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Second Kind Boundary Integral Equation

for Multi-Subdomain Diffusion Problems

X.Claeys∗†, R.Hiptmair‡ and E.Spindler‡

Abstract

We consider isotropic scalar diffusion boundary value problems on R
d, whose diffusion

coefficients are piecewise constant with respect to a partition of space into Lipschitz subdo-
mains. We allow so-called material junctions where three or more subdomains may abut.
We derive a boundary integral equation of the second kind posed on the skeleton of the
subdomain partition that involves, as unknown, only one trace function at each point of
each interface. We prove the well-posedness of the corresponding boundary integral equa-
tions. We also report numerical tests for Galerkin boundary element discretisations, in
which the new approach proves to be highly competitive compared to the well-established
first kind direct single-trace boundary integral formulation. In particular, GMRES seems
to enjoy fast convergence independent of the mesh resolution for the discrete second kind
BIE.

Keywords. Second-order transmission problems, boundary integral equations, second
kind single integral equations, boundary element methods
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1 Introduction

We consider the second-order diffusion problem







−div(µ(x)∇u) = 0 in R
3 ,

lim sup
|x|→∞

|x| |utot(x)− u∞(x)| < +∞ , (1)

for a given excitation field u∞, harmonic on all of R
3. We focus on piecewise constant

real-valued diffusion coefficient functions µ ∈ L∞(R3). To describe them more precisely,
we introduce a partition R

d = ∪n
j=0Ωj , where each subdomain Ωj , 1 ≤ j ≤ n, is a bounded

Lipschitz domain. Then we assume that µ is piecewise constant with respect to this partition,
that is, for given numbers µj > 0,

µ |Ωj
= µj for all j ∈ {0, . . . , n} . (2)

∗Sorbonne Universités, UPMC Univ Paris VI Laboratoire Jacques-Louis Lions, CNRS UMR 7598, Paris,
†INRIA-Paris-Rocquencourt, EPC Alpines, Domaine de Voluceau, Le Chesnay.
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Existence and uniqueness of solutions of (1) under suitable decay conditions are well estab-
lished [30, Chapter 8]. Problems like (1) arise, for instance, in electrostatic models of dielectric
bodies.

Boundary element methods based on reformulations of boundary value problems as bound-
ary integral equations (BIE) are a popular class of computational techniques for problems like
(1). A wealth of different BIE formulations are known for pure Dirichlet, Neumann, or mixed
second-order scalar boundary value problems, and also transmission problems, that is, the
case n = 1 of (1), see [43, Chapter 3] or [22, Chapter 8]. A fundamental distinction is
made between first kind and second kind BIEs. Their properties and that of related Galerkin
boundary element methods are fairly well understood [43, Chapter 4], also for electromagnetic
wave propagation [4] and elasticity [30, Chapter 10].

For the case n > 1 of (1), the genuine multi-subdomain case, it is mainly first kind BIEs
that have been proposed and investigated, see the seminal work [39] (based on [17]) and
surveys in [10, 9, Section 3 each]. Counterparts for time-harmonic electromagentic scattering,
based on the Rumsey principle [42] have been known as PMCHWT BIEs for a long time
[5, 32, 24] and their analysis has been accomplished in [3]. Polynomial Galerkin boundary
element methods built on these formulations have to deal with ill-conditioned linear systems
on fine meshes [43, Section 4.5] and, as a consequence, with slow convergence of iterative
solvers. Preconditioning techniques drawing on ideas from domain decomposition like the
Boundary Element Tearing and Interconnecting method (BETI) [35, 34, 27, 29], and Multi-
Trace Formulations (MTF) [38, 37, 8, 9, 7, 25, 10] are a remedy, but they entail rather complex
algorithms.

Ill-conditioned Galerkin matrices are not an issue with second kind BIEs. In simple
settings, n = 1 for (1), and in the case of smooth geometries, the corresponding integral
operators typically take the form of compact perturbations of the identity [22, Chapter 3]
and, in conjunction with usual discretisation procedures (Galerkin, Nyström or collocation),
yield well-conditioned matrices.

Only recently the authors have proposed suitable integral equations of the second kind
for genuine multi-subdomain problems. Initially, the focus was on the Helmholtz equation
−∆u − κ(x)2u = f in R

d, d = 2, 3 (with outgoing radiation condition), where f is a source
term, and the effective wave number κ(x) is a constant κj > 0 in each Ωj . Note that here the
variable coefficient does not enter the principal part. For such wave propagation problems
a so-called Single-Trace Formulation of the second kind (2nd-kind STF) has been proposed
independently in [21] and [6, 12]. A first extension of this approach was proposed in [11],
where the authors considered the case of a propagation medium with impenetrable parts
(homogeneous Dirichlet boundary condition imposed on one of the Ωj ’s). In [13] the idea
was successfully applied to multi-subdomain transmission problems for the time-harmonic
Maxwell equations curlcurlE−κ(x)2E = 0. In this case the zero-order term in the differential
operator does not represent a compact perturbation and new arguments are needed to derive
a 2nd-kind STF. All details can be found in the PhD thesis [45].

Exploring 2nd-kind STF for Maxwell’s equations taught us how to deal with variable
coefficients in the principal part of the partial differential equations. This is exactly the
situation we face with (1) and the present contribution elaborates the corresponding extension
of the 2nd-kind STF. We arrive at integral equations reminiscent of so-called direct single
integral equations as presented in [28].

The outline of this article is as follows. In Section 2 we describe precisely the geometry
and the boundary value problem under consideration in the remainder of this article. In
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Section 3 we review basic definitions and results related to Sobolev spaces, trace operators,
and the variational theory of the Laplace operator in free space. In Section 4 we introduce
a functional framework well adapted to dealing with trace functions in a multi-subdomain
context and, in the following section, we briefly review classical results on potential theory.
In Section 6 we derive the new formulation for problems of the form (1), and we establish its
well-posedness. This formulation then admits a variational formulation where trial functions
are sought in single-trace spaces, and test functions are chosen in some complementary sub-
space. In Section 7 we rewrite this formulation so as to simplify the functional framework.
With this reformulation, both trial and test functions are chosen in the same variational space
consisting in trace functions defined on a cartesian product of interfaces. In this functional
framework, each trace function belongs to a Sobolev space with (non trivial) fractional ex-
ponent. In Section 8, we show that the same formulation can still be considered in an even
simpler framework based on square integrable traces. The final section presents 3D numerical
experiments for the Galerkin boundary element discretisation of our new integral equations.
The results highlight the competitiveness of our formulation compared to the more classical
first kind approach. In particular, we always observe excellent conditioning of the Galerkin
matrices generated by our new method.

Remark 1.1. In spite of slight modifications due to the peculiarity of the Green’s function
of the Laplacian in two dimensions, our algorithms and the analysis can be easily adapted to
problems set in R

2. Nevertheless, we focus on the 3D setting for the sake of clarity.

2 Setting of the problem

Recall the partition of free space R
3 := ∪n

j=0Ωj where the Ωj ’s are Lipschitz domains. We
assume that each Ωj is bounded except Ω0. In the sequel we shall refer to the boundary of each
subdomain by Γj := ∂Ωj , and also set Γj,k := Γj ∩Γk = ∂Ωj ∩∂Ωk for reference to interfaces.
The union of all interfaces, the skeleton, will be denoted by Σ := ∪n

j=0 Γj = ∪0≤j<k≤n Γj,k.
We are interested in solutions of (1), which should be understood in the weak sense,

i.e., utot belongs to the Sobolev space1 H1
loc(R

3) and satisfies
´

R3 µ∇utot∇vdx = 0 for all
v ∈ H1

comp(R
3). Using the change of unknown u = utot − u∞, Problem (1) is equivalent to

the transmission problem

{

u ∈ H1
loc(R

3) with ∆u = 0 in Ωj , ∀j = 0 . . . n ,

lim sup|x|→∞ |x| |u(x)| < +∞ ,
(3a)

{

µj∂nju|Γj + µk∂nk
u|Γk

= −(µjgj + µkgk) ,

u|Γj − u|Γk
= 0

on Γj ∩ Γk, ∀j, k = 0, . . . , n , (3b)

where u|Γj (resp. ∂nju|Γj := nj · ∇u|Γj ) designates the traces of u on Γj (resp. the normal
flux of ∇u at Γj) taken from the interior of Ωj , the vector field nj is the normal to Γj directed
toward the exterior of Ωj , and the right hand side in (3b) is given by

gj := ∂nju∞|Γj j = 0 . . . n. (4)

1Throughout we use standard notations for Sobolev spaces as found, for instance, in [30].
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3 Elementary function spaces

To discuss the regularity properties of the solution to Problem (3), we need to introduce
further notation regarding function spaces. We shall consider functions defined on volumic
Lipschitz subsets ω ⊂ R

3, but also functions defined on the boundaries of such domains i.e.
on Lipschitz manifolds. For these definitions and in terms of notations, we follow [30, Chap.3]
as well as [1, 43] that can be consulted for more details.

