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Novel Multi-Trace Boundary Integral Equations
for Transmission Boundary Value Problems

Xavier Claeys, Ralf Hiptmair, Carlos Jerez-Hanckes and Simon Pintarelli

Abstract. We consider scalar 2nd-order transmission problems in the exterior of a bounded
domainΩZ ⊂ R

d. The coefficients are assumed to be piecewise constant with respect to a
partition ofRd \ ΩZ into subdomains. Dirichlet boundary conditions are imposed on∂ΩZ .

We recast the transmission problems into two novel well-posedmulti-trace boundary inte-
gral equations. Their unknowns are functions on the product of subdomain boundaries. Com-
pared to conventional single-trace formulations they offer the big benefit of beingamenable to
operator preconditioning. We outline the analysis of the new formulations, give the details of
operator preconditioning applied to them, and, for one type of a multi-trace formulation,report
numerical tests confirming the efficacy of operator preconditioning.

Keywords. Multi-trace boundary integral equations; boundary element methods; 1st-kind in-
tegral equations; operator preconditioning; domain decomposition.

AMS classification.74J20,65N38,65N55.

1 Introduction

This is the story of a marriage between boundary element methods (BEM) and domain
decomposition (DD). In fact, viewed from the angle of boundary element methods, this
relationship may be labelled a forced marriage, because, asthe reader will certainly
remember, boundary element methods can only cope with linearboundary value prob-
lems with constants coefficients. Piecewise constant coefficients are still within their
scope, but in this case, the computational domain has to be decomposed intosubdo-
mains, on which the coefficients are constant. Subsequently, boundary integral equa-
tions have to be devised for the resulting transmission problems. They feature traces on
the interfaces between subdomains as unknowns. Then, for the sake of discretization,
these interfaces are triangulated and the degrees of freedom of the boundary element
method will be located on the union of the interfaces, the so-called skeleton. All this
very much resembles what is done in domain decomposition methods, even in the
context of finite elements.

The most important representatives of these skeleton basedBEM approaches rely
on what we have dubbed the (direct)classical single-trace boundary integral formula-
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tion (STF). It had long been known for simple transmission problems comprising two
subdomains [24], and was presented in full generality in [79]in the setting of strongly
elliptic second-order scalar problems. More exotic, indirect variants have also been de-
veloped, for instance in [68, 45, 69]. Second-kind STFs are known, too, and covered in
[17, 13, 31, 78, 81] for scalar transmission problems, and in[58, § 23] for electromag-
netics. The classical STF is particularly popular in computational electromagnetics,
where it is known as Poggio-Miller-Chew-Harrington-Wu-Tsai(PMCHWT) integral
equations [67, 10, 80, 33]. Their numerical analysis for twosubdomains was first
accomplished in [9], and later extended in [7].

As unknowns the direct STF features a full set of Cauchy data,that is, pairs of
Dirichlet and Neumann traces, on each interface between adjacent subdomains. In
variational form, its associated bilinear form is built from local subdomain contribu-
tions, very much in the spirit of domain decomposition. Thisdispenses with global
interactions in the assembly of the discrete boundary integral operators. The benefit
of localization may be so big that it can be worthwhile to pursue “genuine domain
decomposition” by introducing extra artificial interfacesinside regions with constant
coefficients.

However, the classical STF renounces the spirit of DD in the choice of unknowns,
which establish the coupling between the subdomains in strong form. As a conse-
quence, the variational STF employs a function space that fails to be a simple product
space of subdomain contributions. At first glance without a penalty, since the STF
turns out to be unconditionally well posed, see [79] and [16,Sect. 3.2]. A brief review
of the derivation and analysis of STF will be given in Section3 of this article.

A drawback of the strong coupling imposed through the function space has surfaced
recently: it compounds the difficulties of designing preconditioners. This matters, be-
cause modern boundary element applications are inconceivable without the use of local
low-rank matrix compression implemented in techniques like fast multipole methods
[30, 25],H-matrix compression [32], or adaptive cross approximation[5, Ch. 3]. Com-
pressed matrices allow only the use of iterative solvers, whose speed of convergence
will deteriorate for ill-conditioned linear systems. Yet,standard low-order boundary
element Galerkin discretization of the classical STF, whichamounts to afirst-kind
boundary integral equation, will invariably produce ill-conditioned linear systems on
fine triangulations. Thus, effective preconditioning becomes crucial.

Many preconditioning strategies have been suggested for discretized first kind bound-
ary integral equations. Among them are geometric multilevel subspace correction
methods (two-grid or multigrid) [71, 1, 75, 36, 43, 61, 52], as well as attempts to bring
algebraic multigrid to bear on BEM [60, 48, 49]. However, no idea has revolutionized
preconditioning for BEM as much as an approach known asCalderón preconditioning,
invented by O. Steinbach and co-workers in [72, 57] and laterextended by A. Buffa
and S. Christiansen in [12, 8]. It has had and continues to have a massive impact, for
instance in BEM based simulations in computational electromagnetism, witness the
flurry of papers that has been devoted to its use [77, 4, 76, 2, 3, 21]. We point out
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that Calderón preconditioning fits the more general policy of operator preconditioning
introduced in [38, 55], see also [16, Sect. 4].

Awareness of the gist of operator preconditioning as presented in [38] is key to
understanding why it encounters problems for the STF. Thus,we briefly recall the
main result of [38].

Theorem 1.1(Theorem 2.1 of[38]).LetX, Y be Hilbert spaces, andXh := span{ϕi}Ni=0 ⊂
X andYh := span{φj}Mj=0 ⊂ Y finite-dimensional subspaces with bases{ϕi}

N
i=0 and

{φj}
M
j=0. Further, leta ∈ L(X ×X,R) andb ∈ L(Y × Y,R) be continuous bilinear

forms (with norms‖a‖ and‖b‖, resp.), each satisfying discrete inf-sup conditions with
constantscA, cB > 0 onXh andYh, respectively. If there is a continuous bilinear
formd ∈ L(X ×Y,R) that also satisfies a discrete inf-sup condition onXh×Yh with
constantcT > 0, then the associated Galerkin matrices:

Ah := (a(ϕi, ϕj))
N
i,j=1 , Bh := (b(φi, φj))

M
i,j=1 , Dh := (d(ϕi, φj))

N,M
i,j=1 ,

satisfy

κ(D−1
h BhD

−T
h Ah) ≤

‖a‖‖b‖‖d‖2

cAcBc2
T

, (1.2)

whereκ designates the spectral condition number.

This theorem clearly reveals what it takes to build a viable “operator preconditioner”
Mh := D−1

h BhD
−T
h when given a stable Galerkin discretization of a variational prob-

lem involving the bilinear forma. We have to find
• a spaceY , equipped with a bilinear formb,

• a suitable Galerkin trial spaceYh ⊂ Y that yields a stable discretization ofb,

• and a “pairing bilinear form”d that induces a stable discrete duality pairing be-
tweenXh andYh (independent of the choice of discretization parameters),

• and that gives rise to a square Galerkin matrixDh, for which linear systems can
be solved with little computational effort.

In the context of boundary element methods the last item usually means that the
Galerkin matrixDh is sparse. Thus, its formal inverse in the definition of the pre-
conditionerMh can be evaluated by means of direct Gaussian elimination. Ingeneral,
sparsity ofDh can be achieved only ifd is local, for instance, a simpleL2-inner prod-
uct.

Unfortunately, for situations with more than two subdomains, so far no spaceY
has been found that is in duality with the variational spaceX of the STF with respect
to a local pairing bilinear formd. It goes without saying that suitable boundary ele-
ment spacesYh also remain elusive. This seems to be a fundamental obstacleto the
application of Calderón preconditioning to the STF, as explained in [16, Sect. 4.5].
L2-dual pairs of trace spaces are well known for boundaries of individual subdo-

mains. Thus, if a stable variational boundary integral equation can be posed on their
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product space, local operator preconditioning becomes a straightforward option. This
insight was the main motivation behind the development ofmulti-trace formulations
(MTF). Truly in the spirit of domain decomposition, they relyon simple products of
local trace spaces and impose coupling between different subdomains weakly. They
owe their name to the use of two pairs of unknown Cauchy traceson every interface.
It is this new class of boundary integral formulations that this article is devoted to.

Multi-trace formulations come in two different flavors; we distinguish between
globalandlocal MTFs. The former can be deduced from the STF through a vanishing
gap limit and they will be treated in Section 4. The latter employ local transmission
conditions and they are discussed in Section 5, with numerical results reported in Sec-
tion 6. We emphasize that this article is largely meant to be areview. Occasionally,
rigorous proofs and technical details are skipped. Those canbe found in the original
publications

• [18], as concerns the global MTF for acoustic scattering,

• [14], where the global MTF for electromagnetic scattering wasintroduced,

• [39], which proposed the local MTF,

• [40], where the local MTF is extended to more general transmission conditions.

• [15], where a global MTF for scattering problems with homogeneous Dirichlet
boundary conditions is derived with focus on avoiding spurious resonances by
means of combined field integral equations (CFIE).

Parallel to the developments in numerical analysis, local multi-trace BIE have recently
been devised for large scale parallel simulations in computational electromagnetism
by J.-F. Lee, Z. Peng, and collaborators [64, 65, 66]. This underscores their relevance
for computational engineering.

In parts, this manuscript runs parallel to the survey article [16]. What is new is the
treatment of essential boundary conditions, because, apart from [15], earlier work has
always been concerned with (scattering) transmission problems posed on the entire
spaceRd, d = 2, 3. Also new are the numerical investigations of the local MTF in 3D
reported in Section 6.

Admittedly, multi-trace formulations are by no means the only attempt to harness
ideas from domain decomposition for boundary element methods. Prominently, this
was also pursued by O. Steinbach and co-workers with the Boundary Element Tearing
and Interconnecting (BETI) method [62, 47, 51, 50, 53]. Thisis a specimen of the class
of BEM based domain decomposition methods that involve approximate realizations
of Dirichlet-to-Neumann maps by means of boundary elements[53, 73]. Other ap-
proaches marrying boundary elements and domain decomposition employ Lagrangian
multipliers,cf. [46].

