ui
m · ∇φim dx. (19b)
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Becauseui
m ∈ T (Ωi

m), i = 0, 1, one can rewrite the volume integrals in (19b) as boundary integrals:

1

2

∫

Ωi
m

(
µ−1
i ‖∇ × ui

m‖2ℓ2 − ω2ǫi ‖ui
m‖2ℓ2

)
dx = −1

2

∫

∂Ωi
m

γui
m · ui

m dS, (20a)

∫

Ωi
m

ui
m · ∇φim dx =

∫

∂Ωi
m

(
n · ui

m

)
φim dS. (20b)

Normal Continuity

From (20b), by considering only the integrals oneachΓfi := ∂Ωf∩∂Ωi
m, i = 0, 1, takingn always pointing fromΩf toΩ

i
m, and setting φ

i
m

∣∣
Γfi

= φf|Γfi ,
from (20b) one can extract the terms

−
∑

i=0,1

∫

Γfi

(
n · ui

m

)
φf dS, (21a)

which is like imposing (11c) on eachΓfi by inserting
2 theMMPansatz in the boundary terms of the second line of the variational form (4), as done in

(12). Furthermore, by considering only the integrals on Γ01 := ∂Ω0
m ∩ ∂Ω1

m, taking the same n on both sides of Γ01, and defining φ01m := φ0m
∣∣
Γ01

=

φ1m
∣∣
Γ01
, from (20b) one can also extract

∫

Γ01

(
n · u0

m − n · ui
m

)
φ01m dS, (21b)

which is like imposing (11c) onΓ01 bymeans of a Lagrangemultiplier φ01m ∈ H
1
2 (Γ01). Thus, we can rewrite (20b) as

∑

i=0,1

∫

∂Ωi
m

(
n · ui

m

)
φim dS = −

∑

i=0,1

∫

Γfi

(
n · ui

m

)
φf dS +

∫

Γ01

(
n · u0

m − n · u1
m

)
φ01m dS. (22)

To discretize φ01m ∈ H
1
2 (Γ01), we use Dirichlet traces of n · vm on Γ01, given vm ∈ T n(Ω0

m) orT
n(Ω1

m), and define this discrete trace space as

T n(Γ01). This choice of T n(Γ01) is consistent with:

• The PDE-constrained least-squares coupling approach of Section 3.1: the same test functions in T n(Γ01) are chosen to impose (11c) onΓ01

through (13) – see (16).

• Mortar element methods (Section 3.3.1). In fact, these methods impose weak continuity between nonconforming meshes by a Lagrange mul-

tiplier discretized by traces of functions belonging to one of the discretization spaces of the neighboring domains, hereΩ0
m orΩ

1
m [30, p. 100,

Remark].

OperatorPn

Let us now go back to the Lagrangian functional (18). Depending on the choice of its discrete operator

Pn :
(
Vn(Mf) + T

n(Ωi
m)

)
×

(
Vn(Mf) + T

n(Ωi
m)

)
→

(
Vn(Mf) + T

n(Ωi
m)

)
, (23a)

i = 1, 2, we obtain different DG approaches.We follow the (symmetric) Interior Penalty DGmethod [31]:

Pn(un,vn) := M
−1
µ [∇× (un + vn)] + η M

−1
µ [n× (un − vn)]. (23b)

• Mµ(x) : R3 → C3,3 is themean of material parametersMµ inΩf andΩ
i
m when integrating on eachΓfi, i = 0, 1:

Mµ(x) :=
Mµ(x) + µi I

2
∀x ∈ Γfi, (24)

and ofMµ inΩ0
m andΩ

1
m when integrating onΓ01:

Mµ(x) :=
µ0 + µ1

2
I ∀x ∈ Γ01. (25)

• η ∈ R is a penalty parameter that needs to be assigned heuristically. On anyΓfi, i = 0, 1, η should be proportional toN i
m/h, whereN

i
m is the

number of degrees of freedom ofT n(Ωi
m) and h ∈ R themeshwidth ofMf restricted toΓfi. OnΓ01, η should be proportional toN0

m +N1
m.

Both choices are inspired by η ∼ p/h, used in case of polynomial DG–FEM [32, p. 229] (with p ∈ N∗ the polynomial degree).

