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An A Priori Error Estimate for Interior Penalty
Discretizations of the Curl-Curl Operator on
Non-Conforming Meshes

Raffael Casagrande and Ralf Hiptmair

Abstract We prove an a-priori error estimate for conductivity-regularized Curl-Curl Problems

which are discretized by the Interior Penalty/Nitsche’s Method on meshes non-conforming across

interfaces. It is shown that the total error can be bounded by the best approximation error which in

turn depends on the concrete choice of the approximation space Vh. In this work we show that if Vh

is the space of edge functions of the first kind of order k we can expect (suboptimal) convergence

O(hk−1) as the mesh is refined. The numerical experiments in Casagrande, Winkelmann, Hiptmair

and Ostrowski, SAM Report 2014-32, ETH Zürich, indicate that this bound is sharp for k = 1.

Moreover it is shown that the regularization term can be made arbitrarily small without affecting

the error in the |·|curl semi-norm. A numerical experiment shows that the regularization parameter

can be chosen in a wide range of values such that, at the same time, the discrete problem remains

solvable and the error due to regularization is negligible compared to the discretization error.

1 Introduction

In this work we study the 3D, regularized Curl-Curl boundary value problem,

∇× (µ−1∇×A)+ εA = ji, in Ω (1)

n×A = gD on ∂Ω , (2)

which can be used to calculate the magnetic field that originates from a stationary current ji.

Herein µ denotes the magnetic permeability, gD prescribes Dirichlet boundary data and ε > 0

is the regularization parameter that renders the solution unique. We seek the magnetic vector

potential A that fulfills (1-2). The magnetic field is then B = ∇×A. Note that if gD ≡ 0 on ∂Ω
then (2) implies (∇×A) ·n = B ·n = 0 on ∂Ω which reflects the decay of the fields away from

the source.
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In some applications like the simulation of electric machines or magnetic actuators, magnetic

fields have to be computed in the presence of moving, rigid parts. Then one may use separate,

moving sub-meshes for them in order to avoid remeshing. However, this leads to so-called “sliding

interfaces”, i.e. meshes with hanging nodes (cf. Fig. 1).

Fig. 1 Initially conforming

sub-meshes become non-

conforming when the upper

sub-mesh starts moving.

In [1] the authors applied the Interior Penalty/Nitsche’s Method [2] to Curl-Curl type problems

in order to handle arbitrary, non-conforming mesh interfaces. Therein it was shown experimen-

tally that the Interior Penalty Method solves problem (1-2) successfully if second order edge

functions of the first kind are used. Moreover it was shown that first order edge functions fail to

converge to the exact solution as the mesh is refined. In this work we intend to give theoretical

explanations of these observations and investigate the effect of the regularization term in (1).

We start our discussion in Section 2 by introducing Discontinuous Galerkin (DG) notations

that were already introduced in [1] and which are needed to state the interior penalty formulation

of (1-2) in Section 3. Section 3 also proves an a-priori bound on the total error in terms of the best

approximation error for piecewise-polynomial test- and trial spaces Vh. In Section 4 we analyze

the particular case where Vh is the space of k-th order edge functions, Rk. Combining the results

of Sections 3 and 4 we get rates of convergence for the regularized problem (1-2). Section 5

is devoted to the choice of the local length scale appearing in the Interior Penalty formulation

and Section 6 discusses the role of the regularity parameter ε and how to choose it. We end our

presentation with a short conclusion and outlook in Section 7.

2 Preliminaries

Before we can introduce the Symmetric Weighted Interior penalty (SWIP) formulation of (1-2)

we give some definitions and notations (cf. [1]):

Subdomains and sub meshes: Let us assume that the domain Ω , on which (1-2) is posed, is a

simply connected polyhedron with Lipschitz boundary. Furthermore we assume Ω to be split into

two non-overlapping subdomains Ω1 ∪Ω2 = Ω . On each subdomain we introduce a sequence of

conforming, simplical meshes TH ,1, TH ,2 and let TH = TH ,1 ∪TH ,2. For any h ∈ H we let

Th denote a particular mesh in the sequence TH and T ∈ Th a mesh element (tetrahedron). The

meshwidth is then defined as h = maxT∈Th
hT where hT is the diameter of element T .

Furthermore we define FT to be the set of the four facets of tetrahedron T . The intersection of

two facets, belonging to two neighboring elements, is called an inner face while the intersection

of a facet with the boundary ∂Ω is called a boundary face. Note that facets are always triangular

while inner faces are convex polygons with up to six nodes and boundary faces can have virtually

any polygonal shape. We denote by F b
h the set of all boundary faces, F i

h the set of all inner faces
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and define Fh =F b
h ∪F i

h to be the set of all faces. Furthermore, FT stands for the set of all faces

which lie on the boundary of element T .

Mesh assumptions We assume that the elements are shape regular in the sense of Ciarlet: There

is a constant σmax such that ∀h ∈ H , ∀T ∈ Th we have

hT

ρT

≤ σmax (3)

where ρT is the radius of the largest ball inscribed in T . It is easy to check that this condition

is satisfied if two sequences of static sub-meshes are moved against each other. We will make

additional assumptions about the mesh when we discuss choices for the local length scale in Sect.

5.

Magnetic Permeability: We assume there exists a partition PΩ =
{

Ωi,µ

}
such that each Ωi,µ is a

polyhedron and such that the permeability µ > 0 is constant on each Ωi,µ . Furthermore the mesh

sequence TH is compatible with the partition PΩ : For each Th ∈ TH , each element T ∈ Th

belongs to exactly one Ωi,µ ∈ PΩ . I.e. the magnetic permeability is allowed to jump over element

boundaries, and in particular over the non-conforming interface Γ = Ω 1 ∩Ω 2

Polynomial approximation: Later on we will seek our discrete solution in the piecewise polyno-

mial space (cf. [3]),

P
k(Th) :=

{
p ∈ L2(Ω)

∣∣ ∀T ∈ Th, p|T ∈ P
k(T )

}
(4)

where Th ∈ TH and P
k(T ) is the usual space of polynomials up to degree k on mesh element T .

Note that functions of Pk(Th) are discontinuous across element boundaries.

Mesh Faces, Jump and Average Operators For each mesh face F and vector valued function

Ah ∈ P
k(Th)

3, we define the tangential jump as

if F ∈ F
i
h, F = ∂T1 ∩∂T2 : [Ah]T = nF ×

(
Ah|T1

− Ah|T2

)
,

if F ∈ F
b
h , F ⊆ ∂T1 ∩∂Ω : [Ah]T = nF × Ah|T1

,

and the weighted average as

if F ∈ F
i
h, F = ∂T1 ∩∂T2 : {Ah}ω = ω1 Ah|T1

+ω2 Ah|T2
,

if F ∈ F
b
h , F ⊆ ∂T1 ∩∂Ω : {Ah}ω = Ah|T1

.

Here nF always points from T1 to T2 and ω1,ω2 ∈ [0,1] such that ω1+ω2 = 1. Note that the jump

and average operators are well defined for all p ∈ P
k(Th)

3. Indeed, since p|T ∈C∞(T ), the trace

operator γ0(p) = p|∂T is well defined.