A word of warning; throughout we address domain decomposition in the volume. It
must not be mixed up with domain decomposition on surfaces meant to break apart the
linear systems arising from BEM. Only recently various kindsof such schemes have
been proposed, see [11, 37, 35, 20, 63].
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List of notations

Ωj , ΩZ Lipschitz domains “subdomains”, see (2.1)

Lj second-order diffusion operator associated withΩj , see (2.3a),
Page 6

TD,i,TN,i Dirichlet and Neumann trace operators onto∂Ωi

〈·, ·〉∂Ω L2 duality pairing betweenH
1
2 (∂Ω) andH− 1

2 (∂Ω)

Ti Cauchy trace operator on∂Ωi

T (∂Ωi) Cauchy trace space on∂Ωi, see Page 8

⟪·, ·⟫∂Ω duality pairing in Cauchy trace space, see (3.3), Page 8

Gi potential associated withΩi, see (3.4), Page 8

Pi Calderón projector ontoTi, see (3.6), Page 8

Ai Calderón operator belonging toΩi, see (3.7), Page 9

MT (Σ) multi-trace space, see (3.8), Page 9

Li localization operatorMT (Σ)⊤T (∂Ωi), see (3.9), Page 9

⟪·, ·⟫Σ self-duality pairing forMT (Σ), see (3.10), Page 9

ST (Σ), ST 0(Σ) single-trace spaces, see (3.11), Page 9, (3.13), Page 10

M̂T (Σ), M̂T 0(Σ) clipped multi-trace spaces, see (4.3), (4.4), Page 14

Ci→j remote coupling operators, see (4.7), Page 16

Gi triangular surface mesh on∂Ωi

Th(∂Ωi) boundary element Cauchy trace space on∂Ωi, see (4.9), Page 17

Sij trace restriction operator, see (5.2), Page 19

Xi→j trace transfer operator, see (5.2), Page 19

T̃pw(∂Ωi) piecewise Cauchy trace space, see (5.6), Page 20

MT 0(Σ), M̃T 0(Σ) multi-trace spaces with local regularity, see (5.10a), Page 21

M̃T
♯

0(Σ) multi-trace space with locally regular Neumann components, see
(5.14), Page 22

2 Exterior Transmission Boundary Value Problems

As a model problem we study a scalar second-order elliptic transmission boundary
value problem in the exteriorRd \ ΩZ of a bounded Lipschitz domainΩZ ⊂ R

d,
d = 2, 3. We restrict ourselves to spatially varying diffusion coefficientsµ = µ(x),
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Figure 1: Geometric situation for the second-order scalar elliptic exterior transmis-
sion model problem. Thenj ’s stand for theexterior unit normal vector-fields on the
subdomain boundaries∂Ωj .
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which arepiecewise constantwith respect to a partition ofRd \ ΩZ

R
d \ ΩZ = Ω0 ∪ Ω1 ∪ . . . ∪ ΩN , N ∈ N , (2.1)

intoN + 1 subdomainsΩi, of which onlyΩ0 is unbounded, see Figure 1 for an illus-
tration. The two subdomainsΩi andΩj , i 6= j, are separated by the interfaceΓij . The
piece of boundary separatingΩi andΩZ is denoted byΓiZ . The union of all bound-
aries forms the skeletonΣ: Σ =

⋃
i ∂Ωi. If ΩZ 6= ∅ or N > 1, junction points will

usually occur and then the skeleton may not be orientable, nor be a manifold.
Given diffusion coefficientsµi > 0, i = 0, . . . , N , and Dirichlet datag ∈ H

1
2 (∂ΩZ),

our model transmission problem seeksU ∈ H1
loc(R

d \ ΩZ) that satisfies the Dirichlet
boundary conditions

U = g on∂ΩZ , (2.2)

that complies with suitable decay conditions at infinity (depending on the space dimen-
siond, see [56, Ch. 8]), and whose restrictionsUi := U |Ωi

∈ H1
loc(Ωi), i = 0, . . . , N ,

fulfill

Li Ui := − div(µi gradUi) = 0 in Ωi , (2.3a)

Ui|Γij
− Uj |Γij

= 0 , µi
∂Ui
∂ni

∣∣∣∣
Γij

+ µj
∂Uj
∂nj

∣∣∣∣
Γij

= 0 onΓij . (2.3b)

Equivalently,U can be characterized as the solution of a variational problemposed on
a Sobolev space with weightedH1(Rd \ ΩZ)-norm,cf. [70, Sect. 2.9.2.4.] and [26,
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Chap. XI, Part B]. Existence and uniqueness of solutions of this variational problem
can be established by standard techniques, see [70, Sect. 2.10.2.2] or [56, Ch. 8].
Remark2.1 (More general boundary conditions on∂ΩZ). We confine ourselves to
Dirichlet boundary conditions on∂ΩZ just for the sake of simplicity. Neumann bound-
ary conditions can be treated alike and BIE can even accomodate a mixture of both
following the ideas of [70, Sect. 3.5.2]. △

Remark2.2. As already remarked in the Introduction, multi-trace boundary integral
equations can be derived for many more transmission problems beside the simple
model problem (2.3). In fact, in [16] and [18] multi-trace boundary integral equa-
tions were first proposed and analyzed for acoustic scattering. Recall that theacoustic
transmission scattering probleminvolves the local partial differential equations

− div(µi gradUi)− κ2
iUi = 0 in Ωi , (2.4)

with locally constant wave numbersκi > 0, and Sommerfeld radiation conditions at
infinity [19, Ch. 2], [59, Ch. 2]. The transmission conditions(2.3b) and boundary
conditions (2.2) apply unchanged. An extension to transmission problems for time-
harmonic electromagnetic waves is pursued in [14]. Those read

U× nZ = g on∂ΩZ , (2.5)

curl(µi curlUi)− κ2
iUi = 0 in Ωi , i = 0, . . . , N , (2.6)

ni × (Ui|Γij
× ni)− nj × (Uj |Γij

× nj) = 0 ,

µi curlUi|Γij
× ni + µj curlUj |Γij

× nj = 0



 onΓij , (2.7)

+ Silver-Müller radiation conditions at∞ for U−Uinc.

A detailed and comprehensive presentation of multi-trace BIE for the scattering trans-
mission problems (2.4) and (2.5) is given in [16]. In all these works essential boundary
conditions are not taken into account.

3 Single-trace Boundary Integral Equations (STF)

3.1 Calderón Projectors

Two trace operators are naturally associated with the second-order scalar differential
operatorLi Ui := − div(µi gradUi). These are the Dirichlet traceTD,i, and Neu-
mann traceTN,i, defined for smooth functionsV onΩi through

TD,i U := U |∂Ωi
, TN,i U := µi gradU · ni|∂Ωi

. (3.1)

They can be extended to continuous and surjective operators[70, Sect. 2.6 & 2.7]1

TD,i : H1(Ωi) → H
1
2 (∂Ωi) , TN,i : H(∆,Ωi) → H− 1

2 (∂Ωi) . (3.2)

1 As usual,H(∆,Ω) := {U ∈ H1(Ω) : ∆U ∈ L2(Ω)}.
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Their ranges are known astrace spacesand form the Gelfand tripleH
1
2 (∂Ωi) ⊂

L2(∂Ωi) ⊂ H− 1
2 (∂Ωi)with a dualityH

1
2 (∂Ωi)

′ ∼= H− 1
2 (∂Ωi) effected by theL2(∂Ωi)

inner product. We write〈·, ·〉∂Ωi
for the associated duality pairing, which agrees with

theL2(∂Ωi)-inner product for sufficiently regular functions. Trace spaces and opera-
tors may be combined intoCauchy trace spacesandCauchy trace operators:

T (∂Ωi) := H
1
2 (∂Ωi)×H− 1

2 (∂Ωi) , Ti :

{
H(∆,Ωi) → T (∂Ωi)

U 7→ (TD,i U,TN,i U) .

The ranges of theTi are dense inT (∂Ωi) [22, Lemma 3.5]. Obviously, the Cauchy
trace spaces are in self-duality with respect to the skew-symmetric pairing2

⟪u, v⟫∂Ωi
:= 〈u, ϕ〉∂Ωi

− 〈v, ν〉∂Ωi
, u :=

(
u

ν

)
, v :=

(
v

ϕ

)
∈ T (∂Ω) . (3.3)

Beside trace operators, potentialrepresentation formulasare the linchpin of the
derivation of boundary integral equations. Here, the term “potential” is reserved for
mappings that take functions on boundaries to functions in domains. These functions
usually provide solutions of the homogeneous PDE. For our concrete operatorsLi :=
− div(µi grad ·) the key potential is formally given by

Gi(u)(x) := ⟪Ti Φ(x− ·), u⟫∂Ωi
, x ∈ R

d \ ∂Ωi, u ∈ T (∂Ωi) , (3.4)

whereΦ is the fundamental solution forLi, see [70, Eq. (3.3)]. A comprehensive
discussion of potentials can be found in [70, Sect. 3.1]. Then, everyU ∈ Hloc(∆,Ωi)
that satisfiesLi U = 0 and, fori = 0, the appropriate decay conditions at∞, has the
representation (in the sense of distributions)

U = Gi(Ti U) , (3.5)

cf. [70, Sect. 3.11] and [56, Ch. 6]. Applying the Cauchy trace tothe potential yields
theCalderón projector, see [16, Sect. 2.3], [70, Sect. 3.6], and [44, Sect. 5.6]:

Pi := TiGi : T (∂Ωi) → T (∂Ωi) , (3.6)

This operator turns out to be a projector:P
2
i = Pi. The Calderón projectors owe their

importance to the following fundamental theorem, [16, Thm. 2.6] and [70, Prop. 3.6.2(ii)].

Theorem 3.1.Ui ∈ H(∆,Ωi) solvesLi Ui = 0 in Ωi (and satisfies appropriate decay
conditions at∞ for i = 0), if and only if(Pi−Id)Ti Ui = 0.

2 Fraktur font is used to designate functions in the Cauchy trace space, whereas Roman typeface is
reserved for Dirichlet traces, and Greek symbols for Neumann traces.
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We remark that the Calderón projectorPi implicitly contains the customary four dif-
ferent boundary integral operators associated with 2nd-order scalar PDEs [70, Eq. (3.122)],
because theCalderón operator

Ai := Pi−
1
2Id can be written as Ai =

(
−Ki Vi

Wi K
′
i

)
, (3.7)

where we have adopted the notations from [70, Sect. 3.1]:Ki, Vi, Wi, andK′
i stand

for the double layer, single layer, hypersingular, and adjoint double layer boundary
integral operators on∂Ωi, respectively.

