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Abstract

We adapt the variational approach to the analysis of first-kind boundary integral equa-
tions associated with strongly elliptic partial differential operators from [M. Costabel,
Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math.
Anal., 19 (1988), pp. 613–626.] to the (scaled) Hodge-Helmholtz equation curl curlu −
η∇divu − κ2u = 0, η > 0, Imκ2 ≥ 0, on Lipschitz domains in 3D Euclidean space, supple-
mented with natural complementary boundary conditions, which, however, fail to bring
about strong ellipticity.

Nevertheless, a boundary integral representation formula can be found, from which
we can derive boundary integral operators. They induce bounded and coercive sesqui-
linear forms in the natural energy trace spaces for the Hodge-Helmholtz equation. We can
establish precise conditions on η, κ that guarantee unique solvability of the two first-kind
boundary integral equations associated with the natural boundary value problems for the
Hodge-Helmholtz equations. Particular attention will be given to the case κ = 0.

Keywords. Maxwell’s Equations; static limit, Hodge-Laplacian; potential representa-
tions, jump relations, first-kind boundary integral equations; coercive integral equations.

MSC 2010. 31A10, 45A05, 45E05.

1 Introduction

Relying on a vector potential A and a scalar potential Φ and employing Lorentz gauge, the
linear Maxwell’s equations in frequency domain driven by a source current j with angular
frequency ω > 0 can be recast as

curlµ(x)−1 curlA + iωǫ(x)∇Φ − ω2ǫ(x)A = j ,
div(ǫ(x)A) + iωΦ = 0 , (1)

Straightforward elimination of Φ yields the vector second-order partial differential equation
(PDE) curlµ(x)−1 curlA−ǫ(x)∇div(ǫ(x)A)−ω2ǫA = j. Thus, in the case of homogeneous
and isotropic materials, where both µ and ǫ are constant multiples of the identity matrix, A
will satisfy the second-order Hodge-Helmholtz equation

curl curlA − η∇divA − κ2A = 0 , (2)
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for some κ, η > 0. Its principal part is the Hodge-Laplacian ∆η ∶= curl curl−η∇div.
This work is dedicated to the derivation and analysis of first-kind boundary integral equa-

tions (BIEs) related to boundary value problems for (2). We aim to adapt the modern varia-
tional treatment of BIEs for strongly elliptic boundary value problems, as pioneered in [11,24],
and pursued, for instance, in [20], to the Hodge-Helmholtz equation. More precisely, we inves-
tigate boundary value problems and BIEs in a Hilbert space framework supplied by suitable
Sobolev (energy) spaces and associated trace spaces. This permits us to work on domains
with merely Lipschitz boundaries. Special attention will also be paid to the static limit κ = 0.

Novelty. Vast literature is devoted to the Hodge-Laplacian ∆ ∶= δ d+d δ acting on
differential forms on smooth manifolds. This approach is reviewed comprehensively in the
books [21, 22] and [31]. In the former two volumes boundary integral equations play a cen-
tral role, but the focus is on second-kind boundary integral equations set in Lp-type spaces
on domain boundaries. This perspective requires analysis and techniques fundamentally dif-
ferent from what we present in this manuscript, which studies first-kind boundary integral
equations. Apparently, those have received little attention so far.

To keep the presentation simple and accessible we confine ourselves to classical vector
analysis on Euclidean space R

3 and forgo developments in an exterior calculus setting on
manifolds. This is certainly feasible based on results for Maxwell’s equations [18, 33].

Outline. Our main results, stated in Corollaries 6.9 and 6.12, will be a comprehensive
understanding of the mapping properties in Sobolev-Hilbert trace spaces of first-kind bound-
ary integral operators connected with “natural” elliptic boundary value problems (BVPs) for
the Hodge-Helmholtz equation. These BVPs along with the relevant trace operators are eluci-
dated in Section 3. The associated boundary representation formula is given in Equation (38),
based on potentials whose properties are examined in Section 5. Then we are equipped to
tackle the coercivity of variational first-kind boundary integral operators in Section 6. In the
last section we identify kernels of boundary integrals and link them to topological properties
of boundaries for the pure Hodge-Laplacian (κ = 0).

2 Preliminaries

2.1 Lipschitz domains

In the sequel, Ω ⊂ R3 will refer to a Lipschitz domain such that either Ω or R3∖Ω is bounded.
Recall from [20, Ch. 3] that, by definition, a Lipschitz domain Ω is an open set such that for
any x ∈ ∂Ω there exists a neighbourhood x ∈ U ⊂ R

3 and a Lipschitz function ψ ∶ R2 → R

such that, in a certain cartesian coordinate system z = (z1, z2, z3) with origin at x, we have
U ∩ ∂Ω = {z = (z1, z2, z3) ∈ U ∣ z3 = ψ(z1, z2)}, and U ∩ Ω = {z = (z1, z2, z3) ∈ U ∣ z3 <
ψ(z1, z2)}. The boundary will be denoted Γ ∶= ∂Ω. According to Rademacher’s theorem
(see [13, Thm. 3.1.6]) it admits an essentially bounded normal vector field n ∈ L∞(Γ). The
normal field will systematically be assumed directed toward the exterior of Ω.

2.2 Domain based function spaces

The subsequent analysis will make repeated use of various function spaces, so we dedicate
the present section to recalling, in detail, some of those spaces that are now classical in the
literature dealing with electromagnetics, e.g., [1], [23, Ch. 3], [16, Sect. 2.4]. We first introduce
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volume based function spaces. As usual, L2(Ω) refers to square integrable (either scalar of
vector valued) fields over Ω. For any integer k ≥ 0, we also consider Sobolev spaces

Hk(Ω) ∶= {v ∈ L2(Ω) ∣ ∂αxv ∈ L2(Ω)∀α ∈ N2with ∣α∣ ≤ k},
∥u∥2

Hk(Ω)
= ∑∣α∣≤k ∥∂αxu∥2L2(Ω).

The space H1
0(Ω) will refer to the closure of C

∞
0 (Ω) ∶= {ϕ∣Ω ∈ C

∞(R3), supp(ϕ) ⊂ Ω} with
respect to the norm ∥ ∥H1(Ω). We will consider the following functional spaces that are rather
classical in the analysis of Maxwell’s equations (see [16, 23] for example)

H(div,Ω) ∶= {u ∈ L2(Ω)3 ∣ div(u) ∈ L2(Ω)}
H(curl,Ω) ∶= {u ∈ L2(Ω)3 ∣ curl(u) ∈ L2(Ω)3}

These spaces will be equipped with the norm given by ∥u∥2d,Ω = ∥u∥2Ω + ∥d(u)∥2Ω where d = div

or curl. The space H0(curl,Ω) (resp. H0(div,Ω)) will refer to the closure of C
∞
0 (Ω)3 with

respect to the norm ∥ ∥curl,Ω (resp. ∥ ∥div,Ω). We will also consider the following spaces

X(Ω) ∶=H(curl,Ω) ∩H(div,Ω),
with ∥v∥2

X(Ω) ∶= ∥v∥2curl,Ω + ∥v∥2div,Ω.
We will also use the space H(curl2,Ω) ∶= {u ∈H(curl,Ω) ∣ curl(u) ∈H(curl,Ω)} equipped
with ∥u∥2

curl
2,Ω
∶= ∥u∥2

curl,Ω+∥curl(u)∥2curl,Ω as well as the spaceH(∇div,Ω) ∶= {u ∈H(div,Ω) ∣
div(u) ∈ H1(Ω)} equipped with ∥u∥2∇div,Ω ∶= ∥u∥2div,Ω + ∥div(u)∥2H1(Ω). We will also need

the space H1(∆,Ω) ∶= {u ∈ H1(Ω) ∣∇u ∈ H(div,Ω)} endowed with the norm ∥u∥2∆,Ω ∶=∥u∥2
H1(Ω) + ∥∆u∥2L2(Ω). Finally, if H refers to any of the previously mentionned spaces, Hloc

will consist in all functions/fields v such that ϕv ∈ H for any ϕ ∈ C
∞(R3) such that supp(ϕ)

is bounded.
When studying Maxwell’s equations in domains with boundaries only admitting Lips-

chitz regularity, it is essential to keep in mind that H1(Ω)3 ≠ X(Ω), although H1
0(Ω)3 =

H0(curl,Ω) ∩H0(div,Ω), see [1]. This does not prevent from applying Fredholm theory to
variational formulations of Maxwell’s equations, as Xn(Ω) ∶= {u ∈ X(Ω) ∣n × (u∣Γ × n) = 0}
and Xt(Ω) ∶= {u ∈X(Ω) ∣n ⋅ u∣Γ = 0} are both compactly embedded in L2(Ω)3, see [26].

As we wish to deal with boundary integral equations, we will need to rely heavily on trace
type operators. This is the reason why we now discuss in detail these operators, as well as
the associated functional spaces, and appropriate lifting maps. We consider traces for both
to scalar and vector valued fields.

2.3 Scalar trace spaces

In the sequel, we denote the boundary of the domain Ω by Γ ∶= ∂Ω. We first introduce the
so-called (scalar) Dirichlet trace operator τd defined by

τd(ϕ) ∶= ϕ∣Γ ∀ϕ ∈ C
∞(Ω).

This operator gives rise to a continuous linear operator mapping H1(Ω) into L2(Γ), see [30,
Thm. 2.6.8]. The kernel of τd is exactly H1

0(Ω). The range of this map, denoted H1/2(Γ), is
a Hilbert space when equipped with the norm

∥p∥H1/2(Γ) ∶= inf{∥v∥H1(Ω) ∣ v ∈ H1(Ω), v∣Γ = p}. (3)
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Occasionally, we will also consider τd as mapping H1(Ω)3 to H1/2(Γ)3 i.e. τd(u) ∶= (τd(u1), τd(u2), τd(u3))
where u = (u1, u2, u3) ∈ H1(Ω)3. There also exists a characterization of H1/2(Γ) in terms
of so-called Sobolev-Slobodeckii norms, see [20, Ch. 3], i.e., v ∈ H1/2(Γ) if and only if

∫Γ ∫Γ ∣v(x) − v(y)∣2∣x − y∣−3dσ(x)dσ(y) < +∞. We will also use the unique continuous trace

operator γD ∶H(∇div,Ω)→ H1/2(Γ) defined, for all p ∈ C
∞(Ω)3, by the formula

γD(p) ∶= div(p)∣Γ. (4)

The dual space to H1/2(Γ) will be denoted H−1/2(Γ), and is naturally equipped with the
canonical dual norm p↦ supv∈H1/2(Γ)∖{0} ∣⟨v, p⟩∣/∥v∥H1/2(Γ). In connection to this trace space,
let us recall that the normal component trace operator

γN(v) ∶= n ⋅ v∣Γ (5)

induces a continuous linear surjective map from H(div,Ω) onto H−1/2(Γ). Its kernel is exactly
H0(div,Ω). As a consequence, the norm over H−1/2(Γ) may alternatively be given by the
following expression

∥q∥H−1/2(Γ) ∶= inf{∥p∥div,Ω ∣ p ∈H(div,Ω), n ⋅ p∣Γ = q}. (6)

In the sequel, we will repeatedly refer to the scalar Neumann trace τn ∶ H1
loc(∆,Ω)→ H−1/2(Γ)

as the unique operator satisfying

τn(ϕ) ∶= n ⋅ ∇ϕ∣Γ ∀ϕ ∈ C
∞(Ω).

2.4 Vector tangential trace spaces

Now we wish to briefly recall the precise definition of the trace space associated to H(curl,Ω).
Following [4, 5, 7], we first consider the intermediate space H

1/2
T
(Γ) ∶= {γT(u) ∶= n × (τd(u) ×

n) , u ∈ H1(Ω)3} that is a Banach space when equipped with the following associated quotient
norm ∥v∥

H
1/2
T
(Γ)
∶= inf{∥u∥H1(Ω) ∣ γT(u) = v}

where γT(v) ∶= n × (v∣Γ ×n). (7)

As was thoroughly described in Section 2 of [7], the spaces H
1/2
t (Γ) is not left invariant under

the action of the operator v ↦ n×v. This leads us to introduce the space of “rotated traces”

H
1/2
r (Γ) ∶= {v ∣ n × v ∈H1/2

t (Γ)}, with norm ∥v∥
H

1/2
r (Γ)

∶= ∥n × v∥
H

1/2
t (Γ)

. (8)

Then we define the associated topological dual spaces and associated canonical norms adopt-
ing the following notational convention (in accordance with [7, 8]),

H
−1/2
t (Γ) ∶=H1/2

r (Γ)′ , H
−1/2
r (Γ) ∶=H1/2

t (Γ)′. (9)

The operator v ↦ n × v isometrically maps H
−1/2
t (Γ) onto H

−1/2
r (Γ). In the case where the

functional ∗ v ↦ ⟨p,n ×∇v⟩, v ∈ C
∞(Ω) is continuous with respect to ∥ ∥H1(Ω), we denote by

∗Throughout brackets ⟨⋅, ⋅⟩ designate bilinear duality pairings with respect to an L2-type pivot space.
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curlΓ(p) the only element of H−1/2(Γ) satisfying ⟨curlΓ(p), τd(v)⟩ ∶= −⟨p,n×∇v⟩, ∀v ∈ C
∞(Ω).

We will then consider the following trace space

H−1/2(curl,Γ) ∶= {p ∈H−1/2
T
(Γ) ∣ curlΓ(p) ∈ H−1/2(Γ)},

with norm ∥v∥
H−1/2(curl,Γ) ∶= ∥v∥H−1/2t (Γ)

+ ∥ curlΓ(v)∥H−1/2(Γ). (10)

It was also established in [7, Thm. 4.1] that the trace operator γT(v) ∶= n × (v∣Γ × n) de-
fined in (7) induces a continuous linear and surjective operator mapping H(curl,Ω) onto
H−1/2(curl,Γ). Moreover the kernel of this trace operator is exactly H0(curl,Ω). As a
consequence the norm in (10) may be replaced by

∥p∥
H−1/2(curl,Γ) ∶= inf{∥v∥curl,Ω ∣ v ∈H(curl,Ω), γT(v) = p}. (11)

Define the surface gradient by ∇Γτd(v) ∶= γT(∇v) for any v ∈ H1(Γ). This operator continu-

ously maps H1/2(Γ) into H−1/2(curl,Γ), see [7, Prop. 3.6]. Similarly curlΓ continuously maps
H−1/2(curl,Γ) into H−1/2(Γ). We can also set divΓ(u) ∶= curlΓ(n × u), and introduce the
rotated version of (10)

H−1/2(div,Γ) ∶= {v ∈H−1/2r (Γ) ∣ divΓ(v) ∈ H−1/2(Γ)}
with ∥v∥

H−1/2(div,Γ) ∶= ∥v∥H−1/2r (Γ)
+ ∥divΓ(v)∥H−1/2(Γ).

