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Abstract

We analyze the complexity of the sparse-grid interpolation and sparse-grid quadrature of
countably-parametric functions which take values in separable Banach spaces with uncondi-
tional bases. Under the provision of a suitably quantified holomorphic dependence on the
parameters, we establish dimension-independent convergence rate bounds for sparse-grid ap-
proximation schemes. Analogous results are shown in the case that the parametric solutions are
obtained as solutions of corresponding parametric-holomorphic, nonlinear operator equations as
considered in [A. Cohen and A. Chkifa and Ch. Schwab: Breaking the curse of dimensionality
in sparse polynomial approximation of parametric PDEs, Journ. Math. Pures et Appliquees
103(2) 400-428 (2015)] by means of stable, finite dimensional approximations, for example non-
linear Petrov-Galerkin projections. Error and convergence rate bounds for constructive and
explicit multilevel, sparse tensor approximation schemes combining sparse-grid interpolation in
the parameter space and general, multilevel discretization schemes in the physical domain are
proved. The results considerably generalize several earlier works in terms of the admissible
multilevel approximations in the physical domain (comprising general stable Petrov-Galerkin
and discrete Petrov-Galerkin schemes, collocation and stable domain approximations) and in
terms of the admissible operator equations (comprising smooth, nonlinear locally well-posed
operator equations). Additionally, a novel, general computational strategy to localize sequences
of nested index sets is given for the anisotropic Smolyak scheme realizing best n-term bench-
mark convergence rates. We also consider Smolyak-type quadratures in this general setting, for
which we establish improved convergence rates based on cancellations in gpc expansions due
to symmetries of the probability measure [J. Zech and Ch. Schwab: Convergence rates of high
dimensional Smolyak quadrature, Report 2017-27, SAM ETH Zürich].

Several examples illustrating the abstract theory include domain uncertainty quantification
(“UQ” for short) for general, linear, second order, elliptic advection-reaction-diffusion equations
on polygonal domains, where optimal convergence rates of FEM are known to require local
mesh refinement near corners. For these equations, we also consider a combined sparse-grid
scheme in physical and parameter space, affording complexity similar to the recent multiindex
stochastic collocation approach. Further applications of the presently developed theory comprise
evaluations of posterior expectations in Bayesian inverse problems.
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1 Introduction

A key task in computational UQ is the efficient numerical treatment of partial differential equations
(PDEs) with uncertain, distributed input data. This is to say that uncertain input data takes values
in (generally infinite-dimensional, separable) Banach spaces rather than in R

n. Cases in point are
for example coefficients describing material properties of heterogeneous media, source terms or
geometries of physical domains to name but a few. In recent years, substantial attention has
been focused on the mathematical and numerical analysis of partial differential equation models
in the sciences and engineering with parametric dependence of distributed uncertain input data,
taking values in function spaces on domains. Choosing (computationally convenient) bases in these
spaces, thereby parametrizing the distributed uncertainty, results in parametric UQ on possibly
high-dimensional parameter spaces, the parameter dimension being given by the number of active
basis elements in uncertainty parametrization.

1.1 Previous approximation results for parametric solution families

Uncertainty parametrization renders the solution of the forward problem likewise parametric,
thereby leading to the mathematical and computational approximation problem of many-parametric
“forward” solution maps. A set of results, starting with [49], exploited analyticity of the parametric
solution at the origin, and via bounds on the radius of convergence of Taylor generalized polyno-
mial chaos (“gpc for short”) expansions, inferred convergence rates of n-term truncated Taylor gpc
expansions of the parametric solution. This line of work was expanded in [18, 19, 15], where holo-
morphy of the parameter-to-solution maps was quantified through radii of poly-discs respectively
of poly-ellipses, and dimension independent rates of convergence of best N -term approximations
were obtained. Best N -term approximations of, generally, infinite-dimensional gpc expansions are,
as a rule, not constructive, but provide a benchmark for convergence rates that can, in principle,
be achieved.

An important role in the approximation of such many-parametric solutions has been taken in
recent years by generalized polynomial chaos expansions, and their numerical approximations by
collocation and Galerkin projections. We refer to [44, 31] and the references there for anisotropic
spectral interpolation methods in parameter space. Under mild additional assumptions, construc-
tive stochastic collocation schemes have been proposed. They were shown in [12] to produce se-
quences of gpc approximations with the same convergence rates as N -term approximations by
sampling the parameter spaces on unisolvent generalized sparse-grids, adapted to the structure of
the parametric solution. Algorithms for the computational construction of rate-optimal (w.r.t. a
cost-benefit criterion) index sets were proposed in [3] and analyzed in [43]. The construction in [3]
involved the numerical solution of a certain knapsack problem, based on apriori given bounds on
gpc coefficients.

The results in the mentioned references were mostly (with the exception of [34, 15]) for model
linear parametric elliptic diffusion problems. An extension of the convergence analysis to generic
parametric solution families taking values in (separable) Hilbert spaces was developed in [43]: the
focus of this work is on the collocation error analysis in the parameter space. Discretization in
physical space was, in principle, covered in a single-level setting, i.e., with the same discretization
used for all collocation points. It has, however, been stipulated already early on (see, e.g., [6, 5])
that substantial efficiency could be gained by adapting the discretization resolution in physical
space to the size of the details with respect to the parameters.
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Computational implementation of interpolatory or collocation approximations in the parameter
domain requires, as a rule, also discretization of the corresponding operator equation. Here, sparsity
of sequences of discretization schemes has been identified as a crucial ingredient in viable numerical
approximation schemes; cases in point are multilevel Monte Carlo Methods (see, e.g., [27] and
references therein), and generalized sparse-grid approaches. Recently, the so-called “multi-index
stochastic collocation” method (MISC) for the solution of many-parametric PDEs was proposed
in [33, 32]. This method combines sparse-grid approximations in both the parameter space and
the physical space, yielding a multilevel method that was shown to achieve dimension independent
convergence rates for the numerical integration of a model elliptic problem with a random diffusion
coefficient. Moreover, benchmark approximation rates for fully discrete, multilevel approximations
have been recently proved, in [2].

1.2 Contributions of the present paper

The contributions of the present paper consist, on the one hand, in a generalization of [43, 32]
in that Banach space valued, countably-parametric solution families of general, locally well-posed
nonlinear operator equations with holomorphic dependence on the uncertain inputs are admitted.
This setting accommodates certain nonlinear partial differential equations where growth condi-
tions for the (analytic) nonlinearity preclude a Hilbert space setting. Moreover, we propose novel
algorithms for the construction of nested, downward closed index sets affording near-optimal con-
vergence rates for stochastic collocation which obviate the use of computational knapsack solvers as
proposed, for example, in [3, 43]. They provide an apriori, constructive localization of near optimal
index sets (in the sense that best N -term rates are achieved by sparse tensor gpc interpolants on
the corresponding unisolvent sparse-grids). The present results contain, finally, a “fully discrete”,
sparse tensor version of [15], in that analogous nonlinear, implicit holomorphic-parametric operator
equations are admitted. They contain in particular earlier results for certain operator equations in
[17, 19, 28, 43]. We illustrate the abstract framework by extending earlier results for coefficient and
domain uncertainty for second order, diffusion equations with uncertain, parametric coefficients to
general advection-reation-diffusion PDEs in polygons, with uncertain coefficients and/or uncertain
domains. Here, the holomorphy of the data-to-solution map is employed in corner-weighted Kon-
drat’ev space in D, accomodating elliptic regularity shifts and optimal FE convergence rates on
corner-refined meshes in D. Further examples include the Maxwell and Navier-Stokes Equations in
uncertain domains [21, 38].

1.3 Outline

The present paper is structured as follows. After developing abstract results on multilevel approxi-
mation of Banach space valued (b, ε)-holomorphic maps in Section 2, which could be of independent
interest, we specialize these results in Section 3 to stable Petrov-Galerkin approximation of solution
families of countably-parametric, holomorphic nonlinear operator equations. Section 4 discusses
several examples to illustrate the scope of the foregoing, abstract results, covering in particular
general parametric advection-reaction-diffusion models with uncertain coefficients, in polygonal
domains and domain UQ. Finally, in Section 5, we investigate the sharpness of the theoretical re-
sults in several numerical experiments. The appendix contains proofs on sequence approximation
results which are the key technical ingredients in Section 2.1.1.
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1.4 Notation

We use standard notation. Specifically, we shall use multiindices ν = (νj)j∈N ∈ N
N
0 being sequences

of nonnegative integers. Denote by suppν := {j ∈ N : νj > 0} the support of ν ∈ N
N
0 , and by F

the set of all ν ∈ N
N
0 such that suppν is a finite subset of N. Evidently, the order of a multiindex

ν ∈ N
N
0 , which is denoted by |ν| :=

∑

j∈N νj , is finite if and only if ν ∈ F . For two multiindices ν,

µ ∈ N
N
0 , inequalities such as ν ≤ µ are always understood componentwise, i.e. ν ≤ µ if and only

if νj ≤ µj for all j ∈ N. For a scalar c ∈ C we write cν to denote (cνj)j∈N ∈ C
N and similarly

νc := (νcj )j∈N. If c ∈ C
N on the other hand, then νc :=

∏

{j : νj 6=0} ν
cj
j . An important role in the

proofs of the convergence rate bounds for sparse-grid interpolants in the present paper is taken by
particular subsets of NN

0 introduced in [52].

Definition 1.1. For k ∈ N, Fk ⊆ F denotes the sets of finitely supported multiindices defined by

Fk := {ν ∈ {0, k, k + 1, . . . }N : |ν| <∞}. (1.1)

Obviously, F = F1 ⊃ F2 ⊃ ... and all Fk are countable. The sets Fk arise in indexing generalized
polynomial chaos (“gpc” for short) expansions of homogeneity at least k ≥ 1.

We shall make use of downward closed sets of multiindices. A subset Λ ⊆ F is labelled downward
closed, if ν ∈ Λ implies µ ∈ Λ for all µ ≤ ν. We shall say that a sequence (tν)ν∈F is monotonically
decreasing if it satisfies

ν ≤ µ ⇒ tν ≥ tµ ∀ν, µ ∈ F . (1.2)

Additionally we introduce the space ℓpm(F) of ℓp(F) sequences (tν)ν∈F ∈ C
F which are monotoni-

cally decreasing.
For a finite set I, we denote by |I| the cardinality of I. Moreover, if I is at most countable and

G some other set, then by GI we mean the (infinite) product set×i∈I G.
Throughout, CN will be equipped with the product topology and any subset, such as U :=

[−1, 1]N ⊆ C
N, with the subspace topology. Since we deal with functions u : U → X, for some

Banach space X, we also require a measure µ on U . This is defined as the infinite product measure
µ :=

⊗

j∈N λ/2 with λ being the Lebesgue measure on [−1, 1]. Recall that the sigma algebra for µ
is generated by all finite rectangles

∏∞
j=1 Pj such that only a finite number of the Pj are different

from [−1, 1] and those that are different are intervals contained in [−1, 1]. All integrals over U
as well as Lp(U,X) norms will be understood with respect to this measure and the Borel sigma
algebra on X. Moreover, occasionally we will consider integrals over [−1, 1]m, m ∈ N, in which
case, by abuse of notation we also write µ to denote the measure

⊗m
j=1 λ/2 on [−1, 1]m. The open

ball with radius ρ > 0 and center 0 ∈ C is denoted by Bρ = {z ∈ C : |z| < ρ}. Additionally, for
m ∈ N and ρ = (ρj)

m
j=1 ∈ (0,∞)m we set Bρ :=×m

j=1Bρj ⊆ C
m. Similarly, Bρ :=×j∈NBρj ⊆ C

N

in case ρ = (ρj)j∈N ∈ (0,∞)N. The closure of a subset B of a topological space is denoted by
clos(B).

Finally, for a vector space X over R or C we write XC for its complexification: by this we
mean elements in the set XC := X + iX, with i denoting the imaginary unit in C. If X is
a Banach space, the vector space XC becomes a Banach space being endowed with the norm
‖x1 + ix2‖XC

:= sup0≤t≤2π ‖x1 cos t− x2 sin t‖X (cf. [41]).
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2 Multilevel approximation of holomorphic maps

For a Banach space X, consider the approximation of infinite-variate functions u : U → X. We
assume u to exhibit certain holomorphic properties as summarized in the next definition. Recall
that for ρ ∈ (0,∞)N, Bρ =×j∈NBρj denotes the cartesian product of the complex open balls
Bρj ⊆ C with radius ρj around 0.

Definitions analogous to the following one were introduced and employed in [19, 15, 48, 25], also
see [52].

Definition 2.1 ((b, ε,X)-Holomorphy). Let X be a Banach space and u : U → X. Assume given
a sequence b = (bj)j∈N of nonnegative numbers bj such that b ∈ ℓp(N) for some p ∈ (0, 1], and such
that bj is monotonically decreasing.

We say that ρ ∈ (1,∞)N is (b, ε)-admissible for some ε > 0 if

∑

j∈N

bj(ρj − 1) ≤ ε . (2.1)

With Bρ :=×j∈N clos(Bρj ) let

Ob,ε :=
⋃

{ρ :ρ is (b, ε)-admissible}

Bρ ⊆ C
N. (2.2)

The map u is (b, ε,X)-holomorphic (or simply (b, ε)-holomorphic), if for every (b, ε)-admissible ρ,
u allows a continuous extension u : Bρ → XC that is holomorphic as a function of each zj, and if
additionally, there exists a constant Cb,u <∞ such that

sup
z∈Ob,ε

‖u(z)‖XC
≤ Cb,u. (2.3)

The implication of (b, ε)-holomorphy of countably-parametric functions on gpc convergence
rates is formulated in the following theorem. To state it, we denote the Legendre polynomial of
degree n by Ln and assume the normalization ‖Ln‖L∞(−1,1) = 1. For ν ∈ F , define the tensorized
Legendre polynomial Lν :=

∏

j∈N Lνj . Note that (Lν)ν∈F is an orthogonal basis of L2(U,R)

w.r.t. the measure µ introduced in Section 1 and it holds ‖Lν‖L2(U) =
∏

j∈N(2νj + 1)−1/2 ≤ 1.

Theorem 2.2. Let p ∈ (0, 1], let X be a Banach space and let u : U → X be (b, ε,X)-holomorphic
with b ∈ ℓp. Then u admits the unconditionally in L∞(U,X) convergent Legendre gpc expansion
u(y) =

∑

ν∈F uνLν(y). The sequence (‖uν‖X)ν∈F possesses a majorant in ℓpm(F).

Theorem 2.2 was proven in [15, Theorem 2.2] for p ∈ (0, 1) under less stringent assumptions
than we use here (cp. Remark 2.3). The case p = 1 can be shown similarly.

Remark 2.3. We point out that for simplicity we work here with holomorphy assumed on polydiscs
as stated in Definition 2.1. Most results of this paper remain true under the (weaker) assumption
that u allows holomorphic extensions to certain polyellipses contained in the polydiscs of Definition
2.1. This will be elaborated in more detail in [51].

The outline of the remainder of this section is as follows: In Section 2.1 we establish some pre-
liminaries and prove convergence rates w.r.t. the Lq-norm, q ∈ [2,∞], for a linear approximation
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operator. The linearity and boundedness of the operator for q ∈ {2,∞} will allow us to employ
interpolation theory. The accompanying result, Theorem 2.14, is stated under the additional re-
striction that X is a Hilbert space, since the proof of this theorem will require an orthogonal basis.
For this reason, we admit X to be a Banach space throughout, with the sole exception of Theorem
2.14. For the same reason, the proof will employ the Legendre expansion from Theorem 2.19,
whereas in the subsequent sections we resort to Taylor expansions. Subsequently, in Section 2.2, we
present a constructive interpolation algorithm which maintains the rate of the linear approximant
from Theorem 2.14 in the L∞-norm. Improved convergence rates are shown for the corresponding
quadrature algorithm. Finally, in Section 2.3 we discuss the error in terms of the total complexity
of our interpolation and quadrature algorithm.

2.1 Linear approximation

We prepare the presentation of the linear approximation results and their proofs by first presenting
some results on weighted sequence minimization which are of independent interest. They arise in
the derivation of approximation rate bounds and are crucial for our subsequent complexity and
convergence rate results. Proofs are provided in the appendix.

2.1.1 Weighted sequence approximation

Let t0 = (t0;j)j∈N, t1 = (t1;j)j∈N be two sequences of nonnegative numbers and let q, α > 0. For
every N ∈ N let lN = (lN ;j)j∈N ∈ N

N
0 be a multiindex with |lN | ≤ N . We wish to minimize

S(t0, t1, lN , α, q) :=
∑

j∈N

min{t0;j , t1;j(lN ;j + 1)−α}q (2.4)

or, more precisely, we are interested in the asymptotic behaviour of these sums for lN optimal
(i.e. minimizing (2.4)), as N → ∞. We provide an answer together with a constructive choice for
lN ;j in Theorem 2.6 below.

The relation of this problem to sparse-grid approximation of countably-parametric maps u
taking values in a Banach space X is as follows. We assume an (unconditionally convergent)
expansion of u in a gpc basis (e.g. Taylor or Legendre expansion). To approximate the coefficients in
this (gpc type) expansion, we stipulate a numerical method approximating elements ofX converging
at rate α. For example, we may think of Petrov-Galerkin approximations as in [45]. The concrete
form of the approximation, however, is not essential in the present analysis. It therefore comprises
a broad range of numerical approximations such as collocation or NURBs domain approximations,
etc. The coefficient lN ;j ∈ N0 in (2.4) could then be interpreted work budget allowed to approximate
the jth largest expansion coefficient, where N stands for a prescribed total amount of work. In this
sense, lN ;j will also be referred to as the level of approximation. The total error of the (multilevel)
approximant then boils down to a sum of the type (2.4). For the next result, we admit only
discretization levels lN ;j in a certain subset W of N0 introduced next.

Assumption 2.4. The set W = {wj : j ∈ N0} ⊆ N0 of work measures consists of the strictly
monotonically growing, nonnegative sequence (wj)j∈N, and of w0 = 0. There exists a constant
w1 + 1 ≤ KW <∞ such that

∀j ∈ N :
wj+1

wj
≤ KW. (2.5)
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Definition 2.5. For A ⊆ N0, 0 ∈ A, |A| = ∞, the operators ⌊·⌋A : [0,∞) → A and ⌈·⌉A : [0,∞) →
A are given by

⌊x⌋A := max{a ∈ A : a ≤ x} and ⌈x⌉A := min{a ∈ A : a ≥ x}. (2.6)

If applied to sequences, these operators are considered componentwise, and in case A = N0 we omit
the index A.

Theorem 2.6. Let Assumption 2.4 be fulfilled. Let α > 0, p0 ∈ (0, 1), p1 ∈ [p0,∞], q ∈ (p0,∞).
Let ti = (ti;j)j∈N ∈ ℓpi(N), i ∈ {0, 1} be nonnegative monotonically decreasing sequences. Set

r(p0, p1, q, α) :=

{

αq if p1 ≤
q

αq+1 ,

β( q
p0

− 1) if p1 >
q

αq+1 ,
with β :=

α

α+ p−1
0 − p−1

1

. (2.7)

Set M =M(N, p0, p1, q, α) := ⌈Nβ⌉ and define wN ;j via

wN ;j :=

⌈

Nt
q

αq+1

1;j

(

KW

M∑

i=1

t
q

αq+1

1;i

)−1

− 1

⌉

W

(2.8)

for j ≤M , respectively wN ;j := 0 otherwise.
There then exists 0 < C = C(‖t0‖ℓp0 , ‖t1‖ℓp1 , q, α) <∞ such that for every N ∈ N the multiin-

dex wN ∈ W
N satisfies

(i) |wN | ≤ N ,

(ii) i ≤ j implies wN ;i ≥ wN ;j,

(iii) with S(t0, t1,wN , q, α) as in (2.4)

S(t0, t1,wN , q, α) ≤ CN−r(p0,p1,q,α), (2.9)

(iv) (2.9) is optimal in the sense that for r̃ > r arbitrary, there exist t0, t1 as above, such that
(wN )N∈N satisfying (i) and S(t0, t1,wN , q, α) = O(N−r̃) as N → ∞ does not exist.

Before stating the convergence rate bound in Theorem 2.14, we prove an interpolation space
result.

2.1.2 Auxiliary results on interpolation of sequence spaces

In the following let (S,A, µ) be a measure space and let the Banach space X be equipped with the
Borel sigma algebra.

Definition 2.7. For p ∈ (0,∞] set Lp(S,X, µ) := {f : S → X : f strongly measurable, ‖f‖Lp(X) <

∞} where ‖f‖Lp(X) := (
∫

S(‖f(x)‖X)pdµ(x))1/p, with the usual modification for p = ∞ (and iden-
tifying equivalence classes of functions agreeing µ-a.e.). We also write Lp(S,X) := Lp(S,X, µ).

Definition 2.8. Let I be a countable index set and let p ∈ (0,∞), r = (ri)i∈I ∈ (0,∞)I . The
measure µr on I is given by µr(i) := rpi for all i ∈ I. With the measure space (I, 2I , µr), where 2I

denotes the power set of I, we write ℓpr(I,X) := Lp(I,X, µr). For r = (1)i∈I we omit the subscript
as usual, and in case there is no confusion about X or I, we simply write ℓpr(I) or ℓ

p
r.
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Definition 2.9. For 1 ≤ p0 ≤ p1 ≤ ∞ and θ ∈ [0, 1], denote by [Lp0(S,X), Lp1(S,X)]θ the complex
interpolation space of type θ with respect to Lp0(S,X) and Lp1(S,X) (for the exact definition see,
e.g., [37]).

We recall the well known Marcinkiewicz interpolation theorem.

Theorem 2.10 ([37, Theorem 2.2.6]). Let 1 ≤ p0 ≤ p1 < ∞ or 1 ≤ p0 < p1 = ∞, θ ∈ [0, 1] and
1/q = θ/p0 + (1− θ)/p1. Then there holds

[Lp0(S,X), Lp1(S,X)]θ = Lq(S,X) (2.10)

isometrically.

Corollary 2.11. With I, X, r as in Definition 2.8 and p0, p1, q, θ as in Theorem 2.10, it holds

[ℓp0
r
(I,X), ℓp1

r
(I,X)]θ = ℓq

r
(I,X) (2.11)

isometrically.