3.1 Volumic function spaces

Beside the usual (integer and fractional) Sobolev spaces Hs(ω), s ∈ R, we write Hs(div, ω) :=
{v ∈ Hs(ω)|div(v) ∈ Hs(ω)} with ‖v‖2Hs(div,ω) := ‖v‖2Hs(ω) + ‖div(v)‖2Hs(ω) (in the sequel

H(div, ω) = Hs(div, ω) with s = 0), and use the space H1+s(∆, ω) := {v ∈ Hs(ω)|∇v ∈
Hs(div, ω)} equipped with the corresponding natural norm

‖v‖2H1+s(∆,ω) = ‖v‖2H1+s(ω) + ‖∆v‖2Hs(ω).

Recall that According to Theorem 3.30 and Theorem 3.33 of [30], for s ∈ (−1/2,+1/2), the
space H−s(ω) is the topological dual to H+s(ω). With 〈 , 〉 we denote the duality pairing
between Hs(ω) and H−s(ω).

3.2 Trace spaces

Recall [30, Lemma 3.35] that the Dirichlet trace ϕ 7→ ϕ|∂ω induces a continuous and surjec-
tive map sending H1+s(ω) onto H1/2+s(∂ω) for s ∈ (−1/2, 1/2). We remind (see e.g. [43,
Thm 2.7.7]) that the normal flux trace p 7→ n · p|∂ω can be extended by continuity to an
operator mapping Hloc(div, ω) onto H−1/2(∂ω). We shall actually need a sharper version of
this continuity result.

Lemma 3.1.
Consider any Lipschitz open set ω ⊂ R

3 with bounded boundary, denoting n the normal vector
field to ∂ω. For any s ∈ (−1/2,+1/2) the normal flux operator p 7→ n · p|∂ω extends as a
linear operator mapping continuously and surjectively Hs

loc(div, ω) onto Hs−1/2(∂ω), and it is
characterised by the Green’s formula

ˆ

ω
p · ∇v + v div(p) dx = 〈v|∂ω,n · p|∂ω〉 ∀p ∈ Hs

loc(div, ω), ∀v ∈ H1−s
comp(ω).

Proof:
Let B ⊂ R

3 refer to a ball with radius sufficiently large to garantee that ∂ω ⊂ B. Define
O := B ∩ ω so that O is bounded and ∂ω ⊂ ∂O. Fix s ∈ (−1/2,+1/2), and recall that there
exists a continuous lifting operator R : H1/2−s(∂ω) → H1−s(ω) such that R(v)|∂ω = v for
all v ∈ H1/2−s(∂ω), see for example [16, Lemma 4.2]. Using a cut-off function if necessary,
one can consider in addition that supp{R(v)} ⊂ O for all v ∈ H1/2−s(∂ω). Next, for any
p ∈ Hs

loc(div, ω) define the functional ϕp by

ϕp(v) :=

ˆ

ω
p · ∇R(v) + R(v) div(p) dx ∀v ∈ H1/2−s(∂ω).

Due to the regularity properties of p, and the continuity of R, the functional ϕp continuously
maps H1/2−s(∂ω) into C i.e. ϕp ∈ Hs−1/2(∂ω), and it depends continuously on p in the norm
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of Hs(div,O). Moreover it does not depend on the precise choice of R as long as R(v)|∂ω = v,
which is a direct consequence of Green’s formula. Hence we set, as a definition, ”n·p|∂ω”:= ϕp,
which achieves the desired extension, so that Green’s formula is satisfied by construction.

There only remains to prove the surjectivity of this normal flux operator. Pick an arbitrary
q ∈ Hs−1/2(∂ω). According to Section 16 of [1], there exists a unique u ∈ H1+s(ω) solution to
−∆u+ u = 0 in ω and ∂nu|∂ω = q. There only remains to take p = ∇u ∈ Hs(div, ω), so that
n · p|∂ω = q. �

As an application of the preceding remarks, for each s ∈ (−1/2,+1/2), every subdomain
Ωj supports continuous boundary trace operators γj

d
: H1+s

loc (Ωj) → H1/2+s(∂Ωj) and γj
n
:

H1+s
loc (∆,Ωj) → H−1/2+s(∂Ωj) (so-called Dirichlet and Neumann traces) uniquely defined by

γj
d
(ϕ) := ϕ|∂Ωj

and γj
n
(ϕ) := nj · ∇ϕ|∂Ωj

∀ϕ ∈ C∞(R3).

In the definition above, nj is the unit vector field normal to ∂Ωj pointing toward the exterior

of Ωj . Define γj
d,c, γ

j
n,c in the same manner as γj

d
, γj

n
with traces taken from the exterior of

Ωj . We shall also make use of mean values and jumps to these trace operators, defined as

{γj∗(u)} := 1
2

(

γj∗(u) + γj∗,c(u)
)

and [γj∗(u)] := γj∗(u)− γj∗,c(u) for ∗ = d,n.

3.3 Regularity of solutions of diffusion problems

In this paragraph, we would like to comment on the regularity of solutions to Problem (1)
and (3). For this purpose we have to describe in more detail its natural variational setting.
Define W1(R3) as the completion of C∞

comp(R
3) with respect to the following norm

‖v‖2W1(R3) :=

ˆ

R3

|∇v|2 +
|v(x)|2

1 + |x|2
dx.

We shall also refer to the topological dual to W1(R3) that we denote W−1(R3) := W1(R3)∗,
and write 〈 , 〉 for the duality pairing between W1(R3) and W−1(R3). Given some f ∈
W−1(R3) we will consider, for a short moment the variational problem:

Find u ∈ W1(R3) such that
ˆ

R3

µ∇u∇vdx = 〈f, v〉 ∀v ∈ W1(R3).
(5)

It is a well known consequence of Hardy’s inequality [23, Thm. 330] or [36], that this problem
admits a unique solution. A natural question concerns the local regularity of its solution u
in the case where f admits itself extra regularity, say f ∈ H−1+s

comp (R
3) with s > 0, in spite of

the coefficient µ admitting jumps (in particular µ is not Lipschitz). This may depend on the
geometry of the partition, as was discussed in detail in [31, 33, 40]. For a general geometric
configuration, an answer to this question was provided in [2, Thm.3.1]. Below is the statement
of this result for the present context.

Theorem 3.1.
There exists s⋆ ∈ [0, 1/2) that only depends on the partition R

3 = ∪n
j=0Ωj such that for any

s ∈ [s⋆, 1/2], if f ∈ H
−1/2−s
comp (R3), then the solution u ∈ H1

loc(R
3) to Problem (5) actually

belongs to H
3/2−s
loc (R3). Morever the dependence is continuous: for any bounded set ω ⊂ R

3,
there exists a constant cω > 0 independent of u, f such that ‖u‖H3/2−s(ω) ≤ cω‖f‖H−1/2−s(R3).
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Here of course, we have reformulated this result so that it fits our notations, and did not
state it in full generality. Let us point that, as underlined in [31, 40], the smallest possible s⋆
in the previous theorem may be strictly greater than 0 for certain geometrical configurations.
As a consequence of the continuity properties of the Neumann trace operator of Lemma 3.1,
we deduce from this theorem the following result.

Corollary 3.1.
Assume that s⋆ ∈ [0, 1/2) is as in Theorem 3.1, and let s ∈ [s⋆, 1/2]. Then for any data
gj ∈ H−s(Γj), j = 0 . . . n, the unique u ∈ W1(R3) satisfying

ˆ

R3

µ∇u∇vdx =
n
∑

j=0

µj

ˆ

Γj

gjvdσ ∀v ∈ W1(R3) (6)

actually satisfies u ∈ H
3/2−s
loc (R3) with continuous dependency: for any bounded Lipschitz

domain ω ⊂ R
3, there exists a constant Cω > 0 independent of the gj’s and such that

‖u‖H3/2−s(ω) ≤ Cω
∑n

j=0 ‖gj‖H−s(Γj).

