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ROBUST SOLVER IN A QUANTIZED TENSOR FORMAT FOR

THREE-DIMENSIONAL ELLIPTIC PROBLEMS

M. RAKHUBA†

Abstract. The aim of this paper is to propose a robust numerical solver, which is capable of efficiently solving a
three-dimensional elliptic problem in a data-sparse quantized tensor format. In particular, we use the combined Tucker
and quantized tensor train format (TQTT), which allows us to use astronomically large grid sizes. However, due to
ill-conditioning of discretized differential operators, such fine grids lead to numerical instabilities. The idea to obtain a
robust solver is to utilize the well-known alternating direction implicit method and modify it to avoid multiplication by
differential operators. So as to make the method efficient, we derive an explicit TQTT representation of the iteration
matrix and QTT representations of the inverses of symmetric tridiagonal Toeplitz matrices as an auxiliary result. As an
application, we consider accurate solution of elliptic problems with singular potentials arising in electronic Schroedinger’s
equation.

1. Introduction. The idea of quantization [22, 23, 17] is to reshape an array with 2L entries into
a 2 × · · · × 2 multidimensional array, and then to apply tensor decomposition to reduce the number
of parameters. This approach has appeared to be fruitful to solve partial differential equations, where
quantization is applied to vectors and matrices arising after the discretization on very fine uniform
virtual1 meshes. Although such fine meshes result in excessive resolution in parts of the domain
where the solution is smooth, the underlying black-box compression of tensor representations based
on singular value decomposition allows us to dramatically reduce the total number of parameters
in the quantized representation. As an example, it was proven [14] that under certain smoothness
assumptions finite element solutions to elliptic PDEs can be approximated with quantized tensor train
(QTT) using a small number of parameters. In particular, compressed by QTT finite element (FE)
solutions with underlying low-order discretization on uniform grids converge exponentially with respect
to the number of effective degrees of freedom in their QTT representations.

Despite the fact that, in a variety of cases, solu-
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Fig. 1: ℓ2 relative error w.r.t. #grid points 2L

for FD solution of 1D Poisson’s equation.

tions of differential equations can be approximated us-
ing the quantized approach with a small number of pa-
rameters, finding these approximations can be a chal-
lenging task. Indeed, the underlying discretization
is produced on “astronomically” large virtual grids,
with, e.g., 250 grid points in each physical dimension,
and due to ill-conditioning of discretized differential
operators and round-off errors, severe instability ef-
fects occur [14, 3]. Let us support this fact with an
example of the finite difference (FD) discretization of
−u′′(x) = sinπx, x ∈ (0, 1) with b.c. u(0) = u(1) = 0
on a uniform grid with 2L internal grid points. In Figure 1, we compare the relative error obtained
by a standard tridiagonal matrix solver with the relative error obtained by the optimization-based
algorithm [7] to find a low-rank QTT approximation to the solution. We observe that for fine grids
the error for both approaches increases, highlighting ill-conditioning of the problem.

The goal of this paper is to overcome the aforementioned stability issue by developing a robust
and efficient numerical solver based on a quantized tensor format for elliptic problems of the form

−∇2u+ κ2u = f in Ω,

u|∂Ω = g,
(1.1)

where Ω a rectangular hexahedron in R
3 and κ is a real, possibly large constant. The key assumption

we utilize is that both the right-hand side and the solution of the discretized problem allow for low-
rank quantized tensor representations. We note that problem (1.1) can be used as a building block for
constructing robust numerical solvers based on iterative methods for more general problems such as
those with non-constant κ. Of particular interest are problems arising in electronic structure calcula-
tions such as density functional theory, where fine grids allow to accurately approximate singularities
of the solution around the location of nuclei. The fact that solutions to such equations allow low-rank
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1QTT decomposition is applied to operators and functions under consideration discretized on very fine meshes, called
virtual. This name stresses the fact that matrices and vectors arising in the discretization are never formed explicitly.
No computations are performed without additional compression based on tensor decompositions.



representations has been observed numerically in a number of works [16, 27, 30, 31].
Contributions. To overcome the stability problem, we propose an algorithm based on the alternat-

ing direction implicit (ADI) iteration. The advantage of the ADI iteration is that it utilizes a nearly
optimal number of iterations at the cost of only solving the linear systems arising in discretization
of one-dimensional PDEs and multiplication by matrices of discretized second derivatives. The key
observation we make is that one step of the ADI method can be equivalently represented avoiding
multiplication by matrices that come from the discretization of derivatives (Section 2). Instead of a
QTT format that corresponds to a linear tensor network, we utilize the combined Tucker and QTT
decomposition (TQTT), which leads to smaller ranks both for the iteration matrix of the ADI method
and the solution vector (Section 3). To make the method efficient, we derive explicit formulas for the
iteration matrix of the ADI method and show that its tensor rank is bounded by 5 (Section 5). As
an auxiliary result we obtain explicit QTT representations, with all ranks equal to 5, of tridiagonal
Toeplitz matrices (Section 4). The efficiency of the method is certified by numerical experiments on
model problems with grid sizes up to 2120 grid points, which for the considered examples and moder-
ate accuracies takes less than a minute of computational time on a laptop. Numerical examples also
include preliminary results of solving equations arising in electronic structure calculations.

Related work. The quantization approach was proposed in [22, 23] for matrices and in [17] for
a more general setting. Since then it has been successfully applied to solve differential equations in
various applications, see the surveys [11, 4, 18, 16, 19] and references therein. It was proven that, in
certain cases, one can obtain exponential convergence with respect to the number of effective degrees of
freedom in quantized representations [10, 14, 13]. Nevertheless, the possibility to use very fine virtual
grids so as to considerably benefit from the quantization was limited due to numerical instabilities, as
noted in [14]. The first attempt to address instabilities arising in discretization of elliptic PDEs was
made in [26] for the one-dimensional case and generalized to two spatial dimensions in [3]. Although the
solver opened up the possibility to use ∼ 220 grid points in every space dimension (for two-dimensional
problems), for finer grids instabilities still occurred. In the recent work [1] the problem of instabilities
in a QTT format was formalized and a solver based on a BPX preconditioner was proposed. In order
to assemble the preconditioned matrix the authors derived analytically its explicit representation for
general elliptic operators and an arbitrary number of spatial variables. The solver allows for the
solution of two-dimensional problems within minutes of computational time, but requires much more
time for problems in three and more dimensions. The problem is that rank of the preconditioned
matrix grows exponentially w.r.t. number of physical variables (although it is independent of the
number of grid levels).

The ADI method used in this paper was introduced in [29] in the context of solving two-dimensional
elliptic and parabolic partial differential equations. Since then, it has been used in different applications
including Lyapunov and Sylvester matrix equations [32]. We also refer to the book [34] for more details
regarding the theoretical aspects of the method. In the context of tensor decompositions the ADI
iteration was considered in [20] without quantization.

Contributions of this paper also include explicit formulas for the inverse of certain tridiagonal
Toeplitz matrices. In [15] explicit QTT representations for the Laplace operator and its inverse
(for one physical dimension) were proposed. In particular, an explicit formula for the inverse of
tridiag(−1, 2,−1) was suggested. In this paper we, however, need an inverse of a more general tridi-
agonal Toeplitz matrix tridiag(−1,α,−1), α > 2. The approach proposed in this paper allows us to
obtain explicit representations with QTT ranks equal to 5, and can be easily extended to find the QTT
inverse of a general tridiagonal Toeplitz matrix as is indicated in Section 3.

2. Alternating direction implicit method. In this section, we formulate the ADI method for
the discretized problem and extend the result [8] of choosing iterative parameters of ADI to the case
of the screened Poisson’s equation. We also present derivative-free formulas for the ADI method that
allow us to avoid multiplication by discretized differential operators. The possibility to use derivative-
free formulas lets us to avoid instability arising due to round-off errors on very fine virtual grids.

