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Reduced order methods for uncertainty quantification problems

Peng Chen ∗, Alfio Quarteroni †, and Gianluigi Rozza ‡

Abstract. This work provides a review on reduced order methods in solving uncertainty quantification prob-
lems. A quick introduction of the reduced order methods, including proper orthogonal decomposi-
tion and greedy reduced basis methods, are presented along with the essential components of general
greedy algorithm, a posteriori error estimation and Offline-Online decomposition. More advanced
reduced order methods are then developed for solving typical uncertainty quantification problems
involving pointwise evaluation and/or statistical integration, such as failure probability evaluation,
Bayesian inverse problems and variational data assimilation. Three expository examples are pro-
vided to demonstrate the efficiency and accuracy of the reduced order methods, shedding the light
on their potential for solving problems dealing with more general outputs, as well as time dependent,
vectorial noncoercive parametrized problems.

Key words. uncertainty quantification, reduced basis method, proper orthogonal decomposition, greedy algo-
rithm, a posteriori error estimate, failure probability evaluation, inverse problem, data assimilation
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1. Introduction. Various stochastic computational methods have been developed during
the last decade for solving uncertainty quantification (UQ) problems, and can be classified
as either intrusive or nonintrusive. Belonging to the former approach are stochastic Galerkin
methods with multidimensional polynomial projection [34, 24, 65, 3], generalized polynomial
chaos [73], modal reduction type generalized spectral decomposition [54], etc. These methods
typically converge very fast provided the solution depends smoothly on the random variables.
However, either they result in a global large-scale tensor system or they lead to many coupled
stochastic and deterministic systems. Besides being computationally challenging, their solu-
tion cannot make advantage of complex legacy solvers. Among the nonintrusive approaches,
Monte Carlo method [32] has been widely used because of its simplicity for implementation
(reuse of legacy solvers) and its superior property that the convergence rate does not depend
on the number of stochastic dimensions. Unfortunately, its low convergence rate, O(N−1/2)
with N samples, demands for a large number of samples and consequently an exorbitant num-
ber of PDEs need to be solved in order to achieve reasonable accuracy. Several techniques
can be applied to accelerate this method, such as deterministic sampling known as quasi
Monte Carlo [27], sampling over hierarchical spatial discretization known as multilevel Monte
Carlo [5], sampling using ergodic property known as Markov chain Monte Carlo [35]. In the
nonintrusive approach, another recently developed and widely used method is stochastic col-
location based on multidimensional polynomial interpolation [2], which not only can achieve
fast convergence as the stochastic Galerkin methods but also enjoys simple implementation
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that enable direct use of legacy solvers. By exploiting sparsity of the solution in the stochastic
space, sparse grid [72, 53], anisotropic [52] and adaptive [33, 47] sparse grid have been devel-
oped to effectively alleviate the curse of dimensionality. Other nonintrusive methods such as
regression [8], discrete L2 projection [48] are also in active development based on polynomial
approximation.

However, these polynomial-based (or more in general dictionary basis-based (e.g. wavelets,
radial bases)) nonintrusive methods may still be too expensive to be affordable when the (high-
fidelity) solution of the underpinning problem at a single realization of the random variables
is already very expensive. This computational challenge is more stringent for problems with
high-dimensional uncertainties. In the last few years, reduced order methods have been devel-
oped and demonstrated to be able to significantly reduce the computational expense as long
as the solutions or outputs live in low-dimensional manifold [9, 21, 14], which is the typical
situation for many UQ problems. Instead of stochastic Galerkin projection on polynomial
bases and stochastic collocation using polynomial interpolation, reduced order methods em-
ploy (Petrov–)Galerkin projection on “snapshots” – i.e. solutions at some suitably chosen
samples or principle components. As the high-fidelity “snapshots” can be computed by using
legacy solvers (nonintrusive) while the reduced solutions are obtained by solving the same
(Petrov–)Galerkin problems but in reduced basis spaces (intrusive), reduced order methods
are typically regarded as semi-intrusive methods.

This work recalls and summarizes the basic reduced order methods, including proper
orthogonal decomposition (POD) and greedy reduced basis (greedy-RB) methods, for the
solution of several typical uncertainty quantification problems that involve both pointwise
evaluation and statistical integration. The state of the art is detailed in [20, 14, 22]. We further
develop reduced order modelling algorithms in UQ for general functional outputs, vectorial,
time dependent and noncoercive problems with emphasis on some selected representative
problems that are relevant in problems like structural mechanics, thermal analysis and flow
simulation. These represent ongoing extensions of existing methods in this field.

The fundamental techniques for the construction of reduced basis spaces for well-posed
linear partial differential equations are summarized in Sections 2 and 3. The uncertainties,
which may arise from different kind of sources, such as computational geometry, external
loading, boundary conditions, material properties, etc., can be represented by random fields
that are further characterized or approximated by a finite number of random variables, leading
to a parametric system with certain probability distribution prescribed on the parameters.
A more advanced technique for the construction of reduced basis spaces to accommodate
arbitrary probability density function, named weighted reduced basis (wRB) method, is proven
to be very efficient for the evaluation of integrals, e.g. statistical moments as well as for dealing
with inverse problems, as shown in Section 4. For pointwise evaluation, e.g. real-time risk
analysis or local sensitivity analysis, goal-oriented reduced basis construction algorithms are
more appropriate. Reduced order methods (formulated through either Bayesian approach or
Lagrangian approach) are particularly effective for the solution of “backward” UQ problems,
such as stochastic optimal control, statistical inversion and variational data assimilation, which
commonly demand the solution of the underpinning system for many times.

In Section 5, we demonstrate the accuracy and efficiency of reduced order methods for
three typical uncertainty quantification problems addressing failure probability evaluation in
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structural mechanics (a crack propagation problem with a functional output generalization
properly managed with dual problems), Bayesian inversion in time dependent heat conduction
(thermal analysis in presence of flaws and/or delamination), and variational data assimilation
in fluid dynamics. The results obtained on these three examples show the remarkable reduction
of computational expense by Offline-Online decomposition and a posteriori error analysis,
thus demonstrating the great potential of the reduced order methods in solving UQ problems
when the solution manifold and/or the manifold of the output quantity of interest are low
dimensional.

Further computational and mathematical challenges and perspective opportunities are
outlined at the end in Section 6.

2. Problem setting: PDE with random inputs. Let (Ω,F , P ) denote a complete proba-
bility space with the set of outcome ω ∈ Ω, a σ-algebra F and a probability measure P . Let
y denote a vector of random variables defined in (Ω,F , P ), i.e. y = (y1, . . . , yK) : Ω → R

K

with K ∈ N. By Γk we denote the image of yk in Ω, 1 ≤ k ≤ K, and Γ = ⊗K
k=1Γk. We

associate the random vector y with a probability density function ρ : Γ → R. Let D ⊂ R
d

(d = 1, 2, 3) denote an open and bounded physical domain with Lipschitz boundary. By U
and V we denote two Hilbert spaces defined in the domain D with duals U ′ and V ′. We
consider the following problem: given y ∈ Γ, find u(y) ∈ U such that

(2.1) A(u, v; y) = F (v; y) ∀v ∈ V,

where A : U × V → R and F : V → R are the continuous bilinear and linear forms that
depend on the random vector y, respectively. The uncertainty represented by the random
vector y may arise from external loading, boundary conditions, material properties and/or
computational geometries. For the well-posedness of problem (2.1), besides the continuity of
A and F , we assume that the bilinear form A satisfies the inf-sup condition, i.e. ∀y ∈ Γ

(2.2) inf
06=w∈U

sup
06=v∈V

A(w, v; y)

||w||U ||v||V
=: β(y) > 0;

moreover, supw∈U A(w, v; y) > 0 ∀0 6= v ∈ V. Under these assumptions, there exists a unique
solution for problem (2.1) that satisfies the a priori stability estimate

(2.3) ||u(y)||U ≤ ||F (y)||V ′

β(y)
.

In many practical applications [61, 59, 15], the quantity of interest is not (or not only) the
solution but (also) some functional of the solution, i.e. s(y) := s(u(y); y) : Γ → R, for
instance the solution at a given location s(y) = u(x, y), x ∈ D, or a parameter-dependent
linear functional

(2.4) s(y) = L(u(y); y),

as well as their (of u and s) statistics such as the expectation, failure probability, etc., see
Section 4.
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Remark 2.1.Thanks to the general formulation of (2.1), we may consider a wide range
of physical problems, including linear elasticity, convection-diffusion-reaction problem, Stokes
equations for incompressible Newtonian fluid, Maxwell equations for electrodynamics, etc.
For the solution of many nonlinear problems, linearization with proper hyper reduction of the
nonlinear term [37, 13, 28] is mostly performed, resulting in a linear problem like (2.1). For
the solution of unsteady problems, temporal discretization, by e.g. backward or forward Euler
scheme, also leads to steady problems similar to (2.1) [38, 68]. Examples of more general
problems will be provided in Section 5.

Suppose uN (y) is an approximation of the solution u(y) corresponding to y ∈ Γ in a
subspace UN ⊂ U , N ∈ N. The main effort in solving various uncertainty quantification
problems consists of finding a subspace UN with N as small as possible to yield a required
accuracy of the approximation. More rigorously, let M := {u(y) ∈ U : y ∈ Γ} denote the
solution manifold; we look for UN ⊂ U such that the worst approximation error

(2.5) σN (M)U := dist(UN ,M) ≡ sup
u∈M

inf
w∈UN

||u− w||U

be as small as possible, in the sense that it can achieve the best approximation with error
(known as Kolmogorov N -width)

(2.6) dN (M)U := inf
UN⊂U

dist(UN ,M) ≡ inf
UN⊂U

sup
u∈M

inf
w∈UN

||u− w||U .

Meanwhile, the computational effort for finding such a subspace should be affordable. Many
approximation methods have been developed in the last decade, among which the stochastic
Galerkin [1] and stochastic collocation [2] methods are more widely applied. However, even
featuring fast convergence when the solution is smooth with respect to y, they can hardly
achieve an accuracy comparable with the best approximation error. Moreover, substantial
computational challenges arise for these methods when the dimension of y is high, called
curse-of-dimensionality, and/or when the solution of problem (2.1) at each realization y ∈ Γ
is very expensive, making only a few tens or hundreds of solutions affordable. In recent
years, it was proven [67, 7, 26] that reduced order methods, in particular the greedy reduced
basis method [56, 61], can achieve comparable convergence as the best approximation error.
Moreover, the reduced order methods have been developed with great efficiency in solving
high-dimensional and large-scale problems [9, 21, 20, 14].