(12)

We have v ∈ H−1/2(div,Γ) if and only if n × v ∈ H−1/2(curl,Γ). Besides H−1/2(div,Γ) can
be identified with the topological dual to H−1/2(curl,Γ) with duality pairing u,v ↦ ⟨u,v⟩ ∶=
∫Γ u ⋅ v dσ. With the previous definitions we have the surface Green formula: for any u ∈

H−1/2(div,Γ), and any v ∈ H1/2(Γ),
⟨u,∇Γv⟩ = −⟨divΓ(u), v⟩ .

Note that the trace u↦ n×u∣Γ induces a continuous surjective operator mapping H(curl,Ω)
onto H−1/2(div,Γ). We will also need the continuous trace operator γR ∶ H(curl2,Ω) →
H−1/2(div,Γ) given by the formula

γR(v) ∶= n × curl(v)∣Γ. (13)

2.5 Lifting maps

In this paragraph we wish to introduce lifting maps, aka, continuous right inverses, for each
one of the four trace operators introduced with (4), (5), (7) and (13).

Dirichlet lifting. For any v ∈ H1/2(Γ), define ̺d(v) as the unique element of H(div,Ω)
satisfying ∫Ω div(̺d(v) )div(p)+ ̺d(v)pdx = ⟨γN(p), v⟩ for all p ∈H(div,Ω). Lax-Milgram’s

lemma shows that ̺d(v) is well-defined for any v ∈ H1/2(Γ) and continuously depends on v.
Moreover routine verifications based on Green’s formula show that it satisfies the equations

∇div ̺d(v) − ̺d(v) = 0 in Ω

curl(̺d(v) ) = 0 in Ω

γD(̺d(v) ) = v on Γ.

(14)
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Neumann lifting. For any given q ∈ H−1/2(Γ) let ̺N(q) refer to the unique element of
H(div,Ω) achieving the minimum in Definition (6) i.e. ∥̺N(q)∥div,Ω = ∥q∥H−1/2(Γ). Then Eu-

ler’s equation associated to this minimization problem reads ∫Ω div(̺N(q) )div(p)+̺N(q)pdx =
0 for all p ∈ H0(div,Ω). From this we conclude that ̺N ∶ H−1/2(Γ)→ H(div,Ω) is a continuous
map satisfying ∇div ̺N(q) − ̺N(q) = 0 in Ω

curl(̺N(q) ) = 0 in Ω

γN(̺N(q) ) = q on Γ.

(15)

Tangential lifting. For any given p ∈H−1/2(curl,Γ) let ̺t(p) refer to the unique element
of H(curl,Ω) achieving the minimum in Definition (11) i.e. ∥̺t(p)∥curl,Ω = ∥p∥H−1/2(curl,Γ).
Then Euler’s equation associated to this minimization problem rewrites ∫Ω curl̺t(p)⋅curl(v)+
̺t(p)v dx = 0 for all v ∈ H0(curl,Ω). From this we conclude that ̺t ∶ H−1/2(curl,Γ) →
H(curl,Ω) is a continuous map satisfying

curl2 ̺t(p) + ̺t(p) = 0 in Ω

div(̺t(p) ) = 0 on Ω

γT(̺t(p) ) = p on Γ.

(16)

Rotated tangential lifting. For any p ∈ H−1/2(div,Γ), define ̺r(p) as the unique ele-
ment of H(curl,Ω) satisfying ∫Ω curl ̺r(p) ⋅ curl(v) + ̺r(p)v dx = −⟨p, γT(v)⟩ for all v ∈

H(curl,Ω). Lax-Milgram lemma shows that ̺r(p) is well defined for any p ∈ H−1/2(div,Γ)
and continuously depends on p. In addition, Green’s formula shows that it satisfies

curl2 ̺r(p) + ̺r(p) = 0 in Ω

div(̺r(p) ) = 0 on Ω

γR(̺r(p) ) = p on Γ.

(17)

2.6 Mean value and jump trace operators

The operators τ∗,∗ = d,n and γ∗,∗ = d,n,r,t, correspond to trace of functions taken on
Γ = ∂Ω from the interior of the domain Ω. We will also consider operators τ∗,c,∗ = d,n and
γ∗,c,∗ = d,n,r,t defined in the same manner, except that the trace is taken from the interior
of R3 ∖Ω. In the definition of these exterior trace operators, the normal field n remains the
same, pointing toward the exterior of Ω. We will also consider jump and mean value operators
defined by [γ∗(v)] ∶= γ∗(v) − γ∗,c(v)

{γ∗(v)} ∶= 1
2
(γ∗(v) + γ∗,c(v) ), ∗ = d,n,r,t.

We define [τ∗(v)] and {τ∗(v)},∗ = d,n accordingly.
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3 Boundary value problems for the Hodge-Helmholtz opera-

tor

The principal part of the Hodge-Helmholtz partial differential operator is the Hodge Laplacian

−∆ηu ∶= curl(curl u) − η∇(div u)
u ∈X(∆,Ω) = Dom(∆η) ∶=H(curl2,Ω) ∩H(∇div,Ω). (18)

It will determine appropriate boundary conditions for the PDE ∆ηu + κ2u = 0 on ∂Ω. From
now, for the remainder of this manuscript

we fix the parameter η to any strictly positive value.

The Hodge-Helmholtz operator is a symmetric, closed, densely defined operator on L2(Ω)3.
Its domain X(∆,Ω) will be equipped with the norm ∥u∥2

X(∆,Ω) ∶= ∥u∥2curl2,Ω + ∥u∥2∇div,Ω,

which turns it into a Hilbert space.

3.1 Green’s formula and boundary conditions

We embark on a variational treatment of the operator (18), which is based on Green’s formula
associated with it: using the compact notations for the trace operators from (4), (5), (7), and
(13) we find

∫
Ω
u ⋅ (−∆ηv)dx = ∫

Ω
u ⋅ (curl(curl v) − η∇(div v))dx

= aη(u,v) − η⟨γNu, γDv⟩ + ⟨γRv, γTu⟩
= ∫

Ω
(−∆ηu) ⋅ v dx −η⟨γNu, γDv⟩ + η⟨γDu, γNv⟩

+⟨γRv, γTu⟩ − ⟨γRu, γTv⟩ ,
(19)

for u,v ∈X(∆,Ω) and with the positive semi-definite symmetric bilinear form

aη(u,v) ∶= ∫
Ω
curlu ⋅ curlv + η divu divv dx . (20)

A theory of boundary integral equations associated with the second-order operator −∆η−κ2Id
will entail a pair of ”dual” (in the sense of L2(Γ)-duality of their image spaces) trace operators,
roles played for the scalar Laplacian by the well-known Dirichlet and Neumann (conormal)
traces. However, as is evident from (19), all four trace operators γT, γN, γR, and γD matter
for −∆η. The criterion for a meaningful selection of two pairs of complementary boundary
conditions is

1. that they are linked to variational problems for (u,v) ↦ aη(u,v)+∫Ω u ⋅v dx that spawn
a compact solution operator in L2(Ω)3, and

2. that they allow imposing arbitrary functions from the trace spaces as inhomogeneous
boundary conditions.

The first option is the partitioning {γT, γN, γR, γD} = {γT, γN}∪{γR, γD}. From Section 2.3 we
learn that the corresponding trace spacesH−1/2(curl,Γ)×H−1/2(Γ) andH−1/2(div,Γ)×H1/2(Γ)

7



are L2(Γ)-duals of each other. These sets of traces induce the boundary value problems
(f ∈ L2(Ω)3)

−∆ηu + u = f in Ω ,

γT(u) = γN(u) = 0 on Γ ,
and

−∆ηu + u = f in Ω ,

γR(u) = γD(u) = 0 on Γ ,
(21)

respectively. The associated variational problems are posed on the spaces H1
0(Ω)3 =H0(curl,Ω)∩

H0(div,Ω) and X(Ω). As X(Ω) fails to be compactly embedded in L2(Ω)3, the right BVP
in (21) will not give rise to a compact mapping L2(Ω)3 → L2(Ω)3, f ↦ u.

Remark 3.1. We point out that for the left BVP from (21) general inhomogeneous boundary
values in H−1/2(curl,Γ) ×H−1/2(Γ) cannot be imposed. If Γ is smooth, then setting γTu = 0
will imply u ∈ Xn(Ω) ⊂ H1(Ω)3 [1, Cor. 2.15], which, in turns, means γn(u) ∈ H1/2(Γ): γnu
cannot be made to match general boundary values ∈ H−1/2(Ω).

The second option is the partitioning {γT, γN, γR, γD} = {γT, γD} ∪ {γR, γN}, which also
accommodates L2(Γ)-duality of trace spaces on both sides. This grouping of traces spawns
the two boundary value problems (f ∈ L2(Ω)3)

−∆ηu + u = f in Ω ,

γT(u) = γD(u) = 0 on Γ ,
and

−∆ηu + u = f in Ω ,

γR(u) = γN(u) = 0 on Γ ,
(22)

respectively. The underlying variational problems are posed on the space Xn(Ω) and Xt(Ω),
which are both compactly embedded in L2(Ω)3, see §2.2. Hence, both solution operators
f ↦ u will be compact in L2(Ω)3. We conclude that this grouping of trace operators provides
the right pair of “Dirichlet” and “Neumann” traces for the Hodge-Laplacian. For the sake of
brevity, we write for the associated “Dirichlet” and “Neumann” trace spaces

Hd(Γ) ∶=H− 1

2 (curl,Γ) ×H+ 1

2 (Γ) , Hn(Γ) ∶=H− 1

2 (div,Γ) ×H− 1

2 (Γ) . (23)

Remember that H−1/2(Γ) is by definition the L2(Γ)-dual to H+1/2(Γ) and (see [7] for exam-
ple) H−1/2(div,Γ) is L2(Γ)-dual to H−1/2(curl,Γ). As a consequence Hn(Γ) is topologically
dual to Hd(Γ) with respect to the canonical pairing induced by the combined L2(Γ) inner
products

⟪(u, p), (v, q)⟫ ∶= ∫
Γ
u ⋅ v + p q dσ , ∀(u, p) ∈Hd(Γ), ∀(v, q) ∈Hn(Γ) (24)

As concise notation we introduce two continuous vector trace operators Td ∶X(∆,Ω)→Hd(Γ)
and Tn ∶ X(∆,Ω) → Hn(Γ). As explained above, they should be regarded as generalized
counterparts of Dirichlet/Neumann traces, and are given by the formulas

Td(u) ∶= (γT(u), η γD(u)) , Tn(u) ∶= (γR(u), γN(u)).
They permit us to rewrite (19) in the compact form

∫
Ω
u ⋅∆η(v) − v ⋅∆η(u) dx = ⟪Tn(u),Td(v)⟫ − ⟪Tn(v),Td(u)⟫ ∀u,v ∈X(∆,Ω). (25)

The current selection of boundary conditions also makes it possible to prescribe arbitrary
”Dirichlet” or ”Neumann” data as confirmed by the following finding.
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Lemma 3.2.
There exists a continuous lifting map Rd ∶Hd(Γ)→X(∆,Ω) (resp. Rn ∶Hn(Γ)→X(∆,Ω))
such that Td ⋅Rd = Id (resp. Tn ⋅Rn = Id). In particular Td and Tn are surjective.

Proof:
Observe that the range of the liftings ̺∗,∗ = d,n,t,r is contained in X(∆,Ω) according

to (15), (14), (16) and (17). As can be checked straightforwardly, for any (α, q) ∈ Hd(Γ),
the operator Rd(α, q) ∶= ̺t(α) + η−1(Id − ̺t ⋅ γT) ⋅ ̺d(q) fullfils the assertions of the lemma.
Similarly, for any (β, p) ∈Hn(Γ), the operator Rn(β, p) ∶= ̺n(p) + (Id − ̺n ⋅ γN) ⋅ ̺r(β) meets
the requirements of the lemma. ◻

Like in the case of more standard trace operators, we will need to consider operatorsTd,c = (γt,c, η γd,c) and Tn,c = (γr,c, γn,c) defined in the same manner as Td,Tn except that the
traces are taken from R

3 ∖Ω. We will also need mean value and jump operators defined by

[T∗] = T∗ − T∗,c and {T∗} = 1
2
(T∗ + T∗,c). ∗ = d,n .

These operators will naturally come into play when considering transmission problems and
boundary integral operators associated with the Hodge-Helmholtz equation.

Remark 3.3. The significance of the boundary conditions in (22) has long been recognized.
They are prominently covered in [21, Sect. 1.1] and [22, Ch. 5]. From [31, Sect. 1.6] we learn
that they render (22) elliptic in the sense of Lopatinskii-Sapiro. That Td and Tn are ”natural”
for the Hodge-Laplacian is also highlighted in [15, §2.2.2] and [12, §1.c]. In the context of
exterior calculus Td and Tn are converted into each other by applying the Hodge operator.

Remark 3.4. As key difference to the variational theory of boundary value problems for
strongly elliptic partial differential operators [20, Ch. 4] is the failure of a crucial identity:

⟪Tn(u),Td(u)⟫ /= aη(u,u) for some u ∈X(∆,Ω), ∆ηu = 0 . (26)

Changing a sign in Definition (24) of the duality pairing could fix this, but would thwart (25).

3.2 Spectrum of ∆η in bounded domains

For the Hodge-Helmholtz operator −∆η−κ2Id equipped with either set of boundary conditions
from (22), uniqueness of solutions will break down for κ2 contained in the spectrum of ∆η

(plus boundary conditions), which is a pure point spectrum for bounded Ω. Therefore we
study the spectrum of the Hodge-Laplace operator in the bounded domain Ω with either
Dirichlet or Neumann boundary conditions,

S(∆∗η ,Ω) ∶= { λ ∈ C ∣ ∃v ∈X(Ω) ∖ {0},
−∆ηv = λv in Ω, T∗(v) = 0 on ∂Ω } , where ∗ = d,n .

Due to the compact embedding of Xt(Ω) and Xn(Ω) into L2(Ω)3, cf. [26], the operator ∆∗η
has a self-adjoint compact resolvent and, consequently, S(∆∗η ,Ω) is a discrete subset of R+
accumulating at ∞.

Proposition 3.5.
Assume that Ω is bounded. Then S(∆d

η ,Ω) = Λt ∪ ηΛd where

Λd ∶= { λ ∈ C ∣ ∃v ∈ H1(Ω) ∖ {0}, −∆v = λv in Ω, τd(v) = 0 on ∂Ω },
Λt ∶= { λ ∈ C ∣ ∃v ∈H(curl,Ω) ∖ {0}, curl2(v) = λv in Ω,

γT(v) = 0 on ∂Ω, div(v) = 0 in Ω } .
9



Proof: Pick some λ ∈S(∆d
η ,Ω) and consider v ∈X(Ω) ∖ {0} such that −∆d

ηv = λv in Ω andTd(v) = 0. If div(v) = 0 in Ω, since in particular γT(v) = 0 on ∂Ω, we conclude that λ ∈ Λt.
Otherwise, we have λdiv(v) = −div(∆ηv) = −η∆div(v) in Ω, and then λ ∈ ηΛd. This shows
that S(∆d

η ,Ω) ⊂ Λt ∪ ηΛd.