3.2 Skeleton trace spaces

Boundary integral equations arising from the transmissionproblem (2.3) invariably
involve unknown functions in trace spaces on the skeletonΣ. The largest and simplest
such space is the (skeleton)multi-trace space:

MT (Σ) := T (∂Ω0)× T (∂Ω1)× · · · × T (∂ΩN ) , (3.8)

which comprises completely decoupled local traces. It owesits name to the fact that
on each interfaceΓij a functionu ∈ MT (Σ)3 comprises two pairs of Dirichlet and
Neumann data, each stemming from a subdomain on either side.The simple com-
ponent projectionsLi : MT (Σ) → T (∂Ωi) isolate the contribution of individual
subdomains:

Li u :=

(
ui
νi

)
, for u :=

((
u0

ν0

)
, . . . ,

(
uN
νN

))
∈ MT (Σ) . (3.9)

Properties of its local components carry over to the multi-trace space, for instance,
self-duality with respect to the symplecticL2-type bilinear pairing,cf. (3.3),

⟪u, v⟫Σ :=
N∑

i=0

⟪Li u,Li v⟫∂Ωi
, u, v ∈ MT (Σ) . (3.10)

Corollary 3.2. The pairing(3.10)induces an isomorphismMT (Σ) ∼= MT (Σ)′.

Generically, multi-trace functions on different subdomains are utterly disconnected.
If we impose the continuity stipulated by the transmission conditions (2.3b) we arrive
at the so-calledsingle-trace spaces

ST (Σ) :=

{((
ui
νi

))N

i=0
∈ MT (Σ) :

∃V ∈ H1(Rd) : ui = TD,i V ,

∃W ∈ H(div,Rd) : νi = Tn,iW

}
.

(3.11)

3 Functions in a multi-trace space will be tagged by an underline, e.g.,u, v.



10 X. Claeys, R. Hiptmair, C. Jerez-Hanckes and S. Pintarelli

Here,Tn,iW is the normal component trace(W · ni)|∂Ωi
on ∂Ωi for a vector-field

W in Ωi. For traces inL2(∂Ωi), the formal definition (3.11) implies

((
ui
νi

))N

i=0
∈ ST (Σ) ⇒

ui|Γij
= uj |Γij

and νi|Γij
= − νj |Γij

,

0 ≤ i, j ≤ N ,
(3.12)

that is, theH
1
2 -components are continuous across interfaces, and so are the H− 1

2 -
components, the latter up to a change of sign. The sign changereflects the oppo-
site relative orientation of an interface with respect to the two adjacent subdomains,
see Figure 1. The definition (3.11) may be modified slightly inorder to impose zero
Dirichlet boundary conditions on∂ΩZ .

ST 0(Σ) :=

{(
ui
νi

)N

i=0
:

∃U ∈ H1
∂ΩZ

(Rd \ ΩZ) : ui = TD,i U ,

∃V ∈ H(div,Rd) : νi = Tn,iV

}
. (3.13)

Here, we wroteH1
∂ΩZ

(Rd \ ΩZ) for the space of functions inH1(Rd \ ΩZ) that vanish
on∂ΩZ .

Obviously, the restriction of single traces to∂ΩZ is well defined by taking the point
traceTD,Z V and normal component traceTn,Z W onto∂ΩZ , respectively, of their
extensionsV andW according to (3.11). For this restriction operation we introduce
the localization onto∂ΩZ

LZ =

(
LD,Z

LN,Z

)
: ST (Σ) → T (∂ΩZ) := H

1
2 (∂ΩZ)×H− 1

2 (∂ΩZ) . (3.14)

Thanks to (3.12) the pairing of single trace functions leadsto massive cancellations,
because for sufficiently smooth multi-trace functions we can rewrite (3.10) as a sum
of contributions of interfaces:

⟪u, v⟫Σ =

N∑

i,j=0
i<j

∫

Γij

uiψi − viνi + ujψj − vjνj dS +

N∑

i=0

∫

ΓiZ

uiψi − viνi dS , (3.15)

whereu =
((
u0
ν0

)
, . . . ,

(
uN
νN

))
, v =

((
v0
ψ0

)
, . . . ,

(
vN
ψN

))
. Remember thatΓiZ are the

interfaces separating subdomains andΩZ . The identity (3.15) holds since each interior
interface is visited twice in the evaluation of the pairing.Now, combine (3.15) with
the insight from (3.12) and conclude foru, v ∈ ST (Σ)

⟪u, v⟫Σ =
∑

i,j

∫

Γij

(ui − uj)︸ ︷︷ ︸
=0

ψi − (vi − vj)︸ ︷︷ ︸
=0

νi dS +
N∑

i=0

∫

ΓiZ

uiψi − viνi dS .

We immediately get

⟪u, v⟫Σ = −⟪LZ u,LZ v⟫∂ΩZ
, ∀u, v ∈ ST (Σ) , (3.16)

and note that the minus sign is due to the opposite orientationof normals on∂ΩZ .
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Remark3.1. A fundamental result is the characterization of single-trace spaces as
complete Lagrangian subspaces w.r.t. the pairing⟪·, ·⟫Σ of multi-trace spaces as given
in [18, Prop. 2.1] and [16, Thm. 2.23]. It can be adapted to homogeneous Dirichlet
boundary on∂ΩZ :

ST 0(Σ) = {u ∈ MT (Σ) : ⟪u, v⟫Σ = 0 ∀v ∈ ST 0(Σ)} .

The intuition behind this characterization is clear from (3.15): Varyingv ∈ ST 0(Σ)
enforces (3.12) and vanishing Dirichlet components on the boundariesΓiZ . △

3.3 First-kind boundary integral equations

Assume thatU ∈ H1
loc(R

d) solves the transmission problem (2.3). Then Theorem 3.1
permits us to conclude

(Pj −Id)Tj U = 0 in T (∂Ωj) , j = 0, . . . , N . (3.17)

Using (3.7), this implies that for allv ∈ ST 0(Σ)
N∑

j=0

⟪(Aj −1
2Id)Tj U,Lj v⟫∂Ωj

= 0 . (3.18)

Next, recall (3.16), that the Dirichlet components ofv vanish on∂ΩZ , LD,Zv = 0, and
thatU satisfies the Dirichlet boundary conditions (2.2), that is,TD,Z U = g on∂ΩZ .
Thus, we find (TZ U is the Cauchy trace ofU on∂ΩZ)

N∑

j=0

⟪−1
2 Tj U,Lj v⟫∂Ωj

= −1
2⟪TZ U,LZ v⟫∂ΩZ

= −1
2〈g, LN,Zv〉∂ΩZ

,

and (3.18) can be converted into the equation:

N∑

j=0

⟪Aj Tj U,Lj v⟫∂Ωj
= −1

2〈g, LN,Zv〉∂ΩZ
. (3.19)

Eventually, we have derived a variational equation satisfied byTΣU := (Ti U)Ni=0 ∈
ST (Σ). In order to balance trial and test spaces, we employ the customary offset
function technique. We rely on a functionG ∈ H1

loc(R
d), whose point trace on∂ΩZ

agrees with the Dirichlet datag: TD,Z G = g. Thus, we can define the skeleton

extension of the Dirichlet boundary values,g :=
(G|Σ

0

)
∈ ST (Σ). Introducing the

skeleton Cauchy trace ofU minus this extension as unknownu, that is,u = TΣU − g

yields the classical single-trace boundary integral equation (STF): seeku ∈ ST 0(Σ)
such that

N∑

j=0

⟪Aj Lj u,Lj v⟫∂Ωj
= −1

2〈g, LN,Zv〉∂ΩZ
−

N∑

j=0

⟪Aj Lj g,Lj v⟫∂Ωj
, (3.20)
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for all v ∈ ST 0(Σ). This is a first kind boundary integral equation in weak form.We
write mSTF for its associated bilinear formmSTF : ST 0(Σ)× ST 0(Σ) → R.

3.4 Existence and Uniqueness of Solutions

The bilinear formmSTF from (3.20) is a sum of local contributions associated with the
integral operatorsAj , j = 0, . . . , N . This permits us to appeal to well established
results asserting the ellipticity of single layer and hypersingular boundary integral op-
erators. The proofs can be found in [56, Cor. 3.13 & Thm. 8.18], [70, Thm. 3.5.3], and
[74, Sect. 6.6.1].

Theorem 3.3.LetD ⊂ R
d be a Lipschitz domain,∂D connected and bounded, and

write V and W for the single layer boundary integral operator and hypersingular
boundary integral operator on∂D, respectively, associated with−∆. If d = 2, assume
that∂D has a diameter smaller than1. Then there are constantscV > 0 andcW > 0
such that

〈Vϕ,ϕ〉∂D ≥ cV ‖ϕ‖2

H
− 1

2 (∂D)
, ∀ϕ ∈ H− 1

2 (∂D) , (3.21)

〈Wv, v〉∂D ≥ cW ‖v‖2

H
1
2 (∂D)

, ∀v ∈ H
1
2 (∂D)/R . (3.22)

If D is not bounded, then(3.22)holds on the entire spaceH
1
2 (∂D).

To apply this theorem recall the symmetry of the double layerboundary integral
operators for−∆: 〈Kv, ϕ〉∂D = 〈v,K′ϕ〉∂D for all v ∈ H

1
2 (∂D) andϕ ∈ H− 1

2 (∂D).
Thus, we obtainD = Ωj

⟪Aj
(
v

ϕ

)
,

(
−v

ϕ

)
⟫
∂Ωj

= ⟪
(
−Kjv + Vjϕ

Wjv + K′
jϕ

)
,

(
−v

ϕ

)
⟫
∂Ωj

= 〈Vjϕ,ϕ〉∂Ωj
+ 〈Wjv, v〉∂Ωj

,

(3.23)

and from Theorem 3.3 we immediately conclude that there are constantscj > 0,
j = 1, . . . , N , such that

⟪Aj v,Ξjv⟫∂Ωj
≥ cj inf

α∈R

∥∥v−
(
α
0

)∥∥2
T (∂Ωj)

, ∀v ∈ T (∂Ωj) , (3.24)

where the simple isometric isomorphismΞj : T (∂Ωj) → T (∂Ωj) is defined as
Ξj
(
v
ϕ

)
:=
(−v
ϕ

)
. Again the quotient norm is redundant forj = 0:

∃c0 > 0 : ⟪A0 v,Ξ0v⟫∂Ω0
≥ c0 ‖v‖

2
T (∂Ω0)

, ∀v ∈ T (∂Ω0) . (3.25)

In the interest of concise notation we merge the local sign-change isomorphismsΞj
into the operatorΞ on MT (Σ) that amounts to component-wise application of the
Ξj ’s.