For the sake of computational efficiency of reduced order methods, we assume that the
bilinear form A, as well as the linear forms F and L, admit an affine expansion as
(2.7)

A(w, v; y) =

Qa
∑

q=1

Θa
q(y)Aq(w, v), F (v; y) =

Qf
∑

q=1

Θf
q (y)Fq(v), and L(w; y) =

Ql
∑

q=1

Θl
q(y)Lq(w),

where Aq, Fq and Lq are suitable continuous bilinear and linear forms that are independent

of the random vector y, and Θa
q(y), Θ

f
q (y) and Θl

q(y) represent the y-dependent coefficients.
Remark 2.2.The affine expansion (2.7) is crucial in enabling efficient Offline-Online

decomposition (which will be specified in a later section) of reduced order methods. Many
problems do admit an affine expansion, for instance the Karhunen–Loève expansion [44, 64]
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that is widely applied in uncertainty quantification problems leads to an affine representa-
tion/approximation of a random field, which may further give rise to an affine expansion of
the bilinear and linear forms A, F and L in (2.7). For more general non-affine problems,
an empirical interpolation method [4] or its weighted variant for a random field [22] can be
applied to obtain an approximate affine decomposition that leads to (2.7).

3. Reduced order methods – basic formulation. In this section, we present the key
ingredients of reduced order methods in solving problem (2.1), including the reduced order
approximation of a full order problem, greedy algorithm and proper orthogonal decomposition
for the construction of reduced basis spaces, a posteriori error estimate and efficient Offline-
Online computational decomposition.

From a computational perspective, the starting point for the development of reduced
order methods is to rely on a high-fidelity approximation, which is also named full order
approximation. Suppose a high-fidelity approximation of problem (2.1) is sought in the high-
fidelity trial space UN , using as test space V N , with bases (wN

n )Nn=1 and (vNn )Nn=1, respectively.
Typically these may represent finite element or spectral approximations. The high-fidelity
approximation problem corresponding to problem (2.1) reads: given y ∈ Γ, find the high-
fidelity solution uN (y) ∈ UN such that

(3.1) A(uN (y), vN ; y) = F (vN ; y) ∀vN ∈ V N .

Its well-posedness is guaranteed if the high-fidelity spaces UN and V N fulfill the discrete
inf-sup condition

(3.2) inf
06=wN∈UN

sup
06=vN∈V N

A(wN , vN ; y)

||wN ||U ||vN ||V
=: βN (y) > 0.

For an accurate approximation of the solution, a very large N (here representing the dimension
of the solution space UN ) is typically required. The large-scale system corresponding to (3.1)
can therefore be solved only for a limited number of realizations y ∈ Γ. On the other hand, a
large number of realizations, especially for high-dimensional random space, are necessary to
achieve certain required accuracy in approximating some quantities of interest, such as failure
probability or expectation. In order to tackle this computational challenge, we turn to the
reduced order approximation.

3.1. Reduced order approximation. Suppose we have constructed the reduced trial space
UN ⊂ UN and test space VN ⊂ V N with bases (wN

n )Nn=1 and (vNn )Nn=1 for N ≪ N . Then the
reduced order approximation problem associated with the high-fidelity approximation problem
(3.1) reads: given y ∈ Γ, find the reduced order solution uN (y) ∈ UN such that

(3.3) A(uN (y), vN ; y) = F (vN ; y) ∀vN ∈ VN .

Let uN (y) := (u1N (y), . . . , uNN (y))⊤, with ⊤ representing the transpose, denote the coefficient
of the reduced order solution on the bases (wN

n )Nn=1, i.e.

(3.4) uN (y) =
N
∑

n=1

unN (y)wN
n .
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Then, thanks to the affine expansion of the bilinear and linear forms in (2.7), we can write
the reduced order approximation problem (3.3) as

(3.5)

N
∑

n=1

Qa
∑

q=1

Θa
q(y)Aq(w

N
n , v

N
m)unN (y) =

Qf
∑

q=1

Θf
q (y)Fq(v

N
m) m = 1, . . . , N.

In order to solve the reduced order approximation problem (3.3), the y-independent quantities
Aq(w

N
n , v

N
m), 1 ≤ m,n ≤ N , 1 ≤ q ≤ Qa and Fq(v

N
m), 1 ≤ m ≤ N , 1 ≤ q ≤ Qf , can be

assembled only once, whereas the y-dependent reduced order system (3.5) has to be assembled
and solved for any given y ∈ Γ. As a result, the quantity of interest s(u(y); y) can be
approximated by sN (y) := s(uN (y); y), whose computation requires a number of operations
independent of N , too. For instance, the linear output (2.4) can be evaluated as

(3.6) s(y) ≈ sN (y) = L(uN (y); y) =
N
∑

n=1

Ql
∑

q=1

Θl
q(y)Lq(w

N
n )unN (y),

where we can compute and store the quantities Lq(w
N
n ), 1 ≤ n ≤ N , 1 ≤ q ≤ Ql, once and

for all, and then compute sN (y) with O(QlN) operations, for any given y ∈ Γ. Therefore, a
considerable reduction of computational effort is achieved as long as N ≪ N . This saving is
more evident when the output of interest has to be evaluated in correspondence with a very
large number of samples, which is the case in many uncertainty quantification problems with
high dimensional random input, like e.g. in reliability analysis, stochastic inverse problems,
etc.

Remark 3.1.In the case of noncompliant output, i.e. L 6= F , s(y) can be better approx-
imated by adding a correction term at the expense of solving a dual problem of (3.3), which
will be shown later in section 3.4. Note that if many, say M , output of interests are involved,
we have to solve M dual problems, which brings even more computational effort.

The accuracy and efficiency of the reduced order approximation crucially depend on the
choice of the reduced trial and test spaces UN and VN . In order to construct an optimal reduced
space UN ⊂ UN for the approximation of the solution manifold MN = {uN (y) ∈ UN : y ∈ Γ},
the perhaps most natural choice for the bases of UN is that made of a span of suitably chosen
(independent) elements of this manifold. This idea has been exploited by both the proper
orthogonal decomposition method [12, 70] (hereafter abbreviated as POD) and the greedy
reduced basis method [56, 61] (greedy-RB), the two fundamental methods that have led to
the development of various model order reduction techniques for many applications in scientific
computing [58].

3.2. Proper orthogonal decomposition. POD, also known as Karhunen–Loève expansion
in stochastic theory or principle component analysis in statistical analysis, was applied in the
earlier days for simulation of turbulent flows in extracting the essential flow features, which
provided computational evidence for the so-called coherent structures that were observed in
experiments [6]. The starting point for constructing a sequence of POD basis is to compute
the high-fidelity solution at nt training samples uN (yn), n = 1, . . . , nt, typically nt ≪ N . The
the correlation matrix C ∈ R

nt×nt is formed with these entries

(3.7) Cmn = (uN (ym), uN (yn))U , 1 ≤ m,n ≤ nt,
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where (·, ·)U represents an inner product defined in U . Let (σ2n,ηn), n = 1, . . . , r, be the
eigenpairs of C with rank r, ordered in such way that σ21 ≥ σ22 ≥ · · · ≥ σ2r . Then the reduced
space UN is constructed by

(3.8) UN := span{ζ1, . . . , ζN},
where ζ1, . . . , ζN , are the POD bases given by

(3.9) ζn =

nt
∑

m=1

1

σn
η
m
n u

N (ym), 1 ≤ n ≤ N.

The reduced space UN constructed by the POD bases solves the following constrained opti-
mization problem

(3.10) UN := argmin
ZN⊂MN

t

nt
∑

n=1

||uN (yn)− PZN
uN (yn)||2U such that (zi, zj)U = δij , 1 ≤ i, j ≤ N,

where MN
t := span{uN (yn), n = 1, . . . , nt}, ZN := span{z1, . . . , zN}, being the basis zn ∈

MN
t , 1 ≤ n ≤ N , and PZN

: MN
t → ZN is a projection operator defined as

(3.11) PZN
v =

N
∑

n=1

(v, zn)Uzn.

Furthermore, the approximation error defined in (3.10) of the reduced space UN is given by
[58]

(3.12) EPOD
N :=

nt
∑

n=1

||uN (yn)− PUN
uN (yn)||2U =

r
∑

n=N+1

σ2n.

As a consequence, given any relative error tolerance 0 < ε < 1, we may choose the number N
of POD basis functions to be the smallest such that EPOD

N /EPOD
0 ≤ ε. When the eigenvalues

σ2n, 1 ≤ n ≤ r, decay very fast, only a small number of POD basis functions is needed.
Remark 3.2.Instead of minimizing the worst approximation error as defined for the Kol-

mogorov N -width in (2.6), the POD basis minimize an “averaged” approximation error in
“energy” norm over all the training samples. In this sense, the reduced space UN constructed
by POD is optimal as demonstrated in (3.10), in the sense that it extracts the largest energy
among all the N -dimensional subspace ZN ⊂ MN

t . This is particularly relevant when the in-
terest is not some quantity corresponding to worst case scenario but rather the averaged value,
e.g. statistical moments.

Remark 3.3.The accuracy of the POD basis approximation depends not only on the num-
ber of bases but also on how well the training samples can represent the whole parameter space
Γ. Ideally as many training samples as possible should be used to explore Γ. However a full
solution of the high-fidelity problem (3.1) is needed at each training sample, rendering the use
of many training samples impossible as long as the computation of the high-fidelity solution
is expensive. Consequently, the purely POD based reduced order method is limited to prob-
lems typically with low-dimensional parameter space that can be well represented by a limited
number of training samples.
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3.3. Greedy reduced basis method. The greedy reduced basis method aims to construct
the reduced basis space in hierarchical manner by a greedy algorithm. To start, one would
choose the first sample in the parameter space such that

(3.13) y1 = argmax
y∈Γ

||uN (y)||U .

Note, however, that this choice is computationally very expensive since we have to solve
an optimization problem involving possibly many high-fidelity solutions. To get ride of this
difficulty, we may choose y1 as the center of the parameter space Γ or randomly sample it
according to its probability density [20]. Correspondingly, the reduced trial space is initialized
as

(3.14) U1 = span{uN (y1)},

where uN (y1) ∈ UN , called “snapshot”, is the high-fidelity solution at y1. We defer the
construction of the reduced test space V1 to the end of this section. For N = 1, 2, . . . , we seek
the sample yN+1 at which the error between the high-fidelity solution and the reduced-order
solution attains its maximum, i.e.

(3.15) yN+1 = argmax
y∈Γ

||uN (y)− uN (y)||U ,

where uN (y) and uN (y) are the solutions of the high-fidelity problem (3.1) and reduced-order
problem (3.3), respectively. Again in order to solve the optimization problem (3.15), one
typically needs to solve a large number of high-fidelity problems, especially in the case of a
high-dimensional parameter space. To avoid the considerable computational cost involved, we
replace the true error ||uN (y)−uN (y)||U by an error estimator △N (y), such that its evaluation
cost is independent of N , and

(3.16) c△(y)||uN (y)− uN (y)||U ≤ △N (y) ≤ C△(y)||uN (y)− uN (y)||U ,

where the constants 0 < c△(y) ≤ C△(y) < ∞ measure the effectivity of the error estimator.
When c△(y) ≥ 1, the error estimator △N (y) becomes an upper error bound for the true
reduced solution error. When C△(y)/c△(y) is close to one for every y ∈ Γ, we expect that the
error estimator leads to an effective construction of the reduced space defined as

(3.17) UN+1 = span
{

uN (y1), . . . , uN (yN+1)
}

.

