Analytic Regularity for the Navier-Stokes Equations in polygons

C. Marcati and C. Schwab

Research Report No. 2019-12
February 2019

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule
CH-8092 Zürich
Switzerland
ANALYTIC REGULARITY FOR THE NAVIER-STOKES EQUATIONS IN POLYGONS
CARLO MARCATI* AND CHRISTOPH SCHWAB*

Abstract. In a plane polygon P with straight sides, we prove analytic regularity of the Leray-Hopf solution of the stationary, viscous and incompressible Navier-Stokes equations. We assume small data, analytic volume force and no-slip boundary conditions. Analytic regularity is quantified in so-called countably normed, corner-weighted spaces with homogeneous norms. Implications of this analytic regularity include exponential convergence rates of so-called hp-Finite Element and Spectral Element discretizations.

Key words. Navier-Stokes equations, analytic regularity, conical singularities, weighted Sobolev spaces.

AMS subject classifications. 35Q30, 76N10, 35A20

Introduction. The mathematical theory of regularity of solutions to the viscous, incompressible Navier-Stokes equations has attracted enormous attention during the past decades. Besides elucidating subtle scientific issues on their validity in particular physical settings, and properties of their solutions for small viscosity, mathematical regularity results on their solutions have immediate consequences in a wide range of applications, from aerodynamics to physiological flows as, e.g., in hemodynamics.

The precise mathematical characterization of solution regularity in function spaces of Sobolev or Besov type is moreover essential in the numerical analysis of numerical schemes for the approximate solution of these equations. We mention only Finite Element, Finite Volume, hp- and Spectral-Element methods and the more recent Model Order Reduction (MOR) and Reduced Basis (RB) methods [22, 37].

In a plane polygonal domain P, we consider the stationary Stokes and Navier-Stokes equations (NSE) modelling viscous, incompressible flow, i.e.

\[-\nu \Delta u + (u \cdot \nabla) u + \nabla p = f \text{ in } P, \]
\[\nabla \cdot u = 0 \text{ in } P, \]
\[u = 0 \text{ on } \partial P. \tag{0.1}\]

Here, the source term f is assumed analytic in weighted Sobolev spaces in P, and, together with the viscosity ν, it is supposed to satisfy a smallness assumption in $L^2(P)$ which ensures uniqueness of weak (Leray-Hopf) solutions. We establish analytic estimates on the Leray-Hopf solution of (0.1) in weighted Sobolev spaces in P.

For a classical analysis of the Stokes and Navier-Stokes problems, see [28, 16]; the analyticity of the solutions in smooth domains – given sufficiently regular right hand sides – is a classical result [32, 15]. In our setting, though, special care has to be taken to account for the corners of the domain. Due to the corner singularities of P, solutions of the NSE do not admit high order regularity in scales of classical Sobolev spaces. Regularity results on solutions of elliptic PDEs in polygonal domains P must account for the presence of corner singularities at the vertices of P. Accordingly, scales of corner-weighted Sobolev spaces are required which were introduced in the seminal paper [25] and are known today as Kondrat’ev spaces. They extend classical Sobolev spaces by weighting weak derivatives with powers of the distance to (sets of) isolated corners.

*Seminar of Applied Mathematics, ETH Zurich, Zürich, Switzerland (carlo.marcati@sam.math.ethz.ch, christoph.schwab@sam.math.ethz.ch).
singular points. In the presently considered setting of a polygon P and of constant kinematic viscosity ν, the set of singular points comprises the corners of P. Since
[25], Kondrat’ev spaces (with their extension to three dimensional polyhedra P where one considers also the distance from edges) have been widely used for the regularity analysis of elliptic problems in polygons and polyhedra. Among the vast literature on the regularity of solutions of elliptic boundary value problems, we mention [17, 26, 35, 27, 10, 33, 6, 7, 8, 9] for general elliptic problems and in particular [21] for analytic regularity results for the Stokes equation in a polygon as also considered in the present paper. The regularity of solutions of the incompressible Stokes and Navier-Stokes equations is also investigated from the point of view of Kondrat’ev spaces of finite order in the monographs [17, 27, 33].

In the present paper, we are in particular interested in **weighted analytic regularity**. I.e., in a-priori estimates of norms of the solution in function spaces of Kondrat’ev type of arbitrary high order in P, with quantitative control of the growth of constants with respect to the order of differentiation. We refer to (1.2) below for the definition of the space of functions with weighted analytic regularity in a plane sector. The notion of **weighted analytic regularity**, as developed in [4, 19, 20] fits well with the classical concept of analytic regularity for elliptic systems in the interior and up to analytic boundary as developed in [34]. It is also of great importance for the numerical analysis of these problems, since it is the basis for the derivation of, among others, exponentially convergent, so-called hp-finite element and spectral element algorithms, as in [19, 20, 38, 39], and tensor compression methods, see [24].

Among the articles already cited, we refer the reader to [8, 9] for a reference on weighted analytic regularity in polyhedral domains for linear elliptic boundary value problems. The steady-state, incompressible viscous Navier-Stokes equations constitute a nonlinear elliptic system with analytic (quadratic) nonlinearity seems to preclude generalizing the proof of analytic regularity shifts in scales of corner-weighted, Hilbertian Sobolev spaces. To handle the quadratic nonlinearity, in the present paper we propose to work, instead, in a non Hilbertian setting. Specifically, we consider L^s-type norms, for $s > 2$, as is done in [11] for non weighted spaces and for a different problem, and bootstrap weighted regularity by induction with respect to the differentiation order, as opposed to arguments by local analytic continuation and complex analysis as put forward e.g. in [32, 2, 34]. This requires the introduction of some preliminary regularity results, localised around each corner. We start therefore, in Section 1, by considering the case of an unbounded plane sector. First, we obtain a regularity shift result in concentric balls around the corner for the Stokes equation; then, when considering the Navier-Stokes equation, we can move the nonlinear term to the right hand side and show a regularity shift estimate for the solutions to the full nonlinear equation. The choice of L^s-type spaces with $s > 2$ deviates from earlier, “Hilbertian” arguments as developed e.g. in [2, 21]. It is is essential in our treatment of the quadratic nonlinearity in the proof of the analytic regularity shift – the key result Lemma 2.1 can not be established with our strategy when $s \leq 2$, see also Remark 2.2. This weighted a-priori estimate in Lemma 2.1 serves as local induction step in the proof of analytic regularity of (Leray-Hopf solutions of) the Dirichlet problems for the viscous, incompressible Navier-Stokes equations in polygons. The proof of analytic regularity of the corresponding velocity and pressure fields is given in Section 2. There, the shift estimates for the localized problems at each corner of the polygon are combined with classical interior regularity results to obtain analytic estimates in the whole polygonal domain. Theorem 2.6 is the main result of this paper: given $2 < s < \infty$, a polygon $P \subset \mathbb{R}^2$, and assuming weighted analytic regularity in
of the right hand side f of the Navier-Stokes equation \((0.1)\) in P, there exist two positive constants C and A such that for all $\alpha = (\alpha_1, \alpha_2) \in \mathbb{N}_0^2$:

$$\|r^{\alpha_1-\gamma} \partial^{\alpha} u\|_{L^s(P)} \leq CA^{\alpha_1}|\alpha|!, \quad \|r^{\alpha_1-\gamma} \partial^{\alpha} p\|_{L^s(P)} \leq CA^{\alpha_1}|\alpha|!,$$

where u and p are the velocity components and the pressure field of Leray-Hopf solutions to the stationary, viscous, and incompressible Navier-Stokes equation in P \((0.1)\) with homogeneous Dirichlet (so-called “no-slip”) boundary condition, r is the distance from the nearest corner, and the possible values of $\gamma \in \mathbb{R}$ are constrained by the interior opening angles at the corners of the polygon.

The analysis presented here is done in the framework of homogeneous Dirichlet boundary conditions, and it holds without modification as long as Dirichlet conditions are imposed on at least one of the edges abutting on every corner. If one wants to deal with boundary conditions where the value of the velocity field is not prescribed at the corner – as, for example, for Neumann-type boundary conditions – the homogeneous weighted spaces have to be replaced by their non homogeneous version, as in the analytic regularity shift for the Stokes system, for example, in \([18]\). Non homogeneous spaces have a different weight structure than homogeneous ones, and they contain functions with non trivial Taylor expansion at the corners. For an overview of the relationship between homogeneous and non homogeneous spaces for isolated point singularities, see \([26, 7]\). The analysis presented here can also constitute part of the basis for the proof of weighted analytic regularity of the solutions to the Navier-Stokes equation in three dimensional polyhedra. The spaces involved in this case are more complicated due to the presence of edge singularities, but most of the regularity analysis in weighted spaces has been done in \([33]\). See also \([12]\) for an analysis of regularity in classical Sobolev spaces. Furthermore, the analysis in Kondratev spaces can be instrumental in other types of regularity analyses, for example using weighted spaces to determine the regularity in Besov spaces of the solutions to the Navier-Stokes equation, see, e.g., \([13]\). The analytic regularity shown here allows to establish exponential convergence of several classes of numerical schemes, such as the above-mentioned hp-Finite Element methods, tensor compression methods \([40, 3, 5]\) and Model Order Reduction methods \([41, 29, 14]\) for the approximation of the Navier-Stokes equations.