With the choice (4), Problem (6) is actually a variational formulation for (3). Since, in
addition, u∞ ∈ C∞(R3) due to local elliptic regularity, Corollary 3.1 is directly applicable to
the problem under study here.

4 Multi-subdomain trace spaces

We aim for boundary integral equations set in natural trace spaces. The most fundamental
trace space we can introduce is the Dirichlet/Neumann multi-trace space [8, Sect. 2.1], given
by the following Cartesian product:

H
σ(Σ) := Hσ(Γ0)× · · · ×Hσ(Γn) for |σ| ≤ 1/2 ,

‖u‖
Hσ(Σ) :=

(

‖u0‖
2
Hσ(Γ0)

+ · · ·+ ‖un‖
2
Hσ(Γn)

)
1
2 ,

for u = (u0, . . . , un) ∈ H
σ(Σ). Let us write 〈 , 〉Γj for the duality pairing between Hσ(Γj) and

H−σ(Γj). The spaces H
+σ(Σ) and H

−σ(Σ) are dual to each other with respect to the bilinear
pairing

⟪p, v⟫ :=
n
∑

j=0

〈pj , uj〉Γj , p = (pj)
n
j=0 ∈ H

−σ(Σ), v = (vj)
n
j=0 ∈ H

+σ(Σ) . (7)

For p ∈ H
−σ(Σ) and v ∈ H

+σ(Σ), we also adopt the convention ⟪v, p⟫ := ⟪p, v⟫, which should
not cause any further confusion. The bilinear form introduced above satisfies

inf
p∈H−σ(Σ)

sup
v∈H+σ(Σ)

|⟪p, v⟫|

‖p‖H−σ(Σ)‖v‖H+σ(Σ)
= 1. (8)

Single trace spaces. Next, as in [8, Sect. 2.2], [9, Sect. 3.1], we introduce the so-called
single-trace space that consists of collections of traces that comply with transmission condi-
tions. We first set, for s ∈ (0, 1)

X
s
d
(Σ) := {v = (vj)

n
j=0 ∈ H

s(Σ) |∃v ∈ H
1/2+s
loc (R3) , vj = γj

d
(v), ∀j = 0 . . . n }. (9)
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It can be rather straightforwardly checked that X
s
d
(Σ) is a closed subspace of Hs(Σ). For

0 < s < 1 and any v ∈ L2
loc(R

3) such that v|Ωj ∈ H
s+1/2
loc (Ωj), we have v ∈ H

s+1/2
loc (R3) if

and only if the tuple of traces v = (γj
d
(v))nj=0 belongs to X

s
d
(Σ), see e.g. [1, §3.5]. We define

Neumann counterparts of these spaces by setting, for s ∈ (0, 1) ,

X
−s
n

(Σ) := {p = (pj)
n
j=0 ∈ H

−s(Σ) |∃p ∈ H
1/2−s
loc (div,R3) , pj = nj · p|Γj , ∀j = 0 . . . n }.

(10)
Once again, since it is characterised by continuous constraints, this space is a closed subset
of H−s(Σ). The following lemma was proved in [6, Prop.2.1] in the case s = 1/2. This proof
can be readily adapted to the case of arbitrary s ∈ (0, 1) using the Green’s formula of Lemma
3.1 above.

Lemma 4.1.
For any s ∈ (0, 1), and u ∈ H

+s(Σ), p ∈ H
−s(Σ) we have:

u ∈ X
+s
d

(Σ) ⇐⇒ ⟪u, q⟫ = 0 ∀q ∈ X
−s
n

(Σ),

p ∈ X
−s
n

(Σ) ⇐⇒ ⟪v, p⟫ = 0 ∀v ∈ X
+s
d

(Σ).

One can provide an alternative, more algebraic characterisation of these spaces. Routine
calculus in the sense of distributions using restrictions to interfaces shows that, for 0 < s < 1,
a tuple u = (uj)

n
j=0 ∈ H

s(Σ) satisfies

u ∈ X
+s
d

(Σ) ⇐⇒ uj = uk on Γj ∩ Γk.

Similarly, for 0 < s < 1, a tuple q = (qj)
n
j=0 ∈ H

−s(Σ) actually belongs to X
−s
n

(Σ) if we have
qj = −qk on Γj ∩ Γk.

5 Potential theory

In this paragraph, we shall remind the reader of well established results concerning the integral
representation of solutions to homogeneous Helmholtz equation in Lipschitz domains. A
detailed proof of the statements contained in the present paragraph can be found for example
in [43, Chap.3]. Let

G (x) :=
1

4π|x|

refer to the Green’s kernel associated to the Laplace operator. For each Ωj and for any
v ∈ Hs+1/2(Γj), q ∈ Hs−1/2(Γj), |s| ≤ 1/2 and any x ∈ R

d \ Γj , define

SLj(q)(x) :=

ˆ

Γj

q(y)G (x− y)dσ(y)

DLj(v)(x) := −

ˆ

Γj

v(y)nj(y) · (∇Gκ)(x− y)dσ(y) .
(11)

These operators are called single and double layer potentials. According to [16, Thm.1], The
operator SLj (resp. DLj) maps continuously Hs−1/2(Γj) (resp. H

s+1/2(Γj)) into H
1+s
loc (∆,Ωj)×

H1+s
loc (∆,Rd \ Ωj) for |s| < 1/2. As a consequence the following continuity properties hold.
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Proposition 5.1.
For any j, k = 0 . . . n, and any s ∈ (−1/2,+1/2), the following are linear continuous maps:

γk
d
·DLj : H+1/2+s(Γj) → H+1/2+s(Γk)

γk
n
·DLj : H+1/2+s(Γj) → H−1/2+s(Γk)

γk
d
· SLj : H−1/2+s(Γj) → H+1/2+s(Γk)

γk
n
· SLj : H−1/2+s(Γj) → H−1/2+s(Γk)

These potential operators can be used to write a representation formula for solutions to
homogeneous Laplace equations, see [43, Thm 3.1.6].

Proposition 5.2.
For any u ∈ H1+s

loc (∆,Ωj), |s| < 1/2, such that ∆u = 0 (and lim sup|x|→∞ |xu(x)| < +∞ in
the case where j = 0), we have the representation formula

SLj(γ
j
n
(u))(x) + DLj(γ

j
d
(u))(x) =

{

u(x) for x ∈ Ωj

0 for x ∈ R
d \ Ωj .

(12)

The potential operators SLj ,DLj also satisfy remarkable identities, known as jump formulas,
describing their behaviour as x crosses Γj = ∂Ωj ,

[γj
d
] ·DLj(v) = v [γj

n
] ·DLj(v) = 0 ∀v ∈ Hs+ 1

2 (Γj),

[γj
d
] · SLj(q) = 0 [γj

n
] · SLj(q) = q ∀q ∈ Hs− 1

2 (Γj),

(13)

with |s| ≤ 1/2. We will also need a remarkable property that arises when summing potential
operators associated to all subdomains. This next result was proved in [6] for the case s = 1/2.
Adapting this proof to the case s ∈ (0, 1) does not raise any remarkable difficulty.

Proposition 5.3.
For any s ∈ (0, 1), any (pj)

n
j=0 ∈ X

−s
n

(Σ) and any (vj)
n
j=0 ∈ X

+s
d

(Σ) we have

n
∑

j=0

SLj(pj)(x) = 0 and
n
∑

j=0

DLj(vj)(x) = 0

for all x ∈ R
3 \ Σ.

