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Tensor-product discretization for the spatially
inhomogeneous and transient Boltzmann equation in 2D

P. Grohs R. Hiptmair S. Pintarelli

Abstract

In this paper we extend the previous work [E. FONN, P. GRoHs, AND R. HIPTMAIR, Polar spectral
scheme for the spatially homogeneous Boltzmann equation, Tech. Rep. 2014-13, Seminar for Applied
Mathematics, ETH Ziirich, 2014.] for the homogeneous nonlinear Boltzmann equation to the spatially
inhomogeneous case. We employ a (Petrov)-Galerkin discretization in the velocity variable of the Boltz-
mann collision operator based on Laguerre polynomials times a Maxwellian. The advection problem
in phase space is discretized by combining the spectral basis with continuous first order finite elements
in space resulting in an implicit in time Galerkin least squares formulation. Numerical results in 2D
are presented for different Mach and Knudsen numbers.

1 Introduction

The Boltzmann equation offers a mesoscopic description of rarefied gases and is a typical representative
of a class of integro partial differential equations that model interacting particle systems. The binary par-
ticle interaction in d-dimensional space are modeled by the collision operator which involves a 2d — 1
fold integral. Due to its non-linearity and the high dimension, the evaluation of the collision operator is
computationally challenging. Stochastic simulation methods are widely used. A well-known example is
the direct simulation Monte Carlo (DSMC) method developed by Bird and Nanbu in [2] and [15]. Among
deterministic approaches Fourier methods are most popular. In [16] Pareschi et al. introduced a Fourier
based method, related approaches have been introduced in [, i, L1, 21]. Fourier methods are fairly effi-
cient and accurate for short-time simulations, but they suffer from aliasing errors caused by the periodic
truncation of the velocity domain.

To overcome this problem a spectral discretization in velocity based on Laguerre Polynomials has been
developed in [g] for the spatially homogeneous Boltzmann equation extending the work done in [7]. No
truncation of the velocity domain is necessary. This approach has the advantage that the collision operator
can be represented as a tensor, which enjoys considerable sparsity and whose entries can be precomputed
with highly accurate quadrature.

In this work we extend this idea to the spatially inhomogeneous Boltzmann equation, combining a
truncation-free spectral Galerkin approximation in velocity with a least squares stabilized finite element
discretization on the spatial domain. The tensor based local evaluation of the discrete collision operator
involves an asymptotic computational effort of O(K?®), where K is the polynomial degree in one velocity
direction, see Section [§. We also explore ways to ensure discrete conservation of mass, momentum, and
energy, see Section .2 This can be achieved by modifying a few trial functions in the spirit of a Petrov
Galerkin discretization. An alternative is the direct enforcement of the constraints through Lagrangian



multipliers. In f we elaborate how to incorporate various physically relevant spatial boundary conditions
into our new scheme.

For timestepping we rely on a splitting scheme, which separately treats collisions and advection. For
the former we opt for explicit timestepping, whereas the latter is tackled by a time-implicit least squares
formulation. This has the advantage, that for high Knudsen numbers we are not restricted by a CFL
condition. However, one must admit that for small Knudsen numbers, i.e. small mean free path length,
the problem is stiff and the time step must be chosen sufficiently small. Extensive numerical tests in
various settings typical of flow problems for rarefied gases are reported in .

Closely related and conducted parallel to our investigations is the work by Kitzler and Schoberl [1d,
14]. These authors also use a spectral polynomial discretization in velocity, but they rely on a Petrov-
Galerkin discretization. The velocity distribution function (VDF) is represented by polynomials times a
shifted Maxwellian, while the test functions are polynomials. The complexity for the evaluation of the
collision operator is reduced from O(K°) to O(K®) by exploiting it’s translation invariance properties.
They locally rescale the basis functions in velocity to fit macroscopic velocity and temperature.

In physical space Kitzler and Schoberl use a discontinuous Galerkin scheme. On the one hand this
offers great flexibility concerning the local choice of velocity spaces. On the other hand the DG method
involves evaluating interface fluxes and thus requires projection of the velocity distribution function be-
tween adjacent elements. Then stability issues impose constraints on the temperature differences between
neighboring elements.

1.1 The Boltzmann equation

The distribution function f = f(x,v,t) is sought on the 2 + 2-dimensional phase space 2 = D x R?,
where D denotes a spatial domain with piecewise smooth boundary.
We consider the inhomogeneous and time dependent Boltzmann equation

8tf+v~fo=%Q(f,f)(v), (x,v) € Q=D x R?, (1)
with initial distribution
fx,v,t=0) = fo(x,v). (2)
Boundary conditions are prescribed on the inflow boundary I'~ (V) with drift velocity V,,:
inflow boundary I'7(V,,) :={(x,v):x € 0D A (v—-V,) -n <0},
outflow boundary T'"(V,) :={(x,v):x € dD A (v —V,) -n > 0},
where n denotes outward unit normal vector. Whenever we omit the argument of I'* we mean T'*(V,,=0).
Common types of boundary conditions are inflow, specular reflective and diffusive reflective boundary
conditions [1§, Sec. 1.5].

Inflow boundary conditions

f(t7 X, V) = fin(tv X, V), (X7 V) er- (3)

Specular reflective boundary conditions
ft,x,v) = f(t,x,v — 2v - nn), (x,v) e~ (4)
The particles behave like billard balls at the wall.



Diffusive reflective boundary conditions The particles are absorbed at the wall and reemitted with
Maxwellian distribution M,,.

ft,x,v) = My (t,x,v)p4(f), (x,v) €7 (Vy) (5)
where 1 )
My = ———e T (6)
(2m)2 T2

is a Maxwellian distribution at the boundary, and
pelP)i= [ nelw e Va)s(exow)dw.
T+ (V)
M, is normalized such that [, y, y0 (V= Vi) My(v)dv = 1.

Macroscopic quantities of the gas can be computed in terms of moments of the distribution function
f as follows.

Mass p= f(v)dv
R2
Momentum u:l/ vf(v)dv
p Jr2
1
Bnergy E=- [ [IvI f(v)dv
P Jr2

The Boltzmann collision operator @) in 2D is represented by a 3 fold integral.