2Theminus sign is due to flipping the direction ofn, which now points fromΩf toΩ
i
m , i = 0, 1, for this integral.
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Saddle-Point Problem

Finding the stationary point of (18) leads to the discrete saddle-point problem

Seek un
f ∈ Vn(Mf), u

n,0
m ∈ T

n(Ω0
m), u

n,1
m ∈ T

n(Ω1
m), φ

n
f ∈ V n(Mf), φ

n,01
m ∈ T n(Γ01) :





anDG[
(
un
f ,u

n,0
m ,un,1

m

)
,
(
vn
f ,v

n,0
m ,vn,1

m

)
] + bnDG[

(
vn
f ,v

n,0
m ,vn,1

m

)
,
(
φnf , φ

n,01
m

)
] =

∫
Ωf

j · vn
f dx

bnDG[
(
un
f ,u

n,0
m ,un,1

m

)
,
(
ψn
f , ψ

n,01
m

)
] = 0

∀vn
f ∈ Vn(Mf), ∀vn,0

m ∈ T
n(Ω0

m), ∀vn,1
m ∈ T

n(Ω1
m), ∀ψn

f ∈ V n(Mf), ∀ψn,01
m ∈ T n(Γ01),

(26)

where we define the symmetric bilinear form anDG(·, ·) and linear form bnDG(·, ·) as

anDG
[ (

un
f ,u

n,0
m ,un,1

m

)
,
(
vn
f ,v

n,0
m ,vn,1

m

) ]
:=

∫

Ωf

[(
M−1

µ ∇× un
f

)
· (∇× vn

f )− ω2 (Mǫu
n
f ) · vn

f

]
dx+

∑

i=0,1

∫

Γfi

{[
M

−1
µ ∇×

(
un
f + u

n,i
m

)]
·
[
n×

(
vn
f − v

n,i
m

)]
+

[
n×

(
un
f − u

n,i
m

)]
·
[
M

−1
µ ∇×

(
vn
f + v

n,i
m

)]}
dS+

∑

i=0,1

∫

Γfi

2 η
[
M

−1
µ n×

(
un
f − u

n,i
m

)]
·
[
n×

(
vn
f − v

n,i
m

)]
dS −

∑

i=0,1

∫

∂Ωi
m

γu
n,i
m · vn,i

m dS+

∫

Γ01

{[
M

−1
µ ∇×

(
u
n,0
m + u

n,1
m

)]
·
[
n×

(
v
n,0
m − v

n,1
m

)]
+

[
n×

(
u
n,0
m − u

n,1
m

)]
·
[
M

−1
µ ∇×

(
v
n,0
m + v

n,1
m

)]}
dS+

∫

Γ01

2 η
[
M

−1
µ n×

(
u
n,0
m − u

n,1
m

)]
·
[
n×

(
v
n,0
m − v

n,1
m

)]
dS,

(27)

bnDG
[ (

un
f ,u

n,0
m ,un,1

m

)
,
(
ψn
f , ψ

n,01
m

) ]
:=

∫

Ωf

un
f · ∇ψn

f dx−
∫

Γf0

(
n · un,0

m

)
ψn
f dS −

∫

Γf1

(
n · un,1

m

)
ψn
f dS+

∫

Γ01

(
n · un,0

m − n · un,1
m

)
ψn,01
m dS.

(28)

3.3 Coupling by Tangential Components Traces

The two coupling approacheswe describe now can only be used in the case ofm = 0, i.e. a single (unbounded) Trefftz domainΩ0
m, whichwe refer to

asΩm. This also results in having a single interfaceΓ ≡ Γf0 = ∂Ωf = ∂Ωm.

Moreover, both thesemethods

1. impose the continuity of the tangential components trace forMaxwell’s equations (1), i.e.

n×
(
n× uf

)∣∣
Γ
= n×

(
n× um

)∣∣
Γ
, (29)

instead of the continuity between tangential traces stated in (11a), and

2. enforce (29) weakly through test functions γv, givenv ∈ Hloc(curl,Ω�),Ω� ∈ {Ωf,Ωm}.

3.3.1 Multi-Field Coupling

As for the DG-based coupling (Section 3.2), we treat the (here single) MMP discretization as a finite element with special functions. However, now

we rely on the other main approach for imposing weak continuity on nonconforming meshes, which is themulti-field domain decomposition method

[33].

For Maxwell’s equations, the multi-field method aims at imposing the continuity of the tangential components trace (29) in a weak sense by

means of a Lagrangemultiplier

λ := γv, v ∈ Hloc(curl,Ω), Ω ⊆ R
3. (30)

From (30) one can see thatλ belongs to the dual spaceH− 1
2 (divΓ,Γ), which is consistent with (29) connecting traces inH

− 1
2 (curlΓ,Γ).

