
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
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MULTILEVEL MONTE CARLO METHOD WITH APPLICATIONS TO
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

ANDREA BARTH AND ANNIKA LANG

Abstract. In this work, the approximation of Hilbert-space-valued random variables is
combined with the approximation of the expectation by a multilevel Monte Carlo method.
The number of samples on the different levels of the multilevel approximation are chosen
such that the errors are balanced. The overall work then decreases in the optimal case to
O(h−2) if h is the error of the approximation. The multilevel Monte Carlo method is applied
to functions of solutions of parabolic and hyperbolic stochastic partial differential equations
as needed e.g., for option pricing. Simulations complete the paper.

1. Introduction

In science, various problems with uncertainties arise. Some of these problems are for
example given by stochastic differential equations, by stochastic partial differential equations,
or by a random partial differential equations. The uncertainty may be in the initial condition
of the system, in the shape of the domain, in the diffusion coefficients, or in some external
noise that enters the system. One is for example interested in the expected value of the
system or of the variance. A possible way to estimate these values besides deterministic
methods like stochastic Galerkin methods, is to use Monte Carlo methods. In the latter,
the unknown state like the solution of a stochastic differential equation is approximated
and then simulated many times. The average over all simulations is then an estimator for
the expected solution. This leads in its classical version to a computationally expensive
method. To reduce the computational work, Heinrich introduced in [13] the multilevel Monte
Carlo method to approximate functionals of Banach-space-valued random variables. In [11],
Giles developed the multilevel Monte Carlo method for stochastic differential equations. This
method combines the error in the estimation of an expectation in an optimal way with the
errors that arise due to the approximation of the solution of a stochastic differential equation.
In the last years, various authors have used this method for different problems. It was
considered for stochastic differential equations driven by a Brownian motion in [14, 15] and
in the references therein and driven by a Lévy process e.g. in [9, 18]. Applications to random
PDEs can be found in [5, 7, 19] among others, while stochastic partial differential equations
of Itô type were considered in [4, 12].

In this paper, we detach the multilevel Monte Carlo estimator for the expectation of a
random variable from the differential equation. Therefore, we consider a Hilbert-space-valued
random variable Y and a sequence of approximations (Y!, ! ∈ N0). Our interest is to balance
the errors that occur from the approximation of the random variable and from the sampling

Key words and phrases. Multilevel Monte Carlo, stochastic partial differential equations, stochastic Finite
Element methods, stochastic parabolic equation, stochastic hyperbolic equation, multilevel approximations.
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2 BARTH AND LANG

such that the error remains the same but the computational work is smaller than with standard
(singlelevel) Monte Carlo methods. We therefore have to choose the number of samples on
each level of estimation in relation to the speed of convergence of the approximation of the
random variable. It is shown that if the variance of (Y! − Y!−1, ! ∈ N) converges fast enough,
the overall work is of order O(h−2

! ), where O(h!) is the rate of weak convergence of the
approximation (Y!, ! ∈ N0) to Y .

The introduced multilevel Monte Carlo method is applied to stochastic partial differential
equations as introduced in [21]. We give examples of parabolic and hyperbolic equations
and estimate Lipschitz functions of the solution. The framework includes payoff functions
of European options written, for instance, on forward contracts that can be calculated with
the introduced method more efficiently than with standard Monte Carlo methods that are
mainly used today. Furthermore, we show how the knowledge of weak and strong convergence
results influences the number of samples that have to be chosen according to the theory and
therefore the overall work.

This work is organized as follows: In Section 2, the multilevel Monte Carlo method is in-
troduced and discussed for Hilbert-space-valued random variables. This algorithm is applied
to parabolic and hyperbolic stochastic partial differential equations with additive and multi-
plicative martingale noises in Section 3. Finally, in Section 4, simulation results are shown for
the heat equation and the scalar advection equation, both driven by additive Wiener noise.

2. Multilevel Monte Carlo for random variables

In this section, we derive a convergence and a work versus accuracy result for the multilevel
Monte Carlo estimator of a Hilbert-space-valued random variable. This is used to calculate
errors and computational work for the approximation of stochastic partial differential equa-
tions in Section 3. A multilevel Monte Carlo method for (more general) Banach-space-valued
random variables has been introduced in [13], where the author derives bounds on the error
for given work. Here, we do the contrary and bound the overall work for a given accuracy.

First, we state a lemma on the convergence in the number of samples of a Monte Carlo
estimator. Therefore, let Y be a random variable with values in a Hilbert space B and
(Ŷ i, i ∈ N) be a sequence a independent, identically distributed copies of Y . Then, the strong
law of large numbers states that the Monte Carlo estimator EN [Y ] defined by

EN [Y ] :=
1

N

N∑

i=1

Ŷ i

converges P -almost surely to E[Y ] for N → +∞. In the following lemma we see that it also
converges in mean square to E[Y ] if Y is square integrable, i.e., Y ∈ L2(Ω;B) with

L2(Ω;B) :=
{
v : Ω → B, v strongly measurable, ‖v‖L2(Ω;B) < +∞

}
,

where

‖v‖L2(Ω;B) = E[‖v‖2B]1/2.

