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Novel Multi-Trace Boundary Integral Equations
for Transmission Boundary Value Problems

Xavier Claeys, Ralf Hiptmair, Carlos Jerez-Hanckes and Simon Pihtarel

Abstract. We consider scalar 2nd-order transmission problems in the exterior of a bounded
domainQ, c R?. The coefficients are assumed to be piecewise constant with respect to a
partition of R? \ Q into subdomains. Dirichlet boundary conditions are imposed@p.

We recast the transmission problems into two novel well-poselti-trace boundary inte-
gral equations Their unknowns are functions on the product of subdomain boundaries. Com-
pared to conventional single-trace formulations they offer the big benefit of beiegable to
operator preconditioning. We outline the analysis of the new formulations, give thesdwtail
operator preconditioning applied to them, and, for one type of a multi-trace formuledjmort
numerical tests confirming the efficacy of operator preconditioning.

Keywords. Multi-trace boundary integral equations; boundary element methods; 1st-kind in-
tegral equations; operator preconditioning; domain decomposition.

AMS classification.74J20,65N38,65N55.

1 Introduction

This is the story of a marriage between boundary elementodst{BEM) and domain
decomposition (DD). In fact, viewed from the angle of bouryddement methods, this
relationship may be labelled a forced marriage, becaustheaseader will certainly
remember, boundary element methods can only cope with Ibeardary value prob-
lems with constants coefficients. Piecewise constant cosffis are still within their
scope, but in this case, the computational domain has to agersed intcsubdo-
mains on which the coefficients are constant. Subsequently, dexyrintegral equa-
tions have to be devised for the resulting transmissionlpm$. They feature traces on
the interfaces between subdomains as unknowns. Then gaatte of discretization,
these interfaces are triangulated and the degrees of freefithe boundary element
method will be located on the union of the interfaces, theated skeleton. All this
very much resembles what is done in domain decompositiofadst even in the
context of finite elements.

The most important representatives of these skeleton BE&tlapproaches rely
on what we have dubbed the (direclssical single-trace boundary integral formula-

The research on which this article is based was funded by Thales Systemesrfer & through the
project “Preconditioned Boundary Element Methods for Electromagnetic Sngtiar Dielectric Ob-
jects”.
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tion (STF). It had long been known for simple transmission pnoisleomprising two
subdomains [24], and was presented in full generality in [%he setting of strongly
elliptic second-order scalar problems. More exotic, inttik@riants have also been de-
veloped, for instance in [68, 45,169]. Second-kind STFs amn, too, and covered in
[17,[13) 31/ 78, 81] for scalar transmission problems, arf8n§ 23] for electromag-
netics. The classical STF is particularly popular in coratiohal electromagnetics,
where it is known as Poggio-Miller-Chew-Harrington-Wu-T§8MCHWT) integral
equations|[67, 10, 80, 33]. Their numerical analysis for subbdomains was first
accomplished in 9], and later extended!in [7].

As unknowns the direct STF features a full set of Cauchy datt, is, pairs of
Dirichlet and Neumann traces, on each interface betweetenl subdomains. In
variational form, its associated bilinear form is builtrfftrdocal subdomain contribu-
tions, very much in the spirit of domain decomposition. Téiispenses with global
interactions in the assembly of the discrete boundary iategperators. The benefit
of localization may be so big that it can be worthwhile to pgrsgenuine domain
decomposition” by introducing extra artificial interfadeside regions with constant
coefficients.

However, the classical STF renounces the spirit of DD in th@ae of unknowns,
which establish the coupling between the subdomains imgtform. As a conse-
guence, the variational STF employs a function space tilatfabe a simple product
space of subdomain contributions. At first glance without aalty, since the STF
turns out to be unconditionally well posed, se€ [79] and Héxt. 3.2]. A brief review
of the derivation and analysis of STF will be given in Secf®of this article.

A drawback of the strong coupling imposed through the funmcsipace has surfaced
recently: it compounds the difficulties of designing preitioners. This matters, be-
cause modern boundary element applications are inconéewéhout the use of local
low-rank matrix compression implemented in techniques fist multipole methods
[30,[25],H-matrix compression [32], or adaptive cross approximgdihch. 3]. Com-
pressed matrices allow only the use of iterative solvers,setspeed of convergence
will deteriorate for ill-conditioned linear systems. Ystandard low-order boundary
element Galerkin discretization of the classical STF, whaahounts to dirst-kind
boundary integral equatiarwill invariably produce ill-conditioned linear systems on
fine triangulations. Thus, effective preconditioning bees crucial.

Many preconditioning strategies have been suggested fnetised first kind bound-
ary integral equations. Among them are geometric multilsuvdspace correction
methods (two-grid or multigrid) [41,) L, ¥5,36,143,/61] 54 veell as attempts to bring
algebraic multigrid to bear on BEM_[60, 48,149]. However, dea has revolutionized
preconditioning for BEM as much as an approach know@agerén preconditioning
invented by O. Steinbach and co-workersl[inl[[72, 57] and lexéended by A. Buffa
and S. Christiansen in [12} 8]. It has had and continues te hanassive impact, for
instance in BEM based simulations in computational elestrgnetism, witness the
flurry of papers that has been devoted to its usé([717, 4,176, 21]3 We point out
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that Calderén preconditioning fits the more general polfoyperator preconditioning
introduced in[[38, 55], see also [16, Sect. 4].

Awareness of the gist of operator preconditioning as ptesem [38] is key to
understanding why it encounters problems for the STF. Tiueshriefly recall the
main result of[[38].

Theorem 1.1(Theorem 2.1 of[38])Let X, Y be Hilbert spaces, and;, := spar{goz}f\’o C
X andY}, := spar{¢;}}, C Y finite-dimensional subspaces with bages} ", and
{¢j}j1‘io. Further, leta € L(X x X,R) andb € L(Y x Y, R) be continuous bilinear
forms (with normd|a|| and||b||, resp.), each satisfying discrete inf-sup conditions with
constantsc4,cg > 0 on X, andY}, respectively. If there is a continuous bilinear
formd € L(X x Y, R) that also satisfies a discrete inf-sup conditionp x Y;, with
constantcr > 0, then the associated Galerkin matrices:

Ah = (a(¢i7¢j>)gj:1) Bh = ( (¢lv¢]))z] 1 Dh = ( (@Z)Qb]))i\g]wla

satisfy
[alllbllld]?

5 1.2)
CACBCT

x(D;'B;D;TA) <

wherex designates the spectral condition number.

This theorem clearly reveals what it takes to build a viableerator preconditioner”
M;, =D, 1BhD ~T when given a stable Galerkin discretization of a variatipnab-
lem mvolvmg the b|I|near forma. We have to find

» a space’, equipped with a bilinear forr,
a suitable Galerkin trial spadé, C Y that yields a stable discretization lnf

« and a “pairing bilinear formd that induces a stable discrete duality pairing be-
tweenX;, andY;, (independent of the choice of discretization parameters),

and that gives rise to a square Galerkin mabix, for which linear systems can
be solved with little computational effort.

In the context of boundary element methods the last itemllysosans that the
Galerkin matrixDy, is sparse Thus, its formal inverse in the definition of the pre-
conditionerM,, can be evaluated by means of direct Gaussian eliminatiagereral,
sparsity ofD;, can be achieved only i is local, for instance, a simple*-inner prod-
uct.

Unfortunately, for situations with more than two subdonsaiso far no spac&
has been found that is in duality with the variational spacef the STF with respect
to a local pairing bilinear formd. It goes without saying that suitable boundary ele-
ment space¥}, also remain elusive. This seems to be a fundamental obstathe
application of Calderén preconditioning to the STF, as aixgd in [16, Sect. 4.5].

L?-dual pairs of trace spaces are well known for boundaries diitual subdo-
mains. Thus, if a stable variational boundary integral &qunacan be posed on their
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product space, local operator preconditioning becomesmbktforward option. This
insight was the main motivation behind the developmennaiti-trace formulations
(MTF). Truly in the spirit of domain decomposition, they raip simple products of
local trace spaces and impose coupling between differdidasnains weakly. They
owe their name to the use of two pairs of unknown Cauchy tranesvery interface.
It is this new class of boundary integral formulations ttnég trticle is devoted to.

Multi-trace formulations come in two different flavors; westinguish between
globalandlocal MTFs. The former can be deduced from the STF through a vamgshin
gap limit and they will be treated in Sectibh 4. The latter @ypocal transmission
conditions and they are discussed in Sedtion 5, with nuralenésults reported in Sec-
tion[6. We emphasize that this article is largely meant to beview. Occasionally,
rigorous proofs and technical details are skipped. Thosédedound in the original
publications

« [18], as concerns the global MTF for acoustic scattering,

« [14], where the global MTF for electromagnetic scattering imt®duced,

« [39], which proposed the local MTF,

« [40], where the local MTF is extended to more general transiorisconditions.

« [15], where a global MTF for scattering problems with homoggas Dirichlet
boundary conditions is derived with focus on avoiding spusi resonances by
means of combined field integral equations (CFIE).