1. The Stokes equation in an infinite sector. In this section we consider the Stokes and Navier-Stokes equations in an unbounded, plane sector K. Starting from an elliptic regularity shift theorem in the plane sector, we derive, in Proposition 1.8, a localised regularity shift theorem in concentric balls around the corner. The constants in the estimate are explicit with respect to the distance between the balls, as the careful tracking of the constants will be important for the analysis of the Navier-Stokes equation.

1.1. Notation and setting. Let r and ϑ be the polar coordinates of a point $x \in \mathbb{R}^2$, and, for an aperture angle $0 < \varphi < 2\pi$, we consider the plane sector

\begin{equation}
K = \{ x \in \mathbb{R}^2 : x = r(\sin(\vartheta), \cos(\vartheta))^\top, 0 < r < \infty, \vartheta \in (0, \varphi) \}.
\end{equation}

We exclude the case of a domain with a slit, i.e., $\varphi = 2\pi$, in order to render K Lipschitz in a neighborhood of the origin. For integer $\ell \geq 0$, $\gamma \in \mathbb{R}$, and for $1 < s < \infty$, the
homogeneous, weighted Sobolev spaces \(K^{\ell,s}_\gamma(K) \) are normed by

\[
\|w\|_{K^{\ell,s}_\gamma(K)} = \left(\sum_{|\alpha| \leq \ell} \|r^{|\alpha|-\gamma} \partial^\alpha w\|_{L^s(K)}^s \right)^{1/s}.
\]

For \(\ell \geq 1 \), the spaces \(K^{\ell-1/s,s}_\gamma(\partial K \setminus \{0\}) \) are defined as spaces of traces of functions in \(K^{\ell,s}_\gamma(K) \). We denote

\[
K^{\infty,s}_\gamma(K) = \bigcap_{\ell \in \mathbb{N}} K^{\ell,s}_\gamma(K)
\]

and use boldface characters for two dimensional vectors of functions and for their spaces. Furthermore, for constants \(A, C > 0 \), we write

\[
K^{\infty,s}_\gamma(K; A, C) := \left\{ v \in K^{\infty,s}_\gamma(K) : \|v\|_{K^{\ell,s}_\gamma(K)} \leq CA^\ell \ell! \text{ for all } \ell \in \mathbb{N} \right\}.
\]

With these sets we associate

\[
K^{\infty,s}_\gamma(K) := \bigcup_{A,C>0} K^{\infty,s}_\gamma(K; A, C).
\]

I.e.,

\[
K^{\infty,s}_\gamma(K) = \left\{ v \in K^{\infty,s}_\gamma(K) : \text{ex. } A, C > 0 \text{ s.t. } \forall \ell \in \mathbb{N} : \|v\|_{K^{\ell,s}_\gamma(K)} \leq CA^\ell \ell! \right\}.
\]

Furthermore, given two functions or operators \(F \) and \(G \), \([\cdot,\cdot]\) denotes the commutator

\[
[F,G] = FG - GF.
\]

We write \(\mathbb{N}_0 = \{0\} \cup \mathbb{N} \), where \(\mathbb{N} \) is the set of the natural numbers. For two multi indices \(\alpha = (\alpha_1, \alpha_2) \in \mathbb{N}_0^2 \) and \(\beta = (\beta_1, \beta_2) \in \mathbb{N}_0^2 \), we write \(\alpha! = \alpha_1!\alpha_2! \), \(\alpha + \beta = (\alpha_1 + \beta_1, \alpha_2 + \beta_2) \), and

\[
\binom{\alpha}{\beta} = \frac{\alpha!}{\beta!(\alpha - \beta)!}.
\]

Furthermore, recall e.g. from \([23]\)

\[
\sum_{\substack{|\beta|=n \\ \beta \leq \alpha}} \binom{\alpha}{\beta} = \binom{\alpha}{n}.
\]

1.2. The Stokes equation in a sector.

In the infinite sector \(K \), we consider the Stokes system subject to volume force \(f \), with unit viscosity and with homogeneous Dirichlet boundary conditions

\[
-\Delta u + \nabla p = f \quad \text{in } K,
\]

\[
\nabla \cdot u = g \quad \text{in } K,
\]

\[
u = 0 \quad \text{on } \partial K \setminus \{0\},
\]

\((1.4)\)
which we express symbolically as

\begin{equation}
L \left(\begin{array}{c}
u \\ p \\
\end{array} \right) = \left(\begin{array}{c} f \\ g \\
\end{array} \right). \tag{1.5}
\end{equation}

With \((r, \vartheta) \in (0, \infty) \times (0, \varphi)\) we denote polar coordinates in the sector \(K\). For \(\lambda \in \mathbb{C}\), we write

\[u = r^\lambda U(\vartheta) = r^\lambda \begin{pmatrix} U_r(\vartheta) \\ U_\vartheta(\vartheta) \end{pmatrix} \quad \text{and} \quad p = r^{\lambda-1} P(\vartheta), \]

where \(U_r\) and \(U_\vartheta\) are respectively the radial and angular components of \(U\). We introduce the parameter-dependent differential operator \(\mathfrak{L}(\vartheta, \partial_\vartheta; \lambda)\) acting on \((U, P)\) by

\[\mathfrak{L}(\vartheta, \partial_\vartheta; \lambda) \left(\begin{array}{c} U \\ P \\
\end{array} \right) = r^{2-\lambda} \mathcal{L} \left(r^\lambda U \\ r^{\lambda-1} P(\vartheta) \right). \]

We find (see also [27, Section 5.1, Eqn. (5.1.4)])

\[\mathfrak{L}(\vartheta, \partial_\vartheta; \lambda) = \begin{pmatrix} 1 - \lambda^2 - \partial_\vartheta^2 & 2\partial_\vartheta & \lambda - 1 \\
-2\partial_\vartheta & 1 - \lambda^2 - \partial_\vartheta^2 & \partial_\vartheta \\
\lambda + 1 & 1 - \lambda^2 & \partial_\vartheta \\
\end{pmatrix}, \tag{1.6}
\]

and the corresponding Dirichlet boundary operator

\[\mathfrak{D}(\vartheta, \partial_\vartheta; \lambda) |_{\vartheta=0, \varphi} = \begin{pmatrix} 1 & 0 & 0 \\
0 & 1 & 0 \end{pmatrix}. \]

We denote by \(\mathfrak{A}(\lambda)\) the parametric operator pencil associated to the problem given by the parametric differential operator \(\mathfrak{L}(\vartheta, \partial_\vartheta; \lambda)\) in \(\vartheta \in (0, \varphi)\) with Dirichlet boundary operator \(\mathfrak{D}(\vartheta, \partial_\vartheta; \lambda) |_{\vartheta=0, \varphi}\). We recall from [33, Theorems 1.2.5 to 1.2.8] the following two results on regularity shifts in corner-weighted spaces of finite order.

Theorem 1.1. Let \(\ell \geq 0\) be an integer, \(1 < s < \infty\), \(\gamma \in \mathbb{R}\) and let

\[f \in \mathcal{K}_{\gamma-2}^{\ell,s}(K), \quad g \in \mathcal{K}_{\gamma-1}^{\ell+1,s}(K). \]

Suppose furthermore that the line \(\text{Re} \lambda = \gamma - 2/s\) does not contain eigenvalues of the symbol \(\mathfrak{A}(\lambda)\) of the operator.

Then, there exist unique solutions \(u, p\) to (1.4), with

\[u \in \mathcal{K}_{\gamma}^{\ell+2,s}(K), \quad p \in \mathcal{K}_{\gamma-1}^{\ell+1,s}(K) \]

and there exists \(C > 0\) (possibly dependent on \(\ell\) but independent of \(u\) and \(p\)) such that

\[\|u\|_{\mathcal{K}_{\gamma}^{\ell+2,s}(K)} + \|p\|_{\mathcal{K}_{\gamma-1}^{\ell+1,s}(K)} \leq C \left\{ \|f\|_{\mathcal{K}_{\gamma-2}^{\ell,s}(K)} + \|g\|_{\mathcal{K}_{\gamma-1}^{\ell+1,s}(K)} \right\}. \tag{1.7} \]

Theorem 1.2. Let \(\ell \geq 0\) be an integer, \(1 < s < \infty\), and let \(u, p\) be solutions to (1.4), where

\[f \in \mathcal{K}_{\gamma}^{\ell,s}(K), \quad g \in \mathcal{K}_{\gamma-1}^{\ell+1,s}(K). \]

Suppose that

\[u \in \mathcal{K}_{\gamma}^{\ell+1,s}(K), \quad p \in \mathcal{K}_{\gamma-1}^{\ell,s}(K), \quad \eta u \in W_2^{2,s}(K), \quad \eta p \in W_1^{1,s}(K), \]

where \(\eta\) denotes the boundary trace.

\[u = r^\lambda U(\vartheta) = r^\lambda \begin{pmatrix} U_r(\vartheta) \\ U_\vartheta(\vartheta) \end{pmatrix} \quad \text{and} \quad p = r^{\lambda-1} P(\vartheta), \]

where \(U_r\) and \(U_\vartheta\) are respectively the radial and angular components of \(U\).
for all \(\eta \in C_0^\infty(\mathbb{K} \setminus \{0\}) \).