Proof. The set of all finitely supported x, i.e.

x = (xi)i∈I ∈ XI , s.t. xi = 0 for almost every i ∈ I (2.12)

is dense in [ℓp0r , ℓ
p1
r ]θ, since ℓ

p0
r ∩ ℓp1r is dense in the interpolation space by [37, Corollary C.2.8], and

the finitely supported sequences are dense in ℓp0r ∩ ℓp1r . Since the finitely supported sequences are
also dense in ℓqr, in order to prove the corollary, it is sufficient to show that

‖x‖ℓqr = ‖x‖[ℓp0r ,ℓ
p1
r ]θ

(2.13)

for all x satisfying (2.12).
For j ∈ {1, 2} we consider the two well-defined linear operators

A :=

{

ℓpj → ℓ
pj
r

(xi)i∈I 7→ (xir
−1
i )i∈I

and A−1 :=

{

ℓ
pj
r → ℓpj

(xi)i∈I 7→ (xiri)i∈I .
(2.14)

They have norm one and are mutually inverse for j ∈ {1, 2}. By [37, Theorem C.2.8], for all x
satisfying (2.12),

‖Ax‖[ℓp0r ,ℓ
p1
r ]θ

≤ ‖x‖[ℓp0 ,ℓp1 ]θ and ‖A−1x‖[ℓp0 ,ℓp1 ]θ ≤ ‖x‖[ℓp0r ,ℓ
p1
r ]θ

. (2.15)

According to Theorem 2.10 we have ‖y‖[ℓp0 ,ℓp1 ]θ = ‖y‖ℓq for any finitely supported y ∈ XI , so that

‖x‖ℓqr = ‖A−1x‖ℓq = ‖A−1x‖[ℓp0 ,ℓp1 ]θ ≤ ‖x‖[ℓp0r ,ℓ
p1
r ]θ

= ‖AA−1x‖[ℓp0r ,ℓ
p1
r ]θ

≤ ‖A−1x‖[ℓp0 ,ℓp1 ]θ = ‖A−1x‖ℓq = ‖x‖ℓqr , (2.16)

which shows (2.13) and concludes the proof.
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2.1.3 Convergence rate bound

We now state and prove a variant of Theorem 2.6 based on the gpc-index set F . To this end,
we require the following auxiliary result on sequence approximation. Its proof is provided in the
appendix.

Proposition 2.12. Let Assumption 2.4 be fulfilled and let W be as in Assumption 2.4. Let further
(ti;ν)ν∈F ∈ ℓpim(F), i ∈ {0, 1}, p0 ∈ (0, 1), p1 ∈ [p0,∞], q ∈ [1, 2], α > 0. There exists a positive
constant C = C(‖t0‖ℓp0 , ‖t1‖ℓp1 , α) and for every N ∈ N, there exists wN = (wN ;ν)ν∈F ∈ W

F such
that |wN | ≤ N and with the convergence rate r = r(p0, p1, q, α) as in (2.7),

∑

{ν∈F :wN ;ν 6=0}

(wN ;ν + 1)−αqtq1;ν +
∑

{ν∈F :wN ;ν=0}

tq0;ν ≤ CN−r. (2.17)

As is well-known by now, see e.g. [2], multilevel approximations of parametric solution families
involve space discretization of instances of the parametric solution, incurring a discretization error.
To bound it, we require “spacial regularity” of parametric solutions. Our requirement takes the
form of the parametric solution belonging to some “regularity space” Xs ⊂ X, with smoothness
order “s”. Concrete examples for choices of Xs will be presented in Section 4 ahead.

Assumption 2.13 (Discretization). The spaces X and Xs are Banach spaces and Xs is a linear
subspace of X. There exist α > 0 and a positive constant C(α,Xs) such that for every N ∈ N there
exists a space XN ⊆ X of dimension at most N and a linear mapping ΠN : Xs → XN such that
Π0 = 0 and for all x ∈ Xs

‖x−ΠNx‖X ≤ C(α,Xs)(N + 1)−α‖x‖Xs . (2.18)

The next theorem requires X (but not Xs) to be a Hilbert space, since we employ the Par-
seval identity. We also use that best N -term approximation rates are realized by linear (quasi-
) interpolation operators which facilitates the use of interpolation methods. The complexifi-
cation XC = X + iX of a Hilbert space is obtained through the sesquilinear inner product
〈a+ ib, c+ id〉 := 〈a, b〉 + 〈b, d〉 + i(〈b, c〉 − 〈a, d〉). This is, up to an isomorphism, consistent with
the previously introduced complexification for Banach spaces. The statement we now prove is, that
the convergence rate of Theorem 2.6 can be achieved subject to a constraint on the total number of
degrees of freedom |wN | ≤ N used in the approximant (cp. Assumption 2.13). We point out that
the additional spacial regularity of the parametric solution family {u(y) : y ∈ U} ⊂ Xs will, in
general, entail reduced summability of the ‖ ◦ ‖Xs-norms of the gpc coefficients. This was observed
in previous work [28, 2] to be essential for improved convergence rates when measured in terms of
the total number of degrees of freedom. The following theorem accounts for that by providing two
summability indices p0 and p1 for X resp., for Xs-regularity.

Theorem 2.14. Let Assumptions 2.4 and 2.13 hold, assume that p0 ∈ (0, 1), p1 ∈ [p0, 1], q ∈ [1, 2]
and let u : U → Xs be (b0, ε0, X)-holomorphic and (b1, ε1, X

s)-holomorphic, with b0 ∈ ℓp0(N),
b1 ∈ ℓp1(N). Additionally, assume X to be a Hilbert space. Then, there exists C < ∞ and with
W as in Assumption 2.4 for every N ∈ N there exists wN = (wN ;ν)ν∈F ∈ W

F with |wN | ≤ N
satisfying (2.17) such that with he conjugate q∗ ∈ [2,∞] of q (i.e., 1/q∗ + 1/q = 1) and with the
rate r(p0, p1, q, α) as in (2.7) there holds

‖u(y)−
∑

ν∈F

Lν(y)ΠwN ;νuν‖Lq∗ (U,X) ≤ C

{

N−r(p0,p1,q,α)/q∗ if q∗ <∞

N−r(p0,p1,q,α) if q∗ = ∞.
(2.19)
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Proof. By Theorem 2.2, u =
∑

ν∈F uνLν with unconditional convergence in L∞(U,Xs), and
with (‖uν‖X)ν∈F ∈ ℓp0m , (‖uν‖Xs)ν∈F ∈ ℓp1 . Recall that the Lν are orthogonal in L2(U) with
‖Lν‖L2(U) ≤ 1 and ‖Lν‖L∞(U) = 1 for all ν ∈ F . Choose now wN as in Proposition 2.12 for
t0 = (t0;ν)ν∈F ∈ ℓp0(F) a monotonically decreasing majorant of ‖uν‖X and t1 = (t1;ν)ν∈F ∈ ℓp1m (F)
a monotonically decreasing majorant of ‖uν‖Xs (these majorants exist according to Theorem 2.2).

Consider the linear operator

K : (vν)ν∈F 7→
∑

ν∈F

(I −ΠwN ;ν )vνLν(y). (2.20)

We observe that K : ℓ2(F , X) → L2(U,X) and K : ℓ1(F , X) → L∞(U,X) are well-defined and
bounded, with the sum in (2.20) converging unconditionally in both cases. The unconditional
convergence in L∞(U,X) follows by the assumed absolute summability of ‖uν‖Xs‖Lν‖L∞(U) =
‖uν‖Xs w.r.t. ν ∈ F . For L2(U,X) it follows from the use of the Parseval identity since for any
enumeration (νj)j∈N of (ν)ν∈F it holds

‖
∑

ν∈F

uνLν −
N∑

j=1

uνjLνj‖
2
L2(U,X) =

∑

j>N

‖uνj‖
2
X‖Lνj‖

2
L2(U) ≤

∑

j>N

‖uνj‖
2
X , (2.21)

which tends to 0 as N → ∞, because
∑

ν∈F ‖uν‖
2
X < ∞. In turn, the Parseval identity holds

because X was assumed to be a Hilbert space and thus so is L2(U,X).
For y ∈ U , denote in the following v :=

∑

ν∈F vνLν(y). Under the provision that (vν)ν∈F ∈
ℓ1(F , X), we have for some C depending on α

‖K((vν)ν∈F )‖L∞(U,X) ≤
∑

ν∈F

‖Lν‖L∞(U,R)‖(I −ΠwN ;ν )vν‖X

≤ C
∑

ν∈F

min{‖vν‖Xs(wN ;ν + 1)−α, ‖vν‖X}. (2.22)

Since ‖Lν‖L2(U) ≤ 1, we get for (vν)ν∈F ∈ ℓ2(F , X) by the Parseval identity

‖K((vν)ν∈F )‖
2
L2(U,X) ≤

∑

ν∈F

‖Lν‖
2
L2(U,R)‖(I −ΠwN ;ν )vν‖

2
X

≤ C
∑

ν∈F

min{‖vν‖Xs(wN ;ν + 1)−α, ‖vν‖X}2. (2.23)

Let Λ0 := {ν ∈ F : wN ;ν = 0} and Λ1 := F\Λ0. Set rν := (wN ;ν + 1)−α for ν ∈ Λ1. We define
the (wN -dependent) product space Y q := ℓqr(Λ1, X

s)× ℓq(Λ0, X), where here and in the following,
for two Banach spaces B1, B2 the space B1 × B2 is equipped with the norm ‖(x, y)‖B1×B2 :=
‖x‖B1 + ‖y‖B2 . For q∗ ∈ (2,∞), we define the number θ by 1/q∗ = (1 − θ)/2, or equivalently,
1/q = (1− θ)/2 + θ. We use Theorem 2.10 and Corollary 2.11 to get

[L2(U,X), L∞(U,X)]θ = Lq∗(U,X) and [ℓ2
r
(Λ1, X

s), ℓ1
r
(Λ1, X

s)]θ = ℓq
r
(Λ1, X

s), (2.24)

where we employed [ℓ2
r
(Λ1, X

s), ℓ1
r
(Λ1, X

s)]θ = [ℓ1
r
(Λ1, X

s), ℓ2
r
(Λ1, X

s)]1−θ. The definition of the
complex interpolation spaces (see for example [37, Section C.2]) and Theorem 2.10 applied to
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[ℓ2(Λ0, X), ℓ1(Λ0, X)]θ give

[Y 2, Y 1]θ = [ℓ2
r
(Λ1, X

s)× ℓ2(Λ0, X), ℓ1
r
(Λ1, X

s)× ℓ1(Λ0, X)]θ

= [ℓ2
r
(Λ1, X

s), ℓ1
r
(Λ1, X

s)]θ × [ℓ2(Λ0, X), ℓ1(Λ0, X)]θ = Y q, (2.25)

with ‖ · ‖[Y 2,Y 1]θ = ‖ · ‖Y q . We have shown in (2.22) the existence of a constant C > 0 such that

‖K((vν)ν∈F )‖L∞(U,X) ≤ C
(
‖(vν)ν∈Λ1‖ℓ1r(Λ1,Xs) + ‖(vν)ν∈Λ0‖ℓ1(Λ0,X)

)
= C‖(vν)ν∈F‖Y 1 . (2.26)

Due to (2.23) we deduce the bound

‖K((vν)ν∈F )‖L2(U,X) ≤ C
(

‖(vν)ν∈Λ1‖
2
ℓ2r(Λ1,Xs) + ‖(vν)ν∈Λ0‖

2
ℓ2(Λ0,X)

)1/2

≤ C
(
‖(vν)ν∈Λ1‖ℓ2r(Λ1,Xs) + ‖(vν)ν∈Λ0‖ℓ2(Λ0,X)

)
= C‖(vν)ν∈Λ0‖Y 2 . (2.27)

We conclude for q∗ ∈ [2,∞] (cf., e.g, [37, Theorem C.2.6])

‖K((vν)ν∈F )‖Lq∗ (U,X) ≤ C‖(vν)ν∈F‖Y q ∀ (vν)ν∈F ∈ Y q = ℓq
r
(Λ1, X

s)× ℓq(Λ0, X), (2.28)

where C is independent of wN (and thus independent of r).
Finally, we observe that for u as in the statement of the theorem, there holds for a.e. y ∈ U

with unconditional limits

K((uν)ν∈F ) =
∑

ν∈F

(uνLν(y)−ΠwN ;νuνLν(y)) = u(y)−
∑

ν∈F

ΠwN ;νuνLν(y) .

By Theorem 2.2 (uν)ν∈F ∈ ℓ1(F , X). Moreover, uν ∈ Xs for all (finitely many) ν ∈ Λ1 and thus
(uν)ν∈F ∈ Y q. This allows to conclude with (2.28), and the fact that ‖(uν)ν∈F‖

q
Y q is bounded by

the left-hand side of (2.17) due to our choice of the majorant sequences t0 and t1, that (2.19) is
satisfied.

2.2 Interpolation and quadrature

Next, we construct multilevel interpolation and quadrature operators. With respect to the L∞(U,X)
norm, the interpolant achieves the same convergence rate as the best N -term approximant in The-
orem 2.14 (in terms of the total work, as is discussed in Section 2.3). Moreover, we employ
recent results on high-dimensional Smolyak quadrature from [52], to prove convergence rates for
the quadrature operator better than known best N -term rates. Indeed, utilizing the fact that cer-
tain multivariate monomials are in the kernel of both the integration and quadrature operator
(cp. Lemma 2.15 (iii) below) allows to prove the convergence rate 2/p− 1 for single level quadra-
ture applied to (b, ε)-holomorphic functions with b ∈ ℓp, p ∈ (0, 1), see [52, Theorem 3.3]. This
is an improvement over the previously known best N -term rate 1/p − 1. The same argument will
yield a similar improvement for multilevel quadrature.

Our present construction of the multilevel operators is similar to [22], however with less stringent
assumptions. We also refer to [13] for a general discussion of multidimensional interpolation in our
context, and to [35] and the references there, where, in particular, multilevel (spline) interpolation
was combined with MC integration to approximate a parametric integral. The more recent works
[33, 32] propose a multilevel quadrature algorithm for a parametric diffusion problem.

First, we briefly recall general Smolyak interpolants and Smolyak quadrature and also recapit-
ulate a construction of the corresponding multilevel operators in Section 2.2.1. Subsequently, the
precise convergence results will be given in Section 2.2.2.
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2.2.1 Multilevel Smolyak interpolation/quadrature

The multilevel Smolyak algorithms will be based on sets of univariate abscissae in [−1, 1]. For every
n ∈ N0, let (χn;j)

n
j=0 ⊂ [−1, 1] denote pairwise distinct points in [−1, 1] such that

χ0;0 := 0 . (2.29)

The (χn;j)
n
j=0 represent the interpolation/quadrature points employed by the univariate interpola-

tion and quadrature operators

In :=







C0([−1, 1]) → Pn

f 7→
∑n

j=0 f(χn;j)
∏n

i=0
i 6=j

y−χn;i

χn;j−χn;i

and Qn :=

{

C0([−1, 1]) → R

f 7→
∑n

j=0 ωn;jf(χn;j),
(2.30)

where Pn = span{yj : j = 0, . . . , n}, and (ωn;j)
n
j=0 ⊂ R denote the unique quadrature weights

such that Qn(f) =
∫ 1
−1 f(y)dµ(y) for all f ∈ Pn. In particular Qn(f) =

∫ 1
−1 Inf(y)dµ(y) for

all f ∈ C0([−1, 1]). Additionally, we adhere to the convention I−1 := 0 ∈ P0, by which we
mean the operator mapping continuous functions to the 0-polynomial, and similarly Q−1 := 0 ∈
R. Throughout we assume that there exists 0 < τ < ∞ fixed such that the Lebesgue constant
Leb((χn;j)

n
j=0) of (χn;j)

n
j=0 satisfies

Leb((χn;j)
n
j=0) ≤ (n+ 1)τ ∀ n ∈ N, (2.31)

where
Leb((χn;j)

n
j=0) := sup

‖f‖L∞([−1,1])≤1
‖In(f)‖L∞([−1,1]).

Next, for all ν ∈ F let Iν :=
⊗

j∈N Iνj , Qν :=
⊗

j∈NQνj . For ν ∈ F we introduce the ν-increments

∆I
ν :=

⊗

j∈N

(Iνj − Iνj−1) =
∑

{e∈{0,1}N :ν−e∈F}

(−1)|e|Iν−e, (2.32a)

∆Q
ν :=

⊗

j∈N

(Qνj −Qνj−1) =
∑

{e∈{0,1}N :ν−e∈F}

(−1)|e|Qν−e, (2.32b)

and for ∅ 6= Λ ⊆ F , downward closed with |Λ| <∞

IΛ :=
∑

ν∈Λ

∆I
ν =

∑

ν∈Λ

(
∑

{e∈{0,1}N :ν+e∈Λ}

(−1)|e|
)

Iν , (2.33a)

QΛ :=
∑

ν∈Λ

∆I
ν =

∑

ν∈Λ

(
∑

{e∈{0,1}N :ν+e∈Λ}

(−1)|e|
)

Qν . (2.33b)

Additionally

I∅ := 0, Q∅ := 0 and IF := Id, QF :=

∫

U
· dµ(y). (2.34)

We note that for every f ∈ C0(U,X) and for every index set Λ ⊆ F that is downward closed and
finite, there holds

QΛf =

∫

U
IΛf(y) dµ(y) . (2.35)
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This follows from the unisolvency of IΛ for arbitrary downward closed, finite Λ ⊆ F , and from the
fact that the univariate interpolation and quadrature operators satisfy such an equation. The main
properties of the Smolyak type operators IΛ and QΛ are summarized in the next lemma, see [13]
and [52, Lemma 3.2].

Lemma 2.15. Let Λ ⊆ F be downward closed and finite, and let F2 as in Definition 1.1. Then,
the Smolyak operators IΛ, QΛ in (2.33) satisfy the following:

(i) IΛP = P and QΛP =
∫

[−1,1]N P (y)dµ(y) for all P ∈ span{yν : ν ∈ Λ}.

(ii) If additionally (2.31) holds, then there exists a constant C > 0 independent of Λ such that

‖IΛP‖L∞(U,X) + |QΛP | ≤ C|{η : η ∈ Λ, η ≤ ν}|τ+1‖P‖L∞(U) ∀P ∈ span{yµ : µ ≤ ν}.

(iii) If additionally χ0;0 = 0, then QΛP =
∫

U P (y)dy = 0 for all P ∈ span{yν : ν ∈ F\F2}.

In order to define multilevel approximants of a function u : U → X, within the following
assumption we introduce a framework for approximations of u at different levels. It presumes
weaker requirements than Assumption 2.13 which was previously used (cf. Remark 2.17). Moreover,
in contrast to the discussion of Section 2.1 we do not assume ul to be a (linear) projection of u
onto some subspace. The next assumption includes the use of nonlinear approximation operators
(as occur, e.g., for finite element approximations of nonlinear equations).

Assumption 2.16 (Discretization). The function u : U → X, is (b0, ε,X)-holomorphic, b0 ∈ ℓp0,
p0 ∈ (0, 1). There exists Cu < ∞ and for every l ∈ W with W as in Assumption 2.4, there exists
a (b0, ε,X)-holomorphic map ul : U → X with the following properties: It holds u0 = 0 and there
exists b1 ∈ ℓp1, p0 ≤ p1 < 1, such that for all l ∈ W (cf. (2.2))

sup
z∈Ob0,ε

‖ul(z)‖XC
≤ Cu and sup

z∈Ob1,ε

‖u(z)− ul(z)‖XC
≤ Cul

−α. (2.36)

Remark 2.17. Let Assumption 2.13 be satisfied, and let u be (b0, ε,X)- and (b1, ε,X
s)-holomorphic.

One verifies that Assumption 2.16 then holds with ul(z) := Πlℜ(u(z)) + iΠlℑ(u(z)), and Cu pro-
portional to

sup
z∈Ob0,ε

‖u(z)‖XC
+ sup

z∈Ob1,ε

‖u(z)‖Xs
C

(2.37)

in case this quantity is finite. This is the view taken in [22]. We point out however, that such a Πl is
usually not available in practice. For example, if ul(y) is the Galerkin projection of the parametric
PDE solution u(y) by a stable (uniformly w.r.t. y) Petrov-Galerkin Finite Element Method with l
degrees of freedom, then typically the coefficients of the PDE, and thus the projector Πl itself, will
depend on the parameter y. That is, we obtain parametric Petrov-Galerkin projectors Πl(y) with
ul(y) = Πl(y)u(y), where Πl(y) are stable uniformly w.r.t. l and y. This, and the fact that it will
allow us to treat nonlinear equations, is why we work with Assumption 2.16.

We are now in position to introduce the multilevel approximants. Let W be the set in Assump-
tion 2.4, and let w = (wν)ν∈F ∈ W

F with |w| <∞ and the property

ν ≤ µ ⇒ wν ≥ wµ. (2.38)
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For now wν can be interpreted as the amount of work invested in the approximation of the Taylor
coefficient belonging to the multiindex ν (we shall elucidate this in Section 2.3). For such w and
u satisfying Assumption 2.16 define the sparse interpolation and quadrature operators

Iw(u) :=
∑

ν∈F

∆I
νuwν

and Qw(u) :=
∑

ν∈F

∆Q
ν uwν

. (2.39)

Set for l ∈ N0

Λl = Λl(w) := {ν ∈ F : wν ≥ l}. (2.40)

From (2.38) we know that Λl is downward closed for all l ∈ N0 and the sets are nested, i.e.,

F = Λ0 ⊇ Λ1 ⊇ Λ2 . . . . (2.41)

Then, with (2.33) and using uw0 = u0 = 0, we may write

Iw(u) =
∑

j∈N0

∑

ν∈Λwj \Λwj+1

∆I
νuwj =

∑

j∈N0

(IΛwj
− IΛwj+1

)uwj =
∑

j∈N

(IΛwj
− IΛwj+1

)uwj , (2.42a)

Qw(u) =
∑

j∈N0

(QΛwj
−QΛwj+1

)uwj =
∑

j∈N

(QΛwj
−QΛwj+1

)uwj . (2.42b)

Note that |w| <∞ implies |Λl| <∞ for all l ∈ N, as well as Λl = ∅ for all but finitely many l ∈ N.
Due to our conventions I∅ := 0, Q∅ := 0, the sums in (2.42) are actually finite.

2.2.2 Convergence

To state the main properties of (b, ε)-holomorphic functions as needed in this section, first the set
I is introduced. As will become apparent in Section 2.3, our Smolyak interpolation and quadrature
operators will only employ tensor operators corresponding to multiindices in a set like F ∩ I

N,
where I denotes the set of admissible numbers of interpolation- resp. quadrature points in each
coordinate, which is crucial in reducing the overall complexity.

