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Multilevel Monte Carlo for Two Phase Flow and
Transport in Random Heterogeneous Porous Media

Florian Müller1,∗, Patrick Jenny1, Daniel W. Meyer1

Abstract

Monte Carlo (MC) is a well known method for quantifying uncertainty aris-
ing for example in subsurface flow problems. Although robust and easy to imple-
ment, MC suffers from slow convergence. Extending MC by means of multigrid
techniques yields the multilevel Monte Carlo (MLMC) method. MLMC has
proven to greatly accelerate MC for several applications including stochastic or-
dinary equations in finance, elliptic stochastic partial differential equations and
also hyperbolic problems. In this study, MLMC is combined with a streamline-
based solver to assess uncertain two phase flow and transport in random het-
erogeneous porous media. The performance of MLMC is compared to MC for
a two dimensional reservoir with multi-point Gaussian logarithmic permeability
fields. The influence of the variance and the correlation length of the logarithmic
permeability on the MLMC performance is studied.

Keywords: Multilevel Monte Carlo, Random heterogeneous porous media,
Two phase flow, Two phase transport, Streamline solver

1. Introduction

The simulation of subsurface two phase transport, or more precisely of oil
water flow and transport in heterogeneous porous media, is plagued by a lack of
information concerning the permeability field. Usually, permeability measure-
ments are only available at few locations in the reservoir and as a consequence,
stochastic permeability models are introduced [1]. To determine the uncertainty
in the transport resulting from the uncertainty of the permeability, probabilistic
methods are deployed.

In single phase subsurface flow problems arising in hydrology, probabilistic
collocation and probabilistic Galerkin methods have been successfully applied to
quantify the resulting pressure uncertainty [2]. Application of the same methods
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for flow and transport is more challenging as was demonstrated in [3]. Alterna-
tively, in [4] probabilistic collocation for flow was combined with a streamline-
based Monte Carlo (MC) method for transport to obtain accurate predictions for
the transport uncertainty. In order to obtain predictions at acceptable computa-
tional costs, probabilistic collocation/Galerkin rely on a parametric representa-
tion of the random permeability in terms of a few scalar random variables. The
Karhunen-Loeve (KL) expansion used for example in [2, 3, 4] can provide such
a low dimensional representation for permeability fields with long correlation
lengths with respect to the size of the reservoir domain. Unfortunately, realistic
permeability fields for oil reservoirs have rather short correlation lengths and
therefore, KL-based probabilistic collocation/Galerkin methods are of limited
applicability.

Zhang and coworkers [5, 6] have derived saturation mean and variance equa-
tions based on Lagrangian streamline techniques. Their equations are based on
moments of the travel time and transverse displacement which are determined
by means of a presumed joint PDF. Their approach was first formulated for one
dimensional and two dimensional flows with space-stationary flow statistics [5].
In the one dimensional case, the porosity was a random field whereas in the two
dimensional case permeability was uncertain. In a subsequent work [6], an exten-
sion for more complex flow scenarios was provided where the Lagrangian travel
time and displacement statistics are calculated numerically. The two dimen-
sional derivations of Zhang and coworkers are based on the assumption that the
logarithmic permeability standard deviation is moderately high. Moreover, they
assume that the flow field that determines the streamlines is time-independent
or more specifically not influenced by saturation changes. Similarly, one can as-
sume that the streamline pattern or geometry is time-independent. In this work,
we refer to this less restrictive assumption as the fixed streamline assumption.

The MC method is general and straight forward to apply for oil reservoir
problems with uncertain heterogeneous permeability. However, MC suffers from
slow statistical convergence which necessitates a large number of sample solu-
tions. Each sample is comprised of a flow and a transport solution for one
random permeability field realization. Since the partial differential equations
(PDEs) that determine the flow and transport problem are rather involved, MC
is computationally expensive.

To reduce the computation cost of MC, the multilevel Monte Carlo (MLMC)
method was introduced. In MLMC, multigrid techniques are applied. More pre-
cisely, the stochastic quantity of interest, in our case the solution of a stochastic
PDE system, is represented on grids of varying resolutions. When estimating
statistical moments of the solution, samples on all grid levels are taken into
account. In this process, the samples on coarser grids, which capture coarse-
scale solution features, are calculable at greatly reduced computational expenses
compared to samples on the finest grid. In conventional MC all samples are gen-
erated on the finest grid.

The MLMC method was introduced by Heinrich in the context of parametric
integration [7]. Among other contributions, Giles has used MLMC for path
simulations of stochastic ordinary differential equations [8]. Recently, MLMC
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was applied for the solution of the elliptic pressure problem in the context of
subsurface flow [9]. Schwab et al. have performed a theoretical analysis of
MLMC and have provided numerical examples involving elliptic PDEs [10] and
hyperbolic conservation laws [11, 12].

In the present work, we apply MLMC for two phase transport simulations of
an oil reservoir with uncertain heterogeneous permeability. For phase transport,
a streamline technique is used with and without the fixed streamline assump-
tion. Streamline-based transport solvers are well established in the petroleum
engineering community [13]. The performance of MLMC is compared to con-
ventional MC for different permeability variances or heterogeneity levels and
correlation lengths. Moreover, the validity of the fixed streamline assumption
is assessed.

The remainder of the paper is organized as follows. First, Sections 2 and 3
present the PDE model for oil water transport in heterogeneous porous media
and the streamline solver. A discussion on the characterization of the uncertain
permeability field is provided in Section 4. Section 5 introduces the MLMC
technique. Test cases for numerical experiments are specified in Section 6 and
details on the numerical solution method are provided in Section 7. Finally,
Section 8 contains a discussion of the numerical results and conclusions are
drawn in Section 9.

2. Problem Formulation

Incompressible immiscible displacement of oil by water in a heterogeneous
reservoir is considered. The problem formulation outlined in this section is based
on Section ‘General Mathematical Statement’ of [5]. Water is assumed to be
the wetting phase whereas oil is non wetting. In the absence of source terms,
the mass conservation of water reads

φ
∂Sw

∂t
+∇ · qw = 0. (1)

Here, φ denotes the porosity, Sw the water saturation and So = 1 − Sw is the
saturation of the oil phase. If capillary pressure and gravity are neglected, the
water flux qw is given by

qw = −λw∇p,

with p being the pressure. The water mobility λw is modeled as

λw = k
kr,w
µw

.

λw depends on the spatially varying absolute permeability k and the water
relative permeability kr,w which is a function of water saturation Sw only. µw

is the viscosity of water.
Continuity is ensured by

∇ · qtot = 0, (2)
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where the total flux qtot is defined as

qtot = qw + qo.

Introducing the total mobility λtot,

λtot = λw + λo,

the total flux becomes

qtot = −λtot∇p, (3)

and the continuity equation (2) can be written as

−∇ · (λtot∇p) = 0. (4)

Introducing the fractional flow function for water,

fw =
λw

λtot
=

kr,w/µw

kr,w/µw + kr,o/µo
,

equation (1) changes to

φ
∂Sw

∂t
+ qtot ·∇fw = 0. (5)

In summary, the propagation of Sw is governed by pressure equation (4)
and transport equation (5). Since λtot depends on Sw, the two equations are
coupled.

3. Streamline Solver

In this work, a Lagrangian streamline solution method is applied to solve
the saturation transport equation (5). The streamline solver presented in this
section is based on [14, 15].