Parallel to the developments in numerical analysis, loadtiftrace BIE have recently
been devised for large scale parallel simulations in coatpmirtal electromagnetism
by J.-F. Lee, Z. Peng, and collaborators|[64,/65, 66]. Thieuscores their relevance
for computational engineering.

In parts, this manuscript runs parallel to the survey a{itg]. What is new is the
treatment of essential boundary conditions, becauset, fipar [15], earlier work has
always been concerned with (scattering) transmissionl@nud posed on the entire
spaceR?, d = 2,3. Also new are the numerical investigations of the local MiTBD
reported in Sectioh] 6.

Admittedly, multi-trace formulations are by no means theyattempt to harness
ideas from domain decomposition for boundary element nisth@rominently, this
was also pursued by O. Steinbach and co-workers with the @oyrElement Tearing
and Interconnecting (BETI) methdd [62,47] 51,50, 53]. Thsspecimen of the class
of BEM based domain decomposition methods that involve @pprate realizations
of Dirichlet-to-Neumann maps by means of boundary elemf&8s73]. Other ap-
proaches marrying boundary elements and domain decoriguositploy Lagrangian
multipliers, cf. [46].

A word of warning; throughout we address domain decompwsiti the volume. It
must not be mixed up with domain decomposition on surfacesrte break apart the
linear systems arising from BEM. Only recently various kimdsuch schemes have
been proposed, see [11,87] 85,120, 63].
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List of notations

Q;,Qy
Lj

Tpi, T
(o
T;
T(0Q;)
(- Doa
G,

P;

A;
MT(Z)
L;

(D5
ST(3), STo(2)

MT(Z), MTo(3)

Cisj

G
Tn(0Q;)
Xi—)j
Tou(00:)

MT (), MTo(Z)

MTo(3)

Lipschitz domains “subdomains”, sée (2.1)

second-order diffusion operator associated Wik, see [(Z2.3a),
Pagéd b

Dirichlet and Neumann trace operators o8fo;

L2 duality pairing betweettl 2 (9Q) and H~ 2 (0Q)

Cauchy trace operator @iQ;

Cauchy trace space @if);, see Pagel8

duality pairing in Cauchy trace space, de€l(3.3), Page 8
potential associated wit®;, see[(3.4), Padég 8

Calderén projector ont@;, seel(3.6), Padgé 8

Calderén operator belonging ;, seel(3.)7), Padd 9

multi-trace space, sele (8.8), Page 9

localization operatoM T () TT(0Q;), seel(3D), Pade 9
self-duality pairing forM T (%), seel(3.10), Padé 9
single-trace spaces, s€e (3.11), Hdge 9,1(3.13),[Page 10
clipped multi-trace spaces, s€e (4.8).(4.4), Page 14

remote coupling operators, s€e {4.7), Hade 16

triangular surface mesh @Q;

boundary element Cauchy trace spacé®, seel[(4.P), Pade 1.7
trace restriction operator, see (5.2), Page 19

trace transfer operator, sée {5.2), Fade 19

piecewise Cauchy trace space, $ed (5.6), Page 20

multi-trace spaces with local regularity, see (5]10a) ePZh
multi-trace space with locally regular Neumann componesée

(5.13), Page 22

2 Exterior Transmission Boundary Value Problems

As a model problem we study a scalar second-order ellipgiosimission boundary
value problem in the exteridk? \ Q of a bounded Lipschitz domai2; ¢ R?,
d = 2,3. We restrict ourselves to spatially varying diffusion ffioéents p = (),
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Figure 1: Geometric situation for the second-order scdlgatie exterior transmis-
sion model problem. The;’s stand for theexterior unit normal vector-fields on the
subdomain boundarig®);.

@ junction points ng

which arepiecewise constantith respect to a partition &% \ Q
RINQ; =QoUQiU...UQy, NeN, (2.1)

into N + 1 subdomain$;, of which onlyQg is unbounded, see Figure 1 for an illus-
tration. The two subdomair®; andQ;, ¢ # j, are separated by the interfacg. The
piece of boundary separatifyy andQ is denoted by ;. The union of all bound-
aries forms the skeletoh: >~ = [ J, 9Q;. If Qz # 0 or N > 1, junction points will
usually occur and then the skeleton may not be orientabteh@a manifold.

Given diffusion coefficients; > 0,7 = 0,..., N, and Dirichlet datg € H3 (0Qz),
our model transmission problem sedkss HL (R?\ Q) that satisfies the Dirichlet
boundary conditions

U=g ondQz, (2.2)

that complies with suitable decay conditions at infinitydeleding on the space dimen-
siond, seel[56, Ch. 8]), and whose restrictidis:= U|g € Hj.(Qi),i=0,...,N,
fulfill

Ei UZ = diV(,ui grad Uz) =0 in Qi s (23a)
U U,
Ui|rz‘j o Uj|rij =0, MiTm i “ij - =0 only;. (2.3b)

Equivalently,U can be characterized as the solution of a variational propiesad on
a Sobolev space with weightdd!(R? \ Q)-norm, cf. [70, Sect. 2.9.2.4.] and [26,
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Chap. Xl, Part B]. Existence and uniqueness of solutionfisfiariational problem
can be established by standard techniques/sée [70, SExR.2] or [56, Ch. 8].
Remark2.1 (More general boundary conditions 6Q;). We confine ourselves to
Dirichlet boundary conditions ofiQ 7 just for the sake of simplicity. Neumann bound-
ary conditions can be treated alike and BIE can even accomadatixture of both
following the ideas of [70, Sect. 3.5.2]. A
Remark2.2. As already remarked in the Introduction, multi-trace baanydntegral
equations can be derived for many more transmission prableeside the simple
model problem[{2]3). In fact, i [16] and 18] multi-trace Ualary integral equa-
tions were first proposed and analyzed for acoustic scagteiRecall that thecoustic
transmission scattering problemvolves the local partial differential equations

— diV(,ui grad UZ) — HEUZ =0 in Q; R (24)

with locally constant wave numbers > 0, and Sommerfeld radiation conditions at
infinity [L9, Ch. 2], [59, Ch. 2]. The transmission conditiof&38) and boundary
conditions [[2.2) apply unchanged. An extension to transimnsproblems for time-
harmonic electromagnetic waves is pursued. in [14]. Thos# rea

Uxnz=g onodQy, (2.5)
curl(yjcurl Uy) — k?U; =0 inQ;, i=0,...,N, (2.6)
ni X (Uilp, x ni) —nj x <Uj‘rij xnj)=0,
on I'Z-j , (2.7)
pi curl Uyl X n; + 1 curl Uj|rij xn; =0
+  Silver-Muller radiation conditions afo for U — Ujpc.

A detailed and comprehensive presentation of multi-tragefBi the scattering trans-
mission problemg(214) and (2.5) is given(in[[16]. In all thesorks essential boundary
conditions are not taken into account.

3 Single-trace Boundary Integral Equations (STF)

3.1 Calderdn Projectors

Two trace operators are naturally associated with the seoatter scalar differential

operator; U; := —div(u; grad U;). These are the Dirichlet trackp ;, and Neu-
mann traceT v ;, defined for smooth functionis on Q; through
Tp:U = U|BQ¢ . TniU = ,ul-gradU-nﬂaQi . (3.1)

They can be extended to continuous and surjective opelf@i@ySect. 2.6 & 2.7@

Tpi: HY Q) = H2(0Q;) , Tyi:H(D Q) — H 2(0Q;) . (3.2)

! AsusualH(A, Q) := {U € HYQ) : AU € LA(Q)}.
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Their ranges are known dgce spacesand form the Gelfand tripleﬂ%(é?Qi) -
L2(0Q;) ¢ H~2(0Q;) with a duality 2 (0Q;)' = H~2(9Q;) effected by thd.2(9Q;)
inner product. We writé, ) 5 for the associated duality pairing, which agrees with
the L?(0Q;)-inner product for sufficiently regular functions. Traceasps and opera-
tors may be combined intGauchy trace spaceendCauchy trace operators

H(,Q;) — T(0Q)
U — (TD’Z'U,TNJ'U).

1
2

T(OQ:) := H2(9Q;) x H™2(8Q;), Ti: {

The ranges of th&; are dense iV (0Q;) [22, Lemma 3.5]. Obviously, the Cauchy
trace spaces are in self-duality with respect to the skewasgtric pairingE

(w.0Dag, 1= (0 0ho0, — 0hag, « wi= (1) vi= (V) e T0®) . @)

Beside trace operators, potentrapresentation formulaare the linchpin of the
derivation of boundary integral equations. Here, the tepmténtial” is reserved for
mappings that take functions on boundaries to function®malns. These functions
usually provide solutions of the homogeneous PDE. For oucrete operatorg; :=
—div(u; grad -) the key potential is formally given by

Gi(u)(z) == (T; ®(x — ), u)yo. , @R\ 0Q;, ue T(0Q), (3.4)

where® is the fundamental solution fof;, seel[70, Eqg. (3.3)]. A comprehensive
discussion of potentials can be found[inl[70, Sect. 3.1].nTkeeryU € Hioc(4A, Q;)
that satisfies; U = 0 and, fori = 0, the appropriate decay conditions-at has the
representation (in the sense of distributions)

cf. [70, Sect. 3.11] and [56, Ch. 6]. Applying the Cauchy tracthpotential yields
the Calderén projectorsee([16, Sect. 2.3], [70, Sect. 3.6], and [44, Sect. 5.6]:

This operator turns out to be a project®? = P;. The Calderén projectors owe their
importance to the following fundamental theoreim,[16, Thré] &nd [70, Prop. 3.6.2(ii)].