In contrast to the almost sure convergence of EN [Y ] derived from the strong law of large
numbers, in mean square, a convergence rate can be deduced from the following lemma in
terms of N ∈ N.
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Lemma 2.1. For any N ∈ N and for Y ∈ L2(Ω;B), it holds that

‖E[Y ]− EN [Y ]‖L2(Ω;B) =
1√
N

Var[Y ]1/2 ≤ 1√
N

‖Y ‖L2(Ω;B).

The lemma is proven in [4, Lemma 4.1]. It shows that the sequence of so-calledMonte Carlo
estimators (EN [Y ], N ∈ N) converges with rate O(N−1/2) in mean square to the expectation
of Y .

Next, let us assume that (Y!, ! ∈ N0) is a sequence of approximations of Y , e.g., Y! ∈ V!,
where (V!, ! ∈ N0) is a sequence of finite dimensional subspaces of B. For given L ∈ N0, it
holds that

YL = Y0 +
L∑

!=1

(Y! − Y!−1)

and due to the linearity of the expectation that

E[YL] = E[Y0] +
L∑

!=1

E[Y! − Y!−1].

A possible way to approximate E[YL] is to approximate E[Y! − Y!−1] with the corresponding
Monte Carlo estimator EN! [Y! − Y!−1] with a number of independent samples N! depending
on the level !. We set

EL[YL] := EN0 [Y0] +
L∑

!=1

EN! [Y! − Y!−1]

and call EL[YL] the multilevel Monte Carlo estimator of E[YL]. The following lemma gives
convergence results for the estimator depending on the order of weak convergence of (Y!, ! ∈
N0) to Y and the convergence of the variance of (Y! − Y!−1, ! ∈ N). If neither estimates on
the weak convergence nor on the convergence of the variance are available, one can use — the
in general slower — strong convergence rates.

Lemma 2.2. Let Y ∈ L2(Ω;B) and let (Y!, ! ∈ N0) be a sequence in L2(Ω;B), then, for
L ∈ N0, it holds that

‖E[Y ]−EL[YL]‖L2(Ω;B)

≤ ‖E[Y − YL]‖B +
1√
N0

Var[Y0]
1/2 +

L∑

!=1

1√
N!

Var[Y! − Y!−1]
1/2

≤ ‖Y − YL‖L2(Ω;B) +
L∑

!=0

1√
N!

(‖Y − Y!‖L2(Ω;B) + ‖Y − Y!−1‖L2(Ω;B)),

where Y−1 = 0.

Proof. First, we observe that

‖E[Y ]− EL[YL]‖L2(Ω;B) ≤ ‖E[Y ]− E[YL]‖L2(Ω;B) + ‖E[YL]− EL[YL]‖L2(Ω;B)

= ‖E[Y − YL]‖B + ‖E[YL]− EL[YL]‖L2(Ω;B).
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We call the first component on the right hand side the weak convergence of (Y!, ! ∈ N0) to Y .
The second term satisfies by the linearity of the expectation that

‖E[YL]− EL[YL]‖L2(Ω;B)

=
∥∥∥E[Y0]− EN0 [Y0] +

L∑

!=1

(E[Y! − Y!−1]− EN! [Y! − Y!−1])
∥∥∥
L2(Ω;B)

≤ ‖E[Y0]− EN0 [Y0]‖L2(Ω;B) +
L∑

!=1

‖E[Y! − Y!−1]− EN! [Y! − Y!−1]‖L2(Ω;B).

Now, Lemma 2.1 implies the first assertion. The second inequality follows from the properties
of the integral, i.e., for an integrable, B-valued random variable Y , it holds that

‖E[Y ]‖B ≤ E[‖Y ‖B],

on the one hand side and from the fact that

Var[Y! − Y!−1]
1/2 ≤ ‖Y! − Y!−1‖L2(Ω;B) ≤ ‖Y − Y!‖L2(Ω;B) + ‖Y − Y!−1‖L2(Ω;B)

on the other hand side. !

This lemma enables us to choose for given weak convergence of (Y!, ! ∈ N0) and for given
convergence of the variance of (Y! − Y!−1, ! ∈ N) the number of samples N! on each level
! ∈ N0 such that all terms in the error estimate are equilibrated. Furthermore, we provide
bounds on work versus accuracy. As for these bounds constants are essential, we explicitly
specify them in the proof. A similar result for real-valued random variables can be found
in [12].