Q) = [ Bl =il coso)i s — b frdo v, %)

It is common to split () into gain Q* and loss Q~ part
@) = [ [ Bl =il cosopi s doav. ®
Q (f,h)(v) = /]Rd s B(||lv — v4|| s cos0)hy f do dvy, (9)

where f = f(v),f = f(v'),he = h(vy),h, = h(v)). For elastic scattering, the post-collisional
velocities v/, v/, are given by, see Fig. [il

R v — vl

2 2 oeSh (10)
p o VHve  [[v=vy
) 2

We assume that the interaction potential governing collisions is described by the collision kernel B of
the form [18]:

B(||v = 4|, cos8) = C(cos8) ||[v — v, ||, (11)



Figure 1

and that C'(cos 0) satisfies Grad’s cutoff assumption [12]:

2
C(cosf)df < oo
0

L and

In the following, we will restrict ourselves to the variable hard spheres model, i.e. we set C' = 5~

consider A > 0. The case A = 0 is known as Maxwellian molecules.
In order to reduce the computational complexity we will make use of the rotational and translational
invariance of the collision operator Q.

Definition 1.1 (Translation and rotation operator). The translation 7*(c) and rotation operator p*(w)
act on a function f : R? — R as follows:

() f(v) =
pr(w)f(p,r) =
Theorem 1.2. It holds that
Qp" (W) f, p"( (12)
QT () f, 7 (c)g) (. ) = T (c)Q(f, 9) (. 7) (13)

For any w € [0, 27|, c € R2
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2 Spectral Velocity Space

We use the Polar-Laguerre basis developed in [[1d, Sec. 2.1]. It can be shown, that the basis is equivalent
to weighted polynomials in R? of total degree < K, with weight e /2,

Definition 2.1 (Polar-Laguerre basis functions ¥ (¢, 7)).

a(2je) rILEY (r?)e =/ ke 2N

\Ila . ,T) = . . 2
k(o) a((2j + 1)) T2J+1L<,3731+3(r2)e*r /2 ke2N+1
2

where a = cos, sin and L) are the associated Laguerre polynomials.



Uy, are orthogonal in the inner product (f, g) := fRZ v)dv [, Chap. 22]. We define the
spectral basis V})¥ of polynomial degree K and total number of elements N:
VWo={Li®  k=0,...,K}U{Li":k=0,...,K}, (14)
where
Lo o= {Ug%:j=0...[5]} Gs)
Ly = {¥" :j=1— (kmod2)...|%]}.

Notation: Unless specified, N will always denote the number of basis functions used to discretize the
velocity domain and has therefore been included in the superscript of the symbol V;.

Remark 2.2. In [] the test and trial functions in radial direction have the following form:

) \fL(O)( 2) k even
)

Up(r)=e"/?
k(r) k+1TL(" 1(7“2) k odd

The Yy, fork = 0,. .., K are then combined with the Fourier modes el in angle, forl =0, ..., L, such
that k =1 mod 2. Choose for example k = 1,1 = 1:

. 1 . 2
e”‘p\Ill(r) = \/?@”*"62,

which is singular at r = 0, € [0,2n[. The same problem appears for all | < k and causes rapidly
oscillating line integrals in the assembly of the collision tensor entries.

Lemma 2.3. [0, Lemma 5] The Polar-Laguerre basis functions ¥} "> SN are polynomials of total degree
k in Cartesian coordinates weighted by e™" °/2,

Proof. [0, Lemma 5] Use that

15) L5
cosny = Z (Z) sin(@)? cos(¢)" %, sinng = Z (2;:_ 1) sin(p)? ™+ cos(p)" 21

j=0 j=0
(16)

w3

For k even:

sin()?7 cos(p)2 % 2JL(?J_)j( )

277

(r?)

= <2]> rsin(yp rcoe(<p))2j72iL(,3j).(r2) (17)

<.] 27 2] 27,L(2]
—J

O

=

Ly _;(r?) is a polynomial of total degree 2(% — j) and thus multiplication with y%*/ 2%/~ yields a poly-
nomial of total degree k. O



Whenever convenient, we will drop the double index (k, j) of ¥}, ; and denote elements of V})¥ by
bi,i = 0,...,N — 1. Thus we may write formally the expansion f¥ with Polar-Laguerre coefficients
§,j=0,...,N —1ofafunction f : R? = R:

Flor) =) ¢jbi(p,r). (18)

Figure 2: Polar-Laguerre basis functions U5 (v), v € [-5,5]?
Firstrow: j =0,k =0,2,6 Secondrow: k =6,7=1,2,3

For later usage we define also the Hermite and nodal basis.

Definition 2.4 (Hermite basis). The expansion of a function f : R? — R in Hermite polynomials of
total degree < K reads:

K k
22 y2
Flay) =D con—shs(@e™ T hp_(y)e™ . (19)
k=0 s=0
Where are h;(z) suitably normalized Hermite polynomials [[], such that [, h;(x)h; (a:)e*””2 do =
(51‘7]'.

Definition 2.5 (Nodal basis). The expansion of a function f : R?> — R in Lagrange polynomials of



degree K reads:

K K 2 y2

Py =SS & til)e T 4 (y)e (20)

i=0 j=0

where ¢; are the Lagrange polynomials at the Gauss-Hermite quadrature nodes x; with weights w;,.

b= o= I o=

The normalization has been chosen such that (¢;(x), ¢; (x)e*"ﬁ) =05 ;.
In the future we will provide coefficient vectors ¢ with a superscript P, H, N to indicate that they
belong to the Polar-Laguerre, Hermite or the nodal basis.

3 Treatment of the Collision Operator

3.1 Petrov-Galerkin discretization in velocity coordinate

The following derivation is identical to the one presented in [{f]], except that we use a real valued basis in
. Consider the homogeneous Boltzmann equation

of =Q(f, f)- (21)

Multiplication with a test function b; from the yet unspecified function space V‘ﬁv and integration over
R gives

o [ ft.v)g(v)dv = / QU Fg(v) dv. (22)

Making the ansatz f € V;} in (3) gives rise to a 3-dimensional tensor Q. One may think of it as an
array of matrices S;,i = 0,..., N — 1, where slice S; is obtained by testing with b; € V})V:

Pp— . . A. . . N
(Si)h,iz Ca <Q(b117b12)7b1>L2(R2) B b117bl2 S VV (23)
We split Q(f, f) = Q1 (f, f) — Q(f, f), as in (§) and (g), and accordingly S = ST — S~

(S;)ilﬂé = <Q_(bi1>bi2),gi>

:/ B(||lv — vl ,cos0)b;, (v)bi, (vi)bi(v) do dv, dv (24)
R? JR?
- / bi, (V)bi(v) / bi, (V)I ™ (v,v,)dv, dv

R2 R2



where the inner integral T~ is given by
I~ :/ B(||lv — v4|| ,cos8) do (25)
St

=|v-— V*H/\ /sl C(cos0) do, (26)

C = Zi, as it was stated in the beginning.
i

(ST ) (i1,i0) = <Q+(bi1abi2)76i>

L2(R2)

:/ / B(||[v = vyl , cos )by, (V) )by, (V)b (v) do dv, dv (27)
R2 JR2

=C [ b, (v)/ biz(v*)Ii(Jr)(v,v*)dv* dv
R2 R2

with
IO Vb)) = / B(|v' = V' ||, cos 0)b;(v') do (28)
Sl
Note that, in the second line of (27]), we have made the change of variables v, v, < v',v,. Next, we

substitute w' = R, v/, @« = —arg(v + v,). R,, denotes the rotation by « around the origin in counter

clockwise direction. Remember that the test function b; € Vi has the form a(lp) ¢,.(r), where a is either
sin or cos.