Then \(\mathbf{u} \in \mathcal{K}_0^{\ell+2,s}(K) \), \(p \in \mathcal{K}_0^{\ell+1,1}(K) \) and there exists a constant \(C > 0 \) (depending on \(\ell \), \(s \) and on \(\gamma \)) such that

\[
(1.8) \quad \| \mathbf{u} \|_{\mathcal{K}_0^{\ell+2,s}(K)} + \| p \|_{\mathcal{K}_0^{\ell+1,1}(K)} \leq C \left\{ \| f \|_{\mathcal{K}_0^{\ell+2,s}(K)} + \| g \|_{\mathcal{K}_0^{\ell+1,1}(K)} + \| \mathbf{u} \|_{\mathcal{K}_0^{\ell+s}(K)} + \| p \|_{\mathcal{K}_0^{\ell,s}(K)} \right\}.
\]

Remark 1.3. The theorems in [33] are stated with the operator symbol written as

\[
(1.9) \quad \begin{pmatrix}
-\lambda^2 - \partial_\varphi^2 & 0 & (\lambda - 1) \cos \vartheta - \sin \vartheta \partial_\varphi \\
0 & -\lambda^2 - \partial_\varphi^2 & (\lambda - 1) \sin \vartheta - \cos \vartheta \partial_\varphi \\
-(\lambda - 1) \cos \vartheta + (\sin \vartheta)^2 \partial_\varphi & (\lambda - 1) \sin \vartheta + (\sin \vartheta)^2 \partial_\varphi & 0
\end{pmatrix}
\]

coming from the individual transformation in polar coordinates of the terms of the original operator matrix followed by multiplication by \(r^2 \) and substitution of \(r \partial_r \) with \(\lambda \). This symbol would therefore be applied to the Cartesian components \(u_x \), \(u_y \) of the Stokes flow.

The symbol (1.6) results instead from the transformation of the Stokes equation into plane polar coordinates, i.e., it is applied to the polar components \(u_r \) and \(u_\varphi \) of the velocity field \(\mathbf{u} \). Since the Cartesian components \(u_x \) and \(u_y \) of \(\mathbf{u} \) can be obtained through a rotation of the polar components, the eigenvalues of the symbol \(\mathfrak{A}(\lambda) \) coincide \[21, Theorem 4.15\].

Denote now by \(\Lambda_{\min} \) the real part of the eigenvalue with smallest positive real part of the pencil \(\mathfrak{A}(\lambda) \). Note that \(\Lambda_{\min} > 1/2 \) and that the strip \(-\Lambda_{\min} < \Re \lambda < \Lambda_{\min}\) does not contain eigenvalues of \(\mathfrak{A}(\lambda) \). Its existence is proved, for example, in [27, Section 5.1].

Remark 1.4. Theorem 1.1 implies that, if \(-\Lambda_{\min} < \gamma - 2/s < \Lambda_{\min}\), \(f \in \mathcal{K}_0^{\infty,s}(K) \), and \(g \in \mathcal{K}_0^{\infty,1}(K) \) then

\[
\mathbf{u} \in \mathcal{K}_0^{\infty,s}(K) \quad p \in \mathcal{K}_0^{\infty,1}(K).
\]

Remark 1.5. The \(\ell = 0 \) version of inequalities (1.7) and (1.8) read, respectively,

\[
(1.10) \quad \sum_{|\alpha| \leq 2} \| r^{\alpha} \partial^\alpha \mathbf{u} \|_{L^s(K)} + \sum_{|\alpha| \leq 1} \| r^{\alpha} \partial^\alpha p \|_{L^s(K)} \leq C \left\{ \| r^{2} f \|_{L^s(K)} + \sum_{|\alpha| \leq 1} \| r^{\alpha} \partial^\alpha g \|_{L^s(K)} \right\}
\]

and

\[
(1.11) \quad \sum_{|\alpha| \leq 2} \| r^{\alpha} \partial^\alpha \mathbf{u} \|_{L^s(K)} + \sum_{|\alpha| \leq 1} \| r^{\alpha} \partial^\alpha p \|_{L^s(K)} \leq C \left\{ \| r^{2} f \|_{L^s(K)} + \sum_{|\alpha| \leq 1} \| r^{\alpha} \partial^\alpha g \|_{L^s(K)} + \sum_{|\alpha| \leq 1} \| r^{\alpha} \partial^\alpha \mathbf{u} \|_{L^s(K)} \right\},
\]
For a radius $0 < R < 1$, an integer j, and a scalar ρ such that $R - j\rho > 0$, we introduce the sectors

$$S_{R - j\rho} = B_{R - j\rho} \cap K = \{ x \in K : |x| < R - j\rho \},$$

as shown in Figure 1. We also introduce a smooth cutoff function $\chi \in C_0^\infty(\mathbb{R}^2)$, such that for any $|\alpha| \leq 2$

$$0 \leq \chi \leq 1, \quad \chi = 1 \text{ on } B_{R - (j + 1)\rho}, \quad |\partial^\alpha \chi| \leq C\rho^{-|\alpha|},$$

with $C > 0$ independent of α. We introduce several auxiliary lemmas.

Lemma 1.6. Let $\ell, j \in \mathbb{N}_0$, $1 < s < \infty$, $\gamma \in \mathbb{R}$, $0 < R < 1$, $\rho \in \mathbb{R}$ such that $R - j\rho > 0$, and $v \in K^{\ell,s}_1(S_{R - j\rho})$.

Then there exists $C > 0$ such that, for any $|\alpha| = 1$, $|\beta| = \ell$,

$$\|r^{1 - \gamma} [x^{\ell, \partial^\alpha}] \partial^\beta v\|_{L^s(S_{R - (j + 1)\rho})} \leq C(|\beta| + \rho^{-1})\|r^{\gamma} \partial^\beta v\|_{L^s(S_{R - j\rho})},$$

with C dependent only on the constant in (1.13).

Proof. Since for all $x \in \mathbb{R}^2$ and $|\alpha| = 1$, there holds $|\partial^\alpha x^{\ell}| \leq \ell r^{\ell-1}$, and by elementary manipulations, we have

$$\|r^{1 - \gamma} [x^{\ell, \partial^\alpha}] \partial^\beta v\|_{L^s(S_{R - (j + 1)\rho})} \leq \|\partial^\alpha \chi\|_{L^\infty(\mathbb{R}^2)} \|r^{\beta|\beta|+1-\gamma} \partial^\beta v\|_{L^s(S_{R - j\rho})} + \ell \|r^{\ell-\gamma} \partial^\beta v\|_{L^s(S_{R - j\rho})}.$$

Using (1.13) gives the assertion.

Lemma 1.7. Let $\ell, j \in \mathbb{N}_0$, $1 < s < \infty$, $\gamma \in \mathbb{R}$, $0 < R < 1$, $\rho \in \mathbb{R}$ such that $R - j\rho > 0$, and $v \in K^{\ell+1,s}_1(S_{R - j\rho})$. Then there exists $C > 0$ such that, for any $|\alpha| = 2$, $|\beta| = \ell$,

$$\|r^{2 - \gamma} [x^{\ell, \partial^\alpha}] \partial^\beta v\|_{L^s(S_{R - (j + 1)\rho})} \leq C \sum_{|\delta| = 0, 1} (|\beta| + \rho^{-1})^2 |\delta| \|r^{|\beta|+|\delta|-\gamma} \partial^\beta + \delta v\|_{L^s(S_{R - j\rho})}.$$

The constant C depends only on the constant in (1.13).
Proof. The proof follows the same lines as the proof of the last lemma. We have
\begin{align*}
\|r^{2-\gamma} [\chi r^{\ell}, \partial^\alpha] \partial^\beta v\|_{L^s(S_{R-(j+1)\rho})} & \leq \|r^{2-\gamma} \partial^\alpha (\chi r^{\ell}) \partial^\beta v\|_{L^s(S_{R-(j+1)\rho})} + \sum_{|\delta|=1} \|r^{2-\gamma} \partial^\delta (\chi r^{\ell}) \partial^\beta + \alpha - \delta v\|_{L^s(S_{R-(j+1)\rho})} \\
& \leq \left(C r^{-2} + Ct r^{-1} + \ell^2\right) \|r^{\ell-\gamma} \partial^\beta v\|_{L^s(S_{R-j\rho})} \\
& \quad + \sum_{|\delta|=1} \left(C r^{-1} + \ell\right) \|r^{\ell+1-\gamma} \partial^\beta + \alpha - \delta v\|_{L^s(S_{R-j\rho})},
\end{align*}

hence the assertion follows. \(\square\)

We now give a localised and explicit version of Theorem 1.1.

