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Abstract

We analyze convergence rates of Smolyak integration for parametric maps u : U → X taking
values in a Banach spaceX, defined on the parameter domain U = [−1, 1]N. For parametric maps
which are sparse, as quantified by summability of their Taylor polynomial chaos coefficients,
dimension-independent convergence rates superior to N -term approximation rates under the
same sparsity are achievable.

We propose a concrete Smolyak algorithm to apriori identify integrand-adapted sets of active
multiindices (and thereby unisolvent sparse grids of quadrature points) via upper bounds for the
integrands’ Taylor gpc coefficients. For so-called (b, ε)-holomorphic integrands u with b ∈ ℓp,
p ∈ (0, 1), we prove the dimension independent convergence rate 2/p− 1 in terms of number N
of quadrature points. The proposed Smolyak algorithm is proved to yield (essentially) the same
rate in terms of the total computational cost and memory consumption. Numerical experiments
and a mathematical sparsity analysis accounting for cancellations in quadratures and in the
combination formula demonstrate that the asymptotic rate 2/p − 1 is achieved for a moderate
number of quadrature points provided the integrand’s deviation around its mean is small. By a
refined analysis of model integrand classes we show that a generally large preasymptotic range
otherwise precludes reaching the asymptotic rate 2/p − 1 for practically relevant numbers of
quadrature points.
Key words: generalized polynomial chaos, Smolyak Quadrature, sparsity, holomorphy

1 Introduction

The efficient numerical approximation of formally infinite-dimensional integrals

∫

U

u(y)dµ(y), (1.1)

of strongly µ-measurable, parametric maps u : U → X where U = [−1, 1]N, X is a Banach space
and where µ denotes the product probability measure

⊗

j∈N
λ/2 with λ being the Lebesgue

measure on [−1, 1] is a key problem in computational uncertainty quantification (“UQ” for
short). In computational UQ, the integrand function u in (1.1) is implicitly given as solution of
a so-called forward model, typically an operator equation parametrized by a sequence y ∈ U . The
parameter sequences y can, for example, describe distributed uncertain constitutive relations or
uncertain geometric shape. Equation (1.1) then describes an “ensemble average” (with respect
to µ) of the parametric solution, over all admissible realizations of the uncertainty.

The high (in this case infinite) dimension of the integration domain U demands the integrand
to possess appropriate sparsity properties in order to make a numerical computation feasible,
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and overcome the so-called curse of dimensionality. For this reason, the integrand is typically
assumed to be very smooth, e.g. to allow a bounded holomorphic extension into certain cylin-
drical subsets of CN: here, as in [23], we consider parametric integrands which are holomorphic
in cartesian products of discs with increasing radii. The rate at which those radii increase is
a measure of the sparsity of the function, and as was observed in [34, 24, 23] and as we shall
precise below, governs the (dimension-independent) rate of convergence of the quadrature.

Throughout, we shall work under an assumption of this type which is known as (b, ε)-
holomorphy and has similarly been employed in several papers [11, 12, 10]. It is made precise
in Assumption 2.1. In the context of parametrized differential equations (PDEs), this kind of
sparsity can be verified for a large variety of linear and nonlinear equations see for example
[10, 28, 26, 13, 30], to which our new results may consequently be applied.

One possibility to numerically approximate the integral (1.1) is with a Monte Carlo method.
Its advantage is that the convergence rate does not depend on the dimension of the integration
domain. Its main disadvantage is the notoriously slow convergence rate of 1/2. For this reason,
quasi Monte Carlo (QMC) methods exploiting the integrands’ sparsity to attain higher order
dimension-independent rates have been developed; we refer to [15, 17], to the surveys [18, 32]
and to the references there. QMC quadrature is free from the curse of dimensionality, and
additionally retains the Monte-Carlo feature of “embarrassingly parallel” integrand evaluation
at the quadrature points. For high numbers of computationally intensive function evaluations
(as arise in numerical PDE solution in the context of computational UQ) this becomes an
important feature.

The present error analysis is based on so-called generalized polynomial chaos (“gpc” for
short) expansions of the parametric integrand function. Expansions of gpc type have proved a
valuable tool in regularity and sparsity analysis of countably-parametric functions taking values
in a Banach space X; we refer to [40, 11, 12, 10] and to the survey [38] and the references
there. The idea is to expand the integrand in a polynomial basis, and approximate the integral
(1.1) with an interpolatory quadrature rule that is exact for the terms contributing most in the
expansion. Such reasoning gives best N -term results, but in practice the optimal set of quadra-
ture points is not known. The effectiveness of the method is due to the high smoothness of the
integrand (it is holomorphic on certain sets), which is why polynomial approximations converge
very fast. We refer to [41] and [20, 4] for a general description of sparse grid quadrature. For
our proofs, as a basis we shall use the monomials, i.e. as in [40, 12, 10], we consider Taylor gpc
expansions around 0 = (0, 0, . . . ) ∈ U . Unconditional convergence of such Taylor gpc expansion
stipulates holomorphy of the integrand in polydiscs around 0. We choose the monomials for
ease of presentation, but point out that a more general theory may be obtained by consider-
ing expansions in orthogonal bases such as the Legendre polynomials. Those merely require
holomorphy on ellipses (cp. [10]), which results in weaker assumptions and will be worked out
in [42]. The question remains on how to choose the quadrature points such that possibly few
function evaluations result in a minimal error. In [21] an adaptive strategy has been proposed.
The algorithm does not allow for parallel function evaluations in general however. Nonetheless,
it delivers good results and has also been applied for parametrized PDEs in [37]. In the case
of apriorily chosen quadrature points, the convergence for isotropic and anisotropic sparse grids
was investigated in [2, 35, 34], and more recently in [24, 23]. The last two papers can be consid-
ered as the closest to ours. Numerical experiments in these works often revealed much better
convergence rates, than what the theoretical findings suggested, see in particular [37, 24].

The aim of the present paper is to prove new convergence rates for an apriori choice of the
sparse grid, which are stated in Thm. 3.3, Cor. 3.13. This will also shed some new light on the
previously observed discrepancy between the observed convergence rates, and the proven ones.
As a general idea, we use the known information on the function as stated in Assumption 2.1 and
presumed throughout, to estimate the norm of the Taylor coefficients. Based on these estimates,
a sparse grid is defined. The crucial observation, allowing us to improve earlier estimates, is then
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the following: The linear term y 7→ y has integral 0 over [−1, 1], and is integrated exactly by the
one point Gauss rule (i.e. by an evaluation at y = 0 multiplied with the weight 1 corresponding
to the measure λ/2). Consequently, we shall see that any polynomial in the multivariate Taylor
expansion containing a linear term will always be integrated exactly by our quadrature operator.
Subsequently, it is shown that the remaining Taylor coefficients in our setting have twice the
decay rate of the one including all Taylor coefficients. This has a severe impact on the asymptotic
convergence rate, and indeed our new results improve previously established convergence rates,
given integrand sparsity, by more than a factor two. This last point will be discussed in more
detail in the later sections, see in particular Rmk. 3.5 and Examples 4.1, 4.2.

The second contribution concerns an algorithm to efficient predict sequences of active gpc
indices which are near optimal, and a bound on their complexity. Whereas many authors
consider the number of quadrature points as a measure for the work, in fact, due to its structure
based on differences of tensor product quadratures, the actual cost of the Smolyak algorithm does
in general not behave linearly in the number of quadrature points. The mentioned convergence
rates are therefore proven with respect to the total number of quadrature points in case of
nested point sets such as Leja points, see Rmk. 3.1 and Thm. 3.3. In addition, we show that
essentially the same rate can be obtained also for non-nested point sets, such as the Gauss
points, see Cor. 3.13. Finally, this rate is also proven in terms of the total number of floating
point operations, as is also stated in Cor. 3.13. The proven rates are asymptotic, and might not
always be observable in the range of “small” numbers of quadrature points that are realizable
in practice, as our numerical experiments and further analysis of particular model parametric
integrand families in Section 4 reveal.

1.1 Outline

This paper is structured as follows: In Section 1.2 we set up notation and state a few assumptions
used throughout. Section 2 deals with the decay of the Taylor coefficients, for functions exhibit-
ing the sparsity properties of Assumption 2.1. The main result of the section is Thm. 2.11. In
Section 3 we briefly recall the Smolyak algorithm, and then prove a first convergence result in
Thm. 3.3. In Section 3.2 a finer investigation of the error in terms of the algorithm’s complexity
is conducted, and the results are summarized in Cor. 3.13. Finally, Section 4 is devoted to
numerical experiments. We give more details on the implementation in Section 4.1. As already
mentioned above, a large preasymptotic range is observed in certain situations. This is numer-
ically investigated in Section 4.2, and we give heuristic arguments why it occurs. Finally, in
Section 4.3 the convergence of our algorithm is tested for two exemplary real valued functions.

1.2 Notation and preliminaries

Throughout we let N = {1, 2, . . . } and N0 := N ∪ {0}. The symbol C will stand for a generic,
positive constant independent of any quantities determining the asymptotic behaviour of an
estimate. It may change even within the same formula.

Multiindices are denoted by ν = (νj)
M
j=1 ∈ N

M
0 where either M ∈ N or M = ∞. For the

order of a multiindex we write |ν| :=∑M
j=1 νj and introduce the countable set

F := {ν ∈ N
N

0 : |ν| <∞}. (1.2)

The notation suppν stands for the support of the multiindex, i.e. the set {j ∈ {1, . . . ,M} :
νj 6= 0}, so that F consists of all finitely supported multiindices in N

N
0 . A subset Λ ⊆ F is

labelled downward closed, if ν = (νj)j≥1 ∈ Λ implies µ = (µ)j≥1 ∈ Λ for all µ ≤ ν, by which
we mean µj ≤ νj , for all j ≥ 1. For p > 0 we let ℓp(F) be the space of R-valued sequences
t = (tν)ν∈F , satisfying ‖t‖ℓp := (

∑

ν∈F t
p
ν)

1/p <∞.
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Let again M ∈ N ∪ {∞}. As a topology on C
M we choose the product topology, and any

subset such as [−1, 1]M is equipped with the subspace topology. For a ball of radius ε > 0 in C

we write Bε ⊆ C, and clos(Bε) ⊆ C for the closed ball. Furthermore BM
ε :=×M

j=1
Bε ⊆ C

M .

Moreover, the set [−1, 1]M is considered as a probability space with the Borel sigma algebra

and the (possibly countable) product measure µ :=
⊗M

j=1 λ/2, where λ denotes the Lebesgue
measure on [−1, 1]. For simplicity, the notation for µ does not reflect the dependence of µ on
M . This will not be mentioned at every instance, and integrals or Lq-norms for q ∈ [1,∞]
over [−1, 1]M are always understood with respect to this measure. Elements of CM are denoted
by boldface characters such as y = (yj)

M
j=1 ∈ [−1, 1]M . The standard multivariate notations

yν :=
∏M

j=1 y
νj

j and ν! =
∏M

j=1 νj ! will be employed.
Finally, for a Banach space X over R or C we introduce its complexification XC: By XC we

mean elements in the set XC := X + iX, with i denoting the imaginary unit in C. The vector
space XC is endowed with the norm ‖x1+ix2‖XC

:= sup0≤t≤2π ‖x1 cos t−x2 sin t‖X . This norm
extends the norm on X (cf. [33]). In case X is already a Banach space over C, we have XC = X
with equivalent norms, which is why we do not distinguish between the two in this case.

2 Summability of Taylor coefficients

With U := [−1, 1]N, consider u : U → X, for some fixed Banach space X over R or C. In the
following we are concerned with the Taylor expansion

u(y) =
∑

ν∈F
uνy

ν (2.1)

of u and the summability properties of the Taylor coefficients (‖uν‖X)ν∈F .

2.1 (b, ε) Holomorphy

For the formal gpc expansion (2.1) to be meaningful, p-summability of the sequence of (norms
of) the Taylor coefficients {uν}ν∈F ⊂ X is required for some 0 < p ≤ 1. A sufficient condition
on the parametric map U ∋ y 7→ u(y) ∈ X is the following assumption, which has similarly
been stated in [11] and [10]. It will be employed in Sec. 2.3.

Assumption 2.1 ((b, ε)-Holomorphy). Assume given a sequence b = (bj)j∈N of positive reals
bj such that b ∈ ℓp(N) for some p ∈ (0, 1], and such that bj is monotonically decreasing.

We say that ρ ∈ [1,∞)N is (b, ε)-admissible for some ε > 0 if

∑

j∈N

bj(ρj − 1) ≤ ε . (2.2)

With
Ob :=

⋃

{ρ :ρ is (b, ε)-admissible}
clos(Bρ) ⊆ C

N , (2.3)

the function u : Ob → XC is continuous. Moreover u is holomorphic on an open superset of Ob as
a function of each yj. Additionally, there exists a constant Cu <∞ such that supy∈Ob

‖u‖XC
≤

Cu.

In case u satisfies Assumption 2.1, we will also say that u is (b, ε)-holomorphic. Note that by
continuity in the above assumption we mean continuity with respect to the subspace topology
on Oρ ⊆ C

N, where C
N is equipped with the product topology. We now recall the well-known

fact, that the Taylor expansion in (2.1) converges on finite dimensional polydiscs in C
M ,M ∈ N.

In the following, by an absolutely convergent series (tν)ν∈F ∈ Y S , with Y some Banach space
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and S some countable set such as F , we mean a sequence for which there exists a bijection
π : N → S such that the sum

∑

j∈N
‖tπ(j)‖Y converges. This is sensible due to the countability

of S, and the fact that the existence of one such bijection guarantees the series to converge for
any bijection π : N → S. In the below proposition, for ρ = (ρj)

M
j=1 we write clos(Bρ) to denote

the closed polydisc×M

j=1
clos(Bρj ) ⊆ C

M , M <∞.

Proposition 2.2. Let M ∈ N and ρ = (ρj)
M
j=1 ∈ (1,∞)M . Suppose that u : O → X is

holomorphic on the open superset O ⊇ clos(Bρ) and satisfies supy∈clos(Bρ) ‖u‖XC
≤ Cu < ∞.

Then, for y ∈ [−1, 1]M , u allows the expansion

u(y) =
∑

ν∈NM
0

uνy
ν where uν =

1

ν!

∂u(y)

∂yν1
1 . . . ∂yνM

M

∣
∣
∣
y=0

∈ X, (2.4)

which is absolutely convergent in L∞([−1, 1]M , X). It holds

‖uν‖X ≤ Cuρ
−ν . (2.5)

The bound (2.5) is a consequence of the Cauchy integral theorem [27, Thm. 2.1.2], see the
proof of [11, Lemma 2.4]. The convergence of the series (2.4) is for example discussed in [27,
Sec. 2.1].

In the next subsection, we proceed with proving and recalling summability results for real
valued sequences. Those will then serve to verify ℓp-summability of certain subsequences of
(‖uν‖X)ν∈F in Section 2.3 under the holomorphy Assumption 2.1.

2.2 ℓp-summability of multiindex sequences

We give here a variant of Lemma 7.1 and Thm. 7.2 in [11]. Let in the following α = (αj)j∈N be
a sequence (not necessarily monotonic) of nonnegative numbers.

Definition 2.3. For k ∈ N, define Fk := {ν ∈ {0, k, k + 1, . . . }N : |ν| <∞}.
Lemma 2.4. For p ∈ (0,∞) and k ∈ N, the sequence (αν)ν∈Fk

belongs to ℓp/k(Fk), iff
‖α‖ℓp(N) <∞ and ‖α‖ℓ∞(N) < 1.

Proof. Observe that ‖α‖ℓ∞ < 1 and ‖α‖ℓp < ∞ are necessary, since (α
lp/k
j )l∈N, j ∈ N, and

(αp
j )j∈N are all subsequences of (ανp/k)ν∈Fk

.
On the other hand, we have

‖αν‖p/k
ℓp/k(Fk)

=
∑

ν∈Fk

ανp/k =
∏

j∈N



1 +
∑

{l : l≥k}
α
lp/k
j



 =
∏

j∈N

(

1 +
α
pk/k
j

1− α
p/k
j

)

= exp




∑

j∈N

log

(

1 +
αp
j

1− α
p/k
j

)

 ≤ exp




∑

j∈N

αp
j

1− α
p/k
j



 ≤ exp

(

1

1− ‖α‖p/kℓ∞

‖α‖pℓp
)

.

Lemma 2.5. Let ρ > 1 and k ∈ N. Then there exist a constant Ck such that for all 0 6= ν ∈ F
with kν = (kνj)j∈N ∈ F

(2π)(1−k)/2

( |ν|!
ν!