I Vb)) = ||V - VLIIAC/ bi(arg(w') + a, [w']) do
N p (29)
= [Iv' = vl C/Sl a(l (arg(w') + @) ¢ (|w']]) do

We simplify (k9)) for a = sin

TOW Vb =V =i C [ [sinlara(w))cos(ia) (30)
+ cos(larg(w') sin(la)) | 6, (|w'[) do
=sinla) v VA1 C [ cos(lare(w))on (') do. (31)
and for a = cos
TOW Vb = IV =¥l C [ [eostlag(w) cos(ia) 2)

— sin(l arg(w’) sin(za))] or([W']]) do
= cos(la) v/ — v.||* C’/ cos(larg(w'))o,(||w'|) do. (33)
Sl

Thus, we have found that the integral Zt (v’, v’.; b;) does up to a factor, which is cheap to compute, only
dependsond := ||[v/ — v} |[and on ¢ := ||v/ + V.||



3.2 Conservative discretization

An important property of (1) is that mass, momentum and energy are conserved. In particular it holds
that

p(f) 1
o | pu(f) | = Q(f, f) v dv =0, (34)
PE(f) e Iv?

by fundamental properties of the Boltzmann collision operator [[5, sec. 5]. This condition can be naturally
enforced for (23) by choosing V;) such that 1, v, || v/ ? € span V;)V. Inspection of the basis functions from
V3 reveals that it is sufficient to multiply a few of them by a factor " /2 to conserve mass, momentum
and energy:

60 exp(r’/2) =
10 exp(r?/2) = (<P) r (35)
10 exp(r?/2) = cos(g) r
5% exp(r?/2) = (1 —1?)
Therefore we use a test space Vlﬁv which is identical to V;)', except that W§%, B5'5, U§%, US% have been

multiplied by the weight exp(r?/2).
The discretized collision operator () 5 has the following expansion into basis functions:

N
Qn(fF.g")(v) =Y (M '"s;d]), ), bi(v), (36)

i=1

where (M), ;s = (bj, b/}, f¥, g* € VIV with coefficient vectors ¢, d with respect to the basis. The mass
matrix M is diagonal, except for dense blocks in the rows corresponding to { W§%, 3G, Wi, W55} x
"’ /2 of size at most 1 x K. For now, the cost for the application of Q v is O(K°). In the next section we

show that, due the polar representation, the complexity can actually be reduced by a factor K.

Galerkin discretization with Lagrange multipliers Alternatively one can also use a Galerkin dis-
cretization and solve a constrained minimization problem wrt. the Lo-norm such that mass, momentum
and energy are conserved. This has been proposed in [11] for the Fourier-Spectral method. Let c* be the
coeflicient vector in the Polar-Laguerre basis at time ty.

1. Compute coefficients at the next time step without conservation:

6k+1 _ Ck + Atk QN(Ck7Ck)

2. Solve the constrained minimization problem:

k1 hin Hcljﬂ _ 6k+1H2 + ATHT (¢ — cb) , (37)

chHleRrN

C

conservation of mass, momentum and energy



where HY € R?2T2*N HT¢c = (p, pu, pE)?, Lagrange multiplier: A € R?>T2. The entries of H”
are given by:

[HT] = . bi(v)dv
[HT]M — /]Rz v,bi(v) dv
[HT]BZ. = / vybi(v)dv

1], = [ M a.

forb; e Vi, i=1,...,N

The solution to (B7) is
=gkt - %H)\, (38)
with
A =2HTH)THT (! - ch). (39)

Note that H” H is positive definite.

3.3 Computational aspects

It can be shown that Q) y has nonzero entries for k + | = j or |k — [| = j, where k, | denote the angular
frequency of the trial functions and j is the angular frequency of the test function. The proof follows
immediately with the help of trigonometric identities and the bilinearity of (). The calculations can be
found in the appendix f.1. For the sake of simplicity, we quote the proof from [g], which uses exactly the
same technique with a complex valued Fourier discretization for the angular part of the spectral basis.

Corollary 3.1. Let f and g be represented in polar coordinates as

flrye) = fr(r)e*®,  g(r,p) = go(r)e'?

for some functions f,, g, and l, k € Z. Then,
Q(f,9)(r, ) = C(r)e” '++0)? (40)

Proof. We get p*(w) f = e!** £, and correspondingly for g. Using (7)) and the bilinearity of Q) we obtain

pQ(f,9)(r,0) = eFFDQ(f, 9)(r, ). (41)
Choose w = —¢ and rearrange to find

Qf,9)(r¢) = e 90, Q(f, 9)(r, )
The result follows since p,Q(f, 9)(r, ¢) = Q(f, g)(r,0) is independent of . O

10
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Figure 3: Nonzero entries for a few slices of the collision tensor for K = 16. The plots are labeled by
the angular part of the test function, since the location of the nonzero entries depend on it solely. The
basis functions are sorted lexically by (I, cos / sin, k), where [ is the angular frequency and % denotes the
polynomial degree in radial direction.

Corollary 3.2. The consequence of B.1 is that each S; from (8) only has O(K?) nonzero entries. Qy
has a total of O(K®) nonzero entries.

Quadrature is carried out in polar coordinates. In  we use Gauss quadrature nodes and weights on
the interval [0, co] with weight ¢~"/2 which are computed via the Golub-Welsch algorithm. Recursion
formulas for the coeflicients of the Jacobi matrix can be found in [17]. Due to numerical instabilities both
the recursion formulas and the eigenvalue problem need to be computed with extended precision. 128
digit accuracy is sufficient to compute quadrature rules up to order 100 which are then stored in tables.

3.4 Exploiting the translational invariance of ()

We have used the rotational invariance of the collision operator for efficient computation and storage of
its discrete analogue. According to theorem (L.2]) @ is also invariant to translation. A Maxwellian at
conforming temperature, i.e. 7' = 1, centered at the origin is represented in the polar basis by a single
non-zero coefficient. In order to represented the same Maxwellian centered at v with same accuracy the
required polynomial degree K grows with ||vg||. On the other hand, if we want to apply the scattering
operator to a given function, it would be beneficial to perform first a change of variables such that it has
zero momentum, apply the scattering operator and then shift it back to the original position. This has the
advantage that a given function with zero momentum will have faster decaying coefficients compared to
its non-zero momentum counterpart and thus one might truncate at a lower K without loss of accuracy.
The straight forward way to translate a given function in its polar representation to zero momentum is to
compute the expansion of f(v-+u) in Polar-Laguerre basis, where u denotes the momentum. This entails
the evaluation of f which costs O(K?) at O(K?) quadrature points, resulting in a total cost of O(K*).
In the following we will show that this can be done with complexity O(K3) if we temporarily switch to
the Hermite basis.