The rationale behind themulti-field method becomes clear if one applies the generalized Stokes’ theorem inH(curl curl,Ω) to the weak form of

(1a) inΩf, which then leads to the boundary integral ∫

Γ

γuf · [n× (n× vf)] dS. (31)

Substituting (29) into (31), we can understand the reason for (30). Then, relying on the definition of γ (5), (31) can be simplified as the boundary

integrals of the first line of (12).

Hence, themulti-field coupling can be expressed by the following Lagrangian:

L(uf,um, φf, φm,λ) := JΩf
(uf, φf) + JΩm

(um, φm) +

∫

Γ

{n× [n× (uf − um)]} · λ dS, (32)
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where JΩf
and JΩm

are the same as in (19a) and (19b). In the sameway as (20), we can also rewrite the volume integrals of JΩm
as boundary integrals

on the single interfaceΓ and then, as in (21a), rename φm|Γ as φf|Γ.

Saddle-Point Problem

Weobtain the following saddle-point problem:

Seek uf ∈ H(curl,Ωf), um ∈ T (Ωm), φf ∈ H1
∗(Ωf), λ ∈ H̃− 1

2 (divΓ,Γ):




aMF[(uf,um) , (vf,vm)] + bMF[(vf,vm) , (φf,λ)] =
∫
Ωf

j · vf dx

bMF[(uf,um) , (ψf,χ)] = 0

∀vf ∈ H(curl,Ωf), ∀vm ∈ T (Ωm), ∀ψf ∈ H1
∗(Ωf), ∀χ ∈ H̃− 1

2 (divΓ,Γ),

(33)

where

aMF[(uf,um) , (vf,vm)] :=

∫

Ωf

[(
M−1

µ ∇× uf
)
· (∇× vf)− ω2 (Mǫuf) · vf

]
dx−

∫

Γ

γum · vm dS, (34a)

bMF[(uf,um) , (ψf,χ)] :=

∫

Ωf

uf · ∇ψf dx−
∫

Γ

(n · um) ψf dS +

∫

Γ

{n× [n× (uf − um)]} · χ dS. (34b)

For the discretization of (33), we suggestuf,vf ∈ Vn(Mf) of (6a), φf, ψf ∈ V n(Mf) of (6b), andum,vm ∈ T n(Ωm), as in Sections 3.1 and 3.2.

Conversely, the discretization ofλ ∈ H̃− 1
2 (divΓ,Γ) is a topic debated in the literature [34, Section 4]. In the spirit ofmortar elementmethods, we

opt for the tangential traces on Γ of the trial space used to discretize one of the neighboring domains [34, p. B426], specifically the Nédélec’s space

Vn(Mf), given its higher number of degrees of freedom thanT
n(Ωm).

Note that this choice, while being the most common discretization strategy [34, Section 4.1], ignores the duality of λ. This nonconforming

discretization then prevents us from extending the multi-field coupling approach to the case with multiple MMP domains. As a matter of fact,

a Lagrange multiplier λ01 ∈ H̃− 1
2 (divΓ01

,Γ01), which would impose continuity of tangential components traces between the MMP domains

Ω0
m,Ω

1
m, would have to be discretized by the tangential traces of either T

n(Ω0
m) or T

n(Ω1
m), the neighboring volume discretization spaces. While

onΓf0 andΓf1 the Nédélec’s space is the obvious natural decision, no easy choice exists onΓ01.

This is a similar issue that afflicts the discretization of ψn,01
m for the DG-based coupling (Section 3.2). However, in that case only the normal

continuity (11c) betweenMMPdomains is affected, which is of lesser importance because it comes from aGauge condition (second line of (1a)). On

the other hand, the tangential continuity (11a) comes from the physically more relevantMaxwell’s equations (first line of (1a)).

3.3.2 Dirichlet-to-Neumann-based Coupling

This coupling approach is a special case of the Trefftz co-chain calculus presented in [9], where Trefftz methods are coupled with any numerical

method based on volumemeshes that fits the framework of co-chain calculus. Obviously, the numerical method here is FEM.

Asmentioned in Section 3.3, instead of the continuity between tangential traces implied by (11a), we take into account the continuity of the tan-

gential components trace. (29) is then imposed inweak formby testing itwithγvm, givenvm ∈ T (Ωm) (comparewith (30) and (31) in Section 3.3.1):

∫

Γ

{[n× (n× uf)]− [n× (n× um)]} · γvm dS = 0 =⇒
∫

Γ

(uf − um) · γvm dS = 0 ∀vm ∈ T (Ωm), (35)

which holds because of the definition of γ (5).