6 Integral equation of the second kind

In this section we show how two derive a boundary integral equation of the second kind for
Problem (1). The unknowns will be related to the Neumann traces of the solution on the
skeleton Σ. As a consequence, we start our analysis from the variational formulation (6)
where the right hand side satisfies

gj ∈ H−s(Γj) ∀s ∈ [s⋆, 1/2]

where s⋆ ∈ [0, 1/2) is as in Theorem 3.1. For the solution u ∈ W1(R3) ∩ H
3/2−s
loc (R3) of (3),

apply the representation formulas (12) in each subdomain Ωj , and sum for j = 0 . . . n. This
yields

u(x) =
n
∑

j=0

SLj(γ
j
n
(u))(x) +

n
∑

j=0

DLj(γ
j
d
(u))(x) , x ∈ R

3 \ Σ. (14)
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Observe that, if u is solution to (1), it satisfies the transmission conditions (3b) implying that
(γj

d
(u))nj=0 ∈ X

1−s
d

(Σ). Hence, as a direct consequence of Proposition 5.3 the second term in

(14) has to vanish. Since (γj
n
(u∞))nj=0 ∈ X

−s
n

(Σ) as u∞ ∈ H2
loc(R

3), applying Proposition 5.3
and taking the Neumann trace of (14) on each subdomain Ωk, k = 0, . . . , n, we obtain

γk
n
(u+ u∞)−

n
∑

j=0

γk
n
· SLj(γ

j
n
(u+ u∞)) = gk with gk := γk

n
(u∞). (15)

Put this system in a matrix form, and consider the normal flux trace p = (µjγ
j
n
(u+ u∞))nj=0

as unkown. Taking account of the second transmission condition in (3b), this unkown tuple
of traces must be sought in X

−s
n

(Σ). Setting gn := (gk)
n
k=0 ∈ H

−s(Σ), s ∈ [s⋆, 1/2], these
equations take the form

{

Find p ∈ X
−s
n

(Σ) such that

⟪(Id−Mn) · I1/µ(p), v⟫ = ⟪gn, v⟫ ∀v ∈ H
+s(Σ)

(16)

where s ∈ [s⋆, 1/2], and

⟪Mn(p), v⟫ :=

n
∑

j=0

n
∑

k=0

〈 γk
n
· SLj(pj), vk 〉Γk

,

⟪I1/µ(p), v⟫ :=
n
∑

j=0

µ−1
j 〈 pj , vj 〉Γj .

(17)

As a direct application of Proposition 5.1, we see that the operators (17) induce linear oper-
ators continuously mapping H

−s(Σ) into H
−s(Σ) for any s ∈ (0, 1).

6.1 Well-posedness

In this section, we determine the kernel and the range of the operator (Id−Mn) · I1/µ. First
of all, we have the following non-trivial result that describes the ”jump” of Mn(p) across
interfaces of Σ.

Proposition 6.1.
For any s ∈ (0, 1), we have ⟪(Id−Mn)p, v⟫ = 0 ∀p ∈ H

−s(Σ), ∀v ∈ X
+s
d

(Σ).

Proof:
Consider any s ∈ (0, 1) that will be fixed until the end of the proof, and pick an arbitrary

p = (p0, . . . , pn) ∈ H
−s(Σ). For each j = 0 . . . n, define φj ∈ L2

loc(R
3 \ Ωj) by φj(x) :=

∇SLj(pj)(x) for x ∈ R
3 \ Ωj . Actually div(φj) = 0 in R

3 \ Ωj so φj ∈ H
1/2−s
loc (div,R3 \ Ωj)

according to Section 5, see also [16, Thm.1]. Next let ψ refer to an element of H1(Ωj) satisfying

∆ψ = 0 in Ωj , γj
n
(ψ) = nj · φ|Γj = γj

n,c · SLj(pj) on Γj .

According to [44, Thm.4], we have ψ ∈ H3/2−s(∆,Ωj), since γ
j
n,c·SLj(pj) = −pj+γ

j
n
·SLj(pj) ∈

H−s(Γj) according to Proposition 5.1 and (13) above. Now let us extend φj to the interior of

9



Ωj by setting φj |Ωj := ∇ψ. This garantees that φj ∈ H
1/2−s
loc (div,R3) due to the continuity

of nj · φj across Γj . Since nj · φj |Γj = γj
n,c · SLj(pj), by Definition (9) we have

qj := (qkj )
n
k=0 ∈ X

−s
n

(Σ) where

{

qkj = γk
n
· SLj(pj) for j 6= k,

qjj = γj
n,c · SLj(pj).

In particular we have γk
n
·SLj(pj) = qkj +δ

k
j [γ

j
n
] ·SLj(pj) = qkj +δ

k
j pj for all j, k. Here δ

k
j refers

to Kronecker’s symbol: δkj = 0 if j 6= k, δjj = 1. Now take an arbitrary v = (vj)
n
j=0 ∈ X

s
d
(Σ).

Replace γk
n
· SLj(pj) by qkj in the expression of Mn given by (17). Since [γj

n
] · SLj(pj) = pj ,

applying Definition (10) leads to the conclusion of the proof

⟪Mn(p), v⟫ =
∑n

j=0

∑n
k=0 〈 γ

k
n
· SLj(pj), vk 〉Γk

=
∑n

j=0 ⟪qj , v⟫+ 〈 [γj
n
] · SLj(pj), vj 〉Γj

=
∑n

j=0〈pj , vj〉Γj = ⟪p, v⟫.

�

Combining the previous result with Proposition 5.3, we see that Mn(Id − Mn) = 0, i.e.
this operator is a projector. In addition we clearly have X

−s
n

(Σ) ⊂ ker(Mn) according to
Proposition 5.3. Reciprocally, if p ∈ H

−s(Σ) satisfies Mn(p) = 0, then we have p = (Id −
Mn)p ∈ X

−s
n

(Σ) by Lemma 4.1. To summarise, we have obtained the following result.

Corollary 6.1.
We have (Mn)

2 = Mn. In addition, for any p ∈ H
−s(Σ), s ∈ (0, 1), we have Mn(p) = 0, if

and only if p ∈ X
−s
n

(Σ).

We assumed that the right hand side gn in (16) belongs to X
−s
n

(Σ) for all s ∈ [s⋆, 1/2]. A
consequence of Proposition 6.1 is thus that Equation (16) yields a trivial identity whenever v
is chosen in X

+s
d

(Σ). This is a motivation for introducing a closed subspace Y
s(Σ) ⊂ H

s(Σ)
satisfying the complement condition

H
s(Σ) = X

s
d
(Σ)⊕ Y

s(Σ). (18)

Such a complement subspace exists since H
s(Σ) is an Hilbert space. With this intermediate

notation, the boundary integral formulation (16) can then be recast as a variational problem
with different trial and test space: for s ∈ [s⋆, 1/2],

{

find p ∈ X
−s
n

(Σ) such that

⟪(Id−Mn) · I1/µ(p), v⟫ = ⟪gn, v⟫ ∀v ∈ Y
+s(Σ).

(19)

The next result shows that this formulation is actually well-posed.

Proposition 6.2.
Let s⋆ ∈ [0, 1/2) be as in Theorem 3.1. Then the operator (Id − Mn) · I1/µ isomorphically

maps X
−s
n

(Σ) onto X
−s
n

(Σ) for each s ∈ [s⋆, 1/2].

10



Proof:
Pick an arbitrary s ∈ [s⋆, 1/2] that will remain fixed until the end of the proof. Proposition

6.1 combined with Lemma 4.1 shows that the range of (Id − Mn) · I1/µ is systematically

contained in X
−s
n

(Σ). Let us first show that X−s
n

(Σ) ∩ ker((Id −Mn) · I1/µ) = {0}. Take an

arbitrary p = (pj)
n
j=0 ∈ X

−s
n

(Σ) such that (Id−Mn) · I1/µ(p) = 0. Set

ψ(x) :=

n
∑

j=0

µ−1
j SLj(pj)(x) ∀x ∈ R

3 \ Σ.

According to [16, Thm.1] we have SLj(pj) ∈ H
3/2−s
loc (R3) for all j, which implies that γj

d
(ψ)−

γk
d
(ψ) = 0 on Γj ∩ Γk for all j, k. According to the previous observations, we have

−∆ψ = 0 in Ωj , γj
d
(ψ)− γk

d
(ψ) = 0 on Γj ∩ Γk ∀j, k = 0, . . . n . (20)

In addition (Id−Mn) · I1/µ(p) = 0 which can be re-written µ−1
j pj = γj

n
(ψ) or pj = µjγ

j
n
(ψj).

From this we conclude that (µjγ
j
n
(ψj))

n
j=0 = p ∈ X

−s
n

(Σ) and thus, according to the polarity

property of Lemma 4.1, 0 =
∑n

j=0

´

Γj
µjγ

j
n
(ψ)γj

d
(ψ)dσ =

∑

j=0

´

Ωj
µj |∇ψ|

2dx which implies

that ∇ψ = 0 over R3, and thus pj = µjγ
j
n
(ψ) = 0 for all j = 0 . . . n.