Further simplification of the optimization problem (3.15) entails the replacement of the whole
parameter space Γ by a training sample set Ξtrain ⊂ Γ of finite cardinality, i.e. |Ξtrain| =
ntrain < ∞. It is important that the training set is representative of the whole parameter
space, meaning that it should be fine enough such that Γ can be well explored by Ξtrain and
the reduced basis space constructed by the training set leads to comparable error decay as the
one constructed from the whole parameter space. Meanwhile, this training set should be as
small as possible such that less computational cost is demanded by the greedy algorithm. In
the context of uncertainty quantification, various sampling techniques, such as Monte Carlo
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[15] and sparse grid [16], can be effectively employed in choosing the training set, in alternative
to algorithms based on adaptive refinement [41] and efficient partition of the parameter space
[29]. As the number of solution snapshots becomes large, the reduced system (3.5) may become
ill-conditioned. For stability consideration, Gram–Schmidt process [36] is performed for the
snapshots, yielding a set of orthonormal basis functions (ζn)

N+1
n=1 with respect to the norm U ,

i.e.

(3.18) UN+1 = span{ζ1, . . . , ζN+1}.

The reduced test space VN+1 is also enriched according to the the reduced trial space UN+1.

For the construction of the reduced test space VN , N = 1, 2, . . . , in the case that U = V
and the bilinear form A is coercive in U , i.e. ∃α(y) > 0 :

(3.19) A(w,w; y) ≥ α(y)||w||2U ∀w ∈ U,

we can simply set VN = UN so that the coercivity property (3.19) is preserved in the reduced
space UN ; this corresponds to the most basic case of consideration for reduced basis method
[56, 55, 61]. However, when the bilinear form A only satisfies the sufficient and necessary
condition for well-posedness of the linear problem (2.1) in different spaces U and V , namely
the continuity and stability (inf-sup condition) (2.2), we need to construct the reduced trial
space VN ⊂ V N such that the reduced inf-sup condition holds

(3.20) inf
06=w∈UN

sup
06=v∈VN

A(w, v; y)

||w||U ||v||V
=: βN (y) > 0.

An ideal case is to pick the optimal elements (with respect to approximation accuracy) of V N

that also guarantee the stability constraint (3.20), which are obtained via the “supremizer”
operator Ty : UN → V N defined by

(3.21) (Tyw, v)V = A(w, v; y) ∀v ∈ V N .

Correspondingly, for any N = 1, 2, . . . , the reduced test space can be defined as

(3.22) VN = span{Tyζ1, . . . , TyζN}.

By this definition and using (3.21), we have from (3.20)

βN (y) = inf
06=w∈UN

A(w, Tyw; y)

||w||U ||Tyw||V
= inf

06=w∈UN

||Tyw||V
||w||U

≥ inf
06=w∈UN

||Tyw||V
||w||U

= inf
06=w∈UN

sup
06=v∈V N

A(w, v; y)

||w||U ||v||V
=: βN (y),

(3.23)
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so that the reduced spaces UN and VN preserve the stability condition. Moreover, it can be
shown that, under the renormation of the trial space ||w||Û = ||Tyw||V , the reduced solution
uN (y) is the best approximation of u(y) in UN with respect to this norm [25, 71]. In fact,

(3.24) A(w, v; y) = (Tyw, v)V ≤ ||w||Û ||v||V ∀w ∈ U,∀v ∈ V,

so that the continuity constant of A is γ(y) = 1. On the other hand

(3.25) inf
06=w∈UN

sup
06=v∈VN

A(w, v; y)

||w||Û ||v||V
= inf

06=w∈UN

A(w, Tyw; y)

||w||Û ||Tyw||V
= inf

06=w∈UN

(Tyw, Tyw)V
||Tyw||V ||Tyw||V

= 1,

which implies that the stability constant of A in UN × VN is βN (y) = 1. By Petrov–Galerkin
orthogonality, we have

(3.26) ||uN (y)− uN (y)||Û ≤ γ(y)

βN (y)
inf

w∈UN

||uN (y)− w||Û = inf
w∈UN

||uN (y)−w||Û ,

which demonstrates that the test space (3.22) leads to optimal reduced order approximation.
However, as indicated by the definition Tyw, the basis functions of the test basis depend on
the parameter y, which would require a high-fidelity solve of (3.21) for each parameter value.
In order to avoid this large computational cost, we take advantage of the assumption of affine
structure (2.7) by solving the following high-fidelity problem only once

(3.27) (T qζn, v)V = Aq(ζn, v) ∀v ∈ V N , n = 1, . . . , N, q = 1, . . . , Qa,

and then assemble for each parameter y ∈ Γ and n = 1, . . . , N ,

(3.28) Tyζn =

Qa
∑

q=1

Θa
q(y)T

qζn.

The construction of the reduced spaces is summarized in the Greedy Algorithm 3.3.

3.4. A posteriori error estimation. Effective error estimator plays a crucial role not only
for efficient construction of reduced spaces by permitting sufficient training samples in the
greedy algorithm but also for reliable quantification of the reduced order approximation error
at each new parameter value. It must be rigorous such that it is valid for the whole param-
eter space and for each of the N -dimensional reduced basis approximations. It should also
be relatively sharp or tight, i.e. with c△ and C△ close to one, such that proper number of
reduced bases are constructed, neither too large (because c△ ≫ 1) to achieve efficiency nor
too small (C△ ≪ 1) to attain accuracy of the reduced order approximation. Most impor-
tantly, evaluation of the error estimator at each given parameter should be very inexpensive,
depending on N but independent of N . In the following, a posteriori error estimator that
exploits the error-residual relationship is presented, which will be demonstrated to fulfill the
above requirements. Let R : V N × Γ → R denote the residual defined as

(3.29) R(v; y) := F (v; y) −A(uN (y), v; y) ∀v ∈ V N .
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Algorithm 1 Greedy algorithm

1: procedure Initialization

2: Set the training set Ξtrain, tolerance εtol, N = 1;
3: Choose the first sample y1 ∈ Ξtrain, construct U1 and V1;
4: Compute error estimator △1(y) for each y ∈ Ξtrain;
5: end procedure

6: procedure Construction

7: while maxy∈Ξtrain
△N (y) ≥ εtol do

8: Pick yN+1 = argmaxy∈Ξtrain
△N (y);

9: Compute uN (yN+1) by solving (3.1);
10: Construct UN+1 = UN ⊕ span{uN (yN+1)} and VN+1;
11: Set N = N + 1 and compute △N (y) for each y ∈ Ξtrain;
12: end while

13: Set Nmax = N ;
14: end procedure

Let eNN (y) := uN (y)− uN (y) for any y ∈ Γ. Then the discrete inf-sup condition (2.2) implies

(3.30) ||eNN (y)||U ≤ sup
06=v∈V N

A(eN (y), v; y)

βN (y)||v||V
= sup

06=v∈V N

R(v; y)

βN (y)||v||V
=

||R(·; y)||(V N )′

βN (y)
.

Therefore, we can define the a posteriori error estimator as

(3.31) △N (y) :=
||R(·; y)||(V N )′

βNLB(y)
,

where 0 < βNLB(y) ≤ βN (y) is a lower bound for the discrete inf-sup constant, which can
be evaluated by a successive constraint method [43] with computational cost independent of
the high-fidelity degree of freedom N thanks to a Offline-Online decomposition procedure. In
the context of uncertainty quantification with statistical quantity of interest, a uniform lower
bound 0 < βNLB ≤ βN (y) for any y ∈ Γ is feasible and computationally more efficient.

Thus, the a posteriori error estimator defined in (3.31) is an upper bound for the reduced
solution error as a result of the estimate (3.30), establishing the first inequality of (3.16) with
c△(y) = 1, i.e.

(3.32) ||eNN (y)||U ≤ △N (y) ∀N = 1, . . . , Nmax,∀y ∈ Γ.

To see second inequality of (3.16), we define the Riesz representative êNN ∈ V N of the residual
R(·; y) that satisfies

(3.33) (êNN (y), v)V = R(v; y) ∀v ∈ V N ,

so that ||êNN (y)||V = ||R(·; y)||(V N )′ . By setting v = êNN (y) in (3.33), we have

(3.34) ||êNN (y)||2V = R(êNN (y); y) = A(eNN (y), êNN (y); y) ≤ γ(y)||eNN (y)||U ||êNN (y)||V ,
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where the inequality follows from the continuity of the bilinear form A with continuity constant
γ(y) <∞ for any y ∈ Γ. Therefore, by definition of the error estimator (3.31) and (3.34), we
have

(3.35) △N (y) ≤ γ(y)

βNLB(y)
||eNN (y)||U ∀N = 1, . . . , Nmax,∀y ∈ Γ,

which establishes the second inequality of (3.16) with C△(y) = γ(y)/βNLB(y) > 1.
Remark 3.4.The bounds (3.32) and (3.35) are valid for any N = 1, . . . , Nmax and y ∈ Γ,

so that the a posteriori error estimator △N is rigorous. As c△(y) = 1, when C△(y) =
γ(y)/βNLB(y) is close to one, this error estimator is also sharp. However, when this is violated,
i.e. C△ ≫ 1 encountered in convection dominated problems, the error estimator could be overly
conservative. In order to deal with this difficulty, we may choose a new norm for U or V ,
such that C△ is close or even equals to one with the renormation [71].

In the case U = V , it can be shown for a compliant output sN (y) = F (uN (y); y) that
(3.36)

|sN (y)− sN (y)| ≤ △s
N (y) := βNLB(y)△2

N (y) ≡
||R(·, y)||2

(V N )′

βNLB(y)
≤ γ(y)

βNLB(y)
|sN (y)− sN (y)|,

so that we can use the output error estimator △s
N in the Greedy Algorithm 3.3 to construct

the goal-oriented bases. In fact, by linearity of F and the Galerkin orthogonality we have

|sN (y)− sN (y)| = |F (uN (y); y)− F (uN (y); y)|
= A(uN (y), uN (y)− uN (y); y)

= A(eNN (y), eNN (y); y).

(3.37)

Therefore, the left inequality of (3.36) is obtained by the definition of êNN (y) and (3.32) via
(3.38)

A(eNN (y), eNN (y); y) ≤ ||êNN (y)||V ||eNN (y)||U ≤ ||êNN (y)||V △N (y) = ||R(·; y)||2(V N )′/β
N
LB(y).

To prove the right inequality of (3.36), we define the energy norm ||w||2y := A(w,w; y), so that
||w||2y ≤ γ(y)||w||2V by continuity of A. Together with Cauchy-Schwarz inequality, we have

(3.39) ||êNN (y)||2V = A(eNN (y), êNN (y); y) ≤ ||eNN (y)||y||êNN (y)||y ≤
√

γ(y)||eNN (y)||y||êNN (y)||V .

Hence, the second inequality of (3.36) is established by noting ||êNN (y)||2V = ||R(·, y)||2
(V N )′

.

In the more general case when U 6= V and the output is not compliant, L 6= F , a direct
error estimate for the reduced output error is given by

(3.40) |sN (y)− sN (y)| = |L(uN (y); y)− L(uN (y); y)| ≤ ||L(·; y)||(UN )′△N (y).

