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Abstract

For the numerical solution of linear systems that arise from discretized partial differential
equations, multigrid and domain decomposition methods are well established. Multigrid
methods are known to have optimal complexity and domain decomposition methods are
in particular useful for parallelization of the implemented algorithm. For random operator
equations, the classical theory is not directly applicable, since condition numbers of system
matrices may be close to degenerate due to non-uniform random input. As a main result, it
is shown that iterative methods converge in the strong, i.e., Lp, sense if the random input
satisfies certain integrability conditions. As a result, multigrid and domain decomposition
methods are applicable in the case of elliptic partial differential equations with lognormal
diffusion coefficients and converge strongly with deterministic bounds on the computational
work which are essentially optimal. This enables the application of multilevel Monte Carlo
methods with rigorous, deterministic bounds on the computational work.

1 Introduction

The efficient numerical approximation of solutions to stochastic equations is a key task in engi-
neering applications that involve uncertainty. The present manuscript analyzes the applicability
and strong convergence of well established iterative methods for operator equations.

Let A be a random, continuous linear operator from V to V∗ on a probability space (Ω,F ,P)
that is P-almost surely (P-a.s. for short) boundedly invertible, where V is a Hilbert space and V∗

its dual space. Let its expectation E(A) be well defined. In the present paper we are interested
in the numerical analysis of approximations of the solution u to the linear equation that for
P-almost every (P-a.e. for short) ω ∈ Ω

A(ω)u(ω) = f , (1)

where f ∈ V∗ is deterministic, in the strong sense by iterative methods such as multigrid and
domain decomposition methods. This can be rewritten in variational form to find u : Ω → V
such that for P-a.e. ω

aω(u(ω), v) := V∗〈A(ω)u(ω), v〉V = V∗〈f , v〉V ∀v ∈ V.

Let us assume that there are strictly positive random variables â and ǎ such that for P-a.e. ω

ǎ(ω) V∗〈E(A)v , v〉V ≤ V∗〈A(ω)v , v〉V ≤ â(ω) V∗〈E(A)v , v〉V ∀v ∈ V. (2)

We will be particularly interested in the case that â and ǎ−1 are unbounded random variables.
This is for example the case for elliptic partial differential equations (PDEs for short) with
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lognormal coefficients. Thus, preconditioned finite dimensional discretizations suffer from ran-
dom condition numbers that are unbounded and respectively interative methods contract with
random contraction numbers, which may have realizations arbitrarily close to one with positive
probability. At first sight one may overcome this with random interation numbers specified by
a threshold of residual errors with the disadvantage of the occurance of large iteration num-
bers, when samples of the random contraction number are close to one. Also, bounds on the
computational work for such strategy would be probabilistic. A main result of this paper is
that deterministic iteration numbers exist that allow for strong convergence, i.e., convergence
of certain iterative methods in the Lq(Ω;V)-norm, q ∈ [1,+∞). This is possible due to tail
bounds of the random contraction numbers, which for example are satisfied in the important
case of elliptic PDEs with lognormal coefficients. In this case, deterministic, essentially optimal
complexity bounds are implied for the solution of resulting random linear systems when well
known multigrid or domain decomposition methods are applied. This enables also rigorous, de-
terministic complexity bounds for multilevel Monte Carlo (MLMC for short) approximations of
mean fields. Assumptions on the computational cost of PDE solvers that were made in previous
papers [12, 23, 18] to obtain complexity bounds of MLMC are pervaded by the theory presented
in this manuscript. We will treat the case that aω(·, ·) is symmetric for P-a.e. ω. However, the
presented theory can be extended to certain non-symmetric operators, see for example cp. [10,
Section 11].

In Section 2, we will review iterative methods as they were formulated in [25] in order to
discuss various multilevel method in a unified framework as well as the more classical approach,
cp. [3, 28]. It will also be highlighted which parts in the framework and in the iterative methods
are random. As a main result, we will develop integrability conditions on the random contraction
numbers in Section 3 that result in sufficiently strong tail bounds in order to ensure strong
convergence in the setting of multi and single-level discretizations of (1). The integrability
conditions posed in Section 3 are analysed for several multilevel methods such as multigrid, the
so called BPX preconditioner, cp. [8], and domain decomposition methods in Sections 4 and 5.
An important application of the presented theory are lognormal diffusion problems, which are
briefly reviewed in Section 6. In particular deterministic bounds on the computational work
without assumptions on the PDE solver of MLMC are implied.

2 Iterative methods

In this section we recall well known iterative methods to approximate solutions to linear equa-
tions on a finite dimensional inner product space (V, (·, ·)), where ‖ · ‖ denotes the norm that is
induced by (·, ·). Let us consider the random linear equation that for P-a.e. ω

A(ω)u(ω) = f, (3)

where A : V → V is a random linear operator that is P-a.s. symmetric and positive definite
(SPD for short) with respect to (·, ·). Hence, (3) is P-a.s. uniquely solvable. Note that we will
often omit dependencies of random quantities on ω for notational convenience. Let us denote
the bilinear form that is induced by A by (·, ·)A and let λmax(A), λmin(A) denote the maximal
and minimal eigenvalue of A. The condition number of A is denoted κ(A) and ρ(A) denotes
the spectral radius. This notation will also be used for other linear operators that occur. Note
that since A is random, λmax(A), λmin(A), κ(A), and ρ(A) are random variables. In particular,
the review article [25] enables the discussion of multigrid and domain decomposition methods
in an unified framework. These methods allow in some cases for optimal preconditioning or
uniform contraction numbers. In this section we will mainly follow [25] and introduce abstract
algorithms, which in later sections will be used as BPX or additive Schwarz preconditioner,
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(un)symmetric multigrid and overlapping domain decomposition method. We will also highlight
which of the occuring objects in this review section are random.

Since A is SPD P-a.s., then the well known conjugent gradient (CG for short) method implies
after n ∈ N iterations with initial guess U0 the error bound that for P-a.e. ω

‖u(ω)− Un(ω)‖A(ω) ≤ 2

(√
κ(A(ω))− 1√
κ(A(ω)) + 1

)n

‖u(ω)− U0(ω)‖A(ω).

Since the random condition number κ(A) may depend on the dimension of the linear space V ,
we consider the preconditioned linear system that for P-a.e. ω

B(ω)A(ω)u(ω) = B(ω)f, (4)

where the random linear operator B is chosen to be SPD with respect to (·, ·). The random
operator B shall satisfy that P-a.s. κ(BA) ≤ κ(A), which then accelerates the convergence of the
CG method. The combination of preconditioning and CG will be referred to as preconditioned
conjugent gradient (PCG for short) method.

Another method to be discussed is the linear iterative method of the form

Un+1(ω) = Un(ω) +B(ω)(f −A(ω)Un(ω)), n ∈ N0, (5)

for P-a.e. ω, where B is a suitable random operator that is not nessarily symmetric and U0

is given. Note that this linear iterative methods convergences P-a.s. if ‖ Id−BA‖A < 1, P-a.s.
Alternatively, one could also introduce a relaxed version of B with relaxation parameter in
(0, 2/ρ(BA)) to guarantee convergence with random contraction number (κ(BA)−1)/(κ(BA)+
1), cp. [25, Proposition 2.3]. Also we remark that generally the contraction number of the PCG
method is smaller, cp. [25, Proposition 2.2], which is why one may say that PCG accelerates
convergence.

Lemma 2.1 Let Ã : V → V be a SPD operator with respect to (·, ·) and let B̃ : V → V be a
SPD preconditioner with respect to (·, ·) for Ã. If there exists positive random variables c0, c1
such that for P-a.e. ω ∈ Ω

c0(ω)(v, v)Ã ≤ (v, v)A(ω) ≤ c1(ω)(v, v)Ã ∀v ∈ V,

then for P-a.e. ω ∈ Ω

κ(B̃A(ω)) ≤ κ(B̃Ã)
c1(ω)

c0(ω)
.

Proof. Since B̃Ã is SPD with respect to (·, ·)Ã, it holds that

κ(B̃Ã) = |λmax(B̃Ã)/λmin(B̃Ã)|.

According to [25, Lemma 2.1] this implies

|λmax(B̃Ã)|−1(v, v)Ã ≤ (B̃−1v, v) ≤ |λmax(B̃Ã)|−1(v, v)Ã.