Conversely, take λ ∈ Λt, and consider v ∈ H(curl,Ω) ∖ {0} satisfying curl2(v) = λv and
div(v) = 0 in Ω, as well as γT(v) = 0 on ∂Ω. We have in particular v ∈ X(Ω) ∖ {0}, and
λv = curl2(v) = curl2(v) − η∇div(v) = −∆ηv on Ω. This proves Λt ⊂S(∆d

η ,Ω).
Finally take λ ∈ Λd, and consider v ∈ H1(Ω)∖{0} such that −∆v = λv in Ω, and τd(v) = 0 on

∂Ω. Set w ∶= ∇v. Clearly curl(w) = 0 and div(w) = −λv ∈ L2(Ω) so that w ∈X(Ω). Moreover,
if w = 0, then we must have v = c for some c ∈ C, and c = 0 due to τd(v) = 0 which is in
contradiction with v ≠ 0. So w ∈X(Ω)∖{0}. Clearly γT(w) = 0 on ∂Ω as v admits a constant
value (zero actually) on ∂Ω, and div(w) = ∆v = −λv ∈ H1

0(Ω) shows that τd(divw) = 0, so
that Td(w) = 0. Finally, since curlw = 0, we have −∆ηw = −η∇div(w) = −η∇(∆v) = ηλw in
Ω, so that ηλ ∈S(∆d

η ,Ω). This shows that ηΛd ⊂S(∆d
η ,Ω) and concludes the proof. ◻

An analogous result holds for Neumann type boundary conditions. We do not provide the
proof as it is very similar to the previous one.

Proposition 3.6.
For bounded Ω we have S(∆n

η ,Ω) = Λr ∪ ηΛn, where

Λn ∶= { λ ∈ C ∣ ∃v ∈ H1(Ω) ∖ {0}, −∆v = λv in Ω, τn(v) = 0 on ∂Ω,
∫
C
vdx = 0 ∀connected components C of Ω. } ,

Λr ∶= { λ ∈ C ∣ ∃v ∈H(curl,Ω) ∖ {0}, curl2(v) = λv in Ω,

γR(v) = 0 on ∂Ω, div(v) = 0 in Ω } .
Note that the sets Λd,Λn do not contain 0. On the other hand, if the second Betti number

of Ω does not vanish, that is, if Ω has cavities, then 0 ∈ Λt. Conversely, 0 ∈ Λr, if the first
Betti number of Ω, which counts the number of handles, is non-zero.

Now that we have a precise description of the spectrum of the operator ∆η, we can state
well-posedness results for boundary value problems associated to this operator, as a direct
application of a Fredholm alternative argument combined with the compact embedding of
Xt(Ω) and Xn(Ω) into L2(Ω)3.
Proposition 3.7.
Let Ω be a bounded Lipschitz domain. If κ2 ∈ C ∖ (Λt ∪ ηΛd), then for any g ∈ Hd(Γ) the
following boundary value problem admits a unique solution,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u ∈X(Ω) =H(curl,Ω) ∩H(div,Ω) with
−∆ηu − κ2u = 0 in Ω,

Td(u) = g on Γ.

(27)

and the solution map is continuous: there exists a constant C > 0 independent of g such that∥u∥X(Ω) ≤ C∥g∥Hd(Γ). Similarly if κ2 ∈ C ∖ (Λr ∪ ηΛn), then for any g ∈ Hn(Γ) the following

10



problem admits a unique solution,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u ∈X(Ω) =H(curl,Ω) ∩H(div,Ω) with
−∆ηu − κ2u = 0 in Ω,

Tn(u) = g on Γ.

(28)

Moreover the solution map is continuous: there exists a constant C > 0 independent of g such
that ∥u∥X(Ω) ≤ C∥g∥Hn(Γ).

3.3 Conditions at infinity

Boundary value problems for −∆η and −∆η − κ2Id posed on unbounded domains Ω with
compact Lipschitz boundary Γ, require suitable “boundary conditions at∞” to be well-posed.

3.3.1 Hodge-Laplacian (static) case κ = 0

To deal with static problems we consider the weighted space W(Ω) consisting of the closure
of C

∞
comp(Ω) = {ϕ∣Ω, ϕ ∈ C

∞(Ω) and supp(ϕ) is bounded} for the norm

∥v∥2W(Ω) ∶= ∥ curl(v)∥2L2(Ω) + ∥div(v)∥2L2(Ω) +∫
Ω

∣v(x)∣2
1 + ∣x∣2 dx

The dual space to W(Ω) is denoted by W(Ω)′ and equipped with the canonical dual norm.
According to [25, Lemma 6], a weighted Poincare-Friedrichs inequality holds in this fonc-
tional framework: there exists a ball B ⊂ R

3 and a constant C > 0 such that C∥v∥2
W(Ω) ≤∥ curl(v)∥2

L2(Ω) + ∥div(v)∥2L2(Ω) + ∥v∥2L2(Ω∩B) for all v ∈ Xloc(Ω). Thus W(Ω) with zero tan-
gential or normal components imposed on Γ will supply a framework in which −∆η is of
Fredholm type, see also [31, Sect. 2.5].

Proposition 3.8.
Assume that Ω ⊂ R3 is a Lipschitz domain such that either Ω or R

3 ∖Ω is bounded. Denote
Wd(Ω) ∶= {u ∈ W(Ω), n × (u × n) = 0} and Wn(Ω) ∶= {u ∈ W(Ω), u ⋅ n = 0}. Then for
∗ = d or ∗ = n, the continuous operator −D∗η ∶W∗(Ω) →W∗(Ω)′ defined by the bilinear form⟨−D∗ηu,v⟩ ∶= ∫Ω curl(u) ⋅ curl(v) +η div(u)div(v)dx ∀u,v ∈W∗(Ω) is of Fredholm type.

Of course the operators Dd
η ∶Wd(Ω) →Wd(Ω)′ and Dn

η ∶Wn(Ω) →Wn(Ω)′ are not one-to-one
in general. They admit a priori non-trivial kernels whose dimension is related to the topology
of the domain Ω.

3.3.2 Hodge-Helmholtz case

In the case of a wave equation the treatment of infinity is different, and we have to introduce
a radiation condition. Following [15] we consider

lim
ρ→∞
∫
∂Bρ

∣curl(u) ×nρ − ıκnρ × (u ×nρ)∣2dσρ = 0 if Im{κ2} = 0
lim
ρ→∞
∫
∂Bρ

∣curl(u) ×nρ∣2 + ∣nρ × (u ×nρ)∣2dσρ = 0 if Im{κ2} > 0 (29)
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and

lim
ρ→∞
∫
∂Bρ

∣√η div(u) − ıκnρ ⋅ u∣2dσρ = 0 if Im{κ2} = 0
lim
ρ→∞
∫
∂Bρ

∣div(u)∣2 + ∣nρ ⋅ u∣2dσρ = 0. if Im{κ2} > 0. (30)

that can be regarded as a variant of Silver-Müller’s radiation condition, a key concept in the
analysis of Maxwell’s equations in exterior domains. Here Bρ denotes the ball of center 0 and
radius ρ, and nρ refers to the unit normal to ∂Bρ directed toward the exterior of Bρ. The
next result was established in [15].

Corollary 3.9.
Assume that R3 ∖Ω is bounded and κ2 ∈ C+ ∶= {z ∈ C ∶ Im{z} ≥ 0}. Then for any g ∈ Hd(Γ)
there exists a unique solution to the problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u ∈Xloc(Ω) such that
−∆ηu − κ2u = 0 in ΩTd(u) = g on Γ
u satisfies (29)-(30)

(31)

and the solution map is continuous: for any ball B ⊂ R3 there exists a constant C > 0 inde-
pendent of g such that ∥u∥X(Ω∩B) ≤ C∥g∥Hd(Γ). Similarly for any g ∈ Hn(Γ) there exists a
unique solution to the problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u ∈Xloc(Ω) such that
−∆ηu − κ2u = 0 in ΩTn(u) = g on Γ
u satisfies (29)-(30)

(32)

Moreover the solution map is continuous: for any ball B ⊂ R3 there exists a constant C > 0
independent of g such that ∥u∥X(Ω∩B) ≤ C∥g∥Hn(Γ).

4 Representation formula

4.1 Fundamental solution

Fundamental solutions enter boundary integral formulations as a crucial building block. For
the Hodge-Helmholtz equation explicit expression can be found in [15]. In a much more
general context of exterior calculus on a manifold, fundamental solutions are also studied
in [21, Sect. 3.1] and [22, Ch. 2].

Lemma 4.1.
For κ2 ∈ C+ the unique smooth function Gκ ∶ R3∖{0} → C

3×3 satisfying −∆ηGκ−κ2Gκ = δ0 ⋅Id
in the sense of distributions and the radiation conditions (29) and (30) for κ /= 0, or the decay
conditions implicit in W (Ω) for κ = 0, is (continuously extended to κ = 0)

Gκ(x) ∶= Gκ(x)Id + κ−2∇2(Gκ(x) − Gκ̃(x)) . (33)

where Gκ(x) ∶= exp(ıκ∣x∣)/(4π∣x∣) is the fundamental solution for the scalar Helmholtz equa-
tion and κ̃ ∶= κ/√η.

12



In the statement of the lemma, δ0 denotes the Dirac distribution centred at x = 0, Id is
the 3× 3 identity matrix, and ∇2 is the Hessian matrix. The equation −∆ηGκ −κ2Gκ = δ0 ⋅ Id
means that, for any constant vector a ∈ C3, we have −∆η(Gκ(x)a) − κ2Gκ(x)a = δ0(x)a.
In (33) observe that, for η = 1, we recover Gκ(x) = Gκ(x) Id, necessarily, since the operator
∆η for η = 1 coincides with the classical vector Laplace operator. Appealing to the series
expansion of the exponential confirms existence of an entire function g̃1 ∶ C2 → C such that

Gκ(x) − Gκ̃(x) = ıκ − ıκ̃
4π

+ (ıκ)2 − (ıκ̃)2
8π

∣x∣ + κ (κ∣x∣)2g̃1(κ, ∣x∣). (34)

From this we conclude by direct calculation that there exist two other entire functions g̃2, g̃3 ∶
C
2 → C that are analytic in the whole complex plane, and such that

Gκ(x) = 1

4π∣x∣ Id +
1 − η
8πη∣x∣ ( Id −

x ⋅xT

∣x∣2 )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=G0(x)

+κ( g̃2(κ, ∣x∣)Id − g̃3(κ, ∣x∣)x ⋅xT

∣x∣2 ). (35)

This reveals that limκ→0Gκ(x) = G0(x) for all x /= 0. Finally, let us examine what is the
effect of changing the value of κ on the kernel in (33). Based on (35), we see that there are
two entire functions g̃4, g̃5;C

3 → C such that

Gκ(x) −Gν(x) = g̃4(κ, ν, ∣x∣)Id + g̃5(κ, ν, ∣x∣)x ⋅xT

∣x∣2 . (36)

Thus, (κ, ν)↦ Gκ(x) − Gν(x) is an entire function C
2 → L∞(R3)3×3.

4.2 Representation by boundary potentials

To derive a representation formula associated to Equation (22), we will mimic the approach
of Costabel in [11]. Let T ′d ∶ Hn(Γ) = Hd(Γ)′ → X(∆,Ω)′ refer to the operator adjoint
to Td i.e. ⟨T ′d(p),v⟩ ∶= ⟨p,Td(v)⟩ for all p ∈ Hn(Γ) and all v ∈ X(∆,Ω). We define T ′n ∶Hd(Γ) → X(∆,Ω)′ in a similar manner. Note that, since C

∞
comp(R3) ⊂ X(∆,Ω), we have

X(∆,Ω)′ ⊂ C
∞
comp(R3)′; in other words, T ′d(p) and T ′n(q) are distributions with compact

support, for any p ∈Hn(Γ), and any q ∈Hd(Γ).
Consider any u ∈ L2

loc(R3)3 such that u∣Ω ∈Xloc(∆,Ω) and u∣R3∖Ω ∈Xloc(∆,R3 ∖Ω). Let
f ∈ L2

loc(R3) be defined by f ∣Ω = (−∆ηu − κ2u)∣Ω and f ∣R3∖Ω = (−∆ηu − κ2u)∣R3∖Ω (restriction
here should be understood in the sense of distributions). Let us compute the value of −∆ηu−
κ2u as a distribution in this case. Pick an arbitrary ϕ ∈ C

∞
comp(R3). Apply Green’s formula

(25) to obtain

⟨−∆ηu − κ2u,ϕ⟩ = −∫
Ω
u(∆ηϕ + κ2ϕ)dx − ∫

R3∖Ω
u(∆ηϕ + κ2ϕ)dx

= ∫
Ω
fϕdx + ⟪Td(u),Tn(ϕ)⟫ − ⟪Td(ϕ),Tn(u)⟫

+ ∫
R3∖Ω

fϕdx − ⟪Td,c(u),Tn(ϕ)⟫ + ⟪Td(ϕ),Tn,c(u)⟫
= ∫

R3

fϕdx + ⟪[Td(u)],Tn(ϕ)⟫ − ⟪Td(ϕ), [Tn(u)]⟫ .
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Above we used the fact that, since ϕ is smooth across the boundary Γ, we have Td,c(ϕ) =Td(ϕ) and Tn,c(ϕ) = Tn(ϕ). Since the calculus above holds for any ϕ ∈ C
∞
comp(R3) we finally

conclude that, in the sense of distributions, we have

−∆ηu − κ2u = f + T ′n ⋅ [Td(u)] − T ′d ⋅ [Tn(u)] (37)

This leads to an expression of u by multiplying on the left by the convolution operator
associated to the (outgoing) Green tensor Gκ given by (33),

u = Gκ ∗ f + SLκ ⋅ [Tn(u)] +DLκ ⋅ [Td(u)]
where SLκ(p) = −Gκ ∗ T ′d(p) for p ∈ Hn(Γ),
where DLκ(v) = +Gκ ∗ T ′n(v) for v ∈ Hd(Γ).