Theorem 2.3. Let (Y!, ! ∈ N0) converge weakly to Y of order α > 0, i.e., there exists a
constant C1 such that

‖E[Y − Y!]‖B ≤ C1 2
−α!,

for ! ∈ N0. Furthermore, assume that the variance of (Y! − Y!−1, ! ∈ N) converges with order
β > 0, β ≤ α, i.e., there exists a constant C2 such that

Var[Y! − Y!−1] ≤ (C2)
2 2−2β!,

and that Var[Y0] = (C3)2. For chosen level L ∈ N0, set N! = 22(αL−β!)!2(1+ε), ! = 1, . . . , L,
ε > 0, and N0 = 22αL, then, the error is bounded by

‖E[YL]− EL[YL]‖L2(Ω;B) ≤ (C1 + C3 + C2 ζ(1 + ε))2−αL =: hL,

where ζ denotes the Riemann zeta function, i.e., ‖E[YL]−EL[YL]‖L2(Ω;B) has the same order

of convergence as ‖E[Y − Y!]‖B. Assume further that the work WB
! of one calculation of

Y! − Y!−1, ! ≥ 1, is bounded by C4 2γ! for a constant C4 and γ > 0, that the work to calculate
Y0 is bounded by a constant C5, and that the addition of the Monte Carlo estimators costs
C6

∑L
!=1 2

δ! for some δ ≥ 0 and some constant C6. Then, the overall work WL is bounded by

WL =

{
O(h−max{2,δ/α}

L ) if γ < 2β,

O(max{h−(2+(γ−2β)/α)
L | log(hL)|3+2ε, h−δ/α

L }) if γ ≥ 2β.
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Proof. First, we calculate the error. It holds with the made assumptions that

1√
N0

Var[Y0]
1/2 = C3 2

−αL

and for ! = 1, . . . , L that

1√
N!

Var[Y! − Y!−1]
1/2 ≤ C2 2

β!−αL!−(1+ε) 2−β! = C2 2
−αL!−(1+ε).

So overall we get that

L∑

!=1

1√
N!

Var[Y! − Y!−1]
1/2 ≤ C2 2

−αL
L∑

!=1

!−(1+ε) ≤ C2 2
−αLζ(1 + ε),

where ζ denotes the Riemann zeta function. To calculate the error, we assemble all estimates
to

‖E[YL]− EL[YL]‖L2(Ω;B) ≤ (C1 + C3 + C2 ζ(1 + ε))2−αL.

Next, we calculate the necessary work to achieve this error. The overall work consists of the
work WB

! to calculate Y!−Y!−1 times the number of samples N! on all level ! = 1, . . . , L, the
work WB

0 on level 0, and the addition of the Monte Carlo estimators in the end. Therefore,
we have

WL ≤ C5N0 + C4

L∑

!=1

N!2
γ! + C6

L∑

!=1

2δ!

≤ C5 2
2αL + C4

L∑

!=1

22(αL−β!)!2(1+ε)2γ! + C6

(2δ(L+1) − 1

2δ − 1
− 1

)

≤ 22αL
(
C5 + C4

L∑

!=1

2(γ−2β)!!2(1+ε)
)
+ C6

2δ

2δ − 1
2δL.

If γ < 2β, the sum is absolutely convergent and

WL ≤ (C5 + C4C)22αL + C6
2δ

2δ − 1
2δL = O(h−max{2,δ/α}

L ).

For γ ≥ 2β, it holds that

WL ≤ 22αL(C5 + C42
(γ−2β)LL3+2ε) + C6

2δ

2δ − 1
2δL

= O(max{h−(2+(γ−2β)/α)
L | log(hL)|3+2ε, h−δ/α

L }). !

The error estimates also stay true for α < β, if one sets N! = max{22(αL−β!)!2(1+ε), 1}.
The overall work WL is then dominated by the number of samples N0 = 22αL on the coarsest
level and the work for one solve on the finest level WB

L = O(2γL). The work versus accuracy
analysis leads therefore to

WL = O(h−2·max(1,γ/α)
L ),

for γ < 2β. Nevertheless, if one has the approximation of stochastic partial differential
equations in mind, one will most likely bound ‖E[Y −Y!]‖B with the order of weak convergence
and Var[Y! − Y!−1] with the order of strong convergence and it holds that the order of weak
convergence is at least as good as the order of strong convergence, i.e., α ≥ β.
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We remark that the computation of the sum of the Monte Carlo estimators does not
increase the computational complexity if Y! ∈ V!, for all ! ∈ N0, and (V!, ! ∈ N0) is a sequence
of nested finite dimensional subspaces of B.

3. Application to stochastic partial differential equations

In this section, we apply the multilevel Monte Carlo results from the previous section
to stochastic partial differential equations. We aim to approximate expressions of the form
E[ϕ(X(t))], where X = (X(t), t ∈ [0, T ]) is the solution of a stochastic partial differential
equation and ϕ is a measurable mapping from a separable Hilbert space H into a separable
Hilbert space B. We consider three examples and give convergence and work versus accu-
racy estimates. The first example deals with the approximation of functions of solutions of
parabolic stochastic partial differential equations, the second with the weak semidiscrete ap-
proximation of the stochastic heat and wave equation, and in the third, a first order hyperbolic
equation is considered.