Proposition 1.8. Let \(\ell \in \mathbb{N}, 1 < s < \infty, \) and \(-\Lambda_{\min} < \gamma - 2/s < \Lambda_{\min}\). Suppose that
\begin{equation}
(1.14) \quad f \in K^\ell_{\gamma-2}(K), \quad g \in K^{\ell+1,s}_{\gamma-1}(K).
\end{equation}

Then, \(u, p\) are the unique solutions to the Stokes system (1.4), with \(u \in K^{\ell+2,s}_{\gamma}(K),\)
\(p \in K^{\ell+1,s}_{\gamma-1}(K),\) and there exists \(C > 0\) such that for all \(0 < R < 1, j \in \mathbb{N}\) such that \(j \geq \ell, \) and \(\rho \in (0, R/(2j)],\)
\begin{equation}
(1.15) \quad |u|_{K^{\ell+2,s}_{\gamma}(S_{R-(j+1)\rho})} + |p|_{K^{\ell+1,s}_{\gamma-1}(S_{R-(j+1)\rho})} \leq C \left\{ |f|_{K^\ell_{\gamma-2}(S_{R-j\rho})} + \sum_{n \leq 1} |g|_{K^{\ell+n,s}_{\gamma-1}(S_{R-j\rho})} + r^{-1} |p|_{K^\ell_{\gamma-1}(S_{R-j\rho})} + \sum_{n \leq 1} \rho^{n-2} |u|_{K^{\ell+n,s}_{\gamma}(S_{R-j\rho})} \right\}.
\end{equation}

Proof. Fix \(\ell \in \mathbb{N}, \) the integer \(j \geq \ell, \) and assume (1.14). Then it follows from Theorem 1.1 that
\begin{equation}
(1.16) \quad u \in K^{\ell+2,s}_{\gamma}(K), \quad p \in K^{\ell+1,s}_{\gamma-1}(K).
\end{equation}

Consider \(\beta \in \mathbb{N}_0^d\) such that \(|\beta| = \ell\) and write \(w = \chi r^{\beta} \partial^\beta u\) and \(q = \chi r^{\beta} \partial^\beta p.\) Then,
\begin{align*}
-\Delta w + \nabla q &= \left[-\Delta, \chi r^{\beta} \partial^\beta \right] \partial^\beta u + \left[\nabla, \chi r^{\beta} \partial^\beta \right] \partial^\beta p + \chi r^{\beta} \partial^\beta (-\Delta u + \nabla p) \\
&= \left[-\Delta, \chi r^{\beta} \partial^\beta \right] \partial^\beta u + \left[\nabla, \chi r^{\beta} \partial^\beta \right] \partial^\beta p + \chi r^{\beta} \partial^\beta f
\end{align*}
hence (1.14), (1.16), and Lemmas 1.6 and 1.7 give \(-\Delta w + \nabla q \in K^{0,s}_{\gamma-2}(K).\) Then,
\begin{equation}
\nabla \cdot w = \left(\nabla (\chi r^{\beta}) \right) \partial^\beta u + \chi r^{\beta} \partial^\beta g \in K^{1,s}_{\gamma-1}(K).
\end{equation}

We can therefore apply Theorem 1.1 with \(\ell = 0.\) Inequality (1.10) implies that there exists \(C > 0\) independent of \(w\) and \(q\) such that
\begin{equation}
(1.17) \quad \sum_{|\alpha| \leq 2} \|r^{\alpha-\gamma} \partial^\alpha w\|_{L^s(K)} + \sum_{|\alpha| \leq 1} \|r^{\alpha-\gamma+1} \partial^\alpha q\|_{L^s(K)} \\
\leq C \left\{ \|r^{2-\gamma} (-\Delta w + \nabla q)\|_{L^s(K)} + \sum_{|\alpha| \leq 1} \|r^{\alpha-\gamma+1} \partial^\alpha \nabla \cdot w\|_{L^s(K)} \right\}.
\end{equation}
By algebraic manipulation and the triangle inequality, the following inequalities hold, for $|\beta| = \ell$

\[(1.18) \quad \sum_{|\alpha|=2} \|r^{2-\gamma}|\beta|+2-\gamma \partial^{\alpha+\beta} u\|_{L^r(S_{R-(j+1)p})} \leq \sum_{|\alpha|=2} \|r^{2-\gamma} \left[\chi r^{|\beta|}, \partial^{\alpha} \right] \partial^{\beta} u\|_{L^r(S_{R-(j+1)p})} + \sum_{|\alpha|=2} \|r^{2-\gamma} \partial^{\alpha} w\|_{L^r(S_{R-(j+1)p})} \]

and

\[(1.19) \quad \sum_{|\alpha|=1} \|r^{2-\gamma}|\beta|+2-\gamma \partial^{\alpha+\beta} p\|_{L^r(S_{R-(j+1)p})} \leq \sum_{|\alpha|=1} \|r^{2-\gamma} \left[\chi r^{|\beta|}, \partial^{\alpha} \right] \partial^{\beta} p\|_{L^r(S_{R-(j+1)p})} + \sum_{|\alpha|=1} \|r^{2-\gamma} \partial^{\alpha} q\|_{L^r(S_{R-(j+1)p})}. \]

We can estimate the terms with the commutators in (1.18) and (1.19): Lemmas 1.6 and 1.7 give

\[(1.20) \quad \sum_{|\alpha|=2} \|r^{2-\gamma} \left[\chi r^{|\beta|}, \partial^{\alpha} \right] \partial^{\beta} u\|_{L^r(S_{R-(j+1)p})} \leq C \sum_{|\alpha| \leq 1} (|\beta| + \rho^{-1})^{2-|\alpha|} \|r^{2-\gamma}|\beta|+|\alpha|+\gamma \partial^{\beta+\alpha} u\|_{L^r(S_{R-jp})}, \]

and

\[(1.21) \quad \sum_{|\alpha|=1} \|r^{2-\gamma} \left[\chi r^{|\beta|}, \partial^{\alpha} \right] \partial^{\beta} p\|_{L^r(S_{R-(j+1)p})} \leq C (|\beta| + \rho^{-1}) \|r^{2-\gamma}|\beta|+1 \partial^{\beta+1} p\|_{L^r(S_{R-jp})} \]

with constant C independent of $|\beta|$, ρ, u, and p.

Now, since $\rho \leq R/(2j)$ and $j \geq \ell$, then $|\beta| \leq \rho^{-1}$. In addition, from the inequalities (1.18)–(1.21) and using (1.17), we obtain

\[(1.22) \quad \sum_{|\alpha|=2} \|r^{2-\gamma}|\beta|+|\alpha|-\gamma \partial^{\beta+\alpha} u\|_{L^r(S_{R-(j+1)p})} + \sum_{|\alpha|=1} \|r^{2-\gamma}|\beta|+|\alpha|-1 \partial^{\beta+\alpha} p\|_{L^r(S_{R-(j+1)p})} \leq C \left\{ \|r^{2-\gamma} (-\Delta u + \nabla q)\|_{L^r(S_{R-jp})} + \sum_{|\alpha| \leq 1} \|r^{2-\gamma}|\beta|-1 \partial^{\beta+1} u\|_{L^r(S_{R-jp})} \right\}. \]

Using the commutators as before, the definition of w and q, Lemmas 1.6 and 1.7, and the inequality $|\beta| \leq \rho^{-1}$ we can show that

\[\|r^{2-\gamma} (-\Delta u + \nabla q)\|_{L^r(S_{R-jp})} \leq \|r^{2-\gamma} \left[\Delta, r^{2-\gamma} \right] \partial^{\beta} u\|_{L^r(S_{R-jp})} + \|r^{2-\gamma} \left[\nabla, r^{2-\gamma} \right] \partial^{\beta} p\|_{L^r(S_{R-jp})} \]

\[\leq C \sum_{|\alpha| \leq 1} \rho^{-2-|\alpha|} \|r^{2-\gamma}|\beta|+|\alpha|-\gamma \partial^{\beta+\alpha} u\|_{L^r(S_{R-jp})} + C \rho^{-1} \|r^{2-\gamma}|\beta|-1 \partial^{\beta+1} p\|_{L^r(S_{R-jp})} \]

\[+ \|r^{2-\gamma} \partial^{\beta} f\|_{L^r(S_{R-jp})} \]

where f is defined as $f = u - \partial^{\beta} u$. The proof is complete.
and, for all $|\alpha| \leq 1$

$$
\|r^{2-\gamma} \partial^\gamma \nabla \cdot w\|_{L^r(S_{R-j\rho})} \\
\leq \sum_{|\beta|=1} |r^{2-\gamma} \partial^\beta \left[\partial^\gamma r |\beta| \right] \partial^\beta u|_{L^r(S_{R-j\rho})} + \|r^{|\beta|-\gamma+2} \partial^\beta r |\gamma+2\partial^\gamma \nabla \cdot u\|_{L^r(S_{R-j\rho})} \\
\leq C\rho^{-1}\|r^{|\beta|-\gamma+1} \partial^\beta r |\gamma+2\partial^\gamma g\|_{L^r(S_{R-j\rho})}.
$$

Summing (1.22) over all $|\beta| = \ell$ and using the last two inequalities,

$$
|u|_{K^{\ell+2, s}_{\gamma} (S_{R-(j+1)\rho})} + |p|_{K^{\ell+1, s}_{\gamma} (S_{R-(j+1)\rho})} \leq C \left\{ |f|_{K^{\ell, s}_{\gamma} (S_{R-j\rho})} + \sum_{n \leq 1} |g|_{K^{\ell+n, s}_{\gamma} (S_{R-j\rho})} + \rho^{-1} |p|_{K^{\ell, s}_{\gamma} (S_{R-j\rho})} + \sum_{n \leq 1} \rho^{n-2} |u|_{K^{\ell+n, s}_{\gamma} (S_{R-j\rho})} \right\}.
$$