)k

≤ |kν|!
(kν)!

≤ e(2π)−k/2C
| supp ν|
k ρ|ν|

( |ν|!
ν!

)k

. (2.6)
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Proof. We begin with the lower bound. Using Stirling’s inequalities
√
2πnn+1/2 exp(−n) ≤ n! ≤

nn+1/2 exp(−n+ 1) (see for example [36]) we get

|kν|!
(kν)!

≥
√
2π(k|ν|)k|ν|+1/2 exp(−k|ν|)

∏

j∈supp ν(kνj)
kνj+1/2 exp(−kνj + 1)

=

√
2π

exp(| suppν|)
kk|ν|+1/2

kk|ν|+| supp ν|/2
|ν|k|ν|+1/2 exp(−k|ν|)

∏

j∈supp ν ν
kνj+1/2
j exp(−kνj)

=

√
2πk(1−| supp ν|)/2

exp(| suppν|)
(2π)−k/2|ν|(1−k)/2(

√
2π|ν||ν|+1/2 exp(−|ν|))k

∏

j∈supp ν exp(−k)ν(1−k)/2
j (ν

νj+1/2
j exp(−νj + 1))k

≥ (2π)(1−k)/2

(
exp(k)

k1/2 e

)| supp ν|(∏
j∈supp ν νj

|ν|

)(k−1)/2( |ν|!
ν!

)k

. (2.7)

We claim that

f(ν) :=

(
exp(k − 1)

k1/2

)| supp ν|(∏
j∈supp ν νj

|ν|

)(k−1)/2

≥ 1, (2.8)

for all 0 6= ν ∈ F which then gives the assertion. In order to see this we use induction on
n = |ν|. The case n = 1 is trivial because exp(k − 1)/k1/2 ≥ 1 for all k ∈ N and the expression
involving the multiindex ν in the right-hand side of(2.7) equals one if | suppν| = 1 (which holds
in particular if |ν| = 1). For the induction step let ei = (δji)j∈N and presume the induction
hypothesis f(ν) ≥ 1 for arbitrary but fixed ν ∈ F with |ν| = n. First assume i ∈ suppν so
that | suppν| = | supp(ν + ei)|. Then

f(ν + ei) ≥ f(ν) ⇔
(νi + 1)

∏

j 6=i νj

|ν|+ 1
≥
∏

j νj

|ν| ⇔ νi + 1

|ν|+ 1
≥ νi

|ν| , (2.9)

which is true so that f(ν + ei) ≥ f(ν) ≥ 1. Next let i /∈ suppν. Then
∏

j∈supp ν νj =
∏

j∈supp(ν+ei)
(ν + ei)j and with n = |ν|

f(ν + ei)

f(ν)
=

exp(k − 1)

k1/2

(
n

n+ 1

)(k−1)/2

≥ exp(k − 1)

k1/2

(
1

2

)(k−1)/2

=: g(k). (2.10)

We have g(1) = 1. Moreover for k ≥ 1

g′(k) =
exp(k − 1)2(1−k)/2

((

1− log(2)
2

)√
k − 1

2
√
k

)

k
≥ 0, (2.11)

which shows g(k) ≥ g(1) ≥ 1 for all k ∈ N and therefore f(ν + ei) ≥ f(ν) ≥ 1 by (2.10). This
concludes the proof of the claim (2.8) which further implies the lower bound in (2.6).

For the upper bound, we use again Stirling’s inequalities to obtain

|kν|!
(kν)!

≤ (k|ν|)k|ν|+1/2 exp(−k|ν|+ 1)
∏

j∈supp ν

√
2π(kνj)kνj+1/2 exp(−kνj)

=
e(2π)−k/2|ν|(1−k)/2(

√
2π|ν||ν|+1/2 exp(−|ν|))k

∏

j∈supp ν

√
2π exp(−k)ν(1−k)/2

j (ν
νj+1/2
j exp(−νj + 1))k

≤ e(2π)−k/2|ν|(1−k)/2

(
√
2π exp(−k))| supp ν|∏

j∈supp ν ν
(1−k)/2
j

( |ν|!
ν!

)k

≤ e(2π)−k/2

(
exp(k)√

2π

)| supp ν| ∏

j∈supp ν

ν
(k−1)/2
j

( |ν|!
ν!

)k

. (2.12)
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Since ρ > 1, there exists a constant C̃ such that n(k−1)/2 ≤ C̃ρn for all n ∈ N. Thus
∏

j∈supp ν ν
(k−1)/2
j ≤ C̃ | supp ν|ρ|ν|. The upper bound in (2.6) then follows via (2.12) with

Ck := C̃ exp(k)(2π)−1/2.

Lemma 2.6. Let p ∈ (0, 1] and k ∈ N. Then the sequence (αν |ν|!/ν!)ν∈Fk
belongs to ℓp/k(Fk)

iff ‖α‖ℓp <∞ and ‖α‖ℓ1 < 1.

Proof. Without loss of generality, we assume throughout αj > 0 for all j ∈ N. The proof of [11,
Thm. 7.2] covers the case k = 1, p = 1. Then

∑

ν∈F

|ν|!
ν!

αν =
∑

l≥0




∑

j∈N

αj





l

=
1

1− ‖α‖ℓ1(N)
<∞, (2.13)

which, due to F1 = F , gives (αν)ν∈F1
∈ ℓ1(F1) iff ‖α‖ℓ1 < 1.

The stated necessity of ‖α‖ℓp < ∞ (for general p and k) is clear, since (αp
j )j∈N is a subse-

quence of ((αν |ν|!/ν!)p/k)ν∈Fk
. In order to verify necessity of ‖α‖ℓ1 < 1, it is sufficient to do

so for p = 1. So let now k > 1, p = 1. With Lemma 2.5 it then holds

∑

ν∈Fk

(

αν |ν|!
ν!

)1/k

≥
∑

ν∈F

(

αkν |kν|!
kν!

)1/k

≥ C
∑

ν∈F

(

αkν

( |ν|!
ν!

)k
)1/k

= C
∑

ν∈F
αν |ν|!

ν!
.

(2.14)
According to (2.13), the last sum is finite iff ‖α‖ℓ1 < 1.

Since k = 1, p = 1 has been treated in (2.13), it remains to prove that our assumptions are
sufficient for k > 1, p ∈ (0, 1] and k = 1, p ∈ (0, 1). We begin again with the case k > 1, p = 1,
and claim that for every ν ∈ Fk, there exists µ ∈ {0, k, 2k, . . . }N such that

αν |ν|!
ν!

≤ kk| supp ν|αµ |µ|!
µ!

and |νj − µj | < k ∀ j ∈ N. (2.15)

For ν ∈ Fk fixed, we construct µ as follows: let j such that νj /∈ {0, k, 2k, . . . }, which by
definition of Fk implies in particular νj > k. Assume first that

α−1
j

νj
|ν| ≥ 1. (2.16)

Then for r ∈ {1, . . . , k − 1}

α−1
j

νj − r

|ν| − r
= α−1

j

νj
|ν|

|ν|
|ν| − r

νj − r

νj
≥ νj − r

νj
≥ 1

k
, (2.17)

because νj > k and r < k. With µ̃i := νi for i 6= j and µ̃j := max{nk : n ∈ N, nk ≤ νj}, we
have |νj − µ̃j | < k and

αν |ν|!
ν!

≤ αν |ν|!
ν!

kνj−µ̃j

νj−µ̃j∏

r=1

α−1
j

νj − r

|ν| − r
= kνj−µ̃jαµ̃ |µ̃|!

µ̃!
≤ kkαµ̃ |µ̃|!

µ̃!
. (2.18)

On the other hand, if (2.16) does not hold, then αj |ν|/νj > 1 and therefore for r ∈ {1, . . . , k−1}

αj
|ν|+ r

νj + r
≥ αj

|ν|
νj

|ν|+ r

|ν|
νj

νj + r
≥ νj
νj + r

≥ 1

k
. (2.19)
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With µ̃i := νi for i 6= j and µ̃j := min{nk : n ∈ N, nk ≥ νj}, we then have |µ̃j − νj | < k and
similar as before

αν |ν|!
ν!

≤ αν |ν|!
ν!

kµ̃j−νj

µ̃j−νj∏

r=1

αj
|ν|+ r

νj + r
= kµ̃j−νjαµ̃ |µ̃|!

µ̃!
≤ kkαµ̃ |µ̃|!

µ̃!
. (2.20)

Repeating this procedure for all j with νj /∈ {0, k, 2k, . . . }, we find µ satisfying (2.15). Next,
note that for µ ∈ Fk with µj ∈ {0, k, 2k, . . . }, j ∈ N,

|{ν ∈ Fk : |νj − µj | < k, ∀ j ∈ N}| ≤ (2k − 1)| suppµ|. (2.21)

With µ(ν) denoting the above constructed multiindex satisfying (2.15), we then get with (2.21)

∑

ν∈Fk

(

αν |ν|!
ν!

)1/k

≤
∑

ν∈Fk

k| supp ν|
(

αµ(ν) |µ(ν)|!
µ(ν)!

)1/k

≤
∑

ν∈F
(2k−1)| supp ν|k| supp ν|

(

αkν |kν|!
(kν)!

)1/k

.

(2.22)
Now let ρ > 1 so small that ‖ρ1/kα‖ℓ1 < 1, which is possible because ‖α‖ℓ1 < 1 by assumption.
Then, employing Lemma 2.5, we further bound the right-hand side of (2.22) by

C
∑

ν∈F
(k(2k − 1))| supp ν|C | supp ν|

k (ρ1/kα)ν
|ν|!
ν!

≤ C
∑

ν∈F
C̃

| supp ν|
k (ρ1/kα)ν

|ν|!
ν!

, (2.23)

with C̃k := k(2k − 1)Ck. Now let J ∈ N be so large that with α̃j := ρ1/kαj if j ≤ J and

α̃j := C̃kρ
1/kαj if j > J , it holds ‖α̃‖ℓ1 < 1. With this choice, by (2.22), (2.23) we arrive at

∑

ν∈Fk

(

αν |ν|!
ν!

)1/k

≤ CC̃
J/k
k

∑

ν∈F
α̃ν |ν|!

ν!
<∞, (2.24)

which is finite by (2.13) and because ‖α̃‖ℓ1 < 1. This concludes the proof for k > 1, p = 1.
Finally let k ≥ 1 and p ∈ (0, 1). As shown in the proof of [11, Thm. 7.2], with p′ := p/(1−p)

one can construct sequences γ, δ such that

‖γ‖ℓ1(N) < 1, ‖δ‖ℓ∞(N) < 1, ‖δ‖ℓp′ (N) <∞ and αj ≤ δjγj ∀ j ∈ N (2.25)

(essentially γj ∼ αp
j and δj ∼ α1−p

j ). We get

∑

ν∈Fk

(

αν |ν|!
ν!

)p/k

≤
∑

ν∈Fk

(

γν |ν|!
ν!

)p/k

δp/k ≤
(
∑

ν∈Fk

(

γν |ν|!
ν!

)1/k
)p(

∑

ν∈Fk

δ
ν

p
k(1−p)

)1−p

.

(2.26)
Using (2.25), the first sum is finite by the statement for p = 1 shown in (2.24), and the second one
since (δν)ν∈Fk

∈ ℓp
′/k(Fk) according to Lemma 2.4. This proves (αν |ν|!/ν!)ν∈Fk

∈ ℓp/k(Fk).

2.3 ℓp-summability of Taylor coefficients

We now show that under Assumption 2.1, the Taylor coefficients of u as in (2.1) are in ℓp/k(Fk).
This improved summability is the essential property in order to verify improved, dimension-
independent algebraic convergence rates for suitably adapted Smolyak quadratures, see Sec. 3.
N term approximation rate bounds for Taylor and other gpc expansions have previously been
established by several authors, we only mention [11, 12, 10] and the references therein. Our new
contribution here is twofold: first, instead of F we consider the smaller set Fk and in particular
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F2, which as we shall see in Section 3, is better suited for analyzing Smolyak-style quadrature
algorithms. Our second contribution concerns a computable estimator bounding the norm of the
Taylor coefficients. We show that, without loss of convergence order, it can be chosen constant
on certain subsets of F . This is to be contrasted with greedy computational schemes based
on computational solution of knapsack problems as, for example, in [4, 3]. Our new, a-priori
construction allows to localize the multiindex set for the Smolyak quadrature in near linear
complexity (work and memory), as explained in Section 3.2.

Before stating our theorem, we introduce the set Z and show two simple lemmata. The
meaning of Z is essentially, that our subsequently presented algorithm will only operate on
indices in (a set like) ZN ∩ F , allowing to reduce the overall complexity.

Assumption 2.7. The set Z = {ζj : j ∈ N0} ⊆ N0 consists of the strictly monotonically
growing, nonnegative sequence (ζj)j∈N0 , where ζ0 = 0 and ζ1 = 1. There exists a constant
1 ≤ CZ <∞ such that

∀j ∈ N : ζj+1 − ζj ≤ CZ(ζj − ζj−1). (2.27)

This assumption basically states that ζj grows at most exponentially:

ζj+1 ≤ CZζj + (ζj − CZζj−1) ≤ (1 + CZ)ζj . (2.28)

With Z ⊆ N0 as in the assumption and, for a real number x ≥ 0, define

⌊x⌋Z := max{a ∈ Z : a ≤ x} and ⌈x⌉Z := min{a ∈ Z : a ≥ x}. (2.29)

Application to sequences of these operators is understood componentwise. For future reference,
we note that by (2.28) for any n ∈ N with ⌊n⌋Z = ζj

n

1 + CZ
≤ ζj+1 − 1

1 + CZ
<

ζj+1

1 + CZ
≤ ζj = ⌊n⌋Z . (2.30)

Lemma 2.8. Let Assumption 2.7 be satisfied. Let (tν)ν∈F be a nonnegative monotonically
decreasing sequence, i.e. tν ≥ tµ whenever ν ≤ µ componentwise. Then

∑

ν∈F
t⌊ν⌋Z ≤

∑

ν∈F
C

| supp ν|
Z tν . (2.31)

Proof. Let A := {0 6= ν ∈ F : νj ∈ Z ∀j}, and for each µ ∈ A let µ+ ∈ A such that
µ+
j = ⌈µj + 1⌉Z if µj > 0 and µ+

j = µj = 0 otherwise. Similarly µ− ∈ A is such that

µ−
j = ⌊µj − 1⌋Z if µj > 0 and µ−

j = µj = 0 otherwise. Then for µ ∈ A

[µ,µ+) := {ν ∈ F : µj ≤ νj < µ+
j if µj > 0, νj = 0 otherwise}, (2.32)

and
(µ−,µ] := {ν ∈ F : µ−

j < νj ≤ µj if µj > 0, νj = 0 otherwise}. (2.33)

Note that these sets are nonempty, and any ν ∈ (µ−,µ] ∪ [µ,µ+) satisfies suppν = suppµ.
For every 0 6= ν ∈ F there exists a µ ∈ A with ν ∈ [µ,µ+), namely µ = ⌊ν⌋Z . Furthermore
if µ, η ∈ A with µ 6= η, then for at least one j it holds wlog 0 ≤ µj < ηj and thus µ+

j ≤ ηj .

Distinguishing between the cases j ∈ suppµ, j /∈ suppµ we easily conclude [µ,µ+)∩[η,η+) = ∅.
Consequently we have the partition

F\{0} =
⋃̇

µ∈A
[µ,µ+), (2.34)

where ∪̇ denotes the union of disjoint sets. Before estimating the sum in (2.31), we also point
out that by a similar argument as above (µ−,µ] ∩ (η−,η] = ∅ if µ, η ∈ A with µ 6= η.
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Let µ ∈ A and j ∈ suppµ, i.e. 0 < µj ∈ Z. Then µ−
j < µj < µ+

j , and due to Assumption

2.7, µ+
j − µj ≤ CZ(µj − µ−

j ). Therefore, for µ ∈ A

|[µ,µ+)| =
∏

j∈suppµ

(µ+
j − µj) ≤

∏

j∈suppµ

CZ(µj − µ−
j )

= C
| suppµ|
Z

∏

j∈suppµ

(µj − µ−
j ) = C

| suppµ|
Z |(µ−,µ]|. (2.35)

Moreover, if ν̃ ∈ (µ−,µ] and ν ∈ [µ,µ+), then ν̃ ≤ µ ≤ ⌊ν⌋Z and by monotonicity tν̃ ≥ tµ ≥
t⌊ν⌋Z . Hence with (2.34)

∑

0 6=ν∈F
t⌊ν⌋Z =

∑

µ∈A

∑

ν∈[µ,µ+)

t⌊ν⌋Z ≤
∑

µ∈A

C
| suppµ|
Z

∑

ν∈(µ−,µ]

tµ ≤
∑

0 6=ν∈F
C

| supp ν|
Z tν , (2.36)

where for the last inequality we have used 0 /∈ (µ−,µ] and (µ−,µ] ∩ (ν−,ν] = ∅ whenever
µ 6= ν, µ, ν ∈ A, as pointed out above. This concludes the proof.