Under the fixed streamline assumption, which implies that the total flux
qtot direction does not change over time, a streamline xsl(τ) originating from
point x0,sl is defined as

xsl(τ) = x0,sl +

∫ τ

0
qtot(xsl(τ

′))dτ ′, (6)

where τ is the so-called time of flight. Based on streamlines that are surrounding
streamline xsl(τ), a streamtube with cross-sectional area A(τ) can be defined.
With the streamline travel distance defined as dr = |qtot|dτ = qsl,tot/Adτ ,
equation (5) can be rewritten along a streamline as

φA
∂Sw

∂t
+ qsl,tot

∂fw
∂r

= 0. (7)
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Moreover, with the total volumetric flux qsl,tot, the continuity equation along a
streamline can be written as

∂qsl,tot
∂r

= 0. (8)

Similar to equation (3), qsl,tot can be expressed as

qsl,tot = −Aλtot
∂p

∂r
, (9)

based on the pressure gradient along a streamline.
By introducing the cumulative injection volume Q and the cumulative pore

volume V , i.e.,

Q(t) =

∫ t

0
qsl,tot(t

′)dt′ and dQ = qsl,totdt, and

V (r) =

∫ r

0
φ(r′)A(r′)dr′ and dV = φAdr, (10)

equation (7) can be written as a simple Buckley-Leverett equation,

∂Sw

∂Q
+

∂fw
∂V

= 0. (11)

For more details on this step we refer to [15]. Since qsl,tot is independent of
r along a streamline (see equation (8)), equation (9) can be rearranged and
integrated from streamline location r = 0 to L with pressures p(t, r = 0) = p0
and pL, respectively, which leads to

∫ pL

p0

dp = qsl,tot

∫ L

0

1

−Aλtot
dr

⇒ qsl,tot =
∆p

R
with R =

∫ L

0

1

Aλtot
dr. (12)

R is a saturation-dependent resistance and ∆p = pL − p0.
To relax the fixed streamline assumption invoked at the beginning of this

section, an iterative method is commonly applied [13]. Here, the pressure and
saturation are updated in subsequent steps according to equations (4) and (7),
respectively. After having updated the pressure field, the streamline pattern
changes based on equations (3) and (6). More details on the streamline solution
algorithm are provided next.

3.1. Streamline Solution Algorithm

In this work, we focus on a scenario where pressure boundary conditions are
specified at in- and outflow with ∆p being provided.

The total simulation time is divided into time steps of two different cate-
gories. The global time step size ∆tg is used for updating the global pressure
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field within the reservoir. A change in global pressure is coupled with an update
of the streamline pattern. Each time step ∆tg is subdivided into smaller inter-
mediate time steps of size ∆ti. The total mobility λtot or rather the resistance
R along a streamline is updated in steps of ∆ti.

For a given initial water saturation Sw and time steps ∆tg and ∆ti, the flow
and transport problems are solved according to the following algorithm.

1. Based on Sw, the global pressure problem is solved (equation (4)) and
qtot is determined. For this purpose, a finite volume (FV) method in
connection with an algebraic multigrid solver is used [16].

2. According to qtot, a streamline family is generated according to Pollock’s
algorithm [17]. The streamline grid cells ∆r are not equally spaced and
are determined by the intersections of the streamline with the FV grid.

3. The properties φ, k and Sw are assigned to every streamline cell and |qtot|
to every streamline cell interface.

4. The initial flux qsl,tot is set to the arbitrary value 1. Based on A(r) =
qsl,tot/|qtot(r)|, A(r) along each streamline is determined correctly up to
a constant factor.

5. For every streamline cell, ∆V =
∫
∆r φAdr′ is numerically calculated andQ

is initialized to 0.
6. The resistance R and the volume injected during the time step ∆ti are

numerically calculated based on equation (12) and ∆Q =
∫
∆ti

qsl,totdt′ ≈
∆ti ∆p/R, respectively.

7. The water saturation Sw is updated along streamlines based on the so-
lution of the Buckley-Leverett equation (11) and the cumulative volume
injected Q = Q + ∆Q. Note that the Buckley-Leverett solution is inde-
pendent of the choice of the initial qsl,tot from step 4 since both Q and V
are proportional to A.

8. Steps 6 and 7 are repeated until the intermediate time steps ∆ti add up
to the global time step ∆tg.

9. From FV cells that are not visited by streamlines from step 2, a sec-
ond family of streamlines is launched and steps 3 to 8 are performed
(Section 4.4 in [14]). The saturation distributions along streamlines are
mapped back to the FV grid cells.

10. Steps 1 to 10 are repeated until the global time steps ∆tg add up to the
desired simulation end time.

This algorithm is applicable for cases where constant pressures are prescribed
at in- and outflow boundaries. In the case of prescribed total inflow flux bound-
aries, the algorithm becomes more involved.

3.2. Numerical Buckley-Leverett Solver

For step 7 of the streamline solution algorithm, the Buckley-Leverett equa-
tion (11) needs to be solved along streamlines. With only one flow direction
along a streamline, a standard upwind solver with explicit Euler time integra-
tion (see for example Section 4.8 in [18]) is suitable. However, the injection
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step size δQ ≤ ∆Q in Q-direction is restricted because of irregularities in the
grid cell widths ∆V . These irregularities are caused by varying streamline cell
sizes∆r and cross sections A(r). To reduce limitations with respect to small δQ,
a regularization step is typically performed [13]. However, regularization is not
straight forward and involves interpolation of the water saturation Sw when
mapping between regular and irregular grids along the V -coordinate.

In this work, an adaptive regularization method is proposed. Whenever a
cell is on the verge of over- or under-flowing, i.e. when the current flux balance
and the current ∆V -δQ-ratio lead to Sw > 1 or Sw < 0, respectively, this cell
is merged with its downstream neighbor. In the merging step, the initial cell
saturations are volume averaged and the combined cell can handle larger fluxes
due to an increased volume ∆V . For a given δQ, the merging procedure is
continued until an over- or under-flow is averted.

3.3. Analytical Buckley-Leverett Solver

For a Riemann-type initial saturation Sw, the Buckley-Leverett equation (11)
in step 7 has an analytical solution that is derived in AppendixA. In this work,
the analytical solution is an option for reservoirs that are initially entirely filled
with oil, i.e. Sw = 0, and flooded with water, which means that Sw = 1
at the inflow boundary (or at V = 0). Also, the fixed streamline assump-
tion must hold for the entire simulation time with only intermediate time steps
and no global pressure updates being performed. For heterogeneous reservoirs,
the fixed streamline assumption is reasonable because the streamline pattern
is dominated by variations in k and changes in the relative permeability are
less important (page 384 in [5]). Nevertheless, relative permeability effects are
accounted for through the streamline resistance R. If global pressure updates
are performed, however, the streamline pattern changes and the initial condi-
tion for subsequent intermediate time steps disables the use of the analytical
Buckley-Leverett solution.

4. Uncertain Permeability Field

In this work, a Gaussian geostatistical model is applied to characterize the
uncertain logarithmic permeability y = ln(k). Random Gaussian fields are
determined by a mean and a covariance function. Since MLMC is a sampling-
based method, a generator to compute permeability field realizations according
to the chosen geostatistical model is needed. In this work, a spectral method
relying on FFTs is applied. See AppendixB for details.

5. Multilevel Monte Carlo (MLMC)

In this section, the MLMC framework is introduced. More details about
MLMC are available in the works of Giles [8] and Schwab et al. [10, 11]. Even
though MLMC is applied in this work to determine the uncertainty of the water
saturation Sw, we use u in the following as a generic variable to simplify the
notation.
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5.1. MLMC Estimator

Let u be the random solution of a stochastic PDE and u" with & = 1, . . . , L
approximations of u resulting from solving a discretized version of the PDE.
The index & encodes the accuracy of u" with respect to the true solution u. As
& is increased, the meshing used to discretize the PDE is refined. Consequently,
uL denotes the solution computed on the finest grid. uL can be written as a
telescopic sum in terms of u" with & = 1, . . . , L,

uL = uL − uL−1 + uL−1 − uL−2 + . . . =
L∑

"=1

u" − u"−1,

with u0 = 0. In this work, level & refers to the discretization difference u"−u"−1.
Taking the expectation on both sides and recalling its linearity leads to

E[uL] =
L∑

"=1

E[u" − u"−1]. (13)

Let EM [.] be the ensemble average over M independent and identically dis-
tributed samples. The MLMC estimator for the expected value of uL, E[uL], is
obtained from replacing the expected values on the right hand side by ensemble
averages EM! [.],

E[uL] ≈ E[uL] =
L∑

"=1

EM! [u" − u"−1] =
L∑

"=1

1

M"

M!∑

i=1

(ui
" − ui

"−1). (14)

Here, ui
" − ui

"−1 denotes the difference between discretizations & and & − 1 of
realization i. For one particular i, ui

" and ui
"−1 on level & are computed based

on the same random input realization. In the setting of uncertain permeability,
this means that the according ki" and ki"−1 should be derived from the same
permeability realization. Hence, ki" and ki"−1 on level & differ only in the dis-
cretization. On the other hand, random input realizations on different levels are
drawn independently from each other. Note also that the number of samples
M" computed for the ensemble average EM! [.] is level dependent.