Theorem 3.1.U; € H(A, Q;) solves; U; = 0in Q; (and satisfies appropriate decay
conditions atx for s = 0), if and only if(P; —1d) T; U; = 0.

2 Fraktur font is used to designate functions in the Cauchy trace space, whereas Bmpeface is
reserved for Dirichlet traces, and Greek symbols for Neumann traces.
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We remark that the Calderén projec®rimplicitly contains the customary four dif-
ferent boundary integral operators associated with 2deracalar PDES [70, Eq. (3.122)],
because th€alderon operator

—-K; V;
A;:=P;—3ld canbe writtenas A; = , (3.7)
W, K.
where we have adopted the notations from [70, Sect. X1]V;, W;, andK/ stand

for the double layer, single layer, hypersingular, and iadjdouble layer boundary
integral operators 08Q;, respectively.

3.2 Skeleton trace spaces

Boundary integral equations arising from the transmisgimblem [2.8) invariably
involve unknown functions in trace spaces on the skel&tohhe largest and simplest
such space is the (skeletam)lti-trace space

MT(Z) = T(0Q0) x T(0Q1) x -+ x T(9Qn) , (3.8)

which comprises completely decoupled local traces. It atgesame to the fact that
on each interfac€;; a functionu ¢ MT(Z)E comprises two pairs of Dirichlet and
Neumann data, each stemming from a subdomain on either $ide.simple com-

ponent projectiond,; : MT(X) — T(09Q;) isolate the contribution of individual
subdomains:

Lju:= (“) for u:i= ((“0) (“N>) e MT(3). (3.9)
1% o VN

Properties of its local components carry over to the mudite space, for instance,
self-duality with respect to the symplectié-type bilinear pairingef. 3.3),

N
(wo)s => (LiwLiv)yg , u0eMT(I). (3.10)
=0

Corollary 3.2. The pairing(3.10)induces an isomorphistM 7 () = MT (Z)'.

Generically, multi-trace functions on different subdonszare utterly disconnected.
If we impose the continuity stipulated by the transmissionditions [2.3b) we arrive
at the so-calledingle-trace spaces

A\ Y WV e HYRY) : uy=Tp,
st (), e Sy T )
i i=0 S H(dIV,R ) Ly = Tn’iW

(3.11)

3 Functions in a multi-trace space will be tagged by an underline 1.g.,
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Here, T, ; W is the normal component traddV - n;)|,o, on 9Q; for a vector-field
W in Q;. For traces in.2(9Q;), the formal definition[(3.11) implies

N
; ilr,, = Uj and vl = —vj|- ,
((“)) €ST(E) = tilr, = il . '”|ru ile, (3.12)
Vi) ) i—o 0<i,j <N,

that is, theH %-components are continuous across interfaces, and so @i th-
components, the latter up to a change of sign. The sign chaeflpets the oppo-
site relative orientation of an interface with respect te two adjacent subdomains,
see Figur¢ll. The definitioh (3]11) may be modified slightlpiider to impose zero
Dirichlet boundary conditions 08Q z.

STo(®) = <U>N L U E Mg, (RNQz) wi =T U |54
' Vi)ieo 3IVeHV,RY: v =T,,;V ' '

Here, we wrote, (R?\ Q) for the space of functions i (R* \ Q) that vanish
onoQ .

Obviously, the restriction of single tracesdaQ z is well defined by taking the point
traceTp z V and normal component tradg, z W onto 0Q, respectively, of their
extensiond” andW according to[(3.71). For this restriction operation weadtrce
the localization ont@Q ,

Ly, = (L ) ST( ) — T(ﬁgz) H2(an) X H™ (an) . (314)
L,z

Thanks to[(3.IR2) the pairing of single trace functions ldadsassive cancellations,
because for sufficiently smooth multi-trace functions we mawrite [3.10) as a sum
of contributions of interfaces:

)s = Z /ulwl — vy + uj; — v dS + Z / up; — v dS  (3.15)

i,j=0 =0
L<Jr’t.7 |—

whereu = ((%),..., (")), v = ((Z‘(’)),, (U¥)). Remember thak,; are the

vg/? VN wN
interfaces separating subdomains &g The identity [3.1b) holds since each interior

interface is visited twice in the evaluation of the pairifgow, combine[(3.15) with
the insight from[(3.12) and conclude forv € ST (%)

Z—Z/ — (v I/ZdS—l-Z/uzwl v;v; dS .
,J T O 1= Or
We immediately get
(uo)s = —(Lzu,Lzo)sg,. Yu,0eST(Y), (3.16)

and note that the minus sign is due to the opposite orientafianrmals orvQ ;.
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Remark3.1 A fundamental result is the characterization of singledrapaces as
complete Lagrangian subspaces w.r.t. the paiing)s of multi-trace spaces as given
in [18, Prop. 2.1] and [16, Thm. 2.23]. It can be adapted to bgemeous Dirichlet
boundary or0Q:

SToX)={ue MT(2): (uo); =0Y0ec STo(2)} .

The intuition behind this characterization is clear fromlB): Varyinge € ST (%)
enforces[(3.12) and vanishing Dirichlet components on thendaried; ;. A

3.3 First-kind boundary integral equations

Assume that/ € H_(R?) solves the transmission problem{2.3). Then Thedremn 3.1
permits us to conclude

(P;—Id)T,U =0 inT(9Q;), j=0,...,N. (3.17)
Using [3.7), this implies that for all € ST (%)
N
> (A -31d)T;U.Ljv),, =0. (3.18)
j=0

Next, recall[[3.15), that the Dirichlet componentsafanish orvQ, Lp zv = 0, and
thatU satisfies the Dirichlet boundary conditiofis {2.2), thaflis,z U = g on 0Q .
Thus, we find Tz U is the Cauchy trace df on0Qy)

N
> (3T UL}, = -3(T2U.Lz0)sg, = ~3(9.Ln.20)sq,,-
=0

and [3.I8) can be converted into the equation:

N
<<AJ T] U7 ]L] g»an = _%<g> LN,ZQ>@QZ . (319)
7=0

Eventually, we have derived a variational equation sadgfigTs U := (T, U)N, €
ST (Z). In order to balance trial and test spaces, we employ themasy offset
function technique. We rely on a functigi € H (R?), whose point trace 08Q
agrees with the Dirichlet datee Tp G = g. Thus, we can define the skeleton

extension of the Dirichlet boundary valugs,= (%) € ST(Z). Introducing the
skeleton Cauchy trace &f minus this extension as unknownthatis,u = Ts U — g
yields the classical single-trace boundary integral éqngSTF): seelu € ST ()

such that

N N
> (AT Ljw Liv)ag = —3(9.Lnz0)aq, = D (AjLjgLiv),, .| (3:20)
7=0 7=0
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forallp € STo(Z). This is a first kind boundary integral equation in weak fokive
write mgtg for its associated bilinear formstr: STo(Z) x STo(X) — R.

3.4 Existence and Unigueness of Solutions

The bilinear formmste from (3.20) is a sum of local contributions associated with t
integral operators\;, ; = 0O,...,N. This permits us to appeal to well established
results asserting the ellipticity of single layer and hygigular boundary integral op-
erators. The proofs can be foundlin][56, Cor. 3.13 & Thm. 8.[I&), Thm. 3.5.3], and
[74, Sect. 6.6.1].

Theorem 3.3.Let D c R? be a Lipschitz domain)D connected and bounded, and
write V and W for the single layer boundary integral operator and hypeggilar
boundary integral operator oD, respectively, associated withA. If d = 2, assume
that 9D has a diameter smaller thah Then there are constanty > 0andcy, > 0
such that

2 _1

Ve vlap Z evllely -3, Vo € H2(9D), (3.21)
2 1

(Wo,v)op 2 ew [0l g Vv € HZ(9D)/R . (3.22)

If D is not bounded, the@.22)holds on the entire spadé% (D).

