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! Eidgenössische
Technische Hochschule
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MULTI-LEVEL MONTE CARLO FINITE VOLUME METHODS
FOR SHALLOW WATER EQUATIONS

WITH UNCERTAIN TOPOGRAPHY IN MULTI-DIMENSIONS

S. MISHRA, CH. SCHWAB, AND J. ŠUKYS

Abstract. The initial data and bottom topography, used as inputs in shallow
water models, are prone to uncertainty due to measurement errors. We model
this uncertainty statistically in terms of random shallow water equations. We
extend the Multi-Level Monte Carlo (MLMC) algorithm to numerically ap-
proximate the random shallow water equations efficiently. The MLMC algo-
rithm is suitably modified to deal with uncertain (and possibly uncorrelated)
data on each node of the underlying topography grid by the use of a hier-
archical topography representation. Numerical experiments in one and two
space dimensions are presented to demonstrate the efficiency of the MLMC
algorithm.

1. Introduction

1.1. The model. Many interesting flows, for instance, in lakes, rivers, irrigation
channels, avalanches, landslides and tsunamis in oceans, have a common property
that the vertical scale (depth) of the flow is much smaller than the horizontal scales
of motion. Hence, the full three-dimensional incompressible Navier-Stokes equa-
tions of fluid dynamics can be simplified to the so-called shallow water equations
[27]:

(1.1)






ht + (hu)x + (hv)y = 0,

(hu)t +
(

hu2 +
1
2
gh2

)

x

+ (huv)y = −ghbx,

(hv)t + (huv)x +
(

hv2 +
1
2
gh2

)

y

= −ghby.

Here, h is the height of the fluid column above the bottom topography b = b(x, y)
over which the fluid flows and (u, v) is the vertically averaged horizontal fluid ve-
locity field. The constant g denotes the acceleration due to gravity.
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Denoting conserved variables as U = U(x, t) : D × R+ ⊂ R2 × R+ → R3,
directional fluxes as F,G : R3 → R3 and sources as S,

U =




h
hu
hv



 , F =




hu

hu2 + 1
2gh2

huv



 , G =




hv
huv

hv2 + 1
2gh2



 , S =




0

−ghbx

−ghby



 ,

the system (1.1) with given initial data U0 is written as the system of balance laws,

(1.2)

{
U(x, t)t + F(U)x + G(U)y = S(x,U),

U(x, 0) = U0(x).
x = (x, y) ∈ D, t > 0.

It is well known that solutions to (1.2) can develop shock discontinuities in finite
time even for smooth initial data. Hence, the solutions of system of balance laws
(1.2) are considered in the weak (distributional) sense and are well-defined provided
the source term S remains uniformly bounded [7], i.e. b ∈ W 1,∞(R2). In the cases
where the topography function b is discontinuous, one can use the theory of non-
conservative products of [8] to define weak solutions.

Weak solutions of (1.2) need not be unique. Additional admissibility criterion
called entropy conditions are imposed. For shallow water equations, the total energy

E(U) =
1
2
(hu2 + hv2 + gh2 + ghb)

plays the role of the entropy function. The admissible weak solutions of the shallow
water equations satisfy the entropy inequality (in the sense of distributions),
(1.3)

E(U)t +
(

1
2

(
hu3 + huv2

)
+ ghu(h + b)

)

x

+
(

1
2

(
hu2v + hv3

)
+ ghv(h + b)

)

y

≤ 0.

Furthermore, shallow water flows are often realized as perturbations of some sta-
tionary solutions. As an example, tsunami waves in an ocean [17] are perturbations
of the lake (ocean) at rest steady state:

(1.4) u ≡ 0, v ≡ 0, h + b ≡ constant.

1.2. Numerical schemes. In last few decades, finite volume methods (FVM) [16]
have emerged as a very popular framework for approximating systems of balance
(conservation) laws. Let T = T 1× · · ·×T d denote a uniform axiparallel quadrilat-
eral mesh of the spatial Cartesian domain of interest D = I1 × · · ·× Id ⊂ Rd, Ir ⊂
R, d = 1, 2. The mesh T will be understood as a partition of the physical domain D
into a finite set of equal disjoint open quadrilaterals (cells), i.e. in two dimensions,

Ci,j := Ci × Cj ⊂ I1 × I2 ⊂ R2, i = 1, . . . ,#T 1, j = 1, . . . ,#T 2.

Let ∆x := |I1|
#T1

and ∆y := |I2|
#T2

denote the mesh widths in x and y directions.
Define the approximations to cell averages of the solution U by

Ui,j(t) ≈
1

∆x∆y

∫

Ci,j

U(x, t)dx.

Then, a semi-discrete finite volume scheme [16] for approximating (1.2) is given by

(1.5)
∂

∂t
Ui,j(t) = − 1

∆x
(Fi+ 1

2 ,j − Fi− 1
2 ,j)−

1
∆y

(Gi,j+ 1
2
−Gi,j− 1

2
)− Si,j .

where F·,j ,Gi,· are numerical fluxes and Si,j is the cell average of the source S.
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The numerical fluxes Fi+ 1
2 ,j = F(Ui,j ,Ui+1,j) and Gi,j+ 1

2
= G(Ui,j ,Ui,j+1)

are defined by using (approximate) solutions of local Riemann problems (in the
normal direction) at each cell interface. High order spatial accuracy is achieved by
using non-oscillatory TVD, ENO, WENO and DG procedures. Time integration
can be performed using strong stability preserving Runge-Kutta methods.

Although a wide variety of schemes for the shallow water equations have been
proposed and are routinely used in realistic computations, we require that a robust
scheme should be entropy stable, i.e. satisfy a discrete version of the entropy in-
equality (1.3), and should also be well-balanced, i.e. preserve a discrete version of
the lake at rest steady state (1.4). Such a scheme was proposed in a recent paper
[14] and will be used by us throughout this paper.

1.3. Uncertainty quantification. The initial data U0, bottom topography func-
tion b and boundary conditions serve as inputs to any numerical scheme that ap-
proximates shallow water equations (1.1). However, these inputs need to be mea-
sured and the measurements are prone to uncertainty. The modeling of uncertainty
in inputs has been studied extensively in recent years. Statistical (stochastic) mod-
els of uncertainty are widely employed. A detailed description of how uncertainty
in the bottom topography is modeled statistically can be found in [13, 5] and other
references therein. Here, we denote a complete probability space by (Ω,F , P) and
model the initial data U0 and the source S as (L1(Rd)m,B(L1(Rd)m))-measurable
random fields

U0 : Ω ) ω *→ U0(x, ω), S : Ω ) ω *→ S(x, ω).

Uncertainty in inputs like the initial data and the bottom topography leads to
uncertainty in the solution U of the shallow water equations. We model this output
uncertainty by realizing the entropy solution as a random field, i.e. a measurable
mapping ω *→ U(x, t,ω), where

U : (Ω,F) → (Cb([0, T ], L1(Rd)m), B(Cb([0, T ], L1(Rd)m)),

that is a weak solution of the random shallow water equations,

(1.6)

{
U(x, t,ω)t + F(U)x + G(U)y = S(x,U, ω),

U(x, 0, ω) = U0(x, ω),
x ∈ D, t > 0, ∀ω ∈ Ω,

and also satisfies the entropy inequality (1.3) (in the sense of distributions) for
P-a.e. ω ∈ Ω.