Saddle-Point Problem

Combining (35) with the (symmetrized) variational form (12), we end upwith the following system:

Seek uf ∈ H(curl,Ωf), um ∈ T (Ωm), φf ∈ H1
∗(Ωf) :





aDtN[(uf,um) , (vf,vm)] + bDtN[(vf,vm) , φf] =
∫
Ωf

j · vf dx

bDtN[(uf,um) , ψf] = 0

∀vf ∈ H(curl,Ωf), ∀vm ∈ T (Ωm), ∀ψf ∈ H1
∗(Ωf),

(36)
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where

aDtN[(uf,um) , (vf,vm)] :=

∫

Ωf

[(
M−1

µ ∇× uf
)
· (∇× vf)− ω2 (Mǫuf) · vf

]
dx+

∫

Γ

uf · γvm dS +

∫

Γ

γum · vf dS −
∫

Γ

γum · vm dS, (37a)

bDtN[(uf,um) , ψf] :=

∫

Ωf

uf · ∇ψf dx−
∫

Γ

(n · um) ψf dS. (37b)

TheGalerkin discretization of (36) is straightforward: as done before,we replaceH(curl,Ωf)withV
n(Mf) of (6a),H

1(Ωf)withV
n(Mf) of (6b),

andT (Ωm)with a finite-dimensional subspaceT
n(Ωm).

Note that (36) can also be derived by finding a stationary point of the functional

L(uf,um, φf, φm) := JΩf
(uf, φf) + JΩm

(um, φm) +

∫

Γ

uf · γum dS, (38)

where JΩf
and JΩm

are the same as in (19a) and (19b) and φm disappears by setting φm|Γ = φf|Γ as in (21a).

4 NUMERICAL RESULTS

Throughout we use lowest-order H(curl,Ωf)-conforming edge elements of the first family due to Nédélec for vector variables, i.e. V
n(Mf) =

R1(Mf) from (6a), and piecewise-linear Lagrangian finite elements for scalar variables, i.e. V
n(Mf) = S0

1 (Mf) from (6b). MeshesMf of Ωf are

composed of tetrahedra.

To study the convergence we employ uniform h-refinement ofMf and p-refinement of the Trefftz (MMP) approximations, in the sense that we

increase the number of multipoles. The p-refinement of the multipoles forming T n(Ωi
m), i = 0, 1, is linked to the h-refinement ofMf; specifically,

to the logarithm of the number of intersections of the mesh entities ofMf on Γfi. This choice is motivated by the exponential convergence of the

MMPapproximation error (see Section 2.2). Hence, in the next pages (log-log) plots of the resultswill show the algebraic convergence characteristic

of h-FEM: rates are fitted with the polyfit function of MATLAB (degree 1) applied to log-transformed data.

Wemonitor the following errors:

• The volume error in the bounded domains Ωf,Ω1
m. These are the relative L2(Ωf)- and L2(Ω1

m)-errors of the FEM and MMP (in Ω1
m)

approximations compared to the reference solutionu, i.e.

∥∥∥∥∥∥
u−

Nf∑

j=1

αj
f
v
j
f
(x)

∥∥∥∥∥∥
L2(Ωf)

/
‖u‖

L2(Ωf)
and

∥∥∥∥∥∥∥
u−

N1
m∑

j=1

αj,1
m v

j,1
m (x)

∥∥∥∥∥∥∥

2

L2(Ω1
m
)

/
‖u‖

L2(Ω1
m
) , (39)

withαj
f
, αj,1
m ∈ C,v

j
f
∈ Vn(Mf),v

j,1
m ∈ T n(Ω1

m), andNf, N
1
m numbers of degrees of freedomof thediscrete spacesV

n(Mf) andT
n(Ω1

m),

respectively.

On the bounded MMP domain Ω1
m we define an auxiliary volume mesh for the numerical quadrature of the error (39). However, on top of

Mf, only a mesh on the 2-dimensional hypersurface Γ01 is really necessary for the coupling, in order to compute the numerical integrals on

that interface. Specifically, throughout we mesh Γ01 (and any curved surface) by simple polyhedral approximations. Of course, if only one

(unbounded)MMP domainΩm is considered, then only themeshMf is needed (and no other volume error thanL
2(Ωf) is computed).