To apply this theorem recall the symmetry of the double ldy@uindary integral
operators for-A: (Kv, ¢)yp = (v,K'p)yp, forallv e H%(aD) andy € H*%(aD).
Thus, we obtaiD = Q;

<<Aj (Z) <<pv> >>an B << <V\z]vvj *2/3]5 ) (:> >>an (3.23)

= <Vj80a ‘P>an + <WjU7U>an )
and from Theoreni 313 we immediately conclude that there anstaotsc; > 0,
j=1,..., N, such that
— . o 12 '
(40,500, = ¢; inf [o = (@) I70q,)» Yo €TOQ), (3.24)

where the simple isometric isomorphisg) : 7(0Q;) — T(09Q;) is defined as
Z(,) = (1)) Again the quotient norm is redundant for= 0:
Jeo > 01 (Aov, Zg0) a0, > co 05 a0 € T(0Q0) - (3.25)

In the interest of concise notation we merge the local sigsmge isomorphisms;
into the operato= on MT (X) that amounts to component-wise application of the
=;’s.

J
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Theorem 3.4(=-ellipticity of STF bilinear form).The STF bilinear fornmgrg satisfies
the “=-ellipticity” estimate

msTr(0, Z0) > c|jof i o € STo(T),

for some constant > 0.

Proof. Invoking the definition ofmste from (3.20) together with[(3.24) an@ (3]125)
confirms thaingtr is positive semidefinite with an at most finite-dimensioretriel

N

msTr(b, Z0) > co HUHZT(aQO) + ch ;2}:@ Jlo—(5) HZT(an) :
=1

It remains to show that the kernel can only be trivial. Let assider the variational
problem with vanishing right hand sideistr(u, v) = O for allv € ST (%). Choos-
ing v = u we infer from [3.24) that.; u = () for somec; € R, that is, the Neumann
components ofi vanish and its Dirichlet components are constant on themuhh
boundaries. In fact, by (3.25), @i)g those have to vanish, too. Hence, they have to
be zero on all subdomains abuttif@,, and a simple induction arguments confirms
u=0. O

Corollary 3.5. The variational problem({3.20) has a unique solution for any
Hz(0Qy).

Proof. The continuity of the bilinear forrmgte from (3.20) and of the right hand side
linear form onSTo(Z) is obvious. Moreover, the ellipticity result of Theorém]|3.4
implies an inf-sup condition fomsTr. O

3.5 Obstruction to operator preconditioning

According to Theoreni_3l4 the single trace variational bamdntegral equation
(3.20) is stable. Moreover, its boundary element discretinas straightforward, once
a triangulation of the skeleton is given.

However, [[3.2D) is posed on the single-trace sp8i@&(Z) and there is no known
trace space that is dual 7 o(Z) with respect to anl?-type duality pairing. Of
course, uniformly stable discrefe?-dualities are even more elusive for conventional
boundary element subspacesS51 o(Z). Thus, as remarked in the Introduction, op-
erator preconditioning fol (3.20) isot possible This is further elaborated in [16,
Sect. 4.5].



14 X. Claeys, R. Hiptmair, C. Jerez-Hanckes and S. Pintarelli

4 Global Multi-trace Boundary Integral Equations

4.1 Preface

In this and the next section we present multi-trace bounufegral equations for the
transmission probleni(2.3). They have in common that theg gse to variational
problems posed on products of simple trace spaces on sububmandaries.

To understand the benefit of a product space framework irstefroperator precon-
ditioning, recall Theorem 111 and its straightforward getieation to a setting where
the bilinear forma is defined on a product of Hilbert spaEeK = X1 % ... X,,
n € N. We also need Hilbert spacés, ..., Y, equipped with continuous bilinear
formsb; € L(Y; x Y;,R). Then, given finite-dimensional subspacgés, C Xj,
Y;n C Y}, assuming inf-sup conditions faron X, := X3, x --- x X, 5 and for the
b;'s onY; ;, and with continuous and stable discrete pairitigs X, x Y, , — R at
our disposal, we find that the matrix

n
M; =) D;'B,D;" (4.1)
j=1

provides operator preconditioning for the Galerkin matkix of a on X};. Here, the
matricesB; andD; are the Galerkin matrices spawnedtgyonY;; x Yj, andd; on
Xj,h X }/j,h-

4.2 Heuristic gap construction

Consider the special situation that none of the subdontjns. . , Qx andQ; touch
as in FiguréR (right). In this case the skeleton can be garét according to

S =0Q0=0Q,U---UdQy UQy . (4.2)

We arrive at this arrangement of “separated subdomains” witemducing a small
gap between all bounded subdomains, which is illustratétigare 2.

Now consider the single-trace first kind BIE presented intiSed in the case of
separated subdomains. Obviously, this special settingifgeus to identify the single-
trace spaces with products of Cauchy trace spaces on subttmandaries. The
resulting space which can be viewed as a truncated mulé-tspace with omitted
(except for the part 00Q ) 9Qp-contribution [18, Sect. 7]:

ST(Z) 2 MT(Z) :=T(0Q1) x -+ x T(9Qn) x T(9Qz) (4.3)
STo(Z) 2 MTo(2) = T(0Q) x -~ x T(0QN) x H™2(0Qz) .  (4.4)

* The notations introduced in the context of Theofenh 1.1 are used tacitly.
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Figure 2: lllustration of the gap idea

The related isomorphisms afe M7 (2) — ST (Z) andly : MTo(Z) — ST ().
Specifically, withv; = (;’j?) € T7(09;),j=1,...,N, Z, we have

. v1V---Vuny Vg
I[(Ul,...,UN,Uz) = ((—(¢1V"-Vlﬂvaz))’Ul’”.’UN) s (45)

whereV designates the joining of functions on subdomain boundaoidorm a func-
tion on9Qp. This is made possible by the partitionifig (4.2). The mings-seflects
the opposite orientations of the normalg andn;.

We observe that for separated subdomains the STF give®rasedriational prob-
lem on a genuine product Hilbert space of subdomain traceespés explained above
in Sectior4.11, this facilitates the construction of opargreconditioners of the form
(4.3). Algorithmic details are postponed to Secfiod 4.4.

Next, we take a closer look at the STF variational formutat{8.20) in the situ-
ation of separated subdomains, with the aim of recastingdta problem posed on
MT(Z). Since,

L;I(vg,...,0n5,02)=0;, j=1....Norj=2, (4.6)
it is only the term in [Iﬂchontributed byQo that needs closer scrutiny. We write

u=(ug,...,un,uz) € MT(Z),0 = (v1,...,05,07) € MT(Z), appeal to the
lengthy manipulations from [16, Eq. (5.8)] 0r [18, Sect.a&}d end up with

N N
{AoLoli, Lolt),, = }Zl:Z(«A;‘“’ 15,05 o + lez (e Ggw(ui),oj»mj) :
7=1, =1,

i#j

Here,Z in the range of summation indices means #a; is also covered by the sum.
Moreover a superscripip indicates that the Calderén operat@xj‘.ﬁ,“, potentialsﬂG;fO,
or Cauchy trace operato’rﬁ;" are defined using the diffusion coefficiem, but still
liveonoQ;,j=1,...,N,Z.
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For the sake of brevity, we introduce the “remote couplingrapors” fori # j
(Ci—>j . T(an) — T(aQ]) s (Ci_ﬂ(bi) = T?O (Gfo(bi)) . (4.7)

Observe that these operators take the trace of a potenéiabttter boundary. We also
note that for separated subdomains the offset fungiivom (3.20) may be supported
on 9Q alone, that is, we can chooge=1(0,...,0, (%)). In particular, this means
thatl;g = Oforall j = 1,...,N. Then, using the identity stated above, we can

rewrite [3:20) as the following variational problem posafd./bffl\To(Z): seeku =
(ug,...,un,vz) € MTo(Z) such that

N
<VZVZv ¢Z>8Q + Z «(A?O + Aj)ujv Uj»an

N " N N
T Z <<CZHZ i (wz) >>aQZ + Z Z «(Clﬁﬂ Ui, 0 >>aQ
i=1 =L
N #
T Z <<(CZ—>J (yz)v v >>8Q

forallv = (01,...,0N,%z) € WO(Z).

So far, this bulky variational BIE was derived for separasatidomains, depicted
on the right in Figur€2. The key insight gleaned[inl[18, SB¢Gap idea”] and also
discussed in[16, Sect. 5.2 “Gap idea”}tsat (4.8) remains well defined even without
a gapbetween th&; andQy, j = 1,..., N, as shown on the left in Figure 2. Indeed,
reading the tracé‘;»‘0 in (4.1) as arexterior Cauchy trace ont@Q; with respect to
Q;, the remote coupling operators remain well-defined cootistmappings. Hence,
(4.8) defines the variational form of tiggobal multi-trace boundary integral equation
formulationfor the transmission probler (2.3) even in the generalmggtiutlined in
Sectior 2.

Remarkd.1 As hinted at by their name, ih_(4.8) the “remote coupling epans’C;_, ;
from (4.7) establish a variational coupling between subaios) even it they do not
have a common interface. These long-range interaction maddoose the attribute
“global” for this kind of MTF. A
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4.3 Global MTF: Existence and uniqueness of solutions

In light of the “gap idea” it is not surprising that the varaatal problem[(4.B) inherits
quite a few of the remarkable properties of the original SER2{). The first result
mirrors the =-ellipticity” of mstr asserted in Theoreim 3.4.