The following Lemma relates the trace of a polynomial function to its L2 norm on the element:

Lemma 1 (Discrete Trace Inequality). Let TH be a sequence of shape regular, possibly

non-conforming, simplical meshes. Then for all h ∈ H , all vh ∈ P
k(Th), and all T ∈ Th we

have
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h
1/2
T ‖vh|T‖L2(∂T ) ≤Ctr ‖vh‖L2(T ) (5)

where Ctr is independent of T , h but depends on σmax, k.

Proof. We split the integral over ∂T into the four triangular facets FT,i ∈ FT , i = 1, . . . ,4. Let now

ΦT : T̂ → T , x̂ 7→ BT x̂+bT be the affine transformation that maps the reference element T̂ to T .

Then,

‖vh‖2
L2(FT,i)

≤ area(FT,i)‖vh‖2
L∞(FT,i)

≤ h2
T ‖vh‖2

L∞(T̂ )

≤Ch2
T ‖vh‖2

L2(T̂ ) ,

where we have used the equivalence of norms in finite dimensions in the last step. Now, trans-

forming back to the element T we get:

‖vh‖2
L2(FT,i)

≤C
h2

T

|det(BT )|
‖vh‖2

L2(T ) ≤C′h−1
T σ3

max ‖vh‖2
L2(T )

where we have used |det(BT )| ≥C′′ρ3
T (see [9][Lemma 5.10]) and the shape regularity (3). Sum-

ming over all facets FT,i yields the assertion. ⊓⊔

Function Spaces We will use the following spaces

H(curl;Ω) :=
{

f ∈ L2(Ω)3
∣∣‖∇× f‖L2(Ω)3 < ∞

}

Hs(PΩ ) :=
{

f ∈ L2(Ω)
∣∣∀Ωi,µ ∈ PΩ : f |Ωi,µ

∈ Hs(Ωi,µ)
}
,

Herein L2 denotes the usual space of square integrable functions and Hs(Ω) = W s,2(Ω) is the

Sobolev space of order s with Hölder coefficient p = 2. The associated norms and semi-norms

are:

‖f‖2
H(curl;Ω) := ‖f‖2

L2(Ω)3 + |f|2H(curl;Ω) , |f|2H(curl;Ω) := ‖∇× f‖2
L2(Ω)3 ,

‖ f‖2
Hs(PΩ ) :=

N

∑
i=1

‖ f‖2
Hs(Ωi,µ )

.

3 Symmetric Weighted Interior Penalty (SWIP) Formulation

We chose an arbitrary subspace Vh ⊆ P
k(Th)

3 as discrete test and trial space, and use integration

by parts (cf. [3, 7] for details) to arrive at the SWIP formulation of (1): Find Ah ∈Vh such that

aSWIP
h (Ah,A

′
h) = ℓh(A

′
h) ∀A′

h ∈Vh (6)

with
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aSWIP
h (Ah,A

′
h) =

∫

Ω

(
µ−1∇×Ah

)
·
(
∇×A′

h

)
− ∑

F∈Fh

∫

F

{
µ−1∇×Ah

}
ω
·
[
A′

h

]
T

− ∑
F∈Fh

∫

F

{
µ−1∇×A′

h

}
ω
· [Ah]T + ∑

F∈Fh

ηγµ,F

aF

∫

F
[Ah]T ·

[
A′

h

]
T
+ ε

∫

Ω
Ah ·A′

h, (7)

ℓh(A
′
h) =

∫

Ω
ji ·A′

h − ∑
F∈F b

h

∫

F

{
µ−1∇×A′

h

}
ω
· (n×gD)

+ ∑
F∈F b

h

ηγµ,F

aF

∫

F

[
A′

h

]
T
· (n×gD). (8)

where η is the penalty parameter. The last four terms of aSWIP
h are called consistency, symmetry,

penalty, regularization term, respectively. For an inner face F ∈ F i
h, F = ∂T1 ∩ ∂T2 , we chose

the weights as

γµ,F :=
1

µ1 +µ2
, ω1 :=

µ1

µ1 +µ2
, ω2 :=

µ2

µ1 +µ2
.

If F ∈ F b
h we choose γµ,F := µ−1. The term aF is the local length scale of face F and can be

chosen in different ways (e.g. aF = 1
2
(hT1

+hT2
) where hT1

, hT2
are the diameters of the neighbor-

ing elements). For now we assume that there exists a constant ς2 > 0 such that for all h ∈ H , all

T ∈ Th, and all F ∈ FT :

0 < aF ≤ ς2hT . (9)

In Section 5 we will look at concrete choices of aF and discuss the circumstances under which

(9) is fulfilled. It will turn out that depending on the choice of aF we have to make additional

assumptions about the mesh regularity to guarantee (9).

Remark If Vh ⊆ H(curl;Ω), then all inner tangential jumps in (7) will drop out [7, Lemma 3.8]

and only jumps at the boundary remain, i.e. we are left with a standard FEM formulation where

the inhomogeneous boundary conditions (2) are enforced in a weak sense.

3.1 A Priori Error Estimate

In the following we derive an error estimate in the “energy-norm” for the variational problem (6).

Regularity of the exact solution We assume that the exact solution A of (1-2) (in the sense of

distributions) is such that

A ∈V ∗ :=
{

A ∈ H(curl;Ω)∩H1(PΩ )3 | ∇×A ∈ H1(PΩ )3
}

Furthermore we set V ∗
h := V ∗+Vh. Note that because A,∇×A ∈ H1(PΩ )3 the traces of A and

∇×A are well defined on the faces of the mesh elements (cf. [3, Remark 1.26]). Indeed, let T ∈Th

be a mesh element, then by the multiplicative trace inequality [4, Thm. 1.6.6]: ‖A‖L2(∂T )3 <
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Ctr ‖A‖1/2

L2(T )3 ‖A‖1/2

H1(T )3 and the same estimate holds for ∇×A. Therefore we see that aSWIP
h :

V ∗
h ×Vh → R is well defined.

In order for the right-hand side to be well-posed we assume ji ∈ L2(Ω)3 and gD = L2(∂Ω)3.

We begin the proof of the a priori error estimate by showing that the exact solution A fulfills

equation (6):

Lemma 2 (Consistency). Assume A∈V ∗ is the exact solution of (1-2). Then, for all A′
h ∈Vh,

aSWIP
h (A,A′

h) = ℓh

(
A′

h

)
(10)

Proof. Since A ∈ H(curl,Ω), A is tangentially continuous across all element boundaries (cf.

