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Trefftz Co-chain Calculus

Daniele Casati*, 1, Lorenzo Codecasa2, Ralf Hiptmair1, and Federico Moro3

Abstract—The framework of co-chain calculus accommodates both finite element exterior calculus and
discrete exterior calculus. It relies on volume meshes and is therefore confined to bounded domains.

In this framework we propose a way to obtain systems of equations that discretize linear stationary
or time-harmonic elliptic problems on unbounded domains. This is achieved by coupling any method
that fits co-chain calculus with Trefftz methods, which are based on functions that solve the homogeneous
equations exactly in the unbounded complement of the meshed domain, while satisfying suitable
conditions at infinity.

An example of a Trefftz method is the Multiple Multipole Program (MMP), which makes use of
multipoles, i.e. solutions spawned by point sources with central singularities that are placed outside
the domain of approximation. In our method the degrees of freedom describing these sources can be
eliminated by a Schur complement approach, therefore leading to a boundary term for co-chain calculus
that takes into account the exterior problem.

We specialize this general framework for the cell method, a particular variant of co-chain calculus,
and couple it with MMP to solve frequency-domain eddy current problems. A numerical example shows
the effectiveness of this approach.

1. INTRODUCTION

The framework of co-chain calculus [1, 2] allows for a unified treatment of a wide class of finite
element and finite volume schemes, building on the foundation established by other works like [3].
This framework is the generalization of both Finite Element Exterior Calculus (FEEC) [4] and Discrete
Exterior Calculus (DEC) [5]. The degrees of freedom of the former are coefficients of an expansion
in terms of piecewise polynomials built on a mesh: what one obtains is a function approximating the
unknown in the chosen functional space, in the way of Finite Element Methods (FEM). Conversely,
DEC returns evaluations of the unknown on entities of (primal and dual) meshes, something more akin
to finite difference or finite volume methods.

The starting point of co-chain calculus is a linear stationary or time-harmonic elliptic boundary
value problem, expressed in terms of differential forms and which involves Hodge operators (see
section 2). In this model we distinguish between equilibrium equations, stated by means of the exterior
derivative, and constitutive equations, based on Hodge operators. The former are preserved exactly in
the discrete co-chain model, whereas the latter entail approximation.

Hodge operators can be discretized using a primary and secondary mesh on a bounded domain.
Despite their names, these meshes are not necessarily related. The discrete formulation in matrix form
needs to respect only a few algebraic requirements and is independent of how Hodge operators are
approximated in practice: for example, no assumption on discrete function spaces is required. This is
only addressed when the framework of co-chain calculus is specialized into a numerical method.

If the quantities of interest of the method are defined on either the primary or secondary mesh, we
disregard the other mesh and obtain FEEC. Conversely, some quantities of interest may be represented
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on the primary mesh and others on the secondary mesh. In this case, a bijective relationship between the
two types of unknowns is needed, which can be achieved by using a secondary mesh dual to the primary
mesh. This leads to numerical schemes fitting the framework of DEC, which are called generalized finite
volume methods in [2], generalized finite differences in [3], and cell method in [6].

1.1. Cell Method

The cell method, established by [6], relies on a pair of meshes for the spatial discretization of boundary
value problems: one mesh being the dual of the other. A Delaunay–Voronoi subdivision for the dual
mesh is proposed in [7], whereas barycentric dual meshes are used in [8, 9, 10].

Degrees of freedom of the cell method are integrals on entities of the primal and dual meshes. In
the context of electromagnetics, where the cell method has long been used, examples are fluxes of the
magnetic flux density on primal faces or line integrals of the magnetic field on dual edges [7]. This
allows to rewrite differential operators applied to fields in integral form as incidence matrices between
integrals on entities of the meshes, by applying Stokes’ theorem [11, p. 31]. In this way, equilibrium
equations can be enforced exactly.

Basis functions are required to interpolate fields locally in terms of these integral degrees of freedom
and then approximate the material laws (constitutive equations). With the choice of Whitney basis
functions, the matrices of FEEC can be recovered [6, 7]. Piecewise constant basis functions [12] are
used in [9, 10] to interpolate on generic mesh entities (any polyhedron is allowed [13]), thus leading
to more applications than FEM. Moreover, [8] overcomes some limitations of the original cell method,
namely how to take into account boundary conditions and energetic quantities, by means of augmented
dual meshes.

Starting from [8], the cell method has been coupled with the Boundary Element Method (BEM) for
magnetostatic [9] and eddy current problems [10]. Both works end up with symmetric linear systems
analogous to the one explored in this work (section 3.2), which can be handled by iterative solvers.
However, those systems also contain a large, dense diagonal block due to BEM, whose inverse cannot
be computed explicitly [14] if one wants to reduce the size of the final coupled system by a Schur
complement approach. On the other hand, when coupled with techniques based on volume meshes,
Trefftz methods lead to small and, for some configurations, even diagonal blocks.