Multi-Trace Boundary Integral Equations 13

Theorem 3.4(Ξ-ellipticity of STF bilinear form).The STF bilinear formmSTF satisfies
the “Ξ-ellipticity” estimate

mSTF(v,Ξv) ≥ c ‖v‖2
MT (Σ) ∀v ∈ ST 0(Σ) ,

for some constantc > 0.

Proof. Invoking the definition ofmSTF from (3.20) together with (3.24) and (3.25)
confirms thatmSTF is positive semidefinite with an at most finite-dimensional kernel

mSTF(v,Ξv) ≥ c0 ‖v‖
2
T (∂Ω0)

+
N∑

j=1

cj inf
α∈R

∥∥v−
(
α
0

)∥∥2
T (∂Ωj)

.

It remains to show that the kernel can only be trivial. Let us consider the variational
problem with vanishing right hand side:mSTF(u, v) = 0 for all v ∈ ST 0(Σ). Choos-
ing v = u we infer from (3.24) thatLj u =

(
cj
0

)
for somecj ∈ R, that is, the Neumann

components ofu vanish and its Dirichlet components are constant on the subdomain
boundaries. In fact, by (3.25), on∂Ω0 those have to vanish, too. Hence, they have to
be zero on all subdomains abutting∂Ω0, and a simple induction arguments confirms
u = 0.

Corollary 3.5. The variational problem(3.20) has a unique solution for anyg ∈

H
1
2 (∂ΩZ).

Proof. The continuity of the bilinear formmSTF from (3.20) and of the right hand side
linear form onST 0(Σ) is obvious. Moreover, the ellipticity result of Theorem 3.4
implies an inf-sup condition formSTF.

3.5 Obstruction to operator preconditioning

According to Theorem 3.4 the single trace variational boundary integral equation
(3.20) is stable. Moreover, its boundary element discretization is straightforward, once
a triangulation of the skeleton is given.

However, (3.20) is posed on the single-trace spaceST 0(Σ) and there is no known
trace space that is dual toST 0(Σ) with respect to anL2-type duality pairing. Of
course, uniformly stable discreteL2-dualities are even more elusive for conventional
boundary element subspaces ofST 0(Σ). Thus, as remarked in the Introduction, op-
erator preconditioning for (3.20) isnot possible. This is further elaborated in [16,
Sect. 4.5].
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4 Global Multi-trace Boundary Integral Equations

4.1 Preface

In this and the next section we present multi-trace boundaryintegral equations for the
transmission problem (2.3). They have in common that they give rise to variational
problems posed on products of simple trace spaces on subdomain boundaries.

To understand the benefit of a product space framework in terms of operator precon-
ditioning, recall Theorem 1.1 and its straightforward generalization to a setting where
the bilinear forma is defined on a product of Hilbert spaces4 X := X1 × . . . Xn,
n ∈ N. We also need Hilbert spacesY1, . . . , Yn equipped with continuous bilinear
forms bj ∈ L(Yj × Yj ,R). Then, given finite-dimensional subspacesXj,h ⊂ Xj ,
Yj,h ⊂ Yj , assuming inf-sup conditions fora onXh := X1,h × · · · ×Xn,h and for the
bj ’s onYj,h, and with continuous and stable discrete pairingsdj : Xj,h × Yj,h → R at
our disposal, we find that the matrix

M×
h :=

n∑

j=1

D−1
j BjD

−T
j (4.1)

provides operator preconditioning for the Galerkin matrixAh of a onXh. Here, the
matricesBj andDj are the Galerkin matrices spawned bybj onYj,h×Yj,h anddj on
Xj,h × Yj,h.

4.2 Heuristic gap construction

Consider the special situation that none of the subdomainsΩ1, . . . ,ΩN andΩZ touch
as in Figure 2 (right). In this case the skeleton can be partitioned according to

Σ = ∂Ω0 = ∂Ω1 ∪ · · · ∪ ∂ΩN ∪ ∂ΩZ . (4.2)

We arrive at this arrangement of “separated subdomains” whenintroducing a small
gap between all bounded subdomains, which is illustrated inFigure 2.

Now consider the single-trace first kind BIE presented in Section 3 in the case of
separated subdomains. Obviously, this special setting permits us to identify the single-
trace spaces with products of Cauchy trace spaces on subdomain boundaries. The
resulting space which can be viewed as a truncated multi-trace space with omitted
(except for the part on∂ΩZ) ∂Ω0-contribution [18, Sect. 7]:

ST (Σ) ∼= M̂T (Σ) := T (∂Ω1)× · · · × T (∂ΩN )× T (∂ΩZ) , (4.3)

ST 0(Σ) ∼= M̂T 0(Σ) := T (∂Ω1)× · · · × T (∂ΩN )×H− 1
2 (∂ΩZ) . (4.4)

4 The notations introduced in the context of Theorem 1.1 are used tacitly.
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Ω1

ΩZ

Ω2

Ω0

n0
n2

nZ

⇒

Ω1

ΩZ

Ω2

Ω0

n0
n2

nZ

Figure 2: Illustration of the gap idea

The related isomorphisms areI : M̂T (Σ) → ST (Σ) andI0 : M̂T 0(Σ) → ST (Σ).
Specifically, withvj =

(vj
ψj

)
∈ T (∂Ωj), j = 1, . . . , N, Z, we have

I(v1, . . . , vN , vZ) :=

((
v1 ∨ · · · ∨ vN ∨ vZ

−(ψ1 ∨ · · · ∨ ψN ∨ ψZ)

)
, v1, . . . , vN

)
, (4.5)

where∨ designates the joining of functions on subdomain boundaries to form a func-
tion on∂Ω0. This is made possible by the partitioning (4.2). The minus-sign reflects
the opposite orientations of the normalsn0 andnj .

We observe that for separated subdomains the STF gives rise to a variational prob-
lem on a genuine product Hilbert space of subdomain trace spaces. As explained above
in Section 4.1, this facilitates the construction of operator preconditioners of the form
(4.1). Algorithmic details are postponed to Section 4.4.

Next, we take a closer look at the STF variational formulation (3.20) in the situ-
ation of separated subdomains, with the aim of recasting it into a problem posed on
M̂T 0(Σ). Since,

Lj I(v1, . . . , vN , vZ) = vj , j = 1, . . . , N or j = Z , (4.6)

it is only the term in (3.20) contributed by∂Ω0 that needs closer scrutiny. We write
û = (u1, . . . , uN , uZ) ∈ M̂T (Σ), v̂ = (v1, . . . , vN , vZ) ∈ M̂T (Σ), appeal to the
lengthy manipulations from [16, Eq. (5.8)] or [18, Sect. 8],and end up with

⟪A0L0 I û,L0 I v̂⟫∂Ω0
=

N∑

j=1,Z

(⟪Aµ0
j uj , vj⟫∂Ωj

+
N∑

i=1,Z
i 6=j

⟪Tµ0
j G

µ0
i (ui), vj⟫∂Ωj

)
.

Here,Z in the range of summation indices means that∂ΩZ is also covered by the sum.
Moreover a superscriptµ0 indicates that the Calderón operatorsA

µ0
j , potentialsGµ0

j ,
or Cauchy trace operatorsTµ0

j are defined using the diffusion coefficientµ0, but still
live on∂Ωj , j = 1, . . . , N, Z.
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For the sake of brevity, we introduce the “remote coupling operators” fori 6= j

Ci→j : T (∂Ωi) → T (∂Ωj) , Ci→j(vi) := T
µ0
j

(
G
µ0
i (vi)

)
. (4.7)

Observe that these operators take the trace of a potential atanother boundary. We also
note that for separated subdomains the offset functiong from (3.20) may be supported
on ∂ΩZ alone, that is, we can chooseg = I

(
0, . . . , 0,

(
g
0

))
. In particular, this means

thatLj g = 0 for all j = 1, . . . , N . Then, using the identity stated above, we can

rewrite (3.20) as the following variational problem posed on M̂T 0(Σ): seekû =

(u1, . . . , uN , νZ) ∈ M̂T 0(Σ) such that

〈VZνZ , ψZ〉∂Ω +
N∑

j=1

⟪(Aµ0
j +Aj)uj , vj⟫∂Ωj

+
N∑

i=1

⟪Ci→Z ui,
( 0
ψZ

)⟫
∂ΩZ

+
N∑

j=1

N∑

i=1
i 6=j

⟪Ci→j ui, vj⟫∂Ωj

+

N∑

j=1

⟪CZ→j

( 0
νZ

)
, vj⟫

∂Ωj

= −1
2

〈
(Id− 2Kµ0

Z )g, ψZ
〉
∂ΩZ

−
N∑

j=1

⟪CZ→j

(
g
0

)
, vj⟫∂Ωj

,

(4.8)

for all v̂ = (v1, . . . , vN , ψZ) ∈ M̂T 0(Σ).
So far, this bulky variational BIE was derived for separatedsubdomains, depicted

on the right in Figure 2. The key insight gleaned in [18, Sect.5 “Gap idea”] and also
discussed in [16, Sect. 5.2 “Gap idea”] isthat (4.8) remains well defined even without
a gapbetween theΩj andΩZ , j = 1, . . . , N , as shown on the left in Figure 2. Indeed,
reading the traceTµ0

j in (4.7) as anexterior Cauchy trace onto∂Ωj with respect to
Ωj , the remote coupling operators remain well-defined continuous mappings. Hence,
(4.8) defines the variational form of theglobal multi-trace boundary integral equation
formulationfor the transmission problem (2.3) even in the general setting outlined in
Section 2.

Remark4.1. As hinted at by their name, in (4.8) the “remote coupling operators”Ci→j

from (4.7) establish a variational coupling between subdomains, even it they do not
have a common interface. These long-range interaction madeus choose the attribute
“global” for this kind of MTF. △
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4.3 Global MTF: Existence and uniqueness of solutions

In light of the “gap idea” it is not surprising that the variational problem (4.8) inherits
quite a few of the remarkable properties of the original STF (3.20). The first result
mirrors the “Ξ-ellipticity” of mSTF asserted in Theorem 3.4.