Assumption 2.18. The set I = {ij : j ∈ N0} ⊆ N0 consists of the strictly monotonically growing,
nonnegative sequence (ij)j∈N0, where i0 = 0 and i1 = 1. There exists a constant 1 ≤ KI < ∞ such
that

∀j ∈ N : ij+1 − ij ≤ KI(ij − ij−1). (2.43)

For an arbitrary, finite index set Λ ⊆ F we introduce its effective dimension and its maximal
degree by

d(Λ) := max
ν∈Λ

| suppν| and m(Λ) := max
ν∈Λ

max
j∈N

νj . (2.44)

For a sequence (mν)ν∈F and for 0 < x ∈ R, define Λ((mν)ν∈F ;x) := {ν ∈ F : mν ≥ x} ⊆ F .
Monotonic sequences (mν)ν∈F satisfying

d
(
Λ((mν)ν∈F ;x)

)
= o
(
log(|Λ((mν)ν∈F ;x)|)

)
as x→ 0,

m
(
Λ((mν)ν∈F ;x)

)
= O

(
log(|Λ((mν)ν∈F ;x)|)

)
as x→ 0,

(2.45)

will be of particular interest to us, as they produce index sets with slowly growing maximal degree
and effective dimension (suggesting strong sparsity) which will prove advantageous when considering
the computational effort in Section 2.3. The next theorem was shown in [52, Theorem 2.11, Lemma
3.11]. It is the foundation of the approximation results in this section.
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Theorem 2.19. Let p ∈ (0, 1), 0 ≤ τ <∞ and consider the index set I as defined in Assumption
2.18. Let further u : U → X be (b, ε)-holomorphic, with b ∈ ℓp. Then

(i) there exists C independent of u and Cb,u in Definition 2.1, as well as a sequence (tν)ν∈F ∈
ℓpm(F) such that for some uν ∈ X

u(y) =
∑

ν∈F

uνy
ν (2.46)

in the sense of unconditional convergence in L∞(U,X), and additionally (cp. (2.3))

‖uν‖X
∏

j∈N

(νj + 1)τ ≤ CCb,utν ∀ ν ∈ F . (2.47)

(ii) Additionally, for fixed k ∈ N and for the index set Fk as introduced in Definition 1.1, there
exists a monotonically decreasing majorant (mν)ν∈F of the extension by zero of (tν)ν∈Fk

to
F satisfying (mν)ν∈F ∈ ℓp/k(F). This sequence depends on b, ε, τ , but is independent of u,
Cb,u. Moreover,

mν = mµ if and only if ⌊ν⌋I = ⌊µ⌋I, (2.48)

and (mν)ν∈F satisfies (2.45).

The proof of our convergence rate bounds stated in Theorems 2.21, 2.22 ahead will require the
following variant of Theorem 2.6. Its proof is again provided in the appendix.

Proposition 2.20. Let W, I as in Assumptions 2.4, 2.18. Let mi = (mi;ν)ν∈F ∈ ℓpim(F ,R),
i ∈ {0, 1}, p0 ∈ (0, 1), p0 ≤ p1 ≤ ∞, α > 0 and assume that m0, m1 satisfy (2.45) as well as
(2.48).

Then, there exists a constant C > 0 and for every N ∈ N, there exists wN = (wN ;ν)ν∈F ∈ W
F

such that

(i) with r = α if p1 ≤ (α+ 1)−1 and r = α(p−1
0 − 1)/(α+ p−1

0 − p−1
1 ) otherwise,

∑

ν∈F

min{m0;ν ,m1;ν(wN ;ν + 1)−α} ≤ CN−r, (2.49)

(ii) |wN | ≤ N , wN satisfies (2.38) and with Λl;N := {ν ∈ F : wN ;ν ≥ l}

d
(
Λl;N

)
= o
(
log(|Λl;N |)

)
, m

(
Λl;N

)
= O

(
log(|Λl;N |)

)
as N → ∞, (2.50)

for all l ∈ N, where the constants hidden in the Landau notation o
(
log(|Λl;N |)

)
and O

(
log(|Λl;N |)

)

do not depend on l. Furthermore, for all l, N ∈ N

ν ∈ Λl;N ⇔ ⌊ν⌋I ∈ Λl;N ∀ ν ∈ F . (2.51)

Finally, for every N ∈ N, l ∈ N0, the index set Λl;N is downward closed.

We are now in position to state our convergence rate results. All dimension-independent con-
vergence rates are expressed in terms of the parameter N , which we emphasize does not signify the
number of collocation points, but it rather is a measure of the work, to be formalized subsequently
in Section 2.3. We assume |wN | ≤ N .
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Theorem 2.21. Let Assumptions 2.4 and 2.16 and (2.31) be satisfied. Then, there exists C <∞
and for every N ∈ N there exists wN ∈ W

F with |wN | ≤ N satisfying Proposition 2.20 (ii), such
that

‖u− IwNu‖L∞(U,X) ≤ CN−r, r =







α if p1 ≤
1

α+1 ,

α
p−1
0 −1

α+p−1
0 −p−1

1

otherwise.
(2.52)

Proof. By Assumption 2.16, for every l ∈ W, the discretization error u− ul is (b0, ε)-holomorphic
with modulus bound Cb0,u−ul

= Cu + Cb0,u and it is (b1, ε)-holomorphic with modulus bound
Cb1,u−ul

= Cu(l + 1)−α (cp. (2.3), (2.36)).
We may therefore apply Theorem 2.19 with k = 1 and τ̃ := τ + 1, where τ > 0 is as in

(2.31). According to this theorem, for all l ∈ W the (b0, ε)-holomorphic function u− ul allows the
unconditionally convergent expansion

u− ul =
∑

ν∈F

el,νy
ν ∈ L∞(U,X). (2.53)

Furthermore, Theorem 2.19 gives that the Taylor coefficients el,ν ∈ X satisfy for every ν ∈ F

‖el,ν‖X
∏

j∈N

(νj + 1)τ+1 ≤ CCb0,u−ul
m0;ν ,

‖el,ν‖X
∏

j∈N

(νj + 1)τ+1 ≤ CCb1,u−ul
m1;ν = Cu(l + 1)−αm1;ν ,

(2.54)

for two sequences mi;ν ∈ ℓpim(F), i ∈ {0, 1}, independent of l. Choose wN as in Proposition 2.20.
Then, in particular, |wN | ≤ N and wN satisfies Proposition 2.20 (ii).

For simplicity we fix N and write w := wN = (wν)ν∈F . Observe that Λl = {ν ∈ F : wν ≥ l} =
∅ for all l ∈ W such that l > maxν∈F wν , so that IΛl

= 0 in this case, and consequently IΛl
= 0 for

all but finitely many l ∈ W. Now, using continuity of (IΛwj
− IΛwj+1

) : C0(U,X) → C0(U,X), the

definition of Iw in (2.42) and (2.53) give

u− Iwu =
∑

j∈N0

(IΛwj
− IΛwj+1

)(u− uwj ) =
∑

j∈N0

(IΛwj
− IΛwj+1

)
∑

ν∈F

ewj ,νy
ν

=
∑

ν∈F

∑

j∈N0

ewj ,ν(IΛwj
− IΛwj+1

)yν , (2.55)

in the sense of unconditional convergence in L∞(U,X). Here we have employed
∑

j∈N0
(IΛwj

−

IΛwj+1
) = IΛ0 = IF = Id, and it was allowed to exchange the sums because

∑

ν∈F ‖el,ν‖X < ∞

for all l ∈ W according to (2.54), because (m0;ν)ν∈F ∈ ℓp0(F) →֒ ℓ1(F) and because the difference
IΛwj

− IΛwj+1
vanishes for all but finitely many j so that the sum in (2.55) is unconditionally con-

vergent. Next we recall that each Λl is downward closed according to Proposition 2.20. Therefore,
for all l ∈ W (see, e.g., [13]),

IΛl
yν = I{η∈Λl :η≤ν}y

ν . (2.56)

This leads us to introduce for every ν ∈ F the set

Aν := {j ∈ N0 : {η ∈ Λwj : η ≤ ν} 6= {η ∈ Λwj+1 : η ≤ ν}} . (2.57)
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Then, it holds (IΛwj
− IΛwj+1

)yν = 0 whenever j /∈ Aν . For each j ∈ Aν there must exist some

ηj ∈ Λwj with ηj ≤ ν and ηj /∈ Λwj+1 . The nestedness (2.41) of the Λl implies that ηj /∈ Λwm for
all m > j, and therefore ηj 6= ηm for all m > j. Hence the (ηj)j∈Aν

are pairwise distinct. Therefore
|Aν | ≤ |{η : η ≤ ν}| =

∏

{i : νi 6=0}(νi + 1). Additionally, since ν ∈ Λwν
⊆ Λwν−1 . . . , and thus

{η ∈ Λwj : η ≤ ν} = {η : η ≤ ν} for all j ∈ N0 such that wj ≤ wν , we have minj∈Aν
wj ≥ wν .

Employing Lemma 2.15, items (i) and (ii) we arrive at

‖u− Iwu‖L∞(U,X) ≤
∑

ν∈F

∑

j∈Aν

‖ewj ,ν‖X‖(IΛwj
− IΛwj+1

)yν‖L∞(U,R)

≤
∑

ν∈F

sup
{l∈W : l≥wν}

‖el,ν‖X
∑

j∈Aν

(‖IΛwj
yν‖ + ‖IΛwj+1

yν‖)

≤
∑

ν∈F

sup
{l∈W : l≥wν}

‖el,ν‖X
∑

{η :η≤ν}

2|{γ : γ ≤ ν}|τ+1

= 2
∑

ν∈F

sup
{l∈W : l≥wν}

‖el,ν‖X
∏

j∈N

(νj + 1)τ+1

≤ C(Cb0,u + Cu)
∑

ν∈F

min{m0;ν , (wν + 1)−αm1;ν}, (2.58)

where we have used (2.54) to estimate

sup
{l∈W : l≥wν}

‖el,ν‖X ≤ min{m0;ν , (wν + 1)−αm1;ν}. (2.59)

We conclude the proof by referring to (2.49).

Theorem 2.22. Let Assumptions 2.4 and 2.16 and (2.29), (2.31) be satisfied. Then, there exists
C < ∞ and for every N ∈ N there exists wN ∈ W

F with |wN | ≤ N satisfying Proposition 2.20
(ii), such that

∥
∥
∥
∥

∫

U
u(y)dµ(y)−QwNu

∥
∥
∥
∥
X

≤ CN−r, r =







α if p1
2 ≤ 1

α+1

α
2p−1

0 −1

α+2p−1
0 −2p−1

1

otherwise.
(2.60)

Proof. By Assumption 2.16, for every l ∈ W the discretization error u − ul is (b0, ε)-holomorphic
with uniform (with respect to the discretization parameter l) bound on the modulus Cb0,u−ul

=
Cu +Cb0,u. Moreover, it is (b1, ε)-holomorphic with Cb1,u−ul

= Cu(l+ 1)−α (cp. (2.3), (2.36)). We
now apply Theorem 2.19 with k = 2, and with τ̃ := τ + 1, where τ > 0 is as in (2.31). The rest of
the proof parallels to the argument used in the proof of Theorem 2.21.

By Theorem 2.19, for every l ∈ W we have the absolutely convergent expansion u − ul =
∑

ν∈F el,νy
ν ∈ L∞(U,X), and similar as in (2.54) it holds for every ν ∈ F2 (because we applied

Theorem 2.19 with k = 2)

‖el,ν‖X
∏

j∈N

(νj + 1)τ+1 ≤ CCb0,u−ul
m0;ν , ‖el,ν‖X

∏

j∈N

(νj + 1)τ+1 ≤ Cu(l + 1)−αm1;ν (2.61)

for two sequences (mi;ν)ν∈F ∈ ℓ
pi/2
m (F), i ∈ {0, 1}, independent of l. Let again wN be as in

Proposition 2.20 for these two sequences, fix N and write w := wN = (wν)ν∈F in the following.
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As in the proof of Theorem 2.21 it holds QΛl
= 0 for all l ∈ W such that l > maxν∈F wν . Using

continuity of (QΛwj
−QΛwj+1

) : C0(U,X) → R, the definition of Qw in (2.42) gives as in (2.55) in
the sense of unconditional convergence

∫

U
u(y)dµ(y)−Qwu =

∑

j∈N0

(QΛwj
−QΛwj+1

)(u− uwj ) =
∑

ν∈F

∑

j∈N0

ewj ,ν(QΛwj
−QΛwj+1

)yν (2.62)

where we have employed
∑

j∈N0
(QΛwj

− QΛwj+1
) = QΛ0 = QF =

∫

U · dµ(y). Using Lemma 2.15

(iii) we conclude

∫

U
u(y)dµ(y)−Qwu =

∑

ν∈F2

∑

j∈N0

ewj ,ν(QΛwj
−QΛwj+1

)yν . (2.63)

With
Aν := {j ∈ N0 : {η ∈ Λwj : η ≤ ν} 6= {η ∈ Λwj+1 : η ≤ ν}} (2.64)

as in (2.57) we have with the there stated arguments that (QΛwj
−QΛwj+1

)yν = 0 whenever j /∈ Aν ,

and minj∈Aν
wj ≥ wν . Employing (2.63) and Lemma 2.15, items (i) and (ii), we arrive at

∥
∥
∥
∥

∫

U
u(y)dy −Qwu

∥
∥
∥
∥
X

≤
∑

ν∈F2

∑

j∈Aν

‖ewj ,ν‖X |(QΛwj
−QΛwj+1

)yν |

≤
∑

ν∈F2

sup
{l∈W : l≥wν}

‖el,ν‖X
∑

j∈Aν

(|QΛwj
yν |+ |QΛwj+1

yν |)

≤
∑

ν∈F2

sup
{l∈W : l≥wν}

‖el,ν‖X
∑

{η :η≤ν}

2|{γ : γ ≤ ν}|τ+1

= 2
∑

ν∈F2

sup
{l∈W : l≥wν}

‖el,ν‖X
∏

j∈N

(νj + 1)τ+1 ≤ C(Cb0,u + Cu)
∑

ν∈F2

min{m0;ν , (wν + 1)−αm1;ν},

(2.65)

where we have used an estimate analogous to (2.59) for ν ∈ F2. We conclude the proof with
pointing out that m0 ∈ ℓp0/2(F), m1 ∈ ℓp1/2(F) satisfy (2.49).

Remark 2.23. Theorem 2.22 remains true if instead of (2.31), the operators Qn in (2.30) satisfy
‖Qn‖ = sup‖f‖C0([−1,1])≤1 |Qn(f)| ≤ (n + 1)τ for all n ∈ N0. In this case, the proof of the theorem

proceeds verbatim. For example, if Qn is the Gauss-Legendre quadrature on [−1, 1], then the weights
ωn;j in (2.30) are all positive, and one easily finds ‖Qn‖ = 1 as is well-known (remember that we
use 1/2 times the Lebesgue measure on [−1, 1]).

2.3 Error vs. work analysis

Theorems 2.21 and 2.22 give convergence rates in terms ofN ≥ |wN |. In this section it is shown that,
assuming one evaluation of ul in Assumption 2.16 to be of cost O(l), N is essentially an estimate of
the overall complexity of evaluating the interpolant respectively computing the quadrature value.
This leads to a convergence result in terms of the total work (with basically the same rates as in
the mentioned theorems). The precise statement is formulated in Theorems 2.31, 2.32. To analyze
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the work of computing Iw, Qw, with w = (wν)ν∈F and w ∈ W
F where W is as in Assumption 2.4,

we shall use the representations in (2.42). That is, with Λl = {ν ∈ F : wν ≥ l}

Iw(u) =
∑

j∈N

(

IΛwj
− IΛwj+1

)

uwj , Qw(u) =
∑

j∈N

(

QΛwj
−QΛwj+1

)

uwj . (2.66)

Evaluating Iwu at some y ∈ U thus involves

(i) computing uwj (χ) at all interpolation points χ ∈ U required by IΛwj
, IΛwj+1

for all j ∈ N,

(ii) evaluating IΛwj
, IΛwj+1

at y, given the values of uwj , uwj+1 from (i), for all j ∈ N.

In case of Qw, the computations can be structured analogously. We discuss these two items
separately in Section 2.3.1, Section 2.3.2, before considering the error w.r.t. the overall complexity
in Section 2.3.3. Furthermore, we will impose the following condition on the sets I, W, which is
satisfied in case the elements of the set in which we choose the components of our multiindices (I)
or work levels (W), grow exponentially.

Assumption 2.24. Let Assumptions 2.4 and 2.18 be satisfied. For any γ ≥ 1, there exist constants
KW, KI, which in addition to the requirements of Assumptions 2.4, 2.18 satisfy

m∑

j=1

w
γ
j ≤ KWw

γ
m and

m∑

j=1

(ij + 1) ≤ KI(im + 1). (2.67)

The following discussion concentrates on the situation of Proposition 2.20 and Theorems 2.21,
2.22.

2.3.1 Evaluation of function values

Consider a finite downward closed set Λ ⊆ F . With (2.33) we have

IΛu =
∑

{ν∈Λ : cΛ;ν 6=0}

cΛ;νIνu, where cΛ;ν :=
∑

{e∈{0,1}N :ν+e∈Λ}

(−1)|e|. (2.68)

An analogous representation holds for QΛ. In order to evaluate IΛu or QΛu for some u : U → X,
we need to evaluate the tensor interpolants/quadrature operators Iν and Qν introduced in Section
2.2.1. For these operators, cΛ;ν 6= 0 in (2.68). Recalling the construction of those tensor operators,
we therefore require the function value of u at each point in the set

pts(Λ) :=
⋃

{ν∈Λ : cΛ;ν 6=0}

{(χν1;j1 , χν2,j2 , . . . ) ∈ U : 0 ≤ ji ≤ νi ∀ i ∈ N}. (2.69)

Remark 2.25. Suppose that the χn;j are nested, in the sense that there exists a sequence (χj)j∈N
such that χn;j = χj for all n ∈ N and all 0 ≤ j ≤ n. Then, the number of points in the set (2.69)
is bounded by the number of multiindices in Λ, since each multiindices ν ∈ Λ corresponds to one
point (χνj )j∈N ∈ U . Thus |pts(Λ)| ≤ |Λ|. In the general case, where the point sets are not nested,
this is not necessarily true.
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The number of points in (2.69) can be estimated by

∑

{ν∈Λ : cΛ;ν 6=0}

∏

j∈N

(νj + 1). (2.70)

To control this quantity, we now make use of our assumptions on the set I.
Under Assumption 2.24, suppose that Λ has the property (cp. (2.6))

ν ∈ Λ =⇒ ⌈ν⌉I ∈ Λ. (2.71)

For Λ ⊆ F , set
Λ|I := {ν ∈ Λ : νj ∈ I ∀ j ∈ N}. (2.72)

Lemma 2.26 ([52, Lemma 3.8]). Let Λ ⊂ F be downward closed with the property (2.71). Then
for all ν ∈ Λ\Λ|I

cΛ;ν :=
∑

{e∈{0,1}N :ν+e∈Λ}

(−1)|e| = 0. (2.73)

Lemma 2.27 ([52, Lemma 3.9]). Let I be as in Assumption 2.24. Let Λ ⊆ F be downward closed
and |Λ| <∞. Then, with d(Λ), Λ|I as defined in (2.44), (2.72), there holds

∑

ν∈Λ|I

∏

j∈N

(νj + 1) ≤ K
d(Λ)
I

|Λ|. (2.74)

Under the assumptions of Proposition 2.20, the asymptotic behaviour of N 7→ d(ΛN ;l) as N →
∞ is known. Its growth is, in fact, very slow (cp. (2.50)). Consequently, the number of points
grows almost linearly in the number of multiindices.

Lemma 2.28. Let Λl;N as in Proposition 2.20, l, N ∈ N and let δ > 0. Then there exists a constant
C > 0 (depending on δ) such that for all l, N ∈ N it holds with (2.69) that |pts(Λl;N )| ≤ C|Λl;N |1+δ.

Proof. From (2.51) one easily deduces with Ĩ := {0} ∪ {a− 1 : 0 < a ∈ I} that

ν ∈ Λl;N ⇒ ⌈ν⌉
Ĩ
∈ Λl;N , (2.75)

i.e. (2.71) holds with Ĩ. Hence Lemmata 2.26 and 2.27 allow to bound (2.70) by C|Λl;N |1+δ due to
d(Λl;N ) = o(log(|Λl;N |)) as |Λl;N | → ∞, which is (2.50).

2.3.2 Cost of evaluation of IΛ, QΛ

Let again Λ ⊆ F be downward closed and finite. To analyze the cost of evaluating IΛu : U → X at
some y ∈ U respectively computing QΛu ∈ X, we proceed as in [52] and assume that the values of u
at the interpolation/quadrature points are already known. We restrict ourselves to the evaluation
of IΛu for y ∈ U for the moment. Recalling the definition of m(Λ), d(Λ), we can consider the
following quantity introduced in [52]

cost(IΛ) := m(Λ)3
︸ ︷︷ ︸

precomp. of interp. coeffs.