1.2. Trefftz Methods

Trefftz methods seek to approximate the solution of boundary value problems on (unbounded) domains
by means of global basis functions that solve the homogeneous equations of the problem exactly and
satisfy suitable conditions at infinity [15].

Specifically, the Multiple Multipole Program (MMP) employs multipoles, which are solutions
spawned by point sources with central singularities that are placed outside the domain of approximation
[16]. This is why MMP belongs to the class of methods of auxiliary sources. In a spherical coordinate
system with shifted origin, a multipole can be factored into a radial part, which includes a singularity
at the new origin (the center of the multipole) and the desired behavior at infinity, and a spherical part,
formulated in terms of (vector) spherical harmonics [17].

The discrete equations of a Trefftz method arise from imposing boundary conditions on
hypersurfaces, and the obtained linear combination of Trefftz basis functions gives an approximate
solution in the whole domain where the equations hold. The discrete equations are obtained by
collocation and generally yield a badly-conditioned overdetermined system [16]. However, Trefftz
functions can be made orthogonal by a change of basis [18] or by choosing them orthogonal in the
first place (see section 4).

Trefftz methods have already been coupled with FEM in [19, 20] for Poisson’s equation and [21] for
Maxwell’s equations. The coupling proposed in this work between co-chain calculus and Trefftz functions
can be seen as a generalization of the Dirichlet-to-Neumann-based (DtN-based) coupling presented in
[19, Section 3.2].
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1.3. Outline of This Work

Section 2 presents co-chain calculus for a linear stationary or time-harmonic elliptic boundary value
problem, while section 2.1 illustrates its coupling with a Trefftz method. Section 2.2 replaces the
equations for the exterior problem with a simpler, but equivalent expression, given some conditions on
the topology of the Trefftz domain that can always be satisfied.

Correspondingly, section 3 specializes section 2 for the cell method applied to frequency-domain
eddy current problems, while section 3.1 illustrates its coupling with a Trefftz method. Section 3.2
solves the exterior problem with a magnetic scalar potential, special case of the approach of section 2.2,
and gives explicit formulas for the related Trefftz functions (which are multipoles).

Finally, a numerical test based on the formulation of section 3.2 is reported in section 4.

2. CO-CHAIN CALCULUS FOR ELLIPTIC BOUNDARY VALUE PROBLEMS

We write Λl(Rn) for the space of differential forms of order l, 0 ≤ l ≤ n, on the n-dimensional Euclidean
space R

n, n ∈ N [4, p. 13, Section 2.2]. For l ∈ {1, . . . , n} and m := n− l, we introduce u ∈ Λl−1 (Rn),
σ ∈ Λl (Rn), j ∈ Λm (Rn), ψ ∈ Λm+1 (Rn) as differential forms of different orders on R

n. They enter
the statement of the following elliptic boundary value problem composed of two sets of equations: the
equilibrium equations {

du = (−1)l σ
dj = −ψ

(1a)

and the constitutive equations {
j = ⋆ασ
ψ = ⋆γu

(1b)

The symbols ⋆α and ⋆γ stand for Hodge operators, i.e. they supply linear mappings of l-forms into
m-forms [4, p. 12], while α and γ designate Riemannian metrics on R

n represented by Hermitian
positive-definite† matrix fields.

The problem is completed by the condition at infinity [22, p. 259, Theorem 8.9]

‖u‖ =

{
C log‖x‖+O

(
‖x‖−1

)
, C ∈ C if n = 2

O
(
‖x‖2−n

)
if n ≥ 3

for ‖x‖ → ∞ uniformly. (2)

For the sake of simplicity, we consider a bounded domain Ω⋆ such that, in the complement Rn \Ω⋆,
we have constant α, γ ∈ C. Let us also introduce Ω ⊃ Ω⋆, in whose complement Rn \Ω there is a known
nonzero excitation (l − 1)-form w such that u|

Rn\Ω = v+w, with v, w ∈ Λl−1 (Rn \ Ω). The field w will

enter the right-hand side of the system.
Furthermore, we assume that γ = 0 in R

n \ Ω, which implies ψ|
Rn\Ω = 0 and dj|

Rn\Ω = 0 from

(1a) and (1b).
Next, we eliminate all other variables except for u in Ω:

d (⋆αdu) = (−1)l d (⋆ασ) = (−1)l dj = − (−1)l ψ = − (−1)l ⋆γ u , (3)

which can be rewritten as
(−1)l d (⋆αdu) + ⋆γu = 0 . (4)