Consider the three-dimensional screened Poisson’s equation (1.1) in a cube Ω = (a, b)3 where κ ≥ 0
is a constant. Let us discretize it on a uniform grid Ω(L) = {a+jhL : j = 1, . . . , 2L}3 with 2L grid points
in each spatial variable, where hL = (b − a) · (2L + 1)−1 is the grid step. The second order finite
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difference (FD) discretization of (1.1) reads

(2.1) Σ(L)u(L) = f (L),

where

Σ(L) = S(L) ⊗ I(L) ⊗ I(L) + I(L) ⊗ S(L) ⊗ I(L) + I(L) ⊗ I(L) ⊗ S(L) + κ2 I(L) ⊗ I(L) ⊗ I(L),

S(L) =
1

h2
L




2 −1

−1 2
. . .

. . .
. . . −1
−1 2



2L×2L

, I(L) =




1
1

. . .

1



2L×2L

,

and the vectors u(L), f (L) ∈ R
2L are correspondingly the FD solution vector and the right-hand side f

evaluated at the points of Ω(L) with nonzero boundary conditions taken into account. Alternatively,
one could utilize the finite element method (FEM) based on the tensor product of one-dimensional
piecewise-linear hat basis functions. In this case, one would obtain tridiagonal Toeplitz mass matrices
instead of I(L), and the approach proposed in this paper would still be applicable. Nevertheless, we
focus on the FD discretization for simplicity.

Let us introduce the ADI iteration to solve (2.1), first without imposing the low-rank constraints.
For this purpose, we introduce the notation

Σ1 =

(
S(L) +

κ2

3
I(L)

)
⊗ I(L) ⊗ I(L),

Σ2 = I(L) ⊗

(
S(L) +

κ2

3
I(L)

)
⊗ I(L),

Σ3 = I(L) ⊗ I(L) ⊗

(
S(L) +

κ2

3
I(L)

)
,

so that the matrix of (2.1) can be written as Σ(L) = Σ1 +Σ2 +Σ3. The Kronecker product structure
of each of Σj allows us to invert shifted matrices Σj + σI with some σ ∈ R using only the inverse
of a tridiagonal matrix (S(L) + (κ2/3 + σ) · I(L)). Therefore, unless data-sparse formats are used, the
linear systems with the matrix Σj + σI can be solved in linear time with respect to the number of
unknowns. The ADI method takes advantage of this property and involves only linear systems with
such matrices. In particular, the ADI method for three-dimensional problems proposed by Douglas [8]
reads: given u0 ∈ R

3L, compute

(Σ1 + σkI)uk+1/3 = −(Σ1 + 2Σ2 + 2Σ3 − σkI)uk + 2f (L)

(Σ2 + σkI)uk+2/3 = Σ2 uk + σk uk+1/3

(Σ3 + σkI)uk+1 = Σ3 uk + σk uk+2/3, k = 0, 1, 2, . . .

(2.2)

where iteration parameters σk are called shifts and uk is expected to approximate u(L) for large
enough k. Formulas (2.2) involve both the solution of linear systems with the matrices (Σj +σkI) and
matrix-vector products by the matrices Σj , j = 1, 2, 3. The robust inversion of the tridiagonal Toeplitz
matrices arising in the iterations of the method, is considered in Section 4. By contrast, multiplication
by Σj is unstable for fine virtual grids [1]. Fortunately, one can avoid performing multiplications by
using equivalent (in exact arithmetics) derivative-free formulas as is shown in Section 2.1.

2.1. Derivative-free ADI formulas. To obtain derivative-free formulas for (2.2), let us first
equivalently rewrite (2.2) as

(2.3) uk+1 = uk − 2σ2
k B(σk)

(
(Σ1 +Σ2 +Σ3)uk − f (L)

)
,
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where
B(σ) = (Σ3 + σ I)−1 (Σ2 + σ I)−1 (Σ1 + σ I)−1,

To avoid multiplication by Σj , j = 1, 2, 3, we observe that

(2.4) (Σj + σ I)−1 Σj = (Σj + σ I)−1 (Σj + σ I− σ I) = I− σ (Σj + σ I)−1.

Then, thanks to the commutativity of Σi and Σj for i, j = 1, 2, 3 and using (2.4), we may write

B(σ) (Σ1 +Σ2 +Σ3) =
1

2

3∑

i,j=1
i 6=j

(Σi + σ I)−1 (Σj + σ I)−1 − 3σ

3∏

j=1

(Σj + σ I)−1.(2.5)

Introducing the matrix T(σ):

T(σ) = I− 2σ2 B(σ) (Σ1 +Σ2 +Σ3)

we can write the iterative process (2.3) as

(2.6) uk+1 = T(σk)uk − 2σ2
k B(σk)f

(L),

which we will use later for the low-rank version of the iteration. Thanks to (2.5), applications of the
matrix T(σ) can be represented without multiplications byΣj . Thus, every step of (2.3) can be written
only in terms of multiplications by the inverse of a tridiagonal Toeplitz matrix (S(L)+(κ2/3+σ) · I(L))
that arises in (Σj + σ I)−1. Before we proceed to the derivation of explicit low-rank representations
for the inverse of tridiagonal Toeplitz matrices in the QTT format, let us discuss the choice of shift
parameters σk.

2.2. Choice of shifts σk. Parameters σk determine the convergence rate of the iterative pro-
cess (2.3). Since we are aiming at running the iteration on very fine grids, we want to obtain convergence
to the desired tolerance in at worst O(Lβ) steps for some β ≥ 0, i.e., polylogarithmically in the total
number of virtual grid points 23L. The choice of parameters from [8] leads to O(L) iterations to achieve
a given tolerance for κ = 0. The author is not aware2 of any general result for the choice of shifts which
is based on spectral bounds for Σ1,Σ2,Σ3. In this section, we, therefore, adapt the result from [8]
to the case κ ≥ 0. We note that the generalization presented below follows from [8] with only minor
modifications.

Let us introduce the error ek = u(L) − uk, where uk is a sequence generated by (2.3). Then,

ek+1 = T(σk) ek,

If σk = σ0 > 0 for all k, then [8] (for κ = 0)

‖ek+1‖ ≤ ρ ‖ek‖, 0 < ρ < 1,

and hence uk → u(L) as k → ∞. In this case, however, convergence is slow even if parameter σ0

is chosen optimally. To get faster convergence one has to consider nonconstant shifts σk, which are
usually chosen cyclically every N iterations, i.e.,

(2.7) σk = σk (modN), k = 0, 1, 2, . . . .

To determine a sequence that allows us to achieve the desired accuracy in O(L) iterations, we follow [8]
and investigate decay of individual components of the error using the eigenbasis of Σ. Without loss
of generality assume that k ∈ {0, 1, . . . , N − 1}. The matrix S(L) has eigenvectors vp = {sinπpj(2L +

1)−1}2
L

j=1, p = 1, . . . , 2L. Thus, the symmetric matrix Σ has eigenvectors vp⊗vq⊗vr, p, q, r = 1, . . . , 2L

that form a basis in R
3L. Let us decompose e0 using these eigenvectors with some coefficients Cpqr:

e0 =

2L∑

p,q,r=1

Cpqr vp ⊗ vq ⊗ vr.

2In [34] E. Wachspress also indicated the unawareness of a general result for three-dimensional problems.
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After N iterations, we obtain

(2.8) eN =




N−1∏

k=0

T(σk)


 e0 =

2L∑

p,q,r=1

Cpqr




N−1∏

k=0

ρpqr(σk)


 vp ⊗ vq ⊗ vr,

where ρpqr(σ) are the eigenvalues of the matrix T(σ):

ρpqr(σ) = 1−
2
[
λp(σ) + λq(σ) + λr(σ)

]
[
1 + λp(σ)

] [
1 + λq(σ)

] [
1 + λr(σ)

] ,

expressed in terms of the eigenvalues λp(σ) of the matrix σ−1 · (S(L) + κ2/3 I(L)):

λp(σ) =
4

σh2
L

(
sin2

πp

2(2L + 1)
+

κ2h2
L

12

)
, p = 1, . . . , 2L.

Note that |ρpqr(σ)| < 1 for any σ > 0 since

0 <
a+ b+ c

(1 + a)(1 + b)(1 + c)
< 1 ∀ a, b, c > 0.