11



The Hermite expansion with coeflicients ¢, ;5 of a function f : R? — R reads

K-1 k e
f chsk s s hk s()i T2 ) (42)
k=0 s=0
where hg(x), hi—s(y) are Hermite polynomials orthogonal with respect to the weights e and e V.

As a consequence of Lemma (p.3) any function in the Polar-Laguerre basis of degree K has an exact
representation through Hermite polynomials of total degree K. Let us formally define the coefficient
transformations matrices Tp_.1r, T p used to transform Polar-Laguerre to Hermite coefficients and
vice versa:

ct = Tpnc’

p H
c =Ty,pc,

where Tp_ 1, Ta_p € RV*¥, because of their block-diagonal structure with dense blocks of size k +
1,k = 0, K — 1, the cost to transform coefficients from the Polar-Laguerre to Hermite basis is O(K?).
The derivation of the Polar-Laguerre to Hermite transformation matrices can be found in [14, Sec. 3.2].

Let ¢, denote the coefficients of a 1-dimensional Hermite expansion g of maximal polynomial degree
K with momentum z . We are looking for the Hermite expansion of §(z) = g(z + 7).

K-1
(2+2)
G@) = gla+7) = 3 il +z)e=
k=0
K1 (43)
z2
~ Crhi(x)e™ =
k=0

Note that g(z) has zero momentum. The coeflicients ¢; are computed by forming Lo inner products.

1 ' (@43)? 2
ci = — h e " 2 hi(x)e T d
¢ . /R Z crhi(z + T)e (x)e x

(@+2)? 52
Z ck—/ hi(z + Z)hi(z)e” 2 e 2 dx (44)
k=0
K-1
=: (S%)ik cu,
k=0

where s; = [, h; ~2” dz. The above can be written as a matrix-vector- product € = S”c, where

S? € REE To further 31mp11fy the expression for the matrix entries (S7); j, we substitute z = = — £

*—/ i(z+ Z)hi(z — 2)e =T da (45)

and use the identity

e 2= (1) 25~ Hnato), 46)

k=0

12



(47)

_ \fe—% mmfj) @ (i ) (—z) @) t2t

t=0

where we have used the orthogonality of the Hermite polynomials.
To carry out the shifting in 2D, we reshape the coeflicient vector into a lower triangular matrix C €
R%K in the following way:

K

fH(zzy) = Z [C]i,j hi(z)e”

i=1 j=1

22
2

2
hi(y)e T

The shift matrices S, S¥ multiplied with from the left with a coefficient matrix act on its columns:

C" =sv(s*C)"

o (48)
& C=8"CsvT.
To avoid numerical overflow orthonormal Hermite polynomials have been used in the implementation.
The procedure described above is summarized in Algorithm fi], whose total cost without the scattering is
O(K3).

Algorithm 1 Scattering in re-centered basis via Hermite representation. (Superscripts P, H denote coef-
ficients in Polar-Laguerre / Hermite basis.)

1: procedure APPLY SCATTERING IN RE-CENTERED BAsIs(c’)

2: cH « Tp_pcP > Transform to Hermite basis
3 ¢l « S¥cH > Transform to zero momentum
4 cf « Ty_pct > Go back to Polar-Laguerre basis
5 cf « update with @) in truncated basis

6: ¢« Tp_pycP > Transform to Hermite basis
7 ctl « §—*gH > Shift back
8 cP « Ty_pct > Transform to Polar-Laguerre basis
9o: end procedure

Fig. | displays timings for the shifting procedure and the scattering for varying polynomial degree K.
For K < 40 the shifting does not payoft, since it is slower than the scattering operator.

Example: Decay of coefficients The following example is to demonstrate that the Polar-Laguerre co-
efficients decay fastest if the approximand is centered such that it has zero momentum.

f(v) = exp(—vIMv) + exp(—w), (49)

13



C— tsuullering

—a  tyy i

4.76

time [ms]

(@)

K tshift [ms] tscattering [ms}
10 0.08 0.04
12 0.13 0.04
16 0.3 0.15
20 0.55 0.42
26 1.12 1.51
30 1.61 2.99
36 2.52 7.08
40 3.25 114
50 6.04 33.6
80 18.2 337

(b)

Figure 4: CPU-time: Intel Core i7 4790K (4GHz, single threaded), Linux 4.2.3, GCC 5.2.0, relevant com-
piler flags: -03 -msse2 -mavx. g contains all of Algorithm [i] except the scattering.

where

M =

and radial index k is shown in Fig. .

1

8

|

7
V3

ﬁ . ve=10.2,0].

The decay of the absolute values of the Polar-Laguerre coefficients |c| with respect to angular index

14

(50)
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Figure 5: Decay of Polar-Laguerre coefficients for f(v — v.), defined in (d), with respect to angular
index [ and radial index k.
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4 Discretization in Physical Space

It is well known that the advection part in (fi]) requires stabilization. We use a least squares formulation,
which has the advantage that, after partial integration, the term <V -nd, f > appears in the variational
r

formulation, which comes handy to include inflow-type boundary conditions.
The advection part of () reads

O f +v-Vyuf =0. (51)
We replace 0, f in (51) by a backwards difference quotient and write down the least squares functional
J(f); f(*=1)) for the pure transport problem:

2

J(F); -1y = HAlt (70 = £00) v W) (52)

L2(Q)

The bilinear form a and right hand side linear form b of the associated variational problem are given by

a(®, fM) = ﬁ@, f(”)>Q n $<v ‘no, f<">>F + <v Ve, v - vxf<">>Q, (53)
and
W@, 1) = o (9,700 v Ve, ) (5

where n is the unit outward normal vector on dD. In the following we use (-, -) to denote the Lo inner
product. V% is the space of linear, piecewise continuous finite elements on quadrilateral triangulations of
D C R2. The VDF on phase space 2 = D x R? is approximated by the tensor product spaceV 1V =
VA @ Vi)V The test functions ® are also taken from V%V The superscript L will denote the number of
degrees of freedoms in physical space.

For integration in time we separate (fi]) into advection and scattering part and use a first order split
time-stepping.