PROPOSITION 1.9. Let $\ell \in \mathbb{N}_0$, $\gamma \in \mathbb{R}$, $1 < s < \infty$, $0 < R < 1$, $j \in \mathbb{N}_0$ such that $j \geq \ell$, and $\rho \in (0, R/(2j)]$. Let u, p be solutions to the Stokes system (1.4), with

$$
(1.23) \quad f \in K^{\ell, s}_{\gamma} (S_{R-j\rho}), \quad g \in K^{\ell+1, s}_{\gamma} (S_{R-j\rho}).
$$

Suppose that

$$
\begin{align*}
\begin{cases}
\mathcal{K}^{\ell+1, s}_{\gamma} (S_{R-j\rho}) & \quad u \in \mathcal{K}^{\ell+1, s}_{\gamma} (S_{R-j\rho}), \quad p \in \mathcal{K}^{\ell, s}_{\gamma} (S_{R-j\rho}), \quad \eta u \in W^{2, s} (S_{R-j\rho}), \quad \eta p \in W^{1, s} (S_{R-j\rho}), \\
\mathcal{K}^{\ell, s}_{\gamma} (S_{R-j\rho}) & \quad \forall \eta \in C_0^\infty (S_{R-j\rho} \setminus \{0\}) .
\end{cases}
\end{align*}
$$

Then, $u \in \mathcal{K}^{\ell+2, s}_{\gamma} (S_{R-(j+1)\rho})$, $p \in \mathcal{K}^{\ell+1, s}_{\gamma} (S_{R-(j+1)\rho})$, and there exists $C > 0$ independent of ℓ, j, ρ, such that (1.15) holds.

Proof. The proof follows the same steps as the proof of Proposition 1.8, with (1.11) replacing (1.10) in (1.17).

1.3. Analytic regularity shift for the quadratic nonlinearity in a sector.

To handle the regularity shift for the quadratic nonlinearity in the weighted scales $\mathcal{K}^{\ell, s}$, we apply a technique inspired by [11] and used also in [31], for different problems but similar nonlinearities. We derive interpolation inequalities in weighted spaces and use them to bound the quadratic nonlinearity in the momentum transport term of the Navier-Stokes system in the homogeneous, corner-weighted norms.

1.3.1. Induction hypotheses. For $1 < s < \infty$, $\gamma \in \mathbb{R}$, $j \in \mathbb{N}_0$, $0 < R < 1$ and $C_u, A_u, C_p, A_p > 0$, we introduce two statements on the boundedness of high order derivatives of weak solutions with quantitative control of their size in weighted Kondrat’ev spaces. We shall say that $H_u(s, \gamma, j, C_u, A_u)$ holds in S_R if for all $\rho \in (0, R/(2j)]$

$$
(1.24a) \quad |u|_{K^{\ell, s}_{\gamma} (S_{R-j\rho})} \leq C_u A_u^\ell (j \rho)^{-\ell} \ell \quad \text{for all} \quad \ell \leq j
$$

and we shall say that $H_p(s, \gamma, j, C_p, A_p)$ holds in S_R if for all $\rho \in (0, R/(2j)]$

$$
(1.24b) \quad |p|_{K^{\ell, s}_{\gamma} (S_{R-j\rho})} \leq C_p A_p^\ell (j \rho)^{-\ell} \ell \quad \text{for all} \quad \ell \leq j.
$$

For $k \in \mathbb{N}$, we state the induction hypothesis succinctly as

$$
(1.25) \quad H_{u,p}(s, \gamma, k, C_{u,p}, A_{u,p}) : \begin{cases}
H_u(s, \gamma, j, C_u, A_u) \text{ holds for } j = 0, \ldots, k + 1, \\
H_p(s, \gamma, j, C_p, A_p) \text{ holds for } j = 0, \ldots, k.
\end{cases}
$$
1.3.2. Weighted interpolation estimates. We introduce interpolation estimates for weighted norms in sectors near the origin, analogous to the estimates used to establish regularity in classical Sobolev spaces, see, e.g., [1]. The derivation of these estimates is based on the homogeneity of the weighted norms (which homogeneity is a consequence of the homogeneous Dirichlet boundary conditions), a dyadic decomposition of the domain around the point singularity combined with an homothety to a reference annulus of unit size.

Lemma 1.10. Let $0 < D_0 \leq D \leq 1$ and let S_D be defined as in (1.12), $\beta \in \mathbb{N}_0^2$ such that $|\beta| > 0$, $v \in L^{1,\gamma+1,s}(S_D)$, $\gamma - 2/s > \xi - 2/t$, and $2 < s \leq t \leq \infty$. Then, the following “interpolation” estimate holds

\begin{equation}
1.26
\|r^{-\xi+|\beta|}\partial^\beta v\|_{L^t(S_D)} \leq C\|r^{1-|\gamma|}\partial^\beta v\|_{L^t(S_D)}^\theta \sum_{|\alpha| \leq 1} |\beta|^{1-|\alpha|}\|r^{2-s}\partial^\alpha\partial^\beta v\|_{L^t(S_D)}^\theta
\end{equation}

with $\theta = 2/s - 2/t$ and for C dependent on s, t, ξ, and D_0, but independent of $|\beta|$, and of v.

Proof. We consider the case where $D = 1$, the general one will follow by scaling and the fact that $D \geq D_0$. For $j \in \mathbb{N}_0$, we introduce the dyadic annuli

$$V_j = \{x \in \mathbb{R}^2 : 2^{-j-1} < |x| < 2^{-j}\}$$

and their sectorial intersections

$$S^j = S_1 \cap V_j.$$

We also introduce the homothetic dilation $\Phi_j : V_j \rightarrow V^0 : x \mapsto 2^j x$ and denote with a hat the scaled quantities, e.g., $\hat{v} = v \circ \Phi_j^{-1}$. Then, for all $j \in \mathbb{N}$,

\begin{equation}
1.27
\|r^{-\xi+|\beta|}\partial^\beta \hat{v}\|_{L^t(S^j)} \leq 2^{-j(-\xi+2/t)}\|r^{-\xi+|\beta|}\partial^\beta \hat{v}\|_{L^t(S^0)}.
\end{equation}

On S^0 we have $1/2 < \hat{r} < 1$, then,

\begin{equation}
1.28
\|\hat{r}^{-\xi+|\beta|}\partial^\beta \hat{v}\|_{L^t(S^0)} \leq 2^{-|\xi|}\|r^{2-s}\partial^\beta \hat{v}\|_{L^t(S^0)}.
\end{equation}

Furthermore, since S^0 satisfies the cone condition [1], there holds the interpolation estimate

$$\|v\|_{L^t(S^0)} \leq C\|v\|_{L^t(S^0)}^\theta \|v\|_{W^{1,s}(S^0)}^{1-\theta},$$

valid for all $v \in W^{1,s}(S^0)$, with $\theta = 2/s - 2/t \in [0, 1)$. From (1.27), (1.28) and from this interpolation estimate we obtain

$$\|r^{-\xi+|\beta|}\partial^\beta v\|_{L^t(S^j)} \leq C2^{-j(-\xi+2/t)}\|r^{2-s}\partial^\beta \hat{v}\|_{L^t(S^0)}^{1-\theta} \sum_{|\alpha| \leq 1} |\beta|^{1-|\alpha|}\|r^{2-s}\partial^\alpha\partial^\beta \hat{v}\|_{L^t(S^0)}^{\theta}.$$

By an elementary manipulation and using again the fact that $1/2 < \hat{r} < 1$,

\begin{equation}
1.29
\|r^{-\xi+|\beta|}\partial^\beta v\|_{L^t(S^j)} \leq C2^{-j|\xi+2/t|}\|r^{2-s}\partial^\beta \hat{v}\|_{L^t(S^0)}^{1-\theta} \sum_{|\alpha| \leq 1} |\beta|^{1-|\alpha|}\|r^{2-s}\partial^\alpha\partial^\beta \hat{v}\|_{L^t(S^0)}^{\theta}.
\end{equation}
Scaling back from S^0 to S^j,
\[
\|r^{1+|\beta|} \partial^\beta v\|_{L^t(S^j)} \leq C 2^{-j(-\xi + t + 2\gamma - 2s)} \| r^{|\beta| - \gamma} \partial^\beta v\|_{L^t(S^j)} \sum_{|\alpha| \leq 1} |\beta|^{(1-|\alpha|)\delta} \| r^{|\beta| + |\alpha| - \gamma} \partial^\alpha v\|_{L^t(S^j)}.
\]

If $\gamma - 2/s > \xi - 2/t$, then, we can sum over all S^j and obtain the assertion. \qed

Remark 1.11. The constant C in (1.26) depends on s, t, γ, and ξ. Nonetheless, it will be used only for specific values of s, t, γ, and ξ, thus this dependence will not be relevant in the following proofs. Specifically, under the hypothesis of Lemma 1.10, we will use the inequalities
\[
(1.30) \quad \| r^{1+|\beta|} \partial^\beta v\|_{L^2(S_D)} \leq C \| r^{|\beta| - \gamma} \partial^\beta v\|_{L^t(S_D)} \sum_{|\alpha| \leq 1} |\beta|^{(1-|\alpha|)\delta} \| r^{|\beta| + |\alpha| - \gamma} \partial^\alpha v\|_{L^t(S_D)}
\]
valid for $\gamma - 2/s > -1$ and with $\delta = 1/s$, and
\[
(1.31) \quad \| r^{1+|\beta|} \partial^\beta v\|_{L^2(S_D)} \leq C \| r^{|\beta| - \gamma} \partial^\beta v\|_{L^t(S_D)} \sum_{|\alpha| \leq 1} |\beta|^{(1-|\alpha|)\eta} \| r^{|\beta| + |\alpha| - \gamma} \partial^\alpha v\|_{L^t(S_D)}
\]
valid for $\gamma - 2/s > -1$ and with $\eta = 2/s$.