Starting from a telescopic sum for uq
L with a positive integer power q, the

derivation for the MLMC estimator above extends also to higher moments,

E[uq
L] ≈ E[uq

L] =
L∑

"=1

EM! [u
q
" − uq

"−1] =
L∑

"=1

1

M"

M!∑

i=1

((ui
")

q − (ui
"−1)

q).

It is noted that throughout this paper, the term “higher moment“ or more
specifically the term “q’th moment“ (with q being a positive integer) always
refers to E[(·)q].
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5.2. MLMC Sampling Error

Once the discretization error linked to the finest discretization uL is accepted,
the remaining error of interest is due to sampling. In other words, we are
interested in the error introduced by replacing the expected value by the MLMC
estimator,

‖E[uL]− E[uL]‖L2(Ω;L2(D)), (15)

where D denotes the physical domain whose points are described by the Carte-
sian coordinates x. For the test cases studied in this work, time is fixed and
D denotes the reservoir domain. However in general, D may span over time as
well. In expression (15), Ω denotes the stochastic domain with random event
coordinate ω (and corresponding probability measure dω). The L2-norm corre-

sponds to either
√∫

D(·)2dx or
√∫

Ω(·)2dω. The error norm above is therefore

to be understood as a sort of root mean square,

‖ · ‖L2(Ω;L2(D)) =

√∫

Ω

∫

D
(·)2dxdω =

√

E
[∫

D
(·)2dx

]
.

The square of the sampling error (15) can be decomposed as follows,

‖E[uL]− E[uL]‖2L2(Ω;L2(D))

= ‖E[uL]−
L∑

"=1

1

M"

M!∑

i=1

(ui
" − ui

"−1)‖2L2(Ω;L2(D))

= ‖
L∑

"=1

1

M"

M!∑

i=1

E[u" − u"−1]− (ui
" − ui

"−1)‖2L2(Ω;L2(D))

= E
[ ∫

D

( L∑

"=1

1

M"

M!∑

i=1

E[u" − u"−1]− (ui
" − ui

"−1)
)

( L∑

k=1

1

Mk

Mk∑

j=1

E[uk − uk−1]− (uj
k − uj

k−1)
)
dx

]

=
L∑

"=1

L∑

k=1

1

M"

1

Mk

M!∑

i=1

Mk∑

j=1

E
[ ∫

D

(
E[u" − u"−1]− (ui

" − ui
"−1)

)

(
E[uk − uk−1]− (uj

k − uj
k−1)

)
dx

]
. (16)

Since different samples are mutually independent, terms with i '= j vanish.
Since the sampling on different levels is independent, also terms with & '= k
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vanish. Hence,

‖E[uL]− E[uL]‖2L2(Ω;L2(D))

=
L∑

"=1

1

M2
"

M!∑

i=1

E
[ ∫

D

(
E[u" − u"−1]− (ui

" − ui
"−1)

)2
dx

]

=
L∑

"=1

1

M"
E
[ ∫

D

(
E[u" − u"−1]− (u" − u"−1)

)2
dx

]

=
L∑

"=1

1

M"
‖E[u" − u"−1]− (u" − u"−1)‖2L2(Ω;L2(D))︸ ︷︷ ︸

= σ2
"

=
L∑

"=1

σ2
"

M"
, (17)

where σ2
" denote level variances. In summary, the squared sampling error can

be written as a sum of individual level errors.
Compared to a standard MC method, which is based on the single level

uL=1 − 0, MLMC splits the square of the sampling error into several smaller
contributions σ2

" /M" with & = 1, . . . , L. MLMC benefits from the fact that
σ2
" /M" at coarse levels (with & being small) are reduced efficiently since samples

can be calculated at low computational cost and therefore M" is increased with
little effort. At fine levels (with & being large), the level variances σ2

" are typically
small and thus M" can be small, which means only few expensive computations.

5.3. Optimization Problem

Besides the level variances σ2
" , another quantity of interest is the expected

work per sample on a certain level w", that is the expected time required to
compute one sample of u" − u"−1. Given σ2

" and w" for all levels & = 1, . . . , L,
an optimization problem is formulated to find the best choice for the number of
samplesM" on each level such that the total work is minimized and the sampling
error (17) equals a prescribed threshold ε. The total work is defined as

wtot =
L∑

"=1

M"w".

The optimization problem is stated by

minimize
L∑

"=1

M"w" such that ε2 =
L∑

"=1

σ2
"

M"
. (18)

The optimal choice of M" is given by

M",opt =
1

ε2

√
σ2
"

w"

L∑

k=1

σk
√
wk, (19)

(see also equation (12) in [8]). It is pointed out that the resulting M",opt are not
integers and need to be rounded. Moreover, in our case, only estimates for σ2

"
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and w" are available, i.e., σ̃2
" and w̃", respectively. These estimates can be com-

puted based on the same samples already involved in the MLMC estimator (14).
For example, the individual level variances σ2

" can be estimated by

σ2
" ≈ σ̃2

"

=
1

M" − 1

M!∑

j=1

∫

D

( 1

M"

M!∑

i=1

(ui
" − ui

"−1)− (uj
" − uj

"−1)
)2

dx

=
1

M" − 1

M!∑

j=1

∥∥∥∥∥
1

M"

M!∑

i=1

(ui
" − ui

"−1)− (uj
" − uj

"−1)

∥∥∥∥∥

2

L2(D)

.

For realizations ui
" that are represented by a set of cell-wise averaged values, it

is straight forward to compute the integral involved in the L2-norm.

5.4. MLMC Algorithm

In this work, the following MLMC algorithm based on Section 5 of [8] is
applied.

1. Fix a sequence of discretizations/grid resolutions & = 1, . . . , L; fix a num-
ber of warm-up samples Mup; fix a threshold ε for the estimated sampling
error (see equation (18)).

2. Warm-up phase: compute M" = Mup samples of u" − u"−1 on every level.
3. Update the estimates for EM! [u" − u"−1], σ̃2

" and w̃" on every level.
4. Solve the optimization problem (equation (19)) with respect to σ̃2

" and w̃"

and update the required number of samples M".
5. For each level &, if the updated M" is beyond the number of samples

already computed, add one sample of u" − u"−1 and continue with step 3.
If no level needs an additional sample, quit.

The choice of warm-up samples Mup is somewhat delicate. It should be large
enough to determine especially σ̃2

" accurately. On the other hand, if Mup is
larger than anyM" suggested by the optimization problem in step 4, unnecessary
samples are calculated and computation time is wasted.

For higher moments, the MLMC algorithm is analogous.

5.5. Requirements for Random Field Generator

In case of oil water transport in random heterogeneous porous media, MLMC
requires permeability realizations to be computed on FV grids with different
resolutions. In order to efficiently use MLMC, the generation of permeability
fields should (i) be cheaper on coarse grids compared to fine grids. Also, the
permeability realizations ki" and ki"−1 of the same level need to (ii) be dependent,
i.e. ki" and ki"−1 are supposed to be derived from the same realization but
discretized on consecutive grids. Otherwise, the corresponding σ2

" becomes large.
Moreover, the discretized permeability field k" appears on two consecutive levels.
For example, levels &+1 (u"+1−u") and & (u"−u"−1) share the discretization &
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Figure 1: Oil reservoir boundary conditions: grey shaded regions represent no flow boundary
conditions and white gaps correspond to the inflow pressure boundary (lower left corner,
pin = 1) and outflow pressure boundary (top right corner, pout = 0). Exemplary streamlines
with launch points on the diagonal.