Theorem 4.1.The global multi-trace bilinear form defined by the left haside of
(4.8)is continuousand =-elliptic on M T ().

Proof. Continuity of the remote coupling operatds._, ; is immediate from the map-
ping properties of potentials and traces. This impliesioaiity of the bilinear form.

As regards=-ellipticity on M7 o(Z), we merely sketch the idea of the proof: First
note that the first line of (418) enjoys//t\To(Z)-eIIipticity on a subspace, defined by
imposing vanishing averages of the Dirichlet component$9y, ..., 0QN,0Qz.
The remaining constant Dirichlet components are takenafdrg the remote coupling
terms in lines two and three df(4.8), see the proof of [18pPi®.3] for details. O

The next result confirms that the unique solution[ofl(4.8)dgghe Cauchy traces
of the unique solution of the transmission problém](2.3).

Theorem 4.2.1f u = (ug,...,un,vz) € ./\//1\7’0(2) solves(@.8), thenu; = T,; U —
("5 ©) andvy = Ty, U, wherel is the unique solution ofZ3).

Proof. We refer tol[18, Sect. 9], in particular the proofof [18, THrl], which carries
over to [4.8) with only slight modifications. |

4.4 Global MTF: Operator preconditioning in 3D

We restrict ourselves t@ = 3 and the simplest boundary element Galerkin discretiza-
tion of (4.8). To define trial and test spaces iwdependenthequip each boundary
0Q;,j = 1,...,N, and9Qz with a conforming triangular surface mesh [70,

Sect. 4.1.2]. On these meshes we define the spcks;) C H~: (0Q;) of (discon-

tinuous)G,-piecewise constant functioris |70, Ex. 4.1.16], 894G;) C H%(an) of
G;-piecewise linear andontinuougunctions [70, Ex. 4.1.37]. Their product provides
discrete local Cauchy trace spaces

Th(0Q;) == S°%G;) x SXG,) c T(0Q;), j=1,...,N, (4.9)

which are the building blocks for the discrete counterpar&ﬁ'o(z) (as defined in
@.4)):
MTon({G;}) = Th(0Q1) x - - x Th(8Qn) x S™YGz) € MTo(Z). (4.10)

This completely defines the Galerkin BEM for (4.8). If starimcalized nodal basis
functions are used fas~1(G;) andS°(G;), then for shape-regular and quasi-uniform
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families of surface meshes we will encounter a growth of trectal condition num-
bers of the resulting linear systems of equations diKé —2) as the meshwidth — 0
[70, Sect. 4.5].

Operator preconditioning will be carried out in the prodspace framework out-
lined in Sectiori 411. Retaining the notations from there weeha= N + 1, X, =
T(0Q;),7=1...,N, X, = H*%(an), and the bilinear forna is that of [4.8),
for which Theoreni 4]1 guarantees uniform stability. Frbpd)4ve see that the role of
X, is played byT,(0Q;), i = 1,..., N, and that ofX,, ,, by S~1(G7).

As suggested by.2-duality, we pick

Yi=X;, j=1...,N and Y,:=H2(0Qy), (4.11)

because we want to employ the lodattype pairings odQ; anddQ, respectively,
as pairing bilinear formsd;, that is,

dJ = <<3 '>>8Qj ’ .] = 13 CER) N ) dy == <'ﬂ '>8QZ : (412)
Next, the Calderdn operators from (3.7) supply the bilifeemsb;, j = 1,..., N:
bj(uj, Uj) = <<Aj uj, Dj»an ,  Uj, 05 € T((?Qj) , (4.13)

whereas the hypersingular boundary integral operatébngives ush,,: b, (uz,vz) =
<quz, UZ>8QZ' Uz,Vz € H% (892).

The choice of the boundary element spakgs C Y; poses a challenge, because
just using lowest order boundary elements on the same mgstiass to deliver uni-
formly stable discretizations of the pairing bilinear farah; even on sequences of
shape-regular and quasi-uniform meshes. Instead we ttesitré breakthrough idea
from [72] and [8] and use boundary element spacesiaal meshe@ defined via
barycentric subdivisions @; as displayed in Figuid 3 [73, Sect. 2.2].

The space§*l(gAj) C H‘%(an) comprise functions that are piecewise constant
on dual cells[[8, Sect. 2, Fig. 3]. Furthéf?(é}) is spanned by continuous functions
that are piecewise linear on the barycentric refinemerf;pfand whose values at
nodes ofG; and midpoints of edges 6f; are determined by the average of their values
in adjacent barycenters|[8, Sect. 2, Fig. 1]. Then the theatetevelopments of [73,
Sect. 2] confirm that the pairs of spac&si(G;) x $°(G;) and S~L(G;) x S°(G;)
provide stable Galerkin discretizations of the dualityripgj (-, '>an CH™2 (0Q;) x

H%(an) — R. This hinges on certain assumptions on the geometiy; pfvhich
are satisfied for shape-regular and quasi-uniform famélieseven for a wide range of
locally refined meshes. Appealing to this theory, the nexdtam is a consequence of
Theoreni11.

Theorem 4.3.Operator preconditioning of the Galerkin boundary elemgistretiza-
tion of (4.8) as outlined in Section 4.1 leads to uniformly bounded spéctndition
numbers of the preconditioned linear systems in the caskapfesregular and quasi-
uniform families of triangular surface meshes.
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Figure 3: Barycentric dual mesh for a triangular primal m@gack lines): the shaded
region marks a dual cell associated with a primal node (bisi€) dthe magenta lines
represent dual edges, the red disks dual nodes.

5 Local Multi-trace Boundary Integral Equations

5.1 Localized transmission conditions

In the global multi-trace formulation introduced in Seatid the transmission con-
ditions are implicitly contained in the variational fornatibn. Conversely, the local
multi-trace approach takes into account the transmissiaditions in their local form
(2.3B), which can be expressed as

Th. ld 0\ (Tp,
Py, = DI U; onfyy, (5.1)
Tws 0 —ld) \Tw,

for which we embrace the compact notation:
Sij Tz‘ Ul = Xj%i Tj Uj . (52)

HereS;; : T(0Q;) — T(Ii;) restricts traces oAQ; to the interfacd ;; C 0Q;.
We used the natural notation(l";;) = H%(Fij) X H‘%(Fij). The action of the
operatorX,_,; : 7(9Q;) — T(I;;) is immediate from[(5]1)X,_; (1’2) = Sj; (fw);

in addition to restricting traces;_,; flips the sign of the Neumann component, thus
adjusting it to the orientation of the other subdomain bound&;.

Since we aim for boundary integral equations in weak formneed to cas{(512)
into a variational equation. Formally, this can be accosh@d by pairing with test
functions in the dual space Gf(I";;) (with respect to the pivot spade?(T;;)). How-
ever, be aware that, in contrastTdoQ;), the L2(I';;) inner product doesot induce
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a self-duality of7°(I;;). Rather, the dual space Is [56, Ch. 3]./[70, Sect. 2.4.2],

(M) x (H™3(Ty)) = H™3(Tyj) x H2(Tyj) . (5.3)

NI

T(My) = (H

Here fIZ( Fij) and H~ ( ij) designate distributions of;;, whose extensions by
zero t00Q; belong toHZ(aQ ) and H*l(aﬁ /), respectively. Thusﬁ%(rij) and
}NIJ(FU) can be identified with subspacesHﬁL( andH*%(Fij), respectively,
which are actuall)dense Yet, the norms ofH z(I" ”) and }NI‘%(FU) are strictly

strongerthan those on( ij) andH‘*( ij)-
We conclude that an equivalent weak form[of15.2) is

H

«Sij T, U; — X‘j*}i Tj Uj, Uz'j»l—ij =0, VUij S 7~'(F¢j) s (54)

where 7(F;;) = Hz(T;;) x H™%(T;;). Here, thecontinuouspairing (C) T

T (i) x 7~'(FZ-]-) — IR of Cauchy traces of;; is defined in analogy t¢ (3.3) based on
L2(T;;)-inner products.

5.2 Local MTF: Variational formulation

We now combine Theorem 3.1 in the form bf (3.17) dndl(5.4) st of variational
equations thagverysolutionU € H (R?) of 23) will satisfy:

m) = <<(|d — Pj) Tj U, Uj>>8Qj = 0, VU]' c T(an) , (5.58.)
@) = <<sz‘ Tj U - Xz’*}j T; U,Sji Ej»rij =0, ng € ﬁw(an) . (5.5b)

Note that the duality[(513), which underlids {5.4), enfartiee use of the following
special test space in the second equation

Tow(9Q;) := {0 € T(9Q;) : S;;0 € T(Tyj), i € N;} C T(9Q;) . (5.6)

Here and below, we write/; C {0,..., N} for the set of indices of subdomains
that have an interface in common witl®;. Obviously, the restriction operators map
continuouslyS;; : Tpw(9Q;) — T(F4).