• The boundary error on ∂Ω0
m = Γf0 ∪ Γ01, union of the interfaces between the unbounded domain Ω0

m and the other (bounded) domains

Ωf,Ω
1
m. This is the relativeL

2(∂Ω0
m)-error of theMMP solution inΩ

0
m compared to the reference solution.

We can ignore the impact of numerical integration for FEMbecausewe use a local Gaussian quadrature rule that is exact for polynomials of degree

2 (order 3).

4.0.1 Implementation

Meshes were generated using COMSOL v5.3a.

Our code is written in C++. We use Eigen v3.3.7 for linear algebra and HyDi for the FEM component. HyDi, which can handle Hybrid nonconform-

ing meshes and Discontinuous finite elements, is a template-based C++14 library, parallelized with C++11 multithreading, that is used as in-house

simulation software at themultinational ABB [35, p. 147, Chapter 6].

Finally, the PARDISO v6.0 solver provides the sparse LU decomposition to solve the systems of the FEM–MMP coupling, characterized by

nontrivial sparsity patterns.
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(a)Numerical solution obtainedwith the DtN-based coupling. (b) Exact solution given byMie theory.

FIGURE4Magnitude of the real component ofu along theXZ-plane forµ• = 2.5281µ0 andω = 23.56 · 108 rad s−1. The excitation is given by the

expansion of a plane wave in terms of vector spherical harmonics (for ℓ = 1, . . . , 5) propagating along the z-axis.

4.1 ElectromagneticWave Propagationwith Exact Solution

Wesolve∇×
(
µ−1∇× u

)
−ω2ǫu = 0, ∇·u = 0 inR3 subject to the Silver-Müller radiation condition (1b)with piecewise-constant permeability

µ = 2.5281µ0 in a unit ball centered in the origin, which we dubΩ•, and µ = µ0 = 4π · 10−7 H s−1 (permeability of free space) elsewhere. ǫ and

ω are everywhere equal to ǫ0 = 8.85 · 10−12 Fm−1 (permittivity of free space) and 23.56 · 108 rad s−1, respectively. Wavenumbers are therefore

k• = 1.59 k0 inΩ• and k0 = 7.86 radm−1 elsewhere.

We assume thatu is subject to an excitation by an incident plane wave propagating along the z-axis outsideΩ•, i.e.

u = uinc + uref inR
3 \ Ω•, uinc := exp(ık0z) (0, 1, 0)

⊤, (40)

where uref represents the unknown reflected potential and z in uinc the third Cartesian coordinate. This problem has an exact solution coming

fromMie theory [36, Chapter 4, pp. 82–101], where the planewave is expanded into vector spherical harmonics and coefficients are derived for the

corresponding terms of the expansions of the reflected and transmitted potentials.

For our numerical tests, we consider the terms in the expansions ofMie theory for ℓ = 1, . . . , 5 (35 terms), identifyΩ• withΩf andR3 \Ω• with a

singleMMPdomainΩm, and therefore setΓ := ∂Ωf ∩ ∂Ωm on the physical boundary of the ball. Given that we use tetrahedral meshes,Γ is actually
a polyhedral approximation of a sphere.

Note that in this setting um has an analytic extension beyondΩm, and hence fulfills the requirements for exponential convergence (Section 2.2).

T n(Ωm) is then generated by a single multipole expansion centered in the origin.

Numerical Results

Figure 4 exemplifies the performance of FEM–MMP by visualizing the magnitude of u in the case of the DtN-based coupling (Section 3.3.2)

compared to the exact solution. The other coupling schemes return comparable images.

For a quantitative convergence test, see Figure 5, which shows h-refinement convergence plots for all coupling approaches, which yield very

similar results.We can clearly see algebraic convergence of the FEM andMMP errors.

Figure 6 shows surface plots of the total relative L2-error for all coupling approaches. The error decreases with h (algebraic convergence) and

is generally independent from the number of multipoles: the FEM error dominates. This is a consequence of the exponential convergence of MMP

(Section 2.2): the exact solution is so easy to approximate in the MMP domain that it can already be represented by a multipole expansion of the

lowest considered order, which is 8, leading to 160 terms of the expansion – see (8).

However, the error also increases when switching to coarser meshes and larger numbers of multipoles, when the coupling is mostly difficult due

to a disproportionately high number of degrees of freedom for MMP (dense blocks of the coupling matrices) with respect to FEM (sparse blocks).
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FIGURE 5 h-refinement log-log error plots for time-harmonic Maxwell’s equations with exact solution. Parameters are µ• = 2.5281µ0 and ω =

23.56 · 108 rad s−1.
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FIGURE 6Meshwidth h vs. MMP degrees of freedom for time-harmonic Maxwell’s equations with exact solution: total relative error. Parameters

are µ• = 2.5281µ0 andω = 23.56 · 108 rad s−1.