1.3.3. Estimate of the nonlinear term. We can now give an estimate of the norm of the nonlinear term, under the assumption that the induction hypothesis holds. Specifically, this will be done in Lemma 1.15. We start by introducing three auxiliary lemmas, that will subsequently be necessary for the proof of Lemma 1.15.

Lemma 1.12. Let $k \in \mathbb{N}$ and $2 < s < \infty$, γ such that $\gamma - 2/s > -1$. Let u be such that $H_u(s, \gamma, k, C_u, A_u)$ holds. Then, there exists $C > 0$ independent of $|\beta|$, k and ρ such that
\[
(1.32) \quad \| r^{1+|\beta|} \partial^\beta u\|_{L^2(S_{R-k\rho})} \leq CA_u^{1+\theta}(k) \| r^{|\beta| - \gamma} \partial^\beta v\|_{L^t(S_{R-k\rho})}^{(1-|\beta| + 1)}
\]
for any $1 \leq |\beta| \leq k$ and with $\theta = 1/s$.

Proof. Let $u = (u_1, u_2)$ and denote $v = u_i$, for any $i = 1, 2$. We start by applying Lemma 1.10, using the bound (1.30):
\[
(1.33) \quad \| r^{1+|\beta|} \partial^\beta u\|_{L^2(S_{R-k\rho})} \leq C \| r^{1+|\beta|} \partial^\beta v\|_{L^t(S_{R-k\rho})} \sum_{|\alpha| \leq 1} |\beta|^{(1-|\alpha|)\delta} \| r^{|\beta| + |\alpha| - \gamma} \partial^\alpha v\|_{L^t(S_{R-k\rho})},
\]
with C independent of $|\beta|$ and v. We denote the total order $|\beta| = \ell \in \{1, \ldots, k\}$. Then, from (1.24a) we have that
\[
\| r^{\ell - \gamma} \partial^\beta v\|_{L^t(S_{R-k\rho})} \leq C_u A_u^{1-\delta}(k) \| r^{\ell - \gamma} \partial^\beta v\|_{L^t(S_{R-k\rho})}^{1-\delta}
\]
and
\[
\sum_{|\alpha| \leq 1} |\beta|^{(1-|\alpha|)\delta} \| r^{\ell + |\alpha| - \gamma} \partial^\alpha v\|_{L^t(S_{R-k\rho})}^{1-\delta} \leq C_u A_u^{\theta}(k) \| r^{\ell + |\alpha| - \gamma} \partial^\alpha v\|_{L^t(S_{R-k\rho})}^{1-\delta} + C_u A_u^{\theta+1}(k) \| r^{\ell + |\alpha| - \gamma} \partial^\alpha v\|_{L^t(S_{R-k\rho})}^{1-\delta}.
\]
hence
\[\| r^{1+\frac{1}{s}} \partial^\beta v \|_{L^2(S_{R-kp})} \leq CA^\ell \partial (k\rho)^{-\ell-\vartheta} (\ell + 1)^{\ell+\vartheta}, \]
which is what was to be proved.

Lemma 1.13. Under the same hypotheses as in Lemma 1.12,
\[(1.34) \quad \| r^{1+\frac{1}{s}} |\partial^\beta| u \|_{L^2(S_{R-kp})} \leq CA^|\beta|+\vartheta (k\rho)^{-|\beta|-\vartheta(|\beta| + 2)|\beta|+1+\vartheta} \]
for \(0 \leq |\beta| \leq k - 1 \) and with \(\vartheta = 1/s \).

Proof. The assertion now follows directly from Lemma 1.12.

Lemma 1.14. Under the same hypotheses as in Lemma 1.12,
\[(1.35) \quad \| r^{1+|\beta|} \partial^\beta u \|_{L^2(S_{R-kp})} \leq CA^{|\beta|+\eta}(k\rho)^{-|\beta|-\eta(|\beta| + 1)|\beta|+\eta} \]
for \(0 < |\beta| \leq k \) and with \(\eta = 2/s \).

Proof. The proof follows verbatim the steps as the proof of Lemma 1.12, with (1.33) replaced by (1.31) and \(\vartheta \) replaced by \(\eta \).

The weighted seminorms of the nonlinear term in (2.1) can now be controlled, subject to the induction hypothesis.

Lemma 1.15. Let \(0 < R < 1, k \in \mathbb{N}_0, 2 < s < \infty, \gamma \in \mathbb{R}, u \in K_{\gamma}^{k+1}(S_{R-kp}) \) be such that \(\gamma - 2/s > -1 \) and assume that \(H_{u,s,\gamma,k,C_{u,A_{u}}} \) holds.

Then, \((u \cdot \nabla) u \in K_{\gamma-2}^{k+2}(S_{R-kp}) \) and there exists a constant \(C > 0 \) independent of \(k \), such that for all \(\rho \in (0,R/(2k)] \) and for every \(|\beta| \leq k \) there holds the bound
\[(1.36) \quad \| r^{2-\gamma+|\beta|} \partial^\beta (u \cdot \nabla) u \|_{L^s(S_{R-kp})} \leq CA^{k+1+2\vartheta}(k\rho)^{-|\beta|-1-2\vartheta(|\beta| + 1)|\beta|+3/2} \]
with \(\vartheta = 1/s \).

Proof. Let \(u = (u_1, u_2) \) and \(\beta \in \mathbb{N}^2 \) such that \(|\beta| \leq k \). By the Leibniz rule and the Hölder inequality, for \(m,n \in \{1,2\}, \)
\[(1.37) \quad \| r^{2-\gamma+|\beta|} \partial^\beta u_m \partial^\alpha u_n \|_{L^s(S_{R-kp})} \leq \sum_{j=0}^{|\beta|-1} \sum_{\alpha \leq |\beta|} \left(\frac{\beta}{\alpha} \right) \| r^{2-\gamma+|\beta|-|\alpha|} \partial^{\beta-\alpha} u_m \|_{L^2(S_{R-kp})} \| r^{1-\gamma+1+|\alpha|} \partial^\alpha \partial^\alpha u_n \|_{L^2(S_{R-kp})} \]
\[+ \| r^{2-\gamma+|\beta|} u_m \partial^\beta \partial^\alpha u_n \|_{L^s(S_{R-kp})}. \]
We start by considering the sum in the right hand side of the above inequality. Due to Lemma 1.12, Lemma 1.13, and Stirling’s inequality, there exists \(C \) independent of
Specifically, we decouple the inductive step and the starting point of our argument. This concludes the proof.

Consider now the remaining term in (1.37). This term has to be treated differently due to the possibility that $|\beta| = k$. There holds, using (1.31), (1.24a), and writing $\eta = 2/s$,

$$\|r^{2-\gamma+|\beta|} u_m \partial^\beta \partial_m u_n \|_{L^s(S_{R-k\rho})} \leq \|r u_m \|_{L^\infty(S_{R-k\rho})} \|r^{1-\gamma+|\beta|} \partial^\beta \partial_m u_n \|_{L^s(S_{R-k\rho})} \leq C\|r^{-\gamma} u_m \|_{L^1(S_{R-k\rho})} \|u_m\|_{K^1_s(S_{R-k\rho})} \|r^{-\gamma+|\beta|} \partial^\beta \partial_m u_n \|_{L^s(S_{R-k\rho})} \leq CA_u^{|\beta|+\eta} (k\rho)^{-|\beta|-1} \|\beta\|^{1+|\beta|}.$$

This concludes the proof.

2. The Stokes and Navier-Stokes equations in a polygon P.

We now consider the Navier-Stokes problem in a polygon P, with internal angles φ_i such that $0 < \varphi_i < 2\pi$, corners c_i and edges e_i, $i = 1,\ldots,n$ as depicted in Figure 2. We recall (0.1), the incompressible Navier-Stokes equations with homogeneous Dirichlet boundary conditions

$$-\nu \Delta u + (u \cdot \nabla) u + \nabla p = f \quad \text{in} \; P,$$

$$\nabla \cdot u = 0 \quad \text{in} \; P,$$

$$u = 0 \quad \text{on} \; \partial P.$$

It is well-known that for sufficiently small data, i.e. for sufficiently small $\|f\|_0/\nu$, (2.1) admits a unique weak (Leray-Hopf) solution $(u, p) \in H^1_0(P)^2 \times L^2(P)/\mathbb{R}$ (e.g. [16, 28, 30]). For convenience, we assume throughout what follows that $\nu = 1$ and that $\|f\|_0$ is sufficiently small to ensure uniqueness of (u, p). The proof of weighted analytic estimates for Leray-Hopf weak solutions of problem (2.1) consists in the combination of the estimates localised at every corner sector with classical regularity results in the interior and along the (straight) edges of the domain.