(u"). The telescopic approach inherent to MLMC requires (iii) that the samples
ki" on both levels share the same statistics. Otherwise, E[u"] on successive levels
become unequal and the telescopic equality (13) becomes invalid.

The permeability realizations ki" are computed from their logarithmic coun-
terparts yi" through ki" = exp(yi"). Permeability realizations within a level are
generated as follows. Assuming the mean and covariance of y"+1 are known, a
realization yi"+1 can be computed on level &+ 1 using the spectral field genera-
tor described in AppendixB. The field yi" on the same level is derived from cell
averaging yi"+1 (see equation (C.1) in AppendixC and figure 2). Cell averaging
honors requirement (ii). According to requirement (iii), the realizations yi" on
level & need to have the same statistical characterization as the realizations yi"
resulting from cell averaging on level &+ 1. Based on the process y"+1 on level
& + 1 and the cell averaging procedure involved, it is possible to compute the
discrete covariance function or covariance matrix of process y" on level & such
that requirement (iii) is fulfilled. Details about this are provided in AppendixC.
With the covariance of y" on level & at hand, also requirement (i) is fulfilled,
since realizations yi" on level & can be generated directly with the required grid
resolution.

6. Test Cases

A two dimensional, initially saturated oil reservoir, i.e. Sw(x, t = 0) =
0, is considered to numerically demonstrate the applicability of the MLMC
technique. The oil reservoir depicted in figure 1 is quadratic with side length 1
and is subject to water injection in the left lower corner with pressure p = 1 and

12



standard deviation σy correlation length ηy
test case 1 1 0.4
test case 2 1 0.2
test case 3 2 0.4
test case 4 2 0.2

Table 1: Test cases.

MLMC or MC fixed streamline assumption Buckley-Leverett solver
run 1 MLMC yes analytical
run 2 MC yes analytical
run 3 MLMC no numerical
run 4 MC no numerical
run 5 MC yes numerical

Table 2: Runs.

water saturation Sw = 1 and extraction in the top right corner at a pressure
p = 0. Besides pressure in- and outflow boundaries, the reservoir is confined.
The viscosities of water and oil are set to µw = 1 and µo = 10, respectively, and
the porosity is set to φ = 1. A quadratic relative permeability model is chosen,
i.e. kr,w = S2

w for the water phase and kr,o = (1− Sw)2 for oil.
The logarithmic permeability y = ln(k) is modeled with a random Gaussian

field. This process is defined by the mean ȳ and the covariance Cy(x,x′) at
locations x = [x1, x2]$ and x′ = [x′

1, x
′
2]

$. A stationary spatial exponential
covariance function is chosen, i.e.

Cy(x,x
′) = σ2

y exp

(
− 1

ηy

√
(x1 − x′

1)
2 + (x2 − x′

2)
2

)
,

where σy denotes the standard deviation of y and ηy the correlation length.
Since the covariance is stationary in space, Cy(x,x′) depends no longer on
the two different locations x and x′, but only on their separation vector, i.e.
Cy(x,x′) = Cy(|x − x′|). Test cases with σy = 1, 2 and ηy = 0.2, 0.4 are
considered and summarized in table 1. The mean of the logarithmic permeability
is set to ȳ = 0.

For the indicated correlation lengths and variances of the logarithmic per-
meability field, the first moment estimate of the water saturation Sw at time
tend = 10 is calculated by MLMC and MC according to the runs listed in ta-
ble 2. Runs 1 and 2 enable a comparison of MLMC and MC in case of fixed
streamlines and an analytical Buckley-Leverett solver (see Section 3). A similar
comparison can be made based on runs 3 and 4 without the fixed streamline
assumption such that global pressure updates are performed and a numerical
Buckley-Leverett solver is required. Moreover, the impact of the fixed stream-
line assumption and the performance of the numerical Buckley-Leverett solver
are investigated by comparing runs 4 and 5, and runs 2 and 5, respectively.
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Figure 2: Grid cells and cell centers of consecutive discretizations ! (coarse, bold gray) and
!+ 1 (fine, regular black). Exemplary logarithmic permeabilities y! (coarse) and y!+1 (fine).

7. Numerical Method

In this section, details about the numerical implementation of the two phase
transport, streamline-based, MLMC framework are provided.

The FV grid used to discretize the reservoir domain is regular and Cartesian.
The grids of different disrcretizations are nested and aligned with respect to the
cell interfaces (see figure 2).

Computing realizations of level differences, i.e. Si
w," −Si

w,"−1 at time tend =
10, which are part of the MLMC estimator (see equation (14)), is straight for-
ward since cell constant values are assumed.

In step 2 of the streamline algorithm presented in Section 3.1, Pollock’s algo-
rithm [17] is used to generate streamlines based on qtot. The streamlines result-
ing from forward and backward tracking originate from uniformly distributed
launch points on the diagonal of the square domain as seen in figure 1.

Details on the implementation of the analytical Buckley-Leverett solver are
provided at the end of AppendixA.

7.1. MLMC Parameters and Discretization

It is outlined in Section 5.1 that a MLMC simulation involves several levels
& = 1, . . . , L, where each level & is associated with a difference of discretizations
& and &− 1. In the present context, the term discretization does not only refer
to the FV grid used to solve for the global pressure. It involves additional
parameters like the number of streamlines, the number of transport steps, and
others, all of which are listed in table 3. The discretization & = 0 is called the
null discretization with u0 = 0 or more specifically Sw,"=0 = 0. The MLMC
discretization parameters are changed for different runs (listed in table 2) but
are the same for the different test cases (listed in table 1).

In the following, the variations of MLMC discretization parameters for the
different runs are documented. Given the number of levels L, the coarsest
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N1, N2 number of FV grid cells in x1 and x2 directions
Nsl number of streamlines
N∆tg number of time steps for global pressure updates
N∆ti number of intermediate time steps for transport on streamlines
NδQ number of injection steps for numerical Buckley-Leverett solver

(see also Section 3.2)
Nξ number of entries in the look-up table for the analytical Buckley-

Leverett solver (see also AppendixA)

Table 3: MLMC discretization parameters.

value of a discretization parameter and a refinement factor, the parameters’
changes from discretization to discretization are fully determined. For example,
by setting the number of levels L to 5, the coarsest number of streamlines to 8
and its refinement factor to 2 results in a sequence of Nsl = 8 · 2"−1 streamlines
for the discretizations & = 1, . . . , 5. In case of the null discretization, i.e. & = 0,
no grid is required.

Run 1 is a MLMC simulation based on the fixed streamline assumption with
MLMC parameters included in table 4. With no global pressure updates being
made, N∆tg = 1. Since the analytical Buckley-Leverett solver is applied, the
number of look-up table entries Nξ is relevant.

Run 2 is a MC simulation based on the fixed streamline assumption and the
analytical Buckley-Leverett solver. The discretization parameters for run 2 are
given in table 5. As mentioned at the end of Section 5.2, MC can be interpreted
as MLMC with just one level, i.e. L = 1 and its only non null discretization is
the coarsest and the finest discretization simultaneously. In order to compare
MLMC and MC, the finest discretizations of run 1 and run 2 are equal. Since
L = 1, refinement factors do not apply.

Run 3 is a MLMC simulation with global pressure updates. Hence in general
N∆tg > 1, the numerical Buckley-Leverett solver is applied and Nξ becomes
irrelevant. The discretization parameters for run 3 are provided in table 6. We
point out that the total number of intermediate updates for the MLMC runs 1
and 3 are equal for every discretization, i.e. N∆tgN∆ti = 2 (& = 1), 4 (& = 2),
. . . , 32 (& = L = 5). In addition, the number of injection steps δQ for the
numerical Buckley-Leverett solver, i.e. NδQ = 4, leads to a further division in
time.