Lemma 3.8 in [7]). Thus all inner jump terms drop out,

aSWIP
h (A,A′

h) =
∫

Ω

(
1

µ
∇×A

)
·
(
∇×A′

h

)
− ∑

F∈Fh

∫

F

{
µ−1∇×A

}
ω
·
[
A′

h

]
T

− ∑
F∈F b

h

∫

F

{
µ−1∇×A′

h

}
ω
· [A]T + ∑

F∈F b
h

ηγµ,F

aF

∫

F
[A]T ·

[
A′

h

]
T
+ ε

∫

Ω
Ah ·A′

h (11)

Note that the two last two sums include only boundary faces. Next we make use of the follow-

ing identity (which holds for any interior face F = ∂T1 ∩∂T2):

[a×b]n = (a1 ×b1 −a2 ×b2) ·nF ,

= ((ω1a1 +ω2a2)× (b1 −b2)+(a1 −a2)× (ω2b1 +ω1b2)) ·nF

=−{a}ω · [b]T +[a]T · {b}ω ,

where {b}ω := (ω2b1 +ω1b2) is the skew-weighted average and [b]n = (b1 − b2) · nF is the

normal jump. Let us apply the identity to the second term of (11):

− ∑
F∈Fh

∫

F

{
µ−1∇×A

}
ω
·
[
A′

h

]
T
= ∑

F∈F i
h

∫

F

[(
µ−1∇×A

)
×A′

h

]
n

− ∑
F∈F i

h

∫

F

[
µ−1∇×A

]
T︸ ︷︷ ︸

=0

·
{

A′
h

}
ω
− ∑

F∈F b
h

∫

F

{
µ−1∇×A

}
ω
·
[
A′

h

]
T
,

where the second term on the right-hand side vanishes because A is a solution of the strong

formulation (1) and thus µ−1∇×A ∈ H(curl;Ω) which implies that µ−1∇×A is tangentially

continuous. Note that for F ∈F b
h :

{
µ−1∇×A

}
ω
·
[
A′

h

]
T
=−

[(
µ−1∇×A

)
×A′

h

]
·nF so we can

rearrange the face contributions to the elements boundaries:

− ∑
F∈Fh

∫

F

{
µ−1∇×A

}
ω
·
[
A′

h

]
T
= ∑

T∈Th

∫

∂T

(
µ−1 (∇×A)×A′

h

)
·nT (12)

Now substitute (12) into (11) and use integration by parts on each mesh element [9, Thm. 3.29]:
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aSWIP
h (A,A′

h) = ∑
T∈Th

∫

T
∇×

(
1

µ
∇×A

)
·A′

h + ε

∫

Ω
Ah ·A′

h

− ∑
F∈F b

h

∫

F

{
µ−1∇×A′

h

}
ω
· [A]T + ∑

F∈F b
h

ηγµ,F

aF

∫

F
[A]T ·

[
A′

h

]
T

(1−2)
= ℓh(A

′
h)

⊓⊔

Let us introduce the following (semi-)norms on the space V ∗
h :

‖A‖2
SWIP :=

∥∥∥µ−1/2∇×A

∥∥∥
2

L2(Ω)3
+
∥∥∥ε1/2A

∥∥∥
2

L2(Ω)3
+ |A|2j,µ

|A|2j,µ := ∑
F∈Fh

γµ,F

aF

‖[A]T‖
2
L2(F)3

‖A‖2
SWIP,∗ := ‖A‖2

SWIP + ∑
T∈Th

hT

∥∥∥µ−1/2∇×A

∣∣∣
T

∥∥∥
2

L2(∂T )3

Lemma 3 (Bound on consistency term). For all A,A′ ∈V ∗
h there holds:

∣∣∣∣∣ ∑
F∈Fh

∫

F

{
µ−1∇×A

}
ω
·
[
A′]

T

∣∣∣∣∣≤ ς
1/2

2

{
∑

T∈Th

hT

∥∥∥µ−1/2∇×A

∣∣∣
T

∥∥∥
2

L2(∂T )3

}1/2 ∣∣A′∣∣
J,µ

where hT = max{‖x− y‖| x,y ∈ T} is the diameter of mesh element T ∈ Th.

Proof. For an arbitrary inner face F = ∂T1∩∂T2 we have by the Cauchy-Schwarz (CS) inequality:

∣∣∣∣
∫

F

{
µ−1∇×A

}
ω
·
[
A′]

T

∣∣∣∣≤
∣∣∣∣∣
∫

F

(
ω1

µ1
∇×A1 +

ω2

µ2
∇×A2

)2
∣∣∣∣∣

1/2 ∣∣∣∣
∫

F

∥∥[A′]
T

∥∥2

∣∣∣∣
1/2

(13)

Using Cauchy-Schwarz again we see that

∥∥∥∥
ω1

µ1
∇×A1 +

ω2

µ2
∇×A2

∥∥∥∥≤
(

ω2
1

µ1
+

ω2
2

µ2

)1/2(∥∥∥µ
−1/2

1 ∇×A1

∥∥∥
2

+
∥∥∥µ

−1/2

2 ∇×A2

∥∥∥
2
)1/2

= a
1/2
F

(
γµ,F

aF

)1/2(∥∥∥µ
−1/2

1 ∇×A1

∥∥∥
2

+
∥∥∥µ

−1/2

2 ∇×A2

∥∥∥
2
)1/2

Substitute this back into (13):

∣∣∣∣
∫

F

{
µ−1∇×A

}
ω
·
[
A′]

T

∣∣∣∣≤
[

aF

∫

F

(∥∥∥µ
−1/2

1 ∇×A1

∥∥∥
2

+
∥∥∥µ

−1/2

2 ∇×A2

∥∥∥
2
)]1/2

(
γµ,F

aF

)1/2∥∥[A′]
T

∥∥
L2(F)3 . (14)
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Similarly, for a boundary face F ∈ F b
h we have:

∣∣∣∣
∫

F

{
µ−1∇×A

}
ω
·
[
A′]

T

∣∣∣∣
(CS)

≤
∣∣∣∣aF

∫

F

∥∥∥µ−1/2∇×A

∥∥∥
2
∣∣∣∣
1/2

1√
µaF

∥∥[A′]
T

∥∥
L2(F)

(15)

Now use (14-15) to bound the sum over all faces:

∣∣∣∣∣∣ ∑
F∈F b

h

∫

F

{
µ−1∇×A

}
ω
·
[
A′]

T
+ ∑

F∈F i
h

∫

F

{
µ−1∇×A

}
ω
·
[
A′]

T

∣∣∣∣∣∣
(14-15)

≤ ∑
F∈F b

h

{∣∣∣∣aF

∫

F

∥∥∥µ−1/2∇×A

∥∥∥
2
∣∣∣∣
1/2

1√
µaF

∥∥[A′]
T

∥∥
L2(F)

}
+

∑
F∈F i

h

{[
aF

∫

F

(∥∥∥µ
−1/2

1 ∇×A1

∥∥∥
2

+
∥∥∥µ

−1/2

2 ∇×A2

∥∥∥
2
)]1/2(γµ,F

aF

)1/2∥∥[A′]
T

∥∥
L2(F)3

}

(CS)

≤
{

∑
F∈Fh

γµ,F

aF

∥∥[A′]
T

∥∥2

L2(F)3

}1/2



 ∑

F∈F i
h

[
aF

∫

F

(∥∥∥µ
−1/2

1 ∇×A1

∥∥∥
2

+
∥∥∥µ

−1/2

2 ∇×A2

∥∥∥
2
)]

+ ∑
F∈F b

h

aF

∫

F

∥∥∥µ−1/2∇×A

∥∥∥
2





1/2

≤ ς
1/2

2

{
∑

T∈Th

hT

∫

∂T

∥∥∥µ−1/2∇×A

∣∣∣
T

∥∥∥
2

}1/2 ∣∣A′∣∣
j,µ

where we have regrouped the face contributions in the last step and used that aF ≤ ς2hT , cf. (9).