1.4. Scope and outline of the paper. The main aim to this paper is to present
efficient numerical methods to approximate random shallow water equations (1.6).

The design of efficient numerical schemes for quantifying uncertainty in solutions
of conservation (balance) laws has seen a lot of activity in recent years. Methods
include the stochastic Galerkin methods based on generalized Polynomial Chaos
(gPC) [3, 6, 18, 25, 22, 26] and stochastic collocation method [29, 19, 28]. Some
of these methods (particularly stochastic Galerkin) have the huge disadvantage
of being highly intrusive: existing codes for computing deterministic solutions of
conservation laws need to be completely reconfigured for implementation. Further-
more, none of these methods are currently able to handle even a moderate number
of sources of uncertainty (stochastic dimensions).

Another class of methods are the so-called Monte Carlo (MC) methods in which
the probability space is sampled, the underlying deterministic PDE is solved for each
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sample and the samples are combined to ascertain statistical information about the
random field. Although non-intrusive, easy to code and to parallelize, MC methods
converge at rate 1/2 as the number M of MC samples increases. The asymptotic
convergence rate M−1/2 is non-improvable by the central limit theorem. Therefore,
MC methods require a large number of “samples” (with each “sample” involving
the numerical solution of (1.6) with a given draw of initial data U0) in order
to ensure low statistical errors. This slow convergence entails high computational
costs for MC type methods and makes them infeasible for computing uncertainty in
complex shallow water flows. We refer to [20] for a detailed error and computational
complexity analysis for the MC method in the context of scalar conservation laws.

This slow convergence has inspired the development of Multi-Level Monte Carlo
or MLMC methods (see [12, 9, 10, 4]). In particular, recent papers [20] and [21]
extended and analyzed the MLMC algorithm for scalar conservation laws and for
systems of conservation laws, respectively. The asymptotic analysis for the MLMC
method, presented in [20], showed that the method allows the computation of ap-
proximate statistical moments with the same accuracy versus cost ratio as a single
deterministic solve on the same mesh. An optimal static load balancing strategy
proposed in [21] enabled us to compute realistic solutions of the multi-dimensional
random Euler and magnetohydrodynamics (MHD) equations.

Our first aim in this paper is to extend the MLMC method to a system of balance
laws like the random shallow water equations (1.6) and to demonstrate that it
constitutes a considerable speed-up over the MC method. The key difference from
the recent paper [21] lies in the fact that the uncertain bottom topography acts as
a random source term. In practice [13, 5], the uncertainty in bottom topography is
realized as random (in general, spatially correlated) fluctuations on each node of an
underlying mesh. This implies possibly infinitely many sources of randomness. As
the MLMC algorithm of [20, 21] entails that the bottom topography (modeled on
a very fine mesh) needs to be sampled on coarse meshes, the very large number of
topography samples with high spatial resolution will render the MLMC algorithm
inefficient. Therefore, our second aim in this paper is to propose a novel multi-
level representation of random nodal values of the underlying (uncertain) bottom
topography in terms of a hierarchical basis. This representation, together with the
structure of the spatial discretization, allows us to make the bottom topography
samples from a finer mesh redundant when the solution is computed on a given
mesh. Hence, the new MLMC algorithm is considerably faster.

The efficiency of the algorithm, its robustness and favorable parallelization per-
formance are demonstrated throughout the numerical experiments in both one and
two space dimensions. The rest of the paper is organized as follows: we present the
MC and MLMC algorithms from [20, 21] in Sections 3 and 4, respectively. In Sec-
tion 5, we describe an efficient multi-level alias-free representation of the uncertain
bottom topography. Numerical experiments in one and two space dimensions are
presented in section 6.

2. Well-balanced energy stable finite volume schemes

Any numerical approximation of the random shallow water equations requires
a discretization of the underlying deterministic problem (1.2). As mentioned in
the introduction, we will use the schemes developed in a recent paper [14]. For
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simplicity, we present the schemes in one space dimension. Denote,

āi+ 1
2

=
ai + ai+1

2
, [[a]]i+ 1

2
= ai+1 − ai.

The scheme proposed in [14] is of the form:

(2.1)
∂

∂t
Ui = − 1

∆x

(
FES1

i+ 1
2
− FES1

i− 1
2

)
− g

2∆x

[
0

h̄i+ 1
2
[[b]]i+ 1

2
+ h̄i− 1

2
[[b]]i− 1

2

]
.

For first-order schemes, the numerical flux is given by

FES1
i+ 1

2
= FEC

i+ 1
2
− 1

2
DES1

i+ 1
2
[[V]]i+ 1

2
,

where V = ∂UE = [g(h+b)− u2

2 , u]# is the vector of entropy variables. The entropy
conservative flux is

FEC
i+ 1

2
=

[
h̄i+ 1

2
ūi+ 1

2

h̄i+ 1
2
(ūi+ 1

2
)2 + g

2 (h2)i+ 1
2

]
,

and the numerical diffusion operator is

DES1
i+ 1

2
= Ri+ 1

2
|Λi+ 1

2
|R#i+ 1

2
,

with

Ri+ 1
2

=
1√
2g

[
1 1

λ− λ+

]
, λ± = ūi+ 1

2
±

√
gh̄i+ 1

2
, |Λi+ 1

2
| =

[
|λ−| 0
0 |λ+|

]
.

A second-order scheme is obtained by replacing the flux FES1
i+ 1

2
in (2.1) with FES2

i+ 1
2
,

(2.2) FES2
i+ 1

2
= FEC

i+ 1
2
− 1

2
DES1

i+ 1
2

(
V+

i+ 1
2
−V−

i+ 1
2

)
,

where V± are obtained from either a MINMOD or ENO reconstruction of the scaled
entropy variables, following the procedure of [15].

Both first- and second-order schemes satisfy a discrete version of the energy
inequality (1.3) and preserve the discrete lake at rest [14]

ui ≡ 0, hi + bi ≡ constant.

Time integration is performed using the forward Euler method and a strong stability
preserving Runge-Kutta 2 method for first and second order schemes, respectively.
The extension of this scheme to two space dimensions is detailed in [14].

3. Monte Carlo Finite Volume Method

The next step in approximating the random shallow water equations (1.6) is to
discretize the probability space. The simplest sampling method is the Monte Carlo
(MC) algorithm consisting of the following three steps:

1. Sample: We draw M independent identically distributed (i.i.d.) initial
data and source samples {Uk

0 ,Sk} with k = 1, 2, . . . ,M from the random
fields {U0,S} and approximate these by piecewise constant cell averages.

2. Solve: For each realization {Uk
0 ,Sk}, the underlying balance law (1.2) is

solved numerically by the finite volume method (1.5). We denote the FVM
solutions by Uk,n

T , i.e. by cell averages {Uk,n
C : C ∈ T } at the time level tn,

Uk,n
T (x) = Uk,n

C , ∀x ∈ C, C ∈ T .
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3. Estimate Statistics: We estimate the expectation of the random solution
field with the sample mean (ensemble average) of the approximate solution:

(3.1) EM [Un
T ] :=

1
M

M∑

i=1

Uk,n
T .

Higher statistical moments can be approximated analogously under suitable
statistical regularity of the underlying random entropy solutions [20].