Run 4 is the MC counterpart of MLMC run 3. Again, this simulation involves
L = 1 level and its only non null discretization matches the finest discretization
of run 3. Moreover, the total number of intermediate updates of the MC runs 2
and 4 are equal, i.e. 32. The discretization parameters for run 4 are given in
table 7.

Run 5 is a MC simulation based on the fixed streamline assumption. How-
ever, for validation purposes a numerical Buckley-Leverett solver is used. This
run is mainly included to investigate the influence of the fixed streamline as-
sumption. The discretization parameters are the same as for run 2 with NδQ = 4
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coarsest discretization finest discretization refinement factor L
N1 8 128 2
N2 8 128 2
Nsl 8 128 2
N∆tg 1 1 1 5
N∆ti 2 32 2
NδQ - - -
Nξ 8 128 2

Table 4: MLMC discretization parameters. Run 1: MLMC, fixed streamlines, analytical
Buckley-Leverett solver.

coarsest discretization finest discretization refinement factor L
N1 128 128 -
N2 128 128 -
Nsl 128 128 -
N∆tg 1 1 - 1
N∆ti 32 32 -
NδQ - - -
Nξ 128 128 -

Table 5: MLMC discretization parameters. Run 2: MC, fixed streamlines, analytical Buckley-
Leverett solver.

added. The discretization parameters for run 5 are listed in table 8.
Each set of MLMC parameters defines the finest discretization L. This

finest discretization should sufficiently resolve the flow and transport processes
under consideration. The L2-norm of the estimated discretization difference
‖EML [Sw,L − Sw,L−1]‖L2(D) is an indicator for the accuracy at the finest dis-
cretization L. For the most challenging test case 4 (in terms of resolution in
space and time), ‖EML [Sw,L − Sw,L−1]‖L2(D) = 0.008 at time tend = 10 for the
MLMC runs 1 and 3, which is considered to be sufficiently small. More sophis-
ticated MLMC algorithms could add finer levels, if ‖EML [Sw,L −Sw,L−1]‖L2(D)

is above a certain threshold. Other choices of MLMC discretization parameters

coarsest discretization finest discretization refinement factor L
N1 8 128 2
N2 8 128 2
Nsl 8 128 2
N∆tg 1 16 2 5
N∆ti 2 2 1
NδQ 4 4 1
Nξ - - -

Table 6: MLMC discretization parameters. Run 3: MLMC, no fixed streamlines, numerical
Buckley-Leverett solver.
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coarsest discretization finest discretization refinement factor L
N1 128 128 -
N2 128 128 -
Nsl 128 128 -
N∆tg 16 16 - 1
N∆ti 2 2 -
NδQ 4 4 -
Nξ - - -

Table 7: MLMC discretization parameters. Run 4: MC, no fixed streamlines, numerical
Buckley-Leverett solver.

coarsest discretization finest discretization refinement factor L
N1 128 128 -
N2 128 128 -
Nsl 128 128 -
N∆tg 1 1 - 1
N∆ti 32 32 -
NδQ 4 4 -
Nξ - - -

Table 8: MLMC discretization parameters. Run 5: MC, fixed streamlines, numerical Buckley-
Leverett solver.

and refinement factors are conceivable but the current sets prove to be suitable
in the present work.

Finally, additional parameters for the MLMC algorithm (Section 5.4) are
provided. The threshold for the estimated sampling error is set to ε = 0.003
and the number of warm-up samples is set to Mup = 100. This choice provides
reasonable first estimates for the variance σ̃2

" and the work per sample w̃" on
each level. Moreover, in all simulations performed Mup < M" on all levels & and
therefore no unnecessary samples are generated.

8. Results and Discussion

In this section, different comparisons are conducted for the four test cases
listed in table 1. In the first comparison, i.e. comparison 1, MLMC and MC
implementations with the fixed streamline assumption (runs 1 and 2 in table 2)
are used. In comparison 2, MLMC and MC implementations with global pres-
sure updates (no fixed streamlines, runs 3 and 4) are applied. Comparisons 1
and 2 are used to investigate the performance gain of MLMC compared to MC.
For comparison 1, the finest discretizations of the MLMC run 1 and the MC
run 2 agree as well as the thresholds for the estimated sampling error ε. There-
fore, the MLMC run 1 and the MC run 2 produce results of equal quality. The
same holds true for comparison 2. Comparison 3 is about the accuracy of the
numerical Buckley-Leverett solver (runs 2 and 5) and the applicability of the
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test case 1 test case 2 test case 3 test case 4
σy = 1 σy = 1 σy = 2 σy = 2
ηy = 0.4 ηy = 0.2 ηy = 0.4 ηy = 0.2

comparison 1 run 1 (MLMC): CPU time 2.6 min 3.3 min 4.3 min 6.6 min
(fixed run 2 (MC): CPU time 18.5 min 16.9 min 49.5 min 50.5 min
streamlines) run 1 vs. run 2: speedup 7.1 5.2 11.5 7.6

figure reference 3 4 5 6
comparison 2 run 3 (MLMC): CPU time 15.8 min 21.3 min 24.8 min 37.8 min
(no fixed run 4 (MC): CPU time 2.9 h 2.8 h 7.7 h 7.7 h
streamlines) run 3 vs. run 4: speedup 11.2 7.9 18.7 12.2

figure reference 7 8 9 10
‖Erun2 [Sw]− Erun5 [Sw]‖L2(D) 0.0018 0.0017 0.0022 0.0020

comparison 3 ‖Erun4 [Sw]− Erun5 [Sw]‖L2(D) 0.0159 0.0183 0.0137 0.0173
figure reference 11 11 11 11

Table 9: Summary of numerical results.

fixed streamline assumption (runs 4 and 5). To this end, L2-norms, for example
‖Erun2 [Sw]−Erun5 [Sw]‖L2(D), are evaluated at time tend = 10. The results for
the three comparisons and the four test cases are summarized in table 9.

For comparisons 1 and 2, first moment estimates of the water saturation at
time tend = 10 of MLMC (runs 1 and 2) and MC computations (runs 3 and 4)
are shown in figures 3 (a) to 6 (a) and 7 (a) to 10 (a) for test cases 1 to 4.
In the panels (b) of these figures, level-dependent quantities are provided, i.e.
standard deviation estimates σ̃", estimates for the expected work per sample w̃"

and the number of samples computed M". Since MC runs 2 and 4 involve one
level only, the corresponding σ̃1, w̃1 and M1 are depicted as straight horizontal
lines.

In equation (17), the sampling error is decomposed in terms of the standard
deviations σ" and the number of samples M". By inspection of figures 3(b)
to 10(b) it becomes clear that the estimated σ̃" and the estimated work per
sample w̃" are in advantage of MLMC. The work per sample is small for levels
with coarse discretizations and high σ̃", whereas the converse holds true for
levels with fine discretizations (& is large). This is the basis for MLMC being
faster than MC. The particular numbers of samples M" (determined by the
optimization problem outlined in Section 5.3) are also plotted in figures 3(b)
to 10(b).