In these cases, our conjecture is that it becomes difficult for a direct solver to properly solve such an ill-conditioned system, and the MMP error

dominates.

Moreover, we do not have datapoints for the PDE-constrained coupling with the most refined meshes and highest numbers of multipoles: the

resulting linear systems are too large to be solved by an LU decomposition due tomemory constraints.

4.1.1 Two Trefftz Domains

Parameters are still µ• = 2.5281µ0, ǫ• = ǫ0, and ω = 23.56 · 108 rad s−1. We split the unit ballΩ• into two halves, one modeled by FEM (Ωf), the

other byMMP (Ω1
m): the coupling interface Γf1 is therefore artificial. MMP also models the complementR

3 \ Ω• (Ω0
m): the coupling boundaries Γf0

andΓ01, on the two halves of the sphere, correspond to the physical discontinuity of µ. A samplemesh is shown in Figure 7.

As excitation, we consider terms for ℓ = 1, . . . , 5 from the expansion of a plane wave given byMie theory.
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FIGURE 7Cross-section of a 3Dmesh ofΩf andΩ
1
m along theXZ-plane. The ball of radius 1 isΩ•, the volumewhereµ 6= µ0. The bluemesh covers

Ωf, the purple oneΩ
1
m, which is meshed for numerical quadrature of the error.
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FIGURE 8 h-refinement semi-log error plots (y-axis) for time-harmonic Maxwell’s equations with exact solution solved with two MMP domains.

Parameters are µ• = 2.5281µ0 andω = 23.56 · 108 rad s−1.

In this setting u0
m and u1

m again have analytic extensions beyond Ω0
m and Ω1

m, and hence fulfill the requirements for exponential convergence

(Section 2.2). To approximate in Ω1
m, a single multipole expansion with spherical Bessel functions as radial dependence is centered in the origin:

Bessel functions of the first kind have no singularities in that point, which lies on ∂Ω1
m. To approximate in Ω0

m, a single multipole expansion with

spherical Hankel functions as radial dependence is also centered in the origin.

Figure 8 shows h-refinement convergence plots for all coupling approaches that work with multiple MMP domains (Sections 3.1 and 3.2). We

can see algebraic convergence of the FEM andMMP errors, which is of rate∼ 1 for FEM.
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FIGURE 9 Cross-section of a 3D mesh ofΩf andΩ
1
m along theXZ-plane. The blue, pink, and green meshes coverΩf and have parameters µ+, µ−,

and µ0, respectively. The purple mesh covers Ω1
m (µ−) and is used for numerical quadrature of the error. For better visualization, this mesh is not

locally refined at the points with TPS (circumference touching the blue, pink, and greenmeshes).

4.2 ElectromagneticWave Propagationwith Triple-Point Singularities

The problem is the same as in Section 4.1, but now we consider different values of µ in each half of the ballΩ•. Specifically, we take µ+ = 4µ0 in

one half ofΩ• and µ− = 2.5281µ0 in the other half. ω is still= 23.56 · 108 rad s−1: wavenumbers are k+ = 2 k0 and k− = 1.59 k0. Hence, on the

circumference that delimits the surface splittingΩ• we have triple-point singularities.

We fully surround the circumference with TPS by a mesh, and therefore also model with FEM a small region on the other side of the physical

discontinuity of Ω• and an “airbox” in R3 \ Ω•. The coupling interfaces Γf0 and Γf1 are therefore auxiliary; only the interface Γ01 is physical. The

FEMmesh is also locally refined towards the points with TPS. A samplemesh is shown in Figure 9.

The excitation is still given by a plane wave uinc := exp(ık0z) (0, 1, 0)
⊤ that shifts the MMP ansatz in Ω0

m. However, given the TPS, there is

no exact solution: as reference we rely on the numerical solution provided by a mesh substantially more refined than the finest mesh used in the

convergence study.

To approximate inΩ1
m, a singlemultipole expansionwith spherical Bessel functions as radial dependence is centered in the origin. To approximate

inΩ0
m, a single multipole expansion with spherical Hankel functions as radial dependence is also centered in the origin.

Numerical Results

Figure 10 shows DoF-refinement convergence plots for all coupling approaches that work with multiple MMP domains. We can clearly see alge-

braic convergence of the FEM andMMP errors, even if the relative errors of the DG-based coupling are higher than those of the PDE-constrained

approach.