The weak formulation of (4) is∫

Ω

[
(−1)l d (⋆αdu) + ⋆γu

]
∧ η = 0 ∀η ∈ Λl−1 (Ω) . (5)

Integrating by parts [2, p. 254, (6)] yields∫

Ω

(⋆αdu ∧ dη + ⋆γu ∧ η) + (−1)l−1
∫

Γ

t (⋆αdu) ∧ t η = 0 ∀η ∈ Λl−1 (Ω) , (6)

where t : Λl (Ω) → Λl (Γ) is the (tangential, Dirichlet) trace of l-forms for any l ∈ {0, . . . , n} on Γ := ∂Ω.

† γ can also be expressed by a Hermitian positive-definite matrix scaled by a complex scalar, which is the case of section 3.
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2.1. Coupling with Trefftz Method through an (l − 1)-Form

We discretize Hodge operators inside Ω (approximation of constitutive equations), while we use Trefftz
functions in the complement ΩT := R

3 \ Ω, i.e. functions that belong to the Trefftz space

T (ΩT) :=
{
v ∈ Λl−1 (ΩT) : d (⋆αdv) = 0 , α ∈ C,

v satisfies the condition at infinity (2)
}
.

(7)

Interface conditions are required between Ω and ΩT [23, p. 107, Lemma 5.3]:



t
(
⋆αdu|Ω

)
= t

(
⋆αdu|ΩT

)

t u|Ω = t u|ΩT

on Γ.
(8a)

(8b)

From now on, with a small abuse of notation, we refer to u|Ω as u. We also write u|ΩT
:= v+w, where

v ∈ T (ΩT) and w is the known excitation (l − 1)-form.
We then plug (8a) into (6) and impose (8b) weakly with test functions in T (ΩT) to obtain the

system for the coupling:

Seek u ∈ Λl−1 (Ω) , v ∈ T (ΩT) :



∫
Ω

(⋆αdu ∧ dη + ⋆γu ∧ η) + (−1)l−1 ∫
Γ

t (⋆αdv) ∧ t η = (−1)l
∫
Γ

t (⋆αdw) ∧ t η

(−1)l−1 ∫
Γ

t (⋆αdζ) ∧ tu − (−1)l−1 ∫
Γ

t (⋆αdζ) ∧ t v = (−1)l−1 ∫
Γ

t (⋆αdζ) ∧ tw

∀η ∈ Λl−1 (Ω) , ∀ζ ∈ T (ΩT) .

(9)

We choose primary and secondary discretization meshes which can be unrelated [2, p. 250,
Definition 2.2]. From now on, quantities related to the secondary mesh are tagged by a tilde. Then,
with the discrete counterpart of the integration by parts formula used in (6), we can rewrite (9) in
abstract algebraic form




[(
Dl−1

)H
Ml

αD
l−1 +Ml−1

γ

]
~u + (−1)l−1

(
Tl−1

Γ

)H
K̃l−1

m,ΓPΓ~v = (−1)l
(
Tl−1

Γ

)H
K̃l−1

m,Γ ~ω

(−1)l−1
PH

Γ

(
K̃l−1

m,Γ

)H
Tl−1

Γ ~u − MT~v = (−1)l−1
PH

Γ

(
K̃l−1

m,Γ

)H
~w

(10)

using the following matrices:

• The exterior derivative matrix Dl−1 ∈ {−1, 0, 1}Nl,Nl−1 , with Nl number of l-dimensional entities
of the primary mesh, is the incidence matrix between oriented l- and (l − 1)-dimensional entities.

• Mass matrices Ml
α ∈ C

Nl,Nl and Ml−1
γ ∈ C

Nl−1,Nl−1 need to be square, Hermitian, and positive-

definite‡ [2, p. 254].

• We use a vector notation for the coefficient vector ~u ∈ C
Nl−1 , whose entries are related to integrals

of u ∈ Λl−1 (Ω) over the (l − 1)-dimensional entities of the primary mesh. These integrals are
regarded as degrees of freedom.

• The trace matrix Tl−1
Γ ∈ {0, 1}N

bnd
l−1

,Nl−1 , with Nbnd
l−1 number of (l − 1)-dimensional primary mesh

entities ⊂ Γ, selects the degrees of freedom on Γ.

• The pairing matrix K̃l−1
m,Γ ∈ C

Nbnd
l−1

,Ñbnd
m is a discrete representative of the ∧-product

∫
Γ f ∧ g,

f ∈ Λl−1 (Ω), g ∈ Λm (Ω). Pairing matrices need to fulfill the algebraic relationship [2, p. 254]

K̃l
m = (−1)lm (Km

l )H ⇐⇒ Km
l = (−1)lm

(
K̃l

m

)H
(11)

for any l ∈ {0, . . . , n}, m := n− l.