The fixed streamline assumption has an influence on the MLMC-MC speedup
factor. In general, the growth in w̃" for increasing & is more pronounced if
the fixed streamline assumption and the analytical Buckley-Leverett solver are
dropped in favor of global pressure updates (compare w̃" for example in fig-
ures 3(b) and 7(b)). As seen in table 9 when comparing the speedup factors
of MLMC with respect to MC between comparisons 1 (with fixed streamlines)
and 2 (without fixed streamlines), a larger growth in w̃" is advantageous for
MLMC.
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Figure 3: Test case 1: σy = 1, ηy = 0.4. Comparison 1: run 1 (MLMC) vs. run 2 (MC), fixed
streamlines, analytical Buckley-Leverett solver. (a) first moment of Sw at time tend = 10:
run 1 (solid lines) vs. run 2 (dashed lines). (b) level standard deviation estimates σ̃! (solid
lines), level expected work estimates w̃! (dashed lines), level number of samples M! (dotted
lines): run 1 (curves with different values for levels !) vs. run 2 (horizontal lines).
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Figure 4: Test case 2: σy = 1, ηy = 0.2. Comparison 1: run 1 (MLMC) vs. run 2 (MC), fixed
streamlines, analytical Buckley-Leverett solver. (a) first moment of Sw at time tend = 10:
run 1 (solid lines) vs. run 2 (dashed lines). (b) level standard deviation estimates σ̃! (solid
lines), level expected work estimates w̃! (dashed lines), level number of samples M! (dotted
lines): run 1 (curves with different values for levels !) vs. run 2 (horizontal lines).
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Figure 5: Test case 3: σy = 2, ηy = 0.4. Comparison 1: run 1 (MLMC) vs. run 2 (MC), fixed
streamlines, analytical Buckley-Leverett solver. (a) first moment of Sw at time tend = 10:
run 1 (solid lines) vs. run 2 (dashed lines). (b) level standard deviation estimates σ̃! (solid
lines), level expected work estimates w̃! (dashed lines), level number of samples M! (dotted
lines): run 1 (curves with different values for levels !) vs. run 2 (horizontal lines).
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Figure 6: Test case 4: σy = 2, ηy = 0.2. Comparison 1: run 1 (MLMC) vs. run 2 (MC), fixed
streamlines, analytical Buckley-Leverett solver. (a) first moment of Sw at time tend = 10:
run 1 (solid lines) vs. run 2 (dashed lines). (b) level standard deviation estimates σ̃! (solid
lines), level expected work estimates w̃! (dashed lines), level number of samples M! (dotted
lines): run 1 (curves with different values for levels !) vs. run 2 (horizontal lines).
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Figure 7: Test case 1: σy = 1, ηy = 0.4. Comparison 2: run 3 (MLMC) vs. run 4 (MC),
no fixed streamlines, numerical Buckley-Leverett solver. (a) first moment of Sw at time
tend = 10: run 3 (solid lines) vs. run 4 (dashed lines). (b) level standard deviation estimates
σ̃! (solid lines), level expected work estimates w̃! (dashed lines), level number of samples M!

(dotted lines): run 3 (curves with different values for levels !) vs. run 4 (horizontal lines).
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Figure 8: Test case 2: σy = 1, ηy = 0.2. Comparison 2: run 3 (MLMC) vs. run 4 (MC),
no fixed streamlines, numerical Buckley-Leverett solver. (a) first moment of Sw at time
tend = 10: run 3 (solid lines) vs. run 4 (dashed lines). (b) level standard deviation estimates
σ̃! (solid lines), level expected work estimates w̃! (dashed lines), level number of samples M!

(dotted lines): run 3 (curves with different values for levels !) vs. run 4 (horizontal lines).
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Figure 9: Test case 3: σy = 2, ηy = 0.4. Comparison 2: run 3 (MLMC) vs. run 4 (MC),
no fixed streamlines, numerical Buckley-Leverett solver. (a) first moment of Sw at time
tend = 10: run 3 (solid lines) vs. run 4 (dashed lines). (b) level standard deviation estimates
σ̃! (solid lines), level expected work estimates w̃! (dashed lines), level number of samples M!

(dotted lines): run 3 (curves with different values for levels !) vs. run 4 (horizontal lines).
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Figure 10: Test case 4: σy = 2, ηy = 0.2. Comparison 2: run 3 (MLMC) vs. run 4 (MC),
no fixed streamlines, numerical Buckley-Leverett solver. (a) first moment of Sw at time
tend = 10: run 3 (solid lines) vs. run 4 (dashed lines). (b) level standard deviation estimates
σ̃! (solid lines), level expected work estimates w̃! (dashed lines), level number of samples M!

(dotted lines): run 3 (curves with different values for levels !) vs. run 4 (horizontal lines).
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Figure 11: Comparison 3: first moment of Sw at time tend = 10 resulting from MC runs 2, 4
and 5. Run 2 (solid lines): fixed streamlines, analytical Buckley-Leverett solver. Run 5
(dashed lines): fixed streamlines, numerical Buckley-Leverett solver. Run 4 (dotted lines): no
fixed streamlines, numerical Buckley-Leverett solver. (a) test case 1: σy = 1, ηy = 0.4. (b)
test case 2: σy = 1, ηy = 0.2. (c) test case 3: σy = 2, ηy = 0.4. (d) test case 4: σy = 2,
ηy = 0.2.
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The MLMC discretization parameters are equal for all test cases with differ-
ent permeability variability σy and correlation lengths ηy. However, the MLMC
performance relative to MC varies substantially for the different test cases as
seen in table 9.

A key observation is that the MLMC performance with respect to MC suffers
from a decrease in the logarithmic permeability correlation length ηy. This is
reflected by reductions of MLMC speedups by going from test cases 1 to 2
and from test cases 3 to 4 (see table 9). In case of small ηy, MLMC has to
account for more variability in Sw(tend) at fine levels with high wl. Moreover, the
coarsest MLMC discretizations may be weakly connected to processes at finer
discretizations and consequently coarse discretizations can become hindering in
terms of performance. For the test cases with ηy = 0.2, discarding the coarsest
discretization & = 1 might lead to an improvement. On the other hand, when
reducing ηy, the performance of MLMC with respect to MC may be upheld if the
discretizations on all levels including the coarsest one are refined accordingly.

As seen in table 9, an increase in σy enhances the MLMC performance com-
pared to MC. The MLMC-MC speedup factors increase when going from test
cases 1 to 3 and from cases 2 to 4. This is because in contrary to MC where
only one level is available, MLMC absorbs most of the additional Sw(tend) vari-
ability on coarse levels where sampling is cheap. This can be seen for example
by comparing figure 3 with 5, and figure 4 with 6.

In comparison 3, the numerical Buckley-Leverett solver is validated and the
applicability of the fixed streamline assumption is tested for test cases 1 to 4.
In all test cases, the errors listed in table 9 due to the numerical streamline
solver, i.e. ‖Erun2 [Sw] − Erun5 [Sw]‖L2(D) at time tend = 10, are substantially
smaller than the errors due to the fixed streamline assumption measured by
‖Erun4 [Sw]−Erun5 [Sw]‖L2(D) at time tend = 10. Furthermore, as is also visible
in figure 11, an increase in permeability variability σy reduces the error due to
the fixed streamline assumption. This observation is consistent with the discus-
sion from Section 3.3, where it is claimed that the fixed streamline assumption is
reasonable for highly heterogeneous reservoirs. Comparisons 1 and 2 document
that the computational costs can be greatly reduced, if the fixed streamline
assumption together with the analytical Buckley-Leverett solver is applied and
no global pressure updates are performed.

Since in MLMCmuch fewer samples are computed on the finest discretization
compared to MC, the first moment estimates resulting from MLMC are more
fine grained. Nevertheless, the estimated sampling errors are equal in MLMC
and MC with threshold ε set equal. From the definition of the sampling error
‖E[uL]−E[uL]‖L2(Ω;L2(D)) it is clear that a single difference between E[uL] and
one particular estimate E[uL] is not very representative. Despite that, figure 12
is included to demonstrate that a fine grained MLMC solution is not necessarily
less accurate than the one by MC. In figure 12, MLMC run 1 and MC run 2 for
test case 1 are revisited. First moment estimates of the MLMC run 1 and MC
run 2 are shown alongside a reference for E[Sw] at time tend = 10, built from
160 MC runs.