Then, the assumption of the lemma implies that

c−1
1 |λmax(B̃Ã)|−1(Av, v) ≤ (B̃−1v, v) ≤ c−1

0 |λmin(B̃Ã)|−1(Av, v), (6)

which implies the claim with another application of [25, Lemma 2.1]. ✷
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For J ∈ N, let us assume a decomposition of V in subspaces (Vj , j = 1, . . . , J), i.e., it holds
that Vj ⊂ V , j = 1, . . . , J , and

V =

J∑

j=1

Vj . (7)

We define the orthogonal projections Qj , Pj : V → Vj for every v ∈ V by

(Qjv, wj) := (v, wj), (APjv, wj) := (Av,wj) ∀wj ∈ Vj

and the operator Aj : Vj → Vj for every v ∈ Vj by

(Ajv, wj) := (Av,wj) ∀wj ∈ Vj ,

j = 1, . . . , J . Consequently it holds for every j = 1, . . . , J that AjPj = QjA, which implies that
if u is the random solution of (3), then uj := Pju satifies for P-a.e. ω

Aj(ω)uj(ω) = fj ,

where fj := Qjf , j = 1, . . . , J . Note that Aj , Pj are random whereas Qj is deterministic,
j = 1, . . . , J . Let Rj : Vj → Vj , j = 1, . . . , J , be random SPD operators with respect to (·, ·),
which shall approximate the inverse of Aj respectively. Thus,

Ba :=

J∑

j=1

RjQj (8)

is also SPD, cp. [25, Lemma 3.1], and a candidate for a random preconditioner of A, where the
corresponding method is known as parallel subspace correction.

Algorithm 1 Apply the PCG method to (4) with the random preconditioner Ba defined in
(8).

A multiplicative algorithm, cp. [25, Algorithm 3.3], can also be defined.

Algorithm 2 Let U0 be given and Un be already obtained, then Un+1 is defined by

Un+j/J := Un+(j−1)/J +RjQj(f −AUn+(j−1)/J), j = 1, . . . , J.

We introduce Tj := RjAjPj = RjQjA for every j = 1, . . . , J . It is well known, cp. [25,
Equations (3.7) and (3.8)], that for every n ∈ N the error that results from one step of this
scheme can be written for P-a.e. ω as

u(ω)− Un(ω) = EJ(ω)(u(ω)− Un−1(ω)),

where the random residual operator is given by

EJ = (Id−TJ) · · · (Id−T1).

For a symmetrized version, we refer to [25, Algorithm 3.4], where the respective residual operator
Es

J satisfies that Es
J = E∗

JEJ , where E
∗
J denotes the adjoint of EJ with respect to (·, ·)A. We

observe that ‖Es
J‖A = ‖EJ‖2A, which implies that convergence for either of the algorithms implies

convergence respectively for the other as well. Note that the symmetrized version that results
from Es

J can also be brought into the from of (5), where for f ∈ V

Bf := U1,
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where U1 is defined to be the result of the symmetrized version of Algorithm 2, cp. [25, Algo-
rithm 3.4] with U0 = 0. This random symmetric operator can also be used as a preconditioner
and will be denotes by Bs.

A multilevel iteration can be defined under the assumption that there are nested subspaces
satisfying

M1 ⊂M2 ⊂ · · · ⊂MJ = V, (9)

where we also define operators Q̂j , P̂j : MJ → Mj and Âj : Mj → Mj for j = 1, . . . , J respec-
tively. The random multilevel iterations B̂s

j :Mj →Mj , j = 1, . . . , J with parameters m, k ∈ N

will be defined iteratively.

Definition 1 Let m, k ∈ N and set B̂s
1 := Â−1

1 and assume that B̂s
j−1 :Mj−1 →Mj−1 is already

defined, then set v0 := 0, w0 := 0 for v0, w0 ∈ Mj and define for every g ∈ Mj the multigrid
iteration B̂s

jg by:

1. vℓ := vℓ−1 + R̂j(g − Âjvℓ−1), for ℓ = 1, . . . ,m

2. vm+1 := vm + wk, where for i = 1, . . . , k

wi := wi−1 + B̂s
j−1[Q̂j−1(g − Âjwi−1)− Âj−1wi−1]

3. B̂s
jg := v2m+1, where vℓ is given by step 1 for ℓ = m+ 2, . . . , 2m+ 1.

Algorithm 3 Let U0 be given, then Un is defined by the linear iteration in (5) with B = B̂s
J .

Note that for k = 1, we have the V -cycle and for k = 2 the W -cycle iteration. We will
consider multiple and single smoothing versions, i.e., m ∈ N and m = 1. According to [6,
Equation (2.14)] the residual operator for m = k = 1 is given by

Ês
J = (Id−B̂s

J ÂJ) = (Id−T̂J) · · · (Id−T̂1)(Id−T̂ ∗
1 ) · · · (Id−T̂ ∗

J ),

where T̂j := R̂jÂjP̂j . There is also a non symmetric versions of this algorithm, where either
step 1 or step 3 are omitted. For m = k = 1, the residual operator for this algorithm in the case
of omitting step 1 is according to [25, Equation (3.11)] given by

ÊJ = (Id−B̂J ÂJ) = (Id−T̂J) · · · (Id−T̂1),

which implies Ês
J = ÊJ Ê

∗
J . Again, it holds that ‖Ês

J‖A = ‖ÊJ‖2A. The respective operators will

be denoted by B̂j , j = 1, . . . , J .

Algorithm 4 Let U0 be given, then Un is defined by the linear iteration in (5) with B = B̂J .

The case where step 3 is omitted is similar and is for example given in [7, Section 2].
For m = k = 1, Algorithms 2 and 4 are related, cp. [25] and will be made precise in the

following proposition as a version of [25, Propositions 3.2 and 3.3].

Proposition 2.2 In the framework of Algorithm 4 resulting from given nested subspaces (9),
Algorithm 2 results with Vj =Mj and Rj = R̂j, j = 1, . . . , J .

In the framework of Algorithm 2 resulting from given nested subspaces (7), Algorithm 4
results with M̂j :=

∑j
i=1 Vi and R̂j = RjQj, j = 1, . . . , J .
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For the convergence of Algorithm 1 we have to prove bounds of κ(BA), whereas for Algorithms 2
and 3 we have to show that ‖EJ‖A ≤ δ for some random variable δ taking values in (0, 1) P-a.s.
According to Proposition 2.2, for m = k = 1 it is sufficient to prove the contraction property
for the setting of Algorithm 2. Note that also the convergence of the symmetrized versions of
the algorithms will be implied. For a brief overview how the presented algorithms are intented
to be applied in the ensuing analysis, the additive preconditioner in Algorithm 1 will in later
applications be the BPX or additive Schwarz preconditioner. Algorithm 2 can be used as a
multiplicative domain decomposition method and Algorithms 3 and 4 refer to non-symmetric
and symmetric multigrid.

In [25], assumptions are introduced involving two parametersK0 andK1 that allow to discuss
convergence in this abstact setting. Here K0 and K1 are positive random variables. We recall
the two conditions [25, Equations (4.2) and (4.3)].

Assumption 1 There exist positive random variables K0 and K1 such that

1. for every v ∈ V , there exists a decomposition v =
∑J

j=1 vj with vj ∈ Vj , j = 1, . . . , J , such
that for P-a.e. ω

J∑

j=1

(R−1
j (ω)vj , vj) ≤ K0(ω)(A(ω)v, v) (10)

2. for P-a.e. ω and for every S ⊂ {1, . . . , J} × {1, . . . , J} and vj , wj ∈ V , j = 1, . . . , J ,

∑

(i,j)∈S

(Ti(ω)vi, Tj(ω)wj)A(ω)

≤ K1(ω)

(
J∑

i=1

(Ti(ω)vi, vi)A(ω)

)1/2



J∑

j=1

(Tj(ω)wj , wj)A(ω)




1/2

.

(11)

Theorem 2.3 Let Assumption 1 be satisfied. Let Ba be the random preconditioner given by
(8). Then, for P-a.e. ω

κ(Ba(ω)A(ω)) ≤ K0(ω)K1(ω). (12)

The residual operator EJ from Algorithm 2 satisfies for P-a.e. ω

‖EJ(ω)‖2A(ω) ≤ 1− 2− ν

K0(ω)(1 +K1(ω))2
, (13)

where ν ≥ maxj=1,...,J{ρ(Rj(ω)Aj(ω))} is deterministic.

Proof. These are explicitly [25, Theorems 4.1 and 4.4]. ✷

Remark 2.4 Note that the convergence of Algorithms 3 and 4 also holds with the same random
contraction number due to Proposition 2.2. The convergence of Algorithms 3 and 4 in the general
cases m, k ∈ N also holds with this random contraction number respectively with its square root,
cp. [7, Equations (2.12) and (2.13)]. But in the setting of Assumption 1 and Theorem 2.3
multiple smoothing or correction steps seem not to improve the contraction number.