To show the estimates in the corner sectors, we will again proceed by induction. Specifically, we decouple the inductive step and the starting point of our argument.
First, in Lemma 2.1, we prove an analytic regularity shift estimate, starting from the induction hypothesis introduced in (1.25) and using the results obtained in Section 1.3. This will serve in the following as the local induction step for the proof of analytic regularity in polygons. Then, the base case for induction is given in Lemma 2.5, where we derive a basic regularity estimate in weighted spaces for the Leray-Hopf solution to the problem under consideration.

Theorem 2.6 constitutes then the main result of this paper, i.e., weighted analytic regularity of the Leray-Hopf solutions to the incompressible Navier-Stokes problem, in polygonal domains and with “no-slip”, homogeneous Dirichlet boundary conditions.

2.1. The Navier-Stokes equation in the polygon. We start by the introduction of the setting and notation for the polygonal case. For all \(i = 1, \ldots, n\) and for \(0 < D < |e_i|\), where \(|e_i|\) is the length of the edge \(e_i\), we denote the sectors centered at corner \(c_i\) by

\[
S_i^D = B_D(c_i) \cap P
\]

where \(B_D(c_i)\) is the ball of radius \(D\) centered in \(c_i\). We write \(r_i = |x - c_i|\), \(\gamma = \{\gamma_i\}_{i=1,\ldots,n}\) and

\[
r_\gamma = \prod_{i=1,\ldots,n} r_i^{\gamma_i}.
\]

For \(\ell \in \mathbb{N}_0\), \(1 < s < \infty\) and for \(\gamma \in \mathbb{R}^n\), the definition of the spaces \(K_2^{\ell,s}(P)\) and \(K_2^{\infty,s}(P)\) follows directly from the one introduced for \(K\). In the following, comparisons between \(n\)-dimensional vectors have to be interpreted elementwise, e.g., for \(\underline{\gamma} = \{\gamma_i\}_{i=1,\ldots,n}\) and \(\underline{\eta} = \{\eta_i\}_{i=1,\ldots,n}\), we write \(\underline{\gamma} < \underline{\eta}\) if

\[
\gamma_i < \eta_i \quad \text{for all} \quad i = 1, \ldots, n.
\]

Also, for \(x \in \mathbb{R}\), we write \(x + \gamma = \{x + \gamma_i\}_{i=1,\ldots,n}\).

Fix \(R \in \mathbb{R}_+\) such that \(R \leq \min_{i,j=1,\ldots,n} |c_i - c_j|\). Denote by \(P_0\) a set bounded away from the corners such that \(P_0 \cup \left(\bigcup_{i=1,\ldots,n} S_i^R\right) = P\), see Figure 3.
2.1.1. Inductive step. Using the results introduced in Sections 1, we can now show that, given a sufficiently regular right hand side, if the derivatives of a Leray-Hopf solution to the Navier-Stokes equations satisfy weighted analytic estimates up to a certain order in a sector, then by elliptic regularity in weighted spaces the estimates hold to higher order. This will be used as the inductive step in the proof of weighted analytic regularity in polygons.

Lemma 2.1. Let $0 < R < 1$, $k \in \mathbb{N}_0$, $i \in \{1, \ldots, n\}$, $2 < s < \infty$, $\gamma \in \mathbb{R}$ such that $\gamma - 2/s > -1$. Let $f \in \mathcal{K}^s_{\gamma-2}(S_{R-k\rho}^i; C^i, A^i)$, and let $(u, p) \in \mathcal{K}^{k+1}_{\gamma-1}(S_{R-k\rho}^i) \times \mathcal{K}^k_{\gamma-1}(S_{R-k\rho}^i)$ be a solution to (2.1). Then, $C_u, A_u, C_p,$ and A_p can be chosen independently of k and ρ so that the hypothesis “$\mathcal{H}_{u,p}(s, \gamma, k, C_u, A_u, C_p, A_p)$ holds in $S_{R-k\rho}^i$” implies

$$\mathcal{H}_{u,p}(s, \gamma, k + 1, C_u, A_u, C_p, A_p) \text{ holds in } S_R^i.$$

Proof. We remind that we work under the small data hypothesis which ensures that (u, p) is unique. We write (2.1) as (recall that we assume $\nu = 1$ and the source term f to be scaled so that the solution is unique)

$$-\Delta u + \nabla p = f - (u \cdot \nabla) u \text{ in } P,$$

$$\nabla \cdot u = 0 \text{ in } P,$$

$$u = 0 \text{ on } \partial P \setminus \{0\}.$$

By the hypotheses and Lemma 1.15, $f - (u \cdot \nabla) u \in \mathcal{K}^{k,s}_{\gamma-2}(S_{R-k\rho}^i)$. Fix then $\rho \in (0, R/(2(k+1))]$. We apply Proposition 1.9 to obtain

$$|u|_{\mathcal{K}^{k+2,s}_{\gamma-2}(S_{R-(k+1)\rho}^i)} + |p|_{\mathcal{K}^{k+1,s}_{\gamma-1}(S_{R-(k+1)\rho}^i)}$$

$$\leq C \left\{ |f|_{\mathcal{K}^{k,s}_{\gamma-2}(S_{R-k\rho}^i)} + |(u \cdot \nabla) u|_{\mathcal{K}^{k,s}_{\gamma-2}(S_{R-k\rho}^i)} + \sum_{n \leq 1} |g|_{\mathcal{K}^{k,n,s}_{\gamma-1}(S_{R-k\rho}^i)} + \rho^{-1} |p|_{\mathcal{K}^{k,s}_{\gamma-2}(S_{R-k\rho}^i)} + \sum_{n \leq 1} \rho^{n-2} |u|_{\mathcal{K}^{k,n,s}_{\gamma-2}(S_{R-k\rho}^i)} \right\}.$$

Now, if $\mathcal{H}_{u,p}(s, \gamma, k, C_u, A_u, C_p, A_p)$ holds and using the estimate (1.36) of Lemma 1.15,
we obtain
\begin{equation}
|u|_{K_{\gamma,k}^{1+2/s}(S_{R-h_{k+1}})} + |p|_{\mathbb{K}_{\gamma,k}^{1+2/s}(S_{R-h_{k+1}})}
\leq C \left\{ A_f^k + A_g^k + A^{k+1+2/s}(kp)^{-k-1-2/s}(k+1)^{k+3/2} + A(kp)^{-k} \right\}
\end{equation}

Thus, choosing \(C_u, C_p \geq 1 \) and \(A_u = A_p \) so large that
\begin{equation}
A_u \geq \max(A_f, A_g) A_u^{-2/s} \geq C,
\end{equation}
we obtain the assertion.

Remark 2.2. The proof of Lemma 2.1 shows how the argument used in the present paper does not work when \(s \leq 2 \). Specifically, only if \(s > 2 \) there exists an \(A > 0 \) such that the second inequality in (2.3) is verified and \((kp)^{-1-2/s} < (kp)^{-2} \) in (2.2).

2.1.2. Base regularity estimate. We recall two lemmas characterizing continuous imbeddings in weighted spaces from [33, Lemmas 4.1.2 and 4.1.3].

Lemma 2.3. Let \(1 < t < s < \infty, \gamma, \eta \in \mathbb{R}^n \), and \(\ell \in \mathbb{N}_0 \) such that \(\gamma - 2/s > \eta - 2/t \). Then,
\[K_{\gamma,s}^{\ell,t}(P) \hookrightarrow K_{\gamma,2}^{\ell,t}(P). \]

Lemma 2.4. Let \(1 < s \leq t < \infty, \gamma, \eta \in \mathbb{R}^n, \) and \(\ell, k \in \mathbb{N} \) such that \(\ell > k \) and \(\ell - 2/s \geq k - 2/t, \gamma - 2/s \geq \eta - 2/t \). Then,
\[K_{\gamma,s}^{\ell,t}(P) \hookrightarrow K_{\gamma,2}^{\ell,t}(P). \]

We next introduce a regularity result in weighted spaces for the Navier-Stokes problem (2.1). This will constitute the base case for the inductive proof of analytic regularity. In the following we investigate the regularity in the weighted spaces \(K_{\gamma,s}^{1,t}(P) \) for \(s > 2 \), i.e., in the non Hilbertian setting. Our strategy to prove the base case is to prove a higher order regularity result, then use the preceding imbeddings to prove the base case.