Theorem 4.1.The global multi-trace bilinear form defined by the left handside of
(4.8) is continuousandΞ-elliptic onM̂T 0(Σ).

Proof. Continuity of the remote coupling operatorsCi→j is immediate from the map-
ping properties of potentials and traces. This implies continuity of the bilinear form.

As regardsΞ-ellipticity on M̂T 0(Σ), we merely sketch the idea of the proof: First
note that the first line of (4.8) enjoyŝMT 0(Σ)-ellipticity on a subspace, defined by
imposing vanishing averages of the Dirichlet components on∂Ωz, . . . , ∂ΩN , ∂ΩZ .
The remaining constant Dirichlet components are taken careof by the remote coupling
terms in lines two and three of (4.8), see the proof of [18, Prop. 10.3] for details.

The next result confirms that the unique solution of (4.8) yields the Cauchy traces
of the unique solution of the transmission problem (2.3).

Theorem 4.2.If û = (u1, . . . , uN , νZ) ∈ M̂T 0(Σ) solves(4.8), thenuj = Tj U −(
TD,j G

0

)
andνZ = TN,Z U , whereU is the unique solution of(2.3).

Proof. We refer to [18, Sect. 9], in particular the proof of [18, Thm.9.1], which carries
over to (4.8) with only slight modifications.

4.4 Global MTF: Operator preconditioning in 3D

We restrict ourselves tod = 3 and the simplest boundary element Galerkin discretiza-
tion of (4.8). To define trial and test spaces weindependentlyequip each boundary
∂Ωj , j = 1, . . . , N , and∂ΩZ with a conforming triangular surface meshGj [70,

Sect. 4.1.2]. On these meshes we define the spacesS−1(Gj) ⊂ H− 1
2 (∂Ωj) of (discon-

tinuous)Gj-piecewise constant functions [70, Ex. 4.1.16], andS0(Gj) ⊂ H
1
2 (∂Ωj) of

Gj-piecewise linear andcontinuousfunctions [70, Ex. 4.1.37]. Their product provides
discrete local Cauchy trace spaces

Th(∂Ωj) := S0(Gj)× S−1(Gj) ⊂ T (∂Ωj) , j = 1, . . . , N , (4.9)

which are the building blocks for the discrete counterpart of M̂T 0(Σ) (as defined in
(4.4)):

M̂T 0,h({Gj}) := Th(∂Ω1)× · · · × Th(∂ΩN )× S−1(GZ) ⊂ M̂T 0(Σ) . (4.10)

This completely defines the Galerkin BEM for (4.8). If standard localized nodal basis
functions are used forS−1(Gj) andS0(Gj), then for shape-regular and quasi-uniform
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families of surface meshes we will encounter a growth of the spectral condition num-
bers of the resulting linear systems of equations likeO(h−2) as the meshwidthh→ 0
[70, Sect. 4.5].

Operator preconditioning will be carried out in the productspace framework out-
lined in Section 4.1. Retaining the notations from there we haven = N + 1,Xj :=

T (∂Ωj), j = 1, . . . , N , Xn := H− 1
2 (∂ΩZ), and the bilinear forma is that of (4.8),

for which Theorem 4.1 guarantees uniform stability. From (4.4) we see that the role of
Xj,h is played byTh(∂Ωj), j = 1, . . . , N , and that ofXn,h by S−1(GZ).

As suggested byL2-duality, we pick

Yj := Xj , j = 1, . . . , N and Yn := H
1
2 (∂ΩZ) , (4.11)

because we want to employ the localL2-type pairings on∂Ωj and∂ΩZ , respectively,
as pairing bilinear formsdj , that is,

dj := ⟪·, ·⟫∂Ωj
, j = 1, . . . , N , dn := 〈·, ·〉∂ΩZ

. (4.12)

Next, the Calderón operators from (3.7) supply the bilinearformsbj , j = 1, . . . , N :

bj(uj , vj) := ⟪Aj uj , vj⟫∂Ωj
, uj , vj ∈ T (∂Ωj) , (4.13)

whereas the hypersingular boundary integral operator on∂ΩZ gives usbn: bn(uZ , vZ) :=

〈WZuZ , vZ〉∂ΩZ
, uZ , vZ ∈ H

1
2 (∂ΩZ).

The choice of the boundary element spacesYj,h ⊂ Yj poses a challenge, because
just using lowest order boundary elements on the same meshesGj fails to deliver uni-
formly stable discretizations of the pairing bilinear forms dj even on sequences of
shape-regular and quasi-uniform meshes. Instead we resortto the breakthrough idea
from [72] and [8] and use boundary element spaces ondual mesheŝGj defined via
barycentric subdivisions ofGj as displayed in Figure 3 [73, Sect. 2.2].

The spacesS−1(Ĝj) ⊂ H− 1
2 (∂Ωj) comprise functions that are piecewise constant

on dual cells [8, Sect. 2, Fig. 3]. Further,S0(Ĝj) is spanned by continuous functions
that are piecewise linear on the barycentric refinement ofGj , and whose values at
nodes ofGj and midpoints of edges ofGj are determined by the average of their values
in adjacent barycenters [8, Sect. 2, Fig. 1]. Then the theoretical developments of [73,
Sect. 2] confirm that the pairs of spacesS−1(Gj) × S0(Ĝj) andS−1(Ĝj) × S0(Gj)

provide stable Galerkin discretizations of the duality pairing 〈·, ·〉∂Ωj
: H− 1

2 (∂Ωj) ×

H
1
2 (∂Ωj) → R. This hinges on certain assumptions on the geometry ofGj , which

are satisfied for shape-regular and quasi-uniform familiesand even for a wide range of
locally refined meshes. Appealing to this theory, the next theorem is a consequence of
Theorem 1.1.

Theorem 4.3.Operator preconditioning of the Galerkin boundary elementdiscretiza-
tion of (4.8)as outlined in Section 4.1 leads to uniformly bounded spectral condition
numbers of the preconditioned linear systems in the case of shape-regular and quasi-
uniform families of triangular surface meshes.
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Figure 3: Barycentric dual mesh for a triangular primal mesh(black lines): the shaded
region marks a dual cell associated with a primal node (blue disk), the magenta lines
represent dual edges, the red disks dual nodes.

5 Local Multi-trace Boundary Integral Equations

5.1 Localized transmission conditions

In the global multi-trace formulation introduced in Section 4 the transmission con-
ditions are implicitly contained in the variational formulation. Conversely, the local
multi-trace approach takes into account the transmission conditions in their local form
(2.3b), which can be expressed as

(
TD,i

TN,i

)
Ui =

(
Id 0

0 −Id

)(
TD,j

TN,j

)
Uj onΓij , (5.1)

for which we embrace the compact notation:

Sij Ti Ui = Xj→i Tj Uj . (5.2)

HereSji : T (∂Ωj) → T (Γij) restricts traces on∂Ωj to the interfaceΓij ⊂ ∂Ωj .

We used the natural notationT (Γij) := H
1
2 (Γij) × H− 1

2 (Γij). The action of the
operatorXj→i : T (∂Ωj) → T (Γij) is immediate from (5.1):Xj→i

(
v
ψ

)
:= Sji

(
v

−ψ

)
;

in addition to restricting traces,Xj→i flips the sign of the Neumann component, thus
adjusting it to the orientation of the other subdomain boundary ∂Ωi.

Since we aim for boundary integral equations in weak form, weneed to cast (5.2)
into a variational equation. Formally, this can be accomplished by pairing with test
functions in the dual space ofT (Γij) (with respect to the pivot spaceL2(Γij)). How-
ever, be aware that, in contrast toT (∂Ωj), theL2(Γij) inner product doesnot induce
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a self-duality ofT (Γij). Rather, the dual space is [56, Ch. 3], [70, Sect. 2.4.2],

T (Γij)′ = (H
1
2 (Γij))′ × (H− 1

2 (Γij))′ ∼= H̃− 1
2 (Γij)× H̃

1
2 (Γij) . (5.3)

Here H̃
1
2 (Γij) and H̃− 1

2 (Γij) designate distributions onΓij , whose extensions by

zero to∂Ωi belong toH
1
2 (∂Ωi) andH− 1

2 (∂Ωi), respectively. Thus,̃H
1
2 (Γij) and

H̃− 1
2 (Γij) can be identified with subspaces ofH

1
2 (Γij) andH− 1

2 (Γij), respectively,

which are actuallydense. Yet, the norms ofH̃
1
2 (Γij) and H̃− 1

2 (Γij) are strictly

strongerthan those ofH
1
2 (Γij) andH− 1

2 (Γij).
We conclude that an equivalent weak form of (5.2) is

⟪Sij Ti Ui − Xj→i Tj Uj , vij⟫Γij
= 0, ∀ vij ∈ T̃ (Γij) , (5.4)

where T̃ (Γij) := H̃
1
2 (Γij) × H̃− 1

2 (Γij). Here, thecontinuouspairing ⟪·, ·⟫Γij
:

T (Γij)× T̃ (Γij) → R of Cauchy traces onΓij is defined in analogy to (3.3) based on
L2(Γij)-inner products.

5.2 Local MTF: Variational formulation

We now combine Theorem 3.1 in the form of (3.17) and (5.4) intoa set of variational
equations thateverysolutionU ∈ H1

loc(R
d) of (2.3) will satisfy:

(3.17) ⇒ ⟪(Id− Pj)Tj U, vj⟫∂Ωj
= 0, ∀ vj ∈ T (∂Ωj) , (5.5a)

(5.4) ⇒ ⟪Sji Tj U − Xi→j Ti U, Sji ṽj⟫Γij
= 0, ∀ ṽj ∈ T̃pw(∂Ωj) . (5.5b)

Note that the duality (5.3), which underlies (5.4), enforces the use of the following
special test space in the second equation

T̃pw(∂Ωj) := {ṽ ∈ T (∂Ωj) : Sji ṽ ∈ T̃ (Γij), i ∈ Nj} ⊂ T (∂Ωj) . (5.6)

Here and below, we writeNj ⊂ {0, . . . , N} for the set of indices of subdomains
that have an interface in common with∂Ωj . Obviously, the restriction operators map
continuouslySji : T̃pw(∂Ωj) → T̃ (Γij).