To prove the surjectivity, take an arbitrary r = (rj)
n
j=0 ∈ X

−s
n

(Σ). Define φ ∈ H1
loc(R

3) as the
unique solution to

φ ∈ W1(R3),

ˆ

R3

µ∇φ · ∇vdx =

n
∑

j=0

µj

ˆ

Γj

rjγ
j
d
(v)dσ ∀v ∈ W1(R3). (21)

According to Corollary 3.1, we actually have φ ∈ H
3/2−s
loc (R3). Define r′ = (r′j)

n
j=0 by r′j :=

µj(rj − γj
n
(φ)). Applying a Green’s formula in (21) and using density of H1

comp(R
3) into

H
1/2+s
comp (R3) for s < 1/2, we obtain

∑n
j=0

´

Γj
r′jγ

j
d
(v)dσ = 0 for all v ∈ H

1/2+s
comp (R3). According

to (9) and Lemma 4.1, this implies that r′ ∈ X
−s
n

(Σ). Next Proposition 5.2 shows that

γk
n
·DLj(γ

j
d
(φ)) + γk

n
· SLj(γ

j
n
(φ)) =

{

0 for j 6= k

γj
n
(φ) for j = k

(22)

Sum equations (22) for j = 0 . . . n. The terms associated to the single layer potential DLj can-

cel out, as a consequence of Proposition 5.3, since (γj
d
(φ))nj=0 ∈ X

1−s
d

(Σ) since φ ∈ H
3/2−s
loc (R3)

by construction. Noting that (γj
n
(φ))nj=0 = r− I1/µ(r

′), we are left with

r− I1/µ(r
′) = Mn · (r− I1/µ(r

′)) ⇒ (Id−Mn) · I1/µ(r
′) = r−Mn(r).

There only remains to observe that, according to Corollary 6.1, we have Mn(r) = 0, since
r ∈ X

−s
n

(Σ). Moreover, as r′ ∈ X
−s
n

(Σ) by construction, this ends the proof. �

7 Reduction to interfaces

In this section, we wish to rewrite Formulation (19) in a more explicit manner. We will need
the following additional, yet mild, assumption concerning the geometrical setting.
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Assumption 7.1. For any pair j, k ∈ {0, . . . n}, the interface Γj ∩ Γk is either empty, or it
is a point, or a Lipschitz curve of strictly positive length, or it is a Lipschitz two dimensional
manifold with Lipschitz boundary and strictly positive surface measure.

Note that, in the case of j = k we have Γj ∩Γk is Lipschitz manifold (with no boundary).
In this assumption the length and surface measure are the intrinsic ones induced by the
ambient volume Lebesgue measure. In the case where Γj ∩ Γk is a non trivial Lipschitz two
dimensional manifold, we shall simply write “area(Γj ∩Γk) > 0”. In practice, the assumption
above is systematically satisfied, e.g., whenever each Ωj is a curvilinear polyhedron.

According to Theorem 3.33 and Theorem 3.40 of [30], with this assumption and in the case
that s ∈ (−1/2,+1/2), on the boundary of any subdomain we can decompose trace spaces as
follows

If |s| < 1/2, v ∈ Hs(Γj) ⇐⇒

{

v|Γj∩Γk
∈ Hs(Γj ∩ Γk)

∀k = 0 . . . n such that area(Γj ∩ Γk) > 0.
(23)

In other words, to guarantee a sufficient regularity of a trace function on Γj , it suffices to
examine its regularity on each interface. It is important to note that (23) does not hold for
|s| ≥ ±1/2 and in particular not for s = ±1/2. Observation (23) leads us to introduce a
decomposition of the skeleton into interfaces.

Σ = ∪J∈IΓJ where ΓJ := ΓJ+ ∩ ΓJ− with

I := { J = (J−, J+) ∈ {0, . . . n}2 | J− < J+ and

ΓJ+ ∩ ΓJ− is a non-trivial Lipschitz manifold }.

(24)

For any interface let us denote 〈·, ·〉ΓJ
the duality pairing between Hs(ΓJ) and H−s(ΓJ) for

|s| < 1/2. As a consequence of (23), each 〈·, ·〉Γj is naturally decomposed into a sum of such
interface duality pairings. Now pick arbitrary u = (uj)

n
j=0 ∈ H

+s(Σ), v = (vj)
n
j=0 ∈ H

−s(Σ),
and let us rewrite ⟪u, v⟫ according to decomposition (24). For each s ∈ (−1/2, 1/2), using
the parallelogram identity, the global duality pairing decomposes as follows

⟪u, v⟫ =
n
∑

j=0

〈uj , vj〉Γj =
∑

J∈I

〈uJ+ , vJ+〉ΓJ
+ 〈uJ− , vJ−〉ΓJ

=
∑

J∈I

2 〈{uJ}, {vJ}〉ΓJ
+ 〈[uJ], [vJ]〉ΓJ

/2 ∀u ∈ H
+s(Σ), ∀v ∈ H

−s(Σ)

setting {uJ} := (uJ+ + uJ−)/2 and [uJ] := uJ+ − uJ− .

(25)

For an arbitrary u ∈ H
−s(Σ), 0 < s < 1/2, we have {uJ} = 0 ∀J ∈ I if and only if u =

(uj)
n
j=0 ∈ X

−s
n

(Σ). Similarly, for any u ∈ H
+s(Σ), 0 < s < 1/2 we have [uJ] = 0 ∀J ∈ I

if and only if u = (uj)
n
j=0 ∈ X

+s
d

(Σ). In addition, note that X
+s
d

(Σ) and X
−s
n

(Σ) have only
been defined for s ∈ (0, 1), see (9)-(10), however the previous observations suggest a natural
extension of these definitions for s ∈ (−1/2, 0]. Routine calculus allows to verify the following
lemma.

Lemma 7.1.
For any s ∈ (−1/2,+1/2), the jump operator u = (uj)

n
j=0 7→ ([uJ])J∈I continuously maps

H
s(Σ) onto ΠJ∈IH

s(ΓJ). Its kernel will be denoted X
s
d
(Σ), and it is a closed subspace of

H
s(Σ).

12



Similarly, for s ∈ (−1/2,+1/2), the operator u = (uj)
n
j=0 7→ ({uJ})J∈I continuously maps

H
s(Σ) onto ΠJ∈IH

s(ΓJ). Its kernel will be denoted X
s
n
(Σ). For any u ∈ H

s(Σ) we have thus

u ∈ X
s
d
(Σ) ⇐⇒ [uJ] = 0 ∀J ∈ I,

u ∈ X
s
n
(Σ) ⇐⇒ {uJ} = 0 ∀J ∈ I.

Let us emphasise that the definition of X+s
d

(Σ) and X
−s
n

(Σ) provided by Lemma 7.1 is
consistant with (9)-(10) for the case s ∈ (0, 1/2), and it extends these definitions to the case
s ∈ (−1/2, 0]. Straightforward algebraic calculus based on (25) yield the following result.

Corollary 7.1.
For any s ∈ (−1/2,+1/2) we have H

s(Σ) = X
s
d
(Σ)⊕ X

s
n
(Σ).

With the definitions provided by Lemma 7.1, for |s| < 1/2, the space X
−s
d

(Σ) can be
considered as dual to X

+s
d

(Σ), and X
−s
n

(Σ) dual to X
+s
n

(Σ). Based on the previous corollary,
it is natural to consider Formulation (19) with the choice Y

s(Σ) = X
s
n
(Σ). Assuming that

gn ∈ X
−s
n

(Σ) for some s ∈ [s⋆, 1/2) where s⋆ is as in Theorem 3.1 (here in particular s < 1/2
is assumed), it then simply writes as follows

{

Find p ∈ X
−s
n

(Σ) such that

⟪(Id−Mn) · I1/µ(p), v⟫ = ⟪gn, v⟫ ∀v ∈ X
+s
n

(Σ).
(26)

In this formulation, what comes into play is the bilinear form u, v 7→ ⟪I1/µ(u), v⟫ with

u ∈ X
+s
n

(Σ), v ∈ X
−s
n

(Σ) with s ∈ [s⋆, 1/2), and not just ⟪u, v⟫. Since uJ± = ±[uJ]/2 whenever
u = (uj)

n
j=0 ∈ X

s
n
(Σ), this bilinear form decomposes as

⟪I1/µ(u), v⟫ =
n
∑

j=0

1

µj
〈uj , vj〉Γj =

∑

J∈I

1

µJ+
〈uJ+ , vJ+〉ΓJ

+
1

µJ−
〈uJ− , vJ−〉ΓJ

=
∑

J∈I

1

2
{µ−1

J }〈[uJ], [vJ]〉ΓJ
∀u ∈ X

−s
n

(Σ), ∀v ∈ X
+s
n

(Σ)

where {µ−1
J } := (µ−1

J+
+ µ−1

J−
)/2.