3.1. Parabolic problem. In this example, we use the framework from [4]. Therefore, con-
sider stochastic processes on a filtered probability space (Ω,A, (Ft)t≥0,P) satisfying the “usual
conditions” with values in a separable Hilbert space (U, (·, ·)U ). The space of all càdlàg, square
integrable martingales taking values in U with respect to (Ft)t≥0 is denoted by M2(U). We
restrict ourselves to the following class of martingales

M2
b(U) = {M ∈ M2(U), ∃Q ∈ L+

1 (U) s.t. ∀t ≥ s ≥ 0, 〈〈M,M〉〉t − 〈〈M,M〉〉s ≤ (t− s)Q},

where L+
1 (U) denotes the space of all nuclear, symmetric, nonnegative-definite operators. The

operator angle bracket process 〈〈M,M〉〉t is defined as

〈〈M,M〉〉t =
∫ t

0
Qs d〈M,M〉s,

where 〈M,M〉t is the unique angle bracket process from the Doob–Meyer decomposition. The
process (Qs, s ≥ 0) is called the martingale covariance. Examples of such processes are Q-
Wiener processes and square integrable Lévy martingales, i.e., those Lévy martingales with
Lévy measure µ that satisfies ∫

U
‖ψ‖2U µ(dψ) < +∞ .

Since Q ∈ L+
1 (U), there exists an orthonormal basis (en, n ∈ N) of U consisting of eigenvec-

tors of Q. Therefore, we have the representation Qen = γnen, where γn ≥ 0 is the eigenvalue
corresponding to en for n ∈ N. Then, the square root of Q is defined as

Q1/2ψ =
∑

n

(ψ, en)U γ1/2n en,

for ψ ∈ U , and Q−1/2 denotes the pseudo inverse of Q1/2. Let us denote by (H, (·, ·)H)
the Hilbert space defined by H = Q1/2(U) endowed with the inner product (ψ,φ)H =
(Q−1/2ψ, Q−1/2φ)U for ψ,φ ∈ H. Let LHS(H, H) refer to the space of all Hilbert–Schmidt
operators from H to a separable Hilbert space H, and by ‖ ·‖ LHS(H,H) we denote the corre-
sponding norm. By Proposition 8.16 in [21], we have that

(3.1) E[‖
∫ t

0
Ψ(s) dM(s)‖2H ] ≤ E

[ ∫ t

0
‖Ψ(s)‖2LHS(H,H) ds

]
,
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for t ∈ [0, T ], M ∈ M2
b(U), and a locally bounded predictable process Ψ : [0, T ] → LHS(H, H)

with

E[
∫ T

0
‖Ψ(s)‖2LHS(H,H) ds] < +∞.

On the separable Hilbert space H, we consider the initial value problem

(3.2) dX(t) =
(
AX(t) + F (X(t))

)
dt+G(X(t)) dM(t),

for t ∈ [0, T ], T < +∞, subject to the initial condition X(0) = X0 ∈ L2(Ω;H), which is
F0-measurable. The operator A with domain D(A) ⊂ H is assumed to be the generator of an
analytic semigroup S on H. Then, for 0 < α < 1, the interpolation operators Aα = (−A)α

of index α between the linear operator −A and the identity operator I on H are well-defined
(see [10]). We assume that A is boundedly invertible on D(A), and that (−A)−1 : H → D(A)
is a bounded linear operator. In this section, it is sufficient that Aα exists for α = 1/2 and
we set Aβ/2 = (A1/2)

β , for β ∈ N. We further set V = D(A1/2) and denote by V ∗ the dual
of V . By the Riesz representation theorem, we identify H with its dual and work with the
Gelfand triple V ⊂ H ∼= H∗ ⊂ V ∗ with continuous and dense inclusions. The generator
of the semigroup A : D(A) ⊂ H → H can then be extended to a bounded linear operator
A : V → V ∗ via the continuous bilinear form BA : V × V → R defined by

BA(φ,ψ) = 〈Aφ,ψ〉V ∗,V ,

for φ,ψ ∈ V . Here, 〈·, ·〉V ∗,V denotes the dual pairing of V and V ∗. We set

‖φ‖V = ‖A1/2 φ‖H ,

for φ ∈ V , and define the norm on L2(Ω;V ) accordingly. Furthermore, by Theorem 6.13
in [20], there exists a constant C > 0 such that for all t ∈ [0, T ] and φ ∈ V

(3.3) ‖(S(t)− I)φ‖H ≤ C t1/2 ‖A1/2φ‖H = Ct1/2‖φ‖V .
The operator F maps from H into H and G is a mapping from H into the linear operators

from H into H. We assume that the stochastic process M is in M2
b(U). Examples of such

processes are given in [4].
Next, we make assumptions such that Equation (3.2) has a mild solution. Therefore, we

impose linear growth and Lipschitz conditions on the operators F : H → H and G : H →
L(U,H).