By adding (5.5a) and several instances of (5.5b), from (5.5) we conclude, that a
solutionU ∈ H1

loc(R
d) of (2.3) also fulfills,cf. [40, Sect. 3.2]

⟪(Id− Pj)Tj U, ṽj⟫∂Ωj
+
∑

i∈Nj

σij⟪Sji Tj U − Xi→j Ti U, Sji ṽj⟫Γij
= 0 , (5.7)

for all ṽj ∈ T̃pw(∂Ωj), j = 0, . . . , N . Theσij ∈ R are arbitrary non-zero combination
coefficients.
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Again, we employ an offset function technique to deal with the non-homogeneous
Dirichlet boundary conditions (2.2). As in Section 3.3 we introduce a functionG ∈

H1
loc(R

d), whose Dirichlet trace on∂ΩZ agrees with the given datag ∈ H
1
2 (∂ΩZ):

TD,Z G = g. ThenŪ := U −G ∈ {V ∈ H1
loc(R

d) : V |∂ΩZ
= 0} solves

⟪(Id− Pj)Tj Ū , ṽj⟫∂Ωj
+
∑

i∈Nj

σij⟪Sji Tj Ū − Xi→j Ti Ū , Sji ṽj⟫Γij

= −⟪(Id− Pj)Tj G, ṽj⟫∂Ωj
−
∑

i∈Nj

σij⟪Sji Tj G− Xi→j TiG, Sji ṽj⟫Γij

︸ ︷︷ ︸
=:Ψj(ṽj)

, (5.8)

for all ṽj ∈ T̃pw(∂Ωj), j = 0, . . . , N .
In order to arrive at a variational boundary integral equation for the unknown Cauchy

traces ofŪ , in the next key step we introduce all local subdomain tracesuj :=(
uj
µj

)
:= Tj Ū ∈ T (∂Ωj), j = 0, . . . , N , as unknowns. By construction, they sat-

isfy uj |ΓjZ
= 0. In addition we useAj = Pj −

1
2Id from (3.7) and obtain afirst kind

BIE: seeku = (u0, . . . , uN ) ∈ MT 0(Σ) such that

⟪(Aj −1
2Id)uj , ṽj⟫∂Ωj

+
∑

i∈Nj

σij⟪Sji uj − Xi→j ui, Sji ṽj⟫Γij
= Ψj(ṽj) , (5.9)

for all v := (ṽ0, . . . , ṽN ) ∈ M̃T 0(Σ), j = 0, . . . , N . This variational problem is
posed on multi-trace spaces that respect homogeneous Dirichlet boundary conditions
on∂ΩZ :

MT 0(Σ) :=

{((
vj
νj

))N

j=0

∈ MT (Σ) : vj |ΓjZ
= 0

}
, (5.10a)

M̃T 0(Σ) :=
(
T̃pw(∂Ω0)× · · · × T̃pw(∂ΩN )

)
∩MT 0(Σ) . (5.10b)

Again, we point out that the trial functions must allow extension by zero from each
interfaceΓij to the associated subdomain boundaries∂Ωi and∂Ωj .

There is a “magic” choice for the parametersσij , because, by density arguments,
∑

i∈Nj

⟪Sji uj , Sji ṽj⟫Γij
= ⟪uj , ṽj⟫∂Ω ∀uj ∈ T (∂Ωj), ṽj ∈ T̃pw(∂Ωj) .

Hence, if we setσij = 1
2 in (5.9), we can benefit from cancellation and convert (5.9)

into: seeku = (u0, . . . , uN ) ∈ MT 0(Σ) such that

⟪Aj uj , ṽj⟫∂Ωj
− 1

2

∑

i∈Nj

⟪Xi→j ui, Sji ṽj⟫Γij
= Ψj(ṽj) , (5.11)
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for all v := (ṽ0, . . . , ṽN ) ∈ M̃T 0(Σ). This is the “classical” MTF for the transmis-
sion problem (2.3) as proposed in [39] and discussed in [16, Sect. 6] and [40, Sect. 3.3].
It is a variational problem posed onMT 0(Σ)×M̃T 0(Σ), whose underlying bilinear
form we are going to denote bymLMF :

mLMF(u, v) :=
N∑

j=0

⟪Aj uj , ṽj⟫∂Ωj
−

N∑

j=0

∑

i∈Nj

⟪Xi→j ui, Sji ṽj⟫Γij
, (5.12)

u = (u0, . . . , uN ) ∈ MT 0(Σ), v = (ṽ0, . . . , ṽN ) ∈ M̃T 0(Σ).
In light of (3.3) and (3.7) and the sign flip effected byXi→j , the compact notation

(5.11) can be unravelled into an explicit variational problem for Dirichlet and Neu-

mann traces: seeku =
((

u0
ν0

)
, . . . ,

(
uN
νN

))
∈ MT 0(Σ) such that

〈
Vjνj , ψ̃j

〉
∂Ωj

−
〈
Kjuj , ψ̃j

〉
∂Ωj

− 1
2

∑
i∈Nj

〈
ui|Γij

, ψ̃j

∣∣∣
Γij

〉

Γij

= . . . ,

−
〈
K
′
jνj , ṽj

〉
∂Ωj

− 〈Wjuj , ṽj〉∂Ωj
− 1

2

∑
i∈Nj

〈
νi|Γij

, ṽj |Γij

〉
Γij

= . . . ,

(5.13)

for all
( ṽj
ψ̃j

)
∈ Tpw(∂Ωj), j = 0, . . . , N , which satisfy ṽj |ΓjZ

= 0. Please refer to

(3.7), p. 9, for the definition of the boundary integral operators. The right hand side
functionalsΨj have been suppressed for the sake of brevity.
Remark5.1. As explained in [39, Sect. 3.2.4], the MTF bilinear formmLMF from
(5.12) will remain well defined, whenboth argumentsbelong to

M̃T
♯

0(Σ) :=





((
vj
νj

))N

j=0

∈ MT (Σ) :
vj |ΓjZ

= 0 ,

νj ∈ H̃
− 1

2
pw (∂Ωj)



 , (5.14)

whereH̃
− 1

2
pw (∂Ωj) comprises functions inH− 1

2 (∂Ωj), whose restrictions to any inter-

faceΓij belong toH̃− 1
2 (Γij): mLMF ∈ L(M̃T

♯

0(Σ)× M̃T
♯

0(Σ),R). This paves the
way to an alternative formulation of the local MTF with equal trial and test spaces [39,
Sect. 3.2]. △

Remark5.2. From [39, Sect. 3.2.5] recall that the variational formulation (3.20) of
the STF can formally be obtained by restricting (5.11) to test and trial functions in
ST 0(Σ). △

5.3 Local MTF: Existence and uniqueness of solutions

The choice of the particular broken trace spaces was made to ensure the continuity of
the MTF bilinear form.
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Lemma 5.1.The MTF bilinear formmLMF : MT 0(Σ)×M̃T 0(Σ) → R from (5.12)
is continuous.

Proof. Thanks to the continuity properties of the boundary integral operators the first
term in (5.12) is even continuous onMT (Σ)×MT (Σ).

The continuity ofSji : T (∂Ωj) → T (Γij) and Sji : T̃pw(∂Ωj) → T̃ (Γij) is
clear. Besides, theL2(Γij)-inner product can be extended to continuous pairings on

H
1
2 (Γij)×H̃− 1

2 (Γij) andH̃
1
2 (Γij)×H− 1

2 (Γij). This ensures continuity of the second
part of (5.12).

The following lemma reveals a particular “block skew-symmetric” structure of (5.11).
It makes use of the isometric local “sign change isomorphisms” Ξj : T (∂Ωj) →
T (∂Ωj), Ξj

(
v
ϕ

)
:=
(−v
ϕ

)
, introduced in Section 3.4, p. 12.

Lemma 5.2 ([39, Sect 2.2.3, Lemma 1]).For all ui ∈ T (∂Ωi) and ṽ ∈ T̃pw(∂Ωj)
holds

⟪Xi→j ui, Sij Ξj ṽj⟫Γij
= −⟪Xj→i ṽj , Sji Ξiui⟫Γij

.

Proof. The identity follows from straightforward computations using the definitions
of the operators and the pairings. We writeui =

(
u
ν

)
, ṽj =

( ṽ
ψ̃

)
and find

⟪Xi→j ui, Sij Ξiṽj⟫Γij

= ⟪Sij
(
u

−ν

)
, Sji

(
−ṽ

ψ̃

)
⟫

Γij

=
〈
u, ψ̃

〉
Γij

− 〈ṽ, ν〉Γij
,

⟪Xj→i ṽj , Sji Ξiui⟫Γij

= ⟪Sji
(
ṽ

−ψ̃

)
, Sij

(
−u

ν

)
⟫

Γij

= 〈ṽ, ν〉Γij
−
〈
u, ψ̃

〉
Γij

.

Very much in analogy to Theorem 4.1 for the global MTF, the relationship from
Lemma 5.2 guarantees ellipticity of the bilinear form of (5.11) up to a simple local
change of sign.

Theorem 5.3(“Ξ-ellipticity” of bilinear form for MTF). There is a constantc > 0
such that

mLMF(v,Ξv) ≥ c ‖v‖2
MT (Σ) ∀v ∈ M̃T 0(Σ) .

Proof. Throughout the proof we writev = (ṽ0, . . . , ṽN ) =
(( ṽ0

ψ̃0

)
, . . . ,

( ṽN
ψ̃N

))
∈

M̃T 0(Σ).
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➊ As a consequence of Lemma 5.2 all the “off-diagonal” coupling terms cancel and
we end up with,cf. (3.23),

mLMF(v,Ξv) =
N∑

j=0

⟪Aj v,Ξjv⟫∂Ω =
N∑

j=0

〈
Vjψ̃j , ψ̃j

〉
∂Ωj

+ 〈Wj ṽj , ṽj〉∂Ωj
. (5.15)

Then (3.24) immediately shows thatmLMF(v,Ξv) ≥ 0 for all v ∈ M̃T 0(Σ), because
Tpw(∂Ωj) ⊂ T (∂Ωj). In addition,v 7→ mLMF(v,Ξv) inheritsMT (Σ)-coercivity
(up to finite-dimensional perturbations) from the Calderónoperators, recall (3.24) and
(3.25).

➋ Next, single out av ∈ M̃T 0(Σ) such thatmLMF(v,Ξv) = 0. Then (5.15)
and (3.24) imply that̃ψj = 0 for all j = 0, . . . , N , and that̃vj is constanton ∂Ωj ,
j = 0, . . . , N . So,v belongs to a space of finite dimension and it remains to show the
injectivity of mLMF on this space.