‡ Ml−1
γ can also be a square Hermitian positive-definite matrix scaled by a complex scalar, which is the case of section 3.1.
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• We call PΓ ∈ C
Ñbnd

m ,NT projection matrix. Its meaning is clarified below. NT is the dimension of
the discrete Trefftz space Tn (ΩT) ∈ T (ΩT).

• ~v ∈ C
NT is the vector of expansion coefficients of v ∈ Tn (ΩT) with respect to a basis of the discrete

Trefftz space.

• ~w ∈ C
Nbnd

l−1 and ~ω ∈ C
Ñbnd

m are known vectors determined by integrals of the excitation (l − 1)-
form w on (l − 1)-entities of the primary mesh and by ⋆αdw on m-entities of the secondary mesh,
respectively.

• MT ∈ C
NT,NT is the energy matrix in ΩT. This interpretation is clarified in the remark below.

We deduce an expression for the projection matrix based on the discrete form of (6), which is also
given in [2, p. 255, Primary elimination, (12)]. The left-hand side of the resulting linear system is

[(
Dl−1

)H
Ml

αD
l−1 +Ml−1

γ +
(
Tl−1

Γ

)H
Ml−1

β,ΓT
l−1
Γ

]
~u , (12)

where Ml−1
β,Γ is an abstract boundary energy term related to the Dirichlet-to-Neumann-operator. This

abstract DtN-operator is defined by [2, p. 255, (10c)]

Ml−1
β,ΓT

l−1
Γ ~u := (−1)l−1

K̃l−1
m,ΓT̃

m
Γ j̃ , (13)

with T̃m
Γ ∈ {0, 1}Ñ

bnd
m ,Ñm and j̃ ∈ Ñm coefficient vector of the interpolant of j ∈ Λm (Ω) on the secondary

mesh. The entries of the vector T̃m
Γ j̃ correspond to entities of the secondary mesh on Γ.

If we substitute (13) into (12), we obtain the hybrid formulation
[(

Dl−1
)H

Ml
αD

l−1 +Ml−1
γ

]
~u+ (−1)l−1

(
Tl−1

Γ

)H
K̃l−1

m,ΓT̃
m
Γ j̃ . (14)

Comparing (14) with the first line of (10), we have that

PΓ~v = T̃m
Γ j̃ , (15)

i.e. PΓ maps degrees of freedom of Trefftz functions to degrees of freedom of the secondary mesh on Γ.
The total number of degrees of freedom of the Trefftz discretization, NT, is generally low because

it can be shown that, under certain conditions, Trefftz methods enjoy exponential convergence [19, 24].
Thus, MT can easily be inverted by Gaussian elimination, and we can write the Schur complement of
(10): [(

Dl−1
)H

Ml
αD

l−1 +Ml−1
γ +

(
Tl−1

Γ

)H
K̃l−1

m,ΓPΓM
−1
T PH

Γ

(
K̃l−1

m,Γ

)H
Tl−1

Γ

]
~u =

(−1)l
(
Tl−1

Γ

)H
K̃l−1

m,Γ ~ω +
(
Tl−1

Γ

)H
K̃l−1

m,ΓPΓM
−1
T PH

Γ

(
K̃l−1

m,Γ

)H
~w.

(16)

We compare the left-hand side of (16) with the generic discrete system (12), write

Ml−1
β,Γ ≡ K̃l−1

m,ΓPΓM
−1
T PH

Γ

(
K̃l−1

m,Γ

)H
, (17)

and associate the boundary energy term of (16) with the energy in ΩT. More details on this association
are given in the next paragraph.

Remark The system (9) can also be derived by finding a stationary point of the functional

L (u, v) :=
1

2

∫

Ω

(⋆αdu ∧ du+ ⋆γu ∧ u) +
1

2

∫

ΩT

⋆αd (v + w) ∧ d (v + w)+

(−1)l−1
∫

Γ

t [⋆αd (v + w)] ∧ tu ,

(18)
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with u ∈ Λl−1 (Ω) and v, w ∈ T (ΩT), where w is the known excitation (l − 1)-form.
The first integral in (18) expresses the energy of (4) on Ω, the second the energy on ΩT (given γ = 0

in ΩT). From the conditions for a stationary point of L, we obtain the coupled problem in variational
form

Seek u ∈ Λl−1 (Ω) , v ∈ T (ΩT) :



∫
Ω

(⋆αdu ∧ dη + ⋆γu ∧ η) + (−1)l−1 ∫
Γ

t (⋆αdv) ∧ t η = (−1)l
∫
Γ

t (⋆αdw) ∧ t η,

(−1)l−1 ∫
Γ

t (⋆αdζ) ∧ tu +
∫
ΩT

⋆αdζ ∧ dv =
∫
ΩT

⋆αdζ ∧ dw

∀η ∈ Λl−1 (Ω) , ∀ζ ∈ T (ΩT) .