+ 2d(Λ)|Λ|
︸ ︷︷ ︸

comp. of (cΛ;ν)ν∈Λ

+
∑

{ν∈Λ : cΛ;ν 6=0}

∏

j∈N

(νj + 1)

︸ ︷︷ ︸

evaluation of Iν

, (2.76a)
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to be a an upper bound for the cost of computing IΛu(y) in (2.68): computation of (cΛ;ν)ν∈Λ
requires a computational cost bounded by 2d(Λ)|Λ|, see [52, Lemma 3.6]. Next consider the com-
puational cost of evaluating the tensor interpolant Iν =

⊗

j∈suppν Iνj . The univariate interpolant
In with n + 1 distinct points {χn;j}

n
j=0 ⊂ [−1, 1], can be evaluated at y ∈ [−1, 1] with complexity

O(n), assuming certain coefficients (not depending on y) have been precomputed with complexity
O(n2). One such algorithm is the so-called barycentric interpolation formula (see, e.g., [4]). The

computation of said coefficients amounts to
∑m(Λ)

j=1 j2 = O(m(Λ)3) operations. Once completed,

each Iν in (2.68) adds
∏

j(νj +1) to the total complexity of evaluating (2.68) at some y ∈ [−1, 1]N.
Finally, the summation over all ν ∈ Λ in (2.68) can be absorbed in the last term of (2.76a). In case
of QΛ the only difference is that instead of the interpolation coefficients, we need to compute the
quadrature weights in (2.30), which requires the solution of a linear system of dimension j for each

j = 1, . . . ,m(Λ). This adds
∑m(Λ)

j=1 j3 = O(m(Λ)4) to the total complexity. We therefore define the
quadrature cost associated with a downward closed set Λ as

cost(QΛ) := cost(IΛ)−m(Λ)3 +m(Λ)4. (2.76b)

Lemma 2.29. Let Λl;N as in Proposition 2.20, l, N ∈ N and let δ > 0. Then there exists a
constant C > 0 (depending on δ) such that for all l, N ∈ N it holds with (2.76)

cost(IΛl;N
) ≤ C|Λl;N |1+δ and cost(QΛl;N

) ≤ C|Λl;N |1+δ. (2.77)

Proof. First consider IΛl;N
. As in the proof of Lemma 2.28, equation (2.71) holds with Ĩ = {0} ∪

{a − 1 : 0 < a ∈ I}. Hence Lemmata 2.26 and 2.27 allow to bound the last term in (2.76a) by
C|Λl;N |1+δ due to d(Λl;N ) = o(log(|Λl;N |)) as |Λl;N | → ∞, which is true by (2.50). The first two
terms in (2.76a) are bounded, additionally employing m(Λl;N ) = O(log(|Λl;N |)) as |Λl;N | → ∞.
For the cost of the Smolyak quadrature QΛl;N

, by (2.76b) instead of m(Λl;N )3 one has the term
m(Λl;N )4. The claim is clearly fulfilled also in this case.

2.3.3 Complexity Bound

We are now in position to obtain bounds on the algorithmic complexity, i.e. of error vs. work. To
this end, we adopt the following work model.

Assumption 2.30. Let u satisfy Assumption 2.13, let Λ ⊆ F be finite and downward closed and
let γ ≥ 1.

(i) For χ ∈ U arbitrary and every l ∈ N, the function ul in Assumption 2.16 can be evaluated at
χ with computational work proportional to lγ.

(ii) The work load to evaluate IΛu, QΛu given the function values at the interpolation/quadrature
points, can be bounded up to a constant by the right-hand sides of (2.76).

Theorem 2.31. Let (2.31) and Assumption 2.30 for some γ ≥ 1 be satisfied. Let u : U → X
satisfy Assumption 2.16. Let δ > 0, y ∈ U and let W be as in Assumption 2.24. Then there exists
a constant C = C(δ) > 0 and for every N ∈ N there exists wN ∈ W

N such that the total work to
compute IwN (y) is bounded by CN , and such that

‖u− IwNu‖L∞(U,X) ≤ CN
− r

γ(1+δ) r =







α if p1 ≤
1

α+1 ,

α
p−1
0 −1

α+p−1
0 −p−1

1

otherwise.
(2.78)
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Proof. Choose I satisfying Assumption 2.24 (e.g. I = {0} ∪ {2j : j ∈ N0}). Let w̃N = (w̃N ;ν)ν∈F
as in Theorem 2.21. To sum up all work contributions required to compute Iw̃N

, we start with
the evaluation of the ul at the quadrature points. As in Proposition 2.20 let Λl;N = {ν ∈ F :
w̃N ;ν ≥ l}. For each level l ∈ W, by (2.66) and with (2.69) we need to evaluate ul at all points
in pts(Λl;N ) ∪ pts(Λl+1;N ). Since one evaluation is of cost O(lγ) by Assumption 2.30 (i) and using
Lemma 2.28, this part sums up to

∑

0<l∈W

lγ(|pts(Λl;N )|+ |pts(Λl+1;N )|) ≤ 2
∑

0<l∈W

(l + 1)γ |pts(Λl;N )| ≤ C
∑

0<l∈W

lγ |pts(Λl;N )|

≤ C
∑

0<l∈W

lγ |Λl;N |1+δ ≤ C

(
∑

0<l∈W

lγ |Λl;N |

)1+δ

= C




∑

{ν∈F : w̃N ;ν 6=0}

∑

{0<l∈W : l≤w̃N ;ν}

lγ





1+δ

≤ C




∑

{ν∈F : w̃N ;ν 6=0}

w̃γ
N ;ν





1+δ

≤ C|w̃N |γ(1+δ) ≤ CNγ(1+δ), (2.79)

where we have employed Assumption 2.24 to bound
∑

{0<l∈W : l≤w̃N ;ν}
lγ ≤ Cw̃γ

N ;ν .

Given those function values, it remains to evaluate the interpolants, i.e. compute
∑

0<l∈W(IΛl
−

IΛl+1
)ul. We use Assumption 2.30 (ii) to bound the cost of this part using Lemma 2.29 by

∑

0<l∈W

(
cost(IΛl;N

) + cost(IΛl+1;N
)
)
≤ C

∑

0<l∈W

(

|Λl;N |1+δ + |Λl+1;N |1+δ
)

≤ 2C
∑

0<l∈W

|Λl;N |1+δ

≤ 2C

(
∑

0<l∈W

|Λl;N |

)1+δ

≤ 2C




∑

{ν∈F : w̃N ;ν 6=0}

∑

{0<l∈W : l≤w̃N ;ν}

1





1+δ

≤ 2C|w̃N |1+δ. (2.80)

Adding (2.79) and (2.80) we get the total work amount of CNγ(1+δ) for w̃N . By Theorem 2.21,
the error ‖u−Iw̃N

‖L∞(U,X) satisfies equation 2.52. Hence (2.78) holds withwN := w̃⌊N1/(γ(1+δ))⌋.

In the same fashion we can prove the following result.

Theorem 2.32. Let (2.29), (2.31) and Assumption 2.30 for some γ ≥ 1 be satisfied. Let the map
u : U → X satisfy Assumption 2.16 and let W be as in Assumption 2.24. For every δ > 0 there
exists a constant C = C(δ) > 0 and for every N ∈ N there exists wN ∈ W

N such that the total
work to compute QwNu ∈ X is bounded by CN , and such that

∥
∥
∥
∥

∫

U
u(y)dµ(y)−QwNu

∥
∥
∥
∥
X

≤ CN
− r

γ(1+δ)} , r =







α if p1
2 ≤ 1

α+1

α
2p−1

0 −1

α+2p−1
0 −2p−1

1

otherwise.
(2.81)

Remark 2.33. Assume nestedness of the interpolation/quadrature points as stated in Remark 2.25.
Then, as observed in this remark, pts(Λ) ≤ |Λ| for any downward closed index set Λ ⊆ F . Notice
that this is the only requirement involving I, that is employed in the first part of the proof of Theorem
2.31, which bounds the work associated to item (i) at the beginning of Section 2.3. Thus, if I does
not satisfy Assumptions 2.18, 2.24, the statements of Theorems 2.31, 2.32 remain true in terms of
the work quantified by item (i).
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Remark 2.34. In the setting of Theorems 2.31, 2.32, suppose that G : XC → C is some bounded
linear functional (often termed a “quantity of interest” in applications). Then with u, ul as in
Assumption 2.16, the functions ũ := G(u) : U → C and ũl := G(ul) : U → C also satisfy the
necessary requirements of Assumption 2.16 w.r.t. to the Banach space X̃ := C. Hence Theorems
2.31, 2.32, immediately apply to such quantities of interest as well.

Remark 2.35. Assume that our goal is to find a surrogate of some function u : U → X, by
computing its interpolant as in and under the assumptions of Theorem 2.31. Let at first γ = 1 in
Assumption 2.30. Consider the proof of Theorem 2.31: After having taken care of the computation
of all function values needed by the interpolant with cost O(N1+δ) (cp. (2.79)), one evaluation of
IwN (y) at y ∈ U has cost O(N1+δ) with δ > 0 arbitrary small (cp. (2.80)). As N → ∞, the error
is of size O(N−r), with r ≤ α as in Theorem 2.31. On the other hand, by Assumption 2.30 it is
possible to evaluate uN (y) with cost O(N) and the error supy∈U ‖u(y)−uN (y)‖X is of size O(N−α).
Hence the computation of IwN has not brought an improvement in terms of the convergence rate.

This can be improved by the following reinterpretation of α: For γ > 1 let ũl := u⌈lγ⌉. Then
the “rate” in Assumption 2.16 becomes α̃ = γα. The computation of all function values needed
by the interpolant now requires a cost of O(Nγ(1+δ)) (cp. (2.79)). However, once this is done, an
evaluation of IwN (y) is still of cost O(N1+δ) delivering an approximation with error of size O(N−r̃)
where r̃ ≤ α̃ = γα is now given by

r̃ =







kα if p1 ≤ (1 + γα)−1,

γα
p−1
0 −1

γα+p−1
0 −p−1

1

otherwise.
(2.82)

A direct evaluation of u⌈Nγ⌉(y) on the other hand, has a complexity of O(Nγ) and gives the error
O(N−γα). In particular for 0 < p1 ≤ (1 + γα)−1, we have improved the computational cost of
finding an approximation with error O(N−γα) from O(Nγ) to O(N1+δ) ( after having performed
the precomputational step of determining all required function values with complexity O(Nγ)).

3 Holomorphic extensions of Petrov-Galerkin approximations

So far, we analyzed multilevel gpc approximation of countably-parametric maps taking values
in Banach spaces. The application we mainly have in mind are solution manifolds of countably
parametric PDEs. The functions ul in Assumption 2.16 then stem from a numerical approximation
of PDE solutions. A particularly important class of numerical solvers comprise Petrov-Galerkin
methods. The aim of this section is to verify Assumption 2.16 when ul denotes the Petrov-Galerkin
approximation in an l-dimensional subspace to some implicit equation (e.g. a PDE) with solution u.
This will yield relevance of our result to a very broad class of problems. We proceed along the lines
of the proofs of related results in previous works [15, 16, 21, 38]. However, the statements obtained
here are more general and target the framework of holomorphic data-to-solution maps in Section
2. They are based on the implicit function theorem and on results from [45] on Petrov-Galerkin
discretizations of nonlinear operator equations.

Let us consider an implicit equation of the type

N (u, ξ) = 0, (3.1)

where N : X × Ξ → Y ′, with X, Y being reflexive Banach spaces over K with K ∈ {R,C}
fixed, and additionally Ξ is either a real or a complex Banach space. As before, we denote their
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complexifications by XC, YC and ΞC (in particular, they coincide with X, Y , Ξ in case they are
already complex), and mention that the dual space (YC)

′ with the dual norm is isomorphic to (Y ′)C
with the complexification norm, so that we will not distinguish between the two in the following
(see, e.g., [37, Proposition B.4.2]).

We shall use the following notation: for the residual map N as in (3.1), we write ∂1N (u, ξ) ∈
L(X,Y ′) to refer to its first partial derivative w.r.t. u, and, similarly, ∂2N (u, ξ) ∈ L(X,Ξ′) to refer
to its first partial derivative w.r.t. ξ. Here, L(X,Y ′) and L(X,Ξ′) stand for the spaces of all linear
mappings from X to Y ′ and from X to Ξ′, respectively. For k ∈ N0, the k-th order differential of
some function F : X → Y at x ∈ X will be denoted by dkF (x) ∈ L(X,L(X, . . . L(X,Y ) . . . )). In
case k = 1 we also write dF (x) ∈ L(X,Y ) instead. For k ∈ N0 and O ⊆ X, we set

‖F‖Ck(O) :=

k∑

j=0

sup
x∈O

‖djF (x)‖L(X,...L(X,Y )... ). (3.2)

Furthermore, for a ball with radius r and center x ∈ X, we shall write Br(x) ⊆ X.

Assumption 3.1. (i) Existence of solutions: The set K ⊆ Ξ is compact and convex. For every
parameter ξ ∈ K, there exists u(ξ) ∈ X continuously depending on ξ such that N (u(ξ), ξ) = 0.

(ii) Holomorphy of N : The map N allows a holomorphic extension onto some open superset ON

of {(u(ξ), ξ) : ξ ∈ K} ⊆ XC × ΞC and mapping to Y ′
C
. Furthermore ∂1N (u(ξ), ξ) ∈ L(X,Y ′)

is an isomorphism for all ξ ∈ K.

The holomorphic extension in the previous assumption will also be denoted by N .

Lemma 3.2. Let V , W be vector spaces over R and FC : VC →WC holomorphic such that F |V =:
FR : V → W . Then for x ∈ V , dFC(x) ∈ L(VC,WC) is an isomorphism iff dFR(x) ∈ L(V,W ) is,
and ‖dFC(x)

−1‖L(WC,VC) ≤ 2‖dFR(x)
−1‖L(W,V ).

Proof. We split FC into its real and imaginary part via FC = F1 + iF2, and for x1, x2 ∈ V we
consider Fj(x1 + ix2), j ∈ {1, 2}. Fix x ∈ V . Since FC(V ) ⊆ W , ∂x1F2(x) = 0. By the Cauchy
Riemann equations ∂x2F1(x) = −∂x1F2(x) = 0, and furthermore ∂x1F1(x) = ∂x2F2(x). From this
we can conclude,

dFC(x)(h+ ig) = ∂x1F1(x)(h) + i∂x1F1(x)(g). (3.3)

Clearly ∂x1F1(x) = dFR(x) ∈ L(V,W ). We have shown dFC(x)(h+ ig) = dFR(x)(h) + idFR(x)(g),
which gives the first part of the claim. To estimate the norm of the inverse, let a+ ib be arbitrary
in WC. Then

‖dF−1
C

(x)(a+ ib)‖VC
= ‖dF−1

R
(x)(a) + idF−1

R
(x)(b)‖VC

≤ ‖dF−1
R

(x)(a)‖V + ‖dF−1
R

(x)(b)‖V

≤ ‖dF−1
R

(x)‖L(W,V )(‖a‖W + ‖b‖W ) ≤ 2‖dF−1
R

(x)‖L(W,V )(‖a+ ib‖WC
).

Proposition 3.3. Under Assumption 3.1 there exists an open set O ⊆ ΞC containing K, onto
which u allows a unique continuous extension satisfying N (u(ξ), ξ) = 0 for all ξ ∈ O. Furthermore
u is holomorphic on O and it holds supξ∈O ‖u(ξ)‖XC

≤ CO;u < ∞. Here, O and CO;u only depend
on u through

ON , ‖N‖C2(ON ,Y ′
C
), sup

ξ∈K
‖∂1N

−1(u(ξ), ξ)‖L(Y ′,X) and sup
ξ∈K

‖u(ξ)‖X . (3.4)
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Proof. According to Lemma 3.2, for every ξ ∈ K, there holds ∂1N (u(ξ), ξ) ∈ L(XC, Y
′
C
) and this

partial derivative is an isomorphism. Let A := ∂1N (u(ξ), ξ) ∈ L(XC, Y
′
C
). Notice that any operator

B ∈ L(XC, Y
′
C
) with ‖A−B‖L(XC,Y

′
C
) < ‖A−1‖−1

L(Y ′
C
,XC)

is boundedly invertible with

‖B−1‖L(Y ′
C
,XC) ≤ ‖A−1‖L(Y ′

C
,XC)(1− ‖A−B‖L(XC,Y

′
C
)‖A

−1‖L(Y ′
C
,XC))

−1.

Thus, we can find δξ > 0 solely depending on ξ and on the quantities in (3.4), such that Bδξ(u(ξ))×
Bδξ(ξ) ⊆ ON as well as

‖∂1N
−1(v, ζ)‖L(Y ′

C
,XC) ≤ 2‖∂1N

−1(u(ξ), ξ)‖L∞(K,L(Y ′
C
,XC)) ∀ v, ζ ∈ Bδξ(u(ξ))×Bδξ(ξ) ⊆ XC×ΞC

(3.5)
is ensured.

Next, following the notation in [23, Theorem 15.1], for ξ ∈ K fixed define the map S : XC×ΞC →
XC via

S(v, ζ) := ∂1N (u(ξ), ξ)−1(N (v, ζ))− v. (3.6)

It holds that ∂1S(u(ξ), ξ) = 0 in L(XC, XC) and S(u(ξ), ξ) = 0 in XC. Therefore, we can further
decrease δξ, and find 0 < rξ ≤ δξ such that

‖∂1S(v, ζ)‖L(XC,XC) <
1

2
∀ v, ζ ∈ Bδξ(u(ξ))×Bδξ(ξ) and ‖S(u(ξ), ·)‖L∞(Brξ

(ξ),Y ′
C
) <

δ

2
.

(3.7)
We point out that δξ, rξ can again be chosen in sole dependence on ξ and on the four quantities in
(3.4).

Set Nξ := Brξ(ξ) ⊆ ΞC and Mξ := Bδξ(u(ξ)) ⊆ XC. From the proof of the implicit function
theorem as provided in [23, Theorem 15.1], properties (3.7) ensure the existence of a unique map
ũ from Nξ to Mξ satisfying ũ(ξ) = u(ξ) and N (ũ(ξ′), ξ′) = 0 for all ξ′ ∈ Nξ (essentially because
S(·, ζ) is a contraction, so that the Banach fixed point theorem can be applied to it). Additionally,
this extension is holomorphic [23, Proposition 15.2, Theorem 15.3].

By compactness, we can cover K with finitely many balls Nξ1 , . . . , Nξn . The union O of these
balls still only depends on (3.4). To show that the resulting extension defined on each Nξi via ũξi is
well-defined, assume wlog N := Nξ1∩Nξ2 6= ∅. We need to verify ũξ1 |N ≡ ũξ2 |N . Using convexity of
K and the fact that Nξi is a ball around ξi ∈ K by construction, it holds K∩N 6= ∅. Fix x ∈ K∩N .
Then ũξ1(x) = u(x) = ũξ2(x) and thus u(x) ∈Mξ1 ∩Mξ2 6= ∅. Using continuity of uξi : Nξi →Mξi ,
we can find open sets Nx, Mx such that x ∈ Nx ⊆ Nξ1 ∩ Nξ2 , u(x) ∈ Mx ⊆ Mξ1 ∩Mξ2 and such
that ũξi : Nx → Mx, i ∈ {1, 2}. By the stated uniqueness of ũξi : Nξi → Mξi , i ∈ {1, 2}, those two
functions coincide on the open subset Nx of Nξ1 ∩Nξ2 . Since they are holomorphic, they coincide
on all of Nξ1 ∩Nξ2 by the identity principle (see for example [40, Proposition 5.7] for the statement
in Banach spaces).

Next, differentiating N (u(ζ), ζ) = 0 w.r.t. ζ, we find

u′(ζ) = −∂1N (u(ζ), ζ) ◦ ∂2N (u(ζ), ζ) ∈ L(ΞC, XC), (3.8)

and thus

‖u′‖C0(Nξ,L(ΞC,XC)) ≤ ‖∂1N‖C0(Mξ×Nξ,L(XC,Y
′
C
))‖∂2N‖C0(Mξ×Nξ,L(ΞC,Y

′
C
)) ≤ ‖N‖2C1(ON ;Y ′

C
). (3.9)
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Finally, since each ζ ∈ O is in some ball Brξ(ξ) = Nξ, we have

‖u(ζ)‖XC
= ‖u(ξ) +

∫ 1

0
u′(ξ + t(ζ − ξ))(ζ − ξ) dt‖XC

≤ ‖u(ξ)‖XC
+ ‖u′‖L∞(Nξ,L(ΞC,XC))rξ. (3.10)

This together with (3.10) shows that CO;u as in the statement of the proposition can be found.

Assumption 3.4 (Convergence of Petrov-Galerkin scheme). The spaces X, Y are reflexive and
separable, and there are sequences {Xl}l∈N ⊂ X and {Yl}l∈N ⊂ Y of subspaces of dimension
l = dim(Xl) = dim(Yl) such that

⋃

l∈NXl and
⋃

l∈N Yl are dense in X and Y , respectively, and
Nl := N|Xl

: Xl × Ξ → Y ′
l . Moreover, with the additional convention X∞ := X, Y∞ := Y , for

some β > 0, every l ∈ N ∪ {∞} and every ξ ∈ K it holds that

∂1Nl(u(ξ), ξ) ∈ L(Xl, Y
′
l ) is an isomorphism and ‖∂1Nl(u(ξ), ξ)

−1‖L(Y ′
l ,Xl) ≤ β−1. (3.11)

With the notation of Assumption 3.4, (in case it exists) we write ul(ξ) ∈ (Xl)C for the solution
of

〈N (ul(ξ), ξ), vl〉 = 〈Nl(ul(ξ), ξ), vl〉 = 0 for all vl ∈ (Yl)C. (3.12)

Proposition 3.5. Let Assumptions 3.1 and 3.4 hold. Then, there exists an open superset O ⊆ ΞC

of K, and constants 0 < C < ∞, η < ∞, and l0 ∈ N0 such that for each l ≥ l0, and for all ξ ∈ O
there exists a unique ul(ξ) ∈ XC satisfying (3.12) and the error bound

‖u(ξ)− ul(ξ)‖XC
≤ η . (3.13)

Furthermore, the parametric solution maps u : O → XC and ul : O → (Xl)C are holomorphic,
uniformly bounded w.r.t. the discretization parameter l and, moreover, there holds

‖u(ξ)− ul(ξ)‖XC
≤ C min

xl∈Xl

‖u(ξ)− xl‖XC
∀ ξ ∈ Oε, l ∈ N . (3.14)

Proof. By Proposition 3.3 we can holomorphically extend u : O1 → XC to a uniformly bounded
function on some O1 ⊆ ΞC.

In the next step, we prove the existence of ul. We start with the following preliminary obser-
vations exploiting the compactness of K:

(i) By Lemma 3.2 and (3.11),

‖∂1Nl(u(ξ), ξ)
−1‖L((Yl)

′
C
,(Xl)C) ≤ 2β−1 (3.15)

for all ξ ∈ K and all l ∈ N0. Let ON be as in Assumption 3.1. Then Nl is holomorphic on
ONl

:= ON ∩ (Xl)C × ΞC for every l ∈ N. Using compactness of K and possibly shrinking ON

if necessary, we can assume due to the fact that N is holomorphic and with a similar argument
as in the beginning of the proof of Proposition 3.3, that there exists M < ∞ independent of
l with

‖∂1N
−1
l ‖C0(ONl

,L((Xl)C,(Yl)
′
C
)) ≤M and ‖Nl‖C2(ONl

) ≤M. (3.16)

(ii) Again by compactness of K, we obtain the existence of O2 ⊆ O1 ⊆ ΞC open and containing
K as well as ε0 > 0 such that Bε0(u(ξ)) × Bε0(ξ) ⊆ ON for all ξ ∈ O2. Thus, (3.16) implies
in particular that ∂1N (·, ξ) is a Lipschitz mapping on Bε0(u(ξ)) for ξ ∈ O2 with a Lipschitz
constant independent of ξ.
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(iii) Using density of
⋃

l∈NXl in X, compactness of K and continuity of O1 ∋ ξ 7→ u(ξ), for η > 0

arbitrary we can find l̃0 ∈ N and O3 ⊆ O2 ⊆ ΞC open and containing K with

sup
ξ∈O3

min
xl∈Xl

‖u(ξ)− xl‖XC
< η (3.17)

for all l ≥ l̃0.