The random parametersK0 andK1 can be estimated in some cases with [25, Lemmas 4.5, 4.6
and 4.7]. Let us state a specific case of [25, Lemma 4.6] as the following lemma.
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Lemma 2.5 Let K3 be a positive random variable that is independent of J and let γ ∈ (0, 1) be
deterministic. If for P-a.e. ω and for every v, w ∈ V and every i, j ∈ {1, . . . , J} it holds that

(Ti(ω)v, Tj(ω)w)A(ω) ≤ K3(ω)νγ
|i−j|(Ti(ω)v, v)

1/2
A(ω)(Tj(ω)w,w)

1/2
A(ω), (14)

then

K1(ω) ≤ K3(ω)ν
2

1− γ
.

Note that (14) is often called strengthened Cauchy–Schwarz inequality.
The other approach to prove convergence of multigrid methods as Algorithms 3 and 4 takes

advantage of multiple smoothing steps, i.e., m ∈ N, and relies on the so called regularity and
approximation assumption, which seems to have been introduced in this form by Bramble and
Pasciak in [4].

Assumption 2 Let s ∈ (0, 1]. There exist positive random variables CR and Cs such that:

1. for every j = 1, . . . , J and for P-a.e. ω

‖v‖2

λmax(Âj(ω))
≤ CR(ω)(R̂j(ω)v, v) ∀v ∈ Vj .

2. for every j = 1, . . . , J and for P-a.e. ω

((Id−P̂j−1(ω))v, v)A(ω) ≤ Cs(ω)

(
‖Âj(ω)v‖2

λmax(Âj(ω))

)s

(v, v)1−s
A(ω) ∀v ∈Mj .

The convergence estimate for Algorithm 3 for general m ∈ N and s ∈ (0, 1) was proven in [4],
whereas the result for s = 1 has been known earlier, cp. [17]. The following theorem is a version
of [4, Theorem 3, Theorem 1, Equation (3.28)]. There increasing the number of smoothing steps
m improves the contraction number.

Theorem 2.6 Let Assumption 2 be satisfied. For k = 2, m ∈ N, and the random variable

CW := 2(1−s)/ss(1− s)(1−s)/sC
2/s
s CR it holds for P-a.e. ω

‖ Id−B̂s
J(ω)A(ω)‖A(ω) ≤

1

(1 +m/CW (ω))s
.

For s = 1, k = 1, m ∈ N, and the random variable CV := C2
sCR/2 it holds for P-a.e. ω

‖ Id−B̂s
J(ω)A(ω)‖A(ω) ≤

1

1 +m/CV (ω)
.

The improvement of the contraction number with increased smoothing steps may be interesting
in some application. For convergence estimates for Algorithm 4 for general m ∈ N we refer to [4,
Theorem 4]. There the contraction number is the square root of the one given in the previous
theorem. For the case of one correction step, i.e., k = 1, only non uniform convergence estimates
seem to be available under Assumption 2, cp. [4, Theorems 1 and 2].

Proposition 2.7 Let B ∈ {Bs, B̂s
J} and let δ be a random variable taking values in (0, 1). If

for P-a.e. ω, ‖ Id−B(ω)A(ω)‖A(ω) ≤ δ(ω), then κ(B(ω)A(ω)) ≤ 1/(1− δ(ω)).
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Proof. Since the operator Id−BA can be written as E∗E for some appropriate E that was
discussed above, it holds that ((Id−BA)v, v)A = ‖E∗v‖2A ≥ 0 for every v ∈ V . Hence,

(BAv, v)A ≤ (v, v)A ∀v ∈ V. (15)

The assumption implies that

(1− δ)(v, v)A ≤ (BAv, v)A ∀v ∈ V, (16)

which then implies the claim. ✷

Remark 2.8 The operators Bs and B̂s
J can also be used as preconditioners in a PCG method

to accelerate convergence. The respective condition number can be bounded by Proposition 2.7
in combination with Theorem 2.3 or Theorem 2.6.

3 Strong convergence of iterative methods

We recall the possibly infinite dimensional Hilbert space V and let (H, (·, ·)) be another Hilbert
spaces such that the embedding H ⊂ V is continuous. Let (Vℓ, ℓ ∈ N) be a nested sequence of
finite dimensional subspaces of V, i.e., V1 ⊂ V2 ⊂ · · · ⊂ V. Let the finite dimensional spaces Vℓ

have dimensions Nℓ := dim(Vℓ), ℓ ∈ N. Similar to Section 2, we introduce random operators
Aℓ, Pℓ, Rℓ, Tℓ, and Qℓ with respect to the inner product (·, ·) of H, ℓ ∈ N. The “usual inner
product” (·, ·)E(A) on V is given by

(v ,w)E(A) := 〈E(A)v ,w〉V∗,V ∀v ,w ∈ V.

The inner product (·, ·)A with respect to the random symmetric operator A will also be consid-
ered.

For every ℓ ∈ N, we consider the variational form of (1) on the suchspace Vℓ. For every
ℓ ∈ N, this gives rise to the random linear equation: find uℓ : Ω → Vℓ such that for P-a.e. ω

V∗〈Aℓ(ω)uℓ(ω), vℓ〉V = V∗〈f , vℓ〉V , ∀vℓ ∈ Vℓ,

This is uniquely solvable by the Lax–Milgram lemma.
We assume that the random solution u : Ω → V of the problem in (1) is approximated by the

Galerkin approximations uℓ, ℓ ∈ N. Specifically, we assume that there exists a positive random
variable C that may depend on u, a scalar s > 0, and a decreasing sequence (hℓ : ℓ ∈ N) such
that for every ℓ ∈ N and for P-a.e. ω

‖u(ω)− uℓ(ω)‖A(ω) ≤ C(ω)hsℓ . (17)

We apply an iterative method such as Algorithm 1, 2, 3, or 4 with random contraction
number δ, that is independent of ℓ, with n iterations and solve exactly on level 1, i.e., starting
with Un

ℓ−1 as initial guess for level ℓ we carry out n iterations of the algorithm with a random
contraction number δ that takes values in (0, 1). Hence, we obtain a sequence Un

ℓ , ℓ ∈ N, where
we set Un

1 := u1. This multilevel process was used in [1, Section 3] to derive optimal complexity
bounds for the solution of certain linear equations and is also commonly referred to as “full
multigrid”.

Lemma 3.1 Let us assume that (uℓ, ℓ ∈ N) satisfies (17) for some s > 0 and let the sequence
(hℓ, ℓ ∈ N) satisfy that hℓ = γℓh0, ℓ ∈ N, for some fixed h0 > 0 and γ ∈ (0, 1). Then, for every
ℓ ∈ N, Un

ℓ and for P-a.e. ω

‖u(ω)− Un
ℓ (ω)‖A(ω) ≤ 2C(ω)

(
ℓ−1∑

k=0

hsℓ−kδ(ω)
nk

)
= 2C(ω)

(
ℓ−1∑

k=0

(γ−sδ(ω)n)k

)
hsℓ .
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Proof. The argument is for example given in [3, Chapter 10]. We recall that on every level
ℓ ≥ 2 we will carry out n iterations of our contractive algorithm with initial guess Un

ℓ−1. Thus,

‖uℓ − Un
ℓ ‖A ≤ δn‖uℓ − Un

ℓ−1‖A ℓ = 2, . . . , J.

A twofold application of the triangle inequality implies with (17) a recursion, i.e.,

‖u − Un
ℓ ‖A ≤ ‖u − uℓ‖A + ‖uℓ − Un

ℓ ‖A
≤ ‖u − uℓ‖A + δn‖uℓ − Un

ℓ−1‖A
≤ ‖u − uℓ‖A(1 + δn) + δn(‖u − Un

ℓ−1‖A)
≤ Chsℓ(1 + δn) + δn‖u − Un

ℓ−1‖A.