Due to the fact that only ensemble-based estimates of the level variances σ̃2
"
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Figure 12: Test case 1, MLMC run 1 (solid line) vs. MC run 2 (dashed line) vs. MC reference
(dotted line). (a) first moment of Sw at time tend = 10: entire domain. (b) detail indicated
by the thick rectangle in (a).

are available, the MLMC algorithm outlined in Section 5.4 can only approximate
the prescribed sampling error. Moreover, since σ̃2

" and w̃" are estimates, they
need to be considered random quantities. The numbers of samples M" depend
on σ̃2

" and w̃" (see optimization problem from Section 5.3) and become random
quantities as well. Consequently in the strict sense, interchanging expectation
and summation over i = 1, . . . ,M" and j = 1, . . . ,Mk in equation (16) is no
longer feasible. However, it is possible to verify the resulting sampling error
based on the approximation

‖E[uL]− E[uL]‖L2(Ω;L2(D))

≈
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∫

D

((
1

K

K∑

i=1

E[uL]
i

)
− E[uL]

j

)2

dx




1/2

=



 1

K − 1

K∑

j=1

∥∥∥∥∥

(
1

K

K∑

i=1

E[uL]
i

)
− E[uL]

j

∥∥∥∥∥

2
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1/2

,

where E[uL]i or E[uL]j represent outcomes from K independent MLMC sim-
ulations. A sampling error of 0.00301 is for example calculated for test case 1
and MLMC run 1 with sampling error threshold ε = 0.003 and K = 160. There-
fore it can be concluded that despite the false assumptions of σ̃2

" being exact
and of M" being deterministic, the MLMC algorithm closely approximates the
sampling error.

At the end of Section 5.4, it is claimed that the MLMC framework can also
be applied to calculate higher moments. For example in figure 13, the second
moment of Sw at time tend = 10 is plotted for case 1 with MLMC run 1.
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Figure 13: Test case 1: σy = 1, ηy = 0.4. Comparison 1: run 1 (MLMC) vs. run 2 (MC), fixed
streamlines, analytical Buckley-Leverett solver. (a) second moment of Sw at time tend = 10:
run 1 (solid lines) vs. run 2 (dashed lines). (b) level standard deviation estimates σ̃! (solid
lines), level expected work estimates w̃! (dashed lines), level number of samples M! (dotted
lines): run 1 (multiple value curve) vs. run 2 (single value straight line).

Compared to the corresponding computations of the first moment depicted in
figure 3, the MLMC-MC speedup factor increased from 7.1 to 10.8.

9. Summary and Conclusions

Monte Carlo (MC) can be interpreted as a special case of multilevel Monte
Carlo (MLMC) with only one level and one discretization. MLMC, however,
involves a hierarchy of discretizations that are pairwise combined to levels. For
MLMC to be successful, computations on coarse discretizations need to be com-
putationally cheap. Moreover, coarse-scale features of the physical process to be
simulated need to be captured on the coarse discretizations. Unlike MC, MLMC
samples on all discretizations but mostly on the coarse ones where computations
are cheap. On the finest and computationally most expensive discretization
where MC operates, MLMC computes only few samples.

In this work, MLMC was applied to quantify uncertainty of oil and water
transport in random heterogeneous porous media. MLMC was compared to con-
ventional MC for a two dimensional oil reservoir subject to water injection. The
reservoir’s logarithmic permeability y was modeled as a Gaussian random field
with variances σy = 1, 2 and a space-stationary exponential covariance func-
tion with correlation lengths ηy = 0.2, 0.4. Estimates of the first two statistical
moments of the water saturation at a specific instant in time were calculated
by MLMC and MC. Comparisons between the corresponding computing times
show speedups of MLMC with respect to MC that range from 5 up to 19 at
equivalent accuracy. With unchanged discretizations but different σy and ηy, it
is observed that the MLMC performance relative to MC suffers from a decrease
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in logarithmic permeability correlation length and benefits from an increase in
logarithmic permeability variance.

For transport, a two phase streamline solver was applied and the effect of
fixing the streamline pattern during the simulation time was inspected. The
fixed streamline assumption greatly reduces computational costs. For highly
heterogeneous reservoirs with logarithmic permeability variance σ2

y = 4, the
fixed streamline assumption leads to acceptable results, if compared to simula-
tions where the streamline pattern is updated over time. For σ2

y = 1, however,
deviations become significant.

In conclusion, applying MLMC for uncertainty quantification of two phase
transport in random heterogeneous porous media can be highly profitable. For
the investigated test cases, MLMC produces results of equal quality as MC
at considerably lower computational costs. Apart from that, with the fixed
streamline assumption, the computational cost can be substantially reduced,
when dealing with highly heterogeneous porous media.

10. Acknowledgment

This work was performed as part of the ETH interdisciplinary research
grant CH1-03 10-1. Florian Müller wishes to thank Siddhartha Mishra and
Christoph Schwab for their advice. He is also thankful to Stefan Pauli, Jonas
Sukys and Svetlana Tokareva for helpful discussions. Moreover, helpful discus-
sions with Hamdi Tchelepi, Marco Thiele and Darryl Fenwick on streamline-
based transport simulations are acknowledged.

AppendixA. Analytic Buckley-Leverett Solver

In the following, an analytical solution of the one dimensional Buckley-
Leverett problem along a streamline is derived in terms of characteristics. Since
fw is a function of Sw solely, equation (11) can be rewritten as

∂Sw

∂Q
+

dfw
dSw

∂Sw

∂V
= 0,

or by introducing the advection speed a(Sw) =
dfw
dSw

,

∂Sw

∂Q
+ a(Sw)

∂Sw

∂V
= 0. (A.1)

In order to describe characteristics V = V (Q), the total derivative of Sw =
Sw(Q,V (Q)) with respect to Q is set to zero,

dSw

dQ
=

∂Sw

∂Q
+

∂Sw

∂V

dV

dQ
= 0.

By comparison with equation (A.1), the following relation is found,

dV

dQ
= a(Sw).
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Using the fact that on a characteristic curve dSw
dQ = 0, integration yields

V (Q) = a(Sw)Q or
V

Q
= a(Sw). (A.2)

After determining a shock between saturation S∗
w and 0 by the Rankine-Hugoniot

jump condition,

fw(S∗
w)− fw(0)

S∗
w − 0

= a(S∗
w),

the inversion of equation (A.2) above becomes unique,

Sw = a−1(V/Q). (A.3)

This yields the desired assignment of characteristic variable ξ = V/Q to water
saturation Sw along a streamline.

For a quadratic relative permeability fw(Sw), the inverse function in equa-
tion (A.3) is not available in closed form but can be provided numerically as
a look-up table. This table describes the relation between the characteristic
variable ξ = V/Q and the water saturation Sw up to the shock location. In
front of the shock, the table contains Nξ points. For ξ after the shock location,
Sw = 0. In analogy to all numerical discretization parameters in MLMC, the
number of look-up table entries Nξ is reduced for coarser grid discretizations.

AppendixB. Spectral Generator

In the following, the spectral generator to compute Gaussian random field
realizations based on [19, 20, 21] is described. The generator relies on the
discrete Fourier transform and its FFT implementation. To simplify matters,
explanations are provided only for a one dimensional Gaussian random field
with zero mean.

A vector y of N Gaussian random variables y(n), n = 0, . . . , N−1, with even
N is assigned to a regular one dimensional grid. We assume that the correlation
among different y(n) can be represented by a real, symmetric, stationary and
periodic covariance matrix. Such a covariance matrix does not contain more
information then the kernel C, C(n) = E[y(0)y(n)]. C is a real vector with
symmetry C(n) = C(N − n) and unique C(0) and C(N/2).

The kernel C can be written as a convolution of a vector R with itself,

C = R ∗R or C(n) =
N−1∑

m=0

R(m)R(m− n), (B.1)

using the convolution operator symbol ∗. In our case, R has the same symmetry
as C and is real as well. An appropriately correlated random vector y can then
be computed via

y = R ∗ z, (B.2)
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where z is a random vector of independent, standard normally distributed ran-
dom variables (see for example [21], page 704).