By adding [5.5h) and several instances[of (b.5b), froml (5&)enclude, that a
solutionU € H} (RY) of 23) also fulfills,cf. [40, Sect. 3.2]

(0d =P T U, 9,00 + > 0i{(S;i T; U = Xisy; T U, Sjivi)y, =0, (5.7)

€N

0Q;

forallv; € Tow(9Q;),5 =0,..., N. Theo;; € R are arbitrary non-zero combination
coefficients.
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Again, we employ an offset function technique to deal with tton-homogeneous
Dirichlet boundary conditiong (2.2). As in Section]3.3 wedaduce a functiorG €
HE (R%), whose Dirichlet trace 08Q agrees with the given datac H3(0Qy):
TpzG=g.ThenU :=U — G € {V € H (RY) : V],q, = 0} solves

((d —P;))T,; U,v,) o0, T > 0ii{(S;i T U — Xiny; Ti U S5i ;)
ieN

= —<<(|d — Pj) T]' G’Ej»an - Z U'ij«Sji Tj G- Xi—>j T; G, Sji Ej»rij ) (5-8)
iEN;

=W;(v;)

forallv; € Tow(8Q;), 7 =0,..., N

In order to arrive at a variational boundary integral equeatoy the unknown Cauchy
traces ofU, _in the next key step we introduce all local subdomain traces=
(Z;) = T, U € T(0Q,), j = 0,...,N, as unknowns. By construction, they sat-

isfy |, = 0. In addition we use&j = P; —1ld from (3.7) and obtain érst kind
BIE: seeku = (ug, ..., uy) € MT(Z) such that

{((A; —31d)u;, ;) oo, T > oi{(Sjiuy - Xinjui Sji 0 = Wi(8;) . (5.9)
1EN;

forall v := (%o,...,05) € MTo(2),j = 0,...,N. This variational problem is
posed on multi-trace spaces that respect homogeneous |Bificiundary conditions
onoQy:

N
MTol2) = {<<ZJ>> EMT(): vy, = o} , (5.10a)
i/ / j=0
MT () = (ﬁw(agzo) X e X 7~;,W<aQN)) NMTo(Z). (5.10b)

Again, we point out that the trial functions must allow exiensby zero from each
interfacel ;; to the associated subdomain boundafi®s andoQ;.
There is a “magic” choice for the parameterts, because, by density arguments,

> (Sjiu S e, = (i) g Vi € T(0Q)), v € Tow(09;) .
iEN;

Hence, if we set;; = % in (5.9), we can benefit from cancellation and converil(5.9)
into: seeku = (ug, ...,uy) € MTo(Z) such that

(A w0500 — 3D (Xin i, 85i 05 ) = W;(05) |, (5.11)
iEN;
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forall v := (vg,...,0y) € ./\TTO(Z). This is the “classical” MTF for the transmis-
sion problem[(213) as proposed(in [39] and discussed in [16, 6pand[40, Sect. 3.3].
Itis a variational problem posed o7 o(Z) x MT (), whose underlying bilinear
form we are going to denote by wF:

N
m|_M|: u, U Z A‘Llj,tl] Z Z z—)j uiijigj»rij ) (5.12)
j=0

j= OZGN

u=(uo,...,uy) € MTo(2),0 = (Bo,...,0n8) € MTo(Z).
In light of (3.3) and[(3.J7) and the sign flip effected Ky_ ;, the compact notation
(513) can be unravelled into an explicit variational pesblfor Dirichlet and Neu-

mann traces: seak= ((“0) e (L‘x)) € MTo(Z) such that

vg/?

<V1‘Vjﬂzj>m - <Kjuj,sz>aQ - 31X <uz‘|rijﬂzj

J J iEN; y
(K, a> — W), — AT <V-\ ofl > -
727 3325 ; ilr..» Vilp. . e
< J oq, 0Q; 2 .2 X, i ri/r,

(5.13)

for all (Z) € Tow(0Q;), j = 0,..., N, which satisfyv;|. = 0. Please refer to
@), p. [@ for the definition of the boundary integral op)era The right hand side
functionals¥; have been suppressed for the sake of brevity.

Remark5.1 As explained in[[30, Sect. 3.2.4], the MTF bilinear fomm uyg from
(5.12) will remain well defined, wheoth argumentéelong to

e

~_1
whereHp,7 (0Q;) comprises functions ilﬂ{‘%(an), whose restrictions to any inter-

facel’;; belong toﬁ*%(rij): mLME € L(/\TTf)(Z) X ./\/Aﬁ'g(i),R). This paves the
way to an alternative formulation of the local MTF with equé#ltand test spaces [B9,
Sect. 3.2]. A
Remark5.2. From [39, Sect. 3.2.5] recall that the variational formiaat(3.20) of
the STF can formally be obtained by restricting (5.11) td gl trial functions in
STo(2). A

5.3 Local MTF: Existence and uniqueness of solutions

The choice of the particular broken trace spaces was madestmesthe continuity of
the MTF bilinear form.
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Lemma 5.1.The MTF bilinear formmpyg : M7T(Z) X /\77'0(2) — R from (5.12)
is continuous.

Proof. Thanks to the continuity properties of the boundary integp&rators the first
term in (5.12) is even continuous oM T (Z) x MT (Z).

The continuity ofS;; : T(9Q;) — T(Fi;) andSj; : Tow(9Q;) — T(Tyy) is
clear. Besides, thé?(I";;)-inner product can be extended to continuous pairings on
Hz(T;;) x H™2(T;;) andHz (T;;) x H~2(;;). This ensures continuity of the second

part of (5.12). O

The following lemma reveals a particular “block skew-syntinie2 structure of (5.111).
It makes use of the isometric local “sign change isomorphkisgy : 7(0Q;) —
T(09Q;), Z; (Z) = (—;), introduced in Section 3.4, p.112.

Lemma 5.2 ([39, Sect 2.2.3, Lemma 1]Jfor all u; € 7(9Q;) andv € ﬁw(an)
holds

«Xi%j u;, Sij Ejgj >>|_ = —«Xjai Eja sz’ Eiui»rw_ :

ij

Proof. The identity follows from straightforward computationsngsthe definitions
of the operators and the pairings. We wiite= ("), v; = (1%) and find

(Xisjus, Sij Ziv; >>Fi_7-

s () (D),

= <u,7:/;>r2 — (0, ), =0, V), — <uv{/;>r

- J ¥
J

«Xjai Ej, Sji =Nt >>rij

~{o ()= (),

)

Very much in analogy to Theorem 4.1 for the global MTF, thetiefeship from
Lemmal5.2 guarantees ellipticity of the bilinear form [ofI(B). up to a simple local
change of sign.

Theorem 5.3 (“=-ellipticity” of bilinear form for MTF). There is a constant > 0
such that

miwe(9,20) > ¢ [lo A Yo € MTo(Z) .

Proof. Throughout the proof we write = (vg,...,0n) = ((g‘;), e (;%;)) €
./\717'0(2).



24 X. Claeys, R. Hiptmair, C. Jerez-Hanckes and S. Pintarelli

O As a consequence of Lemmals.2 all the “off-diagonal” couptarms cancel and
we end up withef. 323),

N N
mivE(0,20) = Y (A0, 50050 =Y <VﬂZjMZj>8Q + (WjiUj; 0j) g, - (5.15)
j=0 j=0 J

Then [3:24) immediately shows that yr (b, =b) > 0 forallp € J\jﬁ'o(z), because
Tow(0Q;) C T(9Q;). In addition,o — myme(v, Zv) inherits M T (Z)-coercivity
(up to finite-dimensional perturbations) from the Caldenperators, recal[{3.24) and
G.23). -

O Next, single out @ € MTo(Z) such thatm yr(v,Zp) = 0. Then [5.1b)
and [3.24) imply thaip; = Oforall j = 0,..., N, and thaty; is constanton 0Q;;,
j=0,...,N. So,b belongs to a space of finite dimension and it remains to show the
injectivity of m_yr on this space.

To begin with, we conclude froni (3.25) thas = 0. Moreover, if the subdomain
Q; has a common interface widz, then the definition[(5.10b) makes vanish on
0Q; N 0Qz and, since it is constant a¥(2;, it has to vanish on the entire boundary
0Q;.