We now assume η(ε0,M) > 0 in (3.17) to be small enough, the exact dependence will be explained
in the following. Fix ξ ∈ O3. Due to Assumption 3.4 and (ii), by [45, Theorem 4] (which also holds
in the case of complex Banach spaces, as can be checked) there exists l0 ∈ N and δ0 > 0 such that
there is a unique ul(ξ) ∈ (Xl)C satisfying

〈N (ul(ξ), ξ), yl〉 = 0, ∀ yl ∈ (Yl)C and ‖u(ξ)− ul(ξ)‖XC
≤ δ0 . (3.18)

Retracing the steps of the proof in [45], one observes that l0 and δ0 solely depend on ε0, M and η,
as long as η is chosen small enough in dependence of ε0 and M (the crucial equations determining
this dependence are [45, (2.11) and (3.26)]). With these choices, due to (ii), ul(ξ) is well-defined
for all ξ ∈ O3 and l ≥ l0. Moreover, for ξ ∈ O3 there holds the apriori estimate [45, (3.13)]

‖u(ξ)− ul(ξ)‖XC
≤ C min

xl∈(Xl)C
‖u(ξ)− xl‖XC

(3.19)

with C = C(M) independent of ξ.
It remains to show holomorphy of ξ 7→ ul(ξ). We start by showing continuity. We observe that

by Proposition 3.3, for any ξ ∈ O3, there exists a unique continuous function ũl defined on some ball
Brξ(ξ) ⊆ ΞC mapping to (Xl)C which is an extension, i.e. ũl(ξ) = ul(ξ) and Nl(ũl(ζ), ζ) = 0 ∈ (Yl)

′
C

for all ζ ∈ Brξ(ξ). Since ξ 7→ u(ξ) is Lipschitz continuous (in some neighbourhood of K), we have

‖ul(ξ)−ul(ζ)‖XC
≤ ‖ul(ξ)−u(ξ)‖XC

+‖u(ξ)−u(ζ)‖XC
+‖u(ζ)−ul(ζ)‖XC

≤ C(η+‖ξ−ζ‖XC
) (3.20)

for some C <∞. Decreasing η and choosing ξ, ζ close enough, the uniqueness of ũl, as a mapping
to a neighbourhood of ul(ξ), then ensures ul(ζ) = ũl(ξ) on some neighbourhood of ξ. This shows
(local) continuity of ul. Similar as before, one checks that all constants and radii can be chosen
independent of ξ, so that η can be chosen small enough independent of ξ. Hence, with this choice,
ul is continuous. Finally, employing once more Proposition 3.3, we infer that ul : O → (Xl)C must
be holomorphic with O := O1 ∩O2 ∩O3.

4 Applications

In order for the previous results to apply to a large range of parametric partial differential and
operator equations, up to this point, we kept the presentation general. As an illustrative example
we shall now concentrate on second order linear elliptic Dirichlet problems on polygonal domains
D. Due to the presence of corners in D, solutions of the parametric problem exhibit, in general,
corner singularities. We shall require analytic regularity in weighted Sobolev spaces, from [8]. For an
example of a nonlinear equation, we refer to [21], where shape holomorphy for the stationary Navier-
Stokes equations has been shown. Holomorphic dependence of solutions in parametric domains for
the Maxwell equations was established in [38]. These results can be adapted to establish the
necessary requirements of Theorems 2.31 and 2.32 also for the scattering problems considered in
[38].
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4.1 Linear elliptic advection-reaction-diffusion equations in polygons

Let D ⊆ R
2 be a polygonal Lipschitz domain. For y ∈ U consider

− div(a(y)∇ũ(y)) + c(y) · ∇ũ(y) + e(y)ũ(y) = f(y) in D, (4.1a)

ũ(y) = g(y) on ∂D. (4.1b)

Here ũ(y) : D → C, and ∇ and div act on the spatial variable x ∈ D. We denote the parametric
differential operator on the left-hand side of (4.1a) by A(u(y),y) and consider it as an operator
A : X × U → X ′, where X := H1

0 (D) and where A is linear in the first argument. The following
restrictions are imposed on the data:

Assumption 4.1. (i) Holomorphic parameter dependence: there is a function g̃ : U → H1(D,C)
such that for every y ∈ U it holds that g̃|∂D(y) = g(y) ∈ H1/2(∂D); moreover, the functions
a : U → L∞(D,C2×2), c : U → L∞(D,C2), e : U → L∞(D,C), f : U → H−1(D,C) and
g̃ : U → H1(D,C) admit (b0, ε)-holomorphic extensions to a complex neighbourhood Ob0,ε of
U as in (2.2) with b0 ∈ ℓp0, 0 < p0 < 1, ε > 0.

(ii) Uniform ellipticity: with ℜ(·) denoting the real part and v the conjugation of v, we have

inf
z∈Ob0,ε

inf
0 6=v∈X

ℜ(A(v, z)(v))

‖v‖2X
> 0. (4.2)

We consider the parametric PDE (4.1) in the following weak form: Given y ∈ U , find u(y) ∈ X
s.t. with f̃ := f + div a(∇g̃)− c · g̃ − eg̃ ∈ X ′

∫

D
(a(y)∇u(y) · ∇v + (c(y) · ∇u(y))v + e(y)u(y)v) dx = X′〈f̃(y), v〉X ∀v ∈ X . (4.3)

The relation of u(y) to the parametric solution ũ(y) in (4.1) is given by u(y) = ũ(y)− g̃(y).

4.1.1 Polygonal domains

Following [8], for s ∈ N0, ζ ∈ R we introduce the Kondratiev type Sobolev spaces

Ks
ζ(D) := {u : D → C : r

|α|−ζ
D ∂αu ∈ L2(D), |α| ≤ s}. (4.4)

Here rD : D → R is a smooth function which, in a vicinity of a corner, equals the distance to this
corner. Furthermore, we define

Ws,∞(D) := {u : D → C : r
|α|
D ∂αu ∈ L∞(D), |α| ≤ s}, (4.5)

where the norms of the spaces in (4.4), (4.5) are the obvious ones. For the details on these spaces
we refer to [8]. In addition to Assumption 4.1, we work with weighted regularity where ζ ∈ R and
s ∈ N are to be specified later.

Assumption 4.2 (Uniform parametric regularity in weighted spaces). Under Assumption 4.1 and
for some b1 ∈ ℓp1, p0 ≤ p1 < 1 with b1 ≥ b0 componentwise, it holds for Ob1,ε ⊆ Ob0,ε as defined in
(2.2)

sup
z∈Ob1,ε

(‖a(z)‖Ws,∞(D) + ‖rDc(z)‖Ws,∞(D) + ‖r2De(z)‖Ws,∞(D)) <∞, (4.6a)

sup
z∈Ob1,ε

‖f(z) + div(g̃(z))− b · ∇g̃(z) + cg̃(z)‖Ks−1
ζ−1(D) <∞. (4.6b)
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Example 4.3 (Affine dependence). Consider s0 = 0, s1 > 0 and a ∈ Ws1,∞(D,R2×2) symmetric
such that for some c0 > 0, ξ⊤aξ ≥ c0|ξ|

2 for all ξ ∈ C
2 uniformly on D. Furthermore, let

(ψa;j)j∈N ⊆ Ws1,∞(D,C2×2) with
∑

j∈N ‖(ψa;j)lk‖L∞(D) < ∞ for all l, k ∈ {1, 2}. Set ba;i;j :=
maxl,k ‖(ψa;j)lk‖Wsi,∞, and assume ba;i := (ba;i;j)j∈N ∈ ℓpi(N), i ∈ {0, 1} for some 0 < p0 ≤ p1 < 1.
Then we define for θ > 0 (to be chosen later)

a(z) := a+ θ
∑

j∈N

zjψa;j , (4.7)

which for ε > 0 fixed and z ∈ Oba;i,ε (cp. (2.2)) arbitrary, i ∈ {0, 1}, satisfies for some ρ as in
(2.1)

‖a(zi)‖Wsi,∞ ≤ θ
∑

j∈N

ba;i;jρj =
∑

j∈N

ba;i;j(ρj − 1) +
∑

j∈N

ba;i;j ≤ ε+ ‖(ba;i;j)j∈N‖ℓ1 <∞. (4.8)

Thus a(z) ∈ Wsi,∞ is well-defined for all z ∈ Oba;i;ε. Here we have used (2.1) and ba;i ∈ ℓpi →֒ ℓ1.
The fact that U is compact and a(z) continuously depending on z ∈ Oba;i;ε in Wsi,∞, which can be
deduced similar as in (4.8), also shows uniform boundedness of ‖a(z)‖Wsi,∞ as in (4.6a), i ∈ {0, 1},
and hence Assumption 4.2 with s = s1 for a(z). Holomorphy of a(z) ∈ Ws0,∞ = L∞ in each zj is
trivial, since the dependence is affine and continuous. Thus (ba;0, ε, L

∞)-holomorphy of z 7→ a(z)
is verified, which implies Assumption 4.1 (i) for a. Choosing θ > 0 sufficiently small ensures

ξ
⊤
a(z)ξ ≥ |ξ|2c0/2 for all ξ ∈ C

2 and all z ∈ Oba;0; here c0 is the ellipticity constant of a.
Similarly we can affinely expand c, e, f and g̃ in the appropriate spaces from Assumptions

4.1, 4.2 (for some fixed ζ of our choice), with some functions ψ∗;j, ∗ ∈ {c, e, f, g}, whose norms
are in ℓpi, w.r.t. the spaces utilizing the smoothness parameter si, i ∈ {0, 1}. This will ensure
Assumption 4.2 with s = s1. Imposing appropriate smallness conditions on the expansion functions
corresponding to c(z) and e(z) (as we did with θ > 0 above) will guarantee Assumption 4.1 (ii). Item
(i) of this assumption follows in the same manner as before and with bi;j := max∗∈{a,c,e,f,g} b∗;i;j,
i ∈ {0, 1}.

Next, we consider an example of uncertain inputs which are non-affine. These inputs arise, for
example, in connection with domain UQ.

Example 4.4 (Domain uncertainty quantification). We introduce domain transformations analo-
gous to [21, 38]. Let D = D0 ⊆ R

2, and assume that (ψj)j∈N is a sequence of W 1,∞(R2,R2) func-
tions such that with s0 := 0, and with some fixed s1 ≥ 0 and bi;j := ‖ψj‖W 1,∞(R2)+ ‖dψj‖Wsi,∞(R2),
i ∈ {0, 1},

∑

j∈N

‖ψj‖W 1,∞(R2) < 1 and b = (bi;j)j∈N ∈ ℓpi(N) (4.9)

for some 0 < p0 ≤ p1 < 1. For y ∈ U , setting for some fixed θ ∈ (0, 1]

T (y)(x) := x+ θ
∑

j∈N

yjψj(x), (4.10)

i.e. T (y) : R2 → R
2, one checks that y → T (y) is a continuous mapping from U to W 1,∞(R2,R2)

with T (y) and its inverse being bijective and uniformly Lipschitz independent of y. Assume T (y) to
be such that Dy := T (y)(D0) is a Lipschitz domain for all y ∈ U , and consider (4.1) on the domain

29



Dy. From the data we require a : DH → C
2×2, c : DH → C

2 and e, f , g : DH → C to be analytic on
some hold-all DH with Dy + Bε(0) ⊆ DH ⊆ R

2 for some fixed ε > 0 and all y ∈ U . Furthermore,
we shall assume (4.1) to be uniformly well-posed, in the sense that the differential operator on the
left-hand side of (4.1) is bounded and boundedly invertible as a mapping from H1

0 (Dy) to H
−1(Dy),

with bounds independent of y ∈ U .
By the transformation T (y)(x), the model problem (4.3) on the parametric physical domain

D = Dy is equivalent to the following parametric model in the fixed, nominal domain D0: For
y ∈ U and with X = H1

0 (D0), find u(y) ∈ X s.t. with f̃ := f + div(a∇g)− c · ∇g − eg

∫

D0

(

∇v⊤dT (y)−1(a ◦ T (y))dT (y)−⊤∇u(y) + c ◦ T (y) · dT (y)∇u(y)v

+ e ◦ T (y)u(y)v

)

det dT (y)dx =

∫

D0

f̃ ◦ T (y) det dT (y)v ∀ v ∈ X, (4.11)

where dT (y) : D0 → R
2×2 denotes the Jacobian. The solution u(y) of (4.11) is then related to the

solution ũ(y) of (4.3) via ũ(y) = u(y) ◦ T (y)−1.
Let us motivate Assumptions 4.1, 4.2 for this setting. It is easily checked that due to the affine

dependence on yj, the map y 7→ T (y) is (b0, ε,W
1,∞(D)) holomorphic. This and holomorphy of a,

c, e, f , g, yield Assumption 4.1 (i) (with “a(y)” being dT (y)−1(a ◦ T (y))dT (y)−⊤ det dT (y) etc.),
for the details, see [21, Section 5.2]. Next, from (4.9) and similar as in Example 4.3 (cf. (4.8))
we can deduce supz∈Ob1;ε

‖dT (y)‖Ws1,∞(D) < ∞. This can be used to verify Assumption 4.2 for

ζ = 0 and s = s1 ≥ 1: for example f̃ ◦ T (y) ∈ Ws1(D) and det dTy ∈ Ws1(D) since f̃ is analytic
and dT (y) ∈ Ws1(D). Thus (f̃ ◦ Ty) det dTy ∈ Ws1(D) →֒ Ks1−1

−1 (D) with its norm bounded

by C(f̃)‖T (y)‖Ws1 (D) for some f̃ -dependent constant. Similarly one can treat the other terms.
Finally, assuming ellipticity of the coefficient a and appropriate smallness of θ > 0, similar as in
Example 4.3 we can verify Assumption 4.1 (ii).

For some regular (triangular) mesh T on D and n ∈ N we define the space Sn(T ) ⊆ X of
continuous piecewise polynomials of degree n on T . It is well-known, that the use of graded meshes
allows approximation of functions in the spaces Ks

ζ with the optimal rate (see [39, Proposition 5.9]):

Theorem 4.5. Let n ∈ N, n ≤ s. There exist C > 0 such that for all l ∈ W := {2j : j ∈ N0} there
is a triangular mesh Tl on D such that the meshwidth behaves as O(l−1/2) and dimSn(Tl) ≤ Cl for
all l ∈ W. Additionally, for each u ∈ Ks+1

ζ (D), l ∈ W

inf
xl∈Sn(Tl)

‖u− xl‖H1 ≤ Cl−
n
2 ‖u‖Ks+1

ζ (D). (4.12)

With Tl as in Theorem 4.5, we now fix n ≤ s and set Xl := Sn(Tl). The next corollary is a
direct consequence of Proposition 3.5. It states that the FEM solutions satisfy Assumption 2.16.
Therefore, the multilevel interpolant/quadrature described in Section 2.2 utilising the finite element
solutions, will achieve the convergence rates stated in Theorems 2.31, 2.32.

For the proof, which is based on Taylor gpc expansions of the parametric solution, we require
an additional small data assumption. This could be avoided by using Legendre instead of Tay-
lor expansions as we do here, cp. [38, Lemma 5.1] and also Remark 2.3. Moreover, the following
assumption is not necessary when considering affine parameter dependence as in Example 4.3, how-
ever it becomes relevant when considering the domain transformation model presented in Example
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4.4. For simplicity, we do not dwell on this and simply assume the following with δ > 0 to be
specified later:

Assumption 4.6. Let a, b, c, e, f , g be as in Assumption 4.1. It holds

sup
z∈Ob0,ε

inf
y∈U

‖a(z)− a(y)‖L∞(D) < δ. (4.13)

Analogous bounds are satisfied by b, c, e, f , g w.r.t. the spaces of Assumption 4.1.

Corollary 4.7. Let Assumption 4.1 be satisfied. Then, there exist ε̃ > 0, C > 0, η > 0, δ > 0 and
l0 > 0 such that if Assumption 4.2 holds for some |ζ| < η and if Assumption 4.6 is satisfied, we
have the following: There is a unique (b0, ε̃, X)-holomorphic map u : U → X and u(y) solves (4.3)
for all y ∈ U . Furthermore, with W as in Theorem 4.5, for all l ∈ W, l ≥ l0, there is a unique
(b0, ε̃, X)-holomorphic function ul : U → X such that ul(y) ∈ Xl solves (4.3) with X replaced by
Xl and the extensions satisfy

sup
z∈Ob0,ε̃

‖u(z)− ul(z)‖XC
≤ C and sup

z∈Ob1,ε

‖u(z)− ul(z)‖XC
≤ Cl−α (4.14)

with α := n/2 and for some C independent of l.

Proof. Set ξ := (a, c, e, f, g̃) ∈ Ξ where

Ξ := L∞(D,R2×2)× L∞(D,R2)× L∞(D,R)×H−1(D)×H1(D). (4.15)

According to Assumption 4.1, ξ(y) is (b0, ε,Ξ)-holomorphic. Moreover, with ξ ∈ Ξ as above, we
let A : X × Ξ → X ′ and N : X × Ξ → X ′ via (cf. (4.3))

A(u, ξ)(v) :=

∫

D
a∇u · ∇v + (c · ∇u(y))v + eũ(y)v and N (u, ξ)(v) = A(u, ξ)−

∫

D
f̃(ξ)v (4.16)

for v ∈ X and where f̃ is as defined above (4.3). Note that ∂1N (u, ξ) = A(·, ξ) ∈ L(X,X ′).
Set K̃ := {ξ(y) : y ∈ U} ⊆ Ξ and let K ⊆ Ξ be the closed convex hull of K̃. With this

notation, we verify the assumptions of Proposition 3.5 item by item:

• Assumption 3.1 (i): The set K̃ is compact as the image of the compact set U under the
continuous map y 7→ ξ(y) (continuity holds by definition for (b0, ε)-holomorphic maps). This
implies, that K, as the closed convex hull of K̃ in the Banach space Ξ, is compact as well,
see [1, Theorem 5.35]. By Assumption 4.1, the operator A(·, ξ) ∈ L(X,X ′) is elliptic and
bounded for all ξ ∈ K̃ with some ellipticity and continuity constants C0, C1. Note that
ξ 7→ A(·, ξ) is linear. Hence, for any finite convex combination ξ :=

∑n
i=1 λiξi with ξi ∈ K̃, it

holds that A(·, ξ) =
∑n

i=1 λiA(·, ξi) is elliptic and bounded with the same constants C0, C1.
Since K consists of the closure of the set of all convex combinations, the statement is also true
for any ξ ∈ K. By the same reason, we have that f̃(ξ) ∈ H−1 in (4.16) is uniformly bounded
for all ξ ∈ K. Thus, for each K the solution u(ξ) of N (u(ξ), ξ) = 0, which by definition is
the solution u(y) of (4.3), exists and is unique. Continuous dependence of u(ξ) on the data
ξ is classical.

• Assumption 3.1 (ii): The map N : X × Ξ → X ′ is well-defined, affine and bounded in both
arguments. Therefore holomorphy, and the existence of a holomorphic extension to X × Ξ is
trivial.
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• Assumption 3.4: The space X = H1
0 (D) is reflexive and separable. For ξ ∈ K fixed, we have

∂1N (u(ξ), ξ)(·) = A(·, ξ) ∈ L(X,X ′). As argued above, this map is uniformly bounded and
uniformly boundedly invertible, due to the stated uniform coercivity and boundedness. The
same holds for A ∈ L(Xl, Y

′
l ) considered on any (finite element) subspace Xl = Yl ⊆ X.

Density of
⋃

l∈NX
n(Tl) in X = H1

0 (D) is again well known, since the meshwidth of the mesh
Tl tends to zero as l → ∞.

Applying Proposition 3.5, gives an open set O ⊆ ΞC containing K̃ as well as holomorphic
extensions of u, ul on O for l ≥ l0. Choosing δ > 0 in Assumption 4.6 small enough, we can ensure
ξ(z) to be in O for all z ∈ Ob0,ε ⊇ Ob1,ε, with Obi,ε defined in (2.2).

Setting u(z) := u(ξ(z)) and ul(z) := ul(ξ(z)) gives uniformly bounded extensions in XC. Since
ξ(y) is (b0, ε)-holomorphic, u and ul are (b0, ε,X)-holomorphic, due to the fact that the composition
of holomorphic functions is again holomorphic. Thus ‖u(z)‖X is uniformly bounded for z ∈ Ob0,ε,
and by (3.14) the same holds for ‖ul(z)‖X with a constant independent of l ≥ l0, showing the first
inequality in (4.14).

It remains to choose ζ and show the second inequality in (4.14). In the following we will use
that by Assumption 4.2 all ξ ∈ {ξ(z) : z ∈ Ob1,ε} (which is a superset of K̃) lie in the smoother
(as compared to Ξ) spaces of Assumption 4.2, and their norms are uniformly bounded according to
(4.6). Hence, for every ξ ∈ K̃ according to [8, Theorem 1.1], there exists ηξ > 0, such that for all
|ζ| ≤ ηξ the map N (·, ξ) : Ks+1

ζ+1(D) → Ks−1
ζ−1(D) is an isomorphism. Inspection of the proof reveals

that ηξ depends continuously on the data ξ ∈ Ξ (see dependence of γ1, γ2 on β in [8, Remark 4.3]).
Using compactness of K and once more a covering argument, by decreasing δ > 0 if necessary,
we can find η > 0 such that for all |ζ| < η it holds that A(·, ξ) ∈ L(Ks+1

ζ+1(D),Ks−1
ζ−1(D)) is an

isomorphism and such that the norm of A(·, ξ)−1 ∈ L(Ks−1
ζ−1(D),Ks+1

ζ+1(D)) is uniformly bounded for
all ξ ∈ {ξ(z) : z ∈ Ob1,ε}. For such ζ, we can now conclude that, due to the uniform boundedness
of the data in the sense of Assumption 4.2 (in particular f̃(ξ) ∈ Ks−1

ζ−1), the parametric solution

u(ξ) = A(·, ξ)−1(f̃(ξ)) belongs to the weighted space Ks+1
ζ+1(D), and its norm is uniformly bounded

for all elements in {ξ(z) : z ∈ Ob1,ε}. Thus (3.14) and Theorem 4.5 give the second inequality in
(4.14).