1. Advection: 0;f + v - Vi f = 0 (implicit Euler):

1

" <¢, f(n+1/z)>Q n §<V ‘nd, f<n+1/2>>F n <v Vv fo<n+1/z>>
k k

Q
_ A1t]2€<q)’ f(”)>Q + Aitk<v -V« @, f(n)>Q (55)

2. Scattering (explicit Euler):

1/2 At n+1/2 n+1/2
O = D 4 SR QU ) (56)

5 Boundary Conditions
We discuss inflow, specular reflective and diffusive reflective boundary conditions defined in (§),() and

(B). These are of the simplest types available. There exist more physical models, a detailed disussion can
be found in [B, Ch. 1.11] and the references therein.
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5.1 Discretization

We integrate the second term of a(®, f), cf. (53), by parts and obtain

$<V ne, f(”)>r - é<v ‘e, f(n)>r+ + $<V no, f(n)>r—’ (57)

where I' = 9D x R2.
£ in <v -n, f( >F+ can be replaced by the respective boundary condition.

Conservation properties Multiply () by ( 1,v, ||V||2) and integrate over {2 to obtain:

1 1
825/ ft,x,v)| v | dvdx =0, ppu :—/ / v | v -Vif(t,x,v)dvdx
b IE Iv]® pE N
(58)
P 1 1
S0 | pu| = —/ nx)-v| v | ft,x,v)dvdx — / nx)-v| v | ft,x,v)dvdx
pE " Iv]® ) Iv]®
(59)

If we insert the condition for specular reflection (ff) into (59), one easily observes that the right-hand
side of (59) evaluates to zero and therefore mass and energy are conserved.

Theorem 5.1. For diffusive reflective boundary conditions mass is conserved.

Proof. It must hold that

/ / n(x) - vf(t,x,v)dvdx
x€0D Jv-n(x)>0

:—/ / n(x)-vf(t,x,v)dvdx
x€dD Jv-n(x)<0

n(
w[ e n(x) - v M (|v]) dv dx, (60)
x€0D v-n(x)>0

1

where we have made the changes of variables v — v — 2n(v, n) in the third line. By definition the LHS
of (B9) is [, yp +(f) dx, which finishes the proof. O

Theorem 5.2. Mass and energy are conserved in the discrete formulation with specular reflective bound-
ary conditions.

Proof. Insert a test function ® which is constant in x into the variational formulation a(®, (™)) =
b(®, f(r=1):

é <<q)7f(n)>ﬂ B <(I>’f(n_1)>§z>

- 7<v - nd, f<”>>F - At<v VD, v- vxf<”>>Q n <v VO, f<”*1>>Q (61)
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All terms involving V4 ® evaluate to zero and we obtain

(<(I)’ f(n)>Q B <(I)’ f(n_1)>g) - —At<v ‘o, f(n)>r (62)

The right hand side of (§3) vanishes whenever ® € V2% is chosen to be radially symmetric in the velocity
coordinate. Let & = Wj_:

cos cos n—1
< k,j=0> Z c]it?:07iquk7j¢im(x)>(z :< k,j=0> Z Cl(filj:&iwak,jgbix(x)>ﬂ (63)

k,J, iz k,J, iz
= Yl [ o=, [ewan

Where we have used the Ly-orthogonality of the spectral basis in the last line. The proof follows because
only basis functions with zero angular frequency make nonzero contributions to mass and energy. [

The discrete formulation does not conserve mass in the vicinity of diffusive reflective boundary condi-
tions. This is because in general the velocity distribution function will have jumps across thelinev-n = 0.
Therefore mass is not conserved since the spectral basis cannot approximate discontinuous functions ex-
actly.

5.2 Efficient evaluation of boundary conditions

Depending on the type of boundary condition and orientation of the normal vector, the term <v -nd, f >
r

creates dense blocks of size N x NV in the system matrix at locations corresponding to boundary faces. This
is unfortunate, both with respect to memory consumption and the cost of the matrix x vector-product
(MV-product). Since we use GMRES to solve the advection problem (f5) we do not need to compute the
matrix entries explicitly. Fortunately the MV-product of the boundary conditions can be computed in
O(K?), compared to O(K*) for the naive approach, via a transformation to the nodal basis.

The evaluation in the nodal basis for a single test function ¢ costs O(1) operations:

Qg yly
K-1K-1
<V : nq)iz,iy7fN>F = Z Z [Tq,: Tg,] - 11 D, iy (Tq15 Tgo) FN (24,74, )wg, wg,  (65)
—0¢5—0 ~—
n=ra :6imyiq1/ /“"11’51'yviq2/ [Wey
N
= (C )ql,qz [ququg] -1, (66)

where z;, w; are the Hermite quadrature points and weights. The cost for evaluating (63) for all i,,%, €
[0, K —1]?is O(K?).

The inclusion of the boundary condition is trivial when working in the nodal basis. The coefficients in
the Polar basis can be rotated with linear complexity O(IN) = O(K?) to the reference frame such that the
normal vector points is aligned with the y-axis. As it was already noted in Section .4, the transformation
from the Polar to the nodal basis can be done with cost O(K?3). Thus the total cost for the on-the-fly
evaluation of the boundary condition is O(K3).
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Algorithm 2 Evaluate <V - ne;, f> ,t=1,...,N.
r

1: procedure EVALUATE BOUNDARY TERM(CP)

2 N Tp nRcP b rotate to reference frame, transform to Nodal basis: O(K3)
3 &N « apply_BC

4: q < Cvyw > Apply quad. O(K?)
5 return R~ Ty_,pq > O(K?)
6: end procedure

5.3 Positivity

It has been observed that in the vicinity of singularities, for example near re-entrant corners, the dis-
tribution function might locally become negative. It has been observed, that in combination with a low
Knudsen number this can lead the collision operator to numerically blow up the solution. A possible rem-
edy is to evaluate the distribution function after each time step at the quadrature nodes, set negative values
to zero and project back to the Polar-Laguerre basis. A naive implementation requires the evaluation of
f at O(K?) quadrature nodes, where the evaluation requires O(K?) operations per node and thus has a
total cost of O(K*). The machinery developed in [1d] provides an elegant solution by transforming first
to the Hermite and then to nodal basis.As already noted in section .4 the transformation Polar-Laguerre
< Hermite basis can be done with effort O(K?). The transformation between the Hermite and nodal
basis has again cost of O(K?), this time because it can be performed separately along each coordinate
axis and therefore the transformation matrices are of size K x K only.