Since we have set Un
1 := u1, this resursion terminates and can be expanded as claimed using that

max{C(1 + δn), C} ≤ 2C, where the second claim follows with the assumption that hℓ = γℓh0,
ℓ ∈ N. ✷

Theorem 3.2 Let the assumptions of Lemma 3.1 be satisfied. Let us assume that (C/
√
ǎ) ∈

Lp(Ω) for some p ∈ [1,+∞) and that 1/(1 − δ) ∈ Lp′(Ω) for some p′ ∈ [1,+∞). For every
η ∈ (0, 1), every deterministic number of iterations n ∈ N, q ∈ [1, p], and r := p′(p − q)/(pq) it
holds that for every ℓ ≥ 2

‖u − Un
ℓ ‖Lq(Ω;V) ≤ Cq,p,p′,s,η

(
hsℓ + n−r

)
,

where

Cq,p,p′,s,η := 2max

{
‖C/

√
ǎ‖Lq(Ω)

1− η
, ‖C/

√
ǎ‖Lp(Ω)

hs1
1− γs

∥∥∥∥
1

1− δ

∥∥∥∥
r

Lp′ (Ω)

log

(
1

ηγs

)r
}
.

If p′ = +∞ and p ∈ [1,+∞], then for every n ∈ N satisfying ‖δ‖nL∞(Ω) ≤ ηγs and every q ∈ [1, p],
it holds that for every ℓ ≥ 2

‖u − Un
j ‖Lq(Ω;V) ≤ 2‖C/

√
ǎ‖Lq(Ω)

1

1− η
hsℓ .

Proof. The idea of the proof is to decompose the probability space into Ω = Ωn ∪ (Ωn)
c, where

Ωn := {ω ∈ Ω : δ(ω)n < ηγs}

and therefore (Ωn)
c = {ω ∈ Ω : δ(ω)n ≥ ηγs}. Note that both sets are measurable. For

notational convenience, we omit ω in the following when discussing subsets of Ω. Our goal is to
show, how the probability of (Ωn)

c tends to zero for increasing values of n ∈ N, to be able to
justify the applicability of a well known argument on the sets Ωn, n ∈ N. Naturally, Ωn1 ⊂ Ωn2

for every choice of natural numbers n1 ≤ n2. We recall a version of the Markov inequality, cp. [2,
Equation (2.1)], i.e., for a random variable X taking values in (1,+∞) and a non-decreasing
function φ such that φ(t) > 0 it holds that

P(X ≥ t) ≤ P(φ(X) ≥ φ(t)) ≤ E(φ(X))

φ(t)
, t ∈ (1,+∞).

We select the non decreasing positive function φ(t) := tp
′

. Then, for X = 1/(1 − δ) and every
t ∈ (1,+∞) it holds that

P

(
1

1− δ
≥ t

)
≤ E

((
1

1− δ

)p′
)

1

tp′
. (18)

9



Since for every r ∈ (0, 1) the equality of measurable sets {δ ≥ r} = {1/(1 − δ) ≥ 1/(1 − r)}
holds, we conclude that

P((Ωn)
c) = P (δn ≥ ηγs) = P

(
δ ≥ (ηγs)1/n

)
= P

(
1

1− δ
≥ 1

1− (ηγs)1/n

)
.

We observe that the function x 7→ (1− (ηγs)1/x)x from (1,+∞) to (1,+∞) is increasing. Since
the well known rule of L’Hospital implies that limx→+∞(1 − (ηγs)1/x)x = log(1/(ηγs)), we
conclude that for every n ∈ N

1− (ηγs)1/n ≤ log

(
1

ηγs

)
1

n
.

For every n ∈ N, we choose t := 1/(1 − (ηγs)1/n) in (18), and conclude that for every n ∈ N it
holds that

P((Ωn)
c) ≤ E

((
1

1− δ

)p′
)
log

(
1

ηγs

)p′ ( 1

n

)p′

. (19)

Hence, we have established estimates for the probability of the sets (Ωn)
c, n ∈ N. We apply

Lemma 3.1, (2), and decompose the probability space into Ω = Ωn ∪ (Ωn)
c to obtain that for q

as in the statement of the theorem

E(‖u − Un
ℓ ‖qE(A)) ≤ E

((
2
C√
ǎ

ℓ−1∑

k=0

hsℓ−kδ
nk

)q)

= E

((
2
C√
ǎ

ℓ−1∑

k=0

(γ−sδn)k

)q

1Ωn

)
hspℓ

+ E

((
2
C√
ǎ

ℓ−1∑

k=0

hsℓ−kδ
nk

)q

1(Ωn)c

)
.

Since on Ωn holds that γ−sδn < η, we obtain with a geometric series argument that

E

((
2
C√
ǎ

ℓ−1∑

k=0

(γ−sδn)k

)q

1Ωn

)
hsqℓ ≤ 2q E

(( C√
ǎ

)q)( 1

1− η

)q

hsqℓ .

The relation hℓ = γℓh0, ℓ ∈ N, implies that for every ℓ ≥ 2 it holds that
∑ℓ−1

k=0 h
s
ℓ−k ≤∑

ℓ≥1 γ
ℓsh0 = hs1/(1− γs). The Hölder inequality with r1 = p/q and r2 = p/(p− q) implies with

the tail bound of δn in (19) that

E

((
2
C√
ǎ

ℓ−1∑

k=0

hsℓ−kδ
nk

)q

1(Ωn)c

)

≤ 2q
∥∥∥∥

C√
ǎ

∥∥∥∥
q

Lp(Ω)

(
hs1

1− γs

)q

E
(
1(Ωn)c

)1/r2

≤ 2q
∥∥∥∥

C√
ǎ

∥∥∥∥
q

Lp(Ω)

(
hs1

1− γs

)q ∥∥∥∥
1

1− δ

∥∥∥∥
rq

Lp′ (Ω)

log

(
1

ηγs

)rq ( 1

n

)rq

,

which finishes the proof of the theorem for p′ ∈ [1,+∞).
If p′ = +∞ and therefore 1/(1− δ) ∈ L∞(Ω), then P-a.s. it holds that

δ ≤
(∥∥∥∥

1

1− δ

∥∥∥∥
L∞(Ω)

− 1

)∥∥∥∥
1

1− δ

∥∥∥∥
−1

L∞(Ω)

< 1.
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Consequently, ‖δ‖L∞(Ω) < 1 and there exists a deterministic n ∈ N such that P-a.s. γ−sδn ≤
γ−s‖δ‖nL∞(Ω) < η. Hence, the geometric series argument that was carried out on the set Ωn can
be applied verbatim on Ω, which implies the claim. ✷

Remark 3.3 Let X be a random variable with values in (0, 1) such that 1/(1−X) ∈ Lp(Ω) for
some p ∈ [1,+∞), then (19) implies that for every η < 1 and n ∈ N

P (Xn ≥ η) ≤
∥∥∥∥

1

1−X

∥∥∥∥
p

Lp(Ω)

log
(
η−1
)p
n−p.

Note that the argument to bound the error contributions from the different levels of the
multilevel method independently from the number of levels in the deterministic case can for
example be found in [3, Chapter 10, p. 130].

The convergence estimate (17) may not be available. Nevertheless, the approximated solution
by an iterative scheme still converges strongly to the discrete solution on fixed levels. Let Un

ℓ

be the result of n steps of an iterative scheme with random contraction number δℓ taking values
in (0, 1) to approximate uℓ with initial guess 0 ∈ Vℓ, ℓ ∈ N, i.e., for P-a.e. ω

‖uℓ(ω)− Un
ℓ (ω)‖A(ω) ≤ δℓ(ω)

n‖uℓ(ω)‖A(ω).

Note that we allow here the random contraction number to depend on ℓ.

Theorem 3.4 Let us assume that [ω 7→ ‖uℓ(ω)‖E(A)/
√
ǎ(ω)] ∈ Lp(Ω;V ) for some p ∈ [1,+∞)

and that 1/(1 − δℓ) ∈ Lp′(Ω) for some p′ ∈ [1,+∞). For every η ∈ (0, 1), every deterministic
number of iterations n ∈ N, q ∈ [1, p], and r := p′(p− q)/(pq) it holds that for every ℓ ≥ 1

‖uℓ − Un
ℓ ‖Lq(Ω;V) ≤ Cq,p,p′,s,η(ηn + n−r).

where

Cq,p,p′,s,η := 2max

{∥∥∥∥
‖uℓ‖E(A)√

ǎ

∥∥∥∥
Lp(Ω)

,

∥∥∥∥
1

1− δℓ

∥∥∥∥
r

Lp′ (Ω)

log
(
η−1
)r
}
.

If p′ = +∞ and p ∈ [1,+∞], then for every n ∈ N satisfying ‖δ‖nL∞(Ω) ≤ ηγs and every q ∈ [1, p],
it holds that for every ℓ ∈ N

‖uℓ − Un
ℓ ‖Lq(Ω;V) ≤

∥∥∥∥
â

ǎ
‖uℓ‖V

∥∥∥∥
Lp(Ω)

‖δℓ‖nL∞(Ω).