Remark 4.8. The results in [8] do not merely show the solution to be in the Kondratiev space. In
particular, they also prove holomorphic dependence of the solution on the data in the Kondratiev
spaces. Whereas closely connected to our analysis, we did not employ this holomorphy, as it is not
necessary for our line of arguments.

4.1.2 Cartesian product domains

It is well-known that sparse-grid spaces allow to approximate functions of mixed Sobolev regularity
on a d-dimensional cube with an algebraic rate independent of d (up to logarithms), see for instance
[53, 50, 9, 29]. In a similar spirit as to what has been done in [33, 32], utilising such FEM spaces
further decreases the asymptotic complexity of the algorithm. To illustrate this, for s ∈ N and γ,
δ > 0 as well as D := [−1, 1]2 set

‖u‖2Hs,s
γ,δ(D) :=

∑

i,j≤s

∫

D
|(1− x21)

γ(1− x22)
δ∂i1∂

j
2u(x1, x2)|

2dx, (4.17)

32



where x = (x1, x2) and ∂
j
i refers to the jth derivative of the ith coordinate, j ∈ N0, i ∈ {1, 2}. We

then introduce the weighted anisotropic Sobolev spaces

Hs,s
γ,δ(D) := {u ∈ L2(D) : ‖u‖Hs,s

γ,δ(D) <∞}. (4.18)

Theorem 4.9 ([42, Theorem 1]). Let n, s ∈ N, n ≤ s and γ, δ > 0. For l ∈ W := {2nj : j ∈ N0},
there exist spaces Xl ⊆ X with dim(Xl) ≤ l and a constant C such that for all u ∈ Hs+1,s+1

γ,δ (D)

inf
xl∈Xl

‖u− xl‖H1 ≤ Cl−n log(l)3/2‖u‖
Hs+1,s+1

γ,δ (D)
. (4.19)

We do not recall the precise definition of Xl in Theorem 4.9, but merely mention that they are
sparse-grid wavelet spaces. Note that for γ > min{0, (s̃ + 1 − ζ)/2} there holds the continuous
embedding

K
2(s̃+1)
ζ (D) →֒ H s̃+1,s̃+1

γ,γ (D). (4.20)

We emphasize that the space on the left-hand side has much more regularity. In this sense, the next
result does not aim at utmost generality concerning the smoothness of the PDE coefficients. The
proof exploits Theorem 4.9 and (4.20) instead of Theorem 4.5, but is apart from that in complete
analogy to the one of Corollary 4.7.

Corollary 4.10. Let n, s̃ ∈ N, n ≤ s̃ and W be as in Theorem 4.9. Let Assumption 4.1 be satisfied.
Then, there exist ε̃ > 0, C > 0, η > 0, δ > 0 and l0 > 0 such that if Assumption 4.2 holds with
s := 2s̃ + 1 and |ζ| ≤ η, and if Assumption 4.6 is satisfied with δ, we have the following: For any
ǫ > 0, there is a unique (b0, ε̃, X)-holomorphic map u : U → X and u(y) solves (4.3) for all y ∈ U .
Furthermore, for all l ∈ W, l ≥ l0, there is a unique (b0, ε̃, X)-holomorphic function ul : U → X
such that ul(y) ∈ Xl solves (4.3) with X replaced by Xl and the extensions satisfy (4.14) with
α := n− ǫ and for some C independent of l.

5 Numerical Experiments

We now report on numerical experiments and observed convergence rates for the presented multi-
level algorithm. In Section 5.2 multilevel convergence is compared to single level convergence for
a real valued test function. In Sections 5.3, 5.4 we test the algorithm for a diffusion problem with
parametric diffusion coefficient in one dimension, and for a diffusion problem in two dimensions on
a varying domain, respectively.

5.1 Implementation

Before presenting our results we comment on a few aspects of the implementation.

5.1.1 Choice of discretization levels

Let m0 = (m0;ν)ν∈F ∈ ℓp0m (F), m1 = (m1;ν)ν∈F ∈ ℓp1m (F) be two sequences satisfying (2.48) and
with the property that for all ν ∈ F

‖∂νu(y)/ν!|y=0‖X ≤ Cm0;ν and ‖∂ν(u(y)− ul(y))/ν!|y=0‖X ≤ C(l + 1)−αm1;ν (5.1)

where u, ul are as in Assumption 2.16.
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From Theorem 2.6 and the proofs of Theorems 2.21, 2.22, we know that the levels wν should

reflect the behaviour wν ∼ m
1/(α+1)
1;ν . Whereas Theorem 2.6 gives an explicit constant Cε such that

wν = ⌈Cεm
1/(α+1)
1;ν −1⌉W (cp. (2.8) with q = 1), the computation of Cε requires the computation of

the Nβ largest (m1;ν)ν∈F (cf. Theorem 2.6), but does not guarantee wν > 0 for these multiindices.
In practice, if we determine the Nβ largest values of the estimator (m1;ν)ν∈F , we also wish to
use all of the corresponding multiindices in the construction of our interpolation or quadrature
operator. In other words, for each estimator m1;ν which we have found to be among the largest,
we want to set its discretization level wν to a positive number, so as not to have computed m1;ν in
vain. The purpose of the next lemma is to circumvent this and construct an allocation of positive
discretization levels which will result in optimal rates. The proof is given in the appendix.

Lemma 5.1. Let mi = (mi;ν)ν∈F , i ∈ {0, 1} be two monotonically decreasing sequences, and let
W be as in Assumption 2.4. Denote by (mi;j)j∈N, i ∈ {0, 1}, two decreasing rearrangements of mi

over N. Let 0 < r1 ≤ r0 and assume that for every δ > 0 there exist constants C1, C2 s.t. for
i ∈ {0, 1}

C1j
−ri ≤ mi;j ≤ C2j

−ri+δ ∀ j ∈ N. (5.2)

Set m̃1;ν := max{m
r1/r0
0;ν ,m1;ν}, m̃0;ν := max{m0;ν ,m

r0/r1
1;ν }. For every ε > 0 define Λ(ε) :=

{ν ∈ F : m̃1;ν ≥ ε}. Define wε = (wε;ν)ν∈F by wε;ν = 0 if ν ∈ Λ(ε)c and set for ν ∈ Λ(ε)

wε;ν :=

⌈

Cεm̃
1

α+1

1;ν

⌉

W

where Cε :=







maxν∈Λ(ε) m̃
1
α
− 1

α+1

1;ν /m̃
1/α
0;ν if r1 − 1 < α,

maxν∈Λ(ε) m̃
−1
α+1

1;ν otherwise.
(5.3)

Fix δ > 0 arbitrarily small. There then exists a constant C such that for all ε > 0

∑

ν∈Λ(ε)

(wε;ν + 1)−αm1;ν +
∑

ν∈Λ(ε)c

m0;ν ≤ C|wε|
−r, (5.4)

where r = (1− r0)β − δ, β = α/(α+ r0 − r1), if r1 − 1 ≤ α, and r = α− δ otherwise.

Remark 5.2. The choice Cε = maxν∈Λ(ε) m̃
1
α
− 1

α+1

1;ν /m̃
1/α
0;ν = maxν∈Λ(ε) m̃

1
α
− 1

α+1
−

r0
αr1

1;ν in the first
case is exactly such that w−α

ε;ν m̃1;ν ≤ m̃0;ν for all ν ∈ Λ(ε). It is intuitively clear that this must be
satisfied, since wε should ideally minimize the left-hand side of (5.4) while also minimizing |wε|.
In the second case Cε is such that wε;ν ≥ 1 for all ν ∈ Λ(ε).

For our algorithm, we proceed as suggested by the lemma: First, a downward closed set Λ =
{ν ∈ F : m̃1;ν ≥ ε} is determined for some fixed ε > 0, and then we choose the levels for ν ∈ Λ
according to (5.3). The occurring set W in the lemma depends on the problem and the numerical
solver (e.g., each element of W corresponds to the number of degrees of freedom of a FEM solution
on some available mesh).

In the case of quadrature we additionally have to take into account item (iii) of Lemma 2.15.
To this end the above construction is adjusted by replacing mi with m̃i defined as

m̃i;ν = mi;⌈ν⌉ where ⌈ν⌉j =

{

0 if νj = 0,

max{2, νj} otherwise,
(5.5)

for i = {0, 1}. We refer to [52] for more details on this.
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Finally, one needs to determine sequences m0, m1 as stated above. With I as in Assumptions
2.18, 2.24, assume 2 ∈ I in the following, so that the ensuing definition will not interfere with (5.5).
Using estimates as presented in [18, 19] and [52] gives mi;ν = C(|νI|!/νI!)ρ

−νI

i with νI := ⌊ν⌋I for
some suitable sequence ρi = (ρi;j)j∈N with ρi;j > 1 for all j ∈ N and ρ−1

i;j ∈ ℓpi for i ∈ {0, 1} (note
that such (mi;ν)ν∈F is not monotone, but employing estimates from [15] this could be avoided
by using a slightly more involved formula). From the mentioned proofs one obtains ρ−1

j ∼ bj . In

practice, settingmi;ν = ρ
−νI

i appears to perform better however. For this reason all of the following
computations were done based on such sequences. Ultimately, let us note that the requirement (5.2)
might seem restrictive. However, if ρj ∼ jr for some r > 1, then the above sequences satisfy this
assumption: For example, by [19, Lemma 7.1] it holds (ρ−ν)ν∈F ∈ ℓ1/r+δ, so that Lemma A.5
implies decay j−r+δ of a monotonically decreasing rearrangement (tj)j∈N of (ρ−ν)ν∈F . On the
other hand ρ−1

j ∼ j−r for j ∈ N is a subsequence of (ρ−ν)ν∈F , so that the lower bound in (5.2) is

satisfied. The same argument can be applied to |ν|!/ν!ρ−ν . Lemma 5.1 is thus precisely targeted
at the kind of problems we are interested in.

5.1.2 Work measure

Let w = (wj)j∈N ∈ W
F and let Λwi be as in (2.40) depending on w and where W = {wi : i ∈ N0}

with w0 = 0. As a measure of the work, we then use the quantity

work(w) :=
∑

i∈N

wi ·
(

number of interpolation points employed by (IΛwi
− IΛwi+1

)
)

, (5.6)

for interpolation, and with (IΛwi
− IΛwi+1

) replaced by (QΛwi
−QΛwi+1

) for quadrature (cp. (2.42)).
This is a simplification of the work model employed in Section 2.3, in that it only takes into

account item (i) but not item (ii) described at the beginning of Section 2.3: we merely consider
the complexity of evaluating the function for all levels at each required interpolation/quadrature
point, but not the complexity of evaluating Iw, Qw given the function values at the interpola-
tion/quadrature points. We do so, since (ii) can be considered negligible for a moderate number of
interpolation/quadrature points if each evaluation of the integrand is costly (as is the case if the
integrand is the solution to some PDE).

For the examples in Sections 5.3 and 5.4, wi will be the number of degrees of freedom of a
FEM solution to a diffusion problem. If the complexity of computing this solution is proportional
to wi, then (5.6) measures the work to determine all FEM approximations. Due to the sparsity of
the obtained stiffness matrices, this is a reasonable assumption. In other words, the work quantity
then amounts to the total number of degrees of freedom of all required FEM solutions.

5.1.3 Interpolation/Quadrature points

Using the terminology of [14], an ℜ-Leja sequence is the projection of a Leja sequence defined on
the unit circle onto [−1, 1]. For all experiments, as interpolation points we employ sections of such
a sequence as described in [14]: for an ℜ-Leja sequence (χj)j∈N0 ⊆ [−1, 1], the points (χn;j)

n
j=0

introduced at the beginning of Section 2.2.1 are chosen as χn;j = χj for all j = 0, . . . , n and for all
n ∈ N0. In particular, they are nested in the sense that (χn;j)

n
j=0 ⊆ (χm;j)

m
j=0 for every m ≥ n. It

is known that these points satisfy (2.31) with τ = 3, see [11, 10, 14]. The set I in Assumptions
2.18, 2.24 is then chosen as I = N, and hence does not satisfy the stated assumptions. This does
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not affect the convergence rate in terms of the work measure in Section 5.1.2 though, cp. Remark
2.33.

For the quadrature algorithm we additionally use (non-nested) Gauss-Legendre quadrature with
I in Assumption 2.18, 2.24 defined as I = {0} ∪ {2j : j ∈ N}, cp. Remark 2.23. The choice of
points is indicated in the plots by the label “leja” or “gauss”.

5.2 Scalar parametric test function

In this section let X = R. For θ > 0, r > 1 consider u : U → X via

u(y) :=
1

1 + θ
∑

j∈N yjj
−r
, (5.7)

which is well-defined for all y ∈ U in case θ is so small that θ
∑

j∈N j
−r < 1. One can show that

this function is (b, ε,C)-holomorphic for some b ∈ ℓp and any p > 1/r, see [52, Example 4.1]. For
l ∈ N we now define

ul(y) := u(y) +Rl · l
−α (5.8)

where Rl ∈ [−2,−1] ∪ [1, 2] denotes a randomly chosen (w.r.t. the uniform distribution) number
independent of y. Equation (5.8) artificially introduces the error Rl·l

−α, so that ul can be considered
as an approximation to u at level l. In particular ul converges to u at rate α > 0 (uniformly on U),
which provides us with a simple test setting for the multilevel algorithm. Clearly, (b, ε)-holomorphy
of u implies the same for ul and consequently Assumption 2.16 is satisfied with p0 = p1 = p for any
p > 1/r. In view of Theorems 2.31, 2.32 we thus expect the convergence rates

min{α, r − 1} − δ and min{α, 2r − 1} − δ with δ > 0 arbitrarily small (5.9)

for multilevel interpolation/quadrature respectively w.r.t. the work quantity defined in (5.6). Through-
out what follows, if we speak of (proven) convergence rates, they are always understood up to some
arbitrarily small δ > 0, and we will not mention this anymore. We point out that in practice
the observed rates for such examples may depend strongly on θ due to the presence of a large
preasymptotic range. For more details we refer to [52, Section 4.2].

In Figure 1 the convergence of the multilevel interpolant for r = 3, θ = 0.005 and α ∈ {2, 3}
is compared with single-level interpolation, by which we mean Smolyak interpolation based on the
exact function values of u (this corresponds to the case “α = ∞”), see for example [13, 52]. For
single-level interpolation we plot the error vs. the number of interpolation points, whereas in the
multilevel case, the x-axis shows the work measure defined in (5.6). The single-level interpolant in
Fig. 1 (b) exceeds the predicted rate r− 1 = 2 (see, e.g. [13]). For α = 2, the multilevel interpolant
achieves the rate 2 stated in (5.9). Letting α = 1, as expected the observed rate decreases, but it
still exceeds the proven rate of 1 in this example. For both α ∈ {1, 2}, the observed convergence
rate of the single-level approximation (in terms of nr. of points) is better than the multilevel rate
(in terms of the work). This is to some extent expected, since the multilevel algorithm additionally
has to take care of the error introduced by approximating u with ul.

Figure 2 shows the same for the quadrature algorithm with r = 2, θ = 0.05 and employing either
Gauss-Legendre quadrature or ℜ-Leja quadrature points, cp. Section 5.1.3. The convergence rate
of the single level quadrature is less than 2r− 1 = 3. This can be attributed to the aforementioned
preasymptotic behaviour for “large” values of θ > 0. Subfigure (a) shows that the multilevel
quadrature performs almost equally well for α = 3. Note that the rate of the single-level method
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Figure 1: Multilevel vs. single-level interpolation for the test function in (5.7) with r = 3, θ = 0.005.
The “worst case” error supy∈U |u(y) − Iwu(y)| is numerically estimated by taking the maximum
of |u(y) − Iwu(y)| at 144 random points y ∈ U . The proven rate is min{3 − 1, α} = α for the
multilevel algorithm and 3− 1 = 2 for the single-level algorithm.

can be considered to be an upper bound of what the multilevel method can achieve. For α = 2
we observe again the predicted rate 2. As for interpolation, in this example, the single-level rate is
better than the multilevel rate. In all cases the difference between Gauss-Legendre quadrature and
ℜ-Leja quadrature is marginal.

5.3 1D model diffusion problem

Set D := [−1, 1] and let u(y) ∈ H1
0 (D) be the solution to

−
d

dx

(

a(y)
d

dx
u(y)

)

= 1 in D, (5.10a)

u = 0 on ∂D, (5.10b)

with the diffusion coefficient a(y)(x) := 1+θ
∑

j∈N yjj
−r sin(jπx) for x ∈ D and some r > 1, θ > 0.

5.3.1 Theoretically predicted convergence rates

We approximate the solution u(y) to (5.10) with continuous, piecewise linear finite elements: for
each l ∈ W := {2j + 1 : j ∈ N} denote by ul ∈ H1

0 (D) the fem solution w.r.t. a uniform mesh
exhibiting l equidistant nodes on [−1, 1]. Let us sketch the verification of Assumption 2.16.

Let θ > 0, ε > 0 so small that ε+θ
∑

j∈N j
−r < 1. Then with b0;j := θj−r, if

∑

j∈N(ρj−1)b0;j < ε

and z ∈ Oε s.t. |zj | ≤ ρj , we have ℜ(a(z)) ≥ 1 −
∑

j∈N bjρj > 1 − ε > 0. Thus u(z) ∈ H1
0 (D,C)

is well-defined, and one easily obtains (b0, ε)-holomorphy of u(y) as well as of ul(y), with similar
arguments as in Section 4. Next, for 0 < s < r − 1, s ∈ N, set b1;j := θj−r+s, let ρ such that
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Figure 2: Multilevel vs. single-level quadrature for the test function in (5.7) with r = 2 and θ = 0.05.
The proven rate is min{4− 1, α} = α for the multilevel algorithm and 4− 1 = 3 for the single-level
algorithm.

∑

j∈N(ρj − 1)b1;j < 1 and let z such that |zj | ≤ ρj for all j ∈ N. Then

‖a(z)‖W s,∞(D) ≤
∑

j∈N

ρj‖θj
−r sin(jπx)‖W s,∞(D)|zj | ≤ C

∑

j∈N

j−r+sρj ≤ Cb1;jρj ≤ C
∑

j∈N

j−r+s + 1.

(5.11)
Hence we have a uniform bound on ‖a(z)‖W s,∞(D) for all z ∈ Ob1;ε (cp. (2.2)). By standard
regularity theory, this yields a uniform bound on ‖u(z)‖H1+s for all z ∈ Ob1;ε. By standard finite
element theory [7], for s ≥ 1 we obtain

sup
z∈Ob1,ε

‖u(z)− ul(z)‖H1(D) ≤ Cl−1 and sup
z∈Ob1,ε

‖u(z)− ul(z)‖L2(D) ≤ Cl−2, (5.12)

where the second bound is obtained using the so-called “Aubin-Nitsche duality argument”. Since
(b, ε,H1)-holomorphy evidently implies (b, ε, L2)-holomorphy, we have verified Assumption 2.16
with α = 2 in the case of X = L2(D) and α = 1 for X = H1(D).

We will measure the error in L2(D), i.e. with α = 2. Since we use linear finite elements, it suffices
to choose s = 1, which yields b0 ∈ ℓ1/r+δ and b1 ∈ ℓ1/(r−1)+δ for any δ > 0. With p0 = 1/r + δ
and p1 = 1/(r − 1) + δ Theorems 2.31, 2.32 therefore suggest the convergence rates (up to some
arbitrarily small δ > 0)

{

2 if 4 ≤ r,

2 r−1
3 otherwise,

and

{

2 if 5 ≤ 2r,

22r−1
4 otherwise,

(5.13)

for multilevel interpolation/quadrature in L2(D).

Remark 5.3. More general than above, with D = (−1, 1)d, d ∈ N, consider the diffusion problem
− div(a(y)u(y)) = 1 with boundary condition u|∂D = 0. Suppose further that a(y) = a+

∑

j∈N yjψj
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is such that (‖ψj‖L∞(D))j∈N ∈ ℓp0 and (‖ψj‖W s,∞(D))j∈N ∈ ℓp1 with p1 = 1/(1/p0 − s) (as is the
case if e.g. ψj(x) = sin(jπx1)). Additionally we assume uniform ellipticity of a for all z ∈ Ob0;ε

for some ε > 0 and where b0;j ∼ ‖ψj‖L∞(D). With b1;j ∼ ‖ψj‖W s,∞(D) and for z ∈ Ob1,ε, since
a(z) ∈ W s,∞, the solution u(z) is in a weighted Sobolev space with smoothness index s+ 1. Using
(a result like) Theorem 4.5, finite elements of polynomial degree n on appropriately graded meshes
achieve the FEM convergence rate α = min{n, s + 1 − l}/d w.r.t. ‖ · ‖Hl(D), l ∈ N0, and where
s = 1/p0 − 1/p1 such that s+ 1− l ≥ 1.

The H l(D) convergence rate for the interpolant in Theorem 2.31 becomes

min

{

α,
α

α+ (p−1
0 − (p−1

0 − s))
(p−1

0 − 1)

}

= min

{

α,
α

α+ s
(p−1

0 − 1)

}

, (5.14)

which holds because

α
p−1
0 − 1

α+ p−1
0 − p−1

1

≤ α⇔ p−1
1 − 1 ≤ α. (5.15)

To maximize (5.14), (unsurprisingly) α should be possibly large. We choose the polynomial degree
n = s+ 1− l, which yields the rate

min

{
s+ 1− l

d
,

s+ 1− l

s+ 1− l + ds
(p−1

0 − 1)

}

. (5.16)

For l = 1 this is min{s/d, (p−1
0 − 1)/(1 + d)}. The optimum rate the multilevel interpolation can

achieve w.r.t. the H1-norm is thus only 1/(1 + d) times the rate achieved by single-level interpola-
tion, which is p−1

0 − 1 (i.e. by interpolation assuming that u ∈ H1(D) can be evaluated exactly with
complexity O(1); the rate p−1

0 − 1 is then due to (b0, ε,H
1
0 )-holomorphy of u). On the other hand,

if p0 is small enough, the multilevel interpolant reaches the convergence rate α of the FEM approxi-
mation. For multilevel quadrature, the above calculation gives the rate min{s/d, (2p−1

0 −1)/(1+2d)}
w.r.t. the H1(D) norm, i.e. in the best case only 1/(1 + 2d) times the single-level quadrature rate.