⊓⊔

Using Lemma 3 we can finally prove discrete coercivity:

Lemma 4 (Discrete Coercivity). The bilinear form aSWIP
h is coercive: For all η > C2

trς2

there exists a constant Cstab > 0 such that for all h ∈ H

aSWIP
h (Ah,Ah)≥Cstab ‖Ah‖2

SWIP ∀Ah ∈Vh

with Cstab = min
(

η−C2
trς2

1+η ,1
)

. The constant Ctr stems from the discrete trace inequality (5)

and is independent of h, µ , ε , ς2.

Proof.
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aSWIP
h (Ah,Ah) =

∥∥∥µ−1/2∇×Ah

∥∥∥
2

L2(Ω)3
−2 ∑

F∈Fh

∫

F

{
µ−1∇×Ah

}
ω
· [Ah]T +

∑
F∈Fh

ηγµ,F

aF

‖[Ah]T‖
2
L2(F)3 +

∥∥∥ε1/2Ah

∥∥∥
2

L2(Ω)3

Now let us give a bound on the second term on the right-hand side using Lemma 3:

∣∣∣∣∣ ∑
F∈Fh

∫

F

{
µ−1∇×Ah

}
ω
· [Ah]T

∣∣∣∣∣≤ ς
1/2

2

{
∑

T∈Th

hT

∥∥∥µ−1/2∇×Ah

∣∣∣
T

∥∥∥
2

L2(∂T )3

}1/2

|Ah| j,µ

≤ Ctrς
1/2

2

∥∥∥µ−1/2∇×Ah

∥∥∥
L2(Ω)3

|Ah| j,µ

where we have used the discrete trace inequality (5) componentwise in the last step. Hence,

aSWIP
h (Ah,Ah)≥

∥∥∥ε1/2Ah

∥∥∥
2

L2(Ω)3

+
∥∥∥µ−1/2∇×Ah

∥∥∥
2

L2(Ω)3

︸ ︷︷ ︸
:=x2

−2 Ctrς
1/2

2︸ ︷︷ ︸
:=β

∥∥∥µ−1/2∇×Ah

∥∥∥
L2(Ω)3

|Ah| j,µ +η |Ah|2j,µ︸ ︷︷ ︸
:=y2

.

Now use the inequality x2 − 2βxy+ηy2 ≥ η−β 2

1+η (x2 + y2) which holds for arbitrary β ,η ,x,y (it

follows from (βx−ηy)2 +(x−βy)2 ≥ 0)):

aSWIP
h (Ah,Ah)≥

η −C2
trς2

1+η

(∥∥∥µ−1/2∇×Ah

∥∥∥
2

L2(Ω)3
+ |Ah|2j,µ

)
+ ε ‖Ah‖2

L2(Ω)3 ,

≥Cstab

(∥∥∥µ−1/2∇×Ah

∥∥∥
2

L2(Ω)3
+ |Ah|2j,µ + ε ‖Ah‖2

L2(Ω)3

)

Finally, we note that Cstab > 0 if η >C2
trς2 which completes the proof. ⊓⊔

Lemma 5 (Boundedness). There exists a constant Cbnd > 0 independent of h, µ , and ε such

that for all A ∈V ∗
h , all A′

h ∈Vh, all h ∈ H :

aSWIP
h (A,A′

h)≤Cbnd ‖A‖SWIP,∗
∥∥A′

h

∥∥
SWIP

Proof.

aSWIP
h (A,A′

h) =
∫

Ω

(
µ−1∇×A

)
·
(
∇×A′

h

)
− ∑

F∈Fh

∫

F

{
µ−1∇×A

}
ω
·
[
A′

h

]
T

− ∑
F∈Fh

∫

F

{
µ−1∇×A′

h

}
ω
· [A]T + ∑

F∈Fh

ηγµ,F

aF

∫

F
[A]T ·

[
A′

h

]
T
+ ε

∫

Ω
A ·A′

h

= T1 +T2 +T3 +T4 +T5

Now let us bound these five terms individually:
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|T1|
(CS)

≤
∥∥∥µ−1/2∇×A

∥∥∥
L2(Ω)3

∥∥∥µ−1/2∇×A′
h

∥∥∥
L2(Ω)3

≤ ‖A‖SWIP

∥∥A′
h

∥∥
SWIP

|T2|
Lemma 3

≤ ς
1/2

2 ‖A‖SWIP,∗
∥∥A′

h

∥∥
SWIP

|T3|
Lemma 3

≤ ς
1/2

2

{
∑

T∈Th

hT

∥∥∥µ−1/2∇×A′
h

∣∣∣
T

∥∥∥
2

L2(∂T )3

}1/2

‖A‖SWIP

Lemma 1
≤ Ctrς

1/2

2

∥∥∥µ−1/2∇×A′
h

∥∥∥
L2(Ω)3

‖A‖SWIP ≤ Ctrς
1/2

2

∥∥A′
h

∥∥
SWIP

‖A‖SWIP

|T4|
(CS)

≤ η |A| j,µ

∣∣A′
h

∣∣
j,µ

≤ η ‖A‖SWIP

∥∥A′
h

∥∥
SWIP

|T5|
(CS)

≤
∥∥∥ε1/2A

∥∥∥
SWIP

∥∥∥ε1/2A′
h

∥∥∥
SWIP

≤ ‖A‖SWIP

∥∥A′
h

∥∥
SWIP

⊓⊔

We can now finally combine the previous results into the following theorem:

Theorem 1 (Error Estimate). Let A ∈ V ∗ be a solution of the strong formulation (1-2) (in

the sense of distributions) and let Ah ∈Vh ⊆ P
k(Th)

3 solve the variational formulation (6).

Then there exist constants C > 0, Cη > 0, both independent of h, µ , ε such that for η >Cη ,

‖A−Ah‖SWIP <C inf
vh∈Vh

‖A−vh‖SWIP,∗, (16)

and the discrete problem (6) is well-posed. The constant Cη depends on ς2 and C depends

on η , ς2.

This theorem tells us that the total error is bounded by the best approximation error (w.r.t. suitable

norms). Note that we didn’t make any assumption on how the submeshes Th,1 and Th,2 meet at

Γ . In order to get rates of convergence we will have to make additional assumptions about the

approximation space Vh and the exact solution A. This will be the topic of Section 4.

Proof (of Thm. 1). In this proof C denotes any arbitrary, positive constant, independent of h, µ
that may have a different value every time it used. Let us now pick an arbitrary vh ∈Vh. Then, by

the triangle inequality,

‖A−Ah‖SWIP ≤ ‖A−vh‖SWIP +‖vh −Ah‖SWIP (17)

This is almost the statement of Thm. 1. It remains to bound ‖Ah −vh‖SWIP:
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‖Ah −vh‖SWIP

Lemma 4
≤ aSWIP

h (Ah −vh,Ah −vh)

‖Ah −vh‖SWIP

≤ C sup
wh∈Vh\0

aSWIP
h (Ah −vh,wh)

‖wh‖SWIP

Lemma 2
= C sup

wh∈Vh\0

aSWIP
h (A−vh,wh)

‖wh‖SWIP

Lemma 5
≤ C sup

wh∈Vh\0

‖A−vh‖SWIP,∗ ‖wh‖SWIP

‖wh‖SWIP

≤ C‖A−vh‖SWIP,∗

Inserting this bound into (17) (which holds for arbitrary vh) yields the assertion. Note that the

bilinear form aSWIP
h is coercive (Lemma 4) and bounded (finite dimensions). Thus, using Lax-

Milgram it follows that the discrete problem is well posed.