However, evaluating ||L(·; y)||(UN )′ for each y ∈ Γ is unfeasible; moreover it is possible that

(3.41) lim
N→∞

||L(·; y)||(UN )′△N (y)

|sN (y)− sN (y)| ∝ lim
N→∞

1

△N (y)
→ ∞,
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(where ∝ represents propositional to) when the reduced output is “close” to compliant so
that (3.36) holds, making the error estimate (3.40) very ineffective. To address this problem
and retain the quadratic convergence effect as in (3.36), we modify the output by adding a
correction/residual term as

(3.42) sN,M(y) = sN (y)−R(ψM (y); y),

where ψM (y) ∈ V du
M is the solution of the following reduced order dual problem

(3.43) A(wM , ψM ; y) = −L(wM ; y) ∀wM ∈ Udu
M ,

being Udu
M ⊂ UN and V du

M ⊂ V N the reduced test and trial spaces of dimension M , which can
be constructed by the Greedy Algorithm 3.3, noting the change of the test and trial spaces.

With the modification of the reduced output sN by sN,M , we have

(3.44) |sN (y)− sN,M(y)| ≤ △s
N,M (y) :=

||R(·; y)||(V N )′ ||Rdu(·; y)||(UN )′

βNLB(y)
,

where Rdu is the residual of the dual problem defined as

(3.45) Rdu(w; y) = −L(w; y)−A(w;ψM (y); y) ∀w ∈ UN .

The bound (3.44) can be obtained using an argument similar to (3.38), by noting that

|sN (y)− sN,M(y)| = |L(uN (y))− L(uN (y); y) + F (ψM (y); y)−A(uN (y), ψM (y); y)|
= | −A(eNN (y), ψN (y)) +A(eNN (y), ψM (y); y)|
= |A(eNN (y), ǫNM (y); y)| ( with ǫNM (y) := ψN (y)− ψM (y)).

(3.46)

Numerical evidence also demonstrates that △s
N,M (y) is upperly bounded by C|s(y)−sN,M(y)|.

3.5. Offline-Online decomposition. Offline-Online decomposition plays a pivotal role in
computational reduction of the reduced order methods, for both real-time evaluation of the
quantity of interest and construction of the reduced spaces. With the construction of the
reduced spaces in the last section, particularly the reduced test space explicitly constructed
as (3.22) with the basis given by (3.28), the reduced order problem (3.3) can be written as:
for any m = 1, . . . , N

(3.47)

Qa
∑

q

Qa
∑

q′

N
∑

n=1

Θa
q(y)Θ

a
q′(y)Aq(ζn, T

q′ζm)unN (y) =

Qf
∑

q

Qa
∑

q′

Θf
q (y)Θ

a
q′(y)Fq(T

q′ζm),

where Aq(ζn, T
q′ζm) and Fq(T

q′ζm) can be computed in the Offline stage only once. In the
Online stage, the reduced system (3.47) can be assembled and solved with O(Q2

aN +QfQa +
N3) operations, a number independent of N , which makes it affordable in real-time as long
as Qa, Qf and N are small.

For the evaluation of the rigorous and sharp a posteriori error estimator △N (y), or its
component ||R(·; y)||(V N )′ , by Riesz representation, it is equivalent to evaluate ||êNN (y)||V . For
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q = 1, . . . , Qf , let Cq denote the Riesz representative of the functional Fq(·) of (2.7) in V N ,
i.e.

(3.48) (Cq, v)V = Fq(v) ∀v ∈ V N , q = 1, . . . , Qf ;

analogously, for q = 1, . . . , Qa, and n = 1, . . . , N , let Ln
q denote the Riesz representative of

the functional Aq(ζn, ·; y) of (2.7) in V N , being ζn the n-th reduced basis, we have

(3.49) (Ln
q , v)V = Aq(ζn, v; y) ∀v ∈ V N , q = 1, . . . , Qa, n = 1, . . . , N.

By the definition of the residual (3.29) and the relation (3.33), we obtain

(3.50) êNN (y) =

Qf
∑

q=1

Θf
q (y)Cq −

Qa
∑

q=1

N
∑

n=1

Θa
q(y)u

n
N (y)Ln

q .

Therefore,

||êNN (y)||2V =

Qf
∑

q=1

Qf
∑

q′=1

Θf
q (y)Θ

f
q′(y)(Cq, Cq′)V

− 2

Qf
∑

q=1

Qa
∑

q′=1

N
∑

n=1

Θf
q (y)Θ

f
q′(y)u

n
N (y)(Cq,Ln

q′)V

+

Qa
∑

q=1

Qa
∑

q′=1

N
∑

n=1

N
∑

n′=1

Θa
q(y)Θ

a
q′(y)u

n
N (y)un

′

N (y)(Ln
q ,Ln′

q′ )V .

(3.51)

The y-independent quantities (Cq, Cq′)V , (Cq,Ln
q′)V and (Ln

q ,Ln′

q′ )V should only be computed

once in the Offline stage, then we have to assemble the y-dependent terms to compute ||êNN ||2V
with O((Qf + NQa)

2) operations for each y ∈ Γ, a cost still independent of N . Thus, the
Offline-Online decomposition not only enables efficient solution of the reduced order problem
(3.3) but also a very inexpensive evaluation of the error estimator, allowing a large number
of training samples as long as Qf +QaN is small.

Both the inexpensive evaluation of the solution and the error estimator can be carried out
by using the Offline-Online decomposition for the dual problem in the same manner.

4. Solving uncertainty quantification problems. The basic reduced order methods pre-
sented in the last section can be further developed aimed at the solution of UQ problems [14],
in the context of both forward UQ problems (sensitivity analysis, risk prediction or reliability
analysis, statistical moment evaluation) and “backward” or inverse UQ problems (optimal
control/design, shape optimization or reconstruction, parameter estimation). The essential
computational tasks for these UQ problems involve pointwise evaluation, i.e. evaluate some
quantity of interest at a large number of samples (e.g. risk prediction or failure probability
computation), as well as numerical integration, for the evaluation of statistical moments (e.g.
variance based sensitivity analysis).
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4.1. Pointwise evaluation – goal-oriented adaptive algorithm for risk prediction. A
major UQ problem is the quantification of the reliability of a system, or otherwise said how
to predict the risk of failure of the system, given uncertainties in some inputs, e.g. material
fatigue under random external loading, overheating under uncertain thermal conductivity, etc.
This requires evaluation of the failure probability defined as

(4.1) P0 := P (ω ∈ Ω : s(y(ω)) > s0) =

∫

Γ
χΓ0

(y)ρ(y)dy,

where s is known as limit state function or performance function to measure the reliability of
the system, e.g. the averaged temperature distribution for thermal conduction, while s0 is a
critical value above which the system fails. Correspondingly, the domain of failure probability
is defined as

(4.2) Γ0 := {y ∈ Γ : s(y) > s0};

χΓ0
is the characteristic function of Γ0, that is χΓ0

(y) = 1 if y ∈ Γ0 and vanishes otherwise.
The failure probability can be evaluated by Monte Carlo sampling: sample a sequence of
realizations, ym, m = 1, . . . ,Mmc, of the random variables according to their joint probability
density function ρ : Γ → R, solve the underpinning high-fidelity model at each sample, evaluate
the limit state function and compute the Monte Carlo failure probability by

(4.3) Pm
0 =

1

Mmc

Mmc
∑

m=1

χΓ0
(ym).

In order to alleviate the heavy computational burden of this approach, several methods have
been developed, for instance, the first and second order reliability method [60, 63], the response
surface method [31, 10]. They all share the same paradigm: first constructing a surrogate for
the limit state surface S0 = {y ∈ Γ : s(y) = s0}, then evaluating the failure probability by
(4.1). However, when the limit state surface lacks smoothness or features possible discon-
tinuities or singularities, these methods either possibly fail in reconstructing the right limit
state surface, resulting in erroneous failure probability, or demand too much computational
effort for more accurate reconstruction. An approach based on the polynomial chaos expan-
sion and a hybrid algorithm for iterative evaluation of failure probability has been proposed
in [45, 46]. However, reconstructing the limit state surface in high dimensional probability
space by polynomial chaos approximation is rather challenging. Moreover, lack of smooth-
ness brings an essential difficulty for the polynomial chaos approximation, due to the onset of
Gibbs phenomenon [15].

In this context, reduced order methods can achieve both efficiency and accuracy thanks
to their optimal approximation property with respect to the Kolmogorov width as well as
their capability of producing certified results thanks to a rigorous, reliable and inexpensive a
posteriori error estimators. As higher accuracy is needed to determine if a sample y near the
state limit surface leads to a failure or not (because s(y) is rather close to s0), a goal-oriented
adaptive algorithm can be developed to facilitate accurate reconstruction of the limit state
surface and tolerate a coarse approximation of output far from it [15]. The goal-oriented
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adaptive error estimator is defined as

(4.4) △a
N (y) =

△s
N (y)

|sN (y)− s0|
,

where sN is the reduced output by primal-dual approximation in reduced space of dimension
N given by (3.42) (here we take N =M), △s

N (y) is the error estimator for the error |sN (y)−
sN(y)| defined in (3.44). The next sample for construction of reduced spaces is chosen as

(4.5) yN+1 = max
y∈Ξtrain

△a
N (y).

For a more accurate evaluation of the failure probability, the number of samples could be very
large, e.g. 106 or larger, due to the slow convergence of the Monte Carlo method. In order
to efficiently construct the reduced spaces, we propose an adaptive approach to explore the
Monte Carlo sample set by adaptively enrich the training set of the greedy algorithm.

Algorithm 2 Goal-oriented Adaptive Greedy Algorithm

1: procedure Initialization

2: Set the initial training set set M0, maximum steps Smax, choose scaling parameter θ;
3: Set N = 1, choose y1 ∈ Γ, construct U1 and V1 for both primal and dual problems;
4: end procedure

5: procedure Construction and Evaluation

6: for m = 0, . . . , Smax do

7: Sample the training set Ξm
train with cardinality |Ξm

train| =M0θ
m;

8: Compute sN (y) and △a
N (y) according to (4.4) for each y ∈ Ξm

train;
9: while maxy∈Ξm

train
△a

N (y) ≥ 1 do

10: Pick yN+1 = argmaxy∈Ξm
train

△a
N (y);

11: Compute uN (yN+1) by solving (3.1);
12: Construct UN+1 = UN ⊕ span{uN (yN+1)} and VN+1;
13: Compute sN (y) and △a

N (y) for each y ∈ {y ∈ Ξm
train : △a

N (y) ≥ 1};
14: Set N = N + 1;
15: end while

16: Evaluate the failure probability according to (4.3) with Mmc =M0(θ
0 + · · ·+ θm).