Proof. The proof is similar to the proof of Theorem 3.2 using Remark 3.3. ✷

4 Multigrid methods

Here, we provide sufficient conditions under which the regularity and approximation assumption
and the strengthened Cauchy–Schwarz inequality can be proven with explicit dependence on the
operator A. This will allow us to show Lq(Ω) bounds of the condition numbers and tail bounds
of the random contraction number in order to apply the strong error bounds from Theorems 3.2
and 3.4.
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4.1 Verification of Assumption 1

We turn to a proof of the strengthened Cauchy–Schwarz inequality. We will provide a proof
in the case of a random, symmetric elliptic differential operators. To be specific, let H1

0 (D),
Hs(D), s ∈ [−1, 2], be the usual Sobolev spaces for some polytopal domain D ⊂ Rd, d ≥ 1
arbitrary, such that H−s(D) is the dual space of Hs(D), s ∈ [0, 1], and H0(D) = L2(D). The
reader is referred to [16, Chapter 1] for details on Sobolev spaces. We consider the class of
random symmetric operators

A := −
d∑

i,j=1

∂

∂xi

(
aij

∂

∂xj

)
+ a : H1

0 (D) → (H1
0 (D))∗,

where (aij(x))i,j=1,...,d is a random symmetric matrices for a.e. x ∈ D. Let us assume that

D =
⋃K

k=1Dk, where the subdomains Dk are pairwise disjoint with a polytopal boundary.
Furthermore, we assume that the random fields a and aij are strongly measurable as mappings
from Ω to L∞(D), and aij |Dk

is strongly measurable as a mapping from Ω to W s,p(Dk) such
that s > d/p, k = 1, . . . ,K, i, j = 1, . . . , d, where W s,p(Dk), s ≥ 0, p ∈ [1,+∞), k = 1, . . . ,K,
denote the Sobolev–Slobodeckij spaces, cp. [16, Definition 1.3.2.1]. We assume that for P-a.e.
ω, ess infx∈D{a(ω, x)} ≥ 0 and that there exists a strictly positive random variable ǎ such that
for P-a.e. ω

ess inf
x∈D





d∑

i,j=1

aij(ω, x)ξiξj



 ≥ ǎ(ω)|ξ|2 ∀ξ ∈ Rd.

The corresponding bilinear form a(·, ·) is given by

a(v ,w) =
d∑

i,j=1

∫

D
aij

∂v

∂xj

∂w

∂xi
+ avwdx ∀v ,w ∈ H1

0 (D).

Furthermore, let â, ǎ be strictly positive random variables such that for P-a.e. ω

ǎ(ω)

∫

D
|∇v |2dx ≤ aω(v , v) ≤ â(ω)

∫

D
|∇v |2dx ∀v ∈ H1

0 (D). (20)

The following example will is class of random coefficients, which will be further discussed in
Section 6.

Example 1 The class of lognormal random coefficient fields aij = exp(Z)δij and a = 0, where
Z : Ω →W s,p(D) is a strongly measurable Gaussian random field and δij denotes the Kronecker
symbol, satisfy these conditions.

The proof of the strengthened Cauchy–Schwarz inequality draws on [6, Sections 4 and 5] and
[25, Section 4]. The setting in reference [6] allows for low Hölder regularity of the coefficients
of elliptic operators, but does not provide a strengthened Cauchy–Schwarz inequality needed
for our setting of Assumption 1. The strengthened Cauchy–Schwarz inequality proved in [25,
Lemmas 6.1 and 6.3] is limited to coefficients with W 1,∞(D) regularity. Here, a strengthened
Cauchy–Schwarz inequality will be proved with explicit dependence on the coefficients that is
valid for arbitrary low Hölder regularity of the coefficients and also allows for jumps across ∂Dk

(see ahead Proposition 4.2). We will identify estimates with explicit dependence on the random
coefficients of A.

Let (Tℓ, ℓ ∈ N) be a nested sequence of shape regular simplicial, uniformly refined meshes of
D, i.e., every τ ∈ Tℓ is a finite union of elements in Tℓ+1, ℓ ∈ N. Note that in one refinement step
one simplex is refined into 2d subsimplices. For every k = 1, . . . ,K and ℓ ∈ N, we require that

12



Dk =
⋃

τ∈Tℓ,Dk∩τ 6=∅ τ . Let Vℓ ⊂ V be the space of piecewise polynomial function with respect
to the mesh Tℓ, ℓ ∈ N. For simplicity, we will consider here only first order FE, i.e., polynomial
degree one. Define −∆ℓ : Vℓ → Vℓ by the bilinear form (wℓ, vℓ) 7→

∫
D ∇wℓ · ∇vℓdx over Vℓ × Vℓ,

ℓ ∈ N. By [6, Equation (5.1)], there exists a deterministic C such that for every j ∈ N and every
v ∈ Vj there exists a decomposition v =

∑j
i=1 vi with vi ∈ Vi such that

j∑

i=1

λmax(−∆i)‖vi‖2L2(D) ≤ C

∫

D
|∇v|2dx. (21)

Moreover, the following inverse estimates hold: there exists a constant C such that for every
v ∈ Vℓ

‖v‖H1(D) ≤ Ch−1
ℓ ‖v‖L2(D) and ‖v‖H1+s(D) ≤ Ch−s

ℓ ‖v‖H1(D), (22)

where
hℓ := max

τ∈Tℓ
{diam(τ)}

and s ∈ (0, 1/2), cp. [13, Theorem 3.2.6] and [9, Equation (10.1)]. These inverse estimate are
sharp, which can be seen by choosing v to be a nodal basis function of the FE space Vℓ. Since
by (20) for P-a.e. ω

ǎ(ω)λmax(−∆ℓ) ≤ λmax(Aℓ(ω)) ≤ â(ω)λmax(−∆ℓ), (23)

we also observe that for P-a.e. ω

λmax(Aℓ(ω)) ≥ Cǎ(ω)h−2
ℓ , (24)

which for −∆ℓ is a consequence of the sharpness of (22).
We require the following assumptions on the smoothers: there exists a deterministic ν ∈ (0, 2)

such that for every j = 1, . . . , J , and P-a.e. ω

(Tj(ω)v, Tj(ω)v)A(ω) ≤ ν(Tj(ω)v, v)A(ω) ∀v ∈ Vj . (A)

There exists deterministic c0, c1 > 0 such that for every j = 1, . . . , J , and for P-a.e. ω

c0
‖v‖2L2(D)

λmax(Aj(ω))
≤ (Rj(ω)v, v) ≤ c1

‖v‖2L2(D)

λmax(Aj(ω))
∀v ∈ Vj . (B)

Assume that there exists γ ∈ (0, 1) such that for all i, j ∈ N satisfying i ≤ j it holds that

hj
hi

≤ γj−i, (C)

Note that (A) implies that ρ(RiAi) ≤ ν for every i. There exist smoothers that satisfy these
assumptions, cp. [10, Chapter 8] and [5, 8].

Lemma 4.1 Let s ∈ (0, 1/2) and p ∈ (d/s,+∞), then for P-a.e. ω, for every η > 0, φ ∈ H1(D),
and ψ ∈ H1+s(D) it holds that

|a(ω)(φ, ψ)| ≤ C(ω)(η−1‖φ‖2L2(D) + ηs/(1−s)‖φ‖2H1(D))
1/2‖ψ‖H1+s(D),

where for a deterministic constant C independent of (aij , a, i, j = 1, . . . , d)

C(ω) := C


 max

k=1,...,K

d∑

i,j=1

‖aij(ω)‖W s,p(Dk) + ‖a(ω)‖L∞(D)


 .
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Proof. The following argument originates from the proof of [6, Lemma 4.3]. We will track the
dependence on the random elliptic coefficients (aij , a, i, j = 1, . . . , d). Let us fix k ∈ {1, . . . ,K}.
There exists a bounded linear extension operator Ik : H1(Dk) → H1(Rd), e.g. cp. [16, Theo-
rem 1.4.3.1]. For every function v : Dk → R the zero extension to Rd is denoted by ṽ. Let F

denote the Fourier transform on Rd. We obtain with Plancherel’s theorem

∫

Dk

aij
∂φ

∂xi

∂ψ

∂xj
dx =

∫

Rd

∂(Ikφ)

∂xi

˜
aij

∂ψ

∂xj
dx =

(
F

(
∂(Ikφ)

∂xi

)
,F

(
˜
aij

∂ψ

∂xj

))

L2(Rd)

.