(27)

7.1 Decomposition of potentials

We can perform a similar decomposition on the multi-potential operator from (15). Indeed
for |s| < 1/2, and for any u = (uj)

n
j=0 ∈ X

s
n
(Σ), we have

n
∑

j=0

1

µj
SLj(uj)(x)=

∑

J∈I

1

µJ+
SLJ(uJ+)(x) +

1

µJ−
SLJ(uJ−)(x)=

∑

J∈I

1

2
[µ−1

J ] SLJ([uJ])(x) , (28)

where [µ−1
J ] :=

1

µJ+
−

1

µJ−
and SLJ(p)(x) :=

ˆ

ΓJ

p(y)dσ(y)

4π|x− y|
.

Considering Hs(ΓJ) as a subspace of Hs(ΓJ+) or Hs(ΓJ−), the defintion of SLJ makes sense
according to (23). Moreover it continuously maps Hs(ΓJ) into Hs+3/2(∆,ΩJ±) according
to [16, Thm.1]. Next fix an arbitrary Q ∈ I and observe that, for any J ∈ I, we have

(γ
J+
n

+ γ
J−
n

) · SLQ(p) = 0 on ΓJ if J 6= Q, and (γ
Q+
n

+ γ
Q−
n

) · SLQ(p) = p on ΓQ, for all

13



p ∈ Hs(ΓQ). As a consequence, taking account of (28) for the expression of Mn, for any
|s| < 1/2, any u = (uj)

n
j=0 ∈ X

−s
n

(Σ) and any v = (vj)
n
j=0 ∈ X

+s
n

(Σ) we have

⟪Mn · I1/µ(u), v⟫=
∑

Q∈I

1

2
[µ−1

Q ]

n
∑

j=0

〈γj
n
· SLQ([uQ]), vj〉Γj

=
∑

Q∈I

1

2
[µ−1

Q ]
∑

J∈I

〈γ
J+
n

· SLQ([uQ]), vJ+〉ΓJ
+ 〈γ

J−
n

· SLQ([uQ]), vJ−〉ΓJ

=
∑

Q∈I

∑

J∈I

1

2
[µ−1

Q ]〈{γJ
n
} · SLQ([uQ]), [vJ]〉ΓJ

(29)

where we have used the notations {γJ
n
} · ψ := (γ

J+
n

(ψ)− γ
J−
n

(ψ))/2 and [µ−1
Q ] := µ−1

Q+
− µ−1

Q−
.

The potential operators {γJ
n
} · SLQ admit a very explicit expression as a Cauchy principal

value integral

{γJ
n
} · SLQ(p)(x) := lim

ǫ→0

ˆ

ΓQ\Bǫ(x)

nJ+(x) · (y − x)

4π|y − x|3
pQ(y)dσ(y) ∀x ∈ ΓJ

where nJ+ refers to the normal vector to ΩJ+ directed toward the exterior of ΩJ+ . Combining
(27) with (28) and (29), we finally obtain: for |s| < 1/2 and for all u ∈ X

−s
n

(Σ), v ∈ X
+s
n

(Σ),
we have

⟪(Id−Mn) · I1/µ(u), v⟫=
∑

J∈I

1

2
{µ−1

J }〈[uJ], [vJ]〉ΓJ
−
∑

Q∈I

∑

J∈I

1

2
[µ−1

Q ]〈{γJ
n
} · SLQ([uQ]), [vJ]〉ΓJ

=
∑

J∈I

{µ−1
J }〈pJ, qJ〉ΓJ

−
∑

Q∈I

∑

J∈I

[µ−1
Q ] 〈{γJ

n
} · SLQ(pQ), qJ〉ΓJ

with pJ := [uJ] and qJ := [vJ]/2.

(30)

7.2 Final reformulation

Analogous calculus can be achieved for reducing the right hand side in (26), taking account
that gn ∈ X

−s
n

(Σ) for some s ∈ [s⋆, 1/2). Formulation (26) is then ultimately reduced to the
following

Find p = (pJ) ∈ ΠJ∈IH
−s(ΓJ) such that

∑

J∈I

{µ−1
J }〈pJ, qJ〉ΓJ

−
∑

Q∈I

∑

J∈I

[µ−1
Q ] 〈{γJ

n
} · SLQ(pQ), qJ〉ΓJ

=
∑

J∈I

〈[gJ], qJ〉ΓJ

∀q = (qJ) ∈ ΠJ∈IH
+s(ΓJ).

(31)

In accordance with (28), if p = (pJ)J∈I is solution to Formulation (31), then the function

u(x) =
1

2

∑

J∈I

[µ−1
J ]SLJ(pJ)(x) , x ∈ R

3 \ Σ (32)

is the solution of Problem (1). Of course, since we only transformed (26) by means of elemen-
tary algebraic manipulations, (31) admits a unique solution, and the operator associated to
the bilinear form in the left hand side isomorphically maps ΠJ∈IH

−s(ΓJ) into ΠJ∈IH
−s(ΓJ).
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Remark 7.1. In Formulation (31) the solution for p provides the normal normal flux of the
solution u of the transmission problem (3) on interfaces. Thus, (31) qualifies as a direct
boundary integral equation. Dirichlet traces of u on interfaces have to be recovered through
(32).

8 Formulation in square integrable function spaces

The space of square integrable functions is a more natural and convenient functional setting
when considering boundary integral equations of the second kind. It is indeed a well estab-
lished result, see [14, 46, 15], that the Dirichlet trace of the double layer potential continuously
maps square integrable traces to square integrable traces. The next proposition is a direct
application of [16, Thm.1].

Proposition 8.1.
For any j = 0 . . . n, the operators γj

n
· SLj and γj

d
·DLj continuously map L2(Γj) into L2(Γj).

We wish to show that (19) can be reformulated choosing square integrable trial and test
functions. In the present context, we need to consider maps of the form γk

n
· SLj for k = j,

but also for k 6= j. Hence a natural question is wether such a continuity result as Proposition
8.1 holds also for k 6= j. This clearly holds whenever Γj ∩ Γk = ∅ due to the regularity of the
Green kernel G (x) = 1/(4π|x|) for x 6= 0. Conversely, it is not obvious, if Γj ∩ Γk 6= ∅, even
if Γj and Γk have only an edge in common.

To study this problem we resort on a result of Dahlberg [19, Thm.1] concerning harmonic
measures. We first recall the definition of such measures. If O ⊂ R

3 is any bounded Lipschitz
open set, for any f ∈ C 0(∂O) let P(O, f) ∈ L2(O) refer to the unique function satisfying

∆P(O, f) = 0 in O and P(O, f) = f on ∂O.

For any x ∈ O the mapping f 7→ P(O, f)(x) is a continuous functional on C 0(∂O) which,
due to Riesz representation theorem [41, Thm.6.19], is associated to the so-called harmonic
measure dω(O,x) on ∂O via the formula

P(O, f)(x) =

ˆ

∂O
fdω(O,x) ∀x ∈ O.

Precise description of harmonic measures associated to Lipschitz domains in terms of Green
functions were provided in [18, Thm.3]. The result below, established in [19, Thm.1], bounds
harmonic measures inside its domain of definition. We do not formulate this theorem in full
generality, but restate it so as to fit our present problem.

Theorem 8.1.
Let Ω ⊂ R

3 be a bounded Lipschitz domain. Let m refer to any positive measure on Ω, such
that lim supr→0 r

−2m(Br(x) ∩ Ω) < +∞ for all x ∈ ∂Ω. Then there exists a constant C > 0
such that

ˆ

Ω
|P(Ω, f)|2dm ≤ C‖f‖2L2(∂Ω) ∀f ∈ L2(∂Ω).
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In this theorem Br(x) is the ball of radius r centred at x, and L2(∂Ω) refers to the clas-
sical space of (almost everywhere defined) square integrable functions with respect to the
surface Lebesgue measure on ∂Ω. In Theorem 8.1 the measure m does not necessarily re-
fer to the classical Lebesgue measure on R

3 that actually satisfies the stronger estimate
lim supr→0 r

−3m(Br(x) ∩ Ω) < +∞. Here, we are more interested in the case where m is
related to the surface measure of the subdomains Ωj .