Assumption 3.1. Let Z = H,V . Assume that there exist constants C1, C2 > 0 such that
for all ψ1,ψ2 ∈ Z it holds that

‖F (ψ1)‖Z ≤ C1(1 + ‖ψ1‖Z),
‖F (ψ1)− F (ψ2)‖H ≤ C1‖ψ1 − ψ2‖H ,

and

‖G(ψ1)‖LHS(H;Z) ≤ C2(1 + ‖ψ1‖Z),
‖G(ψ1)−G(ψ2)‖LHS(H;H) ≤ C2‖ψ1 − ψ2‖H .

Assumption 3.1 implies that Equation (3.2) has a unique mild solution in H by results in
Chapter 9 in [21] and that the predictable process X : [0, T ]× Ω → H is given by

(3.4) X(t) = S(t)X0 +

∫ t

0
S(t− s)F (X(s)) ds+

∫ t

0
S(t− s)G(X(s)) dM(s).
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For further discussions on stochastic differential equations in infinite dimensions, the reader
is referred to [8] and [21] and the references therein.

A certain regularity on the initial condition causes the regularity of the mild solution
X = (X(t), t ∈ [0, T ]) which is specified in the following lemma. This lemma is proven in [4].

Lemma 3.2. If ‖X0‖L2(Ω;V ) < +∞, then, the solution X defined in Equation (3.4) is element
of L2(Ω;V ) for all times in [0, T ]. In particular, for all t ∈ [0, T ] it holds that

‖X(t)‖L2(Ω;V ) ≤ C(T )(1 + ‖X0‖L2(Ω;V )).

This finishes the introduction of the used parabolic framework. Next, we continue with
the discretization of Equation (3.4). We use the same approximation scheme as in [4]. For
completeness of exposition we include it here.

Let V = (V!, ! ∈ N0) be a nested family of finite dimensional subspaces of V with refinement
level ! ∈ N0, refinement sizes (h!, ! ∈ N0), associated H-orthogonal projections P!, and norm
induced by H. For ! ∈ N0, the sequence V is supposed to be dense in H in the following
sense: For all φ ∈ H, it holds that

lim
!→+∞

‖φ− P!φ‖H = 0.

We define the approximate operator A! : V! → V! through the bilinear form

(A!φ!,ψ!)H = BA(φ!,ψ!),

for all φ!,ψ! ∈ V!. The operator A! is the generator of an analytic semigroup S! = (S!(t), t ≥
0) defined formally by S!(t) = exp(tA!) for t ≥ 0. Then, the semidiscrete problem is given by

dX!(t) = (A!X!(t) + P!F (X!(t))) dt+ P!G(X!(t)) dM(t),

for t ∈ (0, T ], with initial condition X!(0) = P!X0. The semidiscrete mild solution reads

X!(t) = S!(t)X!(0) +

∫ t

0
S!(t− s)P!F (X!(s)) ds+

∫ t

0
S!(t− s)P!G(X!(s)) dM(s).

We shall remark here that we do not approximate the noise. If U = H and V! contains a
finite subset of the eigenbasis of M , the noise is automatically finite dimensional (see e.g. [16]).
Otherwise this approximation might not be suitable for simulations. In this case it is possible
to truncate — if existent — the series representation of M depending on the level !. For
example for Lévy processes it is shown in [2] which properties especially of the eigenvalues
of M imply that the overall order of convergence is preserved.

Next, we introduce a fully discrete approximation. Therefore, let T = (Θn, n ∈ N0) be a
sequence of equidistant time discretizations with step sizes δtn = T 2−n, i.e., for n ∈ N0

Θn = {tnk = T
2nk = δtnk, k = 0, . . . , 2n}.

Note that the time discretization does not have to be equidistant but that we assume it here
for the sake of simplicity of the following analysis. We approximate the semigroup S!(tnk)
for tnk ∈ Θn by the rational approximation r(δtnA!)k and assume the following:

Assumption 3.3. For a given finite dimensional space V! ∈ V and time discretizationΘn ∈ T,
there exists a constant C > 0 such that the rational approximation of the semigroup satisfies
the error bound

‖(S(tnk)− r(δtnA!)
kP!)v‖H ≤ C(h! +

√
δtn)‖v‖V ,

for v ∈ V and k = 0, . . . , n.
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The fully discrete Euler approximation is given for tnk = δtnk ∈ Θn and for ! ∈ N0 by

X!,n(t
n
k) = r(δtnA!)X!,n(t

n
k−1) + r(δtnA!)P!F (X!,n(t

n
k−1)) δt

n

+ r(δtnA!)P!G(X!,n(t
n
k−1))(M(tnk)−M(tnk−1)),

which may be rewritten as

X!,n(t
n
k) = r(δtnA!)

kP!X0 +
k∑

j=1

∫ tnj

tnj−1

r(δtnA!)
k−j+1P!F (X!,n(t

n
j−1)) ds

+
k∑

j=1

∫ tnj

tnj−1

r(δtnA!)
k−j+1P!G(X!,n(t

n
j−1)) dM(s).