In the previous Lemma we required ζ1 = 1 as presumed in Assumption 2.7, to avoid an infinite
number of multiindices being rounded to 0: if ζ1 > 1, then ⌊ν⌋Z = 0 for all ν ∈ {0, 1}N ∩ F .

Lemma 2.9. Let p ∈ (0,∞) and (tj)j∈N nonnegative and monotonically decreasing. Then, for
all N ∈ N,

tN ≤
( N∑

j=1

tpj

) 1
p

N− 1
p . (2.37)

Proof. This follows from Hölder’s inequality: assume p ∈ (0, 1) and define p̃ := 1
p ∈ [1,∞) and

its Hölder conjugate q̃ = 1
1−p ∈ [1,∞). Since tj is monotonically decreasing,

tp
2

N ≤ 1

N

N∑

j=1

tp
2

j ≤ 1

N

( N∑

j=1

(tp
2

j )p̃
) 1

p̃
( N∑

j=1

1q̃
) 1

q̃

=

( N∑

j=1

tpj

)p

N−p . (2.38)

For p ≥ 1, tN ≤ N−1
∑N

j=1 tj ≤ N−1(
∑N

j=1 t
p
j )

1/pN1−1/p.

Definition 2.10. The space ℓpm(F) consists of all ℓp(F) sequences (tν)ν∈F , for which the mono-
tone majorant tmν := supµ≥ν tµ is also in ℓp.

We are now in position to formulate the following theorem, which is an extension of some
results given in [11], [10], see in particular [11, Thm. 1.3], [10, Thm. 2.2]. The first item states
that the Taylor coefficients corresponding to the multiindices in Fk are in ℓp/k. The second item,
which gives further information on the estimator bounding the norm of the Taylor coefficients,
will become relevant when analyzing the complexity of our algorithm in Sec. 3.2.

Theorem 2.11. Let k ∈ N, 0 ≤ τ < ∞ and Assumption 2.7 be satisfied. Let U := [−1, 1]N

and let u : U → X be (b, ε)-holomorphic, i.e. u satisfies Assumption 2.1 with b ∈ ℓp for some
p ∈ (0, 1) and q < p. Then

(i) there exists C independent of u, as well as a sequence (tν)ν∈F ∈ ℓpm(F) such that with Cu

as in Assumption 2.1, and uν as in (2.4)

‖uν‖X
∏

j∈N

(νj + 1)τ ≤ CCutν ∀ ν ∈ F , (2.39)

and (2.1) holds in the sense of absolute convergence in L∞(U,X). Moreover, there exists
a monotonically decreasing majorant (mν)ν∈F of the extension by zero of (tν)ν∈Fk

to F
satisfying (mν)ν∈F ∈ ℓp/k(F). This sequence depends on b, ε, τ but is independent of u,
Cu.
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(ii) With x 7→ g(x) and x 7→ h(x) defined for x ≤ m0 by

g(x) := min{d ∈ N0 : sup
{ν∈F : maxj νj≥d}

mν ≤ x}, (2.40a)

h(x) := min{d ∈ N0 : sup
{ν∈F : | supp ν|≥d}

mν ≤ x}, (2.40b)

it holds
g(x) = O(− log(x)), h(x) = o(− log(x)) as x→ 0. (2.41)

Additionally, with Zk := {0, 1} ∪ {a ∈ Z : a > k}
mν = mµ if and only if ⌊ν⌋Zk

= ⌊µ⌋Zk
(2.42)

and rearranging the sequence (mν)ν∈F to a monotonically decreasing sequence (mj)j∈N it
holds Cmj ≥ j−k/q.

Proof. We proceed in four steps. In the first two steps tν as stated in the Theorem is constructed,
and the absolute convergence of (2.1) is verified. In the third step we introduce mν , and finally
in the fourth step the properties in item (ii) are shown.

1st Step: We introduce the estimator tν in the spirit of [12, Sec. 3] and [10], and prove some
summability properties. The construction is shortly recalled since we need some additional
properties not mentioned in the cited references, and also to make the proof self-contained. The
idea is to appropriately choose ρ in (2.5) using Assumption 2.1. With B ≥ 1 fixed for the
moment (and chosen subsequently) we now construct tν depending on B. To this end we first
observe that it is possible to find constants κ0 > 1, δ > 0, Cτ > 1 and J ∈ N with the properties

(1+n)τ ≤ Cτκ
n
0 ∀ n ∈ N, (κ20−1)

J∑

j=1

bj +κ1
∑

j>J

bj < ε−δ, and
∑

j>J

bj <
δB−k/p

Cτκ0 e
, (2.43)

where κ1 := eCτκ0 and e = exp(1). They are obtained employing ‖b‖ℓ1 < ∞ to choose κ0 > 1
with (κ20−1)

∑

j∈N
bj < ε−2δ for some δ > 0, then Cτ such that (1+n)τ ≤ Cτκ

n
0 and afterwards

J ∈ N large enough such that κ1
∑

j>J bj < δ and the last condition in (2.43) hold.
In the following for ν ∈ F , νE denotes the multiindex which coincides with ν in the first

J components and is zero otherwise. Furthermore νF := ν − νE and FG := {νG : ν ∈ F},
G ∈ {E,F}. Set

ρν;j :=

{

κ20 if j ≤ J,

max
{

κ1,
δνj

|νF |bj

}

if j > J.
(2.44)

Then with (2.43)

∑

j∈N

(ρν;j−1)bj ≤ (κ20−1)
J∑

j=1

bj+
∑

j>J

ρν;jbj ≤ (κ20−1)
∑

j∈N

bj+κ1
∑

j>J

bj+δ
∑

j>J

νj
|νF |

≤ ε, (2.45)

i.e. ρν is (b, ε)-admissible in the sense of Assumption 2.1. Therefore, with Cu and Cτ as in (2.5)
and with (2.43),

1

Cu
‖uν‖X

∏

j∈N

(νj + 1)τ ≤



C | supp ν|
τ

∏

j∈supp ν

κ
νj

0




∏

j∈N

ρ
−νj

ν;j

≤ C | supp ν|
τ κ

|ν|
0

J∏

j=1

κ
−2νj

0

∏

j>J

max

{

κ1,
δνj

|νF |bj

}−νj

≤ CJ
τ

J∏

j=1

κ
−νj

0

∏

j>J

max

{
κ1
Cτκ0

,
δνj

Cτκ0|νF |bj

}−νj

=: tν . (2.46)
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We point out that κ1/(Cτκ0) = e by definition of κ1.
We now prove that tν is monotonically decreasing in ν. For j ≤ J and with ej := (δji)i∈N,

since κ0 > 1 we have tν+ej
≤ κ−1

0 tν < tν . Next, fix j > J . Note that

max

{

e,
δνj

Cτκ0|νF |bj

}

= max

{

e,
δνj

Cτκ0bj(νj +
∑

{i>J : i 6=j} νi)

}

(2.47)

is monotonically growing as a function of νj , and the maximum is always larger or equal to e.
Therefore

tν+ej

tν
≤ e−1

∏

{i>J : i 6=j}

max
{

e, δνi

Cτκ0|νF |bi

}νi

max
{

e, δνi

Cτκ0(|νF |+1)bi

}νi
≤ e−1

(

1 +
1

|νF |

)|νF |
≤ 1. (2.48)

Next we show (B| supp ν|tp/lν )ν∈F ∈ ℓ1(Fl) where 1 ≤ l ≤ k arbitrary. With Stirling’s
inequalities nn ≤ exp(n)n! and thus

|νF ||νF |

ννF

F

≤ exp(|νF |)
|νF |!
νF !

. (2.49)

Employing (2.46), dj := (Bl/pCτκ0ebj/δ)
−1 and d̃j := dj+J , j ∈ N, we get

∑

ν∈Fl

B| supp ν|tp/lν =
∑

ν∈Fl

B| supp νE |B| supp νF |tp/lν ≤
∑

ν∈Fl

BJB|νF |tp/lν

≤ (Cp/l
τ B)J

∑

µ∈FE∩Fl

κ
−|µ|p/l
0

∑

ν∈FF∩Fl




|νF ||νF |

ννF

F

∏

{j>J : j∈supp ν}

(
Bl/pCτκ0bj

δ

)νj





p/l

≤ (Cp/l
τ B)J

∑

µ∈FE∩Fl

κ
−|µ|p/l
0

∑

ν∈FF∩Fl

( |νF |!
νF !

d−νF

)p/l

≤ (CτB)Jp/l
∑

µ∈FE

κ
−|µ|p/l
0

∑

ν∈Fl

( |ν|!
ν!

d̃−ν

)p/l

. (2.50)

Both sums on the right-hand side are finite according to Lemmata 2.4 and 2.6, and because
‖(d̃−1

j )j∈N‖ℓp(N) ≤ C‖b‖ℓp(N) <∞ by Assumption 2.1 as well as

‖(d̃−1
j )j∈N‖ℓ1 =

Bl/pCτκ0e

δ

∑

j>J

bj ≤
Bk/pCτκ0e

δ

∑

j>J

bj < 1 (2.51)

by (2.43). In the particular case l = 1 it holds F1 = F , and letting B := 1 we have proven
tν ∈ ℓp(F).

Finally, we point out that there is no loss of generality in assuming

a) bj > j−1/q in the above construction: in case this does not hold, define b̃j := max(bj , j
−1/q) ≥

bj and note that this new sequence is also in ℓp(N) and satisfies for any sequence ρ ∈ (1,∞)N

that
∑

j∈N
(ρj − 1)b̃j ≥ ∑

j∈N
(ρj − 1)bj . Hence, any ρ which is (b̃, ε)-admissible in the

sense of Assumption 2.1 is also (b, ε)-admissible. This implies that Assumption 2.1 holds
in particular for the new sequence b̃.

b) tν 6= tµ for all ν 6= µ: in case this is wrong, let π : N → F be a bijection such that tπ(j)
decays monotonically and {tπ(1), . . . , tπ(n)} is downward closed for any n ∈ N. This is
possible because tν decays monotonically. Now define a strictly monotonically decreasing
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sequence (εn)n∈N of positive real numbers with (εn)n∈N ≤ tπ(n) and introduce t̃π(n) :=

tπ(n) + εn (note that a) implies tν 6= 0 for all ν ∈ F). Then t̃ν is bounded by two times
the right-hand side of (2.46), so that the above estimates remain true up to a factor, but
tν 6= tµ whenever ν 6= µ.

2nd Step: We prove absolute convergence of (2.1) to u in L∞(U,X). In the previous step,
we have shown that (tν)ν∈F ∈ ℓp(F), and consequently (‖uν‖X)ν∈F ∈ ℓ1(F). Hence (2.1)
is absolutely convergent to some function ũ ∈ C0(U,X). Fix y ∈ U . By Assumption 2.1, u
depends continuously on y w.r.t. the product topology on U . Thus we can find N ∈ N so large
that ‖u(y1, . . . , yN , 0, . . . )−u(y)‖X ≤ ε/2. Furthermore, according to Prop. 2.2, there must exist
Λ ⊆ N

N
0 downward closed with

∑

ν∈Λc ‖uν‖X ≤ ε/2. This shows ‖u(y) −∑ν∈Λ̃ yνuν‖X ≤ ε

for any superset Λ̃ ⊇ Λ. Thus ũ(y) = u(y), i.e. the Taylor series converges to u.
3rd Step: We construct mν ∈ ℓp/k(F). To this end, define Z̃ := Z ∪ {k} and

(νk)j :=

{

νj if νj /∈ {1, . . . , k − 1}
k otherwise

and mν := t⌊νk⌋Z̃ (2.52)

for all ν ∈ F . For µ ≤ ν ∈ F arbitrary, we have µk ≤ νk and thus ⌊µk⌋Z̃ ≤ ⌊νk⌋Z̃ , which
by monotonicity of tν implies monotonicity of mν . Additionally, if ν ∈ Fk, then νk = ν and
hence ⌊νk⌋Z̃ = ⌊ν⌋Z̃ so that mν = t⌊ν⌋Z̃ ≥ tν . Therefore (mν)ν∈F constitutes a monotonically
decreasing majorant of the extension by zero of (tν)ν∈Fk

to F . We wish to show (mν)ν∈F ∈
ℓp/k(F). Set t̃ν := tνk

. Distinguishing between the cases x = 0, x ∈ {1, . . . , k − 1} and x > k,
with the subscript k having the same meaning as in (2.52) we get (⌊x⌋Z̃)k = ⌊xk⌋Z̃ for all x ∈ N0

(here we need k ∈ Z̃, which is why we introduced this set). Thus t̃⌊ν⌋Z̃ = t(⌊ν⌋Z̃)k = t⌊νk⌋Z̃ for
all ν ∈ F . Moreover, for µ ∈ Fk we observe

|{ν ∈ F : νk = µ}| = k|{j∈N :µj=k}| ≤ k| suppµ|. (2.53)

Note that Z̃ = Z ∪ {k} also satisfies Assumption 2.7, but possibly with a different constant in
(2.27) which we denote also by CZ . Then, with Lemma 2.8

∑

ν∈F
mp/k

ν =
∑

ν∈F
t
p/k
⌊νk⌋Z̃

=
∑

ν∈F
t̃
p/k
⌊ν⌋Z̃

≤
∑

ν∈F
C

| supp ν|
Z t̃p/kν

=
∑

ν∈F
C

| supp νk|
Z tp/kνk

≤
∑

ν∈Fk

(kCZ)
| supp ν|tp/kν , (2.54)

which is finite according to the computation in (2.50) if we let B = kCZ ≥ 1 and l = k in the
first step. It is clear from the construction that the sequence mν is independent of u and Cu.
This concludes the proof of (i).

4th Step: We prove (ii). Equation (2.42) holds because the tν are distinct by assumption b)
in the first step, because Zk is chosen such that ⌊νk⌋Z̃ = ⌊µk⌋Z̃ is equivalent to ⌊ν⌋Zk

= ⌊µ⌋Zk

as is readily verified, and because of the definition of mν in (2.52). The last claim in (ii), stating
that the nth largest element of the sequence (mν)ν∈F is bounded from below by Cn−k/q, holds
because with ken denoting the index which has a k at position n and zeros otherwise, and our
assumption a) stating that bn ≥ Cn−1/q from the first step, we get for all n > J so large that
κ1 < b−1

n (cp. (2.46))

mken = t⌊ken⌋Z ≥ tken = CJ+1
τ κ0b

k
n ≥ Cn−k/q. (2.55)

For the first property in (2.41) we use b ∈ ℓp, so that by Lemma 2.9 we have bj ≤ Cbj
−1/p
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for some Cb <∞ and for d > J with (2.46)

H(d) := sup
| supp ν|≥d

mν ≤ sup
| supp ν|≥d

tν = sup
ν∈{0,1}N

|ν|=d

tν ≤ CJ
τ κ

−J
0

d∏

j=J+1

Cτκ0/δ(d− J)Cbj
−1/p

≤ C(CbCτκ0/δ)
d−Jdd

d∏

j=J+1

j−1/p ≤ C exp

(

C̃(d− J) + d log(d)− 1

p

∫ d

J+1

log(x)dx

)

, (2.56)

with C̃ := log(CbCτκ0/δ) and where we have employed
∑d

j=J+1 log(j) ≥
∫ d

J+1
log(x)dx. Here

we have also used that tν decays monotonically, so that the argmax after the first inequality
must satisfy ν ∈ {0, 1}N and |ν| = d. The term in the exponential function is bounded by

C̃(d− J) + d log(d)− 1

p
(d(log(d)− 1)− (J + 1)(log(J + 1)− 1))

≤ C +

(

C̃ +
1

p

)

d+

(

1− 1

p

)

d log(d) ≤ C − C0d log(d), (2.57)

for all d ≥ d0 and some d0 ∈ N large enough as well as C > 0 depending on J and C0 > 0
small enough (such C0 exists because 1 − 1/p < 0 due to the additional assumption p < 1).
Hence H(d) = sup| supp ν|=dmν ≤ C1d

−C0d =: H̃(d), for some fixed C0, C1 > 0. Now let F̃

be the inverse function of the strictly monotonic mapping d 7→ H̃(d), d ≥ 1. Then, writing
F̃ (x) = − log(x)r(x) for some function r, it holds

x = C1(− log(x)r(x))−C0 log(x)r(x) = C1x
log(−C0 log(x)r(x))r(x). (2.58)

In order for the exponent to be bounded as x → 0 we must have r(x) → 0, implying F̃ (x) =
o(− log(x)) as x → 0. Now let xd > 0 for d ∈ N such that F̃ (xd) = d. Since H̃ is strictly
monotonic, the same holds for F̃ , and xd → 0 as d → ∞ with xd+1 < xd for all d ∈ N. Using
again this strict monotonicity and H̃(d) ≥ H(d) we have (cp. (2.40b))

F̃ (xd) = d ≤ d ⇒ xd = H̃(F̃ (xd)) ≥ H̃(d) ⇒ xd ≥ H(d) ⇔ h(xd) ≤ d. (2.59)

Thus F̃ (xd) = d ≥ h(xd) for all xd, d ∈ N. Since h is also strictly monotonically decreasing, for
any x ∈ (xd+1, xd) it must hold h(x) ≤ h(xd+1) ≤ d+ 1 = F̃ (xd) + 1 ≤ F̃ (x) + 1. Hence for all
0 < x ≤ x1 we have h(x) ≤ F̃ (x) + 1. With F̃ (x) = o(− log(x)) we conclude h(x) = o(− log(x))
as x→ 0.