We have also considered material parameters where the frequency ω is lower, and therefore FEM suffers less from the pollution effect, but the

difference between µ+, µ−, and µ0 is higher and the TPSmore pronounced. Specifically, µ+ = 10µ0, µ− = 4µ0, andω = 23.56 · 107 rad s−1.

Figure 11 shows DoF-refinement convergence plots for all coupling approaches that work with multiple MMP domains. Again, we can clearly

see algebraic convergence of the FEM and MMP errors and the errors of the DG-based coupling are higher. However, while the convergence rate

does not improve with respect to the plots of Figure 10, the values of the relative errors are much lower than before, given the easier-to-handle

frequency.
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FIGURE 10 DoF-refinement log-log error plots for time-harmonic Maxwell’s equations with TPS solved with two MMP domains (sample mesh in

Figure 9). Parameters are µ+ = 4µ0, µ− = 2.5281µ0, andω = 23.56 · 108 rad s−1.
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FIGURE 11 DoF-refinement log-log error plots for time-harmonic Maxwell’s equations with TPS solved with two MMP domains (sample mesh in

Figure 9). Parameters are µ+ = 10µ0, µ− = 4µ0, andω = 23.56 · 107 rad s−1.

4.2.1 Minimal FEMMesh

We repeat these experiments with the meshes shown in Figure 12, where only the points with TPS and their immediate surrounding regions are

modeled with FEM, so to minimize the meshed region. Hence, here we have three MMP domains: bounded Ω1
m,Ω

2
m (µ+, µ−) and unbounded Ω

0
m

(µ0).

To approximate in Ω1
m and Ω2

m, two multipole expansions with spherical Bessel functions as radial dependence are centered in the origin. To

approximate inΩ0
m, a multipole expansion with spherical Hankel functions as radial dependence is also centered in the origin.

Figure 13 showsDoF-refinement convergence plots for the PDE-constrained coupling, given

• µ+ = 4µ0, µ− = 2.5281µ0, andω = 23.56 · 108 rad s−1 in Figure 13a, and

• µ+ = 10µ0, µ− = 4µ0, andω = 23.56 · 107 rad s−1 in Figure 13b.
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FIGURE 12Cross-section of a 3Dmesh ofΩf,Ω
1
m, andΩ

2
m along theXZ-plane. The blue, pink, and greenmeshes coverΩf and have parametersµ+,

µ−, and µ0, respectively. The purple and orangemeshes coverΩ1
m (µ+) andΩ

2
m (µ−). They are used for numerical quadrature of the errors.
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(a) Parameters areµ+ = 4µ0 ,µ−
= 2.5281µ0 , andω = 23.56 · 108 rad s
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FIGURE 13DoF-refinement log-log error plots for time-harmonic Maxwell’s equations with TPS solved with threeMMP domains (sample mesh in

Figure 12) using the PDE-constrained coupling.

We can still see algebraic convergence of the FEM andMMP errors. Moreover, the values of the relativeMMP errors in Figure 13b are again much

lower than Figure 13a, given the lower frequency.

We do not report results for DG-based coupling because we would have to choose 6 penalty parameters η for Γfj ,Γij , i < j, j = 0, 1, 2, and 3

discretization spaces T n(Γij) to impose normal continuity betweenΩ
i
m,Ω

j
m (see Section 3.2).
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FIGURE 14 Cross-section of a 3D mesh of Ωf, Ω
1
m, and a part of Ω

0
m along the XZ-plane. The blue, pink, and green meshes cover Ωf and have

parametersµ+,µ−, andµ0, respectively. The purple and orangemeshes coverΩ1
m (µ+) and a part ofΩ

0
m (µ−). Themesh ofΩ

1
m is used for numerical

quadrature of the error, while themesh ofΩ0
m only serve a graphical purpose.

4.2.2 Minimal FEMMesh and LayeredMedium

We consider a similar setting to Figure 12, where the FEMmesh only surrounds the TPS, and further introduce a substrate with permeability µ−

that occupies half of R3 (with negative z-axis). Hence, the ball Ω• becomes a half-ball with permeability µ+ and there is a physical discontinuity

between µ− and µ0 on the wholeXY -plane: see a samplemesh in Figure 14.

To approximate in the half-ball Ω1
m, multipole expansions with spherical Bessel functions as radial dependence are uniformly positioned on a

rectangular prism that lies completely outside Ω1
m. However, to approximate in Ω

0
m, which contains an infinite physical discontinuity,

3 we cannot

make use of the standardmultipoles from Section 2.