(38)

The convolutions above should be understood in the sense of (C3-valued) distributions. We
will call SLκ (resp.DLκ) the Hodge-Helmholtz single (resp. double) layer potential by analogy
with the classical potential operators for the scalar Helmholtz equation. To derive their
integral representations, note that for x /∈ Γ the j-th component of the potentials at x is

ej ⋅ SLκ(p)(x) = −⟪p,Td (Gκ(x − ⋅)ej)⟫
ej ⋅DLκ(v)(x) = ⟪Tn (Gκ(x − ⋅)ej) ,v⟫ , (39)

where ej stands for the j-th Cartesian unit vector, j = 1,2,3.
First, we establish an integral representation formula for the Hodge-Helmholtz single layer

potential. We write p = (p, α) ∈ Hn(Γ) =H− 1

2 (div,Γ) ×H− 1

2 (Γ) and split the duality pairings
into their components, which yields

ej ⋅ SLκ(p)(x) = −⟨p, γt (Gκ(x − ⋅)ej)⟩ − ⟨α, γd(Gκ(x − ⋅)ej)⟩ . (40)

For the sake of brevity we set G̃κ(x) ∶= κ−2(Gκ(x) − Gκ̃(x)) with notations from Lemma 4.1.
Then, denoting ∂j ∶= ej ⋅ ∇, the two terms on the right-hand side of (40) evaluate to

⟨p, γt (Gκ(x − ⋅)ej)⟩ = ∫
Γ
p(y) ⋅ (Gκ(x − y)ej + (∇∂jG̃κ)(x − y)) dσ(y),

⟨α, γd(Gκ(x − ⋅)ej)⟩ = η∫
Γ
α(y)divy (Gκ(x − y)ej + (∇∂jG̃κ)(x − y)) dσ(y)

= −η∫
Γ
α(y) (∂jGκ(x − y) + (∂j∆G̃κ)(x − y)) dσ(y)

= −∫
Γ
(∂jGκ̃)(x − y)α(y)dσ(y) ,

where we used the identity ∆G̃κ(x) = −Gκ(x)+ η−1Gκ̃(x) for x /= 0. Collecting vector compo-
nents and integrating by parts on Γ we arrive at

SLκ(p)(x) ∶= − ∫
Γ

Gκ(x − y)p(y)dσ(y)
− ∫

Γ
(∇G̃κ)(x − y)divΓ p(y)dσ(y)

+∇x∫
Γ

Gκ̃(x − y)α(y)dσ(y) .
(41)
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Remark 4.2. Generically the integrals ∫Γ . . . dσ(y) in (41) have to be read as duality pairings.
However, all kernels are integrable on Γ. Therefore, the integrals can be understood as
classical improper integrals provided that p, α, and divΓ p belong to L∞(Γ).

A similar integral formula can be derived for the Hodge-Helmholtz double layer potentialDLκ starting from

⟨Tn (Gκ(x − ⋅)ej) ,v⟩ = ⟨γr (Gκ(x − ⋅)ej) ,q⟩ + ⟨γn (Gκ(x − ⋅)ej) , β⟩ , (42)

where v = (q, β) ∈Hd(Γ) =H− 1

2 (curl,Γ)×H+ 1

2 (Γ). Next, we use curl(Gκ(x)ej) = curl(Gκ(x)ej−
∇2

G̃κ(x)ej) = (∇Gκ)(x)×ej , which is applied to manipulate the first term in (42). By means
of the identity a ⋅ (b × c) = c ⋅ (a × b), a,b,c ∈ R3, we thus obtain

⟨γr (Gκ(x − ⋅)ej) ,q⟩ = ∫
Γ
q(y) ⋅n(y) × curly (Gκ(x − y)ej) dσ(y)

= −∫
Γ
((∇Gκ)(x − y) × ej) ⋅ (q(y) ×n(y))dσ(y)

= −ej ⋅ ∫
Γ
(q(y) ×n(y)) × (∇Gκ)(x − y)dσ(y)

= ej ⋅ ∫
Γ
curlx( Gκ(x − y)q(y) ×n(y) )dσ(y)

which finally yields the vector identity

(⟨γr (Gκ(x − ⋅)) ,q⟩)3j=1 = curlx∫
Γ

Gκ(x − y)(q(y) ×n(y))dσ(y) .
The second term in (42) can be transformed to

⟨γn (Gκ(x − ⋅)ej) , β⟩ = ∫
Γ
β(y) (n(y) ⋅G(x − y)ej) dσ(y)

= ∫
Γ

Gκ(x − y)β(y)n(y) ⋅ ej + β(y)(∂j∇G̃κ)(x − y) ⋅n(y)dσ(y) .
Again, assembling vector components we get

(⟨γn (Gκ(x − ⋅)ej) , β⟩)3j=1 = ∫
Γ

Gκ(x − y)n(y)β(y)dσ(y)−
∇x∫

Γ
n(y) ⋅ (∇G̃κ)(x − y)β(y)dσ(y) .

We end up with

DLκ(q)(x) ∶= curlx∫
Γ

Gκ(x − y)q(y) ×n(y)dσ(y)+
∫
Γ

Gκ(x − y)n(y)β(y)dσ(y)−
∇x∫

Γ
n(y) ⋅ (∇G̃κ)(x − y)β(y)dσ(y) .

(43)

Remark 4.3. Also in the case of (43) the integrability of the kernels permits us to regard the
integrals as classical improper integrals provided that q, β ∈ L∞(Γ).
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5 Properties of potentials

Now we examine the continuity properties and jump relations for the potentials given by the
expressions (41) and (43) above. We first scrutinize their building blocks. We will repeatedly
rely on continuity properties that were established for more classical potential operators,
see [11] (for scalar-valued potentials) and [8] (for vector-valued potentials).

5.1 Scalar single-layer potential

Before studying in detail the properties of the operators (41)-(43), we review properties of
the classical single-layer operator ψν that maps any α ∈ H−1/2(Γ) to the function (ν ∈ C+)

ψν(α)(x) ∶= ∫
Γ
α(y)Gν(x − y)dσ(y), x ∈ R3 ∖ Γ. (44)

Recall that ψ maps continuously H−1/2(Γ) into H1
loc(∆,Ω)×H1

loc(∆,R3∖Ω), see [30, Sect. 3.1.2].
Besides, we have ∆ψν(α) = −ν2ψν(α) and curl(∇ψν(α)) = 0 both in Ω and in R

3 ∖ Ω. We
conclude that ∇ψν maps continuously H−1/2(Γ) both into Xloc(∆,Ω) and Xloc(∆,R3 ∖Ω).

In addition, we know that ψν(α) ∈ H1
loc(R3) for any α ∈ H−1/2(Γ). Classical jump relations

for this potential operator read [τd] ⋅ ψν(α) = 0 and [τn] ⋅ ψν(α) = α [30, Sect. 3.3.1]. Since
div(∇ψν(α)) = −ν2ψν(α), we conclude that

[γD] ⋅ ∇ψν(α) = 0 , [γT] ⋅ ∇ψν(α) = 0 ,
[γR] ⋅ ∇ψν(α) = 0 , [γN] ⋅ ∇ψν(α) = α . (45)

5.2 Vector single-layer potential

Similarly, we may consider a vector version of the single-layer potential denoted Ψν that maps
any tangential p ∈H−1/2(divΓ,Γ) to the function

Ψν(p)(x) ∶= ∫
Γ
p(y)Gν(x − y)dσ(y).

We know from [6] that Ψν continuously maps H
−1/2
r (Γ) into H1

loc(R3)3, which immediately
implies [γT] ⋅ Ψ(p) = 0 and [γN] ⋅ Ψ(p) = 0 for all p ∈ H−1/2(div,Γ). Moreover we know
from [19, Lemma 2.3] that div(Ψν(p)) = ψν(divΓ p) so that [γd] ⋅ Ψν(p) = 0. Finally the
jump formulas from [8, Thm. 7] imply that [γR] ⋅Ψν(p) = −p. To sum up we have

[γD] ⋅Ψν(p) = 0 , [γT] ⋅Ψν(p) = 0 ,
[γR] ⋅Ψν(p) = −p , [γN] ⋅Ψν(p) = 0 . (46)

Since div(Ψν(p)) = ψν(divΓ p) and ψν continuously maps H−1/2(Γ) into H1
loc(∆,Ω)×H1

loc(∆,R3∖
Ω), we conclude that Ψν continuously maps H−1/2(div,Γ) into H(∇div,Ω)×H(∇div,R3∖Ω).
In addition ∆Ψν(p) = −ν2Ψν(p) in Ω (resp. R3 ∖Ω), and since −∆ = curl(curl ⋅) −∇(div ⋅)
we conclude that Ψν also continuously maps H−1/2(div,Γ) into H(curl2,Ω) ×H(curl2,R3 ∖
Ω). In conclusion, we see that Ψν continuously maps H−1/2(div,Γ) into Xloc(∆,Ω) (resp.
Xloc(∆,R3 ∖Ω)).
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5.3 Maxwell double layer potential

Finally let us consider the operator p ↦ curlΨν(p) the so-called Maxwell double layer po-
tential [8, (28)]. It is well established that curlΨν continuously maps H−1/2(div,Γ) into
Xloc(∆,Ω) (resp. Xloc(∆,R3 ∖Ω)), see [8, Thm. 5].

As regards the behavior of curlΨν across Γ, first note that, obviously, [γD] ⋅ curlΨκ =

0. In addition observe that γR(p) × n = γT ⋅ curl(p) so that, according to (46), we have[γT] ⋅ curlΨν(p) = n × p. Next, we have [γN] ⋅ curlΨν(p) = curlΓ([γT] ⋅Ψν(p)) = 0. Finally
we have [γR] ⋅ curlΨν(p) = 0, which is a well established result of potential theory related to
Maxwell’s equation [9]. To summarize we have

[γD] ⋅ curlΨν(p) = 0 , [γT] ⋅ curlΨν(p) = n × p ,
[γR] ⋅ curlΨν(p) = 0 , [γN] ⋅ curlΨν(p) = 0 . (47)

5.4 Normal vector single-layer potential

In this paragraph we examine the properties of the operator Υν ∶= Gν ∗ γ′N also explicitely
described by the following expression

Υν(α)(x) ∶= ∫
Γ
α(y)Gν(x − y) ⋅n(y)dσ(y) ,

which amounts to a vector single layer potential supplied with a purely normal vector field.
From the explicit definition (33), we see that the kernel Gν(x) admits a pseudo-homogeneous
expansion of degree -1 (see [17, Def. 7.1.1]) so that the associated potential u ↦ ∫R3 Gν(x −
y) ⋅ u(y)dσ(y) is a (vector) pseudo-differential operator of order -2. Since γN maps contin-
uously Hloc(div,R3) into H−1/2(Γ), the transpose operator γ′

N
∶ H+1/2(Γ) → Hloc(div,R3)′ ⊂

H−1comp(R3) is continuous, so that Υν maps continuously H+1/2(Γ) into H1
loc(R3)3.

By construction we have ∆ηΥν(α) = −ν2Υν(α) in Ω (resp. in R
3∖Ω) for any α ∈ H1/2(Γ).

Besides curlΥν(α) = curlΨν(αn) so that Υν maps continuously H1/2(Γ) into H(curl2,Ω)
according to §5.2 above. To sum up then, Υν continuously maps H1/2(Γ) into Xloc(∆,Ω)
(resp. in Xloc(∆,R3 ∖ Ω)). From the discussion above, we also conclude that [γN] ⋅Υν = 0
and [γT] ⋅Υν = 0.

Now observe that for any constant vector a ∈ C3 we have div(Gν(x) ⋅ a) = η−1a ⋅ ∇Gν̃(x)
where ν̃ = ν/√η. Based on this observation, for any α ∈ H1/2(Γ), the following identity is
easily derived

div (Υν(α)(x)) = 1

η
∫
Γ
α(y)n(y) ⋅ (∇Gν̃)(x − y)dσ(y) ∀x ∈ R3 ∖ Γ.

In the expression above we recognize the well-known scalar double-layer potential arising
e.g. in the analysis of acoustic scattering problems (with wave number ν̃), see [30, §3.1]. Let
DLν̃ ∶= η div (Υν(⋅)) ∶ H1/2(Γ)→ H1

loc(∆,Ω)×H1
loc(∆,R3∖Ω) refer to this continuous operator.

From the standard jump properties of the double layer potential, we deduce [γD] ⋅Υν(α) =
η−1 [τd] ⋅DLν̃(α) = α/η.

General jump relations for the curl of vector single layer potentials are given in [10,
Thm. 6.13] and [27, Sect. 4] for smooth domains, and in [22, (6.8)] for Lipschitz domains and
surface vector fields in Lp(∂Ω)3, 1 < p < ∞. They tell us that the tangential components of
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curlΥν(α) will not jump across ∂Ω. To summarize, we have established the following jump
relations [γD] ⋅Υν(α) = α/η , [γT] ⋅Υν(α) = 0 ,

[γR] ⋅Υν(α) = 0 , [γN] ⋅Υν(α) = 0. (48)

5.5 Regular potential

For η /= 1 the potential

ψ̃ν(α)(x) ∶= ∫
Γ

G̃ν(x − y)α(y)dσ(y) x ∈ R3 ∖ {0} , (49)

with G̃ν ∶= ν−2(Gν −Gν̃), occur in both the vector Helmholtz single and double layer potential.
By (34), the kernel G̃κ is the sum of a constant and a pseudo-homogeneous kernel of degree 1 in
the sense of [17, Def .7.1.1], see, e.g., Remark 3.1.3 and Lemma 3.9.8 in [30] for further details
on this classical point. Consequently, ψ̃ν provides a continuous mapping H−1/2(Γ)→ H3

loc(R3),
which ensures continuity of all relevant traces across Γ and also continuity of the mapping
∇ψ̃ν ∶ H−1/2(Γ) → Xloc(∆,R3). It seems that G̃ν suffers a blow-up for ν → 0. However, note
that, also owing to (34), there is an entire function g̃6 ∶ C2 → C such that

∇G̃ν(x) = 1 − η
8πη

x

∣x∣ + g̃6(ν, ∣x∣)
x

∣x∣ ∈ L∞(R3)3 . (50)

Hence, ∇ψ̃ν turns out to be an entire function of ν ∈ C!

5.6 Potentials for vector Helmholtz operator

Using the above notations, the vector Helmholtz single layer potential (41) can be recast as

SLκ(p) = −Ψκ(p) −∇ψ̃κ(divΓ p) +∇ψκ̃(α) , p = (p, α) ∈ Hn(Γ) . (51)

From the continuity properties previously established for ∇ψν , ψ̃ν and Ψν , we deduce directly
that SLκ continuously maps Hn(Γ) into Xloc(∆,Ω) (resp. Xloc(∆,R3 ∖Ω)). Moreover the
jump identities (45)-(46) show that

[Td] ⋅ SLκ(p) = 0 , [Tn] ⋅ SLκ(p) = p ∀p ∈ Hn(Γ) . (52)

As regards the vector Helmholtz double-layer potential (43), we find for q = (q, β) ∈ Hd(Γ)
DLκ(q) = curlΨκ(q ×n) +Υν(β). (53)

Thus, we can appeal to the jump formulas (47)-(48) to deduce

[Td] ⋅DLκ(p) = p , [Tn] ⋅DLκ(p) = 0 , ∀p = (p, α) ∈ Hd(Γ) . (54)

The next theorem summarizes our findings.

Theorem 5.1.
We have the jump relations:

[Td] ⋅DLκ(p) = p , [Tn] ⋅DLκ(p) = 0 ∀p ∈ Hd(Γ),
[Td] ⋅ SLκ(p) = 0 , [Tn] ⋅ SLκ(p) = p ∀p ∈ Hn(Γ).