The idea to choose σk, k = 0, 1, . . . , N − 1 is to split eigenvectors vp ⊗ vq ⊗ vr, p, q, r = 1, . . . , 2L

into N groups such that the corresponding error component in (2.8) in each of the groups is sufficiently
decreased after N iterations. To ensure that, we use the following lemma.

Lemma 2.1 ([8]). Let

ρ(a, b, c) = 1−
2(a+ b+ c)

(1 + a)(1 + b)(1 + c)
,

let also ν ≥ 1 and

(2.9) µ =
3ν

1 + 3ν2 + ν3
,

then

ρ̂ (µ,ν) = max
µ≤a≤ν
0≤b,c≤ν

∣∣ρ(a, b, c)
∣∣ = 1−

6ν

(1 + ν)3
= 1−

2µ

1 + µ
.

With the help of Lemma 2.1 we can prove the following result.

Proposition 2.1. Let parameters σk of the iterative process (2.3) be chosen cyclically in accor-

dance with (2.7) and such that

σk =
4

µ

(
ν

µ

)k sin2
π

2(2L + 1)
+

κ2h2
L

12

h2
L

, k = 0, 1, . . . , N − 1,

for some ν ≥ 1, µ as in (2.9) and with

N =



1 + log


cos2 π

2(2L+1) +
κ2h2

L

12

sin2 π
2(2L+1) +

κ2h2
L

12



/

log

(
ν

µ

)

= O(L).

Then after

n =

⌈
log ε−1

log
[
(1 + µ)/(1− µ)

]
⌉

cycles, for ε < 1 we get

‖u(L) − unN−1‖ ≤ ε‖u(L) − u0‖.

Moreover, the parameter choice ν = ν∗ ≈ 1.778, µ = µ∗ ≈ 0.3312 minimizes nN – the total number

of iterations.
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Proof. Denote

(2.10) ζ(σ) =
4

σh2
L

, ξp = sin2
πp

2(2L + 1)
+

κ2h2
L

12
,

so that λp(σ) = ζ(σ)ξp. We set

ξ(0) = sin2
π

2(2L + 1)
+

κ2h2
L

12

and

ζ(σk) ξ
(k) = µ,

ζ(σk) ξ
(k+1) = ν,

resulting into

ζ(σk) = µ

(
µ

ν

)k
(
sin2

π

2(2L + 1)
+

κ2h2
L

12

)−1

,

ξ(k) =

(
ν

µ

)k
(
sin2

π

2(2L + 1)
+

κ2h2
L

12

)
,

(2.11)

which ensures
µ ≤ ζ(σk)ξ ≤ ν, ξ ∈ [ξ(k), ξ(k+1)].

The sequence is interrupted right after ξ(N−1) becomes larger than ξ2L :

ξ(N−1) ≥ sin2
π2L

2(2L + 1)
+

κ2h2
L

12
≡ cos2

π

2(2L + 1)
+

κ2h2
L

12
.

For small enough hL, it leads to
(2.12)

N ≥ 1 + log


cos2 π

2(2L+1) +
κ2h2

L

12

sin2 π
2(2L+1) +

κ2h2
L

12



/

log

(
ν

µ

)
= 1 +

2L− log2

(
π2

4 + κ2(b−a)2

12

)

log2

(
ν
µ

) +O(2−L) = O(L).

Finally for given ν and µ, the shifts are defined from (2.10) and (2.11):

(2.13) σk =
4

µ

(
ν

µ

)k sin2
π

2(2L + 1)
+

κ2h2
L

12

h2
L

=
1

µ

(
ν

µ

)k
(

π2

(b− a)2
+

κ2

3

)
+O(2−2L).

Using Lemma 2.1 and accounting for the fact that after N iterations the error in every component
is decreased at least by a factor of ρ̂(µ,ν), we obtain

(2.14)

∥∥∥∥∥∥

N−1∏

k=0

T(σk)

∥∥∥∥∥∥
≤ ρ̂ (µ,ν),

where shifts σk, k = 0, 1, . . . , N − 1 are defined in (2.13). If shift parameters are chosen cyclically
according to (2.7), then ∥∥∥∥∥∥

nN−1∏

k=0

T(σk)

∥∥∥∥∥∥
≤ ρ̂ (µ,ν)n, n = 1, 2, . . . .

To achieve ρ̂ (µ,ν)n ≤ ε, we need to make

n ≥
log ε−1

log ρ̂ (µ,ν)−1
,
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outer iterations, which leads to the total number of iterations equal to

nN ∼
log ε−1

log ρ̂ (µ,ν)−1 log ν
µ

.

Maximization of the denominator in the latter expression over ν ≥ 1 yields optimal parameters ν,µ:

(2.15) ν∗ ≈ 1.778, µ∗ =
3ν∗

1 + 3ν2
∗ + ν3

∗

≈ 0.3312,

and
ρ̂ (µ∗,ν∗) ≈ 0.5023.

Thus, as required, we obtain an iterative method that allows us to achieve the accuracy ε in overall
O(L log ε−1) iterations. We note, however, that the presented analysis is quite crude and in numerical
experiments we observe even faster convergence of the method.

3. Quantized tensor representations. In this section, we introduce the quantized tensor train
(QTT) format and the format that is a combination of the Tucker decomposition and the QTT [5] (we
refer to it as TQTT), which we use for three-dimensional problems.

3.1. QTT decomposition. To introduce the QTT decomposition of a matrix of order 2L, we
encode its row and column indices i, j by using their binary representation

i = i1, . . . , iL, j = j1, . . . , jL, iℓ, jℓ ∈ {0, 1}, ℓ = 1, . . . , L,

where we use the notation

i1, . . . , iL ≡ 2L−1i1 + 2L−2i2 + · · ·+ 2iL−1 + iL.

We say that matrix A ∈ R
2L×2L is represented using the QTT decomposition if

(3.1) Aij =

r0∑

α1=0

r1∑

α1=1

· · ·

rℓ∑

αℓ=1

(
g(1)
α0α1

)
i1,j1

(
g(2)
α1α2

)
i2,j2

. . .
(
g(L)
αL−1αL

)
iL,jL

i, j = 1, . . . , 2L,

where g
(ℓ)
αℓ−1αℓ

are 2 × 2 matrices for each ℓ = 1, . . . , L and αℓ−1 = 1, . . . , rℓ−1, αℓ = 1, . . . , rℓ,
r0 = rL = 1. For our purposes it is, however, more convenient to rewrite (3.1) as:

(3.2) A =

r0∑

α1=0

r1∑

α1=1

· · ·

rℓ∑

αℓ=1

g(1)
α0α1

⊗ g(2)
α1α2

⊗ · · · ⊗ g(L−1)
αL−2αL−1

⊗ g(L)
αL−1αL

.

Representation (3.2) resembles multiplication of L block matrices, where multiplication between blocks
is replaced by the Kronecker product. This concept is known under the name strong Kronecker product,
and we denote it by “⋊⋉”, following [15]. For example,

[
B11 B12

B21 B22

]
⋊⋉

[
C11 C12

C21 C22

]
=

[
B11 ⊗C11 +B12 ⊗C21 B11 ⊗C12 +B12 ⊗C22

B21 ⊗C11 +B22 ⊗C21 B21 ⊗C12 +B22 ⊗C22

]
.

The strong Kronecker product allows us to conveniently write the TT-decomposition (3.2) as fol-
lows [15]:

(3.3) A = G1 ⋊⋉ G2 ⋊⋉ · · · ⋊⋉ GL,

where

G1 =
[
g
(1)
11 . . . g

(1)
1r1

]
, Gℓ =




g
(ℓ)
11 . . . g

(ℓ)
1rℓ

...
. . .

...

g
(ℓ)
rℓ−11

. . . g
(ℓ)
rℓ−1rℓ


 ℓ = 2, . . . , L− 1, GL =




g
(L)
11
...

g
(L)
rL1


 .

Note that the number of block rows and block columns in Gℓ indicates the values of rℓ−1 and rℓ
respectively.
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Example 3.1. Consider a matrix L ∈ R
8×8 of the form

L = M⊗N⊗N+N⊗M⊗N+N⊗N⊗M, M,N ∈ R
2×2.