We thereforeuse layereddipoles [37, p. 128, Section6.3.2],which relyon the layered-mediaGreen’s functions reported in [15]. Their implementation

includes Sommerfeld integrals, which present singularities that require integration over complex contours. Layered dipoles in Ω0
m are also shifted

by plane waves

uinc + uref with z ≥ 0,

uinc := exp(ık0 z ) (0, 1, 0)
⊤ , uref := exp(−ık0z) (0, 1, 0)⊤ Aref,

utrs := exp(ık−z) (0, 1, 0)
⊤ Atrs with z < 0,

(41)

whereAref =
√
µ0−

√
µ
−√

µ0+
√
µ
−

,Atrs =
2
√
µ
−√

µ0+
√

µ
−

, and z+, z− are halves ofR3 with positive/negative z-axis. (41) can be derived from standard results

of reflection and transmission of plane waves with normal incidence.

Figures 15 and 16 shows DoF-refinement convergence plots for both the PDE-constrained and DG-based coupling approaches and both sets of

parameters used in the previous experiments. We can see algebraic convergence of the FEM andMMP errors: in particular, the FEM convergence

rates of both approaches are very similar to each other.

At the same time, plots for the higher frequency ω = 23.56 · 108 rad s−1 (Figure 15) look more irregular because of the FEM pollution effect,

especially the one obtained with the DG-based coupling, where the relative errors are quite high (like in the previous experiments). With a lower

frequency (Figure 16), while the relative errors of the DG-based coupling are still higher than the PDE-constrained coupling, they are at most 0.3

even for the coarsest mesh employed, and all datapoints are aligned very closely to the fitted lines.

3Here,Ω0
m does not fit into the partition of Section 1.1, where we require that (µ, ǫ) ∈ C

2 is constant inΩ0
m .
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FIGURE 15 DoF-refinement log-log error plots for time-harmonic Maxwell’s equations with TPS solved with two MMP domains (sample mesh in

Figure 14) and layered dipoles. Parameters are µ+ = 4µ0, µ− = 2.5281µ0, andω = 23.56 · 108 rad s−1.
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FIGURE 16 DoF-refinement log-log error plots for time-harmonic Maxwell’s equations with TPS solved with two MMP domains (sample mesh in

Figure 14) and layered dipoles. Parameters are µ+ = 10µ0, µ− = 4µ0, andω = 23.56 · 107 rad s−1.

4.3 Conclusions

Compared to other hybrid methods, such as FEM coupled with the Boundary ElementMethod (BEM), MMP presents the advantages of

• a simpler assembly process, as there are no singular integrals, and

• an exponentially-convergent approximation error, given loose requirements on the positions of the multipoles (Section 2.2). As long as the
coupling boundaries are far from sources and field singularities of the problem, the FEM–MMP coupling is also indifferent towards where

themultipoles are placed, and the exponential convergence of theMMP approximation error is preserved.

• Furthermore, for high-frequency scattering problems, the locally-supported piecewise-polynomial basis functions of boundary element
methods [4, p. 183, Chapter 4] may suffer from the pollution effect like FEM, which is not a problem for the oscillatingmultipoles.
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However, similarly to other hybrid methods, the FEM–MMP coupling suffers from ill-conditioning. At the same time, its impact is still more

limited than FEM coupled with BEMdue to the low number of degrees of freedom required forMMP, given its exponential convergence: the dense

MMP blocks in the couplingmatrices are therefore small.

Between the two coupling approaches that work with multiple MMP domains (Sections 3.1 and 3.2), we recommend the PDE-constrained cou-

pling thanks to its reliability, especiallywhen theFEMmeshonly surroundsfield singularities. Even though this coupling requires thehighest number

of degrees of freedom due to its Lagrange multipliers on the FEMmesh, this number is still low in absolute terms when such mesh is minimal. The

DG-based coupling is less expensive, as it relies on fewer variables, but requires the additional user input of appropriate penalty parameters.

Conversely, among all coupling strategies, methods based on the tangential components trace stand out (Sections 3.3.1 and 3.3.2): both the

multi-field and DtN-based approaches combine a sensibly lower number of degrees of freedom than the PDE-constrained coupling without the

penalty parameters of the DG-based one. In particular, the DtN-based coupling is the easiest to implement: MMP degrees of freedom can even be

eliminated by a Schur complement approach, paving the way for an iterative solver [9].
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