The above algorithm is quite simple to implement. We remark that step 1 requires
a (pseudo) random number generator. In step 2, any standard (high-order) finite
volume scheme can be used. Hence, existing code for FVM can be used and there
is no need to rewrite FVM code. Furthermore, the only (data) interaction between
different samples is in step 3 when ensemble averages are computed. Thus, the
MC-FVM is non-intrusive as well as easily parallelizable.

Although a rigorous error estimate for the MC-FVM approximating shallow wa-
ter equations is currently out of reach, we rely on our analysis for a scalar conser-
vation law in [20] and on our numerical experience with the MLMC-FVM solution
of non-linear hyperbolic systems of conservation laws with random initial data in
[21] to postulate that the following estimate holds:

(3.2) ‖E[U(·, tn)]− EM [Un
T ]‖L2(Ω;L1(Rd)) ≤ CstatM

− 1
2 + Cst∆xs.

Here, the L2(Ω; L1(Rd))-norm of the random function f(x, ω) is defined as

‖f‖L2(Ω;L1(Rd)) :=
(∫

ω∈Ω
‖f(·, ω)‖2L1(Rd)dP(ω)

) 1
2

,

and Cstat, Cst are constants that depend only on the initial data and on the source
term in (1.6). In the above, we have assumed that the underlying finite volume
scheme converges to the solutions of the deterministic shallow water equations (1.1)
at a rate of s > 0. Moreover, in (3.2) and throughout the following, we adopted
the (customary in the analysis of MC methods) convention to interpret the MC
samples Uk,n

T in (3.1) as i.i.d. random functions, with the same law as U.
Note that the error estimate for the mean requires that the solution has finite

second moments. Based on the error analysis of [20], we need to choose [20, 21]

(3.3) M = O(∆x−2s)

in-order to equilibrate the statistical error with the spatio-temporal error in (3.2).
Consequently, it is straightforward to deduce that the asymptotic error vs. (com-
putational) work estimate is then given by

(3.4) ‖E[U(·, tn)]− EM [Un
T ]‖L2(Ω;L1(Rd)) ! (Work)−s/(d+1+2s).

The above error vs. work estimate is considerably more expensive when compared
to the deterministic FVM error which scales as (Work)−s/(d+1) [20].

4. Multi-level Monte Carlo Finite Volume Method

Given the slow convergence of MC-FVM, we propose the Multi-Level Monte
Carlo finite volume method (MLMC-FVM). The key idea behind MLMC-FVM is
to simultaneously draw MC samples on a hierarchy of nested grids [20].
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4.1. MLMC-FVM algorithm. The algorithm consists of the following four steps:
1. Nested meshes: Consider nested meshes {T"}∞"=0 of the domain D with

corresponding mesh widths ∆x" = 2−"∆x0, where ∆x0 is the mesh width
for the coarsest resolution and corresponds to the lowest level $ = 0.

2. Sample: For each level of resolution $ ∈ N0, we draw M" independent
identically distributed (i.i.d) samples {Uk

0,",S
k
" } with k = 1, 2, . . . ,M" from

the random fields {U0,S} and approximate these by cell averages.
3. Solve: For each resolution level $ and each realization {Uk

0,",S
k
" }, the

underlying balance law (1.2) is solved by the finite volume method (1.5)
with mesh width ∆x". Denote the finite volume solutions by Uk,n

T!
, i.e. by

cell averages {Uk,n
C : C ∈ T"} at the time level tn and resolution level $.

4. Estimate solution statistics: Fix some positive integer L < ∞ corre-
sponding to the highest level. We estimate the expectation of the random
solution field with the following estimator:

(4.1) EL[Un
T ] :=

L∑

"=0

EM! [U
n
T!
−Un

T!−1
],

with EM! being the MC estimator defined in (3.1) for the level $. Higher
statistical moments can be approximated analogously (see, e.g., the sparse
tensor discretization of [20]).

MLMC-FVM is non-intrusive as any standard FVM code can be used in step 3.
Furthermore, MLMC-FVM is amenable to efficient parallelization as data from
different grid resolutions and different samples only interacts in step 4.

Again, based on the rigorous estimate for scalar conservation laws in [20] and
on the experience for systems of conservation laws [21], we postulate the following
error estimate:
(4.2)

‖E[U(·, tn)]− EL[Un
T ]‖L2(Ω;L1(Rd)) ≤ C1∆xs

L + C2

{ L∑

"=0

M
− 1

2
" ∆xs

"

}
+ C3M

− 1
2

0 .

Here s refers to the convergence rate of the deterministic finite volume scheme and
C1,2,3 are constants depending only on the initial data and the source term.

From the error estimate (4.2), we obtain that the number of samples to equili-
brate the statistical and spatio-temporal discretization errors in (4.1) is given by

(4.3) M" = O(22(L−")s).

Notice that (4.3) implies that the largest number of MC samples is required on the
coarsest mesh level $ = 0, whereas only a small fixed number of MC samples are
needed on the finest discretization levels.

The corresponding error vs. work estimate for MLMC-FVM is given by [21, 20],

(4.4) ‖E[u(·, tn)]− EL[u(·, tn)]‖L2(Ω;L1(Rd)) ! (Work)−s/(d+1) · log(Work),

provided s < (d + 1)/2. The above estimates show that MLMC-FVM (4.4) is
superior to MC-FVM (3.4). Furthermore, (4.4) is almost (up to logarithmic term)
of the same order as the estimate for the deterministic finite volume scheme. For
the same error, MLMC-FVM is expected to be considerably faster than MC-FVM.
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5. Multi-level alias-free representation of uncertain bottom
topography

An approximation to the exact bottom topography b(x) ∈ W 1,∞(D) is often
obtained from the measurements. For instance [5, 13], in two-dimensional case,
nodal measurements bi+ 1

2 ,j+ 1
2

:= b(xi+ 1
2 ,j+ 1

2
) are obtained at locations xi+ 1

2 ,j+ 1
2

=
(xi+ 1

2
, yj+ 1

2
), i.e. at vertices of an axiparallel quadrilateral topography mesh T̄ (pos-

sibly different from the FVM mesh T ) on the rectangular two-dimensional domain
D. Since each measurement bi+ 1

2 ,j+ 1
2

is prone to uncertainty [13], all measured val-
ues are treated as random variables with some prescribed probability distribution;
we choose

(5.1) bi+ 1
2 ,j+ 1

2
(ω) := b(xi+ 1

2 ,j+ 1
2
) + Yi,j(ω), Yi,j ∼ U(−εi,j , εi,j), εi,j > 0,

i.e. bi+ 1
2 ,j+ 1

2
(ω) ∈ L2(Ω, R) are random variables (not necessarily independent),

which deviate from the measurements bi+ 1
2 ,j+ 1

2
by ± εi+ 1

2 ,j+ 1
2

with U being the uni-
form distribution (other distributions can be considered analogously.) Thus, (5.1)
provides an approximation to the uncertain topography b(x, ω) ∈ L2(Ω, W 1,∞(D)).