⊓⊔

Remark 1. Observe that for ε → 0 the variational formulation (6) becomes ill-posed. To see this

we observe that the ‖·‖SWIP norm “becomes” a semi-norm as ε → 0. In order to study the behavior

as ε → 0 it is thus desirable to state the discrete coercivity (Lemma 4) w.r.t. a norm that does not

depend on ε: We use that ‖Ah‖2
SWIP ≥ ε ‖Ah‖2

L2 and thus Lemma (4) can be rewritten as

aSWIP
h (Ah,Ah)≥ εCstab ‖Ah‖2

L2 . (18)

We see now clearly that the coercivity constant depends linearly on ε , i.e. the discrete problem

becomes ill-posed as ε → 0.

4 Rate of convergence for Edge Functions

In the following we will bound the best approximation error appearing in Theorem 1 for edge

functions of the first kind. For this we assume, in addition to (9), that aF is uniformly bounded

from below in the sense that there exists a constant ς1 such that for all h ∈ H , all T ∈ Th and all

F ∈ FT we have

aF ≥ ς1hT . (19)

For the remainder of this section, let us choose Vh = Rk(Ω1)⊕Rk(Ω2) ⊂ P
k(Th)

3 where Rk

is the space of k-th order edge functions (k=1 are the lowest order, H(curl) conforming Whitney

elements, cf. [9, Eq. (5.32)]). Because the sub-meshes Th,1, Th,2 are conforming, the spaces

Rk(Ω1), Rk(Ω2) are H(curl) conforming. We can thus use the standard projection operator rh

as it is defined in [9, Sect. 5.5] for edge functions on Ω1, Ω2 to compose our global projection

operator πh : V ∗ →Vh:

A 7→
(

rh

(
A|Ω1

)
,rh

(
A|Ω2

))
.
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The following theorem then gives an upper bound for the best approximation error of Thm. 1:

Theorem 2. Assume the exact solution of (1-2) is such that A∈H(curl,Ω)∩Hs(Ω1⊕Ω2)
3,

∇×A ∈ Hs(Ω1 ⊕Ω2) with integer 1 ≤ s ≤ k. Then

‖A−πhA‖SWIP,∗ <Chs−1
2

∑
i=1

(
‖A‖Hs(Ωi)

+‖∇×A‖Hs(Ωi)

)

where C depends on µ , ς1 but not on h. Moreover, C is independent of ε if ε ≤
∥∥µ−1

∥∥
L∞ =

µ−1
min.

Remark 2. By combining Theorem 2 with Theorem 1 we see that for a sufficiently smooth exact

solution A, the total error ‖A−Ah‖SWIP = O(hk−1) if k-th order edge functions are used. The-

oretically it is possible that there exists another projector π̃h which would give a better rate of

convergence, but numerical experiments show that Theorem 2 is sharp for k = 1 [1].

In order to prove the above theorem we will make use of two Lemmas to bound the face

contributions:

Lemma 6. Let TH be a sequence of shape regular, conforming, simplical meshes. Suppose u ∈
Hs(T )3 and ∇×u ∈ Hs(T )3 for some integer 1 ≤ s ≤ k. Then ∀T ∈ Th ∈ TH

‖u− rhu‖L2(∂T )3 ≤Ch
s−1/2
T

(
‖u‖Hs(T )3 +‖∇×u‖Hs(T )3

)

where C is independent of hT , T .

For the proof of Lemma 6 we refer the reader to [9, Lemma 5.52] (which is proven element-wise).

Lemma 7. Let TH be a sequence of shape regular, conforming, simplical meshes. Assume u ∈
Hs(T )3 for some integer 1 ≤ s ≤ k and u transforms such that it preserves the divergence, i.e. if

F : T̂ → T , û 7→ u is an arbitrary mapping then u transforms as

u◦F =
1

|det(dF)|dF û. (20)

Then the following estimate holds:

‖u−wT u‖L2(∂T )3 ≤Ch
s−1/2
T ‖u‖Hs(T )3 ∀T ∈ Th ∈ TH

where wT : H1(T )3 → Dk is the standard interpolation operator for k-th order Thomas-Raviart

elements Dk [9, Sect. 5.4]. The constant C does not depend on hT , T .

Proof. In order to simplify notation we will assume in this proof that C > 0 is an arbitrary constant

independent of h, T that may have a different value every time it is used. We note that since

u ∈ Hs(T )3, wT u is well defined by [9, Lemma 5.15]. Now split the integral over ∂T into its facet

contributions:

‖u−wT u‖2
L2(∂T )3 = ∑

FT∈FT

∫

FT

|u−wT u|2
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Since our mesh contains only tetrahedrons we can find for every FT ∈ FT a linear transformation

ΦT,FT
: T̂ → T which maps the reference element T̂ onto the actual element T such that the

pre-image F̂T of facet FT lies in the x− y plane of T̂ :

ΦT,FT
: x̂ 7→ BT,FT

x̂+bT,FT

where BT,FT
∈ R

3x3. Now using the usual change of variables together with (20) we obtain

∫

FT

|u−wT u|2 =
∫

F̂T

∣∣det(BT,FT
)−1BT,FT

(û− ŵT u)
∣∣2
∣∣∣(BT,FT

):,1 × (BT,FT
):,2

∣∣∣

=
area(FT )

area(F̂T ) |det(BT,FT
)|2

∫

F̂T

|BT,FT
(û−wT̂ û)|2

≤Ch2
T |det(BT,FT

)|−2 ‖BT,FT
‖2 ‖û−wT̂ û‖2

L2(F̂T )3 (21)

Where (BT,FT
):,i denotes the i−th column of BT,FT

and we have used that ŵT u = wT̂ û [9, Lemma

5.22]. Now notice that û−wT̂ û ∈ Hs(T̂ )3 and thus we can use the trace inequality [9, Thm. 3.9]:

‖û−wT̂ û‖
L2(F̂T )3 ≤ ‖û−wT̂ û‖

L2(∂ T̂ )3 ≤C‖û−wT̂ û‖
H1(T̂ )3

Next notice that ∀φ ∈ P
k−1(T̂ )3 ⊂ Dk(T̂ ), φ = wT̂ φ by the definition of wT̂ . Therefore,

‖û−wT̂ û‖
H1(T̂ )3 ≤ ‖(I−wT̂ )(û+φ)‖

H1(T̂ )3 ≤C‖û+φ‖H1(T̂ )3

where have used that wT̂ : H1(T̂ )3 → Dk is a bounded operator, i.e. ‖wT̂ û‖
H1(T̂ )3 ≤ C‖û‖ (cf.