Using the strong Kronecker product notation we can find its QTT representation as follows

L =
[
M N

]
⋊⋉

[
N⊗N

M⊗N+N⊗M

]
=
[
M N

]
⋊⋉

[
N

M N

]
⋊⋉

[
N

M

]
.

Noticing that the block matrix

[
N

M N

]
has 2 block rows and 2 block columns, we conclude that

r1 = r2 = 2.

The QTT decomposition of a vector x ∈ R
2L is defined analogously to (3.3) with the only difference

that g
(ℓ)
ij are in R

2 instead of R2×2. Note also that in practice vectors can rarely be represented in
tensor formats with small ranks exactly. Therefore, one is usually concerned with obtaining a low-rank
QTT approximation to a given vector.

3.2. Combined Tucker and QTT decomposition. We are particularly interested in approx-
imating matrices and vectors arising from the discretization of the three-dimensional problem (1.1)
with the physical coordinates denoted by x, y, z. By enumerating grid points of a 2L × 2L × 2L grid
using a single index i and introducing its binarization, we write

(3.4) i = i
(x)
1 , . . . , i

(x)
L

, i
(y)
1 , . . . , i

(y)
L

, i
(z)
1 , . . . , i

(z)
L

, i
(x)
ℓ , i

(y)
ℓ , i

(z)
ℓ ∈ {0, 1}, ℓ = 1, . . . , L,

where i(α) = i
(α)
1 , . . . , i

(α)
L

, α = x, y, z enumerates points of a one-dimensional grid in the physical

coordinate α. Let A ∈ R
23L×23L be a matrix of a discretization of a linear operator, discretized on a

tensor product 2L × 2L × 2L grid with the enumeration of grid points as in (3.4). Then, we may write
its QTT decomposition as

(3.5) A =
(
G1 ⋊⋉ · · · ⋊⋉ GL︸ ︷︷ ︸

x-coordinate

)
⋊⋉
(
GL+1 ⋊⋉ · · · ⋊⋉ G2L︸ ︷︷ ︸

y-coordinate

)
⋊⋉
(
G2L+1 ⋊⋉ · · · ⋊⋉ G3L︸ ︷︷ ︸

z-coordinate

)
.

where the first L cores depend on i
(x)
1 , . . . , i

(x)
L

, the second L cores on i
(y)
1 , . . . , i

(y)
L

and the third L cores

on i
(z)
1 , . . . , i

(z)
L

. Decomposition (3.5) can be conveniently visualized using tensor network diagrams.
For this, we use the following graphical representations. We denote a matrix by where two
edges illustrate dependency of the matrix entries on two indices. The matrix-matrix multiplication
is denoted as . Similarly, we represent an ℓ-dimensional tensor using ℓ outgoing edges. In
particular a three-dimensional tensor is denoted by By analogy with matrix multiplication, one
can represent a one index contraction of two three-dimensional arrays as . Note that in QTT
decomposition of matrices (3.3), block matrices Gℓ can be naturally represented as 4-dimensional arrays
of size rℓ−1×2×2× rℓ. Thus, the graphical representation of (3.5) is a linear network (see Figure 2a).
We put emphasis on the fact that the modes corresponding to the coordinate y are squeezed in between
those of x and z. This leads to larger rank values corresponding to the y-coordinate for both matrices
and vectors [5].

To overcome this issue we use the combined Tucker and QTT decomposition (TQTT for short),
which is similar to the one3 proposed in [5]. To define TQTT let us first define the Tucker decom-
position [33]. A matrix A is said to be represented using Tucker decomposition with the multilinear
rank {R1, R3, R3} if

(3.6) A =

R1∑

α1=1

R3∑

α2=1

R3∑

α3=1

Gα1α2α3
Uα1

⊗Vα2
⊗Wα3

,

3The only difference is that we do not apply TT-decomposition to the Tucker core, as in the three-dimensional case
it leads to a larger number of parameters.
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(a) (b)

Fig. 2: Graphical tensor network representation of a matrix given by: (a) QTT decomposition and (b)
combined Tucker and QTT decompositions (TQTT). In this example, L = 3, nodes , , correspond
to coordinates x, y, z respectively. Node corresponds to the three-dimensional core arising in the
Tucker decomposition. Note that in (a) modes corresponding to y-coordinate are “squeezed” between
those of x and z, while in (b) modes corresponding to x, y, z are located with no preferred direction.

where G ∈ R
R1×R2×R3 is called Tucker core and Uα1 ,Vα2 ,Wα3 ∈ R

2L×2L . The block matrices

U =
[
U1 . . . UR1

]
, V =

[
V1 . . . VR2

]
, W =

[
W1 . . . WR3

]
,

are called the Tucker factors. We use the following notation to compactly write the Tucker decompo-
sition (3.6) of A

A = JG; U, V, WK.
We can now apply the QTT decomposition4 to the block matrices U,V,W so that

(3.7) A = JG; U1 ⋊⋉ · · · ⋊⋉ UL, V1 ⋊⋉ · · · ⋊⋉ VL, W1 ⋊⋉ · · · ⋊⋉ WLK,

where UL,VL,WL have R1, R2, R3 block columns correspondingly. We call the decomposition (3.7)
combined Tucker and QTT decomposition (TQTT). The graphical version of this decomposition is
presented in Figure 2b.

Example 3.2. Let A ∈ R
23L×23L be given as

(3.8) A = Q⊗P⊗P+P⊗Q⊗P+P⊗P⊗Q, Q,P ∈ R
2L×2L .

We can represent A in Tucker format with the factors

(3.9) U = V = W =
[
Q P

]

and the core G ∈ R
2×2×2

Gα1α2α3
=

{
1, {α1α2α3} ∈ {{122}, {212}, {221}}.

0, otherwise.

Suppose additionally, that both Q and P allow QTT representation of rank one, i.e.,

Q = q⊗L, P = p⊗L, q,p ∈ R
2×2.

Then to obtain the TQTT decomposition of A we only need to find QTT decomposition of the fac-

tors (3.9):
[
Q P

]
=
[
q p

]
⋊⋉

[
q

p

]
⋊⋉ · · · ⋊⋉

[
q

p

]
⋊⋉

[
q

p

]
.

Note that the last core has 2 block columns.

4Since block matrices are decomposed, the last core of QTT decomposition depends on the number of blocks.
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4. Explicit QTT representation of inverses of symmetric tridiagonal Toeplitz ma-

trices. The proposed derivative-free ADI method based on (2.5) requires solution of discretized one-
dimensional elliptic problems. Specifically, we are interested in solving linear systems with the matrices
of the form

(4.1) S(L) =




α −1

−1 α
. . .

. . .
. . . −1
−1 α



2L×2L

, α > 2,

where, for example,

(4.2) α = 2 + κ2 (2L + 1)−2

arises in the FD discretization of −u′′ + κ2u = f with Dirichlet b.c. or

α =
2 + 2

3κ
2 (2L + 1)−2

1− 1
6κ

2 (2L + 1)−2
= 2 +

κ2 (2L + 1)−2

1− 1
6κ

2 (2L + 1)−2

arises in the FE discretization using piecewise linear basis functions. Due to the ill-conditioning of
S(L), we are not able to apply solvers such as AMEn [7] directly to this matrix. A possible way could be
to use a robust solver for one-dimensional PDEs proposed in [1], which in turn requires modifications
for large κ. Here we will, however, find an explicit representation of the inverse of S(L), avoiding more
expensive optimization-based algorithms. Moreover, thanks to the usage of the explicit representation
of S(L)−1

, we will be able to find explicit representations of matrices T(σ) and B(σ) from (2.6) with
small ranks.

The proposed approach to derive the QTT representation of S
(L)−1

is based on the explicit for-
mula [21]

(4.3)
(
S(L)−1

)
ij
=

1

sinh θ sinh(2L + 1)θ

{
sinh iθ sinh(2L + 1− j)θ, 1 ≤ i ≤ j ≤ 2L

sinh jθ sinh(2L + 1− i)θ, 1 < j < i ≤ 2L
,

where cosh θ = α/2. The key observation we make is that using basic properties of hyperbolic functions

we can write S
(L)−1

equivalently as

(4.4)
(
S(L)−1

)
ij
=

cosh
(
2L + 1−|i− j|

)
θ− cosh

(
2L + 1− (i+ j)

)
θ

2 sinh θ sinh(2L + 1)θ
.