In two space dimensions, if we assume that the bottom topography b(x, ω) is
a continuous piece-wise linear function, the energy conservative well-balanced dis-
cretization of the source term Si,j is given by [14]

(5.2) SEC
i,j :=





0
g

2∆x

(
h̄i+ 1

2 ,j [[b]]i+ 1
2 ,j + h̄i− 1

2 ,j [[b]]i− 1
2 ,j

)

g
2∆y

(
h̄i,j+ 1

2
[[b]]i,j+ 1

2
+ h̄i,j− 1

2
[[b]]i,j− 1

2

)



 ,

which amounts to computing the averages of Si± 1
2 ,j(ω) and Si,j± 1

2
(ω),

(5.3) Si,j(ω) :=





0
g

2∆x

(
Si− 1

2 ,j(ω) + Si+ 1
2 ,j(ω)

)

g
2∆y

(
Si,j− 1

2
(ω) + Si,j+ 1

2
(ω)

)



 ,

where Si+ 1
2 ,j(ω) and Si,j+ 1

2
(ω) are the integrals of the weak directional derivatives

of a continuous piecewise linear bottom topography b(x, ω) over “shifted” cells
Ci+ 1

2 ,j , Ci,j+ 1
2

of the mesh T ,

(5.4)

Si+ 1
2 ,j(ω) :=

∫

C
i+ 1

2 ,j

h̄i+ 1
2 ,j(ω)∂xb(x, ω) dx,

Si,j+ 1
2
(ω) :=

∫

C
i,j+ 1

2

h̄i,j+ 1
2
(ω)∂yb(x, ω) dx.

In one-dimensional case, the last term in (5.3) is dropped and the first integral in
(5.4) is taken over cells Ci+ 1

2
= (xi, xi+1), resulting in the one-dimensional energy

conservative source discretization in (2.1). Since MLMC methods require that a
deterministic problem is solved by the means of such FVM on the coarsest mesh
level for a very large number (often around 1010) of samples, the evaluation of the
full bottom topography for each sample becomes computationally infeasible.

To remedy this, we consider a hierarchical multi-level representation of the bot-
tom topography. The key to an efficient MLMC simulation of the uncertain random
topography (with very large numbers of sources of uncertainty) is that only some of
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the hierarchical bottom topography levels need to be evaluated; in particular, only
these levels, which are coarser than or coincide with the active FVM discretization
level, are necessary. An active level is that level of resolution on which the FVM
computation is being performed for a given sample.

5.1. Preliminaries. To introduce the multi-level topography representation, we
recall some notation: levels $ = 0, . . . , L enumerate nested grids T0, . . . , TL that are
used in the MLMC-FVM solver. Apart from T0, . . . , TL, we consider an additional
hierarchical structure, that will be used in the multi-level representation of the
bottom topography. More precisely, assume a nested sequence {T̄"̄ = T̄ 1

"̄
× · · · ×

T̄ d
"̄

, $̄ = 0, . . . , L̄} of isotropic regular d-dimensional axiparallel quadrilateral meshes
for the physical bounded domain D = I1 × · · ·× Id ⊂ Rd, Ir ⊂ R, d = 1, 2, each of
them obtained by $̄ uniform refinements of some initial, regular mesh T̄0 (of domain
D) consisting of the cells C0

k , k = 1, . . . ,#T̄0. Note, that a-priori we do not assume
any relation between L̄ and L. However, for the sake of consistency, we assume

T̄"̄ = T", provided $̄ = $.

For p ∈ N0, define Qp(D, T̄ ) to be the space of piece-wise multivariate tensor
product polynomials of degree p on a mesh T̄ of a bounded domain D having
essentially bounded weak derivatives up to order p, i.e.

Qp(D, T̄ ) := {f ∈ W p,∞(D) : f |C ∈ Qp(C), ∀C = C1 × · · ·× Cd ∈ T̄ },

where Qp(C) is the space of multivariate tensor product polynomials on cell C,

Qp(C) := {x *→ p1(x1) · · · · · pd(xd) : pr ∈ Pd(Cr), ∀r = 1, . . . , d}.

5.1.1. Haar wavelets in 1d. Assume d = 1 and observe, that for any interval I ⊂ R,
there is an orthogonal decomposition of Q0(I, T̄L̄),

(5.5) Q0(I, T̄L̄) =
L̄⊕

"̄=0

R"̄, R"̄ := Q0(I, T̄"̄) ∩Q0(I, T̄"̄−1)
⊥.

An L2(I)-orthogonal basis of Q0(I, T̄L̄) can be explicitly constructed as follows. For
each $̄ ∈ N0, every cell C "̄

k ∈ T̄"̄ is affinely equivalent to the reference cell Ĉ = (0, 1),
i.e. for all k = 1, . . . ,#T̄"̄, there are affine mappings

F "̄
k : Ĉ ) x̂ → x ∈ C "̄

k ∈ T̄"̄, |DF "̄
k | = |C "̄

k| = O(2−"̄).

Let T̂0 = {Ĉ} and define T̂1 = {Ĉ1, Ĉ2} to be the set of two cells Ĉ1 = (0, 1/2), Ĉ2 =
(1/2, 1) that are obtained by uniform subdivision of the reference cell Ĉ. Then

dim
(
Q0(Ĉ, T̂0)

)
= 1, dim

(
Q0(Ĉ, T̂1) ∩Q0(Ĉ, T̂0)⊥

)
= 1.

Denote by {ϕ̂} the L2(Ĉ)-normalized basis of Ŵ0 = Q0(Ĉ, T̂0) and by {ψ̂} the
L2(Ĉ)-normalized basis of Ŵ1 = Q0(Ĉ, T̂1) ∩Q0(Ĉ, T̂0)⊥. Next we define Ψ0 by

Ψ0 :=
{

ψ0
k : ψ0

k ◦ F 0
k = ϕ̂ ∈ Ŵ0, k = 1, . . . ,#T̄0

}
,

and, for every $̄ ≥ 1, we define Ψ"̄ to be the set of affine images of the (mother-
wavelets) ψ̂n under the affine mappings F "̄−1

k , i.e.

Ψ"̄ :=
{

ψ"̄
k : ψ"̄

k ◦ F "̄−1
k = ψ̂ ∈ Ŵ1, k = 1, . . . ,#T̄"̄−1

}
, $̄ ≥ 1.
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By construction, ψ"̄
k forms an L2(I)-orthogonal system and R"̄ = span(Ψ"̄) in (5.5).

In the remainder of this paper, we confine ourselves to the so-called Haar wavelets
in one dimension, i.e. ϕ̂(x) ≡ 1 and the mother-wavelet ψ̂ is given by

ψ̂(x) = χ[0, 1
2 )(x)− χ[ 12 ,1)(x), ∀x ∈ Ĉ.

5.2. Multi-level representation of bottom topography in one dimension.
For d = 1 (i.e. D = I1), we will assume that uncertain measurements bi+ 1

2
(ω) :=

b(xi+ 1
2
, ω) of the exact bottom topography b(x) are available, as described in (5.1).

Then bi+ 1
2
(ω) are treated as nodal values and are linearly interpolated, see Figure 1.

!"
!"#$%&!"'(%& !"'$%&!"'$

)"#$%&

)"'$%&

)"'(%&

Figure 1. Uncertain measurements bi+ 1
2
(ω) of the exact bottom

topography b(x) at locations xi+ 1
2

are treated as nodal values and
then are linearly interpolated on the finest mesh level L̄.

Furthermore, we use the nodal hierarchical “hat” basis interpolation operator IL̄,

(5.6) IL̄b(x, ω) =
L̄∑

"̄=0

b"̄(x, ω), b"̄ := I"̄b− I"̄−1b, I−1 ≡ 0,

where I"̄ denotes linear nodal interpolation operator on the mesh T̄"̄. The finest
level L̄ < ∞ corresponds to the “pixel level” of a terrain imaging device.