Proposition 8.2.
The operator γj

d
·DLk continuously maps L2(Γk) into L2(Γj) ∀j, k = 0 . . . n.

Proof:
The case j = k is already covered by Proposition 8.1. On the other hand, the case where

Γj ∩ Γk = ∅ is trivial. So we only need to concentrate on the case where Γj ∩ Γk 6= ∅ and
Ωj 6= Ωk.

Let B refer to an open ball such that ∪n
j=1Ωj ⊂ B. Denote σj the surface Lebesgue measure

on Γj and let mj refer to the unique Borel measure on R
3 satisfying mj(U) := σj(Γj ∩U) for

all open sets U ⊂ R
3. Fix j, k arbitrarily, and set Ω′

j = B\Ωj and Γ′
j = Γj ∪∂B = ∂Ω′

j . Since

obviously lim supr→0 r
−2mk(Br(x) ∩ Ω′

j) ≤ lim supr→0 r
−2mk(Br(x)) < +∞, we can apply

Theorem 8.1 with the choice Ω = Ω′
j and m = mk, which yields

ˆ

Γk\Γj

|P(Ω′
j , f)|

2dσk ≤ Cj,k‖f‖
2
L2(Γ′

j)
∀f ∈ L2(Γ′

j).

This estimate shows in particular that, if u ∈ H1(Ω′
j) satisfies ∆u = 0 in Ω′

j , then f = u|Γ′
j
∈

H1/2(Γ′
j) ⊂ L2(Γ′

j) and we have P(u|Γ′
j
,Ω′

j) = u in Ω′
j . This leads to

‖u‖2L2(Γk)
≤ (1 + Cj,k)‖u‖

2
L2(Γ′

j)

∀u ∈ H1(Γ′
j) satisfying ∆u = 0 in Ω′

j .

Now consider the particular choice u = DLj(p) for some p ∈ H1/2(Γj). Clearly ‖DLj(p)‖L2(∂B) ≤

Cj‖p‖L2(Γj)∀p ∈ H1/2(Γj) for some fixed constant Cj > 0 that only depends on j, due to the
regularity of the Green kernel, since Γj ∩ ∂B = ∅. This finally leads to the existence of a
constant C > 0 such that ‖γk

d
·DLj(p)‖L2(Γk) ≤ C‖p‖L2(Γj) ∀p ∈ L2(Γj). �

It is important to note that the previous proposition holds even if Γj ∩ Γk 6= ∅ and Γj 6= Γk.
A comparable continuity result also holds for the single layer potential.

Corollary 8.1.
The operator γj

n
· SLk continuously maps L2(Γk) into L2(Γj) ∀j, k = 0 . . . n

Proof:
We will rely on the formal adjointness of γj

n
· SLk with −γk

d
· DLj . Let O be an open set

such that Γj ∩ Γk ⊂ O. Consider two functions u ∈ L2(Γj) and v ∈ L2(Γk), such that u = 0
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on Γj ∩ O. Due to the regularity of the Green kernel we have

〈γj
n
· SLk(v), u〉Γj =

ˆ

Γj\Γk

(

ˆ

Γk

nj(x) · (y − x)

4π|y − x|3
v(y)dσk(y)

)

u(x)dσj(x)

= −

ˆ

Γk

(

ˆ

Γj\Γk

nj(x) · (x− y)

4π|y − x|3
u(x)dσj(x)

)

v(y)dσk(y)

= −〈v, γk
d
·DLj(u)〉Γk

From this, together with Proposition 8.2, we obtain the existence of a constant C > 0 not
depending on O such that |〈γj

n
· SLk(v), u〉Γj | ≤ C‖u‖L2(Γj)‖v‖L2(Γk). Since the constant C

does not depend on O, using dominated convergence theorem, we conclude that

|〈γj
n
· SLk(v), u 1Γj\Γk

〉Γj | ≤ C‖u‖L2(Γj)‖v‖L2(Γk) ∀u ∈ L2(Γj), ∀v ∈ L2(Γk).

Next on Γj ∩ Γk, we have γj
n
= −γk

n,c. Since γk
n,c · SLk = −Id + γk

n
· SLk continuously maps

L2(Γk) into L2(Γk) according to Proposition 8.1, we conclude that 1Γj∩Γk
γj
n
·SLk continuously

maps L2(Γk) into L2(Γj). To finish the proof, observe that any function u ∈ L2(Γj) can be
decomposed as u = u 1Γj\Γk

+ u 1Γj∩Γk
. �

The continuity results established above suggest that we consider Formulation (31) in the
framework of square integrable traces. Define

L
2(Σ) := L2(Γ0)× · · · × L2(Γn)

with ‖v‖2
L2(Σ) = ‖v0‖

2
L2(Γ0)

+ · · ·+ ‖vn‖
2
L2(Γn)

and L2(Σ) := {v = (vj)
n
j=0 ∈ L

2(Σ) | vj = vk on Γj ∩ Γk ∀j, k }

The set L
2(Σ) is the space H

s(Σ) for s = 0. As such, it is equipped with the pairing ⟪ , ⟫,
and (u, v)L2(Σ) = ⟪u, v⟫ is the scalar product associated with the norm ‖ ‖L2(Σ). Moreover
L2(Σ) ⊂ L

2(Σ) is a closed subspace. The single-trace space admits a natural counterpart in
this new setting. Observe indeed that

L2(Σ)⊥ = L
2(Σ) ∩ X

−s
d

(Σ) and

L2(Σ)⊥ = L
2(Σ) ∩ X

−s
n

(Σ) ∀s ∈ [0, 1/2)

where L2(Σ)⊥ refers to the space orthogonal to L2(Σ) with respect to the scalar product
( , )L2(Σ). As regards the multi-potential operator involved in the boundary integral formula-
tion (16), we have a continuity result as a direct application of Corollary 8.1. This operator
also satisfies Corollary 6.1 and Proposition 6.1 in this new setting.

Proposition 8.3.
The operator Mn continuously maps L

2(Σ) into L
2(Σ). We have ⟪(Id −Mn)p, v⟫ = 0 ∀p ∈

L
2(Σ), ∀v ∈ L2(Σ). Moreover for any p ∈ L

2(Σ) we have Mn(p) = 0, if and only if p ∈
L2(Σ)⊥.

Since X
s
d
(Σ) is dense in L2(Σ), the first part of the proof is obtained directly by combining

Proposition 6.1 with this density result. The second part results from algebraic manipulations
like for Corollary 6.1.
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Proposition 8.4.
Assume that the solution u ∈ H1

loc(R
3) to Problem (1) satisfies γj

n
(u) ∈ L2(Γj) for all j =

0 . . . n. Then the tuple p = (pj)
n
j=0 ∈ L

2(Σ) defined by pj = µjγ
j
n
(u) solves

p ∈ L2(Σ)⊥ and ⟪(Id−Mn)I1/µ(p), v⟫ = ⟪gn, v⟫ ∀v ∈ L2(Σ)⊥ . (33)

Proof:
Since u∞ ∈ H2

loc(R
3), we have gj := γj

n
(u∞) ∈ L2(Γj). Hence gn = (gj)

n
j=0 ∈ L2(Σ)⊥ =

L
2(Σ) ∩ X

−1/2(Σ). Also we know that p ∈ X
−1/2
n

(Σ) since L
2(Σ)⊥ ⊂ X

−1/2
n

(Σ). Thus,
according to (16), it satisfies ⟪(Id − Mn)I1/µ(p), v⟫ = ⟪gn, v⟫ ∀v ∈ H

1/2(Σ). Then since

gn ∈ L
2(Σ), and (Id −Mn)I1/µ(p) ∈ L

2(Σ) according to Proposition 8.3, and since H
1/2(Σ)

is dense in L
2(Σ) for the norm ‖ ‖L2(Σ), we conclude that

⟪(Id−Mn)I1/µ(p), v⟫ = ⟪gn, v⟫ ∀v ∈ L
2(Σ). (34)

Next (Id − Mn)I1/µ(p) ∈ L2(Σ)⊥ according to Proposition 8.3, and gn ∈ L2(Σ)⊥. As a
consequence (34) yields the trivial equation ”0 = 0” when choosing v ∈ L2(Σ). So it is
sufficient to consider v ∈ L2(Σ)⊥. �

9 Galerkin discretisation

We confine ourselves to subdomains that are curvilinear Lipschitz polyhedra, which covers
most shapes occurring in engineering designs. Galerkin boundary element discretisation of
(31) is based on a mesh partition of the skeleton Σ that resolves the interfaces in the following
sense: each interface ΓJ, J ∈ I, is partitioned into curvilinear polygons τ , called elements,
such that ΓJ = ∪τ∈T(ΓJ) τ , where T(ΓJ) is the “interface mesh”, that is, the set of all elements
paving ΓJ. Then the skeleton mesh T(Σ) is the union of all these interface meshes. The
interface meshes can be fairly arbitrary. In particular, “hanging nodes” are not excluded.