Finally, note that (5.13) does not contradict the last statements, since the convergence rates in
(5.13) are given w.r.t. L2(D) (instead of H1(D)) for which analogous observations (yielding better
factors) can be made.

5.3.2 Observed rates

Fig. 3 shows the interpolation error for r ∈ {2, 3} and θ ∈ {0.25, 0.05} measured in L2(D). The
observed rates roughly coincide with the predicted ones, or exceed them. As before, the parameter
θ has a noticeable influence on the convergence. Similar observations hold true for the quadrature
error depicted in Fig. 4. As a reference value for

∫

U u(y)dµ(y) ∈ L2(D), we use the last computed
approximation.

5.4 2D domain uncertainty quantification

As a second example we consider again a diffusion problem, but this time on an uncertain domain
which is assumed to be given as parametric family:

−∆ũ(y) = 1 in Dy, (5.17a)

ũ = 0 on ∂Dy. (5.17b)

39



101 102 103 104

work

10 5

10 4

10 3

10 2

10 1

su
p

y
U
u

I w
u

L2
(D

)

 r: 2
Points: leja, : 0.25
Points: leja, : 0.05

0.83
1.06

(a) r = 2, proven rate 2/3

101 102 103 104

work

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

su
p

y
U
u

I w
u

L2
(D

)

 r: 3
Points: leja, : 0.25
Points: leja, : 0.05

1.16
1.40

(b) r = 3, proven rate 4/3

Figure 3: Multilevel interpolation error for the one dimensional diffusion problem in (5.10). We
consider the error supy∈U ‖u−Iwu‖L2(D), i.e. w.r. to the L

2-norm in space. Since we use continuous,
piecewise linear finite elements, the FEM rate is α = 2. The supremum over y ∈ U is numerically
estimated by taking the maximum of the error at 144 random points in U . The work measure is
defined in (5.6).
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Figure 4: Multilevel quadrature error ‖
∫

U u(y)dµ(y)−Qwu‖L2(D) for the one dimensional diffusion
problem in (5.10). Since we use linear finite elements, the FEM convergence rate is α = 2 with
respect to the work measure defined in (5.6).
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As detailed in Section 4, this problem is equivalent to the weak formulation

∫

D0

∇u(y)⊤A(y)∇v =

∫

D0

v detDT (y) ∀ v ∈ H1
0 (D0), (5.18a)

on the reference domain D0 via u(y) = ũ(y) ◦ T (y), where Ty : D0 → Dy and

A(y) = DT (y)−⊤DT (y)−1 detDT (y) ∈ L∞(D0,R
2×2). (5.18b)

Here we set D0 := [−1, 1]2 and define, for (x1, x2) ∈ D0,

T (y)(x1, x2) := (x1, x2) +



0,
(x2 + 1)

2
θ
∑

j∈N

yjj
−r−1 sin(jπx1)



 . (5.19)

Then for every y ∈ U , Dy ⊆ R
2 is a well-defined Lipschitz domain as long as θ > 0 is small enough.

5.4.1 Theoretically predicted convergence rates

All computations will be done on the reference domain D0. The function u(y) ∈ H1
0 (D0) is

approximated with a finite element method based on a quadrilateral mesh and piecewise polynomials
of degree n = 2 in both coordinates. More precisely, for fixed N ∈ {2m : m ∈ N0}, and with

xj :=

{

−1 +
( j
N

)β
if 0 ≤ j ≤ N,

1−
( j−2N

N

)β
if 1 ≤ j ≤ 2N,

(5.20)

our quadrilateral mesh on [−1, 1]2 has the nodes (xi, xj), i, j = 0, . . . , 2N . With the grading factor
β ≥ 1 large enough, we expect to retain the optimal FEM rate α = n/d = 2/2 = 1 (in H1) stated
in Theorem 4.5, as long as the transformation T (y) (and thus the diffusion coefficient A(y)) is
smooth enough.

Let us verify Assumption 2.16. With (5.19), we can write T (y) = Id +
∑

j∈N yjψj , where

ψj(x1, x2) = (0, θ((x2 + 1)/2)j−(r+1) sin(jπx1)). With dψj ∈ L∞(D0,R
2×2) denoting the Jacobian,

clearly (‖dψj‖L∞)j∈N ∈ ℓ1/r+δ for any δ > 0. Furthermore, for 1 ≤ s < r we have (‖dψj‖W s,∞)j∈N ∈
ℓ1/(r−s)+δ. Assuming r > 3 (i.e. A(y) ∈ W 3,∞) and setting s = 2, by employing Example 4.4 and
Corollary 4.7 we obtain that the FEM solutions ul satisfy Assumption 2.16 for α = 1 w.r.t. X =
H1(D0). Hence with p0 = 1/r+ δ, p1 = 1/(r− s) + δ and s = 2 the convergence rates of Theorems
2.31, 2.32 are (up to some arbitrarily small δ > 0)

{

1 if 4 ≤ r,
r−1
3 otherwise,

and

{

1 if 3 ≤ r,
2r−1
5 otherwise,

(5.21)

for multilevel interpolation/quadrature respectively. We observe that the multilevel algorithm
achieves at most one third (interpolation) respectively one fifth (quadrature) of the single-level
rates, cp. Remark 5.3.

Remark 5.4. As discussed in Section 4.1.2, in order to keep the computational effort to a min-
imum, on cartesian product domains sparse-grid finite elements could be used, which are realized
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by the closely connected combination technique, see [30]. Also, in curved geometries, so-called iso-
geometric FEM as introduced in [36] naturally afford separation of variables and allow for separate
collocation of physical variables affording computational efficiency gains. Using the combination
technique FEM as a numerical PDE solver with the presently proposed collocation essentially yields
the so-called multiindex stochastic collocation method (MISC) proposed in [32].

Roughly speaking, the combination technique FEM combines solutions on certain tensorized
FEM spaces in an appropriate way to retain the optimal convergence rate (up to logarithmic fac-
tors) independent of the dimension d of the domain D. Such results hold if the solution is smooth
enough: in space dimension d = 2, physical domain D = (−1, 1)2 and with the exact solution
u ∈ H4(D): this implies mixed H2,2(D) regularity, and the H1(D)-error behaves as O(N−1 log(N))
w.r.t. the number of degrees of freedom N . For our example, this does not bring an improve-
ment in terms of the convergence rate: Apart from the fact that according convergence results in
weighted Sobolev spaces (which spaces are required for elliptic problems in nonsmooth domains) do
not yet seem to be available for the combination technique, using tensorized, continuous, piecewise
quadratic finite elements on graded meshes achieves the H1(D) convergence rate N−1. As explained
in Sec. 4.1.2, optimal d-independent approximation rates in weighted Sobolev spaces are also known
to be achieved by sparse-grid FEM [42] (up to logarithmic factors). The combination technique has
specific algorithmic benefits however, such as allowing for simple and efficient parallelization.

5.4.2 Observed rates

In Figure 5 we plot the interpolation and quadrature error for r = 3 in the H1(D0)-norm. In
both cases the proven rates are obtained or exceeded. Once more, the observed rates increase as θ
decreases. As a reference value for

∫

U u(y)dµ(y) ∈ H1
0 (D0) we use the last computed value.

6 Conclusions

We proposed and analyzed convergence rates of sparse-grid multilevel discretizations of well-posed,
holomorphic-parametric operator equations which are possibly nonlinear, subject to possibly in-
finitely many parameters. Such problems typically arise in the context of operator equations with
distributed uncertain input data from function spaces, when instances of these data are represented
in terms of an unconditional basis of these spaces. Then, the mentioned parameter sequences are
the coefficients in the expansion of the data with respect to the basis.

We showed that well-posedness and a suitable form of holomorphic parametric dependence of
the operator and the data (quantified in the notion of (b, ε)-holomorphy) will imply corresponding
holomorphy of the parameter-to-solution maps. We used this result to propose and analyze a
sparse-grid collocation approximation of the parametric maps, with convergence rates determined
only by the p-summability of the sequence b quantifying the holomorphy of the operator equation,
generalizing earlier results in [17, 43, 33] and the references there to rather general, nonlinear
operator equations. Importantly, we proposed a new, apriori approach for identifying near-optimal,
unisolvent sparse-grids in high-dimensional parameter space in near-linear complexity in terms of
the number N of collocation points.

We combined this collocation approximation with a sequence of hierarchic approximations of the
operator equation. Notably, we only required abstract stability and consistency of these approxima-
tions, accommodating a very wide range of specific approximation schemes, such as Petrov-Galerkin
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Figure 5: Multilevel interpolation error supy∈U ‖u − Iwu‖H1(D0), and multilevel quadrature error
‖
∫

U u(y)dµ(y)−Qwu‖H1(D0) for the two dimensional diffusion problem in (5.18) with r = 3. The
supremum over y ∈ U is numerically estimated by taking the maximum of the error at 70 random
points in U . The FEM convergence rate is α = 1 with respect to the work measure defined in (5.6).

projections of the solution, collocation approximations of the solution, spline-based approximations
of uncertain geometry of the equation, etc., thereby constituting a “fully discrete, multilevel” version
of [15]. Our analysis accounted for reduced summability of gpc expansion coefficients in stronger
norms as is typically encountered when differentiating Karhunen-Loève expansions of distributed
random inputs.

The present results on sparse-grid collocation approximation of nonlinear, holomorphic-parametric
forward problems entail corresponding results for computational Bayesian inversion, due to corre-
sponding holomorphic-parametric dependence of the parametric Bayesian posterior, with anisotropic
Smolyak quadratures as proposed in [47, 48], or with higher order Quasi-Monte Carlo quadrature,
as in [24]. They also provide benchmark rates for other high-dimensional approximation techniques,
such as compressed sensing (see, e.g., [46] and the references there, or least-squares (see, e.g., [20]
and the references there).

A Proof of Theorem 2.6

We now give a proof of Theorem 2.6. To this end we will work with sequences of the following type.

Assumption A.1. The sequence t = (tj)j∈N is monotonically decreasing and tj ≥ 0 for all j ∈ N.

Lemma A.2. Let q ∈ (0,∞), ε > 0 and let t be as in Assumption A.1. Let l = (lj)j∈N ∈ N
N
0 be

componentwise minimal such that ((lj +1)−αq − (lj +2)−αq)tqj ≤ ε for all j ∈ N. Then |l| <∞ and
∑

j∈N t
q
j(lj + 1)−qα ≤

∑

j∈N t
q
j(mj + 1)−qα for all multiindices m = (mj)j∈N ∈ N

N
0 with |m| ≤ |l|.

Proof. Throughout, always let j ∈ N and w ∈ N0. Set s(j, w) := ((w + 1)−αq − (w + 2)−αq)tqj ≥ 0
and A := {(j, w) : s(j, w) > ε}. The set A is finite since tqj → 0 as j → ∞, and thus s(j, 0) ≤ ε for
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all j large enough. Notice that A contains the |A| pairs (j, w) ∈ N × N0 with the largest s(j, w).
Hence, for any subset B ⊂ N× N0 such that |B| ≤ |A|, there holds the inequality

∑

(j,w)∈B

s(j, w) ≤
∑

(j,w)∈A

s(j, w). (A.1)

Let m ∈ N
N
0 be arbitrary with |m| ≤ |A|. Then B := {(j, w) : w < mj} satisfies |B| = |m| ≤ |A|

and so by (A.1) we have

∑

j∈N

(mj+1)−αqtqj =
∑

(j,w)∈N×N0

s(j, w)−
∑

{(j,w) :w<mj}

s(j, w) ≥
∑

(j,w)∈N×N0

s(j, w)−
∑

{(j,w) : s(j,w)>ε}

s(j, w).

(A.2)
Note that s(j, w) is monotonically decaying in w. Therefore, if for each j, lj is chosen minimal
s.t. s(j, lj) ≤ ε, we get {(j, w) : s(j, w) ≤ ε} = {(j, w) : w ≥ lj} and A = {(j, w) : w < lj}.
Therefore |A| = |l|, and the right-hand side of (A.2) equals

∑

{(j,w) : s(j,w)≤ε}

s(j, w) =
∑

{(j,w) :w≥lj}

s(j, w) =
∑

j∈N

tαqj
∑

w≥lj

((w+1)−αq−(w+2)−αq) =
∑

j∈N

(lj+1)−αqtqj .

(A.3)
Since m in (A.2) was arbitrary with |m| ≤ |A| = |l|, the proof is concluded.

We also point out, that another way to arrive at (roughly) this result is by allowing lj ∈ R,
lj ≥ 0 and minimizing employing a Lagrange multiplier.

Proposition A.3. Let t be as in Assumption A.1, W as in Assumption 2.4, 0 < q < ∞ and
M,N ∈ N, M ≤ N . Let wN = (wN ;j)j∈N ∈ N

N
0 be s.t. wN ;j = 0 for j > M and

wN ;j ∈ W is minimal s.t. (wN ;j + 1)−(αq+1)tqj ≤ σN,M ∀ j ∈ {1, . . . ,M} (A.4)

where

σN,M := N−(αq+1)

(

KW

M∑

j=1

t
q

αq+1

j

)αq+1

. (A.5)

Then, for every N ∈ N it holds

(i) K−1
W
N −M ≤ |wN | ≤ N ,

(ii)
M∑

j=1

tqj(wN ;j + 1)−αq ≤ 2N−αq

(

KW

M∑

j=1

t
q

αq+1

j

)αq+1

, (A.6)

(iii) if l ∈ N
N
0 is arbitrary with |l| ≤ |wN | and supp l ⊆ {1, . . . ,M}, then

M∑

j=1

tqj(lj + 1)−αq ≥ (5KW)−αq
M∑

j=1

tqj(wN ;j + 1)−αq ≥ (5KW)−αq |wN |

N
N−αq





M∑

j=1

t
q

αq+1

j





αq+1

.

(A.7)
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Proof. We start with (i) and (ii). The case tj = 0 for all j ∈ N is trivial, and we may assume t1 > 0.
Furthermore, for ease of notation we shall drop the index N , i.e. we write w = wN and wj = wN ;j .
We begin with estimating |w|. For j ≤ M we either have wj = 0 or 0 ≤ ⌊wj − 1⌋W ∈ W and
(⌊wj − 1⌋W + 1)−(αq+1)tqj > σN ;M since wj ∈ W was chosen minimal in (A.4). Using Assumption
2.4 we conclude for j with wj 6= 0

(K−1
W
wj)

−(αq+1)tqj ≥ (K−1
W

(wj + 1))−(αq+1)tqj ≥ (⌊wj − 1⌋W + 1)−(αq+1)tqj > σN,M . (A.8)

From this we deduce wj ≤ KW(tqj/(σN,M ))1/(αq+1) for all j ≤M . Employing the definition of σN,M

we get

|w| =
M∑

j=1

wj ≤ σ
− 1

αq+1

N,M KW

M∑

j=1

t
q

αq+1

j ≤ N. (A.9)

Moreover, (A.4) yields wj + 1 ≥ (tqj/σN,M )1/(αq+1) for all j ∈ {1, . . . ,M} and thus

|w|+M =
M∑

j=1

(wj + 1) ≥ σ
− 1

αq+1

N,M

M∑

j=1

t
q

αq+1

j =
N

KW

. (A.10)

We now prove (ii). Using (A.4) and (A.9), we obtain

∑

j∈N

(wj + 1)−αqtqj =
M∑

j=1

(wj + 1)(wj + 1)−(αq+1)tqj ≤ σN,M (N + |w|) ≤ 2N−αq

(

KW

M∑

j=1

t
q

αq+1

j

)αq+1

.

(A.11)

Finally, let us prove the optimality result (iii). Fix N ∈ N. With t̃j := tj for j ≤ M and
tj = 0 otherwise, Lemma A.2 states that lj ∈ N0 minimal s.t. ((lj + 1)−αq − (lj + 2)−αq)t̃qj ≤

αq(4KW)−(αq+1)σN,M for all j ∈ N is an optimal choice, under the additional constraint lj = 0
for all j > M . By the mean value theorem there exists ζ ∈ (0, 1) depending on lj , α and q with
(lj + 1)−αq − (lj + 2)−αq = αq(lj + 1 + ζ)−(αq+1). Using KW ≥ 1 we conclude for j ≤M

(
lj
KW

+ 1

)−(αq+1)

tqj ≤ Kαq+1
W

(lj + 1)−(αq+1)tqj = Kαq+1
W

(lj + 1 + ζ)αq+1

(lj + 1)αq+1
tqj(lj + 1 + ζ)−(αq+1)

≤
(2KW)αq+1

αq
((lj + 1)−αq − (lj + 2)−αq)tqj ≤ 2−(αq+1)σN,M . (A.12)

The definition of wj , lj then gives wj ≤ ⌈K−1
W
lj⌉W. Now, either lj < KW, in which case (A.12)

implies tqj ≤ σN,M and thus 0 = wj ≤ lj , or there exists i ≥ 1 with wi ≤ lj ≤ wi+1. Then

K−1
W
lj ≤ K−1

W
wi+1 ≤ wi, and therefore again wj ≤ ⌈K−1

W
lj⌉W ≤ lj . Similarly,

((4KWwj+3+1)−αq− (4KWwj+3+2)−αq)tqj ≤ αq(4KW(wj+1))−(αq+1) ≤ αq(4KW)−(αq+1)σN,M ,
(A.13)

implying lj ≤ ⌈4KWwj +3⌉ ≤ 4KWwj +4. Altogether wj +1 ≤ lj +1 ≤ 5KW(wj +1) for all wj . In
particular |l| ≥ |w|. Now let l̃ ∈ N

N
0 arbitrary with |̃l| ≤ |w| and supp l̃ ⊆ {1, . . . ,M}. Then, using

optimality of l as well as |l| ≥ |w| ≥ |̃l|

M∑

j=1

tqj(l̃j + 1)−αq ≥
M∑

j=1

tqj(lj + 1)−αq ≥ (5KW)−αq
M∑

j=1

tqj(wj + 1)−αq.
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Ultimately, whenever wj 6= 0, by (A.8) we have (K−1
W

(wj + 1))−(αq+1)tqj ≥ σN,M and hence

M∑

j=1

(wj + 1)−αqtqj =
M∑

j=1

(wj + 1)(wj + 1)−(αq+1)tqj ≥ K
−(αq+1)
W

σN,M

∑

{1≤j≤M :wj 6=0}

(wj + 1)

≥
|w|

N
N−αq





M∑

j=1

t
q

αq+1

j





αq+1

, (A.14)

giving (A.7).

Remark A.4. One verifies that wN = (wN ;j)j∈N in (A.4) for j ≤M is explicitly given by

wN ;j :=

⌈

Nt
q

αq+1

j

(

KW

M∑

i=1

t
q

αq+1

i

)−1

− 1

⌉

W

. (A.15)

Lemma A.5. Let p ∈ (0,∞) and let (tj)j∈N be as in Assumption A.1. Then for all N ∈ N

tN ≤

( N∑

j=1

tpj

) 1
p

N
− 1

p . (A.16)

For the above lemma, see for instance [26, Section 7.4] and the references there. It is a con-
sequence of the Hölder inequality, and immediately gives Stechkin’s lemma, which states that for
t = (tj)j∈N ∈ ℓp(N), p ∈ (0, 1), as in Assumption A.1

∑

j>N

tj ≤ ‖t‖ℓp

∫ ∞

N
x
− 1

pdx ≤ ‖t‖ℓp
p

1− p
N

1− 1
p . (A.17)

We are now in position to prove Theorem 2.6.

Proof of Theorem 2.6. 1st Step: We start with items (i) - (iii). Due to Remark A.4 and Proposition
A.3 it holds |wN | ≤ N . The fact that (ii) is satisfied, follows immediately by the precise formula
for wN in Remark A.4, and because t1 = (t1;j)j∈N is monotonically decreasing, i.e. i ≥ j implies
t1;i ≥ t1;j .

Let us next verify (iii). We distinguish the cases q/(αq + 1) ≥ p1 and q/(αq + 1) < p1. In

the first case we get (
∑M

j=1 t
q/(αq+1)
1;j )αq+1 ≤ ‖t1‖

q
ℓp1 (N), so that by Proposition A.3 and (A.17) with

M = ⌈Nβ⌉

S(t0, t1,wN , q, α) ≤
M∑

j=1

tq1;j(wN ;j+1)−αq+
∑

j>M

tq0;j ≤ 2Kαq+1
W

‖t1‖
q
ℓp1N

−αq+‖t0‖
q
ℓp0

p0/q

1− p0/q
CN

β(1− q
p0

)
.

(A.18)
The assumption q/(αq+1) ≥ p1 is equivalent to β(q/p0−1) ≥ αq as a straightforward computation
shows and thus (2.9) is satisfied.
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The second case corresponds to 1 > q/(p1(αq + 1)), and with Hölder’s inequality

( M∑

j=1

t
q

αq+1

1;j

)αq+1

≤ ‖t1‖
q
ℓp1M

αq+1− q
p1 . (A.19)

We note that this is equation also holds in case p1 = ∞. Proposition A.3 with M = ⌈Nβ⌉ and
(A.17) then give similarly as before

S(t0,t1,wN , q, α) ≤
M∑

j=1

tq1;j(wN ;j + 1)−αq +
∑

j>M

tq0;j

≤ 2Kαq+1
W

‖t‖qℓp1M
αq+1− q

p1N−αq + ‖t0‖
q
ℓp0

p0/q

1− p0/q
M

1− q
p0

≤ C(‖t1‖
q
ℓp1N

−αq+β(αq+1− q
p1

)
+ ‖t0‖

q
ℓp0N

β(1− q
p0

)
) = C(‖t0‖

q
ℓp0 + ‖t1‖

q
ℓp1 )N

β(1− q
p0

)
, (A.20)

where we have used −αq+β(αq+1−q/p1) = β(1−q/p0) (which again is also true in case p1 = ∞).
This proves (2.9) in the second case.