Note that, since both Td and Tn are pairs of trace operators, the theorem above actually
contains eight identities, not just four.
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5.7 Calderón projector

So far, we have derived the representation formula (38) involving the layer potentials (41) and
(43), and we established corresponding continuity properties. It is natural to define associated
Calderón projectors, as this is a key concept in reformulating boundary value problems as
integral equations [8, Thm. 8]. In the present context, the Calderón projector will be the
continuous map

Cκ ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩
Hd(Γ) ×Hn(Γ) → Hd(Γ) ×Hn(Γ)

[p
q
] ↦ [Td ⋅DLκ(p) + Td ⋅ SLκ(q)

Tn ⋅DLκ(p) + Tn ⋅ SLκ(q)]
. (55)

Recall that the spaces Hd(Γ), Hn(Γ) are products of two atomic trace spaces each, and
that each operator Td,Tn involves a pair of trace operators. As a consequence Cκ could be
interpreted as a 4 × 4 matrix of boundary integral operators. It is a projector whose range
caracterizes the traces of solutions to the equation −∆ηu − κ2u = 0 in Ω; we have a result
analogous to [30, Prop. 3.6.2] or [8, Thm. 8].

Proposition 5.2.
The operator Cκ defined in (55) is a continuous projector. Its range (resp. kernel) are the
traces of solutions of homogeneous inner (resp. outer) boundary value problem

range(Cκ) ∶= {(Td(u),Tn(u)) ∣ u ∈Xloc(∆,Ω), ∆ηu + κ2u = 0 in Ω,

satisfying (29)-(30), if Ω is unbounded }
ker(Cκ) ∶= {(Td,c(u),Tn,c(u)) ∣ u ∈Xloc(∆,R3 ∖Ω), ∆ηu + κ2u = 0 in R

3 ∖Ω,
satisfying (29)-(30), if R3 ∖Ω is unbounded }

We do not provide the proof of this result because it follows a very classical argument (see
e.g. [32, §6.6]). Essentially, the theorem is a direct consequence of the representation formula
(38) and the jump relations of Theorem 5.1.

6 Boundary integral operators

This core section will be dedicated to the study of the invertibility of the first-kind boundary
integral operators Td ⋅ SLκ and Tn ⋅ DLκ associated with the Hodge-Helmholtz single and
double layer potentials (41) and (43). Our notion of a first kind boundary integral operator
is that of a mapping between (trace) spaces that are in duality with respect to an L2(Γ)-type
pairing. Then it is natural to adopt a variational perspective and study the induced bilinear
forms on trace spaces.

Remark 6.1. We would like to point out two obstructions to applying the simple standard
argument showing coercivity of first-kind boundary integral operators in the case of strongly
elliptic PDEs [20, Thms. 7.6 & 7.8]:

1. The observation (26) and the resulting failure of ⟪p,Td ⋅ SL0(p)⟫ to define an “energy
trace norm” on Hd(Γ).

2. The missing compact embedding of X(Ω) into L(Ω)3 even for bounded Ω.
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6.1 Injectivity

Insights into the uniqueness of solutions of boundary value problems as gleaned in Propo-
sition 3.7 and Corollary 3.9 permit us to determine, when the kernels of boundary integral
operators will be trivial.

Proposition 6.2.
Assume that Ω is a bounded Lipschitz domain.

(i) If κ2 ∈ C+ ∖ (Λt ∪ ηΛd) then the operators Td ⋅ DLκ ∶ Hd(Γ) → Hd(Γ) and Td ⋅ SLκ ∶
Hn(Γ)→Hd(Γ) are one-to-one.

(ii) If κ2 ∈ C+ ∖ (Λr ∪ Λn) then the operators Tn ⋅ SLκ ∶ Hn(Γ) → Hn(Γ) and Tn ⋅ DLκ ∶
Hd(Γ)→Hn(Γ) are one-to-one.

Proof: We show the result only for the first operator Td ⋅DLκ. The proof in all other cases
is similar. Assume that κ2 ∉ Λt ∪ ηΛd, and that Td ⋅DLκ(p) = 0 for some p ∈ Hd(Γ).

Define v+(x) = DLκ(p)(x) for x ∈ Ω. By construction v+ ∈X(Ω) and it satisfies −∆ηv+−
κ2v+ = 0 in Ω and Td(v+) = 0 on ∂Ω. As a consequence v+ = 0 according to Proposition 3.7,
which implies in particular Tn(v+) = 0.

Now set v−(x) = DLκ(p)(x) for x ∈ R3 ∖ Ω. By construction v− ∈ Xloc(R3 ∖ Ω) and
it satisfies −∆ηv− − κ2v− = 0 in R

3 ∖ Ω as well as the radiation conditions (29) and (30).
It also satisfies Tn,c(v−) = Tn,c ⋅ DLκ(p) = Tn(v+) − [Tn] ⋅ DLκ(p) = 0 according to Theorem
5.1. Applying Corollary 3.9, we conclude that v− = 0 in R

3 ∖ Ω. Finally, this implies p =[Td] ⋅DLκ(p) = Td(v+) − Td,c(v−) = 0. ◻
Similar arguments yield the analogous result in the case where R

3 ∖ Ω is bounded (and
not Ω).

Proposition 6.3.
Assume that R3 ∖Ω is a bounded Lipschitz domain.

(i) If κ2 ∈ C+ ∖ (Λt ∪ ηΛd), then the operators Tn ⋅ SLκ ∶ Hn(Γ) → Hn(Γ) and Td ⋅ SLκ ∶
Hn(Γ)→Hd(Γ) are one-to-one.

(ii) If κ2 ∈ C+ ∖ (Λr ∪ ηΛn), then the operators Td ⋅DLκ ∶ Hd(Γ) → Hd(Γ) and Tn ⋅DLκ ∶
Hd(Γ)→Hn(Γ) are one-to-one.

6.2 Tools

To simplify notations we introduce the inner products

(α,β)−1/2 ∶= ∫
Γ×Γ

G0(x − y)α(x)β(y)dσ(x,y), α, β ∈ H−1/2(Γ),
(p,q)−1/2 ∶= ∫

Γ×Γ
G0(x − y)p(x)q(y)dσ(x,y), p,q ∈H

−1/2
r (Γ)/H−1/2t (Γ).

Both sesqilinear forms are strongly coercive in H−1/2(Γ)/H−1/2r (Γ)/H−1/2t (Γ), and, thus, they
induce equivalent norms ∥⋅∥−1/2 on these spaces. This is a classical result of potential theory,
see e.g. [30, Thm. 3.5.4]. Thus, in all estimates, we can replace ∥⋅∥H−1/2(Γ), ∥⋅∥H−1/2t (Γ)

, and

∥⋅∥
H
−1/2
r (Γ)

with ∥⋅∥−1/2, and we will do so.
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In the study of first-kind boundary integral operators mapping properties of the surface
divergence divΓ will be crucial and are summarized in the next lemma. For the sake of brevity
we write

H
±1/2
∗ (Γ) ∶= { ϕ ∈ H±1/2(Γ)∣ ⟨ϕ,1C⟩ = 0

for all connected components C of Γ
} .

Here 1C denotes the characteristic function of a subset C ⊂ Γ. This spawns straightforward
“orthogonal” direct decompositions

H±1/2(Γ) = H±1/2∗ (Γ)⊕C∗(Γ), (56)

where C∗(Γ) is the finite-dimensional space spanned by the characteristic functions of the
connected components of Γ. For later use we introduce the projectors Q∗ ∶ H±1/2(Γ) →
H
±1/2
∗ (Γ) and Qc ∶ H±1/2(Γ) → C∗ induced by (56). Which version to take will be clear from

the context.

Lemma 6.4.
The surface divergence divΓ is a bounded surjective operator

divΓ ∶H−1/2(div,Γ)→ H
−1/2
∗ (Γ) .

The surface rotation curlΓ ∶= ∇Γ ×n is a bounded injective operator

curlΓ ∶ H1/2
∗ (Γ)→H−1/2(div,Γ) ,

with closed range and satisfies divΓ ○curlΓ = 0.
As another tool we will rely on Hodge-type decompositions of divΓ-conforming tangential

surface vector fields, established, for example, in [8, Lemma 2].

Lemma 6.5.
There exists a continuous projector RΓ ∶H−1/2(div,Γ)→H−1/2(div,Γ) that
(i) is compact as a mapping H−1/2(div,Γ)→H

−1/2
r (Γ),

(ii) leaves the surface divergence of its argument invariant: divΓ ○RΓ = divΓ,

(iii) and satisfies ker(RΓ) =H−1/2(div 0,Γ) ∶= {p ∈H−1/2(div,Γ), divΓ p = 0}.
To begin with, the projector RΓ induces a stable direct decomposition of H−1/2(div,Γ)

into closed subspaces:

H−1/2(div,Γ) =H−1/2(div 0,Γ)⊕Y⊥, Y⊥ = ker(Id −RΓ) = RΓ(H−1/2(div,Γ)) . (57)

Stability of the decomposition together with (iii) translates into an equivalence of norms

∥p∥
H−1/2(div,Γ) ≈ ∥divΓ p∥−1/2 + ∥(Id −RΓ)p∥−1/2 ∀p ∈H−1/2(divΓ,Γ) . (58)

Combining Lemmas 6.4, 6.5, and appealing to the open mapping theorem yields the existence
of bounded one-sided inverses of the surface differential operators

div†
Γ
∶H−1/2∗ (Γ)→Y⊥ , divΓ ○div†

Γ
= Id , (59)

curl†
Γ
∶H−1/2(div 0,Γ)→ H

1/2
∗ (Γ) , curl†

Γ
○curlΓ = Id . (60)
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Moreover, curl†
Γ
can be chosen such that

curlΓ ○curl†Γ = P0 on H−1/2(div 0,Γ) , (61)

where P0 ∶ H−1/2(div 0,Γ) → curlΓH
1/2
∗ (Γ) ⊂ H−1/2(div 0,Γ) is the H−1/2(div,Γ)-orthogonal

projection.

6.3 Boundary integral operator TD ⋅ SLκ: Coercivity

We shall now take a closer look at the operator Td ⋅ SLκ. We first start by deriving conve-
nient expressions for the bilinear form associated to it, reusing the potential operators ψκ,Ψκ

introduced in Section 5. Recall (51)

SLκ(u) = −Ψκ(p) −∇ψ̃κ(divΓ p) +∇ψκ̃(α) ∀u = (p, α) ∈ Hn(Γ) =H− 1

2 (div,Γ) ×H− 1

2 (Γ) .
Next, we use the surface Green’s formula ∫Γ q ⋅ γT(∇U)dσ = − ∫Γ divΓ(q) ⋅ τd(U)dσ for any

U ∈ H1
loc(Ω) and any q ∈ H−1/2(div,Γ). Applying this formula to the above potential yields

the following expression (∇G̃κ is given in (50) and vanishes for κ = 0)

⟨q, γT ⋅ SLκ(u)⟩ =−∫
Γ×Γ

Gκ(x − y)p(y) ⋅ q(x)dσ(x,y)
−∫

Γ×Γ
(∇G̃κ)(x − y) divΓ p(y) ⋅ q(x)dσ(x,y)

−∫
Γ×Γ

Gκ̃(x − y)α(y) ⋅ divΓ q(x)dσ(x,y) ,
(62)

where, for the sake of conciseness, we have written dσ(x,y) for the product surface measure
on Γ × Γ. Since Gκ(x) solves the Helmholtz equation, we find ∆ψκ(β) = −κ2ψκ(β) and
∆ψ̃κ(β) = −ψκ(β) + η−1ψκ̃(β) for any β ∈ H−1/2(Γ), since κ̃2 = η−1κ2. Besides we have
div(Ψκ(p)) = ψκ(divΓ p) according to [19, Lemma 2.3]. As a consequence

η div(SLκ(u)) = ηψκ(divΓ p) − ψκ̃(divΓ p) − ηψκ(divΓ p) − κ2ψκ̃(α)
= −ψκ̃(divΓ p) − κ2ψκ̃(α) (63)

Now recall that γD(u) ∶= div(u)∣Γ. Thus, (62) and (63) show that, for any u = (p, α) ∈ Hn(Γ)
and any v = (q, β) ∈ Hn(Γ), we have

⟪Td ⋅ SLκ(u),v⟫ =
−∫

Γ×Γ
Gκ̃(x − y) [p(y) ⋅ q(x) + α(y) ⋅ divΓ q(x) ]dσ(x,y)

−∫
Γ×Γ

Gκ̃(x − y) [divΓ p(y)β(x) + κ2α(y)β(x) ]dσ(x,y)
−∫

Γ×Γ
G̃κ(x − y)[divΓ q(x)divΓ p(y)−κ2 p(x) ⋅ q(y)]dσ(x,y) .

(64)

We point out that all the integrals depend analytically on κ ∈ C.

Remark 6.6. We hasten to add that, strictly speaking, all integrals have to be read as duality
pairings. For p,q, α, β ∈ L∞(Γ) an interpretation as classical improper integrals is possible.
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Some terms of the above bilinear form are just compact contributions that do not require
a detailed analysis.

Proposition 6.7.
Define ASL ∶ Hn(Γ)→Hd(Γ) through

⟪ASL(u),v⟫ ∶=∫
Γ×Γ

G0(x − y) [p(y) ⋅ q(x) + α(y)divΓ q(x)]dσ(x,y)+
∫
Γ×Γ

G0(x − y) [divΓ p(y)β(x) + κ2α(y)β(x)]dσ(x,y) , (65)

for u = (p, α),v = (q, β) ∈Hn(Γ). Then the operator Td ⋅SLκ +ASL is an analytic function of
κ ∈ C into the space of compact operators Hn(Γ)↦Hd(Γ).
Proof:

First of all note that the third term in (64) is compact, because (50) shows that the kernel
∇G̃κ is a pseudo-homogeneous kernel of degree 0. The arguments of Section 5.5 plus the
Rellich embedding theorem yield compactness.

Secondly, reasoning as in the proof of [30, Lemma 3.9.8] we see that replacing Gκ̃ by G0

in the first and second term of (64) induces only a compact perturbation. This concludes the
proof. ◻

Now we are going to study the coercivity of the bilinear form (64). Thanks to Proposi-
tion 6.7, we can focus on ASL only. For the selection of “candidate functions” in coercivity
estimates we introduce continuous operators Ξκ ∶ Hn(Γ) → Hn(Γ) defined by the formula
(projectors Q∗ and Qc induced by (56))

Ξκ(p, α) ∶= ((Id −RΓ)p + ν div†
Γ
Q∗α,divΓ p +Qcα), ν ∶= 1 + 1

2
∣κ∣4. (66)

Lemma 6.5 furnishes the relationships

divΓ ○(Id −RΓ) = 0 , (Id −RΓ) ○ div†
Γ
= 0,

which, together with the projector properties of Q∗, can be used to show that the bounded
operators mapping H−1/2(div,Γ)→H−1/2(div,Γ), and defined as

(q, β)↦ ((Id −RΓ)q + div†
Γ
Q∗β, ν

−1 divΓ q +Qcβ), ) (67)

are inverses of Ξκ for every κ ∈ C. Therefore, Ξκ is an automorphism of H−1/2(div,Γ) for
every κ ∈ C+, continuously depending on κ.