(3.5)

This approximation converges strongly to the mild solution X, which was shown in Theo-
rem 4.3 in [4]. We use this result next to show L2(Ω;B) convergence of (ϕ(X!,n), !, n ∈ N0) to
ϕ(X) in the following proposition, where ϕ is a Lipschitz function with values in a separable
Hilbert space B, i.e., we assume that there exists a constant C such that ϕ : H → B satisfies
for all ψ1,ψ2 ∈ H

(3.6) ‖ϕ(ψ1)− ϕ(ψ2)‖B ≤ C‖ψ1 − ψ2‖H .

Proposition 3.4. If X is the mild solution given in Equation (3.4), (X!,n, !, n ∈ N0) is the se-
quence of discrete mild solutions introduced in Equation (3.5), and ϕ satisfies Equation (3.6),
then, for all !, n ∈ N0, the error is bounded by

sup
t∈Θn

‖ϕ(X(t))− ϕ(X!,n(t))‖L2(Ω;B) ≤ C(T )(h! +
√
δtn)(1 + ‖X0‖L2(Ω;V )).

Proof. Let n, ! ∈ N0, t ∈ Θn and let ϕ satisfy Equation (3.6), then

‖ϕ(X(t))− ϕ(X!,n(t))‖L2(Ω;B) ≤ C‖X(t)−X!,n(t)‖L2(Ω;H)

and the assertion follows with Theorem 4.3 in [4]. !

Next, we consider the singlelevel Monte Carlo estimator EN [ϕ(X!,n)] of the approximate
solution X!,n and compare it to E[ϕ(X!,n)], which is needed in the subsequent proofs.

Remark 3.5. For n, ! ∈ N0 and for t ∈ Θn, Lemma 2.1 implies that

‖E[ϕ(X!,n(t))]− EN [ϕ(X!,n(t))]‖L2(Ω;B) ≤
1√
N

‖ϕ(X!,n(t))‖L2(Ω;B).

Furthermore, we use the properties of ϕ to derive that

‖ϕ(X!,n(t))‖L2(Ω;B) ≤ C0(1 + ‖X!,n(t
n
k)‖L2(Ω;H)) ≤ C(T )(1 + ‖X0‖L2(Ω;H)),

where C0 denotes the linear growth constant of ϕ, which is induced by the global Lipschitz
constant, and the last step was proven in [4]. This estimate implies that

sup
t∈Θn

‖E[ϕ(X!,n(t))]− EN [ϕ(X!,n(t))]‖L2(Ω;B) ≤
1√
N

C(T )(1 + ‖X0‖L2(Ω;H)).

The previous two results enable us to give an error bound on the approximation of the
expectation by a singlelevel Monte Carlo method.
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Corollary 3.6. If X is the mild solution given in Equation (3.4), (X!,n, !, n ∈ N0) is the se-
quence of discrete mild solutions introduced in Equation (3.5), and ϕ satisfies Equation (3.6),
then, for all !, n ∈ N0, the error is bounded by

sup
t∈Θn

‖E[ϕ(X(t))]− EN [ϕ(X!,n(t))]‖L2(Ω;B) ≤ C(T )
(
h! +

√
δtn +

1√
N

)
(1 + ‖X0‖L2(Ω;V )).

Proof. For n ∈ N0 and t ∈ Θn, we split the left hand side of the equation above as follows

‖E[ϕ(X(t))]− EN [ϕ(X!,n(t))]‖L2(Ω;B)

≤ ‖E[ϕ(X(t))]− E[ϕ(X!,n(t))]‖L2(Ω;B) + ‖E[ϕ(X!,n(t))]− EN [ϕ(X!,n(t))]‖L2(Ω;B)

≤ ‖ϕ(X(t))− ϕ(X!,n(t))‖L2(Ω;B) + ‖E[ϕ(X!,n(t))]− EN [ϕ(X!,n(t))]‖L2(Ω;B).

The first term on the right hand side is bounded by Proposition 3.4. The assertion follows
with Lemma 2.1 and Remark 3.5 for the second term. !

One should mention here that if bounds on ‖E[ϕ(X(t))]−E[ϕ(X!,n(t))]‖L2(Ω;B) are available,
these should have been used in the proof instead of the strong errors.

Corollary 3.6 raises the question of how to choose the space discretization, the time ap-
proximation, and the number of samples to minimize the overall error and the overall work
at once. If we choose

(3.7) δtn 0 h2!

and set h! 0 2−!, the errors are balanced when n = 2!. Here, the notation δtn 0 h2!
denotes the abbreviation of the statement δtn = O(h2! ) and h2! = O(δtn). With the shown
convergence rate in Corollary 3.6, it can easily be seen that we equilibrate the discretization
and the sampling error for ! ∈ N0 by the choices

(N!)
−1/2 0 h!, resp. N! 0 h−2

! .