Proof of [9, Thm. 5.25]). Since φ is arbitrary we can use the Deny-Lions theorem [9, Thm. 5.5]

‖û−wT̂ û‖
L2(T̂ )3 ≤C inf

φ∈Pk−1(T̂ )3
‖û+φ‖H1(T̂ )3 ≤C |û|Hs(K̂)3 (22)

Finally we have to map |û|Hs(T̂ )3 back to the actual element T . For this observe that using (20),

∂ α

∂ x̂α û = det(BT,FT
)B−1

T,FT

∂ α

∂ x̂α (u◦ΦT )

where ‖α‖ℓ1 = s is a multi-index. Therefore,

|û|2
Hs(T̂ )3 = ∑

|α|
ℓ1
=s

∫

T̂

∣∣∣∣
∂ α û

∂ x̂α

∣∣∣∣
2

≤ |det(BT,FT
)|2

∥∥∥B−1
T,FT

∥∥∥
2
∫

T̂

∣∣∣∣
∂ α(u◦ΦT )

∂ x̂α

∣∣∣∣
2

≤C |det(BT,FT
)|2

∥∥∥B−1
T,FT

∥∥∥
2

‖BT,FT
‖2s |det(BT,FT

)|−1 |u|2Hs(T )3 (23)

where we have used [9, Lemma 5.9] in the last step. Now combining (21-23) gives:

‖u−wT u‖2
L2(FT )3 ≤C |det(BT,FT

)|−1
h2

T ‖BT,FT
‖2

∥∥∥B−1
T,FT

∥∥∥
2

‖BT,FT
‖2s |u|2Hs(T )3

≤Ch2s−1
T |u|2Hs(T )3
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where we have used [9, Lemma 5.10] together with the fact that the mesh sequence is shape

regular. Now summing over all facets FT ∈ FT yields the assertion. ⊓⊔

Using these Lemmas we can finally give a bound for ‖A−πhA‖SWIP,∗:

Proof (of Theorem 2). In order to simplify notation, C denotes in this proof an arbitrary, positive

constant that is independent of h. Note that the interpolation operator rh

(
A|Ω1

)
is well defined

for s ≥ 1 by the Sobolev Embedding Theorem and [9, Lemma 5.38]. Because the sub-meshes of

Ω1, Ω2 are conforming, rh

(
A|Ω1

)
is tangentially continuous across all inner, conforming faces.

The same holds for Ω2 and because A ∈ H(curl;Ω) the exact solution is also is tangentially

continuous across all inner faces. Therefore only jump terms across the faces F ∈ F
Γ ,b
h := F b

h ∪{
F ∈ F i

h | F ⊂ Ω 1 ∩Ω 2

}
remain in the definition of the jump semi-norm |·| j,µ . I.e. we have to

bound

‖A−πhA‖2
SWIP,∗ = ‖µ−1/2∇× (A−πhA)‖2

L2(Ω)3

︸ ︷︷ ︸
:=T1

+‖ε1/2(A−πhA)‖2
L2(Ω)3

︸ ︷︷ ︸
:=T2

+ ∑
F∈F

b,Γ
h

γµ,F

aF

‖ [A−πhA]T ‖2
L2(F)3

︸ ︷︷ ︸
:=T3

+ ∑
T∈Th

hT‖µ−1/2∇× (A−πhA)‖2
L2(∂T )3

︸ ︷︷ ︸
:=T4

, (24)

Since µ is piecewise constant on each Ωi,µ ∈ PΩ there are constants µmin,µmax such that 0 <
µmin < µ < µmax. T1 and T2 are easily bounded using [9, Thm. 5.41]:

T1 +T2 ≤ max(µ−1
min,ε)

[
‖∇× (A−πhA)‖2

L2(Ω)+‖(A−πhA)‖2
L2(Ω)

]

≤Ch2s

[
2

∑
i=1

(
‖A‖Hs(Ωi)3 +‖∇×A‖Hs(Ωi)3

)]2

The term T3 is bounded using Lemma 6:

T3 ≤ 2µ−1
min ∑

F∈F
b,Γ
h

a−1
F

(∥∥∥A−πhA|T1

∥∥∥
2

L2(F)3
+
∥∥∥A−πhA|T2

∥∥∥
2

L2(F)3

)

≤C ∑
T∈Th

∑
F∈FT∩F

b,Γ
h

h−1
T ‖A−πhA|T‖2

L2(F)3

≤C ∑
T∈Th

∑
F∈FT∩F

b,Γ
h

h2s−2
T

(
‖A‖2

Hs(T )3 +‖∇×A‖2
Hs(T )3

)

≤Ch2s−2
2

∑
i=1

(
‖A‖2

Hs(Ωi)3 +‖∇×A‖2
Hs(Ωi)3

)

where we have used that aF ≥ ς1hT .

In order to bound the term T4 we first note that the global Thomas-Raviart interpolation

operator wh

(
∇×A|Ωi

)
i=1,2

is well defined by [9, Lemma 5.15]. Thus, ∇ ×
[
rh

(
A|Ωi

)]
=
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wh

(
∇×A|Ωi

)
by [9, Lemma 5.40] and we can bound T4 as follows:

T4 ≤ µ−1
min ∑

T∈Th

hT ‖∇×A−wh (∇×A)‖2
L2(∂T )

≤C ∑
T∈Th

h2s
T ‖∇×A‖Hs(T )3 ≤Ch2s

2

∑
i=1

‖∇×A‖2
Hs(Ωi)3

where we have used Lemma 7 and the fact that hT ≤ h. ⊓⊔

Remark 3. From the proof of Theorem 2 it is clear that for h sufficiently small the term T3 dom-

inates the other three terms and is thus responsible for the loss of one order of convergence as

pointed out in Remark 2. Interestingly T3 sums the jump terms only over the faces F
b,Γ
h . This

suggests that it suffices to use (k+ 1)-th order edge functions in elements adjacent to F b,Γ and

k-th order edge functions everywhere else to achieve O(hk) order convergence. This can be im-

plemented easily by using a hierarchical basis for the edge functions [10].

5 The local length scale aF

So far we have assumed that the local length scale aF fulfills (9), (19) in order to derive an a-

priori error estimator, i.e. 0 < ς1hT ≤ aF ≤ ς2hT . We will now study the following, three concrete

choices for aF :

• a
(1)
F := 1

2
(hT1

+hT2
) if F ∈ F i

h and a
(1)
F = hT for F ∈ F b

h , see [3][Remark 4.6]

• a
(2)
F := min(hT1

,hT2
) if F ∈ F i

h and a
(2)
F = hT for F ∈ F b

h , see [8]

• a
(3)
F := hF if F ∈ Fh see [2, 3]

where hT1
, hT2

are the diameters of the adjacent elements of face F and hF is the diameter of

face F . It turns out that for each choice of aF we have to make additional assumptions on the

mesh such that aF fulfills (9), (19). So once we have chosen a concrete aF we can think of ς1,

ς2 as mesh dependent parameters. The important point is that the constants C in Theorems 1 and

2 depend on the constants σmax, ς1, ς2 but they do not depend in any other way on the shape of

the underlying meshes. Hence, if we can assure that σmax, ς1, ς2 are independent of the way that

TH ,1, TH ,2 intersect at the sliding interface Γ , we can be sure that there is an upper bound on

the total error ‖A−Ah‖ that is independent of the relative position of TH ,1 to TH ,2 and that

tends to 0 as h → 0.