To begin with, we conclude from (3.25) thatṽ0 = 0. Moreover, if the subdomain
Ωj has a common interface withΩZ , then the definition (5.10b) makes̃vj vanish on
∂Ωj ∩ ∂ΩZ and, since it is constant on∂Ωj , it has to vanish on the entire boundary
∂Ωj .

Now, assume thatmLMF(v,w) = 0 for all w ∈ M̃T 0(Σ). In particular, we can
choosew such that its Neumann component is equal to 1 on the boundary of a single
subdomainΩk and zero everywhere else. IfΩk is adjacent to a subdomainΩl, where
ṽl = 0 is already known, the coupling terms enforce thatṽk|Γlk

= 0 andṽk has to be
zero, too. Thus, we can work our way through all subdomains, becauseRd \ ΩZ is
supposed to be connected. This finally establishesv = 0.

Unfortunately, this theorem does not settle the issue of existence and uniqueness
of solutions of (5.11), because we encounter a mismatch of spaces as observed in
[39, Sect. 3.2.8]:mLMF is MT 0(Σ)-elliptic, but continuous only onMT 0(Σ) ×
M̃T 0(Σ), so that we cannot instantly conclude an inf-sup condition fromΞ-ellipticity.
We have to rely on a more sophisticated result known as “Lion’s projection lemma”
[54, Ch. III, Thm. 1.1], see also [23, Sect. 2] and [28, Sect. 2].

Lemma 5.4([39, Lemma 9]).LetH be a Hilbert space andV be a subspace ofH (not
necessarily closed inH). Moreover, letb : H × V → R be a bilinear form satisfying
the following properties:

(i) For everyϕ ∈ V , the linear formu 7→ b(u, ϕ) is continuous onH.

(ii) There existsc > 0 such that

|b(ϕ,ϕ)| ≥ c ‖ϕ‖2
H , ∀ϕ ∈ V . (5.16)

Then for each continuous linear forml ∈ H ′, there existsu0 ∈ H such that

b(u0, ϕ) = 〈l, ϕ〉H ∀ ϕ ∈ V and ‖u0‖H ≤
1
c
‖l‖H′ . (5.17)
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Clearly, Theorem 5.3 suggests that we apply this lemma withb := mLMF , H :=
MT 0(Σ), andV := M̃T 0(Σ). We immediately conclude existence of solutions of
the MTF variational problem (5.11).

Yet, as pointed out in [54, Ch. III, Rem. 31], despite (5.16),Lemma 5.4 does not
ensure uniqueness of solutions. To obtain it, we resort to considerations that directly
exploit the boundary integral equations.

Theorem 5.5.Solutions of(5.11)are unique.

Proof. As in the proof of [39, Thm. 9], we show that (5.11) withΨj = 0 involves
u = 0. Hence, letu ∈ MT 0(Σ) satisfy

mLMF(u, v) = 0 ∀v ∈ M̃T 0(Σ) . (5.18)

➊ We setUj := Gj(uj), j = 0, . . . , N and from (3.6) we get

Tj Uj := (Aj +
1
2Id)uj . (5.19)

On the other hand, from (5.18) and (5.11) we infer

⟪(Aj +1
2Id)uj , ṽj⟫∂Ωj

= 1
2⟪uj , ṽj⟫∂Ωj

+ 1
2

∑

i∈Nj

⟪Xi→j ui, Sji ṽj⟫Γij
, (5.20)

for all ṽ ∈ Tpw(∂Ωj).

Now, we single out an interfaceΓij , choose arbitrary functions̃v ∈ H̃
1
2 (Γij) and

ψ̃ ∈ H̃− 1
2 (Γij), and obtain the components of the test functionsṽj ∈ T̃pw(∂Ωj) and

ṽi ∈ T̃pw(∂Ωi) by extending̃v andψ̃ by zero onto∂Ωj and∂Ωi, respectively. For̃vi
we also change the sign of the Neumann component. For these special test functions
(5.20) together with (5.19) yields

⟪Tj Uj , Sji vj⟫∂Ω = 1
2⟪uj , ṽj⟫∂Ωj

+ 1
2⟪Xi→j ui, Sji ṽj⟫Γij

,

⟪Xi→j Ti Ui, Sji vj⟫∂Ω = −⟪Ti Ui, Sij vi⟫∂Ω

= −1
2⟪ui, ṽi⟫∂Ωi

− 1
2⟪Xj→i uj , Sij ṽi⟫Γij

.

Owing to the local support of the test functions, a closer inspection reveals that

⟪uj , ṽj⟫∂Ωj
= −⟪Xj→i uj , Sij ṽi⟫Γij

and ⟪Xi→j ui, Sji ṽj⟫Γij
= −⟪ui, ṽi⟫∂Ωi

,

which means that

⟪Tj Uj , Sji vj⟫∂Ω = ⟪Xi→j Ti Ui, Sji vj⟫∂Ω . (5.21)

As a consequence, we find that

Tj Uj = Xi→j Ti Ui onΓij . (5.22)
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In words, the functionU ∈ L2
loc(R

d) that is obtained by patching together theUj ’s, sat-
isfies the transmission conditions (2.3b). Moreover, the representation formula guar-
anteesLj Uj = 0. Finally, using (5.18) and (5.20) with test functions supported on
ΓjZ ⊂ ∂ΩZ , confirms thatU |∂ΩZ

= 0. Summing up,U solves (2.3) with zero Dirich-
let data on∂ΩZ . Uniqueness of solutions of (2.3) tells us thatU = 0.

➋ Having establishedUj = 0, combining (5.19) and (5.20) yields

⟪uj , ṽj⟫∂Ωj
= −

∑

i∈Nj

⟪Xi→j ui, Sji ṽj⟫Γij
∀ṽ ∈ Tpw(∂Ωj) , (5.23)

which meansuj = −Xi→j ui onΓij . In words, the Cauchy datauj satisfysign-flipped
transmission conditionsacross interfacesΓij .

➌ Taking the Cauchy traceTj of Uj = Gj(uj) = 0 reveals thatPj uj = 0.
Hence, using the fact that interior and exterior Calderón projectors add up to zero
[39, Sect. 2.3.3] and Theorem 3.1 on the complement domainΩc

j := R
d \ Ωj , we find

thatuj = T
c
j Vj for a functionVj ∈ Hloc(∆,Ωc

j) that satisfiesLj Vj = 0 in Ωc
j and

appropriate decay conditions at∞ for j 6= 0. Here,Tcj is the Cauchy trace operator on
Ωc
j .
We adapt an idea from the proof of [39, Thm. 9]: For a “sign vector”

σ := (σ1, . . . , σN ) ∈ {−1,+1}N ,

we define themulti-valued function

V σ := σjVj onΩc
j , V σ := V0 onΩc

0 . (5.24)

Case (i): Assume that there is a sign vectorσ such thatσi = −σj for every inter-
faceΓij ; we are dealing with a bipartite connected graph of complement subdomains
(whose edges correspond to non-empty interfacesΓij). Then, by virtue of (5.23),V σ is
amulti-valuedsolution of a transmission problem of the type (2.3) on

⋃N
j=0 Ωc

j , which
features the right decay conditions at∞ and has zero Dirichlet boundary conditions
on∂ΩZ . Hence,V σ = 0, which impliesVj = 0, and, immediately,uj = 0.

Case (ii): Assume that the graph of complement subdomains isnot bipartite. Regard
two complement domainsΩc

j andΩc
i as “linked”, if they share an interface and ifσi =

−σj . We denote byV σ

♯ the restriction ofV σ to the union of complement domains,
for which there is a chain of links toΩc

0. Again thanks to (5.23), This multi-valued
function satisfies transmission conditions (2.3b) betweenlinked complement domains.

Next, we appeal to thestrong unique continuation principlefor solutions of trans-
mission problems of type (2.3) [34, Sect. 3.4.1]. It confirmsthat any two functions
V σ

♯ agree on complement domains, on which they are both defined, because they are
the same onΩc

0. Now, if the graph is not bipartite, for somek ∈ {1, . . . , N} we can
find two sign vectorsσ,σ′ such thatσk = −σ′k and such that for bothσ andσ′ there

is a chain of links fromΩc
k to Ωc

0. We conclude that bothV σ|Ωc
k
= V σ

′
∣∣∣
Ωc

k

(from
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unique continuation) andV σ|Ωc
k
= − V σ

′
∣∣∣
Ωc

k

(by definition), which impliesVk = 0.

By unique continuation we then conclude thatVj = 0 for all j = 0, . . . , N , and also
uj = 0.

Remark5.3. In Remark 5.1 we pointed out that the variational formulation (5.11)

of the classical MTF may be lifted to trace spaces̃MT
♯

0(Σ), for which additional
regularity is imposed on the Neumann components only.

Now assume Dirichlet datag ∈ H1(∂ΩZ). Then elliptic regularity results [56,
Ch. 4] ensure that all local Neumann tracesTN,j U andTN,Z U of the solutionU of
the transmission problem (2.3) belong toL2(∂Ωj), j = 1, . . . , N, Z.

As a consequence the unique solution of (5.11) is contained inthe spaceM̃T
♯

0(Σ)
from (5.14), Page 22. Thus, the solution of (5.11) will be preserved when we switch

to the trial spaceM̃T
♯

0(Σ). The Neumann components of Cauchy traces in that space
possess more regularity compared to those ofMT 0(Σ). This enables us to use test
functions with less regular Dirichlet components than stipulated byM̃T 0(Σ). More

precisely, testing with functions merely belonging tõMT
♯

0(Σ) becomes possible,
which yields a variant of (5.11) with the same trial and test space,cf. [39, Sect. 3.2.1].
△

5.4 Local MTF: Operator preconditioning in 3D

The developments are largely parallel to that of Section 4.4and we reuse the notations
introduced there mostly without further mention. In the context of Galerkin boundary
element discretization it is advisable to adopt the perspective of Remarks 5.1 and 5.3,

and lift the MTF variational problem (5.11) into the spacẽMT
♯

0(Σ). Then, since

piecewise polynomial approximation invariably provides functions inH̃
− 1

2
pw (∂Ωj), we

deal with aM̃T
♯

0(Σ)-conforming boundary element Galerkin approximation.
In order to take into account the Dirichlet boundary conditions, we rely on the

boundary element spaces (j = 0, . . . , N )

S0
Z(Gj) := {vh ∈ S0(Gj) : vh|∂ΩZ

= 0} , (5.25)

Th,Z(∂Ωj) := S0
Z(Gj)× S−1(Gj) ⊂ H

1
2 (∂Ωj)× H̃

− 1
2

pw (∂Ωj) . (5.26)

to build the trial and test space for (5.11):

MT 0,h({Gj}) := Th,Z(∂Ω0)× · · · × Th,Z(∂ΩN ) ⊂ M̃T
♯

0(Σ) . (5.27)

Existence, uniqueness, and convergence of Galerkin solutions in the absence of the
impenetrable objectΩZ have been established in [39, Section 4].