Each b"̄(x, ω) ∈ L2(Ω,Q1(I1, T̄"̄)) is a linear combination of the hierarchical “hat”
basis (“Schauder basis”, see Figure 2) functions ϕ"̄

k(x), i.e.

(5.7) b"̄(x, ω) =
N̂!̄∑

k=1

b"̄
k(ω)ϕ"̄

k(x), b"̄
k ∈ L2(Ω, R),

where

N̂"̄ := dim(Q1(I1, T̄"̄))−
"̄−1∑

"̄′=0

dim(Q1(I1, T̄"̄′)),

i.e. N̂0 = 2 and N̂"̄ = #T̄"̄−1 = 2"̄−1, ∀$̄ ≥ 1.
The interpolated bottom topography belongs to the space

IL̄b(x, ω) ∈ L2(Ω,Q1(I1, T̄L̄)),

and the weak spatial derivative of the interpolated topography belongs to the space

∂x(IL̄b)(x, ω) ∈ L2(Ω,Q0(I1, T̄L̄)).
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Figure 2. Hierarchical “hat” basis functions ϕ"̄
k(x) for the first 4 levels.

Since ∂xϕ"̄
k(x) = 1

∆x!̄
ψ"̄

k(x), (see Figure 3), we have

∂xb"̄(x, ω) =
1

∆x"̄

N̂!̄∑

k=1

b"̄
k(ω)ψ"̄

k(x).

!" !"

!" !"

# #$!"

%#$!"

&

&"

Figure 3. Derivative of a one-dimensional hierarchical basis func-
tion ϕ"̄

k(x) is a scaled Haar wavelet 1
∆x!̄

ψ"̄
k(x).

Consequently, B := ∂x(IL̄b) admits the Haar wavelet representation,

(5.8) B(x, ω) := BL̄(x, ω) :=
L̄∑

"̄=0

#T̄!̄−1∑

k=1

B"̄
k(ω)ψ"̄

k(x),

where the “coefficients” B"̄
k(ω) ∈ L2(Ω, R) are random variables given by

B0
k(ω) =

1
∆x0

(
b0
1(ω) + b0

2(ω)
)
, B"̄

k(ω) =
1

∆x"̄
b"̄
k(ω), ∀$̄ > 0.

Let h"
i(ω) be cell averages of water level h(x, ω) above bottom topography at the

mesh level 0 ≤ $ ≤ L, i.e. h"(x, ω) ∈ L2(Ω,Q0(I1, T")), h"(x, ω) := h"
i(ω), ∀x ∈ C"

i .
The terms S",L̄

i+ 1
2
∈ L2(Ω, R) needed in one-dimensional analogue of (5.4) are given

by integrating over “shifted” cells C"
i+ 1

2
= (x"

i , x
"
i+1) of the mesh T",

(5.9) S",L̄
i+ 1

2
(ω) =

∫

C!
i+ 1

2

h̄"
i+ 1

2
(ω)BL̄(x, ω) dx, i = 0, . . . ,#T".

The first superscript $ of S",L̄
i denotes the FVM mesh level. The second superscript

L̄ denotes “pixel level” in the multi-level topography representation (5.8).

Lemma 5.1. Assume d = 1 and that B(x, ω) is given in the form (5.8). By
BL̂(x, ω) denote the hierarchical representation (5.8) truncated up to level L̂ ≤ L̄.
Then, for all L̄ ≥ L̂ ≥ $ + 1, we have

(5.10) S",L̄
i+ 1

2
(ω) = S",L̂

i+ 1
2
(ω), i = 0, . . . ,#T".
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Lemma 5.1 states that it is sufficient to compute only terms up to level $ + 1 in
the hierarchical bottom topography representation (5.6) when the underlying FVM
solver is on the mesh level $. This way, computational work is significantly reduced
on the coarsest levels $ 3 L̄.

Proof. Notice, that due to the vanishing moments of the wavelet basis functions,
∫

C!
i+ 1

2

ψ"̄
k(x)dx = 0 for $̄ > $ + 1.

Since h̄"
i+ 1

2
(ω) is constant and equals (h"

i(ω) + h"
i+1(ω))/2 in each cell C"

i+ 1
2
,

∫

C!
i+ 1

2

h̄"
i+ 1

2
(ω)B"̄

k(ω)ψ"̄
k(x)dx = B"̄

k(ω)h̄"
i+ 1

2
(ω)

∫

C!
i+ 1

2

ψ"̄
k(x)dx = 0 for $̄ >$ + 1.

The terms for levels $̄ in the sum (5.8)-(5.9) vanish provided $̄ >$ +1 , hence these
levels ($̄ >$ + 1) can be disregarded entirely. "

5.3. Multi-level representation of bottom topography in two dimensions.
For two-dimensional case (i.e. d = 2, and Cartesian domain D = I1 × I2), we
assume that uncertain measurements bi+ 1

2 ,j+ 1
2
(ω) := b(xi+ 1

2
, yj+ 1

2
, ω) of the exact

bottom topography b(x, y) are available, as in (5.1). Then bi+ 1
2 ,j+ 1

2
(ω) are treated

as nodal values and are linearly interpolated in each dimension using the bilinear
hierarchical interpolation operator,

(5.11) IL̄b(x, y,ω) =
L̄∑

"̄=0

b"̄(x, y,ω), b"̄ := I"̄,"̄b− I"̄−1,"̄−1b, I−1,−1 ≡ 0,

where I"̄,"̄ denotes bilinear nodal interpolation operator on the mesh T̄"̄ = T̄ 1
"̄
× T̄ 2

"̄
.

The finest level L̄ < ∞ corresponds to the “pixel level” of a terrain imaging device.
In order to construct IL̄b, we consider isotropic tensorization of the hierarchical

“hat” (“Schauder”) basis functions, i.e. each b"̄(x, ω) ∈ L2(Ω,Q1(I1 × I2, T̄"̄)) is a
linear combination of the multivariate tensor products of such basis functions,

(5.12)

b"̄(x, ω) =
N̂!̄∑

k,k′=1

b"̄
k,k′(ω)ϕ"̄

k(x)ϕ"̄
k′(y) +

N̂!̄∑

k=1

N̂!̄−1∑

k′=1

b̌"̄
k,k′(ω)ϕ"̄

k(x)ϕ"̄
k′+ 1

2
(y)

+
N̂!̄−1∑

k=1

N̂!̄∑

k′=1

b̂"̄
k,k′(ω)ϕ"̄

k+ 1
2
(x)ϕ"̄

k′(y), b"̄
k,k′ , b̌

"̄
k,k′ , b̂

"̄
k,k′ ∈ L2(Ω, R),

where ϕ"̄
k+ 1

2
(x) := ϕ"̄

k(x− 1
2∆x") and ϕ"̄

k′+ 1
2
(y) := ϕ"̄

k′(y − 1
2∆y").

The interpolated bottom topography belongs to the space

IL̄b(x, ω) ∈ L2(Ω,Q1(I1 × I2, T̄L̄)).

For p1, p2 ∈ N0, define the tensor product of mixed degree polynomial spaces (5.1),

Qp1,p2(I1 × I2, T̄ 1 × T̄ 2) := Qp1(I1, T̄ 1)⊗Qp2(I2, T̄ 2).