Algorithm 3 Project to positive distribution values

1: procedure APPLY SCATTERING IN RE-CENTERED BAsIs(c’)

2: cH « Tp_pc? > Transform to Hermite basis
3 cN «— Tuon > Transform to Nodal basis
4 for all (cN)i < 0do

5 (cV), <0

6 end for

7t c «— Tryopucl > Transform to Hermite basis
8 cP « Ty_pcl > Transform to Polar-Laguerre basis
9: end procedure

The entries of the Hermite to Nodal transformation matrix Ty _,x € R¥¥ are given by:

x? 0i ke

2 K
(Tuon), ;= /th(x)ff_Tfi(I)e_7 de = kzzohj(fk)fi(xk)wk = ghj(xk)mwk = hj(@i)v/w;,

(67)
where x;, w;,i =0, ..., K are the Gauss-Hermite quadrature nodes and weights.

Theorem 5.3. Ty_.N is an orthonormal matrix.
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Proof.

K
(hi(wr)v/wr) () V) =Y hi(wi)hy(2r)wy

k=0

_ / hi(2)h(x)e™ de = 6,; (68)
R2

I
Nk

(Tron) Thon

ol
I
<]

O

Thus we have that (Tx_,u) ! := T4 .-

6 Numerical Experiments

We have implemented all the techniques discussed in C++. For the finite element part we have used the
deal.II v8.3 [19] finite element library. Since the collision operator is independent of x, it is trivial
to parallelize via domain decomposition in the physical domain. The system matrix for the advection
problem is assembled once and reused in every time-step, as preconditioner we use a block-diagonal
incomplete LU-factorization. Often it is observed that the ILU-preconditioned GMRES solver converges
in less than 5 iterations. For the solution of the advection part Trilinos v12.2.1 [13] is used.

The numerical experiments in this section are carried out for Maxwellian molecules. The entries of the
collision tensor were computed with 81, 131 quadrature points in radial direction and angular direction.
For the inner integral 131 quadrature points were used. Thus it can be assumed that quadrature error is
negligible.

6.1 Homogeneous case

The BKW solution [B] is the only non-stationary known analytical solution to the homogeneous Boltz-
mann equation

gt IV = (2 4 ol)s + 452
4783

ft,v) = ; t>0 (69)

where s = 1 — exp(— g (t + 8log 2)). It is valid for Maxwellian molecules.
Taking the limit t — oo of (Bg) shows that the equilibrium solution is represented by a single nonzero
coeficient in the Polar-Laguerre basis:

1
lim f(t,v) = — e llvl/2

t—o00 2

f(t,v) from (Bg) has temperature T = 1, thus we call it to be a temperature-conforming solution for
T=1.

Theorem 6.1. Let f(t, V) be a solution to (1) with a collision kernel of the form (LL1)). Let o,y > 0 be
given, and define n = o/ 2. Then

h(t,v) = af(nt,yv)

is also a solution to (1)).
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The proof can be found in [, Theorem 3.2].

Making use of Theorem [6.1] and rescaling f (¢, v) accordingly we can construct a BKW solution con-
forming to a different temperature. Numerical results for the BKW solution are reported in Fig. . In or-
der to demonstrate the approximation properties of the Polar-Laguerre basis the simulations were carried
out for temperature-conforming initial distributions with 7'=0.5, 1 centered at v.=[0, 0] and v.=[1, 1].
Also we compare the two different methods to conserve mass, momentum and energy described in Sec-
tion .1. We used RK4 with step size At=0.001 for the T'=1 and A¢=0.002 for the 7'=0.5-conforming
initial distribution. The equilibrium state was reached after 15k timesteps. Relative Ly-errors are reported
in Fig. . As expected we observe the Lo-errors decay fastest wrt. to time for the 7'=1 conforming initial
distribution centered at v.=[0, 0], cf. Fig. B. For ¢t > 10 and for suitably high polynomial degree K, the
errors are of the size of the machine epsilon.

The numerical results reveal that the Galerkin discretization of the collision operator in conjunction
with the Lagrange multipliers yields considerably smaller errors than the Petrov-Galerkin approach.

Remark 6.2. In [Jg] initial conditions are always rescaled to be temperature-conforming which allows to
obtain best possible approximation properties. It must be pointed out that in the inhomogeneous case
this cannot be done when using continuous finite elements in the spatial domain this would lead to dense
subblocks in the system matrix of size N x N.
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(a) T=0.5-conforming BKW solution. (b) T=1-conforming BKW solution.
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(¢) T=0.5-conforming BKW solution (d) T=1-conforming BKW solution
centered at v = [1,1]. centered at v, = [1,1].

Figure 6: Relative Ly-errors for the BKW solution versus time ¢. Solid lines: Petrov-Galerkin scheme,
dashed lines: Galerkin scheme with Lagrange multipliers. The errors were measured against an expansion
of the exact solution in the spectral basis with degree K = 60, the coeflicients were modified by the
method described in Sec. 5.1 in order to yield the same mass, momentum and energy as the exact solution
does.
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6.2 Mach 3 flow in a wind tunnel

We show numerical results for the famous Mach 3 wind tunnel experiment. The computational domain
describes a wind tunnel with a forward facing step at position 2 = 0.6 weight height 0.2. The gas is
initially at equilibrium with temperature To=1, v=[3, 0], p = 1.4. At =0 inflow boundary conditions
with T=1, v=[3, 0] are posed and outflow (zero inflow) boundary conditions at =3, the remaining walls
are specularly reflective. The Knudsen number was kn = 2.5 x 1073 for a Maxwellian gas. In Fig. [ the
pressure is shown at different times ¢ € [0,1]. AAt=2.5 x 1075. The results qualitatively agree with
real-world experiments carried out in a wind tunnel, cf. Woodward and Colella [2d].

We have observed that on coarse meshes the distribution function can become negative at the re-
entrant corner. For small Knudsen numbers, for example kn=2.5 x 10~3 this may cause the solution
to diverge when the scattering operator is applied. A possible remedy is to project to positive distribu-
tion function in v, cf. discussion in Section [.3. For the results shown here this projection step was not
necessary.