From (5.27) we identify the spacesTh,Z(∂Ωj) as theXj ’s in the product space
setting for operator preconditioning (see the preface to Section 4 on Page 14). As in
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the case of the global MTF discussed in Section 4.4, the bilinear formsbj are chosen
according to (4.13), and theYj are boundary element spaces on dual meshesĜj , j =
0, . . . , N , arising from barycentric refinement:

Yj := S0(Ĝj)× S−1
0 (Ĝj) ⊂ H

1
2 (∂Ωj)×H− 1

2 (∂Ωj) . (5.28)

Note that thêGj-piecewise constant functions in the spacesS−1
0 (Gj) have to vanish on

dual cells associated with nodes ofGj that are located on∂ΩZ . This ensures equal
dimensions ofS0

Z(Gj) andS−1
0 (Gj) and follows the policy of [8, Sect. 4.2]. The local

pairing bilinear formsdj are again chosen as duality pairings⟪·, ·⟫∂Ωj
.

The analysis of operator preconditioning is slightly more difficult than in Section 4.4,
because the local MTF bilinear formmLMF enjoys ellipticity inMT 0(Σ), recall The-

orem 5.3, but is continuous only oñMT
♯

0(Σ) as defined in (5.14). The norm of the
latter space,

‖v‖2

M̃T
♯

0(Σ)
:=

N∑

j=0

(
‖vj‖

2

H
1
2 (∂Ωj)

+
∑

i∈Nj

∥∥∥νj |Γij

∥∥∥
2

H̃
− 1

2 (Γij)

)
, (5.29)

is stronger than that of the former. This mismatch compounded the theoretical diffi-
culties encountered in Section 5.3 and thwarts the straightforward application of The-
orem 1.1.

To cope with this situation, we have to make another assumption concerning the
meshes: we assume that each interfaceΓij is resolved by cells of the meshesGj and
Gi. The same should apply toGj and the boundary partsΓjZ .

Theorem 5.6.In the setting detailed above let us consider families of surface meshes
generated byregular refinementof coarse initial meshes. Then the spectral condi-
tion numbers of the preconditioned linear systems grow moderately likeO(L

3
2 ) =

O(| logh|
3
2 ) in the levelL of refinement asL→ ∞ (h→ 0).

Proof. We observe that the inf-sup constants and norms entering thebound in the
estimate (1.2) of Theorem 1.1 refer to the discrete setting.In it all norms are equivalent
and we can resort to theMT (Σ)-norm throughout.

On boundary element spaces we have to useinverse inequalitiesto relate the norms

of M̃T
♯

0(Σ) andMT (Σ). In particular, we appeal to the estimate of [41, Thm. 2.2]

‖νh‖
H̃

− 1
2 (Γij)

≤ CL
3
2 ‖νh‖

H
− 1

2 (Γij)
∀νh ∈ S−1(Gj) , (5.30)

whenGj is on levelL of the refinement hierarchy (C > 0 is constant that depends only
on the geometry ofΓij and the coarsest mesh). This implies, with another constant
C > 0 independent of the levelL of refinement

‖vh‖
M̃T

♯

0(Σ)
≤ CL

3
2 ‖vh‖MT (Σ) ∀vh ∈ MT 0,h({Gj}) . (5.31)
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As a consequence, the norm of the bilinear forma onMT 0,h({Gj}), when measured

in the weakerMT (Σ)-norm, increases mildly likeO(L
3
2 ), when we keep on refining

the meshes and sendL → ∞. Since all other norms and inf-sup constants do not
depend onL, see [8] for results on the pairing bilinear formsdj , this accounts for the
assertion of the theorem.

6 Numerical Studies

In this section, we report numerical tests of the performance of operator precondi-
tioning for thelocal MTF implementing the algorithms described in Section 5.4. All
computations were carried out with the C++ boundary elementtemplate library BETL
[42]5. The matrices arising from Galerkin discretization were subject to local low-rank
compression using the AHMED library6 [5]. However, the compression parameters
were chosen so that its impact can safely be ignored.

Due to its saddle point structure, the operator preconditioner based on (4.13) fails
to be positive definite. Thus, the conjugate gradient method(CG) is not an option and
the preconditioned generalized minimal residual method (GMRES) without restart is
used as an iterative solver. The iterations are stopped as soon as a relative decrease
of the Euclidean norm of the residual vector by a factor of 10−7 was achieved. Initial
guess is zero throughout.

Quasi-uniform and shape-regular sequences (finite, of course) of triangular surface
meshes with flat triangles are used for all experiments. Theywere produced by the
mesh generator Gmsh7 [29] and all of them are compatible with the interfaces.

In all experiments the behavior of the GMRES iterative solverwithout precondi-
tioner and with operator preconditioning on meshes of different resolution is recorded.
Total iteration counts versus global mesh widths are tabulated.

6.1 Experiment I: Two half-spheres

The first experiment usesΩZ = {x ∈ R
3 : ‖x‖ < 1, x3 > 0}, Ω1 = {x ∈ R

3 :

‖x‖ < 1, x3 < 0}, and Dirichlet datag(x) := ‖x‖−1
∣∣∣
∂ΩZ

. The geometric situation

is displayed in Figure 4. Measured data on GMRES convergence are given in Figure 5
and Table 2.

5 http://www.sam.math.ethz.ch/betl/
6 http://bebendorf.ins.uni-bonn.de/AHMED.html
7 http://geuz.org/gmsh/

http://www.sam.math.ethz.ch/betl/
http://bebendorf.ins.uni-bonn.de/AHMED.html


30 X. Claeys, R. Hiptmair, C. Jerez-Hanckes and S. Pintarelli

ΞΨ

Ζ

ΞΨ

Ζ

Figure 4: Experiment I (Two half-spheres): Dirichlet and Neumann traces of the
solution (left) forµ0 = 10, µ1 = 1, 23480 elements, and coarse mesh with 296 flat
triangles (right)
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Figure 5:Experiment I : (preconditioned) GMRES iteration history; decay of relative
Euclidean norm of the residual. Different diffusion coefficients were used on different
subdomains.

µ0 = 1.5, µ1 = 1 µ0 = 10, µ1 = 1

N mesh width GMRES pGMRES GMRES pGMRES

974 1,25 · 10−1 581 56 688 128

3876 6,18 · 10−2 1617 59 1999 139

7440 4,50 · 10−2 2668 65 3574 152

12152 3,52 · 10−2 3098 64 5366 153

23480 2,52 · 10−2 4426 64 8728 155

Table 2: Experiment I : Iteration counts for (preconditioned) GMRES for different
choices of diffusion coefficients,N denotes no. of elements
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6.2 Experiment II: Glued boxes

The geometry of the second experiment isΩZ = {x ∈ R
3 : −1

2 ≤ x1, x3 ≤ 1
2,

− 1 ≤ x2 ≤ 0}, Ω1 = {x ∈ R
3 : −1

2 ≤ x1, x3 ≤ 1
2, 0 ≤ x2 ≤ 1}, with Dirichlet

datag(x) := ‖x‖−1
∣∣∣
∂ΩZ

, see Figure 6. GMRES behavior is documented in Figure 7

and Table 3.

Figure 6: Experiment II : Left: Dirichlet (front) and Neumann traces (rear) of the
solution. Right: coarsest mesh with 176 triangles
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Figure 7:Experiment II : (preconditioned) GMRES iteration history. Diffusion coef-
ficients attain different values on different subdomains.
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µ0 = 1.5, µ1 = 1 µ0 = 10, µ1 = 1

N mesh width GMRES pGMRES GMRES pGMRES

176 2,64 · 10−1 133 49 179 95

704 1,32 · 10−1 422 57 501 130

2816 6,59 · 10−2 1017 68 1564 156

11264 3,30 · 10−2 1982 78 4552 176

28160 2,14 · 10−2 4891 83 10961 189

Table 3:Experiment II : Iteration counts for (preconditioned) GMRES,N : # elements

6.3 Experiment III: Cube split into eight smaller cubes

The subdomainsΩi, i = 1, . . . , 8, are the equal cubes of edge length1
2 created by

splitting the unit cube.∂Ωz is centered at the origin, Dirichlet data areg(x) :=

‖x‖−1
∣∣∣
∂ΩZ

, and the same diffusion coefficientµi = 1 was used on all subdomains,

see Figure 8. Information about the convergence of GMRES is provided in Figure 8
and Table 4
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Figure 8:Experiment III : Coarsest mesh (left) and behavior of relative residual dur-
ing (preconditioned) GMRES iterations (right).

N 576 2304 9216 36864

mesh width 1,32· 10−1 6,59· 10−2 3,30· 10−2 1,65· 10−2

GMRES 339 765 1728 3304

pGMRES 87 106 135 159

Table 4:Experiment III : Iteration counts for (preconditioned) GMRES vs. Number
of triangles
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Summary of observations.Obviously, in all numerical tests operator precondition-
ing substantially accelerates the convergence of GMRES. A moderate dependence of
the number of iterations on the mesh width seems to persist, at least in Experiments
II and III. We point out that matching the empiric data with the theoretical predictions
of Theorem 5.6 is problematic, because (i) pre-asymptotic behavior may prevail in nu-
merical experiments, (ii) logarithmic factors are hard to tell from measured data, and
(ii) convergence rates of GMRES do not seem to be governed by the spectral condi-
tion number, but by the numerical range of the non-symmetricpreconditioned system
matrix [6, 27].

The data collected hint at a strong dependence of the iteration counts on the relative
variation of the diffusion coefficients between the subdomains; Operator precondition-
ing as described in Section 5.4 does not seem to be robust withrespect to the size of
jumps of the coefficients.
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