Theorem 6.8.
For any κ ∈ C there exists a compact operator Kκ ∶ Hn(Γ) → Hd(Γ), and a constant C =
C(κ) > 0, such that

Re{⟪(Td ⋅ SLκ +Kκ)u,Ξ(u)⟫} ≥ C(κ)∥u∥2Hn(Γ)
∀u ∈ Hn(Γ). (68)

Both, C(κ) and Kκ depend continuously on κ.

Proof: Since Td ⋅ SLκ only differs from ASL by a compact perturbation according to Propo-
sition 6.7, it suffices to prove (68) with Td ⋅SLκ replaced by ASL. Using the notation (⋅, ⋅)−1/2
from Section 6.2 we can write, for u = (p, α),v = (q, β) ∈ Hn(Γ),

⟪ASL(u),v⟫ = (p,q)−1/2 + (α,divΓ q)−1/2 + (divΓ p, β)−1/2 + κ2 (α,β)−1/2 . (69)
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Plugging (66) into the expression (69) yields

⟨ASL(u),Ξ(u)⟩ = ((Id −RΓ)p +RΓp, (Id −RΓ)p + ν div†
Γ
Q∗β)

−1/2
+

(Q∗α +Qcα,divΓ(Id −RΓ)p´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ν divΓ div†
Γ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Id

Q∗α)−1/2+
(divΓ p,divΓ p +Qcα)−1/2 + κ2 (α,divΓ p +Qcα)−1/2

=∶ Bκ(u,u) +Cκ(u,u),
with expressions

Bκ(u,u) ∶= ∥(Id −RΓ)p∥2−1/2 + ν ∥α∥2−1/2 + ∥divΓ p∥2−1/2 + κ2 (α,divΓ p)−1/2 ,
Cκ(u,u) ∶= (RΓp, (Id −RΓ)p)−1/2 + ((Id −RΓ)p, ν div†

Γ
Q∗α)

−1/2
+ (RΓp, ν div

†
Γ
Q∗α)

−1/2
+

(divΓ p,Qcα)−1/2 + (κ2 − ν) (α,Qcα)−1/2
that can obviously be derived from sesqui-linear forms.

From Lemma 6.5 (i) and the fact that Qc has finite rank, we learn that the second sesqui-
linear form Cκ(⋅, ⋅) induces a compact operator, which depends polynomially on κ ∈ C. So
we are left with proving that the first bilinear form B(⋅, ⋅) is strongly coercive on Hn(Γ). To
begin with, Young’s inequality permits us to estimate

∣Bκ(u,u)∣ ≥ ∥(Id −RΓ)p∥2−1/2 + ν ∥α∥2−1/2 + ∥divΓ p∥2−1/2
− 1

2
∣κ∣2 (ǫ ∥α∥2−1/2 + 1

ǫ
∥divΓ p∥2−1/2)

≥ ∥(Id −RΓ)p∥2−1/2 + (ν − 1
2
∣κ∣2ǫ) ∥α∥2−1/2 + (1 − 1

2ǫ
∣κ∣2) ∥divΓ p∥2−1/2 ,

for any ǫ > 0. Plugging (58) into this estimate along with setting ǫ ∶= κ2 and ν ∶= 1+ ∣κ∣4 yields

∣B(u,u)∣ ≥ ∥(Id −RΓ)p∥2−1/2 + ∥Q∗α∥2−1/2 + 1
2
∥divΓ p∥2−1/2 .

Appealing to (58) finishes the proof. ◻
Corollary 6.9.

(i) The operator Td ⋅ SLκ ∶Hn(Γ)→Hd(Γ) is Fredholm with index 0.

(ii) Moreover, if κ2 ∈ C+ ∖ (Λt ∪ ηΛd) then Td ⋅ SLκ is an isomorphism.

Proof: Since Ξκ is bijective, Theorem 6.8 implies that Td ⋅SLκ+Kκ is an isomorphism, where
Kκ ∶ Hn(Γ) → Hd(Γ) is the compact operator coming into play in (68). Hence Td ⋅ SLκ is a
compact perturbation of an isomoprhism, so it is of Fredholm type with index 0 according to
classical Riesz-Fredholm theory, see e.g. [20, Thm. 2.26]. Moreover, in the case κ2 ∉ Λt ∪ηΛd,
the operator Td ⋅ SLκ is one-to-one according to Proposition 6.2 and 6.3, which implies that
it is an isomorphism in this case. ◻
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6.4 Boundary integral operator TN ⋅ DLκ: Coercivity

We now focus on the operator TN ⋅ DLκ that in our theory plays a role similar to that
of the hypersingular operator in classical potential theory for the Helmholtz equation, see
e.g. [30, §3.3.4]. Using the notations introduced in Section 5 above, we have from (43) for all

u = (p, α) ∈Hd(Γ) =H− 1

2 (curl,Γ) ×H+ 1

2 (Γ)
DLκ(u) = curlΨκ(p ×n) +Υκ(α) .

As a first step, we derive the bilinear form induced by the operator Tn ⋅ DLκ. First of all
observe that curlx(G(x − y) ⋅ a(y)) = curlx(Gκ(x − y)a(y)) = (∇Gκ)(x − y) × a(y) for any
a ∈ C0(Γ)3, where curlx refers to the standard curl operator acting on G(x−y) as a function
of x. From this we conclude that curlΥκ(α)(x) = ∫Γ(∇Gκ)(x − y) × n(y)α(y)dσ(y). To
further transform this expression, we use the vector calculus formula

∫
Γ
u(x)a ⋅ (n(x) ×∇Γv(x))dσ(x) = −∫

Γ
v(x)a ⋅ (n(x) ×∇Γu(x))dσ(x) (70)

for all a ∈ R3, u, v ∈ H1/2(Γ). We can apply this formula taking u(y) = α(y), v(y) = Gκ(x−y),
and a = n(x) × q(x), where q ∈H−1/2(curl,Γ) is some tangential vector field depending only
on x and hence constant with respect to y. This yields

⟨q, γR ⋅Υκ(α)⟩= − ∫
Γ
n(x) × q(x) ⋅ (∫

Γ
(∇Gκ)(x − y) ×n(y)α(y)dσ(y)) dσ(x)

= − ∫
Γ
∫
Γ
α(y)(n(x) × q(x)) ⋅ (n(y) ×∇yGκ(x − y))dσ(y)dσ(x)

=∫
Γ
(n(x) × q(x)) ⋅ (∫

Γ
Gκ(x − y)n(y) ×∇Γα(y)dσ(y)) dσ(x) .

Note that we used (∇Gκ)(x − y) = −∇y(Gκ(x − y)) in order to apply (70) to the above
calculus. Now we point that (∆ + κ2)Ψκ = 0 as Ψκ involves Gκ. From this we conclude that
curl2Ψκ(p × n) = (∇div+κ2)Ψκ(p × n). Taking the trace γR of this potential and testing
with tangential traces yields

⟨q, γR ⋅ curlΨκ(p ×n)⟩ = −∫
Γ×Γ

Gκ(x − y)[ divΓ(n(x) × q(x)) divΓ(n(y) × p(y))
−κ2(n(x) × q(x)) ⋅ (n(y) × p(y)) ]dσ(x,y) .

Since curlΨκ(p × n)(x) = ∫Γ(∇Gκ)(x − y) × (p(y) × n(y))dσ(y), relying once again on
Formula (70) with a = n(y) × p(y), u = u(x) = β(x) and v = v(x) = Gκ(x − y), we obtain

⟨β, γN ⋅ curlΨκ(p ×n)⟩ = ∫
Γ×Γ

Gκ(x − y)(n(y) × p(y)) ⋅ (n(x) ×∇Γβ(x)) dσ(x,y) .
Finally, for arbitrary trace v(x) = (q(x), β(x)) ∈ Hd(Γ), we obtain the following variational
form of Tn ⋅DLκ:

⟪Tn ⋅DLκ(u),v⟫ =−∫
Γ×Γ

Gκ(x − y)[divΓ(n(x) × q(x))divΓ(n(y) × p(y))
−κ2(n(x) × q(x)) ⋅ (n(y) × p(y))] dσ(x,y)

+∫
Γ×Γ

Gκ(x − y)[(n(x) × q(x)) ⋅ (n(y) ×∇Γα(y))
+(n(y) × p(y)) ⋅ (n(x) ×∇Γβ(x))] dσ(x,y)

+∫
Γ×Γ
n(x) ⋅Gκ(x − y) ⋅n(y)α(y)β(x) dσ(x,y) .

(71)
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The next result describes which parts of the above expression are compact and hence can be
”ignored” when investigating coercivity.

Lemma 6.10.
Define ADL ∶ Hd(Γ)→Hn(Γ) as the continuous operator inducing the following sesqui-linear
form:

⟨ADL(u),v⟩ ∶=B((n × p, α), (n × q, β)) ,
B(p×, α), (q×, β)⟩ ∶= − (divΓ p×,divΓ q×)−1/2 + κ2 (p×,q×)−1/2 +

(curlΓQ∗α,q×)−1/2 + (p×,curlΓQ∗β)−1/2 ,
(72)

for u = (p, α),v = (q, β) ∈ Hd(Γ) and p×,q× ∈ H−
1

2 (div,Γ), α,β ∈ H1/2(Γ). Then for any
κ ∈ C+ the operator Tn ⋅DLκ −ADL ∶ Hd(Γ) → Hn(Γ) is compact and depends continuously
on κ.

Proof:
Note that αn, βn ∈ L2(Γ)3 whenever α,β ∈ H1/2(Γ). In addition L2(Γ)3 is compactly

embedded into H
−1/2
t (Γ), and the bilinear form

p,q↦ ∫
Γ×Γ

p(y) ⋅Gκ(x − y) ⋅ q(x)dσ(x,y)
is a continuous bilinear form over H

−1/2
t (Γ) ×H−1/2t (Γ). As a consesquence the third term

in Expression (71) is compact. Next recall that replacing Gκ by G0 in the first two terms of
(71) only induces a compact perturbation, see e.g. Lemma 3.9.8 in [30]. After applying this
substitution, ADL is obtained by simply re-arranging the first two terms of (71) and taking
into account curlΓ = ∇Γ ×n. ◻

To establish coercivity of the bilinear form (71), it suffices to prove a generalized Garding
inequality for the sesqui-linear form B(⋅, ⋅) defined in (72). Let us introduce a bounded linear
transformation

Ξ ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H−
1

2 (div,Γ) ×H 1

2

∗ (Γ) → H−
1

2 (div,Γ) ×H 1

2

∗ (Γ) ,
(p, α) ↦ [−RΓp + µ(Id −RΓ)p + curlΓ α

ζ curl†
Γ
(Id −RΓ)p ] , (73)

with µ ∈ C, ∣µ∣ = 1, such that R{µκ2} = ∣κ∣2 and ζ ∶= 2 + ∣κ∣4 > 0. The operator RΓ was
introduced in Lemma 6.5. The operator is bijective with inverse (P0 defined in (61))

Ξ−1(q, β) = [−RΓq + ζ−1 curlΓ β + µ−1(Id −P0)(Id −RΓ)q
curl†

Γ
((Id −RΓ)q) − µζ−1β ] , q ∈H−

1

2 (div,Γ),
β ∈ H1/2(Γ) . (74)

We call Ξ× a derived isomorphism H−
1

2 (curl,Γ)×H 1

2

∗ (Γ) →H−
1

2 (curl,Γ)×H 1

2

∗ (Γ) that involves
rotating the tangential vector arguments before and after the application of Ξ.

Theorem 6.11.
For any κ ∈ C+ there exists a compact operator Kκ ∶ Hd(Γ) → Hn(Γ), and a constant C =
C(κ) > 0 such that

Re{⟪(Tn ⋅DLκ +K)u,Ξ(u)⟫} ≥ C∥u∥2Hd(Γ)
∀u ∈Hd(Γ). (75)
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Proof:Since, according to Lemma 6.10, the weak form of Tn ⋅DLκ agrees with B(⋅, ⋅) up to
compact perturbations (and isometric rotations), all we have to show is the existence of a

compact sesqui-linear form kκ on H−
1

2 (div,Γ)×H1/2(Γ) and of a constant C = C(κ) > 0 such
that

B ((p, α),Ξ(p, α)) − kκ((p, α),Ξ(p, α)) ≥ C (∥p∥2
H
− 1
2 (div,Γ)

+ ∥α∥2H1/2(Γ)) (76)

for all (p, α) ∈H− 1

2 (div,Γ) ×H1/2(Γ). We find

B ((p, α),Ξ(p, α)) = ∥divΓRΓp∥2−1/2 − κ2 (p,RΓp)−1/2 + κ2 (RΓp, µ(Id −RΓ)p + curlΓ α)−1/2 +
κ2µ ∥(Id −RΓ)p∥2−1/2 + κ2 ((Id −RΓ)p,curlΓ α)−1/2 −
(curlΓ α,RΓp)−1/2 + µ (curlΓ α, (Id −RΓ)p)−1/2 +
∥curlΓ α∥2−1/2 + ζ (p, (Id −RΓ)p)−1/2

= ∥divΓRΓp∥2−1/2 + (ζ + κ2µ) ∥(Id −RΓ)p∥2−1/2 + ∥curlΓ α∥2−1/2 +
κ2 ((Id −RΓ)p,curlΓ α)−1/2 + µ (curlΓ α, (Id −RΓ)p)−1/2 + kκ ((p, α),Ξ(p, α)) ,

with a sesqui-linear form

kκ ((p, α),Ξ(q, β)) ∶= − κ2 (p,RΓq)−1/2 + κ2 (RΓp, µ(Id −RΓ)q + curlΓ β)−1/2 −
(curlΓ α,RΓq)−1/2 + ζ (RΓp, (Id −RΓ)q)−1/2 ,

which will inherit compactness from RΓ, recall Lemma 6.5 (i). By means of Young’s inequality
we estimate for arbitrary ǫ, δ > 0

B ((p, α),Ξ(p, α)) − kκ ((p, α),Ξ(p, α))
= ∥divΓRΓp∥2−1/2 + (ζ + κ2µ) ∥(Id −RΓ)p∥2−1/2 + ∥curlΓ α∥2−1/2 +
κ2 ((Id −RΓ)p,curlΓ α)−1/2 + µ (curlΓ α, (Id −RΓ)p)−1/2
≥ ∥divΓRΓp∥2−1/2 + (ζ + ∣κ∣2) ∥(Id −RΓ)p∥2−1/2 + ∥curlΓ α∥2−1/2 +
1
2
∣κ∣2 (ǫ ∥(Id −RΓ)p∥2−1/2 + 1

ǫ
∥curlΓ α∥2−1/2)−

1
2
(δ ∥(Id −RΓ)p∥2−1/2 + 1

δ
∥curlΓ α∥2−1/2)

≥ ∥divΓRΓp∥2−1/2 + ∥(Id −RΓ)p∥2−1/2 + 1
4
∥curlΓ α∥2−1/2 ,

thanks to the choice ζ = 2 + ∣κ∣4 − ∣κ∣2, when we set ǫ = 2∣κ∣2, δ = 2.
◻

Now that we have established a generalized Garding inequality for Tn ⋅ DLκ, we can
conclude its invertibility in the same way as for Td ⋅ SLκ with Corollary 6.9, using Theorem
6.11 instead of Theorem 6.8. We do not reproduce the proof since it runs parallel to that of
Corollary 6.9.