Let us assume that in each (implicit) time step the linear system associated to the discretized
version of the operator A can be solved numerically in linear complexity, i.e., in WH

! 0 h−d
!

work and memory for some parameter d ∈ N. If H = L2(D) over a domain D, the parameter
d = dim(D) refers to the dimension of the problem. Then, the overall work W! is given by

W! = WH
! WT

! N! 0 h−d
! · h−2

! · h−2
! = h−(d+4)

! 0 2(d+4)!,

and the error bound in Corollary 3.6 in terms of the overall computational work reads

sup
t∈Θn

‖E[ϕ(X(t))]− EN [ϕ(X!,n(t))]‖L2(Ω;B) ≤ C(T )h! 0 (W!)
−1/(d+4).

With the knowledge of work versus accuracy for the singlelevel Monte Carlo approximation
of the expectation, we continue with the application of the multilevel approach as presented
in Theorem 2.3. As we are not aware of any weak convergence rates for our approximation
scheme, we use the strong ones presented in Proposition 3.4 and insert them into the second
estimate in Lemma 2.2. Here we just cover the case, when we estimate a function of the
solution at fixed time t ∈ [0, T ] that is an element of all grids, e.g., at time T . How to
interpolate the solutions on coarse levels to the time grid on the finest level is shown in [4]
and depends on the chosen approximation scheme.

Corollary 3.7. For L ∈ N0 and ! = 0, . . . , L, set h2! 0 2−2! 0 δt2!,

N0 0 h−2
L , and N! 0 h2!h

−2
L !2(1+ε),
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for ! = 1, . . . , L and any ε > 0. Then, for fixed t ∈ [0, T ], it holds that

(3.8) ‖E[ϕ(X(t))]− EL[ϕ(XL,2L(t))]‖L2(Ω;B) ≤ C(ε)hL (1 + ‖X0‖L2(Ω;V )).

Furthermore, the computational complexity WL for the computation of the multilevel Monte
Carlo estimate is bounded by

WL = O(h−(2+d)
L | log(hL)|3+2ε),

if it is assumed that the computation in each time step of each sample has linear complexity,
i.e., WH

L 0 h−d
! for some d ∈ N, which includes the subtraction and addition of approximate

solutions on different levels !.

Proof. First, we note that by Proposition 3.4 it holds that

‖ϕ(X(t))− ϕ(X!,2!(t))‖L2(Ω;B) ≤ C(t)(h! +
√
δt2!)(1 + ‖X0‖L2(Ω;V ))

and h! +
√
δt2! 0 2−!. Then, Lemma 2.2 implies with Lemma 3.2 that

‖E[ϕ(X(t))]− EL[ϕ(XL,2L(t))]‖L2(Ω;B)

≤ C(t)(1 + ‖X0‖L2(Ω;V ))
(
hL +

√
δt2L +

L∑

!=0

1√
N!

(h! +
√
δt2! + h!−1 +

√
δt2(!−1))

)

with h−1 +
√
δt−2 := 1. In the framework of Theorem 2.3, we have that α = β = 1. Thus,

the errors are equilibrated if N0 = 22L and N! = 22(L−!)!2(1+ε), for ε > 0, which implies
Equation (3.8).

To calculate the overall work, we first note, that γ = d+2 in the framework of Theorem 2.3.
Therefore, we have γ ≥ 2β and

(γ − 2β)/α = d.

Thus, Theorem 2.3 yields that

WL = O(h−(2+d)
L | log(hL)|3+2ε). !

This corollary shows that the work to estimate E[ϕ(X(t))] reduces from O(h−(4+d)
L ) with

the singlelevel Monte Carlo method to O(h−(2+d)
L | log(hL)|3+2ε), when the multilevel Monte

Carlo method is applied.

3.2. Semidiscrete approximation of the heat and wave equation. In [17], the authors
present weak convergence results of a semidiscrete approximation for a heat and a wave
equation and show that the rate of weak convergence is essentially twice the rate of strong
convergence. In this section, we use these results to calculate the overall work of a multilevel
Monte Carlo estimator and show that the knowledge of a faster weak than strong convergence
decreases the number of necessary samples N! on each level ! = 0, . . . , L to preserve the order
of convergence and therefore the overall work.

Let D ⊂ Rd, d ∈ N, be a bounded domain and consider on H = L2(D) the heat equation

dX(t) = ∆X(t) dt+ dW (t)(3.9)

with initial condition X(0) = X0 driven by a Q-Wiener process W = (W (t), t ∈ [0, T ]) with
Q ∈ L+

1 (H). Here ∆ denotes the Laplace operator with Dirichlet boundary conditions.
Let us discretize D by a sequence of triangulations (T!, ! ∈ N0) defined over finite numbers

of points. Then, let (S!, ! ∈ N0) denote a corresponding family of Finite Element spaces
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consisting of piecewise, continuous polynomials of degree ≤ r − 1 such that S! → H for
! → +∞ and furthermore, S! ⊂ H1

0 (D) for ! ∈ N0. We denote by ∆! the discrete Laplacian
and by P! : H → S! the orthogonal projection. Then, the spatially discrete approximation is

dX!(t) = ∆!X!(t) dt+ P! dW (t)(3.10)

with initial condition X!(0) = P!X0, for t ∈ [0, T ]. In [17], it is especially shown that the
sequence (X!, ! ∈ N0) converges weakly of essentially order 2 to X, while it converges strongly
with order one, i.e., for a smooth Lipschitz functional ϕ : H → R

|E[ϕ(X(t))− ϕ(X!(t))]| = O(h2! log(h!))

and
‖X(t)−X!(t)‖L2(Ω;H) = O(h!),

for t ∈ [0, T ], where the meshwidths (h!, ! ∈ N0) are given by

h! := max
K∈T!