Now consider g in (2.40a). As noted above, the set Z̃ = Z ∪ {k} also satisfies Assumption
2.7, and wlog we assume the constant CZ in (2.27) to be the same. Using monotonicity of mν ,
tν in ν, we deduce from (2.46) for ⌊d⌋Z̃ > J

sup
{ν∈F : maxj νj≥d}

mν = sup
{ν∈F : maxj νj≥d, | supp ν|=1}

mν = sup
{ν∈F : maxj νj≥d, | supp ν|=1}

t⌊νk⌋Z̃

≤ sup
{ν∈F : maxj νj≥⌊d⌋Z̃ , | supp ν|=1}

tν ≤ Cκ−J
0 exp(−(⌊d⌋Z̃ − J)) ≤ C exp(−d), (2.60)

where we have used in the first inequality that νj ≥ d implies ⌊(νk)j⌋Z̃ ≥ ⌊νj⌋Z̃ ≥ ⌊d⌋Z̃ , in
the second inequality that κ1/(Cτκ0) = e in (2.46) by definition of κ1, and finally in the third
inequality that ⌊d⌋Z̃ ≥ d/(1 +CZ) (cp. (2.30)). Similar as before we obtain g(x) = O(− log(x))
as x→ 0.

3 Smolyak Quadrature

For n ∈ N0, let (χn;j)
n
j=0 ⊂ [−1, 1] be a sequence of pairwise distinct points in [−1, 1]. Define

χn;ν := (χn;ν1
, χn;ν2

, . . . ) ∈ [−1, 1]N for ν ∈ F . Throughout we assume that there exists
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0 < τ <∞ such that the Lebesgue constant L((χn;j)
n
j=0) of (χn;j)

n
j=0 satisfies

L((χn;j)
n
j=0) ≤ (n+ 1)τ ∀ n ∈ N. (3.1)

The univariate quadrature Qn : C0([−1, 1], X) → R is the interpolatory quadrature rule with
quadrature points (χn;0, . . . , χn;n) (i.e. QnP =

∫

U
P (y)dµ(y) for all polynomials P of degree

n). Furthermore with Q−1 := 0, we introduce the ν-increment operators

∆ν :=
⊗

j∈N

(Qνj
−Qνj−1). (3.2)

For a downward closed index set Λ ⊆ F of finite cardinality, the corresponding Smolyak quadra-
ture is defined by

QΛ :=
∑

ν∈Λ

∆ν =
∑

ν∈Λ

(
∑

{e∈{0,1}N : ν+e∈Λ}
(−1)|e|

)

Qν =
∑

ν∈Λ

cΛ;νQν , (3.3)

where cΛ;ν :=
∑

{e∈{0,1}N : ν+e∈Λ}(−1)|e|. The latter representation of QΛ in (3.3) is easily

verified by induction over d = | suppν|, and is closely related to the so-called “combination
technique”. It is often preferred in implementations, since it allows to avoid unnecessary com-
putation of Qν , whenever the combination coefficient cΛ;ν vanishes.

Remark 3.1. Assume that for some sequence (χj)j∈N0 with χ0 = 0 we have χn;j = χj for
all n ≥ j. Such sequences fulfilling (3.1) are known. One example are the so called Leja
points, see [6, 5, 9]. In this case, the evaluation of (3.3) requires the value of u at all points
χν := (χνj

)j∈N ∈ U for ν ∈ Λ. Thus the number of quadrature points employed by QΛ equals
the number of multiindices in Λ. For the more general case described above, this is not true.

Hereafter the main results of this paper are established. First, the dimension-independent
convergence rate of 2/p− 1 for the Smolyak quadrature in terms of number of multiindices (or
quadrature points under Rmk. 3.1) is given for (b, ε)-holomorphic functions with b ∈ ℓp(N) for
some 0 < p < 1. Then, we prove that the actual cost of the algorithm is near linear in the
number of quadrature points, thus yielding (up to an epsilon) the same convergence rate with
respect to the overall complexity. Additionally, we shall see that almost the same convergence
rate, in terms of number of quadrature points, can be retained for the general case described
above (i.e. without nested quadrature points as in Rmk. 3.1).

3.1 Convergence for (b, ε)-holomorphic functions

The Smolyak operator QΛ in (3.3) satisfies the following elementary properties.

Lemma 3.2. Let Λ ⊆ F be downward closed and finite. Then, the Smolyak operator QΛ in
(3.3) satisfies the following properties:

(i) QΛP =
∫

[−1,1]N
P (y)dµ(y) for all P ∈ span{yν : ν ∈ Λ}.

(ii) If additionally χ0;0 = 0, then QΛP =
∫

U
P (y)dy = 0 for all P ∈ span{yν : ν ∈ F\F2}.

(iii) If additionally (3.1) holds, then there exists a constant C > 0 independent of Λ such that

|QΛP | ≤ C|{η : η ∈ Λ, η ≤ ν}|τ+1‖P‖L∞(U) ∀P ∈ span{yµ : µ ≤ ν}.

Proof. Items (i), (iii) were shown in [8] for Smolyak interpolation operators, but since we consider
interpolatory quadrature rules, they hold verbatim for the quadrature operators.

For (ii) consider the one dimensional quadrature operator Qn : C0([−1, 1]) → R, employing

n + 1 quadrature points in [−1, 1]. The monomial y 7→ y satisfies Qny =
∫ 1

−1
ydy = 0 for all
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n ∈ N0∪{−1}: this is clear for n ≥ 1, since every interpolatory quadrature rule with at least two
points integrates polynomials of degree 1 exactly. It is true for n = 0, because by assumption
the first quadrature point fulfills χ0;0 = 0, so that Q0 is the one point Gauss (midpoint) rule.
By definition, Q−1y = 0. For ν ∈ F and µ ∈ F\F2 arbitrary there exists j with µj = 1 and
thus

Qνy
µ =

⊗

j∈N

(Qνj
−Qνj−1)y

µ =
∏

j∈N

(Qνj
−Qνj−1)y

µj

j = 0 =

∫

U

yµdµ(y), (3.4)

which by (3.3) gives QΛy
µ = 0 =

∫

U
yνdµ(y) for all µ ∈ F\F2.

We next formulate our main convergence result, which assumes χn;j and QΛ as in the begin-
ning of the section, in particular χ0;0 = 0. We also assume polynomial growth of the univariate
Lebesgue constants, (3.1), holds for some τ > 0. It gives a convergence rate in terms of number
of multiindices. However, note that with nested sequences χn;j as in Rmk. 3.1, the convergence
rate is also in terms of number of quadrature points.

Theorem 3.3. Let X be a Banach space, U = [−1, 1]N and let u : U → X satisfy Assumption
2.1 with b ∈ ℓp, for some p ∈ (0, 1). Then there exists a constant C and for every N ∈ N there
exists a downward closed set ΛN ⊆ F with |ΛN | ≤ N such that

∥
∥
∥
∥

∫

U

u(y)dµ(y)−QΛN
u

∥
∥
∥
∥
X

≤ CN−( 2
p−1). (3.5)

Furthermore under the assumptions of Thm. 2.11, the set ΛN can be chosen as follows

ΛN = {ν ∈ F : mν ≥ εN} (3.6)

for some threshold εN > 0 and a sequence (mν)ν∈F as in item (ii) of Thm. 2.11 with k = 2.

Proof. We will employ Thm. 2.11 with k = 2, τ̃ = τ + 1 (here τ comes from assumption (3.1)
on the univariate Lebesgue constant), and in case no set Z as in Assumption 2.7 is given, we let
Z := N0. Then, by Thm. 2.11, the weighted Taylor coefficient

∏

j∈N
(νj+1)τ+1‖uν‖X is bounded

by tν for ν ∈ F and by mν whenever ν ∈ F2. For ε > 0 we define Λm;ε := {ν ∈ F : mν ≥ ε},
which is a finite downward closed index set, thanks to the monotonicity of (mν)ν∈F ∈ ℓp/2(F).
Furthermore u(y) =

∑

ν∈F uνy
ν converges absolutely in L∞(U,X).

Fix ε > 0. As QΛm;ε
: C0(U) → X is a bounded linear operator, by the absolute convergence

of u(y) =
∑

ν∈F uνy
ν and Lemma 3.2 (i)

QΛm;ε
u = QΛm;ε

∑

ν∈F
uνy

ν =
∑

ν∈F
uνQΛm;ε

yν =

∫

U

∑

ν∈Λm;ε

uνy
νdµ(y) +

∑

ν∈(Λm;ε)c

uνQΛm;ε
yν ,

(3.7)
where the latter sum is absolutely convergent in X. Here, (Λm;ε)

c = F\Λm;ε. With Lemma 3.2
(ii) we arrive at

QΛm;ε
u =

∫

U

∑

ν∈Λm;ε

uνy
νdµ(y) +

∑

ν∈F2∩(Λm;ε)c

uνQΛm;ε
yν . (3.8)

Note that item (ii) of Lemma 3.2 also implies
∫

U
u(y)dµ(y) =

∫

U

∑

ν∈F2
uνy

νdµ(y). Using
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Lemma 3.2 (iii) and (3.8) we get

∥
∥
∥
∥

∫

U

u(y)dµ(y)−QΛm;ε
u

∥
∥
∥
∥
X

≤

∥
∥
∥
∥
∥
∥

∫

U

∑

ν∈F2∩(Λm;ε)c

uνy
νdµ(y)

∥
∥
∥
∥
∥
∥
X

+
∑

ν∈F2∩(Λm;ε)c

‖uν‖X |QΛm;ε
yν |

≤
∑

ν∈F2∩(Λm;ε)c

‖uν‖X‖yν‖L∞(U)(1 + C|{µ ∈ F : µ ≤ ν}|τ+1)

≤ C
∑

ν∈F2∩(Λm;ε)c

‖uν‖X
∏

j∈N

(νj + 1)τ+1 ≤ C
∑

ν∈(Λm;ε)c

mν = C
∑

{ν∈F :mν<ε}
mν , (3.9)

where the final equality holds by definition of Λm;ε. Exploiting (mν)ν∈F ∈ ℓp/2(F), a result
known as the Stechkin Lemma then allows to bound the last sum by C|Λm;ε|1−2/p. One way
to see this, is to note that rearranging the sequence (mν)ν∈F as a monotonically decreasing
sequence (mj)j∈N, Lemma 2.9 gives mj ≤ Cj−2/p and thus

∑

j>N mj ≤
∫∞
N
x−2/p ≤ CN1−2/p.

So far we have shown that (3.5) holds for N = |Λm;ε| with the index set Λm;ε, and it remains
to define ΛN for arbitrary N ∈ N. Since Z satisfies Assumption 2.7, so does Zk in Thm. 2.11,
and wlog we assume that the constant CZ is the same as for Z. Now fix N ∈ N. By Thm. 2.11,
mν 6= mµ whenever ⌊ν⌋Zk

6= ⌊µ⌋Zk
. Thus m0 > mν for all ν 6= 0, and so |Λm;m0

| = |{0}| = 1.
Therefore we can find 0 < ε < ε̃ such that |Λm;ε̃| ≤ N ≤ |Λm;ε| with ε > 0 minimal, ε̃ > 0
maximal. Set ΛN := Λm;ε̃. If |Λm;ε̃| = N we are done. Otherwise |Λm;ε| > |Λm;ε̃|. Since
mν = m⌊ν⌋Zk

for all ν ∈ F , there exists ν ∈ F ∩ (Zk)N with

Λm;ε\Λm;ε̃ = {µ ∈ F : ν = ⌊µ⌋Zk
} =: A. (3.10)

We have |A| =∏j∈suppν
⌈νj + 1⌉Zk

− νj . Wlog assume ν1 ≥ 1 and set ν̃1 := ⌊ν1 − 1⌋Zk
≥ 0 and

ν̃ := (ν̃1, ν2, ν3, . . . ). Then ν̃ ≤ ν, ⌊ν̃⌋Zk
= ν̃ 6= ν = ⌊ν⌋Zk

and thus mν̃ > mν . Since Λm;ε is
downward closed and ν̃ ≤ ν ∈ Λm;ε, B := {µ ∈ F : ν̃ = ⌊µ⌋Zk

} must be a subset of Λε because
mν̃ = mµ for all ⌊µ⌋Zk

= mν . Since A ∩ B = ∅, by (3.10) also B ⊆ Λm;ε̃. With Assumption
2.7 we get

|B| = (ν1 − ⌊ν1 − 1⌋Zk
)

∏

j∈suppν , ≥2

(⌈νj + 1⌉Zk
− νj) ≥

1

CZ

∏

j∈suppν

(⌈νj + 1⌉Zk
− νj) = C−1

Z |A|

(3.11)
and thus |Λm;ε| ≤ CZ |Λm;ε̃|. Consequently |Λm;ε̃| ≥ C−1

Z N and ultimately with ΛN = Λm;ε̃ the
left-hand side of (3.5) is bounded by

∥
∥
∥
∥

∫

U

u(y)dµ(y)−QΛm;ε̃
u

∥
∥
∥
∥
X

≤ C|Λm;ε̃|−(
2
p−1) ≤ CC

2
p−1

Z N−( 2
p−1).

Remark 3.4. The requirement χ0;0 = 0 is always satisfied for symmetric probability measures,
in particular for the uniform measure µ, for centered Gaussian measures and, generally, for
marginal probability measures on the parameters yj which are symmetric and centered.

Remark 3.5. In the papers [24], [23], rather than Assumption 2.1, a requirement of the fol-
lowing type is presumed:

u is holomorphic and uniformly bounded on some polydisc Bρ :=

×j∈N
Bρj

⊆ C
N, with ρj > 1 for all j ∈ N and (ρ−1

j )j∈N ∈ ℓp, p ∈ (0, 1). (3.12)

In these references, under assumptions similar to (3.12) dimension-independent convergence
rates (1/p−1)/2 and (1/p−1), respectively, are established (cp. [24, Assumption 4.2, Thm. 5.5],
[23, Cor. 5.9] for the precise assumptions and statements).
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Let Assumption 2.1 be satisfied. Let κ > 1 so small and J ∈ N so large that (κ−1)
∑

j∈N
bj+

∑

j>J b
p
j < ε. This is possible because ‖b‖ℓ1 , ‖b‖ℓp < ∞. Set ρj := κ for j ≤ J and ρj :=

max{κ, bp−1
j }. Then

∑

j∈N
bj(ρj − 1) ≤ ∑

j∈N
(κ − 1)bj +

∑

j>J b
p
j ≤ ε. Thus Assumption 2.1

implies (3.12) with this ρ. Note that ρ ∈ ℓp/(1−p) and p/(1 − p) > p. On the other hand,
(3.12) implies Assumption 2.1, with bj := (ρj − 1)−1ε and (bj)j∈N ∈ ℓp: if ρ̃ is arbitrary with
∑

j bj(ρ̃j −1) < ε, then bj(ρ̃j −1) < ε, and thus ε(ρ̃j −1)/(ρj −1) < ε implying ρ̃j < ρj for each
j ∈ N. Since u allows a bounded holomorphic extension to Bρ by (3.12), it also allows a bounded
holomorphic extension to Bρ̃ ⊆ Bρ. Hence Assumption 2.1 is more general than (3.12).