100 B |y B 100 =m0l }

- 5 - f

P P

—— E —— E
1071 - 1071 - -
1072 - - 1072 - -
1073 4 | | | - 1073 4 | | | -
20 25 30 35 10 20 25 30 35 10

K K
(a) #phys. DoFs L=8945 (b) #phys. DoFs L=35297

Figure 7: Rel. Lo-errors vs. polynomial degree K for two different physical meshes. The solution on the
finer grid with highest polynomial degree K' =40 was used as reference. Errors are shown for the velocity
distribution function f and the macroscopic observables: mass p, momentum u and energy E. The errors
are dominated by the polynomial degree K.
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Figure 8: Mach 3 wind tunnel: Polynomial degree K = 40, 35k Vertices, Maxwellian molecules, 28.9M
total DoFs. Coloring: pressure, contour lines: density. Computations were carried out on the Euler cluster
of ETH Zurich (Xeon E5-2697 v2) with 360 cores.
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Figure 9: Mach 3 wind tunnel. Relative Ly-errors for K=36, L = 35k on the physical grid measured
against the reference solution (K = 40).
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6.3 Nozzle flow

Inflow at the left boundary with T = 1,vg = [2.5,0],p9 = 1.4. Zero inflow boundary condition at
x = 4. The walls are specularly reflecting. The Knudsen number is kn = 0.1. Convergence plots for
Lo-errors are reported in Fig. [toB, the reference solution was computed on a mesh with 18 529 vertices
and for polynomial degree X' = 40. We observe that for the lowest resolution in space, i.e. L = 1225,
for K > 26 the error is dominated by the mesh size. Whereas for L = 4721 the errors mainly depend on
K. We observe much smaller errors and faster convergence in the polynomial degree K compared to the
Mach 3 wind tunnel experiment. This is attributed to the absence of shocks.

2nT 2

2
fE=0,x,v) = Po_ exp (_—Hv vol )

24418

(a) Nozzle flow: L=18529, K=36, N=666, velocity in z-direction.
Pressure as contour lines.
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(b) Nozzle flow: relative Lo-errorsattimet = 3.75. Reference solution with K = 40, L. = 18529, At = 2.5%x 1074,
The collision operator was discretized with the Petrov-Galerkin scheme.



6.4 Shock tube

A gas is placed in a tube with length 1. Initially the gas is at equilibrium in the left and right half with
densities py;, p,- and temperatures 17, T;.:

2
P vl
t: = —_— _—— .
fi(t=0,%,v) 5T exp ( o7 | x < 0.5 (70)
fr(t=0,%x,v) = Prex 77\|v||2 x>0.5 (71)
neem 727‘(‘TT P 2T, |’ = 7

where p;=1, p,=1 and temperatures 7;=1.25,T,.=1. Specular reflective boundary conditions are used
at the top and bottom wall and inflow boundary conditions with densities p;, p, and temperatures 77, T,
at =0, z=1. The calculations have been carried out on a structured grid with element size h,=1.48 x
1073 in z-direction and for kn=0.01, 0.1, 1 with polynomial degree K=16, 20, 26, 30, 36, 40. The
calculation with K=40 has been used as reference to compute Lo-errors in the distribution function
f(v,x) and for the macroscopic quantities p, |u| and E. Lo errors are shown in Fig. L1}, the errors for
kn=0.01 are an order of magnitude smaller compared to the calculation with kn=0.1. This is because,
for kn=0.01, the smoothing by the collision operator is stronger and therefore better approximation by
the velocity basis is obtained. In Fig. 7 the density and momentum u, are compared for =30, 40 at
different times along the path x(¢)=t, t € [0, 1].

10° 2 ! ! ! ! L 100 2 ! ! ! ! L 100 2
ee f oo f oo f
e ) o oo o
o [y

1073 < - 1073 < - 1073 <

o |y

107 4 ] | | | - 107 | | | | - 107 5 ] | | | -
15 20 25 30 35 10 15 20 25 30 35 10 15 20 25 30 35 10
K K I

(A)kn =1 (b) kn = 0.1 (c) kn =0.01

Figure 11: Shocktube: relative Lo errors for varying polynomial degrees K against reference computation
with K'=40. Errors measured at ¢=0.1.
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Figure 12: Shock tube: Macroscopic density and momentum in x-direction plotted along the line z = [0, 1].
Solid line: Polynomial degree K = 40, Dashed line: K = 30
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6.5 Sudden change in wall temperature

We consider a gas initially at rest with temperature T=1 confined between to parallel plates at y=0, 1
and periodic in x-direction. For ¢>0 diffusive reflective boundary conditions with temperature 77, are
imposed on the walls. Computations were performed for two different temperatures 7,,=1.3, 1.7. As it
has been discussed in Section [, mass is not conserved exactly for diffusive boundary conditions. How-
ever, Table ([i]) shows that if the polynomial degree K is chosen sufficiently large mass is preserved up to
~ 0.01%. The time evolution for temperature and mass in y-direction is shown in Fig. (L3) and (1L4). The
results agree qualitatively, but the fluctuations are too large to compute convergence rates. The inaccu-
racy originates from the temperature shock present at =0 at the walls. In order to satisfy the boundary
condition, the velocity distribution function is required to be discontinuous perpendicular to the normal
vector, what cannot be approximated well in the Polar-Laguerre basis.

130, 05 00 o 02 03 0 05

(a) Temvp. K=26 (b) Tem'p. K=30

> 03 0 ) 00 0 02 03 0

(c) Tem'p. K=36 (d) Tem’p. K=50

0.94 4 i i i i M- 0.00 0944 i i i i M- 0.00 0.94 i i i i M-0.00 0944 i i i i M-0.00
00 o 02 03 0 05 00 0 02 03 0 0.5 00 0 02 03 0 0.5 00 01 02 03 0 5

() Mass, K—26 (f) Mass, K =30 (g) Mass, K =36 (h) Mass, K =50

Figure 13: Sudden change in wall temperature 7,,=1.3: Evolution of the temperature T'(z, t) and mass
pforz € [0, 0.5],t € [0, 0.23]. The time evolution is encoded in the color map.

To K20 K26 K30 K36 K40 Kso0
1.3 0.15 —6.59-1072 —6.08-1072 6.18-1072 5.75-1072 —4.50-10"2
1.7 0.15 —0.11 —0.1 0.11 9.85-1072 —7.58.1072

Table 1: Deviation in mass [in percent] for different polynomial degrees K at time ¢ = 0.25, At = 1074,
mesh width: h = 51271,
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Figure 14: Sudden change in wall tempereature T3,=1.7: Evolution of the temperature 7'(z, t) and mass
pforx € [0, 0.5],¢ € [0, 0.23]. The time evolution is encoded in the color map.

6.6 Flow generated by a temperature gradient

We consider the same geometry as in the previous example. Diffusive reflective boundary conditions are
imposed with T;=1, T,,=1.44 at the lower and upper wall. We choose the initial distribution

1 _ vz
= —e 2

f(t =0,y, V) 27rT(y)
T(y) =1+ 1.44y.