(19)

The same expression as (9) is obtained by noticing that
∫

ΩT

⋆αdζ ∧ dv = − (−1)l−1
∫

Γ

t (⋆αdζ) ∧ t v , (20a)

∫

ΩT

⋆αdζ ∧ dw = − (−1)l−1
∫

Γ

t (⋆αdζ) ∧ tw , (20b)

which hold by integration by parts because of v, w ∈ T (ΩT). Note that (20a) shows that MT, which
is its discrete representation, is a Hermitian positive-definite matrix, and therefore invertible, which
ensures that the Schur complement system (16) exists.

2.2. Coupling with Trefftz Method through an (m− 1)-Form

Now we exploit that dj = 0 in ΩT, in order to switch to a potential representation; ΩT is supposed to
have trivial (simply-connected) topology. From (19) we derive a hybrid system for u ∈ Λl−1 (Ω) and
j ∈ Λm (ΩT) (with an abuse of notation) and introduce a potential form π ∈ Λm−1 (ΩT). It replaces the
unknown v ∈ T (ΩT) in the exterior problem.

Based on (1a) and (1b), we can write that ⋆αdv = (−1)l j in ΩT. (19) can therefore be rewritten as

Seek u ∈ Λl−1 (Ω) , j ∈ Λm (ΩT) :



∫
Ω

(⋆αdu ∧ dη + ⋆γu ∧ η) −
∫
Γ

t j ∧ t η = (−1)l
∫
Γ

t (⋆αdw) ∧ t η

−
∫
Γ

t ι ∧ tu +
∫
ΩT

ι ∧ ⋆α−1j = (−1)l
∫
ΩT

ι ∧ dw

∀η ∈ Λl−1 (Ω) , ∀ι ∈ Λm (ΩT) .

(21)

Let us take π, τ ∈ Λm−1 (ΩT) such that, in ΩT, j = ⋆αdπ and ι = ⋆αdτ . This means that the new
Trefftz space of functions that solve the exterior problem exactly is

T (ΩT) :=
{
v ∈ Λm−1 (ΩT) : d (⋆αdv) = 0 , α ∈ C,

v satisfies the condition at infinity (2)
}
,

(22)

where (m− 1)-forms are used instead of (l − 1)-forms as in (7).
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System (21) then becomes

Seek u ∈ Λl−1 (Ω) , π ∈ T (ΩT) :



∫
Ω

(⋆αdu ∧ dη + ⋆γu ∧ η) −
∫
Γ

t (⋆αdπ) ∧ t η = (−1)l
∫
Γ

t (⋆αdw) ∧ t η

−
∫
Γ

t (⋆αdτ) ∧ tu +
∫
ΩT

⋆αdτ ∧ dπ = (−1)l
∫
ΩT

⋆αdτ ∧ dw

∀η ∈ Λl−1 (Ω) , ∀τ ∈ T (ΩT) ,

(23)

where we can replace the integrals on ΩT with integrals on Γ similarly to (20).

3. TREFFTZ-COUPLED CELL METHOD FOR EDDY CURRENT PROBLEMS

We specialize the problem of section 2 for a frequency-domain eddy current problem in R
3, which

amounts to the case l = 2 and m = 1. The electromagnetic fields involved – expressed with the
customary notations – are the magnetic vector potential A : R

3 → C
3, the magnetic flux density

B : R3 → C
3, the magnetic field H : R3 → C

3, and the current density j : R3 → C
3. They correspond

to the differential forms u ∈ Λ1
(
R
3
)
, σ ∈ Λ2

(
R
3
)
, j ∈ Λ1

(
R
3
)
, ψ ∈ Λ2

(
R
3
)
of section 2.

We also make use of material parameters ν, σ : R3 → R (reluctivity and conductivity) and ω ∈ R

(angular frequency). Written in Euclidean vector proxies for the forms [25, Section 2.2], the equilibrium
equations become

{
∇×A = B
∇×H = j

(24a)

and the constitutive equations
{

H = νB
j = −ıωσA

(24b)

where ı is the imaginary unit. While ω ∈ R is constant, the material parameters ν, σ : R3 → R generally
vary in space. Note that ν and −ıωσ correspond to the Hodge operators ⋆α and ⋆γ of section 2.