In summary, Theorem 3.3 improves the dimension-independent convergence rates (1/p−1)/2,
(1/p− 1) for the anisotropic Smolyak quadrature proved in [24], [23] by at least a factor 4 and
2, respectively, under slightly weaker assumptions, as we explain in Examples 4.1, 4.2 ahead.

3.2 Complexity

Let Λ ⊆ F be a finite downward closed index set. To bound the cost of evaluating the Smolyak
quadrature QΛu, we shall work with the representation (3.3), and assume each integrand eval-
uation to be of cost O(1). For Λ ⊆ F with |Λ| <∞ let us introduce its effective dimension and
maximal degree by

d(Λ) := max
ν∈Λ

| suppν| and m(Λ) := max
ν∈Λ

max
j∈N

νj . (3.13)

We begin our cost analysis with the computation of (cΛ;ν)ν∈Λ.

Lemma 3.6. For any finite, downward closed set Λ ⊂ F , the coefficients (cΛ;ν)ν∈Λ in (3.3)
can be computed with cost bounded by C2d(Λ)|Λ|, for some C independent of Λ and for d(Λ) as
in (3.13).

Proof. This is achieved by looping over all ν ∈ Λ, and updating the coefficient of all (at most
2d(Λ)) neighbours in Λ of the type ν − e for some e ∈ {0, 1}N.

Next, we consider the evaluation of Qνu, which corresponds to the tensor quadrature
⊗

j∈supp ν Qνj
. The one dimensional quadrature rule Qn with n + 1 points in [−1, 1], can be

evaluated with complexity O(n), assuming that the quadrature weights have been precomputed
with complexity O(n3), e.g. by solving a linear system. The cost of computing those weights

sums up to
∑m(Λ)

j=1 j3 = O(m(Λ)4), and once this is done each Qν in (3.3) adds O(
∏

j(νj + 1))
to the total complexity (this equals the number of quadrature points employed by Qν and here
we use our assumption that each evaluation of u is of cost O(1)). Finally, we need to evaluate
the sum

∑

{ν∈Λ : cΛ;ν 6=0} cΛ;ν(Qνu), which adds another O(|{ν ∈ Λ : cΛ;ν 6= 0}|) floating point
operations. In summary, we introduce

cost(QΛ) := m(Λ)4
︸ ︷︷ ︸

precomp. of weights

+ 2d(Λ)|Λ|
︸ ︷︷ ︸

comp. of (cΛ;ν)ν∈Λ

+
∑

{ν∈Λ : cΛ;ν 6=0}

∏

j∈N

(νj + 1)

︸ ︷︷ ︸

evaluation of Qν

, (3.14)

as a measure for the cost of evaluating the Smolyak quadrature QΛu, where the cost of the final
summation was absorbed in the third term in (3.14).

In Section 2.3 we required the sequence (ζj)j∈N in Assumption 2.7 to grow at most exponen-
tially. In this section, where the meaning of Z will become more clear, in order to profit from
our previous estimates, we shall need that the sequence grows at least exponentially. For this
reason we make the following assumption.

Assumption 3.7. The set Z = {ζj : j ∈ N0} ⊆ N0 consists of the strictly monotoni-
cally growing, nonnegative sequence (ζj)j∈N0

, where ζ0 = 0. There exists a constant CZ with
∑m

j=1(ζj + 1) ≤ CZζm for all m ∈ N.
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In order to exploit the vanishing of certain cΛ;ν in (3.3), we consider index sets of the following
type: Under Assumption 3.7, suppose that Λ has the property (cp. (2.29))

ν ∈ Λ =⇒ ⌈ν⌉Z ∈ Λ. (3.15)

For Λ ⊆ F , set
ΛZ := {ν ∈ Λ : νj ∈ Z ∀ j ∈ N}. (3.16)

Lemma 3.8. Let Λ be downward closed with the property (3.15). Then for all ν ∈ Λ\ΛZ

cΛ;ν :=
∑

{e∈{0,1}N : ν+e∈Λ}
(−1)|e| = 0. (3.17)

Proof. Let 0 6= ν ∈ Λ\ΛZ . Since ν /∈ ΛZ , there exists j ∈ N with νj /∈ Z. Set A := {e =
(ei)i∈N ∈ {0, 1}N : ν+e ∈ Λ, ej = 0}, and let e ∈ A arbitrary. Then, with ej = (δij)i∈N we get
ν + e + ej ≤ ⌈ν + e⌉Z ∈ F , so that by the downward closedness of Λ it holds ν + e + ej ∈ Λ.
Thus ∑

{e∈{0,1}N : ν+e∈Λ}
(−1)|e| =

∑

e∈A

(−1)|e| −
∑

e∈A

(−1)|e| = 0.

Note that in fact all we required for Z in the above Lemma is Z ⊆ N0. The next Lemma
provides an upper bound for the third term in (3.14), in the general case.

Lemma 3.9. Let Z satisfy Assumption 3.7 for some constant CZ . Let Λ ⊆ F be downward
closed and |Λ| <∞. Then with d(Λ), ΛZ as in (3.13), (3.16)

∑

ν∈Λ

∏

j∈N

(νj + 1) ≤ |Λ|2 and
∑

ν∈ΛZ

∏

j∈N

(νj + 1) ≤ C
d(Λ)
Z |Λ|. (3.18)

Proof. We start with the first inequality. Due to the downward closedness of Λ it holds

∑

ν∈Λ

∏

j∈supp ν

(νj + 1) =
∑

ν∈Λ

|{µ ∈ Λ : µ ≤ ν}| ≤
∑

ν∈Λ

|Λ| = |Λ|2. (3.19)

To prove the second inequality, define for n ∈ N and for any Γ ⊆ F

Γn := {ν ∈ Γ : | suppν| = n}, ΓZ
n := {ν ∈ Γ : | suppν| = n, νj ∈ Z ∀j ∈ N}. (3.20)

The goal is to show that there exists a constant CZ > 0 such that for every n ∈ N

∑

ν∈ΛZ
n

∏

j∈N

(νj + 1) ≤ Cn
Z |Λn| . (3.21)

The case n = 0 with Λ0 = {0} is trivial. Next, we let n = 1. Using downward closedness of
Λ (and therefore of Λ1), with ej := (δji)i∈N it holds that iej ∈ Λ1 implies kej ∈ Λ1 for all
k ∈ {1, . . . , i}. Therefore

|Λ1| =
∑

{j∈N : ej∈Λ}
max{i : iej ∈ Λ} (3.22)

and with Assumption 3.7

∑

ν∈ΛZ
1

∏

j∈N

(νj + 1) =
∑

j∈N

∑

{0<i∈Z : iej∈Λ1}
(i+ 1) ≤

∑

j∈N

CZ max{i : iej ∈ Λ} = CZ |Λ1|. (3.23)
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We proceed by induction over n, and assume (3.21) to be satisfied for n − 1. Additionally,
for the moment we restrict ourselves to the case suppν = {1, . . . , n} for all ν ∈ Λn. For all
i ∈ N and Γ ⊆ F arbitrary set

Γ(i) := {(ν2, ν3, . . . ) ∈ F : (i, ν2, ν3, . . . ) ∈ Γ}. (3.24)

Furthermore π1(Γ) :=
⋃

j∈N
Γ(j). We have for 0 < i ∈ Z

ΛZ
n (i) = {(ν2, ν3, . . . ) : (ν1, ν2, ν3, . . . ) ∈ Λ, ν1 = i, νj ∈ Z ∀j, | suppν| = n}

= (Λn(i))
Z
n−1 (3.25)

in the sense of (3.20), and one readily verifies that Λn(i) is downward closed. It holds ΛZ
n =

⋃

{0<i : i∈SZ
n } Λ

Z
n (i), since ν1 > 0 if ν ∈ Λn by our assumption that suppν = {1, . . . , n}. Hence,

using the induction hypothesis (3.21) for n−1 on (Λn(i))
Z
n−1 we obtain with (Λn(i))n−1 = Λn(i)

and (3.25)

∑

ν∈ΛZ
n

∏

j∈N

(νj + 1) =
∑

0<i∈Z

(i+ 1)
∑

µ∈ΛZ
n (i)

∏

j∈N

(µj + 1) =
∑

0<i∈Z

(i+ 1)
∑

µ∈(Λn(i))Zn−1

∏

j∈N

(µj + 1)

≤
∑

0<i∈Z

(i+ 1)Cn−1
Z |(Λn(i))n−1| = Cn−1

Z

∑

0<i∈Z

(i+ 1)
∑

{µ∈F : (i,µ)∈Λn}
1

= Cn−1
Z

∑

µ∈π1(Λn)

∑

{0<i∈Z : (i,µ)∈Λn}
(i+ 1)

≤ Cn−1
Z

∑

µ∈π1(Λn)

CZ max{i ∈ N : (i,µ) ∈ Λn}

= Cn
Z

∑

µ∈π1(Λn)

∑

{i∈N : (i,µ)∈Λn}
1 = Cn

Z |Λn|, (3.26)

where we have employed Assumption 3.7.
For the general case where suppν = {1, . . . , n} is not fulfilled for all ν ∈ Λn we distinguish

between all possible sets {a1, . . . , an} ⊆ N of cardinality n, and use the above argument for
every subset of Λn containing all ν ∈ F satisfying suppν = {a1, . . . , an}. Since those subsets
of Λn have empty intersection, and the claim holds for each of them, we have shown (3.21) for
all n ∈ N0, which is a stronger statement than the second inequality in (3.18).

Remark 3.10. Estimates (3.18) are sharp in the following sense: Let Λ = {ν ∈ F : suppν ⊆
{1, . . . , d}, νj ≤ N ∀j} and set Z := {0} ∪ {2j : j ∈ N0}. Then, with N = 2m, we have
|Λ| = (N + 1)d and

∑

ν∈Λ

∏

j∈N

(νj + 1) =

d∏

j=1

N+1∑

i=1

i =

(
(N + 1)(N + 2)

2

)d

≥ 2−d((N + 1)d)2 = 2−d|Λ|2, (3.27)

as well as (for m ≥ 1)

∑

ν∈ΛZ

∏

j∈N

(νj + 1) =
d∏

j=1

(

1 +
m∑

i=0

(2i + 1)

)

≥
d∏

j=1

(1 + 2m+1 − 1 +m+ 1)

≥ (2(2m + 1))d ≥ 2d(N + 1)d = 2d|Λ|. (3.28)

Letting N → ∞ in (3.27) and d → ∞ in (3.28), a better asymptotic behaviour than quadratic
in |Λ| in the first case, and linear in |Λ| with a constant depending exponentially on d(Λ) in the
second case therefore cannot be expected in general.

20



However, these estimates may not accurately measure the actual cost of evaluating (3.3),
since they do not take into account the fact that some (further) coefficients in (3.3) might
vanish. Indeed, for the above example QΛ is the tensor product quadrature Qν with νj = N if
j ≤ d and νj = 0 otherwise. The cost of its evaluation is proportional to |Λ| = (N + 1)d if d
and or N → ∞.

As an example, we shall now consider the situation of Thm. 3.3. For ease of exposition, the
requirements in the following lemma are shortly recalled, but note that the presumptions on mν

and ΛN are as stated in Thms. 2.11, 3.3, and thus satisfied in the settings of these theorems.

Lemma 3.11. Let Z as in Assumption 2.7, r > 0 and Cr > 0. Let (mν)ν∈F ∈ ℓ1(F) mono-
tonically decreasing such that

(i) (mν)ν∈F satisfies (2.41)-(2.42),

(ii) mν = mµ iff ⌊ν⌋Z = ⌊ν⌋Z ,
(iii) the jth largest element of {mν : ν ∈ F} is bounded from below by Crj

−r,

(iv) for all N ∈ N, ΛN := {ν ∈ F : mν ≥ εN}, for some monotonically decreasing sequence
εN → 0.

Then, for the quantities defined in (3.13) it holds

d(ΛN ) = o(log(|ΛN |)) and m(ΛN ) = O(log(|ΛN |)) as |ΛN | → ∞. (3.29)

Additionally assume that Z fulfills Assumption 3.7. Then for every ε > 0 there exists C such
that with (3.14), and for all N ∈ N holds

cost(QΛN
) ≤ C|ΛN |1+ε . (3.30)

Proof. 1st Step: We show the first equality in (3.29). Let

H(d) := sup
{ν∈F : | supp ν|≥d}

mν . (3.31)

Then H(d+1) < H(d) for all d ∈ N: Assume H(d+1) = H(d) for some d ∈ N. Since (mν)ν∈F ∈
ℓ1(F), the sequence tends to zero and there must exist νd+1 ∈ F and νd ∈ F such that the
supremum in (3.31) is obtained at these multiindices. By (ii) we have ⌊νd+1⌋Z = ⌊νd⌋Z . Since
1 ∈ Z it must hold suppνd = suppν⌊d⌋Z = suppν⌊d⌋Z = suppνd+1 and thus | suppνd| ≥ d+ 1.
Wlog assume (νd)1 6= 0. Set µ := (0, (νd)2, (νd)3, . . . ). Then µ ≤ νd and ⌊µ⌋Z 6= ⌊νd⌋Z ,
which again by Thm. 2.11 (ii) gives mµ > mνd

. This contradicts the definition of νd because
| suppµ| ≥ | suppνd| − 1 ≥ d.

Now, with d(ΛN ) as in (3.13), the |ΛN |th largest element of (mν)ν∈F must be less or equal
to H(d(ΛN )), which is a consequence of the definition of ΛN in (iv). Therefore, H(d(ΛN )) ≥
C|ΛN |−r by definition of r > 0. Let h be defined as in (2.40b). We have

h(H(d(ΛN ))) = min{d ∈ N : sup
| supp ν|≥d

mν ≤ sup
| supp ν|≥d(ΛN )

mν} ≤ d(ΛN ). (3.32)

Since H(d) decreases strictly in d ∈ N as observed above, we get for any d̃ ∈ N0, d̃ < d(ΛN ),

sup
| supp ν|≥d̃

mν = H(d̃) > H(d(ΛN )) = sup
| supp ν|≥d(ΛN )

mν , (3.33)

and conclude with (3.32) that it must hold h(H(d(ΛN ))) = d(ΛN ). The fact that h is mono-
tonically decreasing then implies d(ΛN ) = h(H(d(ΛN ))) ≤ h(C|ΛN |−r). By (2.41), we obtain
h(C|ΛN |−r) = o(log(|ΛN |)) and therefore d(ΛN ) = o(log(|ΛN |)) as |ΛN | → ∞.
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2nd Step: We show the second equality in (3.29). We proceed similarly as in the first step.
With

G(m) := sup
{ν∈F : maxj νj≥m}

mν , (3.34)

by the same argument as before it holds G(m(ΛN )) ≥ C|ΛN |−r and G is monotonically de-
creasing. Moreover for m0 ∈ N, m0 > 1 we have G(⌊m0/(1 + CZ)⌋Z) > G(m0) (here CZ is
as in Assumption 2.7): assume the contrary, i.e. G(⌊m0/(1 + CZ)⌋Z) = G(m0). Then, with
G(⌊m0/(1 + CZ)⌋Z) = mν0

and G(m0) = mν1
we have mν0

= mν1
. Note that by (2.30)

⌊
m0

1 + CZ

⌋

Z

≤ m0

1 + CZ
< ⌊m0⌋Z . (3.35)

Set µ := (⌊ν1;j/(1 + CZ)⌋Z)j∈N. Then µ ≤ ν1 and by (3.35) ⌊µ⌋Z 6= ⌊ν1⌋Z which gives
mν0 = mν1 < mµ (cp. (2.42)) and maxj µj ≥ ⌊maxj ν1;j/(1 + CZ)⌋Z ≥ ⌊m0/(1 + CZ)⌋Z , thus
contradicting the definition of mν0

. The definition of the monotonically decreasing function g
in (2.40a) and G(⌊m(ΛN )/(1 + CZ)⌋Z) > G(m(ΛN )) now allow to conclude

g(G(m(ΛN ))) := min{d ∈ N0 : G(d) ≤ G(m(ΛN ))} ≥
⌊
m(ΛN )

1 + CZ

⌋

Z

, (3.36)

if m(ΛN ) > 1. Employing the property of g in (2.41) we arrive at

m(ΛN )

(1 + CZ)2
≤
⌊
m(ΛN )

1 + CZ

⌋

Z

≤ g(G(m(ΛN ))) ≤ g(|ΛN |−r) = O(log(|ΛN |)) as |ΛN | → ∞, (3.37)

where the first inequality is again due to (2.30).
3rd Step: Additionally presuming Assumption 3.7 for Z we verify (3.30). Fix N ∈ N. First

we note that with Z := {a− 1 : 0 < a ∈ Z} ∪ {0} (cp. Assumption 2.7), we have

ν ∈ ΛN =⇒ ⌈ν⌉Z ∈ ΛN . (3.38)

In order to see this, let ν ∈ ΛN and thus mν ≥ εN . Now, by definition of Z, ⌊⌈ν⌉Z⌋Z = ⌊ν⌋Z
and hence (ii) gives mν = m⌊ν⌋Z = m⌈ν⌉Z ≥ εN implying ⌈ν⌉Z ∈ ΛN . Note that since Z
satisfies Assumption 3.7, so does Z (possibly with a different constant, which we also denote by
CZ). We may then invoke Lemma 3.9 to get for any ε > 0

∑

ν∈ΛZ
N

∏

j∈N

(νj + 1) ≤ CC
d(ΛN )
Z |ΛN | = O(|ΛN |1+ε) as |ΛN | → ∞, (3.39)

due to the first equality in (3.29). According to (3.38) and Lemma 3.8 it holds cΛ;ν = 0 for all
ν /∈ ΛZ

N . Thus (3.39) gives an estimate on the last term in (3.14). The above shown asymptotics
in (3.29), now allow to conclude with (3.14) that (3.30) is satisfied.