17: end for

18: end procedure

The a posteriori error estimator △a
N , related to △s

N , plays a critical role in accurate
evaluation of the failure probability. Whenever the former is smaller than 1, the output is
guaranteed to be either a failure (when sN (y) > s0) or not (when sN (y) ≤ s0). This certifi-
cation is a result that the reduced error is bounded by the error estimator as demonstrated
both in (3.32) and (3.44). In fact, if △a

N (y) < 1, either △s
N (y) < sN(y)− s0, we have

(4.6) sN (y)− s0 = sN (y)− sN(y) + sN (y)− s0 ≥ −△s
N (y) + sN (y)− s0 > 0,

which verifies that y is in the failure domain, or △s
N (y) < s0 − sN (y), so that

(4.7) sN (y)− s0 = sN (y)− sN (y) + sN (y)− s0 ≤ △s
N (y) + sN (y)− s0 < 0,
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implying that y falls outside of the failure domain. By the goal-oriented adaptive greedy
algorithm 4.1, the error estimator △a

N is smaller than one for all the samples, so that the
output at each sample can be explicitly determined whether it leads to a failure or not,
resulting in accurate evaluation of the failure probability.

Remark 4.1.In the presence of high-fidelity error s(y) − sN (y), or errors arising from
other sources, e.g. empirical interpolation of nonaffine random field, we also need to take
them into account in determining if the sample is in the failure domain [15]. If the errors are
difficult to quantify by a posteriori error estimator, or if the error estimator is not an upper
bound for the error, one may apply an iterative procedure to verify if the failure probability is
accurate, leading to solution of the high fidelity problem at more samples [15, 46].

4.2. Evaluation of moments – weighted algorithm for arbitrary probability density.
In many UQ applications, rather than the probability distribution of the output, we are
interested in its statistical moments, e.g. expectation, variance, and their related quantities
e.g. variance based global sensitivity. In these cases, numerical integration with respect to
arbitrary probability density ρ : Γ → R of the random variables y : Ω → R is of more
interest than pointwise evaluation. To evaluate the integration under general probability
density functions, the generalized polynomial chaos expansion that chooses the orthonormal
polynomials according to the density functions can achieve the same accuracy [73] with less
polynomial basis functions. In the framework of reduced order methods, a weighted algorithm
can be developed by taking advantage of the density functions with the aim of using less
reduced basis functions yet achieving the same accuracy of integration. In particular, for the
evaluation of the expectation of an output s : Γ → R by reduced basis approximation, we
have the error

(4.8) |E[s]− E[sN ]| ≤
∫

Γ
|s(y)− sN (y)|ρ(y)dy ≤

∫

Γ
△s

N (y)ρ(y)dy.

In order to balance the approximation error of the expectation and the number of reduced
basis functions to construct, we define a new weighted a posteriori error estimator △ρ

N by
weighting the error estimator △s

N via the density function ρ, i.e. [20]

(4.9) △ρ
N (y) = ρ(y)△s

N (y),

which implies that the error estimator △s
N tends to be smaller at the sample whose density is

larger. For instance, in the case of discrete distribution with probability 0 < pn < 1 at yn for
n = 1, . . . , Np with p1 + · · ·+ pNp = 1, the expectation error is bounded by △s

N (y1)p1 + · · ·+
△s

N (yNp)pNp , which is minimized if △s
N (y1)p1 = · · · = △s

N (yNp)pNp . In the case of continuous
distribution, by Monte Carlo quadrature, we have the approximation of the expectation as

(4.10) |E[s]− E[sN ]| ≤
∫

Γ
△s

N (y)ρ(y)dy ≈ 1

M

M
∑

m

△s
N (ym),

where the realizations y1, . . . , yM are sampled according to the density function ρ, yielding
relatively more samples where the density function is large, so that a relatively smaller error
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estimator △s
N at these samples gives rise to a smaller quadrature error. As for high order

statistical moments, we have

|E[sk]− E[skN ]| ≤
∫

Γ
|s(y)− sN (y)|

∣

∣

∣

k
∑

i=1

si−1(y)sk−i
N (y)

∣

∣

∣
ρ(y)dy

≤ sup
y∈Γ

∣

∣

∣

k
∑

i=1

si−1(y)sk−i
N (y)

∣

∣

∣

∫

Γ
△s

N (y)ρ(y)dy,

(4.11)

which make the weighted error estimator an effective choice to minimize the statistical error
at the same number of reduced bases. For the error bound of the reduced order approximation
of statistical moments, we refer to [9, 40]. For efficient evaluation of the statistical moments
using tensor product quadrature formula based on sparse grid techniques, see [16].

4.3. Stochastic/statistical inverse problems – Bayesian and Lagrangian approaches.
Reduced order methods are especially useful for stochastic and/or statistical inverse problems
in the “many-query” context, including stochastic optimal control and design, data assimila-
tion, optimization and parameter identification under uncertainties. These problems can be
commonly addressed by the Bayesian inference approach (probability approach) and/or by
Lagrangian variational formulation (deterministic approach). In this section, we present the
two approaches with the application of reduced order methods in dealing with these inverse
problems.

In the Bayesian approach, upon prescribing some knowledge of the unknown input char-
acterized by some prior probability distribution, and given some data for the model output,
we update the distribution of the input terms as posterior distribution (e.g. [66]). More
precisely, suppose the unknown input can be represented by a sequence of (possibly infinite)
random variables y obeying some prior distribution with density ρ0(y), which can be either
constructed from some measurements or provided by expert opinion. Moreover, suppose some
data of the model output O : U → R

K is available, typically described by

(4.12) κ = O(u) + η,

where κ ∈ R
K is a finite (K <∞) dimensional vector representing observational data; O is aK

dimensional output functional depending on the solution u, e.g. O(u) = (s(1)(u), · · · , s(K)(u))⊤

with each s(k)(u) as a functional for 1 ≤ k ≤ K; η is a (measurement) noise described by
K dimensional random vector. A common choice for η is Gaussian random vector obeying
distribution N (0,Ση) with covariance matrix Ση ∈ R

K×K
+ . A practical assumption for the

structure of this covariance is given as Σ = σηI, being 0 < ση < ∞ the standard deviation
and I the K ×K identity matrix. Under such setting, we define the likelihood function as

(4.13) ρy(κ−O(u)) :=
1

√

(2π)K |Ση|
exp

(

−1

2
||κ−O(u(y))||2

Σ−1
η

)

,

where |Ση| is the determinant of Ση and the norm ||ξ||2
Σ−1

η
= ξ⊤Σ−1

η ξ for any ξ ∈ R
K . Then

by Bayes’ theorem, the posterior density function is given by

(4.14) ρκ(y) =
1

Z
ρ0(y)ρy(κ−O(u)), with Z =

∫

Γ
ρ0(y)ρy(κ−O(u(y)))dy,
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where Z is the normalization constant and Γ is the image of the random variables y. If
the prescribed prior distribution is also a Gaussian distribution N (0,Σy), then the posterior
distribution is a Gaussian distribution with the posterior density

(4.15) ρκ(y) ∝ exp

(

−1

2
||κ−O(u(y))||2

Σ−1
η

− 1

2
||y||2

Σ−1
y

)

.

In the computation of the posterior density ρκ(y), we either need to evaluate the constant
Z by some numerical integration technique or to sample from a dynamics that preserves
the posterior measure, or converges to the posterior density, e.g. the Markov chain Monte
Carlo sampling using Metropolis–Hastings algorithm. In both techniques, a large number of
numerical solutions of the underpinning PDE has to be computed, leading to considerable
computational cost if just a single solution of the PDE is already very expensive. This can
be regarded as an ideal case for reduced order methods: actually, the expensive high-fidelity
solution can be replaced by an inexpensive reduced solution in the numerical integration Z,
yielding

(4.16) Z =

∫

Γ
ρ0(y)ρy((κ−O(uN (y)))|y)dy,

where uN is the reduced order approximate of the high fidelity solution uN .
The Bayesian approach incorporates the statistical data and the model with unknown ran-

dom input to calibrate the information of the input, which further results in better prediction
of solution and related quantities. This approach is naturally suited for parameter estimation,
model calibration, data assimilation, optimization and design, etc. Another approach that
does not require the measurement noise on the data, relies on a Lagrangian variational formu-
lation. It aims to minimize a cost functional consisting of two terms,the former meaning the
discrepancy between model prediction and the given data (a desirable state or experimental
observation), the latter representing a regularization of the unknown input that makes the
inverse problem well-posed:

(4.17) J(u, ς; y) =
1

2
||κ−O(u(y))||2D +

λ

2
||ς(y)||2R.

Here κ could be a finite dimensional observation data as before, or a distributional field, e.g.
a desirable solution field at a certain region, when O is a restriction operator that maps the
solution to itself in this region; the norm || · ||D measures the discrepancy between the data κ
and the model prediction O(u); ς is called control function and represents the unknown input,
which could be a forcing term, a boundary condition or a material coefficient, etc.; || · ||R is the
Tikhonov regularization norm. The relative importance of the regularization term compared
to the discrepancy term is characterized by the parameter λ > 0. A typical inverse problem,
e.g. parameter estimation or optimal control, can be formulated as:

(4.18) min
u∈U,ς∈R

J(u, ς; y) such that (2.1) holds.

We remark that if the measure D is taken as Ξ−1
η and the regularization term ς(y) coincides

with y with the measure R taken such that λ|| · ||2R = || · ||2
Ξ−1
y
, then the optimal solution of the
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constrained optimization problem (4.18) coincides with the MAP estimator of the Bayesian
approach, i.e. the point of maximal posterior density.

To solve the nonlinear constrained optimization problem (4.18), direct nonlinear program-
ming based on Newton or quasi Newton methods can be used. Alternatively, we can use a
Lagrangian approach [19, 17] with the Lagrangian functional defined as

(4.19) L(u, p, ς; y) = J(u, ς; y) +A(u, p; y)− F (p; y),

where p ∈ U is the adjoint (or dual) variable, corresponding to the state (or primal) variable
u ∈ U . A necessary condition is that the optimal solution (u∗(y), p∗(y), ς∗(y)) ∈ U × V ×R is
a critical point of the Lagrangian functional, i.e.

(4.20)







A(u∗(y), v; y) = F (v) ∀v ∈ V,
A(q, p∗(y); y) = (O(u∗(y))− κ,Ou(u

∗(y))(q))D ∀q ∈ U,
Lς(u

∗(y), p∗(y), ς∗(y); y)(ϑ) = 0 ∀ϑ ∈ R.

This Karush–Kuhn–Tucker (KKT) or first order optimality system comprises the state equa-
tion, the adjoint equation and the optimality condition, with Ou and Lς standing for the
Fréchet derivative of O with respect to u and L with respect to ς, respectively. The optimial-
ity condition depends on the unknown input ς(y); for instance when the latter is the forcing
term, we obtain

(4.21) Lς(u
∗(y), p∗(y), ς∗(y); y)(ϑ) = (λς∗(y) + p∗, ϑ)R.