The problem is completed by the radiation condition [22, p. 259, Theorem 8.9]

‖A‖ = O
(
‖x‖−1

)
for ‖x‖ → ∞ uniformly (25)

and the Coulomb gauge [11, p. 241, (6.21)]

∇ ·A = 0 in R
3. (26)

We consider a domain Ω⋆ such that, in the complement R
3 \ Ω⋆, we also have constant ν, σ ∈ R

(ν = νT and σ = σT). Let us also introduce Ω ⊃ Ω⋆, Γ := ∂Ω, in whose complement R3 \ Ω there is a
known nonzero source A0, corresponding to the excitation (l − 1)-form w of section 2, which is given
by the Biot–Savart law [11, p. 180, (5.28)]:

A0 (x) :=
µ0
4π

∫

Ω0

j0 (x
′)

‖x− x′‖
dx′, (27)

where µ0 = 4π · 10−7Hm−1 and j0 : R3 → R
3 is the source current with support on some bounded Ω0

and ∇ · j0 = 0.
Furthermore, we assume that σ = 0 in R

3 \Ω, which implies j|
R3\Ω = 0 and ∇×H|

R3\Ω = 0 from

(24a) and (24b).
Next, we eliminate all other variables except for A in Ω:

∇× (ν∇×A) + ıωσA = 0 (28)

and leave (28) ungauged. Note that if ω 6= 0 and σ is (piecewise) constant, (26) is implicit in (28).
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Taking the weak form of (28), we end up with a special case of (6), which we discretize following

the cell method by choosing a primal mesh M (and corresponding barycentric dual mesh M̃) in Ω.
Borrowing the notation from [8, 9, 10], we write (6) in discrete form:

(
CTMνC+ ıωMσ

)
~a+ C̃Γh̃Γ = 0 in Ω , (29)

which is a special case of the hybrid formulation (14):

• C ∈ {−1, 0, 1}Nfaces,Nedges is the incidence matrix from edges to faces of the primal mesh M on Ω
(discrete curl). It corresponds to the exterior derivative matrix Dl−1 in (10).

• Mν ∈ R
Nfaces,Nfaces and Mσ ∈ R

Nedges,Nedges have entries (Mν)i,j =
∫
Ω ν (x) b

f
i · bf

j dx and

(Mσ)i,j =
∫
Ω σ (x) b

e
i · b

e
j dx, with bf ,be ∈ L2 (Ω) piecewise constant basis functions [12] that

are linked to the faces and edges of M, respectively. Mν and Mσ correspond to the mass matrices
Ml

α and Ml−1
γ .

• ~a ∈ C
Nedges is the vector of line integrals of A on the edges of M. It corresponds to vector ~u.

• C̃Γ ∈ {−1, 0, 1}Ñfaces,Ñ
bnd
edges is the incidence matrix from boundary edges to faces of M̃ (faces

of M̃ are related to edges of M because of duality). It corresponds to the matrix product

(−1)l−1
(
Tl−1

Γ

)T
K̃l−1

m,Γ .

• h̃Γ ∈ C
Ñbnd

edges is the vector of line integrals of H on the boundary edges of M̃. It is a coupling term
with the Trefftz domain.

3.1. Coupling with Trefftz Method through Magnetic Vector Potential

In the complement ΩT := R
3 \ Ω we use Trefftz functions in

T (ΩT) :=
{
v ∈ Hloc (curl,ΩT) : ∇× (∇× v) = 0 ,

v satisfies the radiation condition (25)
}
,

(30)

where Hloc (curl,ΩT) := {v ∈ H (curl,ΩT) : fv ∈ H (curl,ΩT) ∀f ∈ C∞
c (ΩT)}.

Interface conditions become



n×
(
ν∇× A|Ω

)
= n×

(
νT∇× A|ΩT

)

n×A|Ω = n×A|ΩT

on Γ,
(31a)

(31b)

where n is the normal vector on Γ pointing from ΩT to Ω.
A|Ω is discretized by the cell method and A|ΩT

= AT +A0, where AT ∈ T (ΩT) and A0 is the

known source (27).

We define a projection matrix PΓ ∈ C
Ñbnd

edges
,NT such that PΓ~v = h̃Γ (see (15)), with ~v ∈ C

NT vector
of coefficients of Trefftz functions in the discrete space T n (ΩT) ∈ T (ΩT) of dimension NT, as follows:

(PΓ)i,j := νT

∫

ℓi

τ · (∇× vj) d~s , (32)

where ℓi, i = 1, . . . , Ñbnd
edges, is an edge of M̃ on Γ, τ its tangential vector, and vj , j = 1, . . . , NT, the

Trefftz basis functions in T n (ΩT).