Remark 3.12. The computation of the tensor operator Qνu =
⊗

j∈N
Qνj

u, requires the values

of u at
∏

j∈N
(νj+1) points in U = [−1, 1]N. Consequently, by (3.3) the total number of necessary

function evaluations needed to compute QΛu is bounded by
∑

{ν∈ΛN : cΛN ;ν 6=0}
∏

j∈N
(νj+1). Un-

der the presumptions of Lemma 3.11 this quantity grows as O(N1+ε), for any ε > 0. Therefore
(in particular for non-nested quadrature point sets) we obtain Thm. 3.3 also in the number of
quadrature points, with almost the same rate, see Cor. 3.13 below.

The previous Lemma states, that the asymptotic complexity of evaluating QΛN
is near linear

in the number of floating point operations, which are measured by (3.14). Similarly, the storage
of the index set ΛN together with all its forward and backward neighbours is bounded by
Cd(ΛN )|ΛN |, and consequently for any ε > 0 by (3.30). Summarizing Thm. 3.3, Lemma 3.11

22



and Rmk. 3.12, we obtain the below corollary (with the set Z in Thm. 3.3 and Lemma 3.11 for
example being {0} ∪ {2j : j ∈ N}, which satisfies Assumptions 2.7, 3.7). It gives (up to an
ε > 0) the convergence rate in Thm. 3.3 also for non-nested sets (cp. Rmk. 3.1) in the number
of quadrature points, and in addition w.r.t. to the evaluation cost of the Smolyak algorithm.

Corollary 3.13. Let the assumptions of Thm. 3.3 be satisfied. Then, for any ε > 0 there
exists C > 0 such that for all N ∈ N there exists a downward closed set ΛN ⊆ F such that
cost(QΛN

) ≤ CN (see (3.14) for the definition of cost(·)), the number of quadrature points
employed by QΛN

is bounded as
∑

ν∈ΛN

∏

j∈N
(νj + 1) ≤ N , and

∥
∥
∥
∥

∫

U

u(y)dµ(y)−QΛN
u

∥
∥
∥
∥
X

≤ CN−( 2
p−1)+ε. (3.40)

4 Numerical experiments

This section reports on the numerical testing, which we have performed for the presented al-
gorithm. To begin with, more details on the construction of the index sets will be given in
Sec. 4.1. We shall see, that there is a large preasymptotic range, which is addressed in Sec. 4.2.
Afterwards, in Sec. 4.3 we consider the integration of two real valued test functions.

Throughout, the quadrature points (χn;0, . . . , χn;n), n ∈ N0, described at the beginning of
Sec. 3, are chosen as a section of a Leja sequence as e.g. discussed in [6, 5, 9]. More precisely,
for a Leja sequence (χ0, χ1, . . . ) of distinct points in [−1, 1], we set χn;j := χj for all n ∈ N0

and all 0 ≤ j ≤ n. As pointed out in Remark 3.1, this implies that the number of quadrature
points used by the quadrature operator QΛ defined in (3.3) equals the number of multiindices
in the employed multiindex set Λ ⊆ F , for all of the following experiments.

Before continuing, we take a look at two exemplary integrands, and discuss the proven
convergence rate of the Smolyak quadrature in both cases, comparing them with the results in
the recent papers [24, 23].

Example 4.1. For a monotonically decreasing sequence b of positive numbers, consider

u1(y) :=
∏

j∈N

(1 + bjyj)
−1
. (4.1)

Assume ‖b‖L∞ < 1 and ‖b‖ℓp <∞, for some p ∈ (0, 1). We now discuss the proven convergence
rate, in terms of number of quadrature points based on Thm. 3.3, as well as based on the results
in [24, 23].

(i) Fix 0 < ε < 1 − ‖b‖ℓ∞ and let ρ = (ρj)j∈N ∈ (1,∞)N be an arbitrary sequence such that
∑

j∈N
bj(ρj − 1) < ε, i.e. ρ is (b, ε)-admissible as in (2.2). Let z ∈ Bρ =×j∈N

Bρj
⊆ C

N,

where Bρj ⊆ C, denotes the disc with radius ρj and center 0. For δ < 1 we can find
a constant Cδ such that for 0 ≤ x ≤ δ it holds log(1/(1 − x)) ≤ Cδx. Since bjρj =
bj(ρj − 1) + bj ≤ ε+ ‖b‖ℓ∞ =: δ < 1, by definition of ε, we obtain

|u1(z)| =

∣
∣
∣
∣
∣
∣

∏

j∈N

(1 + bjzj)
−1

∣
∣
∣
∣
∣
∣

≤
∏

j∈N

(1− bjρj)
−1 ≤ exp



Cδ

∑

j∈N

bjρj



 . (4.2)

The last term is finite because
∑

j∈N
bjρj =

∑

j∈N
bj(ρj −1)+

∑

j∈N
bj ≤ ε+‖b‖ℓ1 . There-

fore u allows a well-defined uniformly bounded holomorphic extension onto Bρ. Continuity
of Bρ ∋ z 7→ u1(z) is easily checked, and holomorphy of the function in each zj is obvious.
Assumption 2.1 can now readily be verified. By Thm. 3.3, the convergence rate of the
Smolyak quadrature is then at least 2/p− 1.
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(ii) Consider now (3.12), i.e. the assumption given in Rmk. 3.5, and similarly presumed in
[24, 23]. We wish to find a fixed polydisc Bρ onto which u allows a uniformly bounded
holomorphic extension. In view of Rmk. 3.5, the sequence ρ should be chosen such that
(ρ−1

j )j∈N ∈ ℓp̃ for some possibly small p̃ > 0.

For 0 ≤ x ≤ 1 we have 1/(1 − x) ≥ 1 + x and furthermore log(1 + x) ≥ x/2, which gives
− log(1− x) ≥ x/2. Thus for z := (−ρj/2)j∈N ∈ Bρ

|u1(z)| =
∏

j∈N

(1− bjρj/2)
−1

= exp



−
∑

j∈N

log(1− bjρj/2)



 ≥ exp




1

4

∑

j∈N

bjρj



 . (4.3)

Hence ρ must satisfy
∑

j∈N
ρjbj < ∞. This implies ρ−1

j = bj/cj for some sequence

(cj)j∈N ∈ ℓ1. Suppose that (ρ−1
j )j∈N ∈ ℓp̃ for some 0 < p̃ < 1. Then with p̂ := p̃/(1+p̃) < 1

∑

j∈N

bp̂j =
∑

j∈N

(
bj
cj

)p̂

cp̂j ≤




∑

j∈N

(
bj
cj

) p̂
1−p̂





1−p̂


∑

j∈N

cj





p̂

=




∑

j∈N

(
bj
cj

)p̃




1−p̂


∑

j∈N

cj





p̂

(4.4)
and we obtain b ∈ ℓp̂. Assuming that p > 0 was an optimal choice, in the sense that
b ∈ ℓp but b /∈ ℓq with q < p, we obtain p̂ = p̃/(1 + p̃) ≥ p, and therefore p̃ ≥ p/(1 − p).
Hence (ρ−1

j )j∈N, can at best be in ℓp/(1−p). One possible choice achieving this is ρj :=

max{κ, bp−1
j }, with κ > 1 fulfilling κ‖b‖ℓ∞ < 1. One checks that u then allows a uniformly

bounded extension onto Bρ and it holds (ρ−1
j ) ∈ ℓp̃ with p̃ := p/(1− p). The statements in

[24, Assumption 4.2, Thm. 5.5], [23, Cor. 5.9] then essentially give the convergence rates
(p̃−1 − 1)/2, p̃−1 − 1, i.e. 1/(2p)− 1, 1/p− 2 respectively.

Example 4.2. For a monotonically decreasing sequence b of positive numbers, consider

u2(y) :=



1 +
∑

j∈N

bjyj





−1

. (4.5)

Assume ‖b‖ℓ1 < 1, ‖b‖ℓp < ∞ for some p ∈ (0, 1). Let Bρ be a polydisc onto which u allows a
uniformly bounded holomorphic extension with |u2(z)| ≤ a, 1 ≤ a < ∞ for all z ∈ Bρ. This is
equivalent to

1−
∑

j∈N

bjρj ≥ a−1 or
∑

j∈N

bjρj ≤ 1− a−1. (4.6)

Similar as in Example 4.1, we find that Assumption 2.1 is satisfied for some ε, whereas
(3.12) in Rmk. 3.5 is satisfied for some ρ with (ρ−1

j )j∈N ∈ ℓp/(1−p). Hence Thm. 3.3 states
that the Smolyak quadrature (with nested points as in Rmk. 3.1) converges with rate 2/p − 1
in terms of number of quadrature points. Again, the corresponding results in [24, Assumption
4.2, Thm. 5.5], [23, Cor. 5.9] merely give the convergence rates 1/(2p)− 1, 1/p− 2 respectively.

Remark 4.3. Differentiating u1, u2 in (4.1), (4.5) for some ν ∈ F we find

1

ν!

∂

∂yν1
1 y

ν2
2 . . .

u1(y)

∣
∣
∣
∣
y=0

= (−1)|ν|bν and
1

ν!

∂

∂yν1
1 y

ν2
2 . . .

u2(y)

∣
∣
∣
∣
y=0

= (−1)|ν|
|ν|!
ν!

bν .

(4.7)
Thus the modulus of the Taylor coefficients at 0 agree with the sequences in Lemmata 2.4, 2.6.

4.1 Estimators and construction of index sets

Mimicking the estimates in the proof of Thm. 2.11, appropriate definitions for tν , mν as in the
formulation of Thm. 2.11 are now given presuming Assumption 2.1.

24



4.1.1 Estimators

An estimator of the Taylor coefficients in a general setting, and for the particular case of Example
4.1 is obtained as follows:

(hol) Holomorphic extension to a union of polydiscs: Let Assumption 2.1 be satisfied for some
b ∈ ℓp. With (2.46) in mind, we set ρν = (ρν;j)j∈N with

ρν;j :=

{

κ if j ≤ J,

max{κ, δb−1
j } otherwise,

(4.8)

for some fixed κ, J ∈ N. In view of the proof of Thm. 2.11, this choice is justified for J
large enough and κ > 1 small enough. We then define

t(hol)ν = t(hol)ν (κ, J, δ) := ρ−ν
ν =

J∏

j=1

κ−νj

∏

j>J

max

{

κ, δ
νj

bj
∑

j>J νj

}−νj

. (4.9)

(u1) Taylor coefficients of u1: With b ∈ ℓp fixed, we set

t(u1)ν = bν . (4.10)

As pointed out in Rmk. 4.3, this estimator coincides with the Taylor coefficients of u1 in
(4.1). More generally, in view of (2.5) the choice (4.10) is justified as an upper bound of
the norm of the Taylor coefficients for functions allowing a uniformly bounded holomorphic
extension onto the polydisc B(b−1

j )j∈N
⊆ C

N.

As suggested in the previous sections, for performing quadrature on high dimensional inte-
grands, we introduce the estimators (mν)ν∈F for tν as in (4.9), (4.10) via

(ν2)j :=

{

νj if νj 6= 1

2 if νj = 1
and mν := tν2 . (4.11)

This estimator is targeted at quadrature algorithms, in the sense that it takes into account
Lemma 3.2 (ii). Finally, with Z := {0, 1} ∪ {2j : j ≥ 2} we set

m(·);2
ν := t

(·)
⌊ν2⌋Z . (4.12)

Note that Z satisfies Assumptions 2.7, 3.7.
In our experiments we concentrate on the situation bj := θj−r for some θ > 0 and r > 1.

The constants J = 0 and κ = 2.8 > e for (hol) in (4.9) are fixed throughout all what follows.

The choice of κ for (hol) is motivated by (2.47), and ensures that (t
(hol)
ν )ν∈F is monotonically

decreasing. In summary, we work with the estimators

t(u1)ν :=
∏

j∈N

(
jr

θ

)−νj

, t(hol)ν :=
∏

j∈N

max

{

κ,
jrνj
θ|ν|

}−νj

(4.13)

and their variants defined in (4.11), (4.12). Whereas exact values of κ and J depending on θ and
r could be computed as in the proof of Thm. 2.11 (cp. (2.43)), we opt here for this simplified
version of the estimators.
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4.1.2 Index sets

The above estimators will be referred to as t(hol), m(hol), m(hol);2 etc. With e = (eν)ν∈F being
one of them, and for a prescribed threshold ε > 0 we build

Λ = Λ((eν)ν∈F ) := {ν ∈ F : eν ≥ ε} (4.14a)

and also write
ΛN = Λ where N := |Λ|. (4.14b)

The subscript N therefore indicates the number of indices in ΛN which, by definition of QΛN
,

equals the number of quadrature points employed by the Smolyak quadrature operator QΛN

since we use nested points as explained in Rmk. 3.1 and at the beginning of Sec. 4.

4.1.3 Decay of the estimators

Figure 1 depicts the decay of the estimators m in (4.11), (4.13),for different values of r and θ.
In all cases the largest ones have been computed and sorted according to decreasing size to some
sequence (xj)j∈N which is plotted against j. Let us first consider t(u1). It holds

t(u1)ν =
∏

j∈N

(θj−r)νj . (4.15)

For θ < 1 and ε > 0 arbitrary, this sequence is in ℓp̃(F2) for p̃ := 1/(2r)+ε according to Lemma
2.4. Furthermore with the same argument as in (2.54) for k = 2 and J ∈ N

∑

ν∈F
(m(u1)

ν )p̃ =
∑

ν∈F
(t(u1)ν2

)p̃ ≤
∑

ν∈F2

2| supp ν|




∏

j∈N

(
θj−r

)νj





p̃

≤ 2J
∑

ν∈F2





J∏

j=1

(
θj−r

)νj
∏

j>J

(

θ2
1
p̃ j−r

)νj





p̃

. (4.16)

For J large enough supj>J θ2
1/p̃j−r < 1, and again Lemma 2.4 with k = 2 then gives that the

right-hand side in (4.16) is finite with p̃ = 1/(2r) + ε. Therefore Lemma 2.9 suggests the decay
rate of m(u1) in Figure 1 to be 2r− ε for ε > 0 arbitrary. Similar arguments apply to m(hol): in

this case we can proceed analogously to (2.50), invoke Lemma 2.6 and obtain (m
(hol)
ν ) ∈ ℓp̃ for

any p̃ > 1/(2r), which by Lemma 2.9 again gives the asymptotic decay rate 2r−ε for any ε > 0.
These rates are in general not obtained in Figure 1, as there appears to be a large preasymptotic
range for larger θ. Decreasing θ improves the situation in the plotted range of j. For very small
θ, the rates come close to the predicted ones.