The simulations were carried out for Knudsen numbers kn=0.025, 0.1, 1 until a stationary state was
reached with timestep At = 0.001. We observe good agreement in the temperature profiles for K=20, . . ., 40.
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Figure 15: Temperature profiles for the stationary states at t = 6, 25, 75 for kn = 1, 0.1, 0.025.

e i ———
3 3- 3
2 2- 2
1 1- 1
S 0- S0 @ S0
1 1- 1
2 2 2-
-3 _3- -3
32 10 1 2 3 32 10 12 3 32 10 1 2 3
\Z Vi Vi
(a)kn =1 (b) kn = 0.1 (c) kn = 0.025

Figure 16: Mass distribution function at the upper wall: f(t = tena,y = 1, V)

7 Conclusion

We have presented a combined spectral polynomial and finite element method for the spatially inhomo-
geneous Boltzmann equation. It can be extended to conserve the lowest moments and include all relevant
boundary conditions. We have demonstrated it for elastic collisions in the variable hard spheres model.
The simulations were carried out for Maxwellian molecules. But, in general, any separable collision ker-
nel of the form C'(cos 0) ||v — v, || can be tackled by our scheme. We have observed that the conservative
Galerkin discretization with Lagrange multipliers usually yields smaller errors with respect to the Lo-
norm than an approach relying on modified test functions. Further investigations of this difference in
performance will be conducted.

For numerical testing we have implemented an extensive simulation framework in C++ which can deal
with different types of boundary conditions on realistic geometries in 2D. The code has been parallelized
using MPI, and provided that spatial mesh is sufficiently fine, scales well up to a few hundred processors.
Details of this implementation will be published separately.
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We have reported numerical results for low and high-speed flows from the hydrodynamic to the rar-
efied regime. The polar spectral basis offers fast convergence for smooth solutions. For initial distribu-
tions with discontinuities we observe a degradation in convergence with respect to the velocity degrees of
freedom, the same holds true for discontinuities in the velocity distribution function imposed by hot or
cold walls.
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Appendix

-.1  Location of the nonzero entries in the collision tensor

We compute the locations of the nonzero entries for the discretized collision operator
<Q(¢’T1,ll7¢T2,lz)>¢T,l>L2(]R2) (72)

with trial functions ¢, 1, , ¢r,1, € Vi and a test function ¢, ; € ViV,

The rotation invariance, cf. Theorem. [1.2], and the bilinearity of the collision operator will be used.
Since in general, we do not obtain sparsity with respect to the radial part of the ansatz function we drop
the index & of the ;" and denote them instead by ¢. .:

Bra, (0, 7) 1= WS (0, 1),

where [; is the angular frequency. E.g. ¢, ;. = 7:(li¢) fr(r) for 7; = sin, cos, i = 1, 2 and analogously
for the test function ¢ ;.
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In the following we will use the rotation operator p,, defined as p,h(p, ) = h(¢+w, r). The rotation
invariance applied to the four possible combinations of inputs in 71, 75 gives the following equations:

Q(pw(bc,ll , pw¢c l2) = pr(¢c,l1 , ¢c,l2)

Q(pw¢c7l17pw¢s lz) pr(¢C7l17¢S,12) (73)
Q(PuPs,ly s Pube,l,) = wQ(¢8,l1 s Pe,ls)
Q(Pwéf’s,ll,f?w% lz) (¢s,l17¢s,l2)
Using the trigonometric identities
pw sin(ly) = cos(ly) sin(lw) + sin(lp) cos(lw) (74)
74

pw cos(lp) = cos(lp) cos(lw) — sin(ly) sin(lw)

and the bilinearity of ), (73) is transformed into a 4 x 4 system of linear equations in the unknowns

Q(¢C,l1 ) ¢C,l2)7 Q(¢C,l1 ) ¢S,l2)7 Q(¢S,l1 ) ¢C,l2)a Q((bs,ll ’ ¢S,lz):

A(w)a(p) = qo(w), (75)
where
cos(low) cos(lyw) —cos(lw)sin(low) — cos(law) sin(lw) sin(low) sin(lyw)
Alw) = cos(lyw) sin(low)  cos(lgw) cos(liw) —sin(lyw) sin(lyw) — cos(low) sin(ljw)
(w) = cos(low) sin(lyw) —sin(low)sin(ljw)  cos(low) cos(lyw) — cos(lyw) sin(low)
sin(low) sin(l;w) cos(low) sin(ljw) cos(lyw) sin(law) cos(law) cos(ljw)
dijc,l] ) ¢C,l2 gg ) 7‘;
Q(Detys Ps1a) (051
Q(<P) Q(d)s,llagﬁcyl'z)((p’r)
Q(¢S,l17¢s,lz)(<p7 T)
(76)
and
Qg% 1 Pe, b;gw + w, r;
_ Q¢cl1a¢sl2 50_’_0‘}7“
D= Qbeiys o) +w.7) o7
Q(¢9 Iy ¢9 12)(4,0 +w T)
setting w = — gives qo () = [Q(¢e.1,, Pe1,) (v = 0,7),0,0,0].
Explicit computation of the inverse of A(—¢) gives:
cos(lap) cos(l1p)  —cos(lip)sin(lap) —cos(lap) sin(ly @) sin(la¢) sin(ly )
Al—p) = cos(lip) sin(lap)  cos(lap) cos(lip)  —sin(lap)sin(lip) —cos(lzp) sin(l1¢)
. - cos(lap) sin(ly)  —sin(layp) sin(ly ) cos(lap) cos(lyp)  —cos(lip) sin(lap)
sin(lap) sin(ly ) cos(lz2¢p) sin(ly ) cos(l1¢) sin(lyp) cos(lap) cos(ly¢)
(78)
thus we have simplified (f3)) to
Q(¢C Iy (bc lz) COS(ZQQO) COS(h(p) Q((bc,h ) ¢C,l2)(01 7")
Qe 6u1.) = cos(lip)sinlla) Qo b )(0.1) o)
(¢S Iy ¢C lz) COS(ZQQO) in(ll<)0) Q((bc,h ’ ¢C7lz)(07 T)
Q(¢s,115Ps,1,) = sin(lap) sin(l1p) Q(e,i, s Pe,i,)(0,7)
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We multiply (7d) with the test function ¢, ; and integrate over .

9 QEQSC,h ) ¢c,l2§ 9 COS((Z%O)) COS((ZMD))

I Qe Psis _ | cos(lip)sin(lap
/0 Q(¢s115 e t) Prade = Q(0err; fera) 0, r)/o cos(lagp) sin(l1¢) gride (80)

Q(¢s,l1 ) ¢s7l2) sin l2§0) Sin(ll(p)

From (Bd) we obtain the locations of the nonzero entries depending on 7y, 75, 7 and [, l2, I

o Test function ¢, ; with 7 = cos.

(Q(rys Dr22) (¥)), S70(V)) L2y = {sé 0 (h+k)=IVih—bLl=)AT#m (81)

0 otherwise

o Test function ¢, ; with 7 = sin.

(Q(br111 D2 1)(V)), S7.4(V)) 1232y = {# 0 (h+k)=Iv|h-lbl=)An="m (82)

0 otherwise
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