Now, assume thah ur(p,t0) = 0 for allw € ./\717’0(2). In particular, we can
chooseav such that its Neumann component is equal to 1 on the boundargiagle
subdomai; and zero everywhere else.{;, is adjacent to a subdomatpy, where
v; = 0 is already known, the coupling terms enforce tﬁﬂplk = 0 andv,, has to be
zero, too. Thus, we can work our way through all subdomaiasabseR? \ Q is
supposed to be connected. This finally establishes0. O

Unfortunately, this theorem does not settle the issue aftemce and uniqueness
of solutions of [5.Il1), because we encounter a mismatch afespas observed in
[39, Sect. 3.2.8l:myme is MTo(Z)-elliptic, but continuous only oMM T (%) x
WO(Z), so that we cannot instantly conclude an inf-sup conditiomi=-ellipticity.
We have to rely on a more sophisticated result known as “ki@nbjection lemma”
[54, Ch. Ill, Thm. 1.1], see als0 [23, Sect. 2] ahd|[28, SeLt. 2

Lemma 5.4([39, Lemma 9]) Let H be a Hilbert space an¥” be a subspace df (not
necessarily closed ifif). Moreover, letb : H x V — R be a bilinear form satisfying
the following properties:

(i) Foreveryp € V, the linear formu — b(u, ) is continuous orf.
(i) There existg > 0 such that

b(p, )| > cllpl, YeeV. (5.16)

Then for each continuous linear forlve H’, there existsig € H such that

1
b(uo,0) = L)y Ve eV and Juolly <~ Ui - (5.17)
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Clearly, Theoreni 513 suggests that we apply this lemma with mivr, H =
MT(Z), andV := MT(Z). We immediately conclude existence of solutions of
the MTF variational probleni(5.11).

Yet, as pointed out in_[54, Ch. Ill, Rem. 31], despite (5.16mma[5.4 does not
ensure uniqueness of solutions. To obtain it, we resort bsiderations that directly
exploit the boundary integral equations.

Theorem 5.5.Solutions of(5.11)are unique.

Proof. As in the proof of [39, Thm. 9], we show thdt (5]11) wi#; = 0 involves
u = 0. Hence, lets € MT(Z) satisfy

muve(w,0) =0 Vo € MTo(S) . (5.18)
O We setU; := G;(u;),j =0,..., N and from [3.6) we get
T; Uj i= (Aj +31d)u; . (5.19)
On the other hand, froni (5.118) aid (5.11) we infer

(A +31d0,05 )0 = 350050, +3 D (Xinjw S50, (5:20)
' 1EN;

forall v € Tow(0Q;)).

Now, we single out an interfade;;, choose arbitrary functions fl%(rij) and
Y € H %(T';;), and obtain the components of the test functiops 7pw(9Q;) and
v; € Tow(0Q;) by extendingy andv by zero onta¥Q; anddQ;, respectively. Fob;
we also change the sign of the Neumann component. For thesikgest functions

(5.20) together with(5.19) yields

(T; U5 85i 05 ) o = 2(15:9 ) pq, + 3(Ximg i Sji05)

(Xim; Ti Ui, Sjivj ) oq = —(Ti Ui, Sij vi) g
= 3w viyg, = 3(Xjmiw, S vy -
Owing to the local support of the test functions, a closep@tsion reveals that
(10 )og, = —(Xsmiw, Syl and (Xiojui, 85005 ) = —(ui0i) o,
which means that
(T; Uj,Sjivj)gq = (Xin; Ti Ui, Sji v ) 5 - (5.21)

As a consequence, we find that

Tj Uj = Xi—>j T, U; on I'ij . (522)
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In words, the functio/ € L%C(Rd) that is obtained by patching together thigs, sat-
isfies the transmission conditiois (2.3b). Moreover, theesgntation formula guar-
anteesC; U; = 0. Finally, using [(5.18) and (5.P0) with test functions sup@o on
[jz C 0Qgz, confirms that/|,, , = 0. Summing up{/ solves[(2.B) with zero Dirich-
let data orvQ . Uniqueness of solutions df (2.3) tells us that 0.

0 Having established; = 0, combining[(5.19) and (5.20) yields

<<uj,§j>>89j = — Z <<Xz_>] ui,Sji Ej»rij Yo S %W(éQ]) s (523)
iGNj
which meansi; = — X;_,; u; onl;;. In words, the Cauchy datg satisfysign-flipped

transmission conditionacross interfacess; ;.

O Taking the Cauchy trac&; of U; = G;(u;) = O reveals that?;u; = 0.
Hence, using the fact that interior and exterior Calderdjegutors add up to zero
[39, Sect. 2.3.3] and Theordm B.1 on the complement do@gin- R4\ Q;, we find
thatu; = T5 V; for a functionV; € Hioc(A, Q) that satisfiesC; V; = 0 in Qf and
appropriate decay conditionsat for j # 0. Here,T; is the Cauchy trace operator on
Qc.

JWe adapt an idea from the proof 6f [39, Thm. 9]: For a “sign veécto

o= (01,...,0n) € {-1,+1}7,
we define thenulti-valued function
VZi=o0;V; onQj , V7:=V onQg. (5.24)

Case (i): Assume that there is a sign veatosuch thaio; = —o; for every inter-
facel ;;; we are dealing with a bipartite connected graph of complérsgindomains
(whose edges correspond to non-empty interfaggs Then, by virtue ofl(5.23)/“ is
amulti-valuedsolution of a transmission problem of the ty@ZBUlﬁo Qf, which
features the right decay conditionsaat and has zero Dirichlet boundary conditions
on9dQz. Hence V7 = 0, which impliesV; = 0, and, immediatelyy; = O.

Case (ii): Assume that the graph of complement subdomain isipartite. Regard
two complement domair@; andQf as “linked”, if they share an interface anif =
—o;. We denote b%" the restriction ofi’? to the union of complement domains,
for which there is a chain of links t@§. Again thanks to[(5.23), This multi-valued
function satisfies transmission conditions (2.3b) betwiedsed complement domains.

Next, we appeal to thstrong unique continuation principl®r solutions of trans-
mission problems of typeé (2.3) [34, Sect. 3.4.1]. It confitinat any two functions
V7 agree on complement domains, on which they are both defiredLise they are
the same o2§. Now, if the graph is not bipartite, for sonmec {1,..., N} we can
find two sign vectorsr, o’ such tha, = —o;, and such that for botk ando”’ there

is a chain of links fromQj to Qj. We conclude that bottv?[q. = ve' o (from
k
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unique continuation) an(ﬂ"’|Qi =— V"/‘QC (by definition), which implied/, = 0.

By unique continuation we then concludekth@t: Oforallj =0,...,N, and also
u; = 0. ]

Remark5.3. In Remark 5.1l we pointed out that the variational formulat{.11)
of the classical MTF may be lifted to trace spaoaﬁ'g(z), for which additional
regularity is imposed on the Neumann components only.

Now assume Dirichlet data € H'(0Q). Then elliptic regularity results [56,
Ch. 4] ensure that all local Neumann trades ; U and Ty 7 U of the solutionU of
the transmission problei(2.3) belongit40Q;),j = 1,..., N, Z.

As a consequence the unique solutionof (b.11) is contain&tbispace@ﬂ,(i)
from (5.14), Pagé 22. Thus, the solution [of (3.11) will besereed when we switch
to the trial space\/AVTg(Z). The Neumann components of Cauchy traces in that space
possess more regularity compared to thosa# (%). This enables us to use test
functions with less regular Dirichlet components thanwdéiped byM T (Z). More
precisely, testing with functions merely beIongingA/é(VTf)(Z) becomes possible,
which yields a variant of(5.11) with the same trial and testce cf. [39, Sect. 3.2.1].
A

5.4 Local MTF: Operator preconditioning in 3D

The developments are largely parallel to that of Se¢iioladdiwe reuse the notations
introduced there mostly without further mention. In the teot of Galerkin boundary
element discretization it is advisable to adopt the pertspeof Remark§ 5l1 arld 3.3,

and lift the MTF variational problen{(5.11) into the spa&ﬁ’g(Z). Then, since
~_1
piecewise polynomial approximation invariably providasdtions inHpy (0Q;), we

deal with a./\qﬁ'f)(Z)-conforming boundary element Galerkin approximation.
In order to take into account the Dirichlet boundary cormdis, we rely on the
boundary element spaces£ 0,..., N)

5%(G5) = {on € 5°(G)) : wlag, =0}, (5.25)
Toz(09)) == SY(G)) x S7HG,) € HY09)) x Hp (09,) . (5.26)

to build the trial and test space for (5111):
MTor({G)}) = Tn,z(0Q0) X - -+ x Tnz(0QN) C MTH(E) . (5.27)

Existence, uniqueness, and convergence of Galerkin sotutiothe absence of the
impenetrable objed®, have been established in [39, Section 4].

From [5.27) we identify the spacés, ~(0Q;) as theXj;’s in the product space
setting for operator preconditioning (see the preface ti@&4 on Pagé14). As in
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the case of the global MTF discussed in Sedcfioh 4.4, the hitif@msb; are chosen

according to[(4.13), and the; are boundary element spaces on dual meégeﬁ =
0,..., N, arising from barycentric refinement:

Y; == 5%G;) x Sy (G;) € HZ(0Q,) x H™2(0Q;) . (5.28)

Note that th@Aj-piecewise constant functions in the spa,é"gé(gj) have to vanish on
dual cells associated with nodes @f that are located oAQ. This ensures equal
dimensions of5%(G;) andS‘l(g]) and follows the policy ofi[B, Sect. 4.2]. The local
pairing bilinear formsi; are again chosen as duality pairings- >>aQ

The analysis of operator preconditioning is slightly maiféallt than in Section 44,
because the local MTF bilinear formyyr enjoys ellipticity inM 7T (Z), recall The-

orem[5.3B, but is continuous only ohqﬁ'g(z) as defined in[{5.14). The norm of the
latter space,

lo)l® s

To(2) Z(HUJHHZ (99;) + Z H |r”

is stronger than that of the former. This mismatch compodrte theoretical diffi-
culties encountered in Sectibnb.3 and thwarts the stifaighard application of The-
orem11.