As finite-dimensional subspaces Hh
n
(ΓJ) of H

−s(ΓJ) and H+s(ΓJ) alike we choose spaces of
discontinuous piecewise polynomials on the mesh T(ΓJ). The degree of these polynomials can
vary between different elements. Taking the product of all these interface boundary element
spaces yields the final trial and test space Hh

n
(Σ).

Proposition 6.2 asserts existence and uniqueness of solutions of the second kind boundary
integral equation (31), but for want of compactness of the operator Mn : X−s

n
(Σ) → X

−s
n

(Σ)
this does not imply well-posedness of the discrete variational problem, regardless of the reso-
lution of the boundary element spaces: the numerical analysis of the discretised BIE remains
an open problem. Yet, strong empirical evidence given in Section 10 bolsters our conjecture
that Galerkin boundary element discretisation is uniformly stable in L

2(Σ):

Conjecture 9.1. Let B(·, ·) stand for bilinear form of the variational BIE (31). Then we
assume that

sup
qh∈H

h
n
(Σ)

B(ph, qh)

‖qh‖L2(Σ)

≥ c ‖ph‖L2(Σ) ∀ph ∈ Hh
n
(Σ) ,

with c > 0 independent of discretisation parameters like meshwidth and (local) polynomial
degree.
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Firstly, if we take this assumption for granted, then, thanks to the L2(Σ)-continuity result
of Proposition 8.3, we can conclude quasi-optimality of Galerkin solutions.

Secondly, Conjecture 9.1 permits us to predict the conditioning of Galerkin matrices for
(31). Let us assume that we employ an L

2(Σ)-orthonormal basis of Hh
n
(Σ). For these boundary

element spaces it takes merely rescaling and local orthogonalisation to build such a basis.
Then, again appealing to the L

2(Σ)-continuity result of Proposition 8.3 and Conjecture 9.1,
we can conclude the following:

Proposition 9.1.
If Conjecture 9.1 holds true, the Euclidean condition numbers of Galerkin matrices arising
from the boundary element discretisation of (31) are bounded from above and below indepen-
dently of the trial/test space Hh

n
(Σ), provided that L2(Σ)-orthonormal bases are used.

10 Numerical experiments

We report two numerical experiments that demonstrate the performance of a Galerkin bound-
ary element discretisation of Formulation (31) for the numerical solution to Problem (1). We
concentrate on geometrical configurations featuring junction edges, i.e., edges where at least
three subdomains abut. We compare the single-trace second kind Formulation (31) with the
so-called direct single-trace first kind approach, described in detail in [9, Section 3], and its
Galerkin boundary element discretisation.

For both schemes we rely on conforming, uniformly shape-regular and quasi-uniform skele-
ton meshes T(Σ) with flat triangular elements. The Galerkin discretisation of (31) is based
on piecewise constant discontinuous functions on T(Σ). The same space is used for the ap-
proximation of Neumann traces in the first kind STF, whereas for Dirichlet traces we rely on
piecewise linear continuous boundary element spaces on T(Σ). Our choice of meshes neces-
sarily involves an approximation of curved interfaces, which should not compromise overall
accuracy according to [43, Chapter 8].

All experiments were carried out with the C++ boundary element template library (BETL,
[26]). (Nearly) singular integrals were regularised by transformation [43, Chapter 5] and then
evaluated by highly accurate numerical quadrature, which ensures that quadrature errors are
negligible. The surface meshes were generated using GMSH [20].

10.1 Experiment I

In this first experiment we consider a geometrical configuration where space is partitioned in
three subdomains R3 = Ω0 ∪ Ω1 ∪ Ω2, with Ω1 = {x = (x1, x2, x3) ∈ R

3, |x| < 1/2 and x3 >
0 }, and Ω2 = {x = (x1, x2, x3) ∈ R

3, |x| < 1/2 and x3 < 0 }. The geometry is depicted
in Figure 1. Regarding the material coefficient µ we choose the values µ0 = 5, µ1 = 1 and
µ2 = 7, and u∞(x) = sin(x1) sinh(x2), x = (x1, x2, x3) ∈ R

3.
Figure 2 below compares the accuracy of both methods, displaying error norms for Dirich-

let or Neumann traces versus meshwidth h = maxτ∈T(Σ) diam(τ). For the computation of the
error, the reference solution was taken to be the numerical solution of the second kind STF
obtained on an even finer mesh obtained with one additional step of global refinement. We
observe algebraic convergence with the same rates and comparable accuracy of both methods.

For these results, the H−1/2(Γj)-norm was approximated using the Galerkin discretisation of

the single layer operator γj
d
· SLj . Besides, in the case of the second kind formulation, an
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Figure 1: Experiment I: Geometry
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Figure 2: Experiment I: Convergence of 2nd-kind and 1st-kind STF. The error curves are
annotated with estimated convergence rates in terms of h−1.

approximation of the Dirichlet traces of the solution was obtained by using the discretised
version of the following formula

γk
d
(u) =

n
∑

j=0

γk
d
· SLj(γ

j
n
(u)) , k = 0 . . . n .

Figure 3 displays the spectra obtained when solving the generalised eigenvalue problem for
the Galerkin matrices and mass matrices. Here and in the sequel, NT refers to the number
of triangles of the mesh. They can be viewed as approximations of the spectrum of the
continuous operators. While in the case of the first kind STF many eigenvalues cluster in
a neighbourhood of 0, in the case of the second kind STF the eigenvalues remain nicely
separated from the origin.

This suggests good convergence of linear iterative solvers applied to the second kind STF,
which is confirmed by the plots of Figure 4. The Galerkin matrices for the second kind STF
enjoy much better conditioning, and the condition numbers remain stable with respect to the
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Figure 3: Experiment I: Spectrum of Galerkin matrices for 2nd-kind (left) and 1st-kind (right)
STF

meshwidth, while the condition numbers for the first kind STF deteriorate as h→ 0. This is
reflected by the behaviour of GMRES iterations.
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Figure 4: Experiment I: Euclidean condition numbers (left) and convergence history of GM-
RES in terms of decrease of Euclidean norm of residual vectors (right)

10.2 Experiment II

Now we consider a partition of space with one more subdomain R
3 = Ω0 ∪ Ω1 ∪ Ω2 ∪ Ω3,

with Ω1 = {x = (x1, x2, x3) ∈ R
3, |x| < 1/2 and x3 > 0 }, Ω2 = {x = (x1, x2, x3) ∈

R
3, |x| < 1/2 and x3 < 0 }, and Ω3 = Q \Ω2 with Q := (−0.7,+0.7)× (−0.7,+0.7)× (0, 0.7).

We choose µ0 = 5, µ1 = 1, µ2 = 7 and µ3 = 3. The excitation field is the same as before
u∞(x) = sin(x1) sinh(x2), x = (x1, x2, x3) ∈ R

3. The geometry is represented in Figure 5.
We report the same quantities as in Experiment I and make the same observations in Fig-

ures 10.2–10.2: The accuracy of both methods is comparable, while the second kind STF leads
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Figure 5: Experiment II: Geometric setup

to matrices much lower condition numbers, which translates into much faster convergence of
GMRES.
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Figure 6: Experiment II, cf. Figure 2

11 Conclusion

We derived and analysed a novel second kind single-trace boundary integral equation formu-
lation for 2nd-order diffusion transmission problems with piecewise constant scalar diffusion
coefficients. The unknown is a single function on the skeleton, representing the jump of nor-
mal flux traces across interfaces. Well-posedness of the BIE in low-regularity Sobolev spaces
could be established. In numerical tests boundary element Galerkin discretisation led to well-
conditioned linear systems and yielded satisfactory approximate solutions, but its numerical
analysis remains wide open.
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Figure 7: Experiment II, cf. Figure 3
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