As we need to solve this coupled KKT system (4.20) for many times, reduced order meth-
ods can be effectively applied for the reduction of the total computational cost. With this aim,
(4.20) can be approximated by the following reduced KKT system: find (u∗N (y), p∗N (y), ς∗N (y)) ∈
UN × VN ×RN (the reduced optimal solution) such that
(4.22)







A(u∗N (y), vN ; y) = F (vN ) ∀vN ∈ VN ,
A(qN , p

∗
N (y); y) = (O(u∗N (y))− κ,O′(u∗N (y))(qN ))D ∀qN ∈ UN ,

Lς(u
∗
N (y), p∗N (y), ς∗N (y); y)(ϑN ) = 0 ∀ϑN ∈ RN .

Construction of the reduced spaces UN , VN and RN , an effective a posteriori error estima-
tion, and offline-online computational decomposition play a crucial role in the efficiency and
accuracy of the reduced order approximation for the optimality system. We will exemplify
this Lagrangian approach by solving a data assimilation problem in the next section.

5. Applications. In this section, we demonstrate the accuracy and efficiency of reduced
order methods for the solution of three uncertainty quantification problems that are repre-
sentative of the families of problems considered in the previous section: a problem of failure
probability evaluation/risk prediction for crack propagation relevant to fracture mechanics; the
Bayesian inversion of the material property via time dependent heat conduction; a stochastic
data assimilation problem for velocity field of blood flow in a carotid artery. These problems
are used as illustrative examples to extend the reduced order methodology from its state of
the art to a more complex settings that is more suitable for UQ applications.
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5.1. Structural mechanics – linear elasticity model for crack propagation. Accurate
computational simulation and prediction of material failure in the form of crack propagation
is difficult. We consider prediction of brittle failure or the risk of fatigue-induced crack growth,
where the geometry of the crack can be parametrized to accommodate variation of crack length
and the material is subject to loading with uncertainty. In particular, we consider the center-
cracked tension speciman as in [42]: a plate contains an internal center crack under tension
from top and bottom edge, whose geometry is symmetric with four equal regions as visualized
in the left part of Figure 1. Because of the symmetry, we only need to consider a quarter of it,
e.g. the top-right region D1 as in the middle part of Figure 1. In the non-dimensional setting,
the half width of the plate is 1 and the half height of the plate is µ2 ∈ [0.5, 2], the half length
of the center crack is µ1 ∈ [0.2, 0.8]. The domain Dµ = D1 can be split into subdomains
Dµ = D1

µ ∪ D2
µ ∪ D3

µ as in Figure 1 (middle) in order to accommodate the large variation
of displacement by refining the finite element discretization near the crack tip region around
(µ1, 0), see one sample mesh in Figure 1 (right).
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Figure 1. Left: geometry of a plate containing an internal center crack under tension, with four symmetric
regions D1–D4 ; middle: the top-right region D1; right: an adapted/refined mesh near the crack tip region.

A normal tension subject to uncertainty σ(y) = σ0(1+ y) is imposed on the top boundary
∂Dt, where σ0 = 1 and y ∈ U(−

√
3,
√
3) obeys uniform distribution with zero mean and unit

variance. Zero traction is imposed on the right and on the crack of the plate. Symmetric
boundary conditions are imposed on the remaining boundaries. The displacement of the
plate is governed by a linear elasticity equation in the physical domain Dµ, where µ ∈ Pµ =
[0.2, 0.8]× [0.5, 2], i.e. given µ ∈ Pµ and realization y ∈ R, find u(µ, y) = (u1(µ, y), u2(µ, y)) ∈
Uµ = {v ∈ (H1(Dµ))

2 : v1|∂Dl
= 0, v2|∂Db

= 0}, such that

(5.1)

2
∑

i,j,k,l=1

∫

Dµ

∂ui
∂xj

Cijkl
∂vk
∂xl

dx1dx2 =

∫

∂Dt

σ(y)v2dx1 ∀v ∈ Uµ.

where the Cijkl = c1δijδkl + c2(δikδjl+ δilδjk) is the constitutive tensor, being c1 =
ν

(1+ν)(1−2ν)

and c2 = 1
2(1+ν) the Lamé constants for the plain strain with the Poisson ratio ν = 0.3. Let
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Dµ̄ = D1
µ̄ ∪ D2

µ̄ ∪ D3
µ̄ = (0, 1) × (0, 1.25), where µ̄ = (µ̄1, µ̄2) = (0.5, 1.25) (the center of the

parameter domain), denote the reference domain, we transform the equation (5.1) into the
one expressed in the reference domain, which we write as: find u ∈ Uµ̄, such that

(5.2) a(u, v;µ) = f(v;µ, y) ∀v ∈ Uµ̄.

As the transformation is affine with respect to the parameter µ, we obtain that the bilinear and
linear forms in (5.2) (a combination of integration in the three reference subdomains) are still
affine with 10 and 1 terms, respectively, thus permitting efficient Offline-Online decomposition.

Our quantity of interest is energy release rate (ERR) (or its related quantity stress intensity
factor (SIF)), one of the most important quantities for the prediction of crack propagation,
that summarizes stress, strain and displacement field in the near crack tip region:

(5.3) s(u;µ, y) = −1

2

∂

∂µ1
a(u, u;µ) +

∂

∂µ1
f(u;µ, y) =: b(u, u;µ) + ℓ(u;µ, y).

We consider the dual problem: find ψ ∈ Uµ̄ s.t.

(5.4) a(v, ψ;µ) = b(u, v;µ) +
1

2
ℓ(v;µ, y) ∀v ∈ Uµ̄,

and define the new variables U = (U+, U−) ∈ U2
µ̄,

(5.5) U+(µ, y) =
1

2
(u(µ, y) + ψ(µ, y)) and U−(µ, y) =

1

2
(u(µ, y)− ψ(µ, y)).

Then the system (5.2), (5.4) can be reformulated as: find U(µ, y) ∈ U2
µ̄, such that

(5.6) A(U, V ;µ) = F (V ;µ, y) ∀V ∈ U2
µ̄,

where the bilinear form A : U2
µ̄ × U2

µ̄ → R and the linear form F : U2
µ̄ → R are given by

A(U, V ;µ) =− b(U+, V+;µ)− b(U−, V+;µ) + 2a(U+, V+;µ)

− b(U−, V−;µ)− b(U+, V−;µ)− 2a(U−, V−;µ),
(5.7)

and

(5.8) F (V ;µ, y) = f(V+;µ, y) +
1

2
ℓ(V+;µ, y)− f(V−;µ, y) +

1

2
ℓ(V−;µ, y).

Both are affine forms with respect to µ and y. Moreover, it can be shown by definition that

(5.9) s(u;µ, y) = F (U ;µ, y).

This renders s a compliant quantity in the new formulation (5.6), for which we obtain a reliable
and sharp a posteriori error bound as given in (3.38) for its reduced basis approximation sN .
We remark that the bilinear form (5.7) does not necessarily satisfy the inf-sup condition
(2.2) for arbitrary parameter µ if one uses L2 norm for U2

µ̄, but it does satisfy this condition
in the parameter range Pµ when we rather take the energy norm ||U ||2

U2
µ̄
= A(U,U ; µ̃) at
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µ̃ = (0.2, 2) (note that for the sake of well-posedness of (5.6), we have to take µ̃ different from
µ̄ = (0.5, 1.25), the parameter value for the reference geometry, in this particular example).
The dependence of the inf-sup constant on the parameter µ is shown in Figure 2 (left),
where the minimum value βN ≈ 0.0192 is attained at µ = (0.5, 0.8). We use interpolation
(based on Gaussian radial basis functions at 100 random samples 1) to approximate βN for
its inexpensive Online evaluation, denoted as βNi , whose relative error (βNi − βN )/βN is
concentrated at 0 and uniformly smaller than 4% as shown in Figure 2 (right).
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Figure 2. Dependence of the high-fidelity inf-sup constant βN (µ) on µ = (mu1, µ2) (left) and the relative
approximation error of βN (µ) by Gaussian radial basis interpolation at 100 random samples (right).

Figure 3 displays the displacement field u = (u1(µ, y), u2(µ, y)) at three parameter values
µ as well as the dependence of the energy release rate s(u;µ, y) on the parameter µ at the
realization y = 0. We can observe that the energy release rate depends nonlinearly on µ and
becomes large (singular) near the region µ = (0.8, 0.5), i.e. when the length of the crack is
large and the height of the plate is small. Therefore, in order to predict the risk of material
failure (or center crack propagation), reduced basis approximation in this region should be
reasonably more accurate than in the other regions. Figure 4 depicts the parameter samples
selected by the greedy algorithm (left) and the corresponding maximum and mean values of
the error and the a posteriori error bound of the reduced basis approximation sN of the energy
release rate s at 100 random parameter samples (right). We can observe that the samples are
distributed over all the parameter domain and more samples are selected in the region of high
risk, where the energy release rate varies/grows very fast. From the right part of Figure 4
we can see that the a posteriori error bound is reliable, i.e. always larger than the error, and
relatively sharp with effectivity (bound/error) staying around several tens.

For the evaluation of the failure probability/risk prediction of the crack propagation, we set
the critical value that indicates the crack propagation as s0 = 10, and apply the goal-oriented
adaptive algorithm in both the parameter domain Pµ ∋ µ and the probability domain Γ ∋ y,
with M0 = 100 and θ = 10, presented in section 4.1 for the construction of the reduced basis
approximation. The reduced basis samples selected (order of selection indicated by marker

1Other methods such as Lagrange interpolation, sparse grid interpolation in high dimensions [21], and
successive constraint method [43] are also applicable for Online evaluation of the inf-sup constant βN .
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Figure 3. Left: displacement field u1 (top) and u2 (bottom) at µ = (0.5, 1.25); middle: u1 and u2 (top) at
µ = (0.4, 0.5) and energy release rate (ERR) (bottom); right: u1 (top) and u2 (bottom) at µ = (0.7, 1.8).
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Figure 4. Left: parameter samples for RB construction by greedy algorithm; right: the maximum and mean
values of the RB error and the a posteriori error bound for 100 random parameter samples.

size) by this algorithm is shown in Figure 5, from which we can see that all the samples
(except the first one pre-determined at µ̃ = (0.2, 2)) are located in the region of high risk
or displays large variation, particularly the (singular) region near µ = (0.8, 0.5), leading to
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Figure 5. Left: parameter samples for RB construction by goal-oriented adaptive greedy algorithm; right:
number of potential samples {y ∈ Ξm

train,△
a
N (y) ≥ 1} to be selected at each iteration step m = 0, . . . , 4.

smaller number of samples thus more efficient Online evaluation than the uniform greedy
algorithm. Moreover, from Figure 5 (right) we can see that only a small number of samples
at each iteration is the potential samples for the construction of reduced basis, though the
number of Monte Carlo samples is rather large (10m+2, m = 0, . . . , 4) for the evaluation of
failure probability. The failure probability at the parameter value µ = (0.4, 0.5) is Pm

0 = 0.067
computed by formula (4.3) with reduced basis evaluation at 111100 Monte Carlo samples in
total, which is free from the reduced basis approximation error of the energy release rate due
to the property (4.6) and (4.7). More importantly, only 27 high-fidelity problems are solved
instead of 111100, leading to considerable computational reduction.