Let us now discuss the precise conditions on the mesh for each choice of aF ; For a
(1)
F , a

(2)
F we

require TH to be quasi-uniform at the sliding interface:

Definition 1. A mesh-sequence TH is said to be quasi-uniform at Γ if it is shape regular (3) and

if there exists a constant σ1 > 0 such that for all h ∈ H , all T ∈ T Γ
h := {T ∈ Th | ∂T ∩Γ 6= /0} :

hT ≥ σ1 max
T̃∈T Γ

h

hT̃ . (25)
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Lemma 8. a
(1)
F , a

(2)
F fulfill conditions (9), (19) if the mesh is quasi-uniform at Γ . Moreover the

constants σmax, ς1, ς2 are independent of the way TH ,1, TH ,2 intersect at Γ .

Proof. a
(1)
F ≥ 1

2
hTi

follows immediately from the definition for i = 1,2. For the other direction we

use (25) and get a
(1)
F ≤ 1

2
(1+σ−1

1 )hTi
. Moreover, σ1hTi

≤ a
(2)
F ≤ hTi

. ⊓⊔

The Lemma above asserts that the choices a
(1)
F , a

(2)
F lead to a method that converges indepen-

dent of the way that the two mesh-sequences TH ,1, TH ,2 intersect at Γ . In particular the faces

can be very tiny “slivers” (i.e. triangles with high aspect ratio). But note that the choice of aF

determines the required minimum value of the penalty parameter (see Lemma 4).

By substituting a
(3)
F into (19) we see that we need an estimate of the form hF ≥ ς1hT in order

for Thm. 2 to hold. However if two meshes are sliding against each other such an estimate is not

feasible since hF can become arbitrarily small in comparison to hT . In other words, the constant

ς1 depends on the way TH ,1 intersects with TH ,2. Nevertheless using a
(3)
F in the variational

formulation 6 seems to work in practice (see below).

We study the behavior of the SWIP formulation for the three different choices of the lo-

cal length scale aF ; As in [1] we consider a 3D sphere with radius 1 that is split into two

half-spheres which are then meshed separately (Fig. 2). We impose the analytical solution

A = (siny,cosz,sinx) and choose ji, gD such that they fulfill (1-2).

Fig. 2 The meshes for the two half spheres. The upper hemisphere is turned against the lower hemisphere by

θ = 2.86 degrees to create a non-conforming mesh.

Figure 3 shows the H(curl) error for different angles of rotation for all three choices of aF

and for different mesh-sizes h. We can see that although the error depends slightly on the angle of

rotation, it converges to zero in all three formulations as h is decreasing (see also [1]). Moreover

we see that the choices a
(1)
F , a

(2)
F yield similar results which are slightly better than the choice

a
(3)
F .
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Fig. 3 The relative H(curl) error vs. the rotation angle for three different choices of aF and 4 different mesh-sizes:

h = 0.638174,0.482025,0.359644,0.261798. ε = 10−6, η = 50, µ ≡ 1.

6 The regularization parameter ε

So far we have looked at the regularized system (1-2) and in [1] it was shown that the proposed

method yields the expected rates of convergence for ε > 0. However, genuine magnetostatics

amounts to choosing ε = 0. We will consider two approaches to solve the system (1-2) with

ε = 0: On the one hand we will try to set ε = 0 directly and on the other hand we will study the

effect of choosing ε small enough such that the error due to regularization is negligible.

6.1 The case ε = 0

We note that by setting ε = 0, the boundary value problem (1-2) ceases to have a unique solution.

Indeed the continuous curl−curl operator has an infinite-dimensional kernel and the non-zero

eigenvalues are well separated from 0 [9][Corollary 4.8]. If one uses H(curl) conforming edge

functions of the first kind on a conforming mesh it can be shown that the discrete curl−curl
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operator has a (finite-dimensional) kernel and that the discrete eigenvalues are well separated

from it [9][Discrete Friedrichs inequality, Lemma 7.20]. I.e. edge functions of the first kind yield

a spectrally accurate discretization of the curl−curl operator. From a theoretical point of view it

remains unclear whether this property carries over to the SWIP formulation (6), cf. [14].

Therefore the spectrum of the aSWIP
h bilinear form is investigated in a numerical experiment.

The setup is very similar to the one in the previous section: The domain Ω consists of two half-

spheres which can be rotated against each other by an angle θ . However this time we only as-

semble the matrix of the aSWIP
h bilinear form with ε = 0, aF = a

(3)
F

1 and compute its eigenvalues

using the eig routine of MATLAB R2013a.

Fig. 4 The smallest/largest non-zero eigenvalue is plotted against the meshwidth for 50 different angles of rotation

(dashed lines). For comparison the smallest/largest non-zero eigenvalue of a H(curl) conforming discretization

based on second order edge functions is plotted as well. The angles are θ = 0.01n rad, n ∈ 0, . . . ,49 and R2 edge

functions were used to discretize aSWIP
h .

Figure 4 shows the smallest and largest non-zero eigenvalues of the SWIP formulation for dif-

ferent mesh-widths h and different angles θ (dashed, blue lines) (a eigenvalue has been classified

1 The choices a
(1)
F and a

(2)
F yield qualitatively the same results. In particular the smallest non-zero eigenvalues also

tend to 0 as ε → 0, cf. Fig. 5
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Fig. 5 Smallest/Largest non-zero eigenvalues vs. the rotation angle θ for h= 0.359644. The discretization is based

on R2 edge functions.

as non-zero if its absolute value is greater than 10−12). For comparison we have also plotted the

eigenvalues of a standard H(curl) conforming discretization using second order edge functions

on the conforming grid with θ = 0 (green lines).

We see that the bandwidth of the SWIP eigenvalues is comparable to the bandwidth of the

H(curl) conforming discretization for many angles. But we also observe that for some angles the

lower end of the spectrum tends to zero. In order to better understand this phenomena we plotted

the smallest/largest non-zero eigenvalues of the SWIP discretization against θ for one mesh-size

(Fig. 5). We now see that the lower end of the spectrum deteriorates as θ → 0. I.e. we can expect

spectral pollution for very small angles. This agrees with the observations of [13].

The previous considerations indicate that the aSWIP
h bilinear form is not suitable to solve the

Maxwell Eigenvalue Problem. However in this work we are concerned with the curl−curl source

problem (1-2). Although the Galerkin matrix becomes singular for ε = 0 we can in principle still

solve the linear system if it is consistent, i.e. if the right-hand side lies in the range of the Galerkin

matrix. Then the solution Ah is not unique anymore, but curlAh is.

We attempt to solve the linear system of equations using the conjugate gradient (CG) method.

In [15] it is shown that the CG method converges for consistent, symmetric positive semi-definite
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problems and that its rate of convergence is determined by the non-zero eigenvalues. In particular,

the number of CG iterations is related to the generalized condition number κ = λmax
λmin

where λmin

is the smallest, non-zero eigenvalue of the system matrix. If again we take a look at Fig. 5 it

becomes clear that κ → ∞ as θ → 0. I.e. the number of CG iterations should increase as θ → 0.