4.2 Preasymptotic behaviour

We analyze the convergence rates observed in Figure 1. In the range of active indices shown
in Figure 1 and for large values of the scaling parameter θ ∈ (0, 1) close to 1, the observed
convergence rates appear to contradict the predicted asymptotic rates as noted in Sec. 4.1.3.
To understand this, we consider the Taylor coefficients of the integrand in Example 4.1, and
investigate in more detail the decay properties of

((θρ−r)ν)ν∈F where ρ = (j)j∈N, θ ∈ (0, 1), r > 1. (4.17)

We partition Fk, k ∈ {1, 2} according to sets of multiindices of total order m ∈ N (cp. Def. 2.3),
and define subsets of m-homogeneous multiindices

Fm := {ν ∈ F : |ν| = m} and Fm
2 := {ν ∈ F2 : |ν| = m}. (4.18)
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Figure 1: Decay of the estimators (m
(hol)
ν )ν∈F , (m

(u1)
ν )ν∈F as in (4.13), (4.11) for different values of

r and θ where bj := θj−r, j ∈ N. Here (xj)j∈N denotes a decreasing rearrangement of the estimator
sequences, and we plot xj against j on the x-axis. Asymptotically, the algebraic decay rate is 2r−ε
for any ε > 0 in all cases.
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4.2.1 Decay with respect to Fm

For m ∈ N and ρ, r as in (4.17), consider

(xm;j)j∈N, a decreasing rearrangement of (ρ−νr)ν∈Fm . (4.19)

For any ε > 0 there then exists C (depending on ε andm) such that xm;j ≤ Cj−r+ε for all j ∈ N.
To see this, fix for the moment ε > 0 and 0 < θ < 1. By Lemma 2.4, ((θρ−r)ν)ν∈F ∈ ℓ1/r+ε.
Since (θmxm;j)j∈N is a subsequence, according to Lemma 2.9 our claim is true.

In the following, log denotes the natural logarithm.

Lemma 4.4. Let r, ρ as in (4.17), m ∈ N and for R ≥ 0 set

Am(R) :=
∑

{ν∈Fm :ρ−rν≥R−r}

|ν|!
ν!

. (4.20)

Then Am(R) = 0 if R < 1 and with c0 := 1− log(2) ∈ (0, 1) for all R ≥ 1

cm0 R

m−1∑

i=0

(c−1
0 log(R))i

i!
≤ Am(R) ≤ R

m−1∑

i=0

(2 log(R))i

i!
. (4.21)

Proof. For R ∈ [0, 1) the sum is over the empty set, so let R ≥ 1 in the following. Then

Am(R) =
∑

{ν∈F : |ν|=m, ρ−rν≥R−r}

|ν|!
ν!

=

∣
∣
∣
∣
∣
∣






(i1, . . . , im)N :

m∏

j=1

i−r
j ≥ R−r







∣
∣
∣
∣
∣
∣

, (4.22)

since for every ν ∈ F with |ν| = m, there exist exactly |ν|!/ν! elements (i1, . . . , im) of Nm such
that |{j ∈ {1, . . . ,m} : ij = l}| = νl for all l ∈ N. With N := ⌊R⌋ ∈ N we have

Am+1(R) =

N∑

j=1

∑

{(i1,...,im) : j−r
∏m

l=1 i−r
l ≥R−r}

1 =

N∑

j=1

∑

{(i1,...,im) :
∏m

l=1 i−r
l ≥(R/j)−r}

1 =

N∑

j=1

Am(R/j).

(4.23)
To prove the upper bound in (4.21), we proceed by induction over m. For m = 1 it holds

i−r
1 ≥ R−r iff i1 ≤ R, so that A1(R) = ⌊R⌋ and the estimate is satisfied. Next, employing (4.23)
and the induction hypothesis

Am+1 ≤
N∑

j=1

R

j

m−1∑

i=0

log(R/j)i

i!
= R

N∑

j=1

m−1∑

i=0

1

i!

log(R/j)i

j
. (4.24)

Now f : x 7→∑m
i=0 2

i log(R/x)i/(x · i!) is monotonically decreasing because every summand is.

Therefore we can estimate
∑N

j=1 f(j) ≤ f(1) +
∫ N

1
f(x)dx, giving

N∑

j=1

m−1∑

i=0

2i

i!

log(R/j)i

j
≤ f(1) +

∫ N

1

m−1∑

i=0

2i

i!

log(R/x)i

x
dx = f(1) +

m−1∑

i=0

2i

i!

∫ log(N)

0

(log(R)− y)idy

≤ f(1) +

m−1∑

i=0

2i

i!

∫ log(R)

0

(log(R)− y)idy =

m−1∑

i=0

2i log(R)i

i!
+

m−1∑

i=0

2i

i!

log(R)i+1

i+ 1
≤

m∑

i=0

2i log(R)i

i!
,

(4.25)

which concludes the proof of the upper bound.
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For the lower bound, the casem = 1 follows by Rc0 ≤ ⌊R⌋ = A1(R) where c0 = (1−log(2)) <
1/2. With (4.23) due to the induction hypothesis

Am+1(R) =

N∑

j=1

Am(R/j) ≥ R

N∑

j=1

R

j

m−1∑

i=0

cm−i
0 log(R/j)i

i!
. (4.26)

Note that for ⌊R⌋ = N ≥ 1

N∑

j=1

1

j
≥ 1 +

∫ N+1

2

1

x
dx ≥ 1−

∫ 2

1

1

x
dx+

∫ R

1

1

x
dx = c0 + log(R). (4.27)

Hence, using that f(x) := log(R/x)i/x is monotonically decreasing for x ≥ 1 so that
∑N

j=1 f(j) ≥
∫ N+1

1
f(x)dx ≥

∫ R

1
f(x)dx similar as in (4.25),

N∑

j=1

m−1∑

i=0

1

i!

cm−i
0 log(R/j)i

j
≥

N∑

j=1

cm−1
0

j
+

N∑

j=1

m−1∑

i=1

cm−i
0

i!

log(R/j)i

j

≥ cm+1
0 + cm0 log(R) +

m−1∑

i=1

∫ R

1

cm−i
0

i!

log(R/x)i

x
dx =

m∑

i=0

cm+1−i
0 log(R)i

i!
, (4.28)

which proves the lower bound in (4.21).

With Lemma 4.4 and c0 := 1− log(2) ∈ (0, 1), we observe for R ≥ 1

fm(R) :=
cm0
m!
R

m−1∑

i=0

(c−1
0 log(R))i

i!
≤ |{ν ∈ Fm : ρ−rν ≥ R−r}| ≤ R

m−1∑

i=0

(2 log(R))i

i!
=: gm(R),

(4.29)
which immediately gives:

Lemma 4.5. Let j ∈ N and Rj ≥ 1, Sj ≥ 1 such that fm(Rj) = j and gm(Sj) = j. Then with
xm;j as in (4.19) for all j ∈ N

R−r
j ≤ xm;j ≤ S−r

j . (4.30)

To estimate the local algebraic decay of the upper bound for m = 2 in Lemma 4.5 at
position j = g2(R) = R(1+ 2 log(R)), with x = log(R) we need to consider the derivative of the
parametrized curve (x+log(1+2x),−rx). At (x+log(1+2x),−rx) it equals −r/(1+2/(1+2x)),
so that our upper bound at j = R(1+ 2 log(R)) has the local algebraic decay rate (in the above
sense)

r

1 + 2
1+2 log(R)

. (4.31)

A similar deliberation for the lower bound in (4.30) gives the same rate at position j = f2(r) =
R(c0 + log(R))c0/2. This explains, why a rate close to r is only observed for rather large j.
Furthermore, due to the additional (higher order) logarithmic terms in (4.29), in a given, fixed
range of j, the rate of decay becomes worse as m grows. Indeed, Figure 2 shows the sequences
(xm,j)j∈N for m = 2, 3, 4, together with the bounds from Lemma 4.5. For the plotted range of
small j, the behaviour is far from j−r. Figure 3 shows that the rate will eventually approach
r. Also note that gm(R) ≤ R3 for all m ∈ N, which suggests that the worst we can expect for
large m is a preasymptotic rate of r/3, although we do not claim that our estimate is optimal,
so this might be too pessimistic.
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Figure 2: The decay of the sequences (xm;j)j∈N in (4.19), for r = 3 and for gpc coefficients of
total orders m = 2, 3, 4. Additionally, the lower and upper bounds of x2;m;j in (4.30) are depicted.
Asymptotically, for any ε > 0 the curves decay like j−3+ε. In the plotted range of j a worse,
preasymptotic rate is observed.
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Figure 3: Same as Figure 2 but with the bounds plotted for a larger range.
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4.2.2 Decay w.r.t. Fm
2

So far, we have considered the sequences over the index set F . For the convergence rate analysis
of Smolyak quadrature, we are mainly interested in sequences with index set F2. For fixed
m ∈ N, r > 1, and with ρ as in (4.17) define (cp. (4.18), (4.19))

(x2;m;j)j∈N, a decreasing rearrangement of (ρ−νr)ν∈Fm
2
. (4.32)

We claim that for any ε > 0 exists C > 0 (depending on ε) such that

∀j ∈ N : x2;m;j ≤ Cj−2r+ε . (4.33)

According to Lemma 2.4, for 0 < θ < 1 fixed, it holds ((θρ−r)ν)ν∈F2 ∈ ℓ2r−ε(F2). Thus
also ((θρ−r)ν)ν∈Fm

2
∈ ℓ2r−ε(Fm

2 ) and consequently (x2;m;j)j∈N, being a rearrangement of
(θ−m(θρ−r)ν)ν∈Fm

2
, must be in ℓ2r−ε(N). Lemma 2.9 then shows (4.33).

We discuss the decay of (x2;m;j)j∈N for different m:

• m = 1: Observe that ∅ = F1
2 = {ν ∈ F2 : |ν| = 1}, so this case is trivial.

• m = 2: With ej = (δij)i∈N we have F2
2 = {2ej : j ∈ N} and {ρ−rν : ν ∈ F2

2} = {j−2r :
j ∈ N} so that x2;2;j = j−2r, and the decay predicted by (4.33) is apparent for small j.

• m = 3: It holds F3
2 = {3ej : j ∈ N} and thus {ρ−rν : ν ∈ F3

2} = {j−3r : j ∈ N}. Hence
m = 3 can be considered as a special case, since x2;3;j = j−3r and the decay is even faster
than j−2r.

• m = 4: We have

∣
∣{ν ∈ F4

2 : ρ−rν ≥ R−r}
∣
∣ =

∣
∣{ν ∈ F2 : ρ−r2ν ≥ R−r}

∣
∣ =

∣
∣
∣{ν ∈ F2 : ρ−rν ≥ R−r/2}

∣
∣
∣

(4.34)
and thus with (4.29)

f2(R
1/2) ≤

∣
∣{ν ∈ F4

2 : ρ−rν ≥ R−r}
∣
∣ ≤ g2(R

1/2). (4.35)

Considering the parametrized curves (f2(R
1/2), R−r), (g2(R

1/2), R−r) for R ≥ 1, a compu-
tation similar to the one before (4.31) implies that the decay of (x2;4;j)j∈N in the preasymp-
totic range is worse than what (4.33) suggests, due to the logarithmic factors occurring in
f2, g2.

• m > 4: Similar arguments as in the case m = 4 apply, and we expect the decay rate to
further diminish as m grows. The precise rate depends on the number of possibilities to
write m as a sum of integers in N\{1}: for example {x2;5;j : j ∈ N} = {k−2l−3 : k 6= l ∈
N} decreases faster than {x2;4;j : j ∈ N} = {k−2l−2 : k < l ∈ N}, as Fig. 4 (a) ahead
shows.

Implications for ((θρ−r)ν)ν∈F2
are as follows. We write

(θρ−r)ν = θmρ−rν ∀ν ∈ Fm
2 , (4.36)

and note that all terms belonging to Fm
2 are scaled by the common factor θm: the smaller θ,

the fewer multiindices of high total order m (which, in the preasymptotic range, decay slower
than expected as we have noticed) will be among the N largest ones. Denote now by (x2;j)j∈N

a decreasing rearrangement of the sequence in (4.36). By Lemma 2.9 and due to the fact that
for any p > 1/r it holds ((θρ−r)ν)ν∈F2 ∈ ℓp(F2) by Lemma 2.4, for any ε > 0 there exists a
constant C > 0 (depending on ε and on m) s.t.

x2;j ≤ Cj−2r+ε. (4.37)
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If 0 < θ < 1 is small then, due to the factor θm in (4.36), only few multiindices of order m ≥ 4
occur among the largest, and essentially ((θρ−r)ν)ν∈F2

2∪F3
2
governs the decay of xj for small j,

thus yielding the expected rate 2r − ε. On the other hand, as θ draws closer to 1, more higher
order multiindices contribute to the best j terms, resulting in a longer preasymptotic range with
slower decay.

To numerically verify these heuristic considerations, we find computable lower and upper
bounds of x2;j . First note that with fm as in (4.29), for R ≥ 1 there holds

fm(R) ≤ |{ν ∈ Fm : ρ−r2ν ≥ R−2r}| ≤ |{ν ∈ F2m
2 : ρ−rν ≥ R−2r}|. (4.38)

We extend fm via fm(R) := 0 for all R ∈ [0, 1), and (4.38) then remains true also for R < 1.
Therefore

F (R) := 1 +
∑

m∈N

fm(θ2m/2rR) ≤ |{0}|+
∑

m∈N

|{ν ∈ F2m
2 : ρ−rν ≥ (θ2m/2rR)−2r}|

= |{0}|+
∑

m∈N

|{ν ∈ F2m
2 : (θρ−r)ν ≥ R−2r}| ≤ |{ν ∈ F2 : (θρ−r)ν ≥ R−2r}|. (4.39)

A lower bound can now be derived as in Lemma 4.5. A (rough) upper bound can be derived for
any p > 1/r via Lemmata 2.4, 2.9 and the estimate (see the proof of Lemma 2.4)

‖(θρ−r)ν‖ℓp/2(F2) ≤ exp




2

p

θp

1− θp/2

∑

j∈N

j−rp



 ≤ exp

(
2

p

θp

1− θp/2
(1 + (rp− 1)−1)

)

<∞,

(4.40)
for any p > 1/r. We then obtain:

Lemma 4.6. Let j ∈ N and Rj ≥ 1 such that F (Rj) = j and let p > 1/r. Then with x2;j
denoting a decreasing rearrangement of the sequence in (4.36), for all j ∈ N

R−2r
j ≤ x2;j ≤ exp

(
2

p

θp

1− θp/2
(1 + (rp− 1)−1)

)

j−2/p. (4.41)

Figure 4 depicts the decay of (x2;m;j)j∈N, (x2;j)j∈N as well as the lower and upper bound
in Lemma 4.6 for r = 3, θ = 0.005. Due to θ being relatively small, the curves for (x2;m;j)j∈N

in subfigure (a) are far apart (cf. (4.36)). The measured decay rate of (xj)j∈N is 5.6, which is
fairly close to 2r = 6, cp. (4.37). Figure 5 shows the same but with θ = 0.25. In this case the
measured rate of (xj)j∈N in the observed range of j is merely 4.7. Subfigures (c) depict the
upper and lower bounds in Lemma 4.6 also for (unrealistically) large values of j. The lower
bound seems to capture the actual error convergence whereas the upper bound appears to be
overly conservative. This is due to the fact, that the estimate of the ℓp/2 norm in (4.40) tends
to ∞ as p→ 1/r. The plots suggest, that the asymptotic rates are realized only for rather large
numbers of quadrature points.

Finally, we have here considered the sequence ((θρ−r)ν)ν∈F2
, which is not quite the same

as (m
(u1)
ν )ν∈F shown in Figure (1). Indeed, the first is a subsequence of the latter. More

precisely, the entries are the same, but (m
(u1)
ν )ν∈F contains some of them a multiple number

of times (cp. (4.11), (4.13)). This has a further diminishing effect on the decay rates as a
comparison between Figures 1 and 5 reveals. However, the asymptotic decay rate is the same

for both sequences (viz 2r − ε for ε > 0 arbitrary). Moreover, the estimator (m
(hol)
ν )ν∈F in

(4.13) also depicted in Figure 1, shows this preasymptotic effect even stronger. This does not
come as a surprise, as for any ν ∈ F2, it even holds that if θ > 0 is small enough, then

m
(hol)
ν ≥ C(|ν|!/ν!)(θρ−r)−ν , as we have shown in the proof of Thm. 2.11.
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Figure 4: In this plot (x2;m;j)j∈N is as in (4.32) for θ := 0.005, r := 3 and ρ = (j)j∈N. The
sequence (x2;j)j∈N denotes a decreasing rearrangement of ((θρ−r)ν)ν∈F2

. For ε > 0 arbitrary, both
(x2;m;j)j∈N and (x2;j)j∈N decay with algebraic rate 2r− ε (for any m ∈ N, where in the case m = 3
we even have the rate 3r as is explained in the text). Subfigures (b), (c) show the sequence (x2;j)j∈N
together with the lower and upper bounds from Lemma 4.6. The summability exponent p ∈ (1/3, 1]
in (4.41) was chosen as 1/(3 ·0.97), implying that the upper bound in subfigure (c) has an algebraic
convergence rate of 2/p = 5.82.
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Figure 5: Like Figure 4 but with θ := 0.25 instead. Due to θ being closer to 1, the curves in
subfigure (a) are shifted to the top as compared with Figure 4 (a) where θ = 0.005. This results
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4.3 Real valued model parametric integrand functions

We now test the convergence of the Smolyak quadrature for the functions u1, u2 in Examples
4.1, 4.2. For u2 we also refer to [24] where computations for almost the same integrand were
done with the method suggested in their paper.