2nd Step: We show (iv) and begin with p1 ≤ q/(αq+1). Set t0 := t1 := (δ1j)j∈N. Then for any
v with |v| = N it holds S(t0, t1,v, q, α) ≥ (t1;1N

−α)q = N−αq.
Next let p1 > q/(αq + 1). The sequences t0, t1 defined by

t0;j := j
− 1

p0 , t1;j := j
− 1

p1 , (A.21)

are in ℓp0+ε, ℓp1+ε respectively for any ε > 0 (in case p1 = ∞, then t1;j = 1 for all j and t1 ∈ ℓ∞+ε =
ℓ∞). Let r̃ > 0 and (vN )N∈N such that |vN | ≤ N and S(q, t0, t1,vN ) ≤ CN−r̃. Without loss of
generality we assume that vN ∈ N

N
0 minimizes S(q, t0, t1,vN ) under the constraint |vN | ≤ N . In

the case that this multiindex is not unique, let vN be one of the multiindices for which additionally
|vN | becomes minimal. We claim that

vN ;i 6= 0 ⇒ min{t0;i, t1;i(vN ;i + 1)−α} = t1;i(vN ;i + 1)−α and i ≤ j ⇒ vN ;i ≥ vN ;j . (A.22)

The first implication follows since vN additionally minimizes |vN |. For the second implication
assume first i < j and vN ;i = 0, vN ;j 6= 0. Define ṽN ;l := vN ;l for l /∈ {i, j} and ṽN ;i := vN ;j , ṽN ;j :=
vN ;i. By the first implication we have 0 ≤ t0;j − t1;j(vN ;j + 1)−α and thus (t1;j/t0;j)

1/α ≤ vN ;j + 1.
Therefore

S(t0, t1,vN , q, α)− S(t0, t1, ṽN , q, α) = (t0;i + t1;j(vN ;j + 1)−α)− (t0;j + t1;i(vN ;j + 1)−α)

= (t0;i − t0;j) + (vN ;j + 1)−α(t1;j − t1;i) ≤ (t0;i − t0;j) + (vN ;j + 1)−α(t1;j − t1;i)

≤ (t0;i − t0;j) +
t0;j
t1;j

(t1;j − t1;i) ≤ t0;i − t0;j
t1;i
t1;j

≤ 0, (A.23)

where the last step follows by t1;i/t1;j ≥ t0;i/t0;j due to our assumption that p0 ≤ p1. Hence, we
may assume without loss of generality that vN ;i = 0 implies vN ;j = 0 for all j ≥ i. Next, assume
that for some i 6= j it holds 0 6= vN ;i < vN ;j . Then, with ṽN as above,

S(t0, t1,vN , q, α)− S(t0, t1, ṽN , q, α)

= (t1;i(vN ;i + 1)−α + t1;j(vN ;j + 1)−α)− (t1;i(vN ;j + 1)−α + t1;j(vN ;i + 1)−α)

= ((vN ;i + 1)−α − (vN ;j + 1)−α)(t1;i − t1;j) < 0, (A.24)
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which is a contradiction. Hence (A.22) is satisfied.
Define nowM(N) := maxj vN ;j 6= 0. By (A.22)M(N) ≤ N since |vN | ≤ N . Also due to (A.22)

we can write

S(t0, t1,vN , q, α) =

M(N)
∑

j=1

tq1;jv
−αq
N ;j +

∑

j>M(N)

tq0;j . (A.25)

Then there exists a constant C̃ > 0 such that

∑

j>M(N)

tqj ≥

∫ ∞

M(N)+1
x
− q

p0 dx ≥ C̃M(N)
1− q

p0 . (A.26)

By assumption S(t0, t1,vN , q, α) ≤ CN−r̃, and thus M(N)
1− q

p0 ≤ CN−r̃, giving

M(N) ≥ CN
−r̃

1− q
p0 . (A.27)

Next define Ñ = Ñ(N) := 4N and let wÑ as in Proposition A.3 for the sequence t = t1 and
with W = N0 (i.e. KW = 2 in Assumption 2.4) as well as M = M(N). By Proposition A.3 (i)
|wÑ | ≥ K−1

W
Ñ −M ≥ 2−1 · 4N −M ≥ 2N −N ≥ N ≥ |vN |. Employing Proposition A.3 (iii) we

find

M(N)
∑

j=1

tq1;jv
−αq
N ;j ≥ C

M(N)
∑

j=1

tq1;jw
−αq

Ñ ;j
≥ C

|wÑ |

Ñ
Ñ−αq





M(N)
∑

j=1

j
− q

p1(αq+1)



 ≥ CN−αq





M(N)
∑

j=1

j
− q

p1(αq+1)



 .

(A.28)

Similar as in (A.26), and exploiting p1 > q/(αq + 1), i.e. q/(p1(αq + 1)) < 1

N−αq





M(N)
∑

j=1

j
− q

p1(αq+1)





αq+1

≥ CN−αqM(N)
αq+1− q

p1 ≥ CN−αqN
r̃

q
p0

−1
(αq+1− q

p1
)
, (A.29)

where the last inequality follows by (A.27) and αq+1−q/p1 > 0. Finally, in order for S(t0, t1,vN , q, α) ≤
CN−r̃ to be satisfied, it must hold

−r̃ ≥ −αq +
r̃

q
p0

− 1

(

αq + 1−
q

p1

)

. (A.30)

Using q(α+ 1/p0 − 1/p1) > 0, this is equivalent to

r̃
q
p0

− 1

(

−
q

p0
+ 1− αq − 1 +

q

p1

)

≥ −αq ⇐⇒ r̃ ≤

(
q

p0
− 1

)
α

α+ 1
p0

− 1
p1

= β

(
q

p0
− 1

)

.

(A.31)

Since 0 < p0 < 1, p1 ∈ [p0,∞] was arbitrary, and since t0 ∈ ℓp0+ε, t1 ∈ ℓp1+ε for any ε > 0, it is
easy to conclude that (iii) is satisfied in the current case, where p1 > q/(αq + 1).
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B Proof of Proposition 2.12

Proof of Proposition 2.12. If p1 <∞, we introduce the new sequences t̃i, i ∈ {0, 1} by

t̃0;ν := max{t0;ν , t
p1/p0
1;ν }, t̃1;ν := max{t

p0/p1
0;ν , t1;ν}. (B.1)

They have the properties of being in ℓpim with

‖t̃i‖ℓpi ≤ ‖t0‖ℓp0 + ‖t1‖ℓp1 + ‖t0‖
p0/p1
ℓp0 + ‖t1‖

p1/p0
ℓp1 , (B.2)

and since
t̃0;ν = t̃

p1/p0
1;ν , (B.3)

it holds for all ν, µ ∈ F
t̃0;ν ≤ t̃0;µ =⇒ t̃1;ν ≤ t̃1;µ. (B.4)

In case p1 = ∞, we set t̃0;ν := t0;ν and t̃1;ν := ‖t1‖ℓ∞ , with (B.4) being satisfied again.
Since (t̃i;ν)ν∈F is an ℓpim sequence, we may assume wlog t̃i;ν ≥ t̃i;µ whenever µ ≤ ν, i ∈ {0, 1}.

Consider an enumeration π : N → F such that t̃i;π(j) is monotonically decreasing with respect to j

(for both i ∈ {0, 1}, which is possible due to t̃0 = t̃
p1/p0
1 ). By Theorem 2.6, there exists a constant

C = C(‖t̃0‖ℓp0 , ‖t̃1‖ℓp1 , α) > 0 and, for each Ñ ∈ N and for every q ∈ [1, 2] there exists a sequence
w̃q;Ñ ∈ W

N such that by (B.2) (with r depending on q)

∑

ν∈F

min{t̃0;ν , (w̃q;Ñ ;ν + 1)−αt̃1;ν}
q ≤ CÑ−r . (B.5)

If p1 <∞ we set q := p1/(1−p1α) ∈ R∪{±∞}. In case that q ∈ (0,∞), this is the value satisfying
p1 = q/(αq + 1). Introduce w̃N by

w̃N ;ν :=

{

max{w̃1;⌊N/3⌋;π−1(ν), w̃q;⌊N/3⌋;π−1(ν), w̃2;⌊N/3⌋;π−1(ν)} if p1 <∞ and q ∈ (1, 2)

max{w̃1;⌊N/2⌋;π−1(ν), w̃2;⌊N/2⌋;π−1(ν)} otherwise,
(B.6)

and finally define wN = (wN ;ν)ν∈F via

wN ;ν :=

{

w̃N ;ν if t̃0;ν ≥ (w̃N ;ν + 1)−αt̃1;ν

0 otherwise.
(B.7)

We now verify the claims of the corollary and begin with the case where p1 <∞ and q ∈ (1, 2).
First note that |wN | ≤ |w̃N | ≤ |w̃1;⌊N/3⌋| + |w̃q;⌊N/3⌋| + |w̃2;⌊N/3⌋| ≤ N by the definition of w̃q;N ,
q ∈ {1, q, 2} and Theorem 2.6 (i). Next, we show (2.17). Using (B.5) as well as (B.7) we get for
q ∈ {1, q, 2}

∑

{ν∈F :wN ;ν 6=0}

(wN ;ν + 1)−αqtq1;ν +
∑

{ν∈F :wN ;ν=0}

tq0;ν (B.8)

≤
∑

{ν∈F :wN ;ν 6=0}

(wN ;ν + 1)−αq t̃q1;ν +
∑

{ν∈F :wN ;ν=0}

t̃q0;ν

=
∑

ν∈F

min{t̃0;ν , (w̃N ;ν + 1)−αt̃1;ν}
q

≤
∑

ν∈F

min{t̃0;ν , (w̃q;⌊N/2⌋;ν + 1)−αt̃1;ν}
q ≤ CN−r,
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showing (2.17) for q ∈ {1, q, 2}.
It remains to consider q ∈ (1, q) and q ∈ (q, 2). In the first case let θ ∈ (0, 1) with θ+(1−θ)q = q.

Let now r = r(q) be as in (2.7) (for the given p0, p1, α). As stated earlier, q is the value satisfying
p1 = q/(αq+1). Hence r(1) = β(1/p0− 1), r(q) = β(q/p0− 1) = qα (the last equality holds by the
choice of q) and r(2) = 2α where β = α/(α+ p−1

0 − p−1
1 ) (cp. (2.7)). Then, denoting the left-hand

side of (2.17) by T (q) we have with Hölder’s inequality

T (q) = T (θ + (1− θ)q) =
∑

{ν∈F :wN ;ν 6=0}

(
(wN ;ν + 1)−αt1;ν

)θ+(1−θ)q
+

∑

{ν∈F :wN ;ν=0}

t
θ+(1−θ)q
0;ν

≤ CT (1)θT (q)(1−θ) ≤ CN−θr(1)N−(1−θ)r(q) = CN−(θβ(1/p0−1)+(1−θ)αq) = N−β(q/p0−1) = CN−r(q).
(B.9)

For q ∈ (q, 2) we proceed using a similar argument by interpolating between q and 2.
Finally, if p1 = ∞ or p1 < ∞ and q /∈ (1, 2), the argument is again similar, by interpolating

between 1 and 2, due to the choice of w̃ in (B.6) in this case.

C Proof of Proposition 2.20

Proof of Proposition 2.20. We proceed as in the proof of Proposition 2.12 and set for ν ∈ F

m̃0;ν := max{m0;ν ,m
p1/p0
1;ν }, m̃1;ν := max{m

p0/p1
0;ν ,m1;ν} (C.1)

in case p1 < ∞. If p1 = ∞ we define m̃0;ν := m0;ν as well as m̃1;ν := ‖m1‖ℓ∞(F) + m0;ν . The
reason for this definition is, that these sequences are majorants of m0, m1 still satisfying (2.48)
such that m̃i ∈ ℓpi(F) for i ∈ {0, 1}, and additionally

m̃0;ν ≤ m̃0;µ if and only if m̃1;ν ≤ m̃1;µ. (C.2)

As in the proof of Proposition 2.12, we then find an enumeration π : N → F with the property
that m̃i;π(j) is monotonically decaying in j (for both i ∈ {0, 1}) and such that {π(1), . . . , π(N)} is
downward closed for any N ∈ N. Employing Theorem 2.6 we obtain w̃N with |w̃N | ≤ N satisfying
(2.49) for the majorants m̃0, m̃1, of m0, m1 and hence in particular for the latter sequences. By
this theorem, for ν = π(j), there holds

w̃N ;ν =

⌈

Nm̃
1

α+1

1;ν

(

KW

⌈Nβ⌉
∑

i=1

m̃
1

α+1

1;π(i)

)−1

− 1

⌉

W

(C.3)

in case j ≤ ⌈Nβ⌉ (with β ∈ (0, 1] as in (2.7)), and w̃N ;ν = 0 otherwise.
For the second part, we have to slightly modify w̃N , which is why for every fixed N ∈ N we

construct wN = (wN ;ν)ν∈F ∈ N
N
0 as follows: Define for ν ∈ F

wN ;ν :=

{

w̃N ;⌊ν⌋I if w̃N ;⌊ν⌋I > 0,

0 otherwise.
(C.4)

Since m̃1;ν has the property (2.48) (cp. (C.1)) and because of its definition (C.3), for all ν ∈ F
we either have w̃N ;ν = w̃N ;⌊ν⌋I or w̃N ;⌊ν⌋I 6= 0 and w̃N ;ν = 0 (which can happen if the expression
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in (C.3) is positive but π−1(ν) > ⌈Nβ⌉). Therefore wN ≥ w̃N componentwise, so that wN also
satisfies (2.49). Furthermore, we claim that with KI as in Assumption 2.18, it holds |wN | ≤
KI|w̃N |: To verify this, first we show that there is at most one

ν ∈ F ∩ I
N s.t. ∃ µ ∈ F with ⌊µ⌋I = ν and wN ;µ > 0 but w̃N ;µ = 0. (C.5)

Suppose there is ν1 6= ν2, both satisfying (C.5). Then due to νi ∈ I
N, we have ⌊νi⌋I = νi

for i ∈ {1, 2} and wlog m̃1;ν1 > m̃1;ν2 by (2.48). Thus for any µ with ⌊µ⌋I = ν1 we have
m̃1;µ = m̃1;ν1 > m̃1;ν2 again by (2.48). Hence for the quantity in (C.4) we get

⌈

Nm̃
1

α+1

1;µ

(

KW

⌈Nβ⌉
∑

i=1

m̃
1

α+1

1;π(i)

)−1

− 1

⌉

W

>

⌈

Nm̃
1

α+1

1;ν2

(

KW

⌈Nβ⌉
∑

i=1

m̃
1

α+1

1;π(i)

)−1

− 1

⌉

W

(C.6)

and furthermore the definition of π implies π−1(µ) < π−1(ν2). Consequently, the definition of w̃N

gives that w̃N ;ν2 ≤ w̃N ;µ = 0. This is a contradiction, and shows that ν2 as assumed does not exist.
For this reason we either have that ν as in (C.5) does not exist or such ν exists and (cp. (C.4))

|wN | − |w̃N | ≤ w̃N ;ν |{µ ∈ F : ⌊µ⌋I = ν}|. (C.7)

If such ν does not exist, then w̃N = wN and |wN | ≤ |w̃N | ≤ N . Suppose on the other hand that
such ν exists. Then ν 6= 0 because {µ ∈ F : ⌊µ⌋I = 0} = {0} by definition of I, so that (C.5)
cannot hold for ν = 0. Wlog assume ν1 6= 0 and define η = (ηj)j∈N via η1 := ⌊ν1−1⌋I and ηj := νj
for j > 1. Then

|{µ ∈ F : ⌊µ⌋I = ν}| =
∏

{j∈N : νj 6=0}

(νj − ⌊νj − 1⌋I) ≤ KI

∏

{j∈N : ηj 6=0}

(ηj − ⌊ηj − 1⌋I)

= KI|{µ ∈ F : ⌊µ⌋I = η}| (C.8)

by Assumption 2.18. Note that since η ≤ ν and wN ;ν > 0, by (2.48) for any µ with ⌊µ⌋I = η we
have m̃N ;µ = m̃N ;η > m̃N ;ν which implies π−1(µ) < π−1(ν) and furthermore w̃N ;µ ≥ w̃N ;ν > 0.
By (C.4) it holds w̃N ;µ = wN ;µ for all µ with ⌊µ⌋I = η. With (C.7) and (C.8) we arrive at

|wN | − |w̃N | ≤ KI

∑

{µ : ⌊µ⌋I=η}

w̃N ;µ ≤ KI|w̃N |, (C.9)

and so we conclude |wN | ≤ (1 +KI)|w̃N | ≤ (1 +KI)N for all N ∈ N.
Finally set

wN := w⌊ N
1+KI

⌋. (C.10)

It remains to check the claimed properties. As mentioned above, wN satisfies (2.49) (with wN

replaced by wN ), and thus

∑

ν∈F

min{m0;ν ,m1;ν(wN ;ν + 1)−α} =
∑

ν∈F

min{m0;ν ,m1;ν(w⌊ N
1+KI

⌋;ν + 1)−α}

≤
∑

ν∈F

min{m0;ν ,m1;ν(w̃⌊ N
1+KI

⌋;ν + 1)−α} ≤ C

⌊
N

1 +KI

⌋−r

≤ CN−r, (C.11)
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and
|wN | = |w⌊ N

1+KI
⌋| ≤ (1 +KI)|w̃⌊ N

1+KI
⌋| ≤ N (C.12)

by (C.9) and because |w̃⌊N/(1+KI)⌋| ≤ ⌊N/(1+KI)⌋ as stated in Theorem 2.6. Next, (2.51) follows
from wN ;ν = wN ;µ for all µ with ⌊µ⌋I = ν, which in turn holds by the definition of wN and (C.4).
In order to show downward closedness of Λl;N , it is sufficient to prove (2.38), i.e.

ν ≤ µ ⇒ wN ;ν ≥ wN ;µ. (C.13)

Let µ ≤ ν with π(j) = µ, π(i) = ν. Then j ≤ i since otherwise {π(1), . . . , π(j)} would not be
downward closed, as it would contain ν but not µ. Hence w̃M ;µ ≥ w̃M ;ν by Theorem 2.6 (for all
M ∈ N). This implies wN ;µ ≥ wN ;ν by (C.4) and (C.10).

Finally we verify (2.50). If ν, µ are such that m̃1;ν > m̃1;µ, then π
−1(ν) < π−1(µ) by definition

of π. Thus the definition of w̃N in (C.3) gives the implication

m̃1;ν > m̃1;µ ⇒ w̃N ;ν ≥ w̃N ;µ. (C.14)

Hence, due to (C.4), (C.10) and (2.48) for m̃1, we conclude with εi;l;N := minν∈Λl;N
m̃i;ν and (C.2)

Λl;N = {ν ∈ F : m̃1;ν ≥ ε1;l;N} = {ν ∈ F : m̃0;ν ≥ ε0;l;N}. (C.15)

For p1 < ∞, the sequence m̃0 was defined in (C.1) as the elementwise maximum of the two

sequences m0 and m
p1/p0
1 , both of which fulfil (2.45). But then m̃0 also fulfils (2.45) if p1 < ∞:

Since m̃0;ν = max{m0;ν ,m
p0/p1
1;ν }, for x > 0 it holds

Λ(m̃0;x) = {ν ∈ F : m̃0;ν ≥ x} = Λ(m0;x) ∪ Λ(m
p1/p0
1 ;x). (C.16)

Thus, with d as in (2.44)

d(Λ(m̃0;x)) ≤ d(Λ(m0;x)) + d(Λ(m
p1/p0
1 ;x)) ≤ o(log(|Λ(m0;x)|)) + o(log(|Λ(m

p1/p0
1 ;x)|))

≤ o(log(|Λ(m̃0;ν ;x)|)) as x→ 0. (C.17)

The corresponding statement for m in (2.45) can be shown analogously. Next, if p1 = ∞ we have
m̃0 = m0 and thus m̃0 satisfies (2.45) by assumption.

Therefore m̃0 satisfies (2.45) for any p1, and consequently (C.15) implies (2.50). The constants
in (2.50) do not depend on l because the sequence m̃0 in (C.15) does not depend on l.

D Proof of Lemma 5.1

Proof of Lemma 5.1. It is easy to check that t̃i, i ∈ {0, 1}, also satisfy (5.2) (possibly with different
constants C1, C2), and those sequences are monotonically decreasing. For simplicity we omit the
δ > 0 argument in the following, and simply assume that a decreasing rearrangement (t̃1;j)j∈N of
(t̃1;ν)ν∈F satisfies t̃1;j ∼ j−r1 , where by this notation we mean C1j

−r ≤ t̃1;j ≤ C2j
−r for all j ∈ N

and some fixed positive constants C1, C2. In the following let N := |Λ(ε)|. We have

∑

ν∈Λ(ε)c

t0;ν ≤ C
∑

j>N

j−r0 ≤ CN1−r0 . (D.1)
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To prove (5.4), we start with the first case where r1 < 1 + α. It holds

∑

ν∈Λ(ε)

t̃
1

1+α

1;ν ≤ C

N∑

j=1

j−
r1

1+α ≤ CN1−
r1

1+α . (D.2)

Moreover

Cε = max
ν∈Λ(ε)

t̃
1
α
−

r0
αr1

− 1
α+1

1;ν ∼ N
r1

α+1
+

r0−r1
α . (D.3)

Hence employing Assumption 2.4

|wε| ≤ CCεN
1−

r1
α+1 ≤ CN

r1
α+1

+
r0−r1

α N1−
r1

α+1 = CN1+
r0−r1

α . (D.4)

In a similar fashion one gets |wε| ≥ CN1+(r0−r1)/α. Moreover, due to wε;ν ≥ Cεt̃
1/(α+1)
1;ν we have

t̃1;νw
−(α+1)
ε ≤ C

−(α+1)
ε and thus

∑

ν∈Λ(ε)

(wε;ν + 1)−αt1;ν ≤
∑

ν∈Λ(ε)

w−α
ε;ν t1;ν =

∑

ν∈Λ(ε)

wε;νw
−α−1
ε;ν t1;ν ≤ |wε|C

−(α+1)
ε

≤ CN1+
r0−r1

α N−r1−(r0−r1)
α+1
α = CN1−r0 . (D.5)

Thus, overall

∑

ν∈Λ(ε)

(wε;ν + 1)−αt1;ν +
∑

ν∈Λ(ε)c

t0;ν ≤ CN1−r0 ≤ C|wε|

1−r0

1+
r0−r1

α = C|wε|
(1−r0)β , (D.6)

with β = α/(α+ r0 − r1).
The proof for the second case is similar.
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[22] D. Dũng. Linear collective collocation and Galerkin approximations for parametric and stochas-
tic elliptic pdes, 2015.

54



[23] K. Deimling. Nonlinear functional analysis. Springer-Verlag, Berlin, 1985.

[24] J. Dick, R. N. Gantner, Q. T. Le Gia, and C. Schwab. Multilevel higher-order quasi-Monte
Carlo Bayesian estimation. Math. Models Methods Appl. Sci., 27(5):953–995, 2017.

[25] J. Dick, Q. T. LeGia, and C. Schwab. Higher order quasi monte carlo integration for holomor-
phic, parametric operator equations. SIAM Journ. Uncertainty Quantification, 4(1):48–79,
2016.
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