Using this notation, the weak gradient of IL̄b belongs to the space

B(x, ω) := ∇(IL̄b)(x, ω) ∈ L2
[
Ω,Q0,1(I1 × I2, T̄L̄)×Q1,0(I1 × I2, T̄L̄)

]
.
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Each component of the weak gradient B := (B1, B2)# is a tensor product of piece-
wise constant and piece-wise linear continuous functions; in particular,

B1(·, y, ·) ∈ L2(Ω,Q0(I1, T̄ 1
L̄ )), B2(x, ·, ·) ∈ L2(Ω,Q0(I2, T̄ 2

L̄ )).

Hence, B1 admits a one-dimensional Haar wavelet representation in x variable and
B2 admits one-dimensional Haar wavelet representation in y variable, i.e.

(5.13)

B1(x, y, ω) := BL̄
1 (x, y,ω) :=

L̄∑

"̄=0

#T̄ 1
!̄−1∑

k=1

B"̄
1,k(y, ω)ψ"̄

k(x),

B2(x, y,ω) := BL̄
2 (x, y,ω) :=

L̄∑

"̄=0

#T̄ 2
!̄−1∑

k′=1

B"̄
2,k′(x, ω)ψ"̄

k′(y),

where the coefficients B"̄
1,k(y, ·), B"̄

2,k′(x, ·) ∈ L2(Ω, R) depend on b"̄
·,·, b̌"̄

·,·, b̂"̄
·,·.

Let h"
i,j(ω) be cell averages of water level h(x, ω) above bottom topography at the

mesh level 0 ≤ $ ≤ L, i.e. h"(x, ω) ∈ Q0(I1× I2, T"), h"(x, ω) := h"
i,j(ω), ∀x ∈ C"

i,j .
The terms S",L̄

i+ 1
2 ,j

, S",L̄
i,j+ 1

2
∈ L2(Ω, R2) in (5.4) are given by integrating over “shifted”

cells C"
i+ 1

2 ,j
= (x"

i , x
"
i+1)× (y"

j− 1
2
, y"

j+ 1
2
), C"

i,j+ 1
2

= (x"
i− 1

2
, x"

i+ 1
2
)× (y"

j , y
"
j+1) of T",

(5.14)

S",L̄
i+ 1

2 ,j
(ω) =

∫

C!
i+ 1

2 ,j

h̄"
i+ 1

2 ,j(ω)BL̄
1 (x, ω) dx,

S",L̄
i,j+ 1

2
(ω) =

∫

C!
i,j+ 1

2

h̄"
i,j+ 1

2
(ω)BL̄

2 (x, ω) dx.

The first superscript $ of S",L̄
·,· denotes the FVM mesh level. The second superscript

L̄ denotes the “pixel level” in the multi-level topography representations (5.13).

Lemma 5.2. Assume d = 2 and that the weak gradient B(x, ω) is given in the
form (5.13). By BL̂

1 (x, ω), BL̂
2 (x, ω) denote the hierarchical representations (5.13)

truncated up to level L̂ ≤ L̄. Then, for all L̄ ≥ L̂ ≥ $ + 1, we have

(5.15)
S",L̄

i+ 1
2 ,j

(ω) = S",L̂
i+ 1

2 ,j
(ω), i = 0, . . . ,#T 1

" , j = 1, . . . ,#T 2
" ,

S",L̄
i,j+ 1

2
(ω) = S",L̂

i,j+ 1
2
(ω), i = 1, . . . ,#T 1

" , j = 0, . . . ,#T 2
" .

Lemma 5.2 states that it is sufficient to compute only terms up to level $+1 in the
hierarchical bottom topography representation (5.13). Hence, the computational
work is significantly reduced on the coarsest mesh levels where $ 3 L̄.

Proof. The proof follows the main ideas presented in the proof of Lemma (5.1).
Since the wavelet basis functions ψ"̄

k(x), ψ"̄′

k′(y) have vanishing moments and since
h̄"

i+ 1
2 ,j

(ω), h̄"
i,j+ 1

2
(ω) are constant in cells C"

i+ 1
2 ,j

, C"
i,j+ 1

2
, respectively, we obtain

∫

C!
i+ 1

2 ,j

h̄"
i+ 1

2 ,jB
"̄
1,k(y, ω)ψ"̄

k(x)dx = h̄"
i+ 1

2 ,j

∫

C!
i+ 1

2

ψ"̄
k(x)dx

︸ ︷︷ ︸
=0 if "̄ >" +1

∫

C!
j

B"̄
1,k(y,ω)dy = 0
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and, analogously,
∫

C!
i,j+ 1

2

h̄"
i,j+ 1

2
B"̄

2,k′(x, ω)ψ"̄
k′(y)dx = h̄"

i,j+ 1
2

∫

C!
i

B"̄
2,k′(x, ω)dx

∫

C!
j+ 1

2

ψ"̄
k′(y)dy

︸ ︷︷ ︸
=0 if "̄ >" +1

= 0

provided $̄ >$ + 1. The terms for levels $̄ in the sums (5.13) vanish provided
$̄ >$ + 1, hence these levels can be discarded. "

6. Numerical experiments

We tested the proposed MC and MLMC algorithms extensively for the shallow
water equations with uncertain bottom topography, in one and two space dimen-
sions. In particular, we are interested in verifying the following claims; i) MC and
MLMC algorithms can handle a very large number of sources of uncertainty which
are beyond the reach of existing deterministic methods like stochastic Galerkin and
stochastic collocation, ii) MLMC method is considerably superior (faster) than the
corresponding MC algorithm, iii) the hierarchical multi-level representation of the
bottom topography (see the previous section) speeds up the MLMC algorithm and
iv) an (efficient) massively parallel version of the MLMC algorithm can simulate
complex and physically relevant shallow water flows with uncertain initial data and
bottom topography.

All the simulations reported below are performed with the recently developed
massively parallel code ALSVID-UQ. An extensive technical description of the im-
plementation of ALSVID-UQ together with the results for linear scaling tests on
massively parallel homogeneous distributed computing architectures can be found
in [24]. All simulations were executed on two high performance computing clusters:
“Brutus” in ETH Zürich [30] and “Palu” (Cray XE6) in CSCS, Manno [31].

As second-order high-resolution schemes are the basis of production codes [17],
we concentrate on the second-order entropy stable schemes of [14]. In particular, we
follow the second-order TeCNO implementation suggested in a recent paper [15].
Furthermore, the following parameters are required:
Parameter Description
L number of hierarchical mesh levels
ML number of samples at the finest mesh level
grid size number of cells in X and in Y directions
CFL CFL number based on the fastest wave
cores total number of cores used in the simulation
runtime clock-time (serial runs) or wall-time (parallel runs); hrs:min:sec
efficiency MPI efficiency, as defined in (6.9)

6.1. A 1-D dam break problem. The computational domain is [0, 1] with out-
flow boundary conditions. We have an initial dam:

(6.1) {h0(x, ω), u0(x, ω)} =

{
{2.0 + Y (ω)− b(x, ω), 0.0} if x < 1.0,

{1.5− b(x, ω), 0.0} if x > 1.0,

with Y (ω) ∼ U(0, 1
10 ). Thus we have a dambreak problem with uncertain initial

dam height. The uncertain bottom topography b(x, ω) is represented in terms of the
hierarchical “Schauder” basis (5.6) - (5.7) with 10 levels (i.e. L̄ = 9, $̄ = 0, . . . , 9)
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L ML grid size CFL cores runtime
0 1 32768 0.45 1 0:16:20

Figure 4. Typical sample path of the solution for the dambreak
problem (6.1). Initial shock splits into a rarefaction and a shock.