To cope with this situation, we have to make another assomm@bncerning the
meshes: we assume that each interfages resolved by cells of the meshgs and
G;. The same should apply & and the boundary parfs;;.

)) . (5.29)

H™

Theorem 5.6.In the setting detailed above let us consider families ofeger meshes
generated byegular refinementf coarse initial meshes. Then the spectral condi-
tion numbers of the preconditioned linear systems grow mabely like O(L%) =
O(]log h\%) in the levelL of refinement ag, — oo (h — 0).

Proof. We observe that the inf-sup constants and norms enteringpdhad in the
estimate[(1]2) of Theorem 1.1 refer to the discrete settmigall norms are equivalent
and we can resort to th817 (Z)-norm throughout.

On boundary element spaces we have toingerse inequalitieto relate the norms

of ./\/17'ﬁ Y) and M T (). In particular, we appeal to the estimate[ofl[41, Thm. 2.2]

3 —1/p/.
I\Vh\lﬁ,%(r“) <CL: ””””H*%M) Y, € STHG;) , (5.30)
wheng; is on levelL of the refinement hierarchy( > 0 is constant that depends only
on the geometry of ;; and the coarsest mesh). This implies, with another constant
C > 0 independent of the levéd] of refinement

3
onll g 5y < CL? 0nllaarsy  Vor € MTon({9)}) - (5.31)

o(2)
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As a consequence, the norm of the bilinear faron M7 ;,({G;}), when measured

in the weaketMT (Z)-norm, increases mildly Iiké)(L%), when we keep on refining
the meshes and sedd — oo. Since all other norms and inf-sup constants do not
depend o, see([8] for results on the pairing bilinear forrhs this accounts for the
assertion of the theorem. O

6 Numerical Studies

In this section, we report numerical tests of the perforneaoicoperator precondi-
tioning for thelocal MTF implementing the algorithms described in Secfiond 5.4. All
computations were carried out with the C++ boundary elerremplate library BETI-
[42]3. The matrices arising from Galerkin discretization wengjeat to local low-rank
compression using the AHMED Iibreﬁ;{S]. However, the compression parameters
were chosen so that its impact can safely be ignored.

Due to its saddle point structure, the operator precomtitidbased ori (4.13) fails
to be positive definite. Thus, the conjugate gradient me(i@s) is not an option and
the preconditioned generalized minimal residual methddR&ES) without restart is
used as an iterative solver. The iterations are stoppedasa®a relative decrease
of the Euclidean norm of the residual vector by a factor of 1@as achieved. Initial
guess is zero throughout.

Quasi-uniform and shape-regular sequences (finite, okeduf triangular surface
meshes with flat triangles are used for all experiments. Wene produced by the
mesh generator GnEI[QQ] and all of them are compatible with the interfaces.

In all experiments the behavior of the GMRES iterative solwéhout precondi-
tioner and with operator preconditioning on meshes of diffié resolution is recorded.
Total iteration counts versus global mesh widths are tabdla

6.1 Experiment I: Two half-spheres

The first experiment use@; = {x € R3: ||z| < 1, 23 > 0}, Q; = {z € R3:
llz|| < 1, z3 < 0}, and Dirichlet datg(xz) = ||ar;\|’1‘8Q . The geometric situation

is displayed in Figurel4. Measured data on GMRES covaergeBC@'\aarn in Figuréb
and TabléP.

5 http://www.sam.math.ethz.ch/betl/
% hitp://bebendorf.ins.uni-bonn.de/AHMED. htm|
7 http://geuz.orgigmsh/
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Figure 4: Experiment | (Two half-spheres): Dirichlet and Neumann traces of the
solution (left) forup = 10, u1 = 1, 23480 elements, and coarse mesh with 296 flat
triangles (right)

107! ur\f ] ]
., 7 # elements # elements
107 E 974 E 974
4 103 — 3876 " — 3876
& — 7440 1 — 7440
ERTE | — 12152 3 1| — 12152
= —— 23480 = —— 23480
10-5 1| - - GMRES 1| - - GMRES
—— pGMRES —— pGMRES
107¢ B B
i \
1077 . Lt 1077 . L L
10 10% 10* 10" 10 10% 10* 10"
iterations iterations
@po=15pu =1 O po=10,pu1 =1

Figure 5:Experiment |: (preconditioned) GMRES iteration history; decay of refati
Euclidean norm of the residual. Different diffusion coefficis were used on different
subdomains.

po=15 p1=1 po =10, pup =1
N | mesh width|| GMRES | pGMRES || GMRES | pGMRES
974 | 1,25- 101 581 56 688 128
3876 | 6,18- 102 1617 59 1999 139
7440 | 4,50- 102 2668 65 3574 152
12152 | 3,52-10°2 3098 64 5366 153
23480| 2,52-10°? 4426 64 8728 155

Table 2: Experiment |: Iteration counts for (preconditioned) GMRES for different
choices of diffusion coefficientgy denotes no. of elements



Multi-Trace Boundary Integral Equations 31

6.2 Experiment II: Glued boxes

The geometry of the second experimen®ig = {z € R®: —1 < 1,25 < 3,
—1<2,<0},Q1={xeR¥: -] <u=,23 <3 0< 1, <1}, with Dirichlet

datag(x) := |zt o see Figurélé. GMRES behavior is documented in Figlre 7
and TabléB. ’

i

TR
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)
ples=—

—— e~
A~ S ALK i — ey
N7 —=<Y A‘.v.“d ;

=

Figure 6: Experiment Il : Left: Dirichlet (front) and Neumann traces (rear) of the
solution. Right: coarsest mesh with 176 triangles

10° 10°

10 EY 4 107 Eirea g
) # elements ) N N # elements
10~ 4 10~ 4
— 176 — 176
5 108 1| — 704 5 103 — 704
g — 2816 8 | — 2816
B = e | B 1= 20
10-5 1| - - GMRES 10-5 1| - - GMRES
—— pGMRES —— pGMRES
10°° g 1076 B
1077 [ il L M 4 1077 | - !
10* 10° 10° 10* 10" 10? 10° 10*
iterations iterations
(a) o = 1.5, H1 = 1 (b) Mo = lO,ul =1

Figure 7:Experiment Il : (preconditioned) GMRES iteration history. Diffusion coef
ficients attain different values on different subdomains.
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po=15 p1=1 po =10, p1 =1
N | mesh width|| GMRES | pGMRES || GMRES | pGMRES
176 | 2,64-10°1 133 49 179 95
704 | 1,32-101 422 57 501 130
2816 | 6,59- 102 1017 68 1564 156
11264 | 3,30- 102 1982 78 4552 176
28160 2,14- 102 4891 83 10961 189

Table 3:Experiment Il : Iteration counts for (preconditioned) GMRES; # elements

6.3 Experiment lll: Cube split into eight smaller cubes

The subdomain€;, ¢ = 1,...,8, are the equal cubes of edge Ienétbreated by
splitting the unit cube.dQ, is centered at the origin, Dirichlet data agéxr) :=
||9c||’1‘6Q , and the same diffusion coefficient = 1 was used on all subdomains,

see Figuréﬁ]& Information about the convergence of GMRESagiged in Figurd B
and Tablé ¥

# elements
576

4| —— 2304
— 9216

q| — 36864

— — GMRES
4| — pGMRES

rel. res.

iterations

Figure 8:Experiment Il : Coarsest mesh (left) and behavior of relative residual dur
ing (preconditioned) GMRES iterations (right).

N || 576 2304 9216 36864
mesh width|| 1,32-107! | 6,59- 102 | 3,30- 102 | 1,65-10°?
GMRES || 339 765 1728 3304

pPGMRES || 87 106 135 159

Table 4:Experiment Il : Iteration counts for (preconditioned) GMRES vs. Number
of triangles
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Summary of observations.Obviously, in all numerical tests operator precondition-
ing substantially accelerates the convergence of GMRES. denate dependence of
the number of iterations on the mesh width seems to persiktast in Experiments
Il and Ill. We point out that matching the empiric data witle ttheoretical predictions
of Theoreni 5.6 is problematic, because (i) pre-asymptei@abior may prevail in nu-
merical experiments, (ii) logarithmic factors are hardelth from measured data, and
(i) convergence rates of GMRES do not seem to be governedebggbctral condi-
tion number, but by the numerical range of the non-symmeneconditioned system
matrix [6,[27].

The data collected hint at a strong dependence of the itaretionts on the relative
variation of the diffusion coefficients between the subdimsizOperator precondition-
ing as described in Section 5.4 does not seem to be robustesifect to the size of
jumps of the coefficients.
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