Recall that ‖(1 + |ξ|2)s/2F (v)‖L2(Rd) is the Bessel potential norm in the Hilbert case of order
s of a function v. The fact that in the Hilbert case Bessel potential and Slobodeckij spaces are
equal with equivalent norms, cp. [24, Definition 2.3.1(d), Theorem 2.3.2(d), Equation 4.4.1(8)],
and the boundedness of the zero extension as an operator from Hs(Dk) to Hs(Rd), cp. [16,
Corollary 1.4.4.5], imply with the Cauchy–Schwarz inequality and differentiation rules for F

that exists a constant C such that

∫

Dk

aij
∂φ

∂xi

∂ψ

∂xj
dx ≤ C

(∫

Rd

|ξ|2
(1 + |ξ|2)sF (Ikφ)dξ

)1/2 ∥∥∥∥aij
∂ψ

∂xj

∥∥∥∥
Hs(Dk)

≤ C(η−1‖φ‖2L2(Dk)
+ ηs/(1−s)‖φ‖2H1(Dk)

)1/2
∥∥∥∥aij

∂ψ

∂xj

∥∥∥∥
Hs(Dk)

,

where the inequality |ξ|2/(1 − |ξ|2)s ≤ η−1 + ηs/(1−s)(1 + |ξ|2) is derived with elementary ma-
nipulations for every η > 0 and every ξ ∈ Rd. By [16, Theorem 1.4.4.2], the multiplication of
elements of W s,p(Dk) is a bounded linear operator on Hs(Dk). Thus, by summing over k and
the Cauchy–Schwarz inequality there exists a constant C such that

∫

D
aij

∂φ

∂xi

∂ψ

∂xj
dx

≤ C max
k=1,...,K

‖aij‖W s,p(Dk)(η
−1‖φ‖2L2(D) + ηs/(1−s)‖φ‖2H1(D))

1/2‖ψ‖H1+s(D).

Since it also holds that
∫

D
aφψdx ≤ ‖a‖L∞(D)(η

−1‖φ‖2L2(D) + ηs/(1−s)‖φ‖2H1(D))
1/2‖ψ‖H1+s(D),

the claim of the lemma follows. ✷

Proposition 4.2 Let Assumptions (A) and (B) be satisfied by the smoothers (Rj : j = 1 . . . , J),
let Assumption (C) hold, and let s ∈ (0, 1/2) and p ∈ (d/s,+∞). Then for some deterministic
constant C independent of J the inequality (11) from Assumption 1 holds with the random
variable

K1 := C


 max

k=1,...,K

d∑

i,j=1

‖aij‖W s
p (Dk) + ‖a‖L∞(D)




2(
1

ǎ

)2

.

Proof. The proof of this proposition merges ideas of the proofs of [6, Lemma 4.2] and [25,
Lemma 6.3] to obtain a strengthened Cauchy–Schwarz inequality with explicit dependence on
the coefficients (aij , a : i, j = 1, . . . , d) in the setting considered here that allows for low spatial
regularity of (ai,j), i, j = 1, . . . , d. We may assume that j ≥ i due to the symmetry of (·, ·)A and
let w ∈ Vi and φ ∈ Vj be arbitrary, which are both elements of H1+s due to s < 1/2. The first
inverse estimate in (22) and Lemma 4.1 imply that

|a(w, φ)| ≤ C(η−1 + ηs/(1−s)h−2
j )1/2‖φ‖L2(D)‖w‖H1+s(D),
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where we tacitly absorbed the deterministic constant in (22) into C. Then, the second inverse

estimate in (22), (24), and the choice η := h
2(1−s)
j results in

a(w, φ) ≤ C
√
λmax(Aj)

ǎ
2

(
hj
hi

)s

‖φ‖L2(D)‖w‖H1(D),

where we tacitly absorbed the deterministic constant in (24) into C as well as the constant in
(22). Since

‖Ajw‖2L2(D)

λmax(Aj)
= λmax(Aj)

−1

(
sup
φ∈Vj

a(w, φ)

‖φ‖L2(D)

)2

,

we conclude with (20) and the assumption of the lemma that for every w ∈ Vi

(Tjw,w)A ≤ c1
‖Ajw‖2L2(D)

λmax(Aj)
≤ c14C2

(
1

ǎ

)2(hj
hi

)2s

(w,w)A. (25)

We argue in a similar fashion as in the second part of the proof of [25, Lemma 6.3], i.e., we con-
clude with the Cauchy–Schwarz inequality, (25), and with the scaling property of the smoothers
in (A) that

(Tjv, Tiw)A ≤ (Tjv, v)
1/2
A (TjTiw, Tiw)

1/2
A

≤ C2

(
1

ǎ

)2

(Tjv, v)
1/2
A

(
hj
hi

)2s

(Tiw, Tiw)
1/2
A

≤ C2η

(
1

ǎ

)2(hj
hi

)2s

(Tjv, v)
1/2
A (Tiw,w)

1/2
A ,

where we again absorbed deterministic constants into C. Since hj/hi ≤ γj−i by assumption, the
statement of the proposition follows with Lemma 2.5. ✷

If the coefficients of A restricted to Dk, i.e., (aij |Dk
, i, j = 1, . . . , d), take values in W 1,∞(Dk),

k = 1, . . . ,K, then the proof of Proposition 4.2 simplifies and enables s = 1/2 in Proposition 4.2,
cp. [6, Remark 4.5].

Proposition 4.3 Let the smoothers (Rj : j = 1, . . . , J) satisfy Assumption B with a determistic
constant c0. There exists a deterministic constant C independent of j such that inequality (10)
from Assumption 1 holds with the random variable

K0 := C
â

ǎ
.

Proof. Since the assumption implies that (R−1
i vi, vi) ≤ λmax(Ai)/c0 (vi, vi), the claim of the

proposition follows with (20), (21), and (23). ✷

4.2 Verification of Assumption 2

The proof of the regularity and approximation assumption here with explicit depends of the
constants on the random operator stems from [10, Section 9.1]. Let (Hs, ‖ · ‖s), s ∈ [0, 2], be
nested Hilbert spaces, i.e., Hs ⊂ Hs′ for every s > s′, respresenting smoothness with H1 = V
such that the norms ‖ · ‖1 and ‖ · ‖E(A) are equivalent. Let (H−s, ‖ · ‖−s), s ∈ (0, 2] denote the
respective dual spaces and indentity H0 with its dual (H0)∗.
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Proposition 4.4 If there exists a random variable C1 such that for P-a.e. ω, for every f ∈
H−1+s the solution u of (1) takes values in H1+s and satisfies the regularity estimate

‖u(ω)‖1+s ≤ C1(ω)‖f ‖−1+s

and if there exists a random variable C2 such that for P-a.e. ω, every v ∈ H1+s is approximated
by its Galerkin projection, i.e.,

‖(Id−Pj−1(ω))v‖A(ω) ≤ C2(ω)(λmax(Aj(ω)))
−s/2‖v‖1+s

then, Assumption 2 holds with the random variable

Cs := Câ3−sC2
1C

2
2 ,

where C > 0 is some deterministic constant.

Proof. We follow the proof of [10, Lemma 9.1] with the specific aim to make the depen-
dence of the constant Cs on the operator A explicit. Let v ∈ Mj be arbitrary, define g :=
A1−s

j (Id−Pj−1)v, and let w solve Aw = g uniquely. Note that by definition of g

(A1−s
j (Id−Pj−1)v, (Id−Pj−1)v) = ((Id−Pj−1)v, g). (26)

We follow the argument that proves [10, Equation (9.9)] to conclude with both assumptions of
the proposition and (2) that

((Id−Pj−1)v, g) = (Aw, (Id−Pj−1)v)

≤ ‖v‖A‖(Id−Pj−1)w‖A
≤ C1C2â

(1+s)/2(λmax(Aj))
−s/2‖v‖A‖g‖−1+s.

(27)

By the definition of Aj and Qj and (2), there exists a deterministic C such that for every v ∈ H1

(AjQjv , Qjv)1/2 ≤ C
√
â‖v‖1.