L ML grid size CFL cores runtime efficiency
10 16 8192 0.45 44 0:08:07 99.1%

Figure 5. Mean and standard deviation of the reference solution
for the dambreak problem (6.1) computed using MLMC-FVM with
ES flux (2.2). Variance is concentrated around the shock.

where the coefficients b"̄
k(ω) are given by mean values µ"̄

k which are perturbed by
independent uniformly distributed centered random variables with decaying vari-
ances, i.e.

(6.2) b"̄
k(ω) = 0.7 + µ"̄

k + Y "̄
k (ω) ∼ 1

5
U(−ε"̄, ε"̄), ε0 = 0, ε"̄ =

1
$̄1.5

, ∀$̄ ≥ 1,

where all coefficients µ"̄
k are zero except

(6.3) µ3
2 = 0.2, µ4

6 = −0.16, µ5
11 = 0.06.

A realization of the bottom topography is shown in figure 4 and the mean (and
variance) of the topography are shown in figure 5. To the best of our knowledge,
such high dimensional problems (with 29 = 512 sources of uncertainty) have not
been considered in the literature.

A single realization of the reference height is shown in figure 4 and the solution
mean and variance are shown in figure 5. The solution clearly has a left-moving
rarefaction wave and a right-moving shock wave. The variance is large at the shock
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wave but is also significant in other parts of the domain, due to uncertain bottom
topography.

6.1.1. Numerical convergence analysis. Using MLMC-FVM approximation from
Figure 5 (computed on 9 levels of resolution with the finest resolution being on a
mesh of 8192 cells) as a reference solution Uref, we run MC-FVM and MLMC-FVM
on the series of mesh resolutions ranging from 32 cells up to 2048 cells and monitor
the convergence behavior. The number of levels for the MLMC-FVM method is
chosen so that the coarsest level always contains 8 cells. As all the simulations are
performed using the massively parallel ALSVID-UQ [2], the runtime of the parallel
algorithm is obtained by measuring the so-called wall clock time, i.e. the total time
passed during the simulation. It is accessible as MPI Wtime() routine in MPI2.0.
In the convergence plots we use the cumulative wall clock time (obtained by mul-
tiplying wall clock time by number of cores); this way the dependence on the used
number of cores is reduced allowing for straightforward comparison of the runtimes.

Error estimator. Since the solution is a random field, the discretization error is
a random quantity as well. For convergence analysis we therefore compute a sta-
tistical estimator by averaging estimated discretization errors from several inde-
pendent runs. We will compute the errors in (3.2) and (4.2) by approximating
L2(Ω; L1(Rd)) norm with MC quadrature. Let {Uk}k=1,...,K be a sequence of in-
dependent approximate solutions obtained by running MC-FVM or MLMC-FVM
solver K times corresponding to K realizations of the stochastic space. Denoting
the reference solution by Uref, the L2(Ω; L1(Rd))-based relative error estimator is
defined as in [20],

(6.4) RE =

√√√√
K∑

k=1

(REk)2/K, REk = 100×
‖Uref −Uk‖"1(T )

‖Uref‖"1(T )
.

The extensive analysis for the appropriate choice of K is conducted in [20]; we
choose K = 30 which was shown to be more than sufficient.
We compare the following schemes:
MC2 Monte Carlo with 2nd order FVM scheme M = O(∆x−2),
MLMC2 Multi-Level MC with 2nd order FVM scheme M! = ML4(L−!).

The parameter ML corresponds to the number of samples in the finest level and
can be freely chosen. Analysis in [20] suggests that ML = 16 is a reasonable choice
and we use this value in our simulations.

Dashed lines in Figure 6 (and all subsequent figures) indicate expected conver-
gence rate slopes obtained by the theory in [20] for the scalar case (see (3.2) and
(4.2)). We expect them to coincide with the observed convergence rates for sys-
tems of balance laws and in this particular case they are actually very similar. Our
findings coincide with the results published in [20, 21] confirming the robustness of
the implementation.

In Figure 7, we show convergence plots for variance. Both figures show that
MLMC methods are two orders of magnitude faster than MC methods in computing
the mean as well as in computing the variance. This numerical experiment clearly
illustrates the superiority of the MLMC algorithm over the MC algorithm.

6.2. 2-D numerical experiments: Random perturbation of lake at rest.
We consider (1.2) with d = 2 in a computational domain D = [0, 2] × [0, 2], and
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Figure 6. Convergence of estimated mean for 1-D dambreak
(6.1). Both MLMC2 and MC2 give similar errors for the same
spatial resolution. However, there is a significant difference in run-
time: MLMC methods are 2 orders of magnitude faster than MC.

Figure 7. Convergence of estimated variance for 1-D dambreak
(6.1). MLMC methods are 2 orders of magnitude faster than MC.

investigate the evolution of an uncertain perturbation of the lake at rest coupled
with outflow boundary conditions.

The uncertain bottom topography b(x, ω) is represented in terms of the nodal,
bivariate hierarchical basis (5.11) - (5.12) with random amplitudes. Notice that,
formally, this bilinear basis can be obtained by tensorizing the univariate Schauder
basis of C0([0, 2]). Notice also that we used in the present study only isotropically
supported product functions. The bottom topography was resolved to 6 levels (i.e.
L̄ = 5, $̄ = 0, . . . , 5) where coefficients b"̄

k,k′(ω), b̌"̄
k,k′(ω), b̂"̄

k,k′(ω) are given by mean
values µ"̄

k,k′ , µ̌
"̄
k,k′ , µ̂

"̄
k,k′ , respectively. Mean values are then perturbed by indepen-

dent uniformly distributed centered random variables with decaying variances,

(6.5)

b"̄
k,k′(ω) = µ"̄

k,k′ + Y "̄
k,k′(ω) ∼ 2

5
U(−ε"̄, ε"̄),

b̌"̄
k,k′(ω) = µ̌"̄

k,k′ + Y̌ "̄
k,k′(ω) ∼ 2

5
U(−ε"̄, ε"̄),

b̂"̄
k,k′(ω) = µ̂"̄

k,k′ + Ŷ "̄
k,k′(ω) ∼ 2

5
U(−ε"̄, ε"̄),

where all coefficients µ"̄
k,k′ , µ̌

"̄
k,k′ , µ̂

"̄
k,k′ are zero except

(6.6) µ3
2,2 = 0.4, µ4

6,6 = −0.32, µ5
11,11 = 0.12,
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and the magnitudes of the uncertainties are set by ε0 = 0, ε"̄ = 2−"̄, ∀$̄ ≥ 1.
A realization of the uncertain bottom topography and the corresponding mean

and variance are shown in figure 8.

(a) one realization for some fixed ω ∈ Ω (b) mean and variance of b(x, ω)

Figure 8. Uncertain bottom topography (6.5) with 9 hierarchical
levels (L̄ = 8).

Next, we consider the initial data U0 to be a random perturbation of a lake-at-
rest. Let Y ∼ 1

50+ 1
100U(−1, 1) be a random variable independent of {Y "̄

k,k′ , Y̌
"̄
k,k′ , Ŷ

"̄
k,k′}.