We then plug (31a) into (29) by means of (32), impose (31b) weakly by multiplying it with PT

ΓC̃
T

Γ,
and obtain the final discrete system

{ (
CTMνC+ ıωMσ

)
~a + C̃ΓPΓ~v = C̃Γh̃0,Γ

PT

ΓC̃
T

Γ~a − MT~v = PT

Γ
~b0,Γ

(33)
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which is a special case of (10). h̃0,Γ ∈ R
Ñbnd

edges and ~b0,Γ ∈ R
Nbnd

faces are, respectively, the vector of line

integrals of H0 := νT∇ × A0 on boundary edges of M̃ and the vector of fluxes of B0 := ∇ × A0 on
boundary faces of M.

Thanks to the integral expression for the general case (8), MT has entries

(MT)i,j := νT

∫

Γ

[n× (∇× vi)] · vj dS = −νT

∫

ΩT

(∇× vi) · (∇× vj) dx , (34)

where the second equality holds because of the definition of T (ΩT) (30). Finally, the Schur complement
of (33) is (

CTMνC+ ıωMσ + C̃ΓPΓM
−1
T PT

ΓC̃
T

Γ

)
~a = C̃Γh̃0,Γ + C̃ΓPΓM

−1
T
~b0,Γ . (35)

3.2. Coupling with Trefftz Method through Magnetic Scalar Potential

We can simplify the matrices in (35) by making ΩT simply connected, which is always allowed because
Γ is set by the user. Hence, as a special case of section 2.2, we introduce a magnetic scalar potential
φ in ΩT, which corresponds to π ∈ Λ0 (ΩT) of section 2.2. The constitutive equations for the exterior
problem become

{
H = νT∇φ

∇2φ = 0
in ΩT,

(36a)

(36b)

with the radiation condition

φ = O
(
‖x‖−1

)
for ‖x‖ → ∞ uniformly. (37)

Interface conditions are 



n×
(
ν∇× A|Ω

)
= n×

(
νT ∇φ|ΩT

)

n ·
(
∇× A|Ω

)
= n ·

(
∇φ|ΩT

) on Γ.
(38a)

(38b)

As before, there is a known source φ0 in ΩT such that φ|ΩT
= φT +φ0, φT ∈ T (ΩT). The Trefftz space

is
T (ΩT) :=

{
v ∈ H1

loc (ΩT) : ∇2v = 0 ,

v satisfies the radiation condition (37)
}
.

(39)

In particular we choose the Trefftz basis functions

vlm (rxc, θxc, ϕxc) = r−l−1
xc Ylm (θxc, ϕxc) , l = 0, . . . ,∞, m = −l, . . . , l, (40)

which fulfill the definition of multipoles given in section 1.2. Here, (rxc, θxc, ϕxc) are spherical coordinates
(r ∈ [0,∞), θ ∈ [0, 2π), ϕ ∈ [0, π]) of the vector xc := x − c, with c center of the multipole. Ylm (θ, ϕ)
are spherical harmonics [11, p. 107, Section 3.5].

Thanks to (38a), we can rewrite the projection matrix (32) as

PΓ := G̃ΓRΓ , (RΓ)i,j := νT vj (x̃i) . (41)

G̃Γ ∈ {−1, 0, 1}N
bnd
edges

,Nbnd
nodes is the incidence matrix from nodes to edges of M̃ on Γ. vj , j = 1, . . . , NT,

are the chosen multipoles (40), while x̃i, i = 1, . . . , Ñbnd
nodes, are the nodes of M̃ on Γ (which correspond

to the centroids of the faces of M on Γ).
We can also rewrite the energy matrix MT in (33) as

(MT)i,j := −νT

∫

Γ

(n · ∇vi) vj dS = −νT

∫

ΩT

∇vi · ∇vj dx . (42)



10 Casati, Codecasa, Hiptmair, and Moro

4. NUMERICAL RESULTS

We provide a numerical example for the eddy current equations (24) with the radiation condition (25)
and ω = 0 in R

3 (magnetostatics). This problem is solved for the magnetic vector potential A in Ω
using the cell method and the magnetic scalar potential φ in ΩT using multipoles (40). The source is
given by (27), where j0 is tangential to a circular loop in ΩT (which is Ω0 in (27)), with ‖j0‖ = 1000A.

We take the same axisymmetric domain of [10, Section V.A]: Ω is composed of

(i) Ω⋆, which is a cylinder with a cylindrical hole and ν = 1/(2µ0), with µ0 = 4π · 10−7Hm−1,
surrounded by

(ii) an air box with ν = 1/µ0.

The boundary Γ does not therefore coincide with any physical discontinuity.
We consider two geometries for the air box: a cylinder and a sphere. For more details refer to fig. 1.