Corollary 6.12.
For any κ ∈ C+ the operator Tn ⋅ DLκ ∶ Hd(Γ) → Hn(Γ) is of Fredholm type of index 0.
Moreover, if κ2 ∈ C+ ∖ (Λr ∪ ηΛn), then Tn ⋅DLκ is an isomorphism.
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6.5 Supplement: Invertibility of second-kind boundary integral operators

The boundary integral operators Td ⋅DLκ ∶ Hd(Γ) → Hd(Γ) and Td ⋅DLκ ∶ Hd(Γ) → Hd(Γ)
qualify as second-kind, because they supply a bounded endomorphism of a single trace space
each. Their invertibility can be established appealing to the well-posedness of both exterior
and interior boundary vaalue problems from Section 3.

Proposition 6.13.
Let Ω ⊂ R3 be a Lipschitz domain.

(i) If Ω is bounded, then Td ⋅DLκ ∶Hd(Γ)→Hd(Γ) is an ismorphism if κ2 ∈ C+∖(Λt∪ηΛd),
and Tn ⋅ SLκ ∶Hn(Γ)→Hn(Γ) is an ismorphism if κ2 ∈ C+ ∖ (Λr ∪ ηΛn).

(ii) If R3∖Ω is bounded, then Td ⋅DLκ ∶Hd(Γ)→Hd(Γ) is an ismorphism if κ2 ∈ C+∖(Λr∪
ηΛn), and Tn ⋅ SLκ ∶Hn(Γ)→Hn(Γ) is an ismorphism if κ2 ∈ (Λt ∪ ηΛd).

Proof:
We only prove invertibility Td ⋅DLκ in the case where Ω ⊂ R3 is bounded, since all other

cases can be treated in a completely similar manner. Assuming that κ2 ∈ C+ ∖ (Λt ∪ηΛd), we
already know that ker(Td ⋅DLκ) = {0} according to Proposition 6.2.

Take any p = (g, h) ∈ Hd(Γ) and let us prove that there exists u ∈ Hd(Γ) such that
Td ⋅ DLκ(u) = p. According to Proposition 3.7, there exists a unique vin ∈ X(Ω) solution
to Problem (27) with g, h as boundary conditions. Let us denote p = Tn(vin). Invoking
Corollary 3.9 in R

3 ∖Ω, we know that there exists vout ∈Xloc(R3 ∖Ω) satisfying
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl2(vout) − η∇(div vout) − κ2vout = 0 in Ω,

limρ→∞ ∫∂Bρ
∣curl(vout) ×nρ − ıκnρ × (vout ×nρ)∣2dσρ = 0

limρ→∞ ∫∂Bρ
∣div(vout) − ıκ̃nρ ⋅ vout∣2dσρ = 0,

Tn,c(vout) = p on Γ,

Finally, define v by v∣Ω ∶= vin and v∣
R3∖Ω ∶= vout. By construction we have [Tn(v)] = 0. Let

us set u ∶= [Td(v)]. According to the integral representation formula 38, we have vin(x) =
DLκ([Td(v)])(x) + SLκ([Tn(v)])(x) for all x ∈ Ω. Applying the trace operator Td to this
equality, and taking into account that [Tn(v)] = 0 and p = Tn(vin), we finally obtain Td ⋅
DLκ(u) = p. As a consequence Td ⋅DLκ is onto. ◻

7 Static case κ = 0: boundary integral operators for the Hodge-

Laplacian

The first-kind boundary integral equations arising in the static limit case, that is, for κ = 0,
deserve particular attention. They are connected with boundary value problems for the Hodge
Laplacian ∆η. To begin with, note that both potentials, SLκ from (41) and DLκ from (43)
remain well defined for κ = 0. The same holds true for the boundary integral operators
Td ⋅ SLκ, see (64), and Tn ⋅DLκ, see (71).

Although the boundary integral operators Td ⋅SLκ and Tn ⋅DLκ are invertible for Imκ2 > 0
according to Corollary 6.9 and 6.12, these operators feature non-trivial kernels for κ = 0. In
this section we provide a detailed intrinsic analysis of these kernels based on the bilinear forms
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(64) and (71). We also propose constraints that restore uniqueness of solutions of the related
first-kind boundary integral equations for κ = 0.

Notice that in the static case κ = 0 it is natural to confine ourselves to real-valued fields.
Thus, in this section, we work in real Hilbert spaces throughout.

7.1 Static single layer operator

We first focus on the Dirichlet trace of the Hodge Laplace single layer boundary integral
operator Td ⋅ SLκ and seek to characterize ker(Td ⋅ SL0). According to (64) for any u =(p, α) ∈ Hn(Γ) and any v = (q, β) ∈ Hn(Γ), we have

−⟪Td ⋅ SL0(u),v⟫ = ∫
Γ×Γ

G0(x − y)[p(y) ⋅ q(x) + α(y) divΓ q(x)]dσ(x,y)
+∫

Γ×Γ
G0(x − y)β(x)divΓ p(y)dσ(x,y), (77)

which defines a symmetric bilinear form.
Assume that Td ⋅SL0(u) = 0 for some u ∈ Hn(Γ). Choosing q(x) = 0 and β(x) = divΓ p(x)

in (77), we see that ∫Γ×Γ G0(x − y)β(x)β(y)dσ(x,y) = ∥β∥2−1/2 = 0, which implies β = 0.

Now taking u = v, we see that ⟪Td ⋅ SL0(u),v⟫ = ∫Γ×Γ G0(x − y)p(x)p(y)dσ(x,y) = 0 which
again implies p = 0. Finally, applying a surface Green identity we obtain ⟪Td ⋅ SL0(u),v⟫ =
∫Γ q∇Γψ0(α)dσ = 0 for all q ∈H−1/2(div,Γ).

We conclude that ∇Γψ0(α) = 0, which is equivalent to ψ0(α) being constant on each
connected component of Γ. Since τd ⋅ ψ0 ∶ H−1/2(Γ) → H1/2(Γ) is an isomorphism, we obtain
the following result.

Lemma 7.1.
For any u = (p, α) ∈ Hn(Γ), we have Td ⋅ SL0(u) = 0 if and only if ∇Γ(τd ⋅ ψ0(α) ) = 0 and
p = 0.

A natural question is how to filter out the elements of this finite dimensional kernel so as to
stabilise Td ⋅ SL0. We have the following elementary result.

Lemma 7.2.
The dimension of ker(Td ⋅ SL0) is finite and agrees with the zeroth Betti number β0(Γ) of
Γ, that is, the number of its connected components. Moreover, every element u = (0, α) ∈
ker(Td ⋅ SL0) satisfying ∫Γ βαdσ = 0 for all β ∈ H0(Γ) ∶= {ϕ ∈ H1/2(Γ), ∇Γϕ = 0} vanishes
identically, i.e., α = 0.

Proof: Consider a u = (0, α) ∈ Hn(Γ) such that Td ⋅ SL0(u) = 0, and ∫Γ βαdσ = 0 for all
β ∈H0(Γ). According to the discussion above, ∇Γτd ⋅ ψ0(α) = 0, so that τd ⋅ ψ0(α) ∈H0(Γ).
As a consequence, taking β = τd ⋅ ψ0(α), we conclude that ∫Γ ατd ⋅ ψ0(α)dσ = 0⇒ α = 0 due
to the coercivity of the scalar single layer potential. ◻

Based on the previous result, the boundary integral equation (77) can be regularised
imposing vanishing mean value constraint on each connected component of Γ, by means of
Lagrange multipliers. Consider f = (g, h) ∈ Hd(Γ), and assume we are interested in solving
the problem ⎧⎪⎪⎨⎪⎪⎩

Find u ∈ Hn(Γ) such that

⟪Td ⋅ SL0(u),v⟫ = ⟪f,v⟫ ∀v ∈ Hn(Γ). (78)
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Due to the non-trivial kernel Td ⋅SL0, solutions to this formulation are not unique. Moreover,
in accordance with the Fredholm alternative, the right hand side f must satisfy compatibility
conditions to garantee existence of a solution. Instead of (78), one may consider the saddle-
point problem

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Find u = (p, α) ∈ Hn(Γ) and µ ∈H0(Γ) such that

⟪Td ⋅ SL0(u),v⟫ + ∫
Γ
µβdσ = ⟪f,v⟫ ∀v = (q, β) ∈ Hn(Γ)

∫
Γ
λαdσ = 0 ∀λ ∈H0(Γ).

(79)

According to the standard theory on saddle-point problems, see e.g. [3, Ch. 1&2] or [2,
Ch. III§4], since H0(Γ) is finite dimensional, Problem (79) admits a unique solution, for
any right hand side f ∈ Hd(Γ). If, in addition, the compatibility conditions ⟪f,v⟫ = 0∀v ∈
ker(Td ⋅SL0), then the solution to (79) is also solution to (78). In a sense (79) is a regularised
version of (78).

7.2 Static hypersingular boundary integral operator

Next, we elaborate on the kernel of the Hodge Laplace hypersingular boundary integral op-
erator Tn ⋅ DL0. According to (71), for any u = (p, α),v = (q, β) ∈ Hd(Γ) it induces the
symmetric bilinear form

⟪Tn ⋅DL0(u),v⟫ = − ∫
Γ×Γ

G0(x − y)divΓ(q×(x))divΓ(p×(y)) dσ(x,y)
−∫

Γ×Γ
G0(x − y)[q×(x) ⋅ curlΓ α(y)+p×(y) ⋅ curlΓ β(x)] dσ(x,y)

+∫
Γ×Γ

G0(x − y)α(y)β(x)n(x) ⋅n(y) dσ(x,y).
(80)

where, for the sake of brevity, we have denoted p×(y) ∶= n(y)×p(y) and q×(x) ∶= n(x)×q(y).
Let us examine the elements of the kernel of this operator. Assume that Tn ⋅DL0(u) = 0.

(i) Taking β = 0 and q = ∇Γα, so that q× = −curlΓ α, we obtain

0 = ∫
Γ×Γ

G0(x − y)q×(x) ⋅ q×(y)dσ(x,y) ⇒ q× = n ×∇Γα = 0 ,

thanks to the coercivity of the vector single layer potential, see [8, Lemma 8].

(ii) Now taking q = 0 and β = α, we obtain ∫Γ×Γ G0(x−y)α(y)α(x)n(x) ⋅n(y) dσ(x,y) = 0
and so α = 0.

(iii) Taking q = p and β = 0, then leads to ∫Γ×Γ G0(x−y) curlΓ(p(x)) ⋅curlΓ(p(y))dσ(x,y) =
0, which implies curlΓ(p) = 0.

(iv) Finally, applying a surface Green formula yields

0 = ∫
Γ
curlΓ β(x) ⋅ (∫

Γ
G0(x − y)n(y) × p(y) dσ(y) )dσ(x) = ∫

Γ
β divΓ(Ψ0,×(p) )dσ

for all β ∈ H1/2(Γ), where
Ψ0,×(p)(x) ∶= −n(x) × ∫

Γ
G0(x − y)n(y) × p(y) dσ(y). (81)

From this we conclude that we must have divΓΨ0,×(p) = 0.
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(v) On the one hand, observe that curlΓΨ0,×(p) = 0, if and only if curlΓ(p) = 0. Indeed,
if curlΓ(p) = 0 then curlΓΨ0,×(p) = ∫Γ G0(x − y) curlΓ(p(y))dσ(y) = 0. On the other
hand, if curlΓΨ0,×(p) = 0 we have

0 = ∫
Γ
curlΓ(p(x)) curlΓ(Ψ0,×(p)(x) )dσ(x)

= ∫
Γ×Γ

G0(x − y) curlΓ(p(x)) curlΓ(p(y))dσ(x,y) Ô⇒ curlΓ(p) = 0 .
In conclusion we have proved the following result.

Lemma 7.3.
For any u = (p, α) ∈Hd(Γ), we have Tn ⋅DL0(u) = 0 if and only if α = 0, divΓΨ0,×(p) = 0 and
curlΓΨ0,×(p) = 0.
This shows in particular Ψ0,×(p) must be a surface harmonic vector field. Recall that the
dimension of the space of tangent vector fields q ∈ H−1/2(curl,Γ) ∩H−1/2(div,Γ) satisfying
divΓ q = curlΓ q = 0 is equal to the first Betti number β1(Γ) of Γ. This is a consequence of (i)
the estimate

∥u∥L2

t (Γ)
≤ C (∥divΓ u∥H−1(Γ) + ∥curlΓ u∥H−1(Γ) + ∥u∥H−1(Γ)) ∀u ∈ L2

t (Γ) ,
for tangential square-integrable surface vector fields, which implies the compact embedding
of H−1/2(curl,Γ) ∩H−1/2(div,Γ) ⊂ L2

t (Γ), and (ii) the Hodge decomposition of 1-forms on
Γ [31, Sect. 2.4].

In addition, the operator Ψ0,× is one-to-one. Indeed for any p ∈ H−1/2(curl,Γ) such that
Ψ0,×(p) = 0, denoting p×(x) ∶= n(x) × p(x) ∈H−1/2(div,Γ), we have

0 = ⟨Ψ0,×(p),p⟩ = ∫
Γ×Γ

G0(x − y)p×(x)p×(y)dσ(x,y) ≥ C∥p×∥2−1/2
which readily implies p× = 0.

Lemma 7.4.
The dimension of ker(Tn ⋅DL0) is finite and agrees with the first Betti number β1(Γ) of Γ, that
is, the number of equivalence classes of non-bounding cycles in Γ. Moreover every element
u = (p,0) ∈ ker(Tn ⋅DL0) satisfying
∫
Γ
p ⋅ qdσ = 0 ∀q ∈H1(Γ) ∶= {w ∈H−1/2(curl,Γ) ∩H−1/2(div,Γ), divΓw = curlΓw = 0}

vanishes, i.e., p = 0.