5.2. Heat conduction – time-dependent Bayesian inversion of material flaw. In this
example, we consider a transient thermal analysis for detection of flaws/defects/cracks in
a composite material bonded to a concrete [51]. This example provides new insights for
time dependent problems. The non-dimensional geometry is visualized in Figure 6, where a
delamination crack is present on the interface in the center, whose length 2 × y1 is unknown
as it can not be observed; we assume that y1 follows a beta distribution beta(α,α) supported
on [0.2, 0.8] with mean 0.5; the bottom part D1

y1 is made of the material of concrete and the
top layer D2

y1 is made of the material of composite, which both depend on y1. Moreover, the
ratio of the conductivity of the composite over that of the concrete y2, is unknown and obeys
a beta distribution beta(α,α) supported on [0.5, 2] with mean 1.25. A mesh sample is shown
in the left part of Figure 6, where the mesh is refined near the the crack tip region in order
to accommodate the large variations of temperature.

In order to calibrate the two unknowns, we impose time-dependent surface heat flux
on the top edge and measure the temperature distribution on D1

m and D2
m, which are two

squares of size 0.2 × 0.2 with centers at (1.5, 1.2) and (2.5, 1.2), respectively. We consider
the time period of t ∈ [0, 5] and prescribe zero initial condition at t = 0. A homogeneous
Dirichlet boundary condition, i.e. zero temperature, is imposed on the bottom boundary;
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Figure 6. Left: the geometry of the material of composite and concrete with delamination crack in the
interface and with two measurement sites; right: an adapted/refined mesh near the crack tip region.

a homogeneous Neumann boundary condition, i.e. zero heat flux, is prescribed on the left
and right boundaries, and the crack interfaces from above and below. The heat flux on the
whole top boundary is prescribed uniformly as one, g(t) = 1, during the first half period
t ∈ [0, 2.5) and zero, g(t) = 0, during the second half period t ∈ [2.5, 5]. The heat conduction
problem reads: at any given time t ∈ (0, 5], at any realization of the random variables y ∈
Γ = [0.2, 0.8] × [0.5, 2], find the temperature distribution field u(t, y) ∈ Uy1 = {v ∈ H1(Dy1) :
v|∂Db

= 0}, being Dy1 = D1
y1 ∪D2

y1 , such that

(5.10)

∫

Dy1

∂tuvdx+

∫

D1
y1

∇u · ∇vdx+

∫

D2
y1

y2∇u · ∇vdx =

∫

∂Dt

g(t)vdx1 ∀v ∈ Uy1 .

After an affine transformation of the geometry to the reference geometry with ȳ1 = 1, i.e. the
reference length of the crack being 1, we obtain the following problem: at any t ∈ (0, 5] and
y ∈ Γ, find u(t, y) ∈ Uȳ1 , such that

(5.11) m(∂tu, v; y) + a(u, v; y) = f(v; t) ∀v ∈ Uȳ1 ,

where m, a and f are affine with respect to y, with 4, 12 and 1 affine terms, respectively.
After temporal discretization using backward Euler scheme with δt = 0.05 (thus leading to
5/0.05 = 100 time steps), we have

(5.12) m(ul, v; y) + δta(ul, v; y) = δtf(v; tl) +m(ul−1, v; y) ∀v ∈ Uȳ1 , l = 1, . . . , 100,

where ul = u(tl) and u0 = 0 (zero initial condition), being tl = lδt, l = 0, 1, . . . , 100. To solve
(5.12), we first apply finite element for high-fidelity approximation of this problem, based on
which we construct the reduced basis approximation by POD-greedy algorithm [39], that is
POD (section 3.2) in temporal variable and greedy algorithm (section 3.3) in random variables.
Note that (5.12) can be written in the general form (2.1), for the greedy algorithm we propose,
following the same steps in section 3.4, a weighted a posteriori error estimator (introduced in
section 4.2, formula (4.9))

(5.13) △ρ0
N (tl, y) =

(

ρ0δt

βNLB

l
∑

l′=1

||êNN (tl
′
, y)||2V

)1/2

, l = 1, . . . , 100,
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where ρ0 is the prior density of y, êNN (tl
′
, y) is the Riesz representative of the residual of

(5.12) at the time tl
′
. When the new reduced basis sample y is chosen according to this error

estimator, we solve (5.12) by finite element approximation at each time step and apply POD
to the finite element solutions at all the time steps to get one new basis. We remark that
a few new basis functions are also feasible, whose number depends on the tolerance for the
POD error (3.12).

In order to estimate the crack length y1 and the conductivity ratio y2, we consider the two
measurements of the averaged temperature distribution at several time instances, defined as

(5.14) s
(k)
i (u) =

∫

Di
m

u(tlk , x, y)dx i = 1, 2, k = 1, . . . ,K/2.

Then we denote the output as O(u) = (s
(1)
1 , . . . , s

(K/2)
1 , s

(1)
2 , . . . , s

(K/2)
2 )⊤ ∈ R

K . The corre-
sponding measurement data κ, defined in (4.12) as κ = O(u) + η, are provided with measure-
ment noise η ∼ N (0,Ση), where the covariance matrix Ση = diag(σ2, . . . , σ2) with σ = 0.1.
The measurement data are taken every 5 time steps, leading to K = 2× (100/5) = 40. Then
by Bayes’ theorem we obtain the posterior density of the random variable y in (4.14), where
we need to evaluate the normalization constant Z by integration with respect to the prior
(beta) distribution of y, for which we apply a two-dimensional tensor-product Gauss-Jacobi
quadrature formula. In particular, we need to evaluate the output O(u) for every integration
nodes y. Note that this quantity is not compliant, so we can also apply the primal-dual ap-
proach introduced in section 3.4 and correct the output by the residual of the primal problem
evaluated at the dual solution, as in (3.42). More explicitly, the dual problems (corresponding
to measurement) read 2: find ψi(t, y) ∈ Uȳ1 such that

(5.15) m(v, ∂tψ; y) + a(v, ψ; y) = ℓi(v) ∀v ∈ Uȳ1 , being ℓi(v) =

∫

Di
m

vdx, i = 1, 2.

Then, similarly to the definition (3.44) for steady problems, the weighted a posteriori error

estimator for the output s
(k)
i defined in (5.14) is given by

(5.16) △s,ρ0
N,M(tlk , y) =

(

ρ0δt

βNLB

lk
∑

l′=1

||êNN (tl
′
, y)||2V

)1/2




ρ0δt

βNLB

100
∑

l′=lk

||ẽNM (tl
′
, y)||2U





1/2

,

where ẽNM (tl
′
, y) is the Riesz representative of the residual of the dual problem evaluated at

the reduced basis dual solution approximated by M basis at time tl
′
.

Figure 7 displays the temperature distribution at several time instances at the reference
sample y = (1, 1), from which we can see that the temperature is relatively higher in the local
region above the crack than in the other region, so that the location of two measurement sites
(featuring different temperature and variation) are reasonable. It increases (from t = 0 to
t = 2.5) as heat flux is imposed and decreases (from t = 2.5 to t = 5) as heat flux is set to

2Instead of taking O(u) as the output, we can also direct take the likelyhood function ρ0(y)ρy(κ − O(u))
in (4.14) as the output for the evaluation of Z, which is however nonlinear with respect to the solution and
nonaffine with respect to the parameter. This difficulty has been addressed in [23].
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Figure 7. Temperature distribution of the heat conduction at four time instances t = 0.05, 0.5, 2.5, 5.

zero, and shows a large variation around the crack tip region so that the locally refined mesh
is important to capture this variation.

The left part of Figure 8 shows the reduced basis samples that are constructed by the
weighted error estimator (5.13) and by the non-weighted one, i.e. without weighting by the
prior density function. From this figure we can observe that the weighted error estimator obeys
the prior distribution (beta distribution beta(10, 10)) and selects the samples that lead to high
density, while the non-weighted error estimator produces samples that are most located along
the boundary. The right part of Figure 8 depicts the errors and the error bounds of reduced
basis approximation of the average of the output ℓ1(u(t

50)) at one time instance by the two
different error estimators indexed with RB (non-weighted type) and wRB (weighted type),
from which we can see that in order to achieve the same errors, we need much less reduced
bases by the weighted scheme, thus achieving more efficiency. Moreover, we can observe that
the average of the weighted a posteriori error estimator, △s,ρ0

N,M (t50, y), is relatively sharp. Here
we take the number of dual bases as M = 1, 2, . . . ,Mmax − 1,Mmax and N linearly spanned
between 1 and Nmax with Mmax values, where Mmax ≤ Nmax.

We create the observation data at the value y = (0.6, 1) with noise as specified before and
compute the posterior density of y. The left part of Figure 9 shows the prior and the posterior
density functions of half of the crack length y1, from which we can observe that the posterior
density function concentrates in a narrow region (depending on the measurement noise) at
the preset value y1 = 0.6. The convergence of the weighted reduced basis approximation
error of the expectation of y1 with respect to the finite element approximation is displayed in
the right part of Figure 9, which confirms that the weighted reduced basis approximation is
efficient (with a small number of degrees of freedom) in achieving high accuracy for posterior
expectation. We remark that for the computation of the expectation, we used tensor-product
grid in this two-dimensional inverse problems. For high-dimensional problems, more advanced
techniques should be applied together with the weighted reduced basis method [23].
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Figure 8. Left: reduced basis samples constructed by the non-weighted error estimator (RB) and the
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Figure 9. Left: the prior and the posterior density functions (pdf) of y1; right: decay of the weighted
reduced basis approximation error for the expectation of y1 conditioned on the measurement data.

5.3. Fluid dynamics – variational data assimilation for blood flow. We consider a sim-
plified blood flow model in the bifurcating human common carotid artery, with a typical
geometry sketched in the left part of Figure (10) and a sample mesh in the right part.3

The blood flow pattern through this part of artery plays an important role, e.g. in in-
vestigating the development of vascular diseases, which may depend on many factors with
uncertainties. Suppose the velocity on the cross-section can be measured along the dashed
line, e.g. by MRI, then we are interested in using these data in the blood flow model in
order to better characterize the velocity field. This process is known as data assimilation.

3A geometrical parametrization of a simplified carotid artery combined with a reduced order modelling
techniques has been proposed in [62].
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Figure 10. Left: sketch of a simplified geometry of the common carotid artery bifurcation (in 2d) and the
cross section of the observation data (along the dashed line); right: a sample mesh of the geometry.