Computing y is facilitated thanks to the convolution theorem for the discrete
Fourier transform. Let tilde denote the respective one dimensional discrete
Fourier transform, i.e. X̃ is the Fourier transform of vector X. Due to the
convolution theorem, the Fourier transformed equation (B.1) reads

C̃ = R̃ · R̃,

where · denotes element–wise multiplication. C̃ can be computed from C with
FFT and R̃ from taking the element–wise square root of C̃. The square root
needs to be computed with care: since R is real, R̃ posses Hermitian symmetry,

i.e. R̃(n) = R̃(N − n), real R̃(0) and real R̃(N/2), where an overbar denotes
complex conjugate. Equation (B.2) is also Fourier transformed,

ỹ = R̃ · z̃.

Here, R̃ is known and z̃ results from applying FFT to z. After an inverse FFT
of ỹ, the appropriately correlated y is found.

In general, the kernel C does not have the desired symmetry because the
covariance matrix is not periodic. To overcome this problem, only the random
variables y(n) with n = 0, . . . , N/2 − 1 are assumed to correspond to physical
grid cells while y(n) with n = N/2, . . . , N − 1 are dummy variables. The corre-
lation among physical random variables, i.e. C(n) with n = 0, . . . , N/2− 1, are
defined by the physical Gaussian process under consideration. The correlations
involving dummy variables, i.e. C(n) with n = N/2 + 1, . . . , N − 1, establish
the required symmetry in C. Finally, C(N/2) is used to ensure real R̃(0) and
R̃(N/2). Assuming no negative physical correlations in C, this can be achieved
by computing C(N/2) such that C̃(N/2) = 0.

AppendixC. Covariance Matrix

As described in Section 5.5, logarithmic permeability field realizations yi" on
level & + 1 are calculated by cell averaging yi"+1 as indicated in figure 2. To
calculate yi" in coarse grid cell 1, i.e. yi",1, the four values yi"+1 of the finer
discretization included in coarse cell 1 are averaged, i.e.

yi",1 =
yi"+1,1 + yi"+1,2 + yi"+1,3 + yi"+1,4

4
. (C.1)

The statistics of averaged realizations yi" on level & + 1 must agree with re-
alizations yi" directly generated on level &. In order to directly generate such
realizations, the covariance matrix Cy! of process y" needs to be computed for
all & = 1, . . . , L− 1. Based on the definition of the covariance

Cy!(m,n) = E[y",my",n], (C.2)
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of grid cells m and n on discretization &, the CyL on the finest discretization
given by a geostatistical model, and the averaging expression (C.1), it is straight
forward to determine Cy! for coarser discretizations. For example for the case
illustrated in figure 2, the covariance between cells 1 and 2 on discretization &
results from the corresponding covariances among the cells 1 to 8 on the finer
discretization &+ 1,

Cy!(1, 2) = 1/16
(
Cy!+1(1, 5) + · · ·+ Cy!+1(1, 8)+

. . .

Cy!+1(4, 5) + · · ·+ Cy!+1(4, 8)
)

.

The covariance matrix on a certain discretization is therefore calculable based
on the matrix on the next finer discretization. In view of the spectral random
field generator described in AppendixB, it is important to note that coarse
covariance matrices inherit the stationarity of the finer ones.

[1] A. G. Journel, C. Huijbregts, Mining geostatistics, Academic Press, London
a.o., 1978.

[2] H. Li, D. X. Zhang, Probabilistic collocation method for flow in porous
media: Comparisons with other stochastic methods, Water Resources Re-
search 43 (2007) W09409.

[3] G. Lin, A. M. Tartakovsky, An efficient, high-order probabilistic collocation
method on sparse grids for three-dimensional flow and solute transport in
randomly heterogeneous porous media, Advances in Water Resources 32
(2009) 712–722.

[4] F. Müller, P. Jenny, D. Meyer, Probabilistic Collocation and Lagrangian
Sampling for Advective Tracer Transport in Randomly Heterogeneous
Porous Media, Advances in Water Resources 34 (2011) 1527–1538.

[5] D. X. Zhang, H. A. Tchelepi, Stochastic analysis of immiscible two-phase
flow in heterogeneous media, Spe Journal 4 (1999) 380–388.

[6] D. X. Zhang, L. Y. Li, H. A. Tchelepi, Stochastic formulation for uncer-
tainty analysis of two-phase flow in heterogeneous reservoirs, Spe Journal
5 (2000) 60–70.

[7] S. Heinrich, Multilevel Monte Carlo methods, Large-scale scientific com-
puting, Third international conference LSSC 2001, Sozopol, Bulgaria, 2001,
Lecture Notes in Computer Science 2170 (2001) 58–67.

[8] M. B. Giles, Multilevel Monte Carlo Path Simulation, Operations Research
56 (2008) 607–617.

[9] K. Cliffe, M. Giles, R. Scheichl, A. Teckentrup, Multilevel Monte Carlo
methods and applications to elliptic PDEs with random coefficients, Com-
puting and Visualization in Science 14 (2011) 3–15.

30



[10] A. Barth, C. Schwab, N. Zollinger, Multi-level Monte Carlo Finite Ele-
ment method for elliptic PDEs with stochastic coefficients, Numerische
Mathematik 119 (2011) 123–161.

[11] S. Mishra, C. Schwab, Sparse tensor multi-level Monte Carlo finite volume
methods for hyperbolic conservation laws with random initial data, Math.
Comp. (to appear) (2012).

[12] S. Mishra, C. Schwab, J. Sukys, Multi-level Monte Carlo finite volume
methods for nonlinear systems of conservation laws in multi-dimensions.,
J. Comput. Physics 231 (2012) 3365–3388.

[13] M. Thiele, Streamline simulation, Seventh International Forum on Reser-
voir Simulation, Baden-Baden, Germany, 2003 (2003).

[14] R. Batycky, A three-dimensional two-phase field scale streamline simulator,
Ph.D. thesis, Stanford University, 1997.

[15] T. Hewett, T. Yamada, Theory for the semi-analytical calculation of oil
recovery and effective relative permeabilities using streamtubes, Advances
in Water resources 20 (1997) 279–292.

[16] D. W. Meyer, H. A. Tchelepi, Particle-based transport model with Marko-
vian velocity processes for tracer dispersion in highly heterogeneous porous
media, Water Resources Research 46 (2010) W11552.

[17] D. W. Pollock, Semianalytical Computation of Path Lines for Finite-
Difference Models, Ground Water 26 (1988) 743–750.

[18] R. J. LeVeque, Finite-Volume Methods for Hyperbolic Problems, Cam-
bridge University Press, 2002.

[19] E. Pardo-Iguzquiza, M. Chica-Olmo, The Fourier integral method: an
efficient spectral method for simulation of random fields, Mathematical
Geology 25 (1993) 177–217.

[20] J. Chiles, P. Delfiner, Discrete exact simulation by the Fourier method,
Geostatistics Wollongong ’96, Wollongong, Australia, 1996 1 (1997) 258–
269.

[21] M. Ravalec, B. Noetinger, L. Hu, The FFT moving average (FFT-MA)
generator: An efficient numerical method for generating and conditioning
Gaussian simulations, Mathematical Geology 32 (2000) 701–723.

31



Research Reports

No. Authors/Title

12-12 F. Müller, P. Jenny and D.W. Meyer
Multilevel Monte Carlo for two phase flow and transport in random het-
erogeneous porous media

12-11 V. Kazeev, O. Reichmann and Ch. Schwab
hp-DG-QTT solution of high-dimensional degenerate diffusion equations

12-10 N.H. Risebro and F. Weber
A note on front tracking for the Keyfitz-Kranzer system

12-09 U. Koley and N.H. Risebro
Convergence of finite difference schemes for symmetric Keyfitz-Kranzer
system

12-08 S. Mishra, Ch. Schwab and J. Šukys
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