This has been confirmed in a numerical experiment: We take the example from Sec. 5 with the

same analytical solution and chose the right-hand side ji = ∇× (∇×A) (ε = 0, µ ≡ 1). Table 1

provides the number of CG iterations required to reach the prescribed tolerance 10−6. We see that

without a preconditioner the computational cost for the angle θ = 10−6 is almost 6 times larger

than for θ = 10−1. For comparison we also list the number of iterations needed when the multi-

level ILU decomposition ILUPACK is employed [5] [6] 2. In this case the number of iterations

also increases but the factor 6 is reduced to ≈ 3.15.

Table 1 Number of CG iterations for θ → 0, h = 0.359; the discretization is based on R2 edge functions.

θ [rad] No Preconditioner ILUPACK

10−1 1118 135

10−2 3705 214

10−3 3731 320

10−4 6102 426

Remark 4. Although the right-hand side ji chosen in the numerical experiment above is clearly

divergence free, there is no guarantee that its discrete counterpart ℓh is so too. We have inves-

tigated this by splitting the right-hand side vector b of the linear system into a part that lies in

the kernel of matrix, b̃, and into it’s orthogonal complement, b̃
⊥

. It turned out that for all angles∥∥∥b̃
⊥
∥∥∥

2
/‖b‖2 ≈ 10−9, which seems to be sufficient for CG to converge.

6.2 The case 0 < ε ≪ 1

If we set ε to zero we have to make sure that the right-hand side vector lies in the range of the

system matrix in order for CG to converge. However this is a non-trivial task because we don’t

know a-priori the kernel of the system matrix.

Note 1. For H(curl) conforming discretizations, which fulfill the discrete sequence property, the

kernel of the system matrix is known. Unfortunately this doesn’t carry over to the SWIP formu-

lation (6).

Let us therefore study a different approach: We choose ε so small that the error due to regu-

larization becomes negligible. To make this more explicit we bound the total error between the

discrete, regularized solution Aε
h and the exact solution of (1-2) with ε = 0, A0, by two contribu-

tions:

2 The parameters for ILUPACK are: type sol = 0, partitioning=3, flags=-1,-1, inv.

droptol=5, threshold ILU=0.1, condest=1e-2, residual tol. = 5e-6
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∥∥∇× (Aε
h −A0)

∥∥
L2(Ω)

≤ ‖∇× (Aε
h −Aε)‖L2(Ω)+

∥∥∇× (Aε −A0)
∥∥

L2(Ω)
,

herein Aε is the exact solution of the regularized system (1-2). Clearly the second component is

independent of the discretization and thus h, but it depends on ε for a given problem. Moreover,

the first term depends on h but is independent of ε because the constant C of Thms. 1 and 2 is

independent of ε (for ε small enough).

It is thus desirable to choose ε small such that
∥∥∇× (Aε −A0)

∥∥
L2(Ω)3 ≪‖∇×(Aε

h−Aε)‖L2(Ω)3 .

However, as ε → 0 the discrete problem becomes ill-posed, cf. Remark 3.1, Sec. 6.1.

We try to circumvent this problem by two approaches:

• For small problems we use the Sparse Cholesky Decomposition of PARDISO [12] (Intel MKL

Version 11.2) and solve the linear system of equations directly.

• For problems whose Cholesky Decomposition does not fit into memory we use the Conjugate

Gradient Method together with ILUPACK [5,6] as a preconditioner (using the settings of Sect.

6.1).

Note 2. We are only interested in the curl of the solution, i.e. the magnetic field B. If we were to

look at A instead of ∇×A then
∥∥Aε

h −Aε
∥∥

L2(Ω)3 would not be independent of ε as can be seen

from Thm. 1.

Setup We consider the same setup as in the previous section (cf. Fig. 2) with the same analytic

solution, A0 = (siny,cosz,sinx). ji is chosen such that A0 fulfills (1-2) with ε = 0 and µ ≡ 1.

We solve the system of linear equations using PARDISO for different values of ε (as in the

previous section we choose aF = a
(3)
F ). Figure 6 shows the total error

∥∥∇× (Aε
h −A0)

∥∥
L2(Ω)

as a function of ε for various mesh-sizes. We see that for ε < 10−3 the discretization error∥∥∇× (Aε
h −Aε)

∥∥
L2(Ω)

clearly dominates the regularization error
∥∥∇× (Aε −A0)

∥∥
L2(Ω)

whereas

for ε > 10−3 the discretization error starts to dominate the regularization error. This is what we

can expect from the previous discussion.

Note 3. The same results are obtained if CG together with ILUPACK is used. For brevity we omit

these results here.

We would like to point out that by using the direct solver PARDISO we were able to solve the

resulting system of linear equations for ε as small as 10−10 and that the time needed to solve the

problem seems to be independent of ε (see Table 2). A similar result holds for preconditioned CG

with ILUPACK preconditioner where the system is solvable for arbitrary small ε (cf. Sec. 6.1)

and the solution time seems to be independent of ε for ε small enough.

We can thus choose ε (almost) arbitrarily small without affecting the discretization error∥∥∇× (Aε
h −Aε)

∥∥
L2(Ω)

and incurring rising cost for solving the resulting linear systems of

equations. In other words, the regularization error can be made arbitrarily small such that it

becomes negligible for concrete applications.
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Fig. 6 Relative L2-error of curl vs. ε for multiple mesh-sizes h. The meshes have been rotated against each other

by θ = 0.057 degrees and second order edge functions (k = 2) were used for discretization.

Table 2 Relative runtimes for ε → 0, h = 0.359; the discretization is based on R2 edge functions and θ = 10−4

rad. The runtimes have been normalized with the runtime for ε = 10−1.

ε PARDISOa ILUPACKb

10−1 1 1

10−2 1.01 1.41

10−3 1.01 1.42

10−4 1.02 1.43

10−5 0.98 1.42

a Time includes cholesky factorization and back-substitution
b Time includes ILU factorization and CG iterations
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7 Conclusion and Outlook

We have proved a-priori error estimators for the interior penalty formulation of the regularized

curl-curl source problem (1-2); If the solution is approximated by k-th order edge functions we can

expect at least convergence of order O(hk−1) (provided the exact solution is sufficiently smooth).

In particular, for k = 1 no convergence was observed in a numerical experiment [1], which implies

that our result is sharp. The reason for this is that Rk does not span the full polynomial space P
k.

The bounds require the mesh to be quasi-uniform at the sliding interface but do not make

any assumptions on how the sub-meshes abut at the sliding interface nor does the error estimate

depend on it. This is confirmed by the numerical experiments in [1] where it is shown that the

approximation is stable independent of the way the sub-meshes intersect.

Moreover the role of the regularization parameter ε has been investigated; For practical pur-

poses one can choose ε (almost) arbitrarily small and solve the discrete problem with a direct

solver or by using the preconditioned conjugate gradient method. The error due to regularization

is then dominated by the discretization error of the regularized problem and is thus negligible.

Outlook The proof of Thm. 2 suggest that it suffices to use 2nd order edge functions solely

in elements adjacent to the non-conforming interface, respectively boundary faces, to achieve

O(h) convergence. This would reduce the required number of unknowns drastically and will be

presented in a future work.
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