For simplicity, we consider Stokes equations 4 to describe the blood flow, written as: find
(u, p) ∈ U × Q, being U = {v ∈ (H1(D))2, v|∂Dw

= 0} and Q = {q ∈ L2(D),
∫

D qdx = 0},
such that

(5.17)

{ ∫

D ν∇u⊗∇vdx−
∫

D(∇ · v)pdx =
∫

D f · vdx ∀v ∈ U,
∫

D(∇ · u)qdx = 0 ∀q ∈ Q,

where ν is the constant viscosity and set as 1, u = (u1, u2) is the velocity field, p is the pres-
sure field, f is a body force. We prescribe a parabolic velocity profile (Dirichelet boundary
condition) u = ((0.5 + x2)(0.5 − x2), 0) on the inflow boundary ∂Dd, assume homogeneous
Neumann boundary condition on the outflow boundary ∂Dn and a homogeneous Dirichlet
boundary condition on the arterial wall ∂Dw, i.e. on the rest of the boundary. Different
realizations of the velocity field are possibly determined by many different factors under un-
certainties, e.g. boundary conditions, external forces, wall roughness, etc. Here we assume for
simplicity that the effect of these combined factors is expressed by a rather synthetic random
body force f . More explicitly, we assume that the random force is given by the truncated
Karhunen-Loéve expansion

(5.18) f(x, y) = y1f1(x) +
K
∑

k=2

1

λk
ykfk(x),

where λk, 2 ≤ k ≤ K, are the eigenvalues of a covariance exp(−(x1−x′1)2/L2) with correlation
length L = 1/3; the random variations yk, 1 ≤ k ≤ K, are assumed to be independent
and uniformly distributed with zero mean and unit variance, i.e. yk ∼ U(−

√
3,
√
3); f1 =

((
√
πL/2)1/2, 0) and fk = (sin(kπx1/2), 0) for k even and fk = (cos((k − 1)πx1/2), 0) for k

odd. Then a sample of the observation data is given by uo = (1 + η)uy, where uy is the
solution restricted to the observation location (the dashed line in Figure 10) of the Stokes
equations (5.17) at a realization of the random force, η ∼ N (0, σ2) is a random variable of
normal distribution with standard deviation σ = 0.1, i.e. a signal to noise ratio SNR = 10.

4We only consider the data assimilation at one time instance. In practical applications, more complex fluid
equations such as time-dependent Navier-Stokes equations are more feasible to model the blood flow.
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We employ the Lagrangian approach introduced in section 4.3 to solve the data assimi-
lation problem. In particular, we write the weak formulation of the Stokes equations in the
form of (2.1), where we define the bilinear form as

(5.19) A((u, p), (v, q); y) =

∫

D
ν∇u(y)⊗∇vdx−

∫

D
(∇ · v)p(y)dx+

∫

D
(∇ · u)qdx

which satisfies the inf-sup condition (2.2) in the space (U ×D)× (U ×D), and the linear form

(5.20) F ((v, q); y) =

∫

D
ς(y) · vdx,

where ς(y) represents the distributed control function, which depends on the random variable
y. Moreover, we specify the quantities in the cost functional (4.17) as k = u0, O(u(y)) = uy,
λ = 10−4 and || · ||D = | · | is the Euclidean norm, while || · ||R = || · ||(L2(D)2). We build
the reduced basis approximation of the high-dimensional parametric KKT problem (4.20) by
greedy algorithm based on an adaptive sparse grid method with K = 20. More details for such
construction, in particular for the stabilization of reduced Stokes problems and the reduced
variational optimal control problems, i.e. the problems in reduced basis spaces, can be found
in [18, 49] based on [?].
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Figure 11. The error and error bound of reduced basis approximation of the solution of the Stokes problem
(left) and for the Stokes optimal control problem (right). β: inf-sup constant; λ: regularization constant.

The Stokes equations is discretized by the finite element method with Taylor–Hood P2
elements (polynomials of degree 2) for velocity and P1 elements (polynomials of degree 1)
for pressure, resulting in stable high-fidelity approximation [57]. For the reduced basis ap-
proximation of the parametric Stokes problems, we apply the “supremizer” enrichment of
the reduced basis space for velocity, as introduced in (3.21), resulting in stable reduced ba-
sis problem. The decay of the approximation error and the a posteriori error bound for the

reduced basis solution (uN , pN ) at 100 random samples measured in
√

|| · ||2U + || · ||2Q norm

is shown in the left part of Figure 11, where only the maximum error bound and the corre-
sponding error is displayed. The error bound is reliable and also very sharp. We solve the
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reduced basis approximation of the Lagrangian (KKT) system (4.20) by the reduced system
(4.22). The approximation error and the a posteriori error bound for the optimal solution
(u∗N , p

∗
N , ς

∗
N , ũ

∗
N , p̃

∗
N ) (being (ũ∗N , p̃

∗
N ) the adjoint variables of (u∗N , p

∗
N )) measured in the norm

√

|| · ||2U + || · ||2Q + λ|| · ||2R + || · ||2U + || · ||2Q is shown in the right part of Figure 11. The error

bound is reliable but not very sharp compared to that for the approximation of the solution
of the Stokes problem. This is because the stability constant β of the KKT system (4.20),
depending on the regularization parameter λ, is rather small. The re-scaled error bound by
the stability constant β and regularization constant λ are also displayed in the right part of
Figure 11, from which we can observe that the rescaling with β leads to very sharp error
bound and the rescaling with λ also results in much sharper error bound than that without
rescaling. In order to improve the effectivity of the a posteriori error bound, the regularization
and/or the stability constants should be taken into consideration.
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Figure 12. Velocity field (left) at a random sample and the noisy observation with SNR = 10 (right).

To demonstrate the effectivity of the data assimilation for blood flow, we first provide the
velocity field by solving the high-fidelity Stokes problem at a random sample, as seen in the
left part of Figure 12. Then we create the observation data as the velocity around x1 = 2
with 10% noise, seen in the right part of Figure 12. With this observation data, we solve the
reduced data assimilation problem, i.e. the reduced Lagrangian (KKT) system (4.22) using
19 bases. The assimilated velocity and pressure as well as the corresponding approximation
errors are displayed in Figure 13, from which we can see that the errors for both velocity and
pressure are small (approximately 1.93% for velocity in || · ||U -norm and 0.41% for pressure in
|| · ||Q-norm) and concentrate around the observation location due to the 10% noise.

We remark that the reduced basis approximation with 19 bases results in a very small
system that can be solved in real time. In practice, besides the expository (linear) random
body force as considered here (which is used to create the uncertainties and build reduced
basis approximation), uncertainties may arise with explicit representation from many other
different sources, in which cases the reduced data assimilation framework can be employed
analogously. See, for example, [?] for ROM based on POD for time-dependent problems.

6. Conclusions and perspectives. We have demonstrated the efficiency and accuracy of
the reduced order methods and extended suitable algorithms for some typical uncertainty
quantification problems through three examples, concerning failure probability evaluation in
structural mechanics, Bayesian inversion in heat conduction, and variational data assimilation
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Figure 13. Top: assimilated velocity field (left) and pressure (right); bottom: the corresponding errors.

in fluid dynamics. Although rather academic, these examples have highlighted the remarkable
reduction of computational costs, demonstrating the potential of reduced order methods in
solving uncertainty quantification problems when the solution manifold and/or the manifold
of the quantity of interest are low dimensional.

Several computational and mathematical challenges still need to be tackled in order to
pave the way for more general and practical applications. The first is curse of dimensionality,
where a larger number of random variables are present in the underpinning system, more ad-
vanced sampling techniques are required in order to build the efficient and accurate reduced
basis space. Dimension-adaptive sparse grid sampling [16], importance sampling, multilevel
construction, are all in active development for reduced order methods in high-dimensional
uncertainty quantification problems. Secondly, highly nonlinear problems expose reduced or-
der methods to additional substantial difficulty for computational reduction, for which several
techniques have been recently developed such as empirical interpolation and its discrete ver-
sion [4, 37, 13, 22], best point interpolation [50], gappy POD [30, 69], Gauss Newton with
approximated tensor [11], etc. However, these techniques do not necessarily guarantee the
well-posedness of the approximated problem, in particular its stability, which is necessary to
enable reliable computational reduction. Furthermore, in the construction of reduced basis
spaces, it is crucial to balance the errors arising from high-fidelity and reduced basis approxi-
mation, which lead to the total error of the computational approximation of the underpinning
parametric/stochastic problems. Other challenges, such as long-time integration behaviour,
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nonlinear conservation laws and multiscale and multiphysics coupling are also important for
the development of reduced order methods at large, and particularly for their application to
uncertainty quantification problems.
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[66] C. Schwab and R. A. Todor. Karhunen–Loève approximation of random fields by generalized fast multipole
methods. Journal of Computational Physics, 217(1):100–122, 2006.

[67] C. Schwab and R.A. Todor. Sparse finite elements for elliptic problems with stochastic loading. Nu-
merische Mathematik, 95(4):707–734, 2003.

[68] A.M. Stuart. Inverse problems: a Bayesian perspective. Acta Numerica, 19(1):451–559, 2010.
[69] G. Turinici, C. Prud’Homme, A.T. Patera, Y. Maday, and A. Buffa. A priori convergence of the greedy al-

gorithm for the parametrized reduced basis method. ESAIM: Mathematical Modelling and Numerical
Analysis, 46(3):595, 2012.

[70] K. Urban and A.T. Patera. A new error bound for reduced basis approximation of parabolic partial
differential equations. Comptes Rendus Mathematique, 350(3):203–207, 2012.

[71] K. Willcox. Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Com-
puters & fluids, 35(2):208–226, 2006.

[72] K. Willcox and J. Peraire. Balanced model reduction via the proper orthogonal decomposition. AIAA
journal, 40(11):2323–2330, 2002.

[73] D. Wolfgang, P. Christian, and W. Gerrit. Double greedy algorithms: reduced basis methods for transport
dominated problems. ESAIM: Mathematical Modelling and Numerical Analysis, 48(03):623–663, 2014.

[74] D. Xiu and J.S. Hesthaven. High-order collocation methods for differential equations with random inputs.
SIAM Journal on Scientific Computing, 27(3):1118–1139, 2005.

[75] D. Xiu and G.E. Karniadakis. The Wiener-Askey polynomial chaos for stochastic differential equations.
SIAM Journal on Scientific Computing, 24(2):619–644, 2002.



Recent Research Reports

Nr. Authors/Title

2014-33 U. Fjordholm and R. Kappeli and S. Mishra and E. Tadmor
Construction of approximate entropy measure valued solutions for systems of
conservation laws.

2014-34 S. Lanthaler and S. Mishra
Computation of measure valued solutions for the incompressible Euler equations.

2014-35 P. Grohs and A. Obermeier
Ridgelet Methods for Linear Transport Equations

2014-36 P. Chen and Ch. Schwab
Sparse-Grid, Reduced-Basis Bayesian Inversion

2014-37 R. Kaeppeli and S. Mishra
Well-balanced schemes for gravitationally stratified media

2014-38 D. Schoetzau and Ch. Schwab
Exponential Convergence for hp-Version and Spectral Finite Element Methods for
Elliptic Problems in Polyhedra

2014-39 P. Grohs and M. Sprecher
Total Variation Regularization by Iteratively Reweighted Least Squares on Hadamard
Spaces and the Sphere

2014-40 R. Casagrande and R. Hiptmair
An A Priori Error Estimate for Interior Penalty Discretizations of the Curl-Curl
Operator on Non-Conforming Meshes

2015-01 X. Claeys and R. Hiptmair
Integral Equations for Electromagnetic Scattering at Multi-Screens

2015-02 R. Hiptmair and S. Sargheini
Scatterers on the substrate: Far field formulas