4.3.1 Model integrand u1

Let

u1(y) =
∏

j∈N

1

1 + yjθj−r
(4.42)

as in (4.1) with bj := θj−r, 0 < θ < 1, r > 1. As explained in Example 4.1, for this integrand
Assumption 2.1 is satisfied. Since b ∈ ℓp for any p < 1/r, Thm. 3.3 states that for suitable index
sets ΛN the Smolyak quadrature will reach the asymptotic convergence rate 2r− ε, in terms of
the number N of quadrature points. Figure 6 shows the absolute error |

∫

U
u(y)dµ(y)−QΛN

u|
for different values of r and θ, and with ΛN in (4.14) based on the estimators m(hol), m(u1) given
in (4.13), (4.11). The reference value can in this case be computed directly as

∫

U
u(y)dµ(y) =

∏

j∈N
log((1 + bj)/(1− bj))/(2bj).

The estimator m(u1) delivers the better rate, which is not surprising, as it is based on exact
values of the modulus of the Taylor coefficients, see Rmk. 4.3. The estimator m(hol) performs
similarly but slightly worse. Evidently the constant θ has a significant influence on the error
decay in both cases. In section 4.2.2, we noted that in the practical range of j, the Taylor
coefficients of u1 w.r.t. F2 do not converge as fast as expected (i.e. at least like O(n−2r+ε)), also
see Figure 1 (d), (e), (f) and (4.11). Assuming that the error corresponds to the sum over the
modulus of the Taylor coefficients with indices not in the index set, an error convergence rate
better than the decay rate of the Taylor coefficients minus one, can in general not be expected.
This is roughly in accordance with what is observed in in Figure 1 (d), (e), (f) and Figure 7
(d), (e), (f). Decreasing θ results in the error bounds approaching the asymptotic behaviour for
smaller values of j. The plots confirm that considerably faster convergence than the previously
proved O(N1−r) is in principle attainable.

4.3.2 Model integrand u2

Let

u2(y) =
1

1 + θ
∑

j∈N
yjj−r

(4.43)

as in (4.5) with bj := θj−r, r > 1 and θ > 0 small enough such that θ
∑

j∈N
j−r < 1. We

have already noted in Example 4.2, that Assumption 2.1 is satisfied for any p > 1/r, so that
by Thm. 3.3 we expect the convergence rate 2r − ε with ε > 0 arbitrary. Figure 7 shows the
convergence of the absolute error |

∫

U
u(y)dµ(y) − QΛN

u| for different values of r and θ, and

with ΛN in (4.14) based on the estimators m(hol), m(u1). Strictly speaking, the usage of m(u1)

in (4.13) is not in accordance with our theory, since the modulus of the Taylor coefficients of

u2 are ((|ν|!/ν!)bν)ν∈F (see Rmk. 4.3), and thus in general not bounded by m
(u1)
ν = bν for

ν ∈ F2. However, the performance of m(u1) is slightly better also for this integrand. The
reference value for

∫

U
u(y)dµ(y) has been computed with a higher order quasi Monte Carlo rule

(a so-called high-order, Interlaced Polynomial Lattice rule adapted to the model integrand, with
suitable digit interlacing parameter, see [19] and the references there) utilizing 220 = 1048576
quadrature points applied to the function u restricted to the first 1024 dimensions. This explains
the saturation of the curves after a certain time, since our approximation at some point exceeds
the precision of the reference value.
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Figure 6: Quadrature error |
∫

U
u1(y)dµ(y)−QΛN

u1| for u1 in (4.42), and ΛN in (4.14) built with

the estimators m(hol), m(u1) in (4.13), (4.11), for different values of r and θ. The plot shows the
absolute error in terms of the number of quadrature points N = |ΛN |. The proven asymptotic
convergence rate is 2r − 1− ε with ε > 0 arbitrary in all cases.
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(b) (hol), r = 3
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(c) (hol), r = 4
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(e) (u1), r = 3
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Figure 7: Quadrature error |
∫

U
u2(y)dµ(y)−QΛN

u2| for u2 in (4.43), and ΛN in (4.14) built with

the estimators m(hol), m(u1) in (4.13), (4.11), for different values of r and θ. The plot shows the
absolute error in terms of the number of quadrature points N = |ΛN |. The reference value for
∫

U
u2(y)dµ(y) has been computed with a higher order quasi Monte Carlo rule utilizing 220 lattice

points applied to the function u2 restricted to the first 1024 dimensions. The proven asymptotic
convergence rate is 2r − 1− ε with ε > 0 arbitrary in all cases.

36



4.3.3 Comparison with an adaptive method

We consider the model parametric integrand u2 defined in (4.5), with bj := θj−r for r = 2
and θ > 0. In the following, our method is compared with a variant of the dimension adaptive
algorithm described in [21] which we outline briefly for completeness. For some finite, downward
closed set of multiindices {0} 6= Λ ⊆ F , following [7] we introduce the reduced set of neighbours

N (Λ) := {ν ∈ F :ν /∈ Λ, ν − ej ∈ Λ ∀j ∈ suppν,

νj = 0 ∀j > max
µ∈Λ

max{i ∈ suppµ : µi 6= 0}+ 1}, (4.44)

with the special case N ({0}) := {(1, 0, 0, . . . )}. Algorithm 1 shows the used adaptive method.
Note that here, in contrast to our method described in Sec. 4.1, increasing a multiindex by one
in some dimension adds two more quadrature points in this dimension. For this reason we use
the notation Dν rather than ∆ν as in (3.2), to avoid confusion. Also recall, that Q−1 := 0 and
for n ∈ N0, Qn stands for the one dimensional interpolatory quadrature employing the n + 1
points (χj)

n
j=0 in [−1, 1]. They are the first n+ 1 points of a Leja sequence as in [6, 5, 9].

Algorithm 1 AdaptiveSmolyak(integrand u : [−1, 1]N → R, number of multiindices M ∈ N)

Λad := {0}
Λtot := Λad ∪N (Λad)
for all ν ∈ Λtot compute Dν :=

⊗

j∈N(Q2νj+1 −Q2(νj−1)+1)u
while |Λad| < M do

µ := argmax{|Dν | : ν ∈ Λtot\Λad}
Λad := Λad ∪ {µ}
Λnew := N (Λad)\Λtot

for all ν ∈ Λnew compute Dν :=
⊗

j∈N(Q2νj+1 −Q2(νj−1)+1)u
Λtot := Λad ∪ Λnew

end while

QΛad
u :=

∑

ν∈Λad
Dνu

QΛtotu :=
∑

ν∈Λtot
Dνu

Figure 8 depicts a comparison of the convergence for our apriori chosen index sets ΛN in
(4.14) based on the estimator m(hol) with the results from Alg. 1, as well as with the estimator
t(hol), which does not incorporate the fact that polynomials of degree 1 need not be considered
for the quadrature error. The plots show the error vs. number of quadrature points. In case of
the adaptive algorithm, we plot the curve for the set of accepted indices Λad and for the set of
total indices Λtot, as computed by Alg. 1. First, we point out that exploiting Lemma 3.2 (ii)
accomplishes a considerable improvement as the comparison between m(hol) and t(hol) reveals.
Next, note that in order to find the set Λad, Alg. 1 also requires to evaluate the integrand at
quadrature points belonging to the total set Λtot. Thus, the curve for the accepted multiindices
Λad should be considered as a benchmark, whereas the curve for the total set of indices Λtot

can be seen as a practically obtainable computation in terms of error vs. number of quadrature
points (i.e. number of function evaluations). We observe, that our apriori chosen quadrature
points are almost as good, as the ones obtained by the adaptive method and denoted by Λad

above. For small θ there is hardly any difference. In case of Λtot, our method even outperforms
the adaptive algorithm when θ becomes small. Figure 9 shows the same comparison, but based
on m(u1). In this case the performance of the apriori chosen index sets and the adaptive ones is
practically identical. Also, in case one integrand function evaluation is costly, determining the
index set ΛN in a precomputation step allows to compute all function evaluations in parallel,
which is in general not possible for the adaptive algorithm in [21].
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Figure 8: Comparison of the absolute quadrature error for u2 in (4.43), with r = 3, different values
of θ and different methods: either we use the apriori built sets ΛN in (4.14) with the estimators
t(hol), m(hol) (cp. (4.11), (4.13)) respectively, in which case the error is |

∫

U
u2(y)dµ(y) −QΛN

u2|.
Or, we use the adaptive algorithm Alg. 1, in which case the error is |

∫

U
u2(y)dµ(y)−QΛad

u2| for
the accepted and |

∫

U
u2(y)dµ(y) − QΛtotu2| for the total set. The x-axis shows the number N

of employed quadrature points in each case. Our apriori determined index sets for this example,
are almost as good as the adaptively constructed ones Λad (whose construction forces sequential
integrand evaluation and requires memory growing superlinearly with #(Λad)). Taking into account
Lemma 3.2, item (ii) improves the method significantly, as the curves for t(hol) and m(hol) show.
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Figure 9: Same test as shown in Figure 8, but employing m(u1) instead of m(hol).
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Figure 10: Effect of Z in Assumption 2.7, 3.7 for r = 3, θ = 0.25: In this figure we denote
cost(ΛN ) :=

∑

{ν∈ΛN : cΛN ;ν 6=0}

∏

j∈N(νj+1), which is the third term in (3.14). In all three plots, we

compare the respective quantities with ΛN in (4.14) either constructed using the estimator m(hol)

or m(hol);2 (cp. (4.11), (4.12), (4.13)) as indicated in the legend.

4.3.4 Error vs. work

Let u2 as in (4.43) and r = 3, θ = 0.25. We now investigate the influence of using the estimator
m(hol);2 as in (4.12) instead of m(hol) in (4.11), where Z = {0} ∪ {2j : j ∈ N0}. Recall, that
according to Lemma 3.11 and Corollary 3.13, using m(hol);2 means that the error will converge
with the proven rate 2r−1− ε with respect to the overall complexity of the Smolyak algorithm,
by which we mean (3.14). In the first case of m(hol), this rate is only obtained with respect to the
number of quadrature points. The first plot in Figure 10 depicts the error convergence w.r.t. the
number of quadrature points in both cases. The loss of flexibility in choosing the set ΛN based
on Z, i.e. employing m(hol;2) rather than m(hol), leads to a (slightly) inferior performance, in
the considered example.

In the second plot, we compare the third part of the cost in (3.14) for the sets generated
with both estimators. It is observed, that with (cp. (3.14))

cost(Λ) :=
∑

{ν∈Λ : cΛ;ν}6=0

∏

j∈N

(νj + 1), (4.45)

cost(ΛN (m(hol);2)) grows nearly linear, whereas the growth of cost(ΛN (m(hol);2) is more notice-
ably superlinear in N = |ΛN |. Overall the difference and improvement in terms of cost vs. error
(if any) is marginal, since the number of quadrature points vs. cost behaviour for m(hol) is al-
ready close to linear, and a more accentuated difference possibly might, similarly as in Sec. 4.2,
again only be observed for (very) large numbers of quadrature points.

Finally, the third plot shows the quantities in (3.13). The behaviour in the second and third
plot seems in accordance with Lemma 3.11, which states in particular that (with (4.45))

cost(ΛN (m(hol);2)) = O(|ΛN (m(hol);2)|1+ε), (4.46)

d(ΛN (m(hol);2)) = o(log(|ΛN (m(hol);2)|)), (4.47)

m(ΛN (m(hol);2)) = O(log(|ΛN (m(hol);2)|)), (4.48)

as |ΛN (m(hol);2)| → ∞, for any ε > 0. The last two asymptotics are also true for m(hol).
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5 Conclusions and Generalizations

We have analyzed convergence rates of Smolyak quadratures for classes of smooth, Banach
space valued, parametric functions with a suitable sparsity as precised in Assumption 2.1. We
proved that exploiting certain cancellation properties implied by the combination coefficients
and the symmetry of the marginal probability measures allow for the dimension independent
convergence rate 2/p − 1 for p-summable sequences of (norms of) Taylor gpc coefficients of
the parametric integrand functions. This is superior to previously known rates established, for
example, in [25, 23], of N -term gpc approximation of the integrand obtained in [12], or for
Higher Order Quasi-Monte Carlo integration in [16], under analogous sparsity assumptions on
the parametric integrands. We also provided an a-priori construction algorithm of integrand-
adapted sparse grids whose complexity (work and memory) scales near linearly with respect to
the number quadrature points. Numerical experiments verify our findings and show that the
dimension-independent convergence rates are achieved with a moderate number of quadrature
points provided the parametric integrand functions have small deviation from their ‘nominal’,
average, values. We explain, by a refined analysis of the error bounds for a model class of inte-
grand functions, that the asymptotic range where the (dimension-independent) convergence rate
O(N−(2/p−1)) is visible could appear only for a prohibitively large number of quadrature points.
Convergence rates which are superior to N -term approximation bounds for the parametric in-
tegrands have been reported in numerical experiments for example in [37]. Concrete a-priori
estimates on gpc coefficients that may be exploited to apriori determine suitable index sets by
e.g. greedy searches or by knapsack solvers were also given in these references. The presently
proposed variants of the Smolyak algorithm, in particular exploiting multiindices containing a 1,
appear to be new. As we prove and verify in numerical experiments, this results in an algorithm
that performs comparably to the currently best (heuristic) adaptive algorithms, from [20, 21]
as shown in in Figure 8.

The complexity of the Smolyak quadrature was investigated under p-summability of se-
quences of (X-norms of) Taylor coefficients, as implied under the (b, ε)-holomorphy Assumption
2.1 of the parametric integrand function. This is known to hold for broad classes of holomorphic-
parametric operator equations as shown in [10], and also for the corresponding Bayesian inverse
problems [39, 37]. We emphasize that our key findings, notably the observation that all linear
terms are integrated exactly by any Smolyak quadrature, remain valid for other measures µ,
presuming that the one point rule in the Smolyak construction integrates linear polynomials
exactly. In particular, similar improvements as shown in this paper can also be expected under
different summability results. For example, for linear, affine-parametric diffusion problems with
localized coefficient functions ψj(x), a weighted summability condition as presumed in the below
corollary was verified in [1, Theorem 1.2]. This gives a bound analogous to [1, Cor. 2.1]:

Corollary 5.1. Let ρ = (ρj)j∈N ∈ ℓq(N) with q > 0 and ρj > 1 for all j ∈ N, and assume
(‖uν‖Xρν) ∈ ℓ2(F). Then (‖uν‖X)ν∈F2 ∈ ℓp(F2) with p = 2q/(4 + q).

Proof. Hölder’s inequality implies

∑

ν∈F2

‖uν‖pX ≤
(
∑

ν∈F2

(‖uν‖Xρν)2

) p
2
(
∑

ν∈F2

ρ− 2p
2−p

) 2−p
p

. (5.1)

According to Lemma 2.4, the last sum is finite iff (ρ−1
j )j∈N ∈ ℓq̃(N) with q̃ = 4p/(2−p). Solving

this equation for q̃ gives p = 2q̃/(4 + q̃).

With such a result, we expect following the arguments in Thm. 2.11 and Thm. 3.3 the
dimension-independent convergence rate 1/p−1 = (4−q)/(2q) provided q ∈ (0, 4) (i.e. p ∈ (0, 1)).
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Another particular case in point are Gaussian measures µ. Here, for certain PDEs bounds
on Hermite Chaos coefficients can be obtained by real-variable bootstrapping on the parametric
PDE (see [22, 31, 29]), so that similar conclusions for the corresponding Smolyak algorithms
could be expected.

In many practical settings the evaluation of the integrand is presumed to be far more costly
than performing the quadrature itself. For integrands exhibiting low sparsity, using a large
number of quadrature points becomes inevitable. The near linear scaling of the cost in terms of
the number of quadrature points makes the algorithm feasible also for such problems.

In this paper we assumed the integrand to allow exact evaluation at each quadrature point
with cost O(1). In general, for UQ problems the integrand is given as the solution to some
PDE, which needs to be approximated by a numerical scheme. This will be addressed in [14],
where we perform a fully discrete error analysis taking into account the cost of approximating
the function values at the quadrature points.
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