Lemma 2.5. Let \(u, p \) be a solution to (2.1). Suppose that there exists \(2 \leq \tilde{s} \) and \(\tilde{\gamma} \in \mathbb{R}^n \) such that
\[f \in H^{-1}(P) \cap K_{\tilde{\gamma},2}^{0,\tilde{s}}(P). \]
Then, for all \(1 < s < \infty \) and \(\gamma \in \mathbb{R}^n \) such that \(\gamma - 2/s \leq \min(2, \tilde{\gamma} + 1 - 2/\tilde{s}) \), there holds
\[u \in K_{\gamma,s}^{1,0}(P), \quad p \in K_{\gamma,s}^{0,0}(P). \]

Proof. Since \(u \) is solution to (2.1), \(u \in H_0^1(P) = K_{1}^{1,2}(P), \) where \(1 = \{1, \ldots, 1\} \in \mathbb{R}^n, \) see [16]. Hence, by the Hölder inequality and by Sobolev imbedding, for all \(1 < s_1 < 2 \) and \(\gamma_1 - 2/s_1 < -1, \) denoting \(t = (1/2 - 1/s_1)^{-1}, \)
\[\|r^{-\gamma_1}(u \cdot \nabla)u\|_{L^{s_1}(P)} \leq \|r^{-\tilde{\gamma}}u\|_{L^1(P)}^2 \|\nabla u\|_{L^2(P)} < \infty, \]
i.e.,
\[(u \cdot \nabla) u \in K_{2}^{0,s_{1}}(P).\]

We temporarily fix \(s_{1}\) and \(\tilde{\gamma}_{1}\). By Lemma 2.3,
\[f \in K_{2}^{0,s_{1}}(P).\]

Problem (2.1) can be rewritten as
\[-\Delta u + \nabla p = f - (u \cdot \nabla) u \text{ in } P,
\nabla \cdot u = 0 \text{ in } P,
\] \[u = 0 \text{ on } \partial P.\]

Then, by classical elliptic regularity in \(P_{0}\) – see for example [16] – and using Theorem 1.1 in all the sectors \(S_{i,R}^{j}, i = 1, \ldots, n\), we obtain
\[u \in K_{2}^{2,s_{2}}(P), \quad p \in K_{2}^{1,s_{2}}(P),\]
for all \(\gamma_{1} \in \mathbb{R}^{n}\) such that \(\gamma_{1} - 2/s_{1} \leq \min(\tilde{\gamma}_{1} + 2, \gamma_{1} - 2/s_{1} - 2/\tilde{s}).\) Then, by continuous imbedding – see Lemma 2.4 – if \(s_{2} \leq 2s_{1}/(2 - s_{1})\) and \(\gamma_{2} - 2/s_{2} \leq \gamma_{1} - 2/s_{1}\), there holds
\[u \in K_{2}^{1,s_{2}}(P), \quad p \in K_{2}^{0,s_{2}}(P).\]

Due to the arbitrariness of \(1 < s_{1} < 2\), (2.4) holds for all \(2 \leq s_{2} < \infty, \gamma_{2} - 2/s_{2} \leq \min(2, \tilde{s} + 1 - 2/\tilde{s})\).

2.1.3. Analytic regularity. We denote by \(\mathfrak{A}(\lambda)\) the Mellin symbol of the Stokes operator associated to the corner \(c_{i}\), i.e., the operator \(\mathfrak{L}(\partial, \partial_{\theta}; \lambda)\) in \((0, \varphi_{i})\) with boundary operator \(\mathfrak{B}(\partial, \partial_{\theta}; \lambda)|_{\varphi = 0, \varphi_{i}}\), introduced in Section 1.2. The operator pencil \(\mathfrak{A}(\lambda)\) is Fredholm and therefore admits a discrete spectrum of countably many, possibly complex eigenvalues which accumulate only at \(\lambda = +\infty\). Let \(\Lambda_{i,\text{min}}^{i}\) be the real part of the eigenvalue with smallest positive real part of \(\mathfrak{A}(\lambda)\), and let \(\Lambda = \{\Lambda_{i,\text{min}}^{i}\}_{i=1,\ldots,n} > 0\).

The regularity in countably normed, weighted analytic spaces for the solution to the incompressible Navier-Stokes equation in the polygon \(P\) then follows by a bootstrapping argument with induction w.r. to the order of differentiation in the Kondrat’ev scales, with parameter \(\gamma\) in one common strip of width \(2\Lambda\) determined by the spectra of \(\mathfrak{A}(\lambda), i = 1, \ldots, n\) as in finite-order regularity results in [17, 36].

THEOREM 2.6. Let \(2 < s < \infty, \gamma \in \mathbb{R}^{n}\) such that \(\max(-\Lambda, -1) < \gamma - 2/s < \min(\Lambda, 1)\). Let \((u, p)\) be solution to (2.1) with
\[f \in K_{2}^{0,s_{1}}(P) \cap H^{-1}(P).\]

Then,
\[u \in K_{2}^{0,s_{1}}(P), \quad p \in K_{2}^{0,s_{1}}(P).\]
Proof. We rewrite for the polygon P the induction hypotheses introduced in Section 1.3. For $1 < s < \infty$, $\gamma \in \mathbb{R}^n$, $i = 1, \ldots, n$, $0 < R < 1$, $C_u, A_u, C_p, A_p > 0$, and for $j \in \mathbb{N}_0$, we introduce two statements: we shall say that $H^i_u(s, \gamma, j, C_u, A_u)$ holds if for all $\rho \in (0, R/(2j)]$,

\begin{equation}
|u|_{K^s_{\gamma, \rho}((S_0 - j)\rho)} \leq C_u A_u^\ell (j \rho)^{-\ell} for all \ell \leq j
\end{equation}

and $H^i_p(s, \gamma, j, C_p, A_p)$ holds if for all $\rho \in (0, R/(2j)]$,

\begin{equation}
|p|_{K^s_{\gamma, \rho}((S_0 - j)\rho)} \leq C_p A_p^\ell (j \rho)^{-\ell} for all \ell \leq j.
\end{equation}

For non-negative integer k, the induction hypothesis is formulated as

\begin{equation}
H^i_{u,p}(s, \gamma, k, C_{u,p}, A_{u,p}) :
\begin{cases}
H^i_u(s, \gamma, j, C_u, A_u) holds for j = 0, \ldots, k + 1, \\
H^i_p(s, \gamma, j, C_p, A_p) holds for j = 0, \ldots, k,
\end{cases} for all i = 1, \ldots, n.
\end{equation}

Fix an $2 < s < \infty$ and γ such that the hypotheses of the theorem hold. Then, by Lemma 2.5, $u \in K^{\infty, s}_{2}(\overline{P})$ and $p \in K^{0, s}_{-1}(P)$, i.e., there exist $C_{u,p}, A_{u,p}$ such that $H^i_{u,p}(s, \gamma, 0, C_{u,p}, A_{u,p})$ holds. Suppose now that $H^i_{u,p}(s, \gamma, k, C_{u,p}, A_{u,p})$ holds, with $C_{u,p}, A_{u,p}$ chosen so large that the conclusion of Lemma 2.1 holds in every corner sector. Then, by Lemma 2.1 applied to every corner sector, $H^i_{u,p}(s, \gamma, k+1, C_{u,p}, A_{u,p})$ holds. By induction, this implies that, for all $i = 1, \ldots, n$,

\begin{equation}
u \in K^{\infty, s}_{2}(S_{R/2}^i), \quad p \in K^{\infty, s}_{-1}(S_{R/2}^i).
\end{equation}

The set P_0 can be covered by a finite number of balls, and from classical results of interior analyticity and of analyticity in regular parts of the boundary, see, e.g., [32, 15], we derive analyticity in P_0. Since r is bounded away from zero in P_0, this implies

\begin{equation}
u \in K^{\infty, s}_{2}(P_0), \quad p \in K^{\infty, s}_{-1}(P_0).
\end{equation}

Combining (2.7) for $i = 1, \ldots, n$ and (2.8) implies the assertion.

3. Conclusion. We established analytic regularity of stationary solutions of the incompressible Navier-Stokes equation in plane, polygonal domains, subject to the “no-slip”, homogeneous Dirichlet boundary condition.

The result pertains to Leray-Hopf solutions of the NSE (2.1) with sufficiently small data. We also remark that the variational bootstrapping argument used to establish (2.8) can also be used to establish analytic regularity for the solution of the Navier-Stokes equation in Sobolev spaces without weights, in compact subsets of P, and up to the boundary in domains with analytic boundary, thereby comprising a “real-valued” proof of the analytic regularity results in [32, 15] which were obtained in these references with function-theoretic arguments. The proof in the present paper proceeds, instead, by the classical arguments [34] which are based on localization, a-priori estimates and bootstrapping arguments combined with induction to control growth of constants in terms of derivative orders.

The present proof is developed for so-called “no slip” boundary conditions (i.e. homogeneous Dirichlet boundary conditions) for the velocity field which entailed
weighted norms with homogeneous corner weights. They can be extended verbatim to certain other combinations of boundary conditions at the corners. Corresponding weighted shift theorems in finite order weighted spaces were obtained in [36].

The presently obtained analytic regularity shifts for the (Navier-)Stokes equations will allow for exponential convergence rates of so-called hp-discretizations of these equations. See, e.g., [5, 40, 3]. Details of this will be developed elsewhere.

REFERENCES