Then, by interpolation, e.g. [10, Theorem A.4], it follows that

(A1−s
j Qjφ,Qjφ)

1/2 ≤ (âC)1−s‖φ‖1−s for every φ ∈ H1,

which thereafter implies with the Cauchy–Schwarz inequality that

|(g, φ)| = |(g,Qjφ)| ≤ (A−1+s
j g, g)1/2(A1−s

j Qjv
′, Qjv)

1/2

≤ (
√
âC)1−s(A−1+s

j g, g)1/2‖φ‖1−s.
(28)

By duality it holds that ‖g‖−1+s = supφ∈H1(g, φ)/‖φ‖1−s, which implies with (28) and the
definition of g that

‖g‖−1+s ≤ (âC)1−s(A1−s
j (Id−Pj−1)v, (Id−Pj−1)v)

1/2. (29)

Combining (26), (27), and (29) we have shown that

(A1−s
j (Id−Pj−1)v, (Id−Pj−1)v) ≤ â3−sC2(1−s)C2

1C
2
2 (λmax(Aj))

−s(Av, v),
which corresponds to the assumption [10, Equation (A.2)]. This condition is sufficient to con-
clude the regularity and approximation assumption with the given expression for Cs by [10,
Lemma 3.2]. ✷

Remark 4.5 For uniformly refined FE discretizations, the assumption on the random variable
C2 can be proven by Galerkin orthogonality and an equivalence between the mesh width and the
maximal eigenvalue of the stiffness matrix. In the case of the elliptic operators the regularity
estimate has been derived explicitly in the coefficients of elliptic operators in Euclidean domains
in [12, 23]. Respective statements for bounded, closed, smooth submanifolds in R3 are given in
[18, Appendix C].
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5 Domain decomposition methods

We will mainly consider overlapping domain decomposition methods in the setting of Assump-
tion (1). We denote by V0 ⊂ V a coarse first order FE space with meshwidth h0 of the type
introduced in Section 4.1. The first order FE space with a fine grid is denoted by Ṽ ⊂ V . For
a given set of overlapping subdomains (Dj : j = 1, . . . , J) of D such that D =

⋃J
j=1Dj . These

subdomains result for example by extending a given disjoint set of subdomains by a multiple
of h0 in each spatial direction such that the union of its closures contains D. Also we assume
that the boundary ∂Dj aligns with the considered mesh, j = 1, . . . , J . The FE spaces Vj ,

j = 1, . . . , J , are subspaces of Ṽ and are defined by

Vj := {v ∈ Ṽ : v(x) = 0 ∀x ∈ D\Dj}, j = 1, . . . , J

So, we consider the redundant space decomposition

Ṽ =

J∑

j=0

Vj .

We consider the case that symmetric multigrid solvers from Section 4 are used as so called
subpaces solvers (Rj : j = 0, . . . , J), which are random here. Therefore, suppose that the spaces
Vj have nested subspaces Mj,1 ⊂ . . . ⊂ Mj,J ′(j) = Vj , j = 0, . . . , J . Naturally, only few levels
are used on the subspace V0, i.e. J ′(0) ≈ 1. As in Section 4, we seek for random variables
K0 and K1 with explicit dependence on the operator A, in order to obtain Lq(Ω)-estimates for
the condition numbers using additive Schwarz preconditioners and tail bounds of the random
contraction number of multiplicative domain decomposition methods.

Proposition 5.1 There exists a deterministic constant C > 0 that is independent of J and
J ′(j), j = 0, . . . , J , such that inequality (10) in Assumption 1 holds with the random variable

K0 := C

(
â

ǎ

)4 (â)2

(ǎ)6


1 +


 max

k=1,...,K

d∑

i,j=1

‖aij‖W s
p (Dk) + ‖a‖L∞(D)




4
 .

Proof. By (20) and [25, Lemmas 4.5 and 7.1],

K0 ≤
â

ǎ

1

minj=0,...,J λmin(RjAj)
.

Since the Rj ’s are chosen to be symmetric multigrid solvers, Propositions 4.3 and 4.2, The-
orem 2.3, and (16) imply there esists a deterministic constant c > 0 such that for every
j = 0, . . . , J ,

λmin(RjAj) ≥ c
(ǎ)5

â


1 +


 max

k=1,...,K

d∑

i,j=1

‖aij‖W s
p (Dk) + ‖a‖L∞(D)




4


−1

.

This implies the assertion of the proposition. ✷

Proposition 5.2 Inequality (11) holds with the deterministic number

K1 := (1 + |{(i, j) ∈ {1, . . . , J}2 : Di ∩Dj}|)
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Proof. The assertion will follow by [25, Lemma 4.7] after we show an estimate of the form of
Assumption (A). By (15), it holds that λmax(RjAj) ≤ 1, j = 0, . . . , J . Let j = 0, . . . , J be
arbitrary. Since Rj is a symmetric multigrid solver, RjAj is symmetric and positive definite
with respect to (·, ·)A. There exists an orthonormal basis of eigenvectors of RjAj with respect
to (·, ·)A such that RjAjvi = λivi. Hence, for every v ∈ Vj , v =

∑
i(v, vi)Avi and

(RjAjv,RjAjv)A =
∑

i

λ2i ((v, vi)A)
2 ≤ λmax(RjAj)

∑

i

λi((v, vi)A)
2 = (RjAjv, v)A,

which implies the estimate of the proposition with [25, Lemma 4.7]. ✷

Remark 5.3 Nonoverlapping domain decomposition methods can also be formulated in the gen-
eral framework introduced in [25, Section 3], that is recalled in Section 2, relying on Assump-
tion 1, cp. [27, Section 2.2]. Strong convergence of PCG with deterministic iteration numbers
using preconditioners for random interface operators of nonoverlapping domain decompositions
resulting in uniform condition numbers, cp. [27, Sections 7.1 and 7.2], can also be established
with Lemma 2.1 and either Theorem 3.2 or Theorem 3.4.

6 Application to lognormal diffusion problems

The presented theory in Sections 3, 4, and 5 applies to lognormal diffusion problems. Let Z be
a Gaussian random field (GRF for short) on D that takes values in Hölder spaces Ct(D) such
that Z ∈ Lq(Ω;Ct(D)) for every q ∈ [1,+∞) and for some t ∈ (0, 1], for example cp. [11]. For
the lognomal coefficient a := exp(Z), we consider the elliptic diffusion probem with Dirichlet
boundary conditions in variational form: find u : Ω → V such that for P-a.e. ω

aω(u(ω), v) =

∫

D
a(ω)∇u(ω) · ∇v = V∗〈f , v〉V ∀v ∈ V, (30)

where V = H1
0 (D). Well-posedness and approximation by Finite Elements is well known, cp. [11,

12, 23]. We use the FE spaces Vℓ from Section 4.1 with maximal meshwidth hℓ of Tℓ, ℓ ∈ N and
remark that for each ℓ, the space Vℓ may have the additional structure for overlapping domain
decomposition methods with multigrid subspace solvers as introduced in Section 5.

Elements of H1+s(D), s ∈ [0, 1], can be approximated by functions in Vℓ, cp. [13, Theo-
rem 3.2.1], i.e., there exists a deterministic constant C > 0 such that for every v ∈ H1+s(D)
there is wℓ ∈ Vℓ

‖v − wℓ‖V ≤ Chsℓ‖v‖H1+s(D). (31)

Note that the approximation property stated in [13, Theorem 3.2.1] can be interpolated to
also hold for non-integer order Sobolev spaces. The following regularity estimate makes the
dependence on the coefficient a explicit. For every s ∈ [0,min{t, t−∆})\{1/2} there exists a
deterministic constant C > 0 such that for P-a.e. ω

‖u(ω)‖H1+s(D) ≤ C
‖a(ω)‖C0(D)‖a(ω)‖2Ct(D)

(minx∈D a(ω, x))
4

‖f‖H−1+s , (32)

where t−∆ is the maximal value such that the inverse of the Dirichlet Laplacean satisfies
(−∆)−1 : H−1+t−∆(D) → V ∩ H1+t−∆(D) is bounded. For d = 2, the estimate (32) is due
to [23, Lemma 5.2] (for d = 3, the reader is referred to [23, Remark 5.2(c)]). The solution u can
be approximated in Vℓ by the FE approximation denoted by uℓ, in the Lq(Ω,V)-norm, ℓ ∈ N.
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Specifically by Céa’s lemma, (31), and (32), there exists a deterministic constant C > 0 that is
independent of ℓ ∈ N and a such that for P-a.e. ω

‖u(ω)− uℓ(ω)‖Lq(Ω;V) ≤ C

∥∥∥∥∥
‖a(ω)‖2

C0(D)
‖a(ω)‖2

Ct(D)

(minx∈D a(ω, x))
5

∥∥∥∥∥
Lq(Ω)

‖f ‖H−1+s(D) h
s
ℓ , ℓ ∈ N,

Since the embedding Ct(D) ⊂W s,p(D) is continuous for every 0 < s < t and every p ∈ [1,+∞),
the conditions from Sections 4 and 5 are satisfied. Let

Un
ℓ : Ω → Vℓ (33)

be the result of n ∈ N iterations of an iterative algorithm introduced in the previous sections, with
initial guess Un

ℓ−1, 2 ≤ ℓ ∈ N, and Un
1 = u1. The iterative methods are (symmetric) multigrid

(see Algorithms 4 and 3) or PCG using the additive (BPX) preconditioner (see Algorithm 1) in
Section 4. In the setting of Section 5, Un

ℓ : Ω → Vℓ in (33) may result from n ∈ N iterations
of PCG using the additive Schwarz preconditioner (see Algorithm 1) or a multiplicative domain
decomposition method (see Algorithm 2), where symmetric multigrid (see Algorithm 3) is used
as subspace solvers.