An initial perturbation around x0 = (x0, y0) = (1.0, 0.7) with a radius r = 1
10 reads

(6.7) h0(x, y,ω) =

{
1.0 + Y (ω)− b(x, y,ω) if |x− x0| < r,

1.0− b(x, y,ω) if |x− x0| > r,

with b(x, ω) as defined in (6.5) and the initial layer velocities set to zero, i.e.

(6.8) {u0(x, y,ω), v0(x, y,ω)} = {0.0, 0.0}.
Note, that here we have even more sources of uncertainty ((25 − 1)2 − 1 = 962)
than in one-dimensional case (6.2).

Reference solutions, computed with the second-order entropy stable TeCNO
scheme [14, 15] at time T = 0.1 is depicted in Figure 9. The results are com-
puted on 9 nested levels of resolution (L = 8) with the finest resolution being on
a 4096× 4096 mesh and with time steps reduced accordingly in order to maintain
the same CFL constant over all discretization levels. The simulation is run on 2044
cores and 16 samples are taken for the finest mesh resolution.

The above problem is quite involved due to large number of sources of uncertainty
as well as the underlying difficulty of simulating small perturbations of steady
states. The reference solution show that the wave (in mean) spreads out of the
initial source. The variance is distributed in a non-linear and complicated manner
with large amount of variance corresponding to the uncertainties in the bottom
topography.

6.2.1. Numerical convergence analysis. We investigate convergence of error vs. work
in Figure 10 and Figure 11. Here we use the MLMC-FVM simulation from Figure 9
with 9 levels of resolution with the finest resolution being on a 4096 × 4096 mesh
as the reference solution Uref. The error in the mean field converges at expected
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L ML grid size CFL cores runtime efficiency
8 16 4096x4096 0.45 2044 2:13:51 97.5%

Figure 9. Reference solution for perturbed steady-state (6.7) us-
ing MLMC-FVM with ES flux (2.2). Initial perturbation evolves
into asymmetric ribbon wave with uncertain amplitude.

rates. At comparable numerical resolution and accuracy, the MLMC2 is about two
orders of magnitude faster than the MC2 method for this problem. We observe a
slight deterioration in the estimated convergence rates for the variance. This could
well be a pre-asymptotic effect. Again, the MLMC2 appears to be slightly faster
than the corresponding MC2 method in delivering variance estimates of comparable
numerical accuracy.

Figure 10. Convergence of estimated mean in the 2-D simulation
(6.7). MLMC methods are 3 orders of magnitude faster than MC.

6.2.2. Speed up due to hierarchical topology representation. We test the gain in
efficiency due to the multi-level hierarchical representation of the uncertain bottom
topography (5.11) by comparing with a simulation that uses the classic MLMC
algorithm of [21]. In other words, the MLMC2 (full) simulation uses the underlying
bottom topography (at the resolution of the underlying topography mesh) for all
shallow water samples. In particular, simulations at the coarsest level of the FVM
mesh use the topography at the finest level of the underlying topography mesh. We
compare MLMC2 (full) with MLMC2 (truncated) which uses the representation
(5.11) on the perturbations of lake at rest steady state problem in Figure 12. As
suggested by the theory of section 5, the two methods should lead to an identical
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Figure 11. Convergence of estimated variance in the 2-D simu-
lation (6.7). MLMC methods are asymptotically faster than MC.

order of the error for a given space-time resolution. We verify this in Figure 12. On
the other hand, the MLMC2 (truncated) is at least an order of magnitude faster
than the MLMC2 (full) showing that the multi-level representation of the uncertain
bottom topography really provides a significant gain in efficiency.

Figure 12. Convergence of estimated mean for 2-D steady-state
(6.7) with full (L̄ = 8) and truncated ($+1) number of levels in the
hierarchical representation (6.5) of bottom topography. For a given
mesh resolution, both estimators coincide, verifying statements in
Proposition 5.2. The implementation with the truncated number
of levels is more than 10 times faster on a mesh of 256× 256 cells.

6.2.3. Efficiency of parallelization. The parallelization for the MLMC algorithm is
performed using the static load balancing procedure described in [24]. In Figure 13
we show the efficiency of parallelization defined as a fraction of simulation time
(excluding time spent for MPI communications and idling) over wall clock time,

(6.9) efficiency := 1− (total clock time of all MPI routines)
(#cores)× (wall clock time)

.

We observe that runs for convergence analysis in Figures 10 and 11 were quite
efficient and most of the time is spent computing rather than communicating or
waiting. Furthermore, the strong scaling up to around 4000 cores is verified in
Figure 14 for this problem. Similarly, Figure 15 verifies a weak scaling up to a
similar number of cores. The algorithm is expected to scale up to a much larger
number of cores.
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Figure 13. MPI overhead. For large problems (more than 64 cells
in each dimension) efficiency of parallelization is ≈ 98%.

Figure 14. Strong scaling of MLMC-FVM for steady-state per-
turbation problem (6.5) - (6.7) is verified up to ∼4000 cores.

Figure 15. Weak scaling of MLMC-FVM for steady-state pertur-
bation problem (6.5) - (6.7) is verified up to ∼4000 cores.

7. Conclusion

The shallow water equations model many phenomena in geophysics and oceanog-
raphy. Inputs to these equations such as the initial data and the bottom topography
are uncertain due to inherent uncertainties in the measurement process. Here, we
model the uncertainty in terms of random fields and design efficient statistical sam-
pling algorithms to efficiently compute the uncertainty in the solution.

In particular, we extend our Multi-Level Monte Carlo (MLMC) algorithm of
[20, 21] to the case of systems of balance laws like the shallow water equations with
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random field source terms. A key advantage of the MLMC algorithm is that it
is non-intrusive. Any deterministic solver can be used in the algorithm. In this
paper, we employ the well-balanced energy stable FVM solver of [14] together with
the MLMC method. This solver is good at performing long time integration and
allows stable simulation of small perturbations of the ocean at rest steady state.

A key challenge in designing efficient MLMC algorithms for the shallow water
equations lies in the representation of the bottom topography. In practical appli-
cations [13], the uncertainty in the bottom topography is represented as (possibly
uncorrelated) nodal values. Apart from increasing the number of sources of un-
certainty, this representation makes the MLMC algorithm slow as a large number
of samples (from the underlying topography mesh) have to be drawn, even at the
coarsest FVM meshes. Here, we propose a novel multi-level hierarchical representa-
tion of the bottom topography and show that only samples of bottom topography
from (even) coarser meshes have to drawn, when the flow is being simulated on a
FVM mesh at a certain level of resolution.

Extensive numerical experiments (in one and two space dimensions) show that
the MLMC algorithm is consistently (by 2 orders of magnitude on meshes appear-
ing in engineering practice) faster than the standard MC method. Furthermore,
the multi-level hierarchical bottom topography representation leads to an order
of magnitude speed up over the standard MLMC algorithm, at least in two space
dimensions and for engineering accuracies of point-wise relative errors of 1% in esti-
mates of mean and variance. Coupled with these desirable properties, a robust FVM
solver and an efficient parallelization strategy such as the one described in [24], the
MLMC-FVM method allows to simulate realistic uncertain flows in the presence of
spatially heterogeneous random field source terms. At the same time, the proposed
multi-level representation methodology for the uncertain bottom topography allows
MLMC-FVM treatment of general balance laws with random source terms.
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