One can show5 that the QTT ranks of the matrix

(4.5)
{
cosh

(
2L + 1−|i− j|

)
θ
}2L

i,j=1

are bounded by 3 and the ranks of the matrix

(4.6)
{
cosh

(
2L + 1− (i+ j)

)
θ
}2L

i,j=1

by 2. As a result, the matrix S(L)−1
can be explicitly represented with the ranks bounded by 5 since

TT ranks of a sum are bounded from above by a sum of the ranks [24].
Note, however, that (4.3) and (4.4) cannot be used for large values of (2L + 1)θ because of the

exponential growth of hyperbolic functions. In particular, if α is chosen as in (4.2) and 0 < κ (2L +
1)−1 ≪ 1, we get6

(2L + 1)θ ≈ κ,

5We will show these facts for matrices that differ from (4.5) and (4.6) only by a constant multiplier, which does not
affect rank values.

6For α = 2 + κ2 (2L + 1)−2 we have sinh θ =
√

cosh2 θ− 1 =
√

α2/4− 1 ≈ κ (2L + 1)−1 if κ (2L + 1)−1 ≪ 1.
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and sinh(2L + 1)θ ≈ exp(κ)/2. Since in the ADI method shifts σk can be large, we represent (4.4) by
dividing numerator and denominator by exp(2L + 1)θ to avoid the exponential growth:

(4.7)
(
S(L)−1

)
ij
=

e−|i−j|θ + e|i−j|θ−2(2L+1)θ − e−(i+j)θ − e(i+j)θ−2(2L+1)θ

2 sinh θ (1 + e−2(2L+1)θ)
.

In order to find an explicit representation of S(L)−1
using the latter formula, we introduce the following

auxiliary matrices:

E
( �)
ℓ =

[
1 ǫℓ−1

ǫℓ−1 ǫℓ

]
, E

(
�
)

ℓ =

[
ǫℓ−1 1
ǫℓ ǫℓ−1

]
,

E
(

�

)
ℓ =

[
ǫℓ−1 ǫℓ
1 ǫℓ−1

]
, E

(� )
ℓ =

[
ǫℓ ǫℓ−1

ǫℓ−1 1

]
,

(4.8)

where

(4.9) ǫℓ = e−2ℓθ.

We also introduce

(4.10) I =

[
1 0
0 1

]
, J =

[
0 1
0 0

]
, P =

[
0 1
1 0

]
.

The following proposition is the main result of this section.

Proposition 4.1. Let S(L) = tridiag(−1,α,−1), α > 2 be tridiagonal Toeplitz matrix, then S(L)−1

allows for the QTT representation with ranks 5, 5, . . . , 5

S(L)−1
= TL ⋊⋉ · · · ⋊⋉ T2 ⋊⋉ T1,

where

TL = 2
[
I J+ ǫ1ǫLJ

⊤ ǫ1ǫLJ+ J⊤ −E
( �)
L

−E
(� )
L

]
,

Tℓ = 2




I J+ ǫ1ǫL+1ǫℓ
−1 J⊤ ǫ1ǫL+1ǫℓ

−1 J+ J⊤

E
(

�

)
ℓ

E
(

�
)

ℓ

E
( �)
ℓ

E
(� )
ℓ



, ℓ = 2, . . . , L− 1

T1 =
2−L

sinh θ (1 + ǫ1ǫL+1)




(1 + ǫ1ǫL+1) I+ ǫ0 (1 + ǫL+1)P

ǫ0 E
(

�

)
1

ǫ0 E
(

�
)

1

ǫ1 E
( �)
1

ǫ1 E
(� )
1



.

and cosh θ = α/2. Parameters ǫℓ are defined in (4.9) and the auxiliary matrices – in (4.8) and (4.10).

Let us make several remarks about the computational aspects of formulas in Proposition 4.1.

Remark 4.1. To avoid division of two small numbers, parameters (ǫ1ǫL+1ǫℓ
−1) in Tℓ should be

calculated as exp
(
(−2− 2L+1 + 2ℓ)θ

)
.

Remark 4.2. Let α = 2 + δ2, where δ ≥ 0 is some small number. If θ is calculated using

θ = arccosh((2+δ2)/2), we will numerically obtain θ = 0, as δ2/2 reaches machine epsilon. Therefore,

we use Taylor expansion at δ = 0 instead:

θ = δ−
1

24
δ3 +

3

640
δ5 −

5

7168
δ7 +O

(
δ9
)
.
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To prove Proposition 4.1, we will first prove two auxiliary lemmas. For convenience, we indepen-
dently find representations of the Toeplitz and Hankel parts of (4.7).

Lemma 4.1. For any constant θ ∈ R, the Hankel matrix

H(L) =
{
e−(i+j)θ + e(i+j)θ−2(2L+1)θ

}2L

i,j=1

has a QTT representation with ranks 2, 2, . . . , 2:

H(L) = HL ⋊⋉ · · · ⋊⋉ H2 ⋊⋉ H1,

where

H1 =

[
ǫ1 E

( �)
1

ǫ1 E
(� )
1

]
, Hℓ =

[
E

( �)
ℓ

E
(� )
ℓ

]
ℓ = 2, . . . , L− 1, HL =

[
E

( �)
L

E
(� )
L

]
.(4.11)

Proof. First, let us find recursive formulas for matrices

(4.12) E
(ℓ)
1 =

{
e−(i+j)θ

}2ℓ

i,j=1
and E

(ℓ)
2 =

{
e(i+j)θ−2ℓ+1θ

}2ℓ

i,j=1
, ℓ = 1, . . . , L.

For ℓ = 2, . . . , L, we have

E
(ℓ)
1 =

[
E

(ℓ−1)
1 E

(ℓ−1)
1 e−2(ℓ−1)θ

E
(ℓ−1)
1 e−2(ℓ−1)θ E

(ℓ−1)
1 e−2ℓθ

]
= E

( �)
ℓ ⊗E

(ℓ−1)
1 ,(4.13)

E
(ℓ)
2 =

[
E

(ℓ−1)
2 e−2ℓθ E

(ℓ−1)
2 e−2(ℓ−1)θ

E
(ℓ−1)
2 e−2(ℓ−1)θ E

(ℓ−1)
2

]
= E

(� )
ℓ ⊗E

(ℓ−1)
2 ,(4.14)

where

E
( �)
ℓ =

[
1 e−2(ℓ−1)θ

e−2(ℓ−1)θ e−2ℓθ

]
, E

(� )
ℓ =

[
e−2ℓθ e−2(ℓ−1)θ

e−2(ℓ−1)θ 1

]
.

Note that from (4.12)

E
(1)
1 = e−2θ E

( �)
1 , E

(1)
2 = E

(� )
1 .

Finally,

H(L) = E
(ℓ)
1 + e−2θ E

(ℓ)
2 = E

( �)
L ⊗ · · · ⊗

(
e−2θ E

( �)
1

)
+E

(� )
L ⊗ · · · ⊗

(
e−2θ E

(� )
1

)
=

[
E

(� )
L E

( �)
L

]
⋊⋉

[
E

( �)
L−1

E
(� )
L−1

]
⋊⋉ · · · ⋊⋉

[
E

( �)
2

E
(� )
2

]
⋊⋉

[
e−2θ E

( �)
1

e−2θ E
(� )
1

]
,

which completes the proof.

Lemma 4.2. For any constant θ ∈ R, the Toeplitz matrix

(4.15) K(L) =
{
e−|i−j|θ + e|i−j|θ−2(2L+1)θ

}2L

i,j=1

has a QTT representation with ranks 3, 3, . . . , 3:

K(L) = KL ⋊⋉ · · · ⋊⋉ K2 ⋊⋉ K1,

where

K1 =



(1 + ǫ1ǫL+1) I+ ǫ0 (1 + ǫL+1)P

ǫ0 E
(

�

)
1

ǫ0 E
(

�
)

1




Kℓ =



I J+ ǫ1ǫL+1ǫℓ

−1 J⊤ ǫ1ǫL+1ǫℓ
−1 J+ J⊤

E
(

�

)
ℓ

E
(

�
)

ℓ


 , ℓ = 2, L− 1

KL =
[
I J+ ǫ1ǫLJ

⊤ ǫ1ǫLJ+ J⊤
]
.