Proof: Finite dimensionality of ker(Tn ⋅ DL0) has already been established. Now let us
consider u = (p,0) ∈ ker(Tn ⋅DL0) satisfying ∫Γ p ⋅ qdσ = 0 for all q ∈ ker(divΓ) ∩ ker(curlΓ).
We can apply Lemma 7.3 and take q = Ψ0,×(p) which readily yields 0 = ∫Γ p ⋅Ψ0,×(p)dσ ≥
C∥p×∥2−1/2 and finally p = 0. ◻

Now let us consider a right hand side f = (g, h) ∈Hn(Γ), and assume we are interested in
solving the problem ⎧⎪⎪⎨⎪⎪⎩

Find u ∈Hd(Γ) such that

⟪Tn ⋅DL0(u),v⟫ = ⟨f,v⟩ ∀v ∈Hd(Γ). (82)
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Here again the above problem is of Fredholm type with index 0, but the corresponding
operator admits a non trivial kernel. This kernel can be suppressed by imposing appropriate
constraints by means of Lagrange multipliers. We are led to the saddle-point problem

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Find u = (p, α) ∈Hd(Γ) and µ ∈H1(Γ) such that

⟨Tn ⋅DL0(u),v⟩ + ∫
Γ
µ ⋅ q dσ = ⟨f,v⟩ ∀v = (q, β) ∈Hd(Γ)

∫
Γ
λ ⋅ pdσ = 0 ∀λ ∈H1(Γ).

(83)

Once again standard theory of saddle-point problems, see [3, Ch. 1&2] or [2, Chap. III§4],
shows that the problem above admits a unique solution that is also solution to (82) in the
case where ⟨f,v⟩ = 0 for all v ∈ ker(Tn ⋅DL0).
Appendix: Density results

By definition, C
∞
0 (Ω) is dense in H0(curl,Ω), H0(div,Ω) and H0(curl,Ω) ∩ H0(div,Ω)

equipped with their respective norms. The density of C
∞
comp(Ω) ∶= {ϕ∣Ω such that ϕ ∈

C
∞(R3), supp(ϕ) bounded} in H(curl,Ω) and in H(div,Ω) is also well known (see for

example [14, Thm.2.4 & Thm.2.10]). In the upcoming discussion we shall also need a similar
density result for H(curl,Ω) ∩H(div,Ω).
Lemma 7.5.
The space C

∞
comp(Ω)3 is dense in X(Ω) for the norm ∥ ∥X(Ω).

Proof:
Although the proof could be adapted rather straightforwardly from [14, Chap.I §2], it

appears instructive to recall it in detail here. Let X(Ω)′ refer to the topological dual to X(Ω).
According to a well known consequence of Hahn-Banach’s theorem (see e.g. [29, Them.3.5]),
if ⟨λ,v⟩ = 0, ∀v ∈ C

∞
comp(Ω)3 ⇒ λ = 0, for any arbitrarily chosen λ ∈X(Ω)′, then C

∞
comp(Ω)3 is

dense in X(Ω) for the norm ∥ ∥X(Ω).
Take an arbitrary λ ∈ X(Ω)′ such that ⟨λ,v⟩ = 0, ∀v ∈ C

∞
comp(Ω)3. We have to show that

λ = 0. Since X(Ω) is obviously a Hilbert space, according to Riesz representation theorem,
there exists u ∈X(Ω) such that

⟨λ,v⟩ = ∫
Ω
u ⋅ v + g div(v) + f ⋅ curl(v)dx ∀v ∈X(Ω)

where g ∶= div(u) ∈ L2(Ω), f ∶= curl(u) ∈ L2(Ω)3. (84)

Let us denote ũ, f̃ ∈ L2(R3)3 and g̃ ∈ L2(R3) such that ũ = f̃ = 0 and g̃ = 0 in R
3 ∖ Ω, and

ũ∣Ω = u, f̃ ∣Ω = f and g̃∣Ω = g. Lax-Milgram lemma shows that there exists a unique p ∈ H1(R3)
satisfying

p ∈ H1(R3) and,

∫
R3

∇p ⋅ ∇q + p q dx ∶= ∫
R3

ũ ⋅ ∇q dx + ∫
R3

g̃ q dx ∀q ∈ H1(R3). (85)

Coming back to (84), let us take v = ∇ϕ for some ϕ ∈ C
∞
comp(R3) ∶= {ψ ∈ C

∞(R3), supp(ψ)
bounded} and observe that ϕ ∈ H1(R3) as supp(ϕ) is bounded. According to (85), since
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0 = ⟨λ,∇ϕ∣Ω⟩, we obtain that

0 = ∫
R3

∇p ⋅ ∇ϕ + pϕdx + ∫
R3

g̃∆ϕ − g̃ϕ dx

= ∫
R3

(p − g̃)(∆ϕ −ϕ)dx ∀ϕ ∈ C
∞
comp(R3).

Since the elements −∆ϕ+ϕ where ϕ ∈ C
∞
comp(R3) form a dense subset of L2

loc(R3), we conclude
that g̃ = p ∈ H1

loc(R3). By construction we have g̃ = 0 in R
3 ∖ Ω, so that g̃∣Ω = g ∈ H1

0(Ω).
Coming back to (84) once again, applying a Green’s formula on the divergence term yields

∫
R3

(ũ −∇g̃) ⋅ vdx + ∫
R3

f̃ ⋅ curl(v)dx = 0 ∀v ∈ C
∞
comp(R3)3. (86)

From this we obtain that f̃ ∈ Hloc(curl,R3) and, since f̃ = 0 in R
3 ∖ Ω, we even have

f ∈ H0(curl,Ω). Moreover (86) also implies that u = ∇g − curl(f) in Ω. Plugging this
decomposition into (84) yields

⟨λ,v⟩ = ∫
Ω
v ⋅ ∇g + g div(v)dx + ∫

Ω
f ⋅ curl(v) − v ⋅ curl(f)dx ∀v ∈X(Ω).

Since g ∈ H1
0(Ω) and f ∈ H0(curl,Ω), these two functions satisfy appropriate homogeneous

conditions at the boundary ∂Ω, so that each of the integrals in the right hand side above
vanish according to Green’s formula. This leads to ⟨λ,v⟩ = 0 for any v ∈X(Ω). ◻
Theorem 7.6.
The space C

∞
comp(Ω)3 is dense in X(∆,Ω) for the norm ∥ ∥X(∆,Ω).

Proof:
The proof will be a variation of the proof of Lemma 7.5 although, here, the norm ∥ ∥X(∆,Ω)

under consideration is more complicated. Once more, we rely on Hahn-Banach theorem. Take
an arbitrary λ ∈ X(∆,Ω)′ such that ⟨λ,v⟩ = 0,∀v ∈ C

∞
comp(Ω)3. We have to show that λ = 0.

Here also X(∆,Ω) is an Hilbert space so, according to Riesz representation theorem, we can
find u ∈X(∆,Ω) such that

⟨λ,v⟩ = ∫
Ω
u ⋅ vdx + ∫

Ω
g0 div(v) + g1 ⋅ ∇div(v)dx

+ ∫
Ω
f0 ⋅ curl(v) + f1 ⋅ curl2(v)dx ∀v ∈X(∆,Ω)

where g0 = div(u), g1 = ∇div(u), f0 = curl(u), f1 = curl2(u).
(87)

Once more, define ũ ∈ L2
loc(Ω) by ũ∣Ω ∶= u, and ũ∣R3∖Ω ∶= 0. Define f̃0, f̃1, g̃0, g̃1 accordingly.

First of all, apply Lax-Milgram’s lemma, so as to obtain p ∈ H1(R3) satisfying
∫
R3

∇p ⋅ ∇q + p q dx = ∫
R3

(ũ + g̃1) ⋅ ∇q + g̃0 q dx ∀q ∈ H1(R3). (88)

Apply (87) with v = ∇ϕ for some ϕ ∈ C
∞
comp(R3), and use the definition of p given by (88).

Since ϕ is chosen arbitrarily, we find that the following holds

∫
R3

(g̃0 − p)(∆ϕ −ϕ)dx + ∫
R3

g̃1 ⋅ ∇(∆ϕ −ϕ)dx = 0 ∀ϕ ∈ C
∞
comp(R3)
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Since the functions ∆ϕ − ϕ,ϕ ∈ C
∞
comp(R3) form a dense subset of H1(R3), we conclude that

g̃1 ∈ H(div,R3) and that p+ div(g̃1) − g̃0 = 0. Plugging this identity inside (87), and applying
Green’s formula, we conlude that

∫
R3

(ũ −∇p) ⋅ vdx + ∫
R3

f̃0 ⋅ curl(v) + f̃1 ⋅ curl2(v)dx = 0 ∀v ∈ C
∞
comp(R3). (89)

Resorting once again on Lax-Milgram’s lemma, letψ refer to the unique element ofH(curl,R3)
solution to the variational problem

∫
R3

curl(ψ) ⋅ curl(v) +ψ ⋅ v dx = ∫
R3

(ũ −∇p − f̃1) ⋅ vdx
+∫

R3

f̃0 ⋅ curl(v)dx ∀v ∈H(curl,R3).
Plugging the definition of ψ inside (89), considering a test function v ∈ C

∞
comp(R3), and

applying Green’s formula yields ∫R3(f̃1 +ψ)(curl2 v + v)dx = 0 for all v ∈ C
∞
comp(R3). Since

the functions curl2 v + v,v ∈ C
∞
comp(R3) form a dense subset of L2(R3), we conclude that

f̃1 = −ψ ∈ H(curl,R3). Coming back to (89), and applying Green’s formula, we find that

∫
R3

(curl(f̃1) + f̃0) ⋅ curl(v)dx = ∫
R3

(∇p − ũ) ⋅ vdx ∀v ∈ C
∞
comp(R3).

From this identity, we conclude that w ∶= curl(f̃1) + f̃0 ∈ H(curl,R3), and that curl(w) =
∇p−u. Now let us point that g̃1 was proved to belong to H(div,R3) and vanishes on R

3 ∖Ω,
so we deduce that g1 = g̃1∣Ω ∈ H0(div,Ω). Similarly we obtain that f1 = f̃1∣Ω ∈ H0(curl,Ω),
and p∣Ω ∈ H1

0(Ω) and w∣Ω ∈H0(curl,Ω).
Now let us consider a test field v chosen in X(∆,Ω). Recall that we have u = ∇p − curl(w),
plugging this decomposition into the definition of λ given by (87), and re-arranging the terms
yields

⟨λ,v⟩ = ∫
Ω
(∇p − curl(w)) ⋅ vdx

+∫
Ω
(g̃0 − div(g̃1) ) div(v)dx + ∫

Ω
div(g̃1) div(v) + g̃1 ⋅ ∇div(v)dx

+∫
Ω
(curl(f̃1) + f̃0) ) ⋅ curl(v)dx + ∫

Ω
f̃1 ⋅ curl2(v) − curl(f̃1) ⋅ curl(v)dx

Now recall that we also have p = g̃0 − div(g̃1) and w ∶= curl(f̃1) + f̃0. Taking account of this
in the previous identity yields that, for any v ∈X(∆,Ω), we have

⟨λ,v⟩ = ∫
Ω
v ⋅ ∇p + p div(v)dx + ∫

Ω
div(g̃1) div(v) + g̃1 ⋅ ∇div(v)dx

+∫
Ω
w ⋅ curl(v) − v ⋅ curl(w)dx + ∫

Ω
f̃1 ⋅ curl2(v) − curl(f̃1) ⋅ curl(v)dx.

Finally recalling that p,w, g̃1, f̃1 satisfy appropriate boundary conditions on ∂Ω since p ∈
H1

0(Ω), w, f̃1 ∈ H0(curl,Ω) and g̃1 ∈ H0(div,Ω), we realize that each of the four integral in
the right hand side above is actually zero. Hence ⟨λ,v⟩ = 0,∀v ∈X(∆,Ω) i.e. λ = 0. ◻
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Lemma 7.7.
The mapping Td ×Tn ∶ C∞comp(Ω)3 →Hd(Γ) ×Hn(Γ) defined by (Td ×Tn)(v) ∶= (Td(v),Tn(v))
has dense range.

Proof:
We shall adapt the proof of [11, Lemma 3.5]. First observe that Hd(Γ) ×Hn(Γ) is put in

self-duality through the pairing J(α,β), (α′,β′)K ∶= ⟨α,β′⟩ − ⟨β,α′⟩ defined for any α,α′ ∈Hd(Γ) and any β,β′ ∈Hn(Γ). As a consequence, according to Hahn-Banach theorem (see [28,
Thm.5.19] for example), it suffices to show that for any (α,β) ∈Hd(Γ) ×Hn(Γ),

⟨α,Tn(v)⟩ − ⟨β,Td(v)⟩ = 0 ∀v ∈ C
∞
comp(Ω)3 ⇒ α = 0,β = 0. (90)

Define L (u) ∶= −∆ηu+u as an operator with domainX(∆,Ω). Observe that, by construction,
we have L ⋅Rd(p) = 0 in Ω and Td ⋅Rd(p) = p on Γ for any p ∈Hd(Γ). Recall that we denote
Xn(Ω) ∶= H0(curl,Ω) ∩H(div,Ω). For any f ∈ L2(Ω)3, let S(f) refer to the unique vector
field satisfying

S(f) ∈Xn(Ω) such that

a(S(f),v) = ∫
Ω
f ⋅ vdx ∀v ∈Xn(Ω),

where a(u,v) ∶= ∫
Ω
curl(u) ⋅ curl(v) + η div(u)div(v) + uv dx.

As a direct application of [12, Thm.1.2], for any f ∈ L2(Ω)3, we have div(S(f)) ∈ H1
0(Ω).

Routine distributional calculus then imply in addition curl2(S(f)) ∈ L2(Ω), so that S(f) ∈
X(∆,Ω) for any f ∈ L2(Ω)3. Green’s formula shows that L (S(f)) = f in Ω and Td ⋅ S(f) = 0
on Γ.

Now consider a pair (α,β) satisfying the condition in the left hand side of (90). According
to the density of C

∞
comp(Ω)3 in X(∆,Ω) provided by Theorem 7.6, (α,β) actually satisfies

this condition for any v ∈ X(∆,Ω). Choose in particular v = S(f) where f ∶= Rd(α) so that
L (S(f)) = Rd(α) in Ω and Td(f) = α on Γ. We obtain

0 = ⟨α,Tn ⋅ S(f)⟩ − ⟨β,Td ⋅ S(f)⟩
= ⟨Td ⋅Rd(α),Tn ⋅ S(f)⟩ − ⟨Tn ⋅Rd(α),Td ⋅ S(f)⟩
= ∫ΩRd(α)L (S(f)) −L (Rd(α))S(f)dx = ∥Rd(α)∥2L2(Ω)

From this we conclude that Rd(α) = 0 hence α = Td ⋅Rd(α) = 0. Now coming back to the
condition in the left hand side of (90), we have ⟨β,Tn(v)⟩ = 0 for all v ∈X(∆,Ω). Surjectivity
of the trace operator Tn then shows that β = 0 which concludes the proof. ◻
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