Theorem 6.1 For 0 < s < t ≤ 1 and every q, r ∈ [1,+∞), there exists constant C > 0 such
that for every number of iterations n ∈ N and ℓ ≥ 2,

‖u − Un
ℓ ‖Lq(Ω;V) ≤ C(hsℓ + n−r).

Proof. By the Cauchy–Schwarz inequality, ‖a‖2
C0(D)

‖a‖2
Ct(D)

(minx∈D a(x))
−5 ∈ Lp(Ω) for every

p ∈ [1,+∞), which is one of the conditions of Theorem 3.2.
It remains to verify the needed properties of the random contraction number in the conditions

of Theorem 3.2. In the framework of Assumption 1, by Theorem 2.3 the random contraction
number δ satisfies for the multiplicative iteration 1/(1−δ) ≤ K0(1+K1)

2/(2−ν). In the case of
multigrid, Propositions 4.2 and 4.3 and the Cauchy–Schwarz inequality imply that 1/(1− δ) ∈
Lp′(Ω) for every p′ ∈ [1,+∞). For overlapping domain decomposition methods, this statement is
due to Propositions 5.1 and 5.2. If the additive preconditioner is applied with PCG, the random
contraction number δ satisfies by Theorem 2.3, 1/(1− δ) ≤

√
K0K1+1. By the same argument,

1/(1 − δ) ∈ Lp′(Ω) for every p′ ∈ [1,+∞). In the setting of Assumption 2, the assumptions of
Proposition 4.4 are satisfied by (31) and Galerkin orthogonality and (32). By a similar argument
using Theorem 2.6, 1/(1− δ) ∈ Lp′(Ω) for every p′ ∈ [1,+∞).

Hence, the parameter r in Theorem 3.2 may be arbitrarily large, which implies the assertion.
✷

Corollary 6.2 In the setting of Theorem 6.1, let Un
ℓ result from n ∈ N iterations of PCG with

a deterministic preconditioner B̃j such that κ(B̃j E(Aj)) is bounded uniformly in j. Then, the
strong convergence estimate of Theorem 6.1 also holds.

Proof. By Lemma 2.1, for P-a.e. ω, κ(B̃jAj(ω)) ≤ â(ω)/ǎ(ω)κ(B̃j E(Aj)). Since â/ǎ ∈ Lq′(Ω)
for every q′ ∈ [1,+∞), the claim follows as in the proof of Theorem 6.1. ✷

Corollary 6.3 In the setting of Theorem 6.1, for every ε > 0 there exists a constant Cq,ε,s > 0
that is independent of hℓ such that for every ℓ ≥ 2

‖u − Un
ℓ ‖Lq(Ω;V) ≤ Cq,ε,s h

s
ℓ .

with a deterministic number of iterations given by n = ⌈ch−ε
ℓ ⌉ for a deterministic constant c > 0.

The cost for one sample of Un
ℓ is

O(h−d−ε
ℓ )

with deterministic constants that are independent of hℓ, ℓ ≥ 0.
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Proof. The cost of one iteration is O(h−d
ℓ ), since the matrix vector product has cost O(h−d

ℓ )
for the sparse stiffness matrices that result taking the nodal basis of Vℓ. The error contributions
in the estimate of Theorem 6.1 are equilibrated for this choice of iteration number, since r in
Theorem 6.1 can be chosen arbitrarily large, i.e., r = s/ε is admissible. ✷

6.1 Mean field approximation with MLMC

Let G : Ω × V → W be a random operator, where W is a Banach space, that is Lipschitz
continuous, i.e., there exists a positive random variable C such that for P-a.e. ω

‖G(ω, v)−G(ω,w)‖W ≤ C(ω)‖v − w‖V ∀v ,w ∈ V.

Let us assume that C ∈ Lq′(Ω) for some q′ ∈ (2,+∞). For the computation of the mean field
E(G(u)), MLMC methods are well established, cp. [12, 15]. For a maximum number of levels
L ∈ N, define

EML
L (G(Un

L)) :=
L∑

ℓ=1

EMℓ
(G(Un

ℓ )−G(Un
ℓ−1)),

where (EMℓ
: ℓ = 1, . . . , L) are Monte Carlo estimators that are mutually independent. We used

the convention that Un
0 := 0. For the effectiveness of MLMC, bounds on the L2(Ω;V)-norm of

the difference between two consecutive discretization levels have to be known. Specifically, by
Theorem 6.1 and Corollary 6.3, the Hölder inequality, and the triangle inequality

‖G(Unℓ
ℓ )−G(U

nℓ−1

ℓ−1 )‖L2(Ω;W) ≤ ‖C‖Lq′ (Ω)‖U
nℓ
ℓ − U

nℓ−1

ℓ−1 ‖L2q′/(q′−2)(Ω;V) = O(hsℓ−1),

where nℓ = ⌈ch−ε
ℓ ⌉ for a deterministic constant c > 0 and a small deterministic number ε > 0.

Let us assume that the stiffness matrix on every level ℓ ∈ N can be assembled in computational
work O(h−d

ℓ log(h−1
ℓ )). Possible techniques to achieve this are in certain cases the circulant

embedding or FFT, cp. [12, Section 5]. See also [22] for approximation techniques of the so
called Karhunen–Loève expansion. Also, suppose that the computational cost of the evaluation
of G(v) is O(h−d

ℓ ) for every v ∈ Vℓ. For example circulant embedding or FFT are applicable if
log(a), which is a Gaussian random field, has stationary covariance kernel and is the restriction
of such a Gaussian random field defined on a product domain containing D. Then, by the
complexity theorem [12, Theorem 4.1] (see also [15]) and Corollary 6.3, there exist sample
numbers (Mℓ, ℓ = 1, . . . , L) such that an error threshold 0 < TOL < e−1, i.e.,

‖E(G(u)− EML
L (G(Un

L))‖L2(Ω;V) = O(TOL),

can be achieved with computational cost

workL =

{
O(TOL−2) if 2s > d+ ε,

O(TOL−(d+ε)/s) if 2s < d+ ε,
(34)

where d = 1, 2, 3 is the dimension of the domain D. Note that the case 2s = d+ε is not included,
since here s satisfies a strict inequality, which renders this case unimportant. The estimate on
the computational work of MLMC for lognormal diffusion coefficients in (34) are deterministic
and do not have assumptions on the complexity of the PDE solver. The computational work of
MLMC FE for lognormal diffusions is for d = 2, 3 essentially optimal, since ε > 0 may be chosen
arbitrarily small.

Remark 6.4 The established theory is also applicable for deterministic preconditioners that do
not imply uniform condition numbers. A possible class of examples are so called “algebraic
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multigrid” (AMG for short) preconditioners for which a multilevel convergence theory does not
seem to be available, cp. [26, Section 5]. However, if such a deterministic AMG preconditioner
could be tuned to E(Aj), the respective iterative method also converges strongly as in Theorem 6.1
by a similar argument applying Theorem 3.4 and Corollary 6.2. Note that in the example (30)
(see also Example 1), E(A) is the Dirichlet Laplacean multiplied by E(exp(Z)), which is constant
with respect to x ∈ D due to the assumed stationarity of the GRF Z.

7 Conclusions and extensions

In the study of random operator equations with non-uniform input a rigorous framework has
been established to verify strong convergence of iterative solvers. In the case of lognormal
random input, essentially optimal, deterministic complexity bounds are implied. This offers
an alternative to direct solvers for this type of problems, whose performance may decline in
higher dimensions, e.g., d = 3. Assumptions on the computational cost of PDE solvers are also
common in the context of multilevel quasi-Monte Carlo methods (MLQMC for short) for PDE
problems, cp. [21, 20, 14, 19]. Applicability of iterative solvers for MLQMC will be analyzed in
a forthcoming work.
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ETH Zürich,
Rämistrasse 101, CH–8092 Zürich, Switzerland.
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