(4.16)
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Proof. Let us introduce the notation

X(ℓ) =
{
e−(i−j)θ−2ℓθ

}2ℓ

i,j=1
, ℓ = 1, . . . , L.

K(ℓ) =
{
e−|i−j|θ + e|i−j|θ−2(2L+1)θ

}2ℓ

i,j=1

(4.17)

Then we have

K(ℓ) =

[
K(ℓ−1)

K(ℓ−1)

]
+

[
X(ℓ−1)

X(ℓ−1)⊤

]
+ e−2(2L+1)θ+2ℓθ
︸ ︷︷ ︸
ǫ1·ǫL+1·ǫℓ

−1

[
X(ℓ−1)⊤

X(ℓ−1)

]
=

= I⊗K(ℓ−1) +
(
J+ ǫ1ǫL+1ǫℓ

−1 J⊤
)
⊗X(ℓ−1) +

(
ǫ1ǫL+1ǫℓ

−1 J+ J⊤
)
⊗X(ℓ−1)⊤ =

=
[
I J+ ǫ1ǫL+1ǫℓ

−1 J⊤ ǫ1ǫL+1ǫℓ
−1 J+ J⊤

]
⋊⋉



K(ℓ−1)

X(ℓ−1)

X(ℓ−1)⊤


 , ℓ = 2, . . . , L.

(4.18)

Since

X(ℓ) =

[
X(ℓ−1) e−2(ℓ−1)θ X(ℓ−1) e−2ℓθ

X(ℓ−1) X(ℓ−1) e−2(ℓ−1)θ

]
= E

(
�

)
ℓ ⊗X(ℓ−1), E

(
�

)
ℓ =

[
e−2(ℓ−1)θ e−2ℓθ

1 e−2(ℓ−1)θ

]
,

and

X(ℓ)⊤ = E
(

�

)
ℓ

⊤
⊗X(ℓ−1)⊤ = E

(
�
)

ℓ ⊗X(ℓ−1)⊤,

we obtain

(4.19)



K(ℓ)

X(ℓ)

X(ℓ)⊤


 =



I J+ ǫ1ǫL+1ǫℓ

−1 J⊤ ǫ1ǫL+1ǫℓ
−1 J+ J⊤

E
(

�

)
ℓ

E
(

�
)

ℓ


 ⋊⋉



K(ℓ−1)

X(ℓ−1)

X(ℓ−1)⊤


 , ℓ = 2, . . . , L− 1.

Using (4.15) and (4.17), for ℓ = 1 we have

K(1) =

[
1 e−θ

e−θ 1

]
+ e−2(2L+1)θ

[
1 eθ

eθ 1

]
= (1 + ǫ1ǫL+1) I+ ǫ0 (1 + ǫL+1)P,

X(1) =

[
e−2θ e−3θ

e−θ e−2θ

]
= ǫ0 E

(
�

)
1 ,

X(1)⊤ = ǫ0 E
(

�
)

1 .

(4.20)

To complete the proof, we apply (4.18) for ℓ = L, use (4.19) for ℓ = L− 1, . . . , 2 and finally utilize
expressions from (4.20).

Proof of Proposition 4.1. Note that

S(L)−1
=

1

2 sinh θ (1 + e−2(2L+1)θ)

(
K(L) +H(L)

)

Then, using the explicit representation of a sum of two TT matrices [24], we obtain

K(L) +H(L) =

[
KL

HL

]
⋊⋉ · · · ⋊⋉

[
K1

H1

]
.

Lemmas 4.1 and 4.2 yield explicit formulas for Kℓ, Hℓ, ℓ = 1, . . . , L, which completes the proof.

The proposed approach can be used for a general tridiagonal Toeplitz matrix. In case of a non-
symmetric Toeplitz matrix, formula (4.3) is multiplied by a rank-1 term ci−j with some constant c [9],
which does not change the rank of the representation. To keep the presentation short we will address
explicit formulas in the general case in future work.
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5. TQTT representation of iteration matrices. Recall that one step of the iterative process
can be written as (2.6):

uk+1 = T(σk)uk − 2σ2
k B(σk)f

(L),

where

T(σ) = I− 2σ2 B(σ) (Σ1 +Σ2 +Σ3),

B(σ) = (Σ3 + σ I)−1 (Σ2 + σ I)−1 (Σ1 + σ I)−1.

We are now in the position to find the explicit TQTT representations of T(σ) and B(σ), since they
can be expressed in terms of QTT decompositions of tridiagonal Toeplitz matrix inverse:

(5.1) R(L) = σ


S(L) +

(
κ2

3
+ σ

)
I(L)



−1

.

Indeed, using (2.5), we may write the iteration matrix T(σ) in the form

T(σ) =I(L) ⊗ I(L) ⊗ I(L) + 6 R(L) ⊗R(L) ⊗R(L)−

2
(
I(L) ⊗R(L) ⊗R(L) +R(L) ⊗ I(L) ⊗R(L) +R(L) ⊗R(L) ⊗ I(L)

)
.

(5.2)

The following lemma shows that T(σ) allows explicit TQTT representation with TQTT ranks, all
bounded by 5.

Proposition 5.1. For any σ ∈ R the iteration matrix T(σ) defined in (5.2) allows for the TQTT

representation with Tucker ranks 2, 2, 2 and QTT ranks of Tucker factors 5, 5, . . . , 5, 2:

T(σ) =
r
T ; TL ⋊⋉ · · · ⋊⋉ T2 ⋊⋉ T̂1, TL ⋊⋉ · · · ⋊⋉ T2 ⋊⋉ T̂1, TL ⋊⋉ · · · ⋊⋉ T2 ⋊⋉ T̂1

z
,

where

(5.3) T̂1 =



σh2

L
T1

21−L I

O

O

O

O



, I =

[
1 0
0 1

]
, O =

[
0 0
0 0

]
,

tensor T ∈ R
2×2×2:

(5.4) Tα1α2α3
=





6, {α1α2α3} = {111}

1, {α1α2α3} = {222}

−2, {α1α2α3} ∈ {{112}, {121}, {211}}

0, otherwise,

and the block matrices T1, . . . ,TL are defined in Proposition 4.1 with θ such that

cosh θ = 1 +
h2
L

2

(
κ2

3
+ σ

)
.

Proof. First, using (5.2) we notice that T(σ) allows the following Tucker decomposition:

T(σ) =

s
T ;
[
R(L) I(L)

]
,
[
R(L) I(L)

]
,
[
R(L) I(L)

]{
,

with the tensor T ∈ R
2×2×2 defined in (5.4). According to (5.1) the matrix R(L) can be written as

R(L) = σh2
L




β −1

−1 β
. . .

. . .
. . . −1
−1 β




−1

2L×2L

, β = 2 + h2
L

(
κ2

3
+ σ

)
.
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Consequently, it can be represented using Proposition 4.1:

(5.5) R(L) = TL ⋊⋉ · · · ⋊⋉ T2 ⋊⋉ (σh2
L
T1).

Since the first principal block of Tℓ is 2I, for all ℓ = 2, . . . , L, we can represent the identity matrix I(L)

as

I(L) = TL ⋊⋉ · · · ⋊⋉ T2 ⋊⋉




21−L I

O

O

O

O



.

As a result, we have [
R(L) I(L)

]
= TL ⋊⋉ · · · ⋊⋉ T2 ⋊⋉ T̂1,

where T̂1 is defined in (5.3), which completes the proof.

Matrix B(σ) can be written as

B(σ) = σ−3 R(L) ⊗R(L) ⊗R(L),

and has, therefore, Tucker ranks 1, 1, 1 as the following proposition suggests.