Ω

Ω⋆ Ω0

Γ

ΩT

x

z

(a) Cylindrical air box with radius 0.04m and height 0.06m
(the bottom face lies on the plane z = −0.01m).

Ω

Ω⋆ Ω0

Γ

ΩT

z

x

(b) Spherical air box with radius 0.03m centered in
(0, 0, 0.02m).

Figure 1: Geometries of Ω and Ω0 for the axisymmetric example: slices parallel to the positive XZ-
plane. The cylinder forming Ω⋆ has radius 0.01m and height 0.04m (the bottom face lies on plane
z = 0), while its cylindrical hole has radius 0.005m. The circumference on the XY -plane forming Ω0

(shown as a point in the figures) has radius 0.05m and lies on the plane z = 0.02.

Consequently, for each air box we consider a different configuration of multipoles:

(i) Multipoles up to order 1, i.e. (40) for l = 0,m = 0 and l = 1,m = −1, 0, 1, whose centers are
uniformly disposed on a cylinder with radius 0.005m and height 0.026m (the bottom face lies on
plane z = 0.007m). The number of centers is set to the (rounded) logarithm of the number of
intersections of entities of the primal mesh M on Γ.

(ii) Multipoles up to order 4, all in the center of the spherical air box. This configuration leads to a
diagonal matrix MT because of the orthogonality of spherical harmonics [11, p. 108, (3.55)].

Our code is written in MATLAB R2016b, using an iterative solver applied to the Schur complement
(35). Note that we use an iterative solver not only for its computational efficiency, but also because we
have to: with ω = 0, the solution is not unique without a gauge for the magnetic vector potential in Ω,
like (26), which we do not impose under the cell method.

The iterative solver used is the minimum residual method (minres) with a symmetric successive

over-relaxation preconditioner [26, p. 37, Section 3.3] given by (D11 + L11)D
−1
11 (D11 + L11)

T, with
D11,L11 ∈ R

Nedges,Nedges diagonal and lower triangular matrix, respectively, of the top-right block (pure
cell method) of (33), i.e. CTMνC. Figure 2 shows the convergence profiles for each configuration of
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multipoles: the spherical air box makes the solver achieve the desired tolerance of 10−11 slightly faster.
The transpose-free quasi-minimal residual method (tfqmr) also converges with the same preconditioner,
but after a few more iterations.
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(a) Cylindrical air box with multipoles on internal cylinder.
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(b) Spherical air box with multipoles in the center.

Figure 2: Plot of relative residual norms vs. iteration numbers for minres. Relative residual norms are
defined as ‖b − Axi‖/‖b‖ for linear problem Ax = b, with i iteration number. The y-axis (relative
residual norms) is in logarithmic scale.

We test the implementation with a benchmark solution returned by COMSOL Multiphysics 5.3,
which also provides the meshes. This solution is produced by 3rd-order FEM on a very refined mesh of
a spherical air box of radius 0.6m (20 times larger than the radius of the spherical air box of fig. 1b)
centered in (0, 0, 0.02m). Dirichlet boundary conditions (n × A = 0) are imposed on the air box
boundary.

Figures 3 and 4 compare the x and z Cartesian components of the magnetic flux density resulting
from the coupling with the benchmark solution. The magnetic flux density is taken along the segment
with corners (0.0075m, 0, 0) and (0.0075m, 0, 0.04m), which is inside Ω⋆. The accuracy with the
benchmark solution for both the cylindical and spherical air box is similar, even if the cylindrical
air box is larger than the spherical one.
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(a) Cylindrical air box with multipoles on internal cylinder.
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(b) Spherical air box with multipoles in the center.

Figure 3: Value of Bx along the segment with corners (0.0075m, 0, 0) and (0.0075m, 0, 0.04m).
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(a) Cylindrical air box with multipoles on internal cylinder.
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(b) Spherical air box with multipoles in the center.

Figure 4: Value of Bz along the segment with corners (0.0075m, 0, 0) and (0.0075m, 0, 0.04m).

5. CONCLUSION

The authors are not aware of any prior work addressing the coupling of Trefftz methods with a framework
for numerical schemes based on volume meshes like co-chain calculus. We explain for the first time how
to formulate a boundary term for this framework that takes into account the exterior problem. The
particular case of coupling the cell method with MMP is also presented here for the first time.

Compared to other hybrid approaches that rely on BEM, coupling with a Trefftz method enjoys
several advantages [27, p. 51], namely a simpler assembly process, as there are no singular integrals, and
exponential convergence when the coupling boundary is far from field singularities. This entails a small
number of degrees of freedom for the Trefftz method that permits to compute the Schur complement of
the final system.
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