{diam(K)},

for ! ∈ N0. Furthermore, we assume that the sequence of triangulations is derived by regular
subdivision, which implies that h! = h!−1/2, for all ! ∈ N.

With the same approach it is shown in [17] that under sufficient smoothness conditions,
the approximation X! := (X1

! , X
2
! ) of the stochastic wave equation

dX1(t) = X2(t) dt

dX2(t) = ∆X1(t) dt+ dW (t)
(3.11)

with initial conditions X1(0) = X0,1 and X2(0) = X0,2 has similar properties. While in this
case the strong order of convergence is r/(r+1), the weak order of convergence is essentially
twice as fast, i.e.,

|E[ϕ(X(t))− ϕ(X!(t))]| = O(h
2 r
r+1

! log(h!))

and

‖X(t)−X!(t)‖L2(Ω;H) = O(h
r

r+1

! ),

for t ∈ [0, T ].
In the following corollary, we show that the overall work of a multilevel Monte Carlo method

decreases if weak convergence results are available.

Corollary 3.8. For the Finite Element approximation (3.10) of the heat equation (3.9), the
multilevel Monte Carlo estimator satisfies for L ∈ N0 and any η > 0

‖E[ϕ(X(t))]− EL[ϕ(XL(t))]‖L2(Ω;H) = O(h2−η
L )

for an overall work of

WL =






O(h−2(2−η)
L ) if d = 1,

O(h−2(2−η)
L | log(h2−η

L )|3+2ε) if d = 2,

O(h−2(1+d/(2−η))
L | log(h2−η

L )|3+2ε) if d > 2.

The corresponding multilevel Monte Carlo approximation of the wave equation (3.11) satisfies
for r ≥ 2

‖E[ϕ(X(t))]− EL[ϕ(XL(t))]‖L2(Ω;H) = O(h2r/(r+1)−η
L )
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for an overall work of

WL =

{
O(h−2(2r/(r+1)−η)

L ) if d = 1

O(h−(2r/(r+1)−η+d)
L | log(h2r/(r+1)−η

L )|3+2ε) if d > 1.

Proof. Let us first consider the heat equation. Then, Lemma 2.2 and the properties of ϕ lead
to

‖E[ϕ(X(t))]−EL[ϕ(XL(t))]‖L2(Ω;H)

≤ |E[ϕ(X(t))− ϕ(XL(t))]|+
1√
N0

‖X0(t)‖L2(Ω;H)

+
L∑

!=1

1√
N!

(‖X(t)−X!(t)‖L2(Ω;H) + ‖X(t)−X!−1(t)‖L2(Ω;H))

≤ C
(
h2L log(hL) +

1√
N0

+
L∑

!=1

1√
N!

h!
)

≤ C
(
h2−η
L +

1√
N0

+
L∑

!=1

1√
N!

h!
)

for fixed L ∈ N and η > 0. In the framework of Theorem 2.3, we have that α = 2 − η and
β = 1. Therefore, the errors are equilibrated if we set N0 = 22(2−η)L and N! = 22((2−η)L−!),
for ! = 1, . . . , L. Then, the overall error is by Theorem 2.3 bounded by

‖E[ϕ(X(t))]− EL[ϕ(XL(t))]‖L2(Ω;H) = O(h2−η
L ),

and the overall work is by Theorem 2.3 with γ = d bounded by

WL =






O(h−2(2−η)
L ) if d = 1,

O(h−2(2−η)
L | log(h2−η

L )|3+2ε) if d = 2,

O(h−2(1+d/(2−η))
L | log(h2−η

L )|3+2ε) if d > 2.

Similarly, we get the result for the wave equation with α = 2r/(r+1)− η, β = r/(r+1), and
γ = d. !

If we use the convergence rates of the strong error estimates for the heat equation, Theo-
rem 2.3 would imply the same amount of work for d = 1, 2 but for d > 2

WL = O(h−(2−η)d
L | log(h2−η

L )|3+2ε)

of work to achieve the same order of convergence, which is worse. For example for d = 3, the
exponent of the estimate using the weak error bound is 5 + 3η/(2 − η), while the use of the
strong error estimates leads to 6− 3η, which is worse for small η > 0.

3.3. First order hyperbolic problem. In this example, we consider the framework of
Section 4 in [1] and use the notation of Section 3.1. Let D ⊂ Rd, d ∈ N, be a bounded
domain with smooth boundary ∂D and assume on the Hilbert space H = L2(D) the first
order