Proposition 5.2. For any σ ∈ R the matrix B(σ) defined in (5.2) allows TQTT representation

with Tucker ranks 1, 1, 1 and QTT ranks of Tucker factors 5, 5, . . . , 5, 1:

B(σ) =

s
1; TL ⋊⋉ · · · ⋊⋉ T2 ⋊⋉

(
h2
L
T1

)
, TL ⋊⋉ · · · ⋊⋉ T2 ⋊⋉

(
h2
L
T1

)
, TL ⋊⋉ · · · ⋊⋉ T2 ⋊⋉

(
h2
L
T1

){
,

where block matrices T1, . . . ,TL are defined in Proposition 4.1 with θ:

cosh θ = 1 +
h2
L

2

(
κ2

3
+ σ

)
.

Proof. The proof follows directly from the explicit representation (5.5) of R(L).

6. Rank-truncated ADI method in TQTT format. In Section 5, we have derived explicit
TQTT representations of T(σ) and B(σ). One step of the iteration (2.6) requires matrix-vector
multiplications with these matrices and one linear combination of vectors. Each of these operations
lead to rank increase. In particular, a matrix-vector multiplication leads to TQTT representation with
the product of ranks, while linear combination of two vectors leads to rank summation [5]. To avoid
the rank growth one should apply rank truncation after each iteration, i.e.,

ũk+1 = T(σk)uk − 2σ2
k B(σk)f

(L),

uk+1 = Tε(ũk+1),

where Tε reduces rank of the representation while maintaining relative accuracy ε in ℓ2 norm. One
could also consider the so-called hard rank thresholding when the rank truncation is performed by the
maximum rank value. It allows us to avoid the rank growth and, hence, the complexity. However, it
can also lead to divergence of the method if rank is chosen to be too small.

Rank growth. Denoting the maximal TQTT rank of a vector u by rTQTT(u), we can obtain rank
bound for ũk+1:

rTQTT(ũk+1) ≤ 5
(
rTQTT(uk) + rTQTT(f

(L))
)
,

as according to Propositions 5.1 and 5.2 both T(σ) and B(σ) allow for explicit TQTT representations
with the maximal rank 5. If needed, to reduce the complexity, T(σk)uk and B(σk)f

(L) can be rounded
independently before their linear combination is assembled. The overall algorithm is summarized in
Algorithm 6.1.
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Algorithm 6.1 Rank-truncated derivative-free ADI method in TQTT format for (2.1)

Require: Right-hand size f (L) and initial guess u0 in TQTT format, shift κ, truncation parameter ε,
tolerance parameter δ for one cycle of ADI

Ensure: u – low-rank TQTT approximation to u(L)

1: Calculate shifts σk, k = 0, 1, . . . , N −1 using (2.13) with µ,ν from (2.15) and N to be the smallest
integer satisfying (2.12)

2: Set u := u0

3: Set err := 1
4: for m = 0, 1, 2, . . . until converged do

5: w := u

6: for k = 0, 1, . . . , N − 1 do

7: Set û := u

8: Calculate T(σk) and B(σk) as suggested in Propositions 5.1 and 5.2
9: v1 := T(σk)u, v2 := σ2

k B(σk)f
(L) using TQTT arithmetics or optimization-based algorithm

10: (Optional): v1 := Tε(v1), v2 := Tε(v2)
11: v := v1 − 2v2 using TQTT arithmetics
12: u := Tε(v)
13: err cyc := ‖u− û‖/‖u‖
14: if err cyc ≤ δ · err then ⊲ Reduces total number of iterations
15: break

16: err := ‖u−w‖/‖u‖
17: if err ≤ Cε then ⊲ C = 2 is a practical choice
18: break

Stopping criterion. Since we avoid calculating actions of discretized second derivatives to vectors,
we do not have the access to a residual calculation so as to choose when to interrupt the iteration.
Therefore, as is indicated in Algorithm 6.1, we evaluate error between the inner loops, i.e. ‖u(n+1)N −
unN‖/‖u(n+1)N‖. This quantity can indeed be used as a stopping criterion: due to (2.14), we have
(assuming no truncation error is introduced in each iteration):

‖u(n+1)N − unN‖ ≥ ‖unN − u(L)‖ − ‖u(n+1)N − u(L)‖ ≥
(
1− ρ̂ (µ,ν)

)
‖unN − u(L)‖.

For optimal parameters µ∗,ν∗ (2.15)

(6.1) ‖unN − u(L)‖ ≤
1

1− ρ̂ (µ∗,ν∗)
‖u(n+1)N − unN‖ ≈ 2‖u(n+1)N − unN‖.

Tolerance in the stopping criterion of the outer iteration is chosen to be Cε, where ε is a truncation
parameter. This is done due to possible stagnation of convergence as error approaches ε. It can also
be beneficial to run the method first with larger ε, and then to start with the obtained solution as an
initial guess for the desired ε. Note also, that there is an additional stopping criterion in the inner
loop. It is used to reduce the total number of iterations, as the bound (2.14) is suboptimal.

Complexity. Complexity of one iteration of the method is dominated by the truncation operation
and, thus, is

O(Lr3QTT + r4T),

where
rQTT = rQTT(uk) + rQTT(f

(L)), rT = rT(uk) + rT(f
(L)),

with rT(u), rQTT(u) being correspondingly maximal ranks of the Tucker core and QTT modes of the
TQTT representation of a vector u.

7. Numerical experiments. The implementation is done using an open source TT-Toolbox [25]
library, which contains the implementation of the two-level QTT Tucker format [5]. In this format,
Tucker core is additionally decomposed using the TT decomposition. Assuming that Tucker ranks are
R1, R2, R3, this results in storing two additional matrices of sizes R1×min{R1, R2} and min{R2, R3}×
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Fig. 3: Relative ℓ2 error w.r.t. number of virtual grid points 2L for the singularly perturbed prob-
lem (7.1) with the perturbation parameter d. Unfilled markers correspond to solutions obtained using
the proposed explicit inversion formulas (Prop. 4.1), while filled markers correspond to solutions ob-
tained by solving linear systems using the AMEn solver.

R3, which are the first and the last cores of the TT-decomposition respectively. Their presence does
not affect the overall scaling of the proposed algorithm as compared with the TQTT format and the
influence on performance is negligibly small.

Numerical tests were performed on Intel Core i7 2.8 GHz processor with 16GB of RAM.

7.1. Singularly perturbed problem in one dimension. To verify that the explicit inversion
formulas, derived in Proposition 4.1, are robust when applied to (5.1) for large σ, we consider the
following one-dimensional singularly perturbed problem

−d2u′′ + u = 1, in (0, 1),

u(0) = u(1) = 0,
(7.1)

where d is a small perturbation parameter. The exact solution to (7.1) can be found analytically:

(7.2) u(x) = 1−
e−x/d + e(x−1)/d

1 + e−1/d
.

We discretize (7.1) using the finite difference method on a uniform grid ω(L) = {jhL : j = 1, . . . , 2L},
hL = (2L + 1)−1. To represent (7.2) on ω(L) in the QTT format we utilize the fact that the arising
exponents allow explicit rank-1 representations:

{
e−xi/d

}2L

i=1
=

[
1

e−2L−1hL/d

]
⊗

[
1

e−2L−2hL/d

]
⊗ · · · ⊗

[
1

e−20hL/d

]
e−hL/d,

{
e(xi−1)/d

}2L

i=1
=

[
e−2L−1hL/d

1

]
⊗

[
e−2L−2hL/d

1

]
⊗ · · · ⊗

[
e−20hL/d

1

]
e−hL/d.

The discretized problem reads

(7.3)







2 −1

−1 2
. . .

. . .
. . . −1
−1 2



+

(
hL
d

)2




1
1

. . .

1







u(L) =

(
hL
d

)2




1
1
...
1



2L

.

To solve it, we apply two strategies. The first strategy is to assemble the FD matrix from (7.3) us-
ing explicit formulas [15] and to solve the linear system using the alternating minimal energy solver
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(AMEn) [7]. The second strategy is to multiply the explicit inverse of the system matrix (Proposi-
tion 4.1) by a vector of the right-hand side. In Figure 3, we plot relative ℓ2 error w.r.t. the exact
solution against the number of virtual grid points 2L for these two strategies and different perturbation
parameters d. We observe that with the proposed method we are able to use a large number of virtual
grid points without stability problems. By contrast, solutions obtained using AMEn start being un-
reliable beginning from a certain number of grid points (depending on the accuracy parameter). We
note, however, that this is not an issue of the AMEn solver itself, but is due to the ill-posedness of the
problem.

7.2. Poisson’s equation in three space dimensions. As a next example, consider the three-
dimensional Poisson’s equation

−∇2u = f in Ω = (0, 1)3,

u|∂Ω = 0.
(7.4)

First, let us consider the case with a known exact solution. We choose f so that the exact solution is

(7.5) u(x, y, z) =
sinπx sinπy sinπz

1 + x+ y + z
.

Problem (7.4) is discretized as is suggested in (2.1). The right-hand side is assembled using the cross
approximation algorithm [28], implemented as a function multifuncrs in the TT-Toolbox, and then
transformed into the TQTT format. We set the tolerance parameter ε = 10−9 for all the tested
methods: the proposed ADI method, AMEn solver (amen solve2 function) for QTT and the solver for
TQTT based on the density matrix renormalization group (DMRG) approach [5] (dmrg rake solve2

function of TT-Toolbox). To improve convergence of AMEn and DMRG solvers we increased the
parameter max full size to 5000. The implementation of the proposed ADI algorithm is according
to Algorithm 6.1. Matrix-vector products are performed by rounding explicit representations instead
of optimization-based algorithms since the considered right-hand side function has low TQTT ranks.

Figure 4 illustrates the convergence to the exact solution and running times for the proposed
method, AMEn solver and DMRG solver. The latter two solvers are applied to the explicit represen-
tation of the discretized equation assembled according to [15]. The proposed ADI solver is robust on
the whole range of considered grid levels L. By contrast, due to ill-conditioning of the problem both
AMEn and DMRG struggle to approximate the solution on fine grids.

We also consider the case
f ≡ 1,

when the exact solution is not known analytically. In Figure 5 we present internal convergence of the
aforementioned methods and their running times. For DMRG and AMEn solvers internal convergence
is measured using residual, while the convergence of the ADI method is according to (6.1). Remarkably,
the convergence of the ADI method on this example does not depend on the number of grid levels L.

7.3. Screened Poisson’s equation with singular right-hand side. In this section, we con-
sider a model problem arising in electronic structure computations. In particular, we solve the screened
Poisson equation with the singular right-hand side, which emerges in iterative processes in Schrödinger-
type equations to calculate electron structure [12, 31]:

−∇2u+ u = 2r−1e−r in Ω = (−40, 40)3,

u|∂Ω = 0,
(7.6)

where r =
√

x2 + y2 + z2. Thanks to the exponential decay of e−r, the solution to (7.6) can be
accurately approximated by

u ≈ e−r.

Indeed, the pointwise error introduced on the boundary ∂Ω is bounded by exp(−40) ≈ 4.2 · 10−19.
The discretization with 23L internal grid points used in Section 2 allows us to avoid evaluation of

the right-hand size at (0, 0, 0), where r−1 is unbounded. Note that since the right-hand side of (7.6)
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Fig. 4: Relative ℓ2 error (left) and running times (right) w.r.t. number of virtual grid levels L for
solving (7.4) using different methods. RHS f is chosen so that (7.5) is the exact solution; ε = 10−9.

2 4 6 8 10 12 14 16
#outer iterations

10 11

10 6

10 1

104

109

1014

1019

re
la

tiv
e 

er
ro

r

AMEn-QTT, L= 10
AMEn-QTT, L= 25
DMRG-TQTT, L= 10
DMRG-TQTT, L= 25
ADI-TQTT, L= 10
ADI-TQTT, L= 25

5 10 15 20 25 30 35 40
L, #virtual grid levels

100

101

102

tim
e,

 se
c

ADI-TQTT
AMEn-QTT
DMRG-TQTT

Fig. 5: Relative error in the considered methods w.r.t. number of outer iterations (left) and running
times w.r.t. number of virtual grid levels L (right) for solving (7.4) with f ≡ 1.

is singular, fine virtual meshes must be used to obtain accurate solutions. In order to get a TQTT
representation of the discretized r−1e−r, we use exponential sums to approximate r−1. In particular,
we obtain them by applying the trapezoidal rule to the following integral [2]

(7.7) r−β =
1

Γ(β)

∫ ∞

−∞

e−ret+βt dt,

for β = 1/2.
We compare the proposed method with the one based on matrix diagonalization with the help

of discrete Fourier transform, which is referred to as FFT solver in plots. Thanks to the exponential
decay of the exact solution, we replace zero Dirichlet with periodic boundary conditions. For periodic
boundary conditions, the matrix of the linear system can be diagonalized using the discrete Fourier
transform, which is available for both QTT and TQTT formats [6, 5] (function rake fft in the TT-
Toolbox). Thus, the solution can be obtained by two Fourier transforms and one elementwise division
by a vector λ of the eigenvalues:

λijk = λi + λj + λk + 1, λi =
4

h2
L

sin2
π(i− 1)

2L
, i, j, k = 1, . . . , 2L.

The elementwise inverse of λ is obtained by using the trapezoidal rule for (7.7) and β = 1. QTT
representations of arising exponents are obtained using the cross interpolation approach [28] with
initial guesses obtained from approximation on nearby grid points of the trapezoidal discretization.
The number of terms was adapted to the rounding parameter ε to speed up computations.

In Figure 6, we present approximation errors for the both methods for different values of rounding
parameter ε. We observe that the FFT-TQTT method also allows producing accurate results for a wide
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Fig. 7: Running times to solve (7.6) against the rounding parameter ε for the different number of
virtual grid levels: L = 15, 20, 25.

range of grid levels. Nonetheless, beginning from L = 20, the error of the FFT-TQTT method starts
increasing. We connect the observed growth with inaccuracies in obtaining the QTT representation of
exponents in exponential sums for the elementwise inverse of λ. Even though we used initial guess for
the cross interpolation procedure, we were not able to improve the approximation quality even at the
cost of significantly increasing the number of internal iterations and accuracy of the cross interpolation
method. Note that this problem did not appear in exponential sums for the right-hand side r−1e−r.

In Figures 7 and 8, we present running times for the both methods for several values of grid
levels L. We observe that the proposed ADI-TQTT method is consistently faster than the FFT-TQTT
for all range of accuracies. This holds also for L = 15, 20 when there are no instabilities in assembling
elementwise inverse of λ. As an example, for L = 20 and ε = 10−7, the proposed method takes
approximately 30 sec, while the FFT-TQTT approach takes approximately 5 minutes of running. The
difference becomes even more pronounced for higher accuracies and number of grid levels.

We also note that even though we were able to accurately approximate the solution already for
L = 20 grid levels, usage of L > 20 may be useful in quantum chemistry applications for large molecules
and molecule clusters. We plan to investigate this question for more complex equations and physical
systems in future work.

8. Conclusions and future work. We proposed a robust solver in a quantized tensor format
based on the alternating direction implicit method for the screened Poisson’s equation. The proposed
method is capable of producing accurate solutions for a wide range of virtual grid levels. With the
provided implementation, we were able to solve the considered equations for L = 40 and moderate
accuracies within a minute of computational time on a laptop.
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Fig. 8: Running times to solve (7.6) against number of virtual grid levels L for different rounding
parameters ε using the proposed ADI method.

It is of interest to use the proposed solver as a building block to solve Schrödinger-type equations.
For example, one can utilize it to solve Hartree-Fock or density functional theory equations, which
are three-dimensional non-linear eigenvalue problems. Application of the solver to the multidimen-
sional Schödinger’s equation is also possible, assuming that shift parameters for the ADI iteration are
available.

As an auxiliary result, we derived explicit formulas for the QTT representation of the inverses
of tridiagonal Toeplitz matrices. Although we derived it only for the particular case of a tridiagonal
Toeplitz matrix, the proposed strategy is straightforwardly generalizable. The consideration of general
tridiagonal Toeplitz matrices, as well as matrices arising from the discretization with other boundary
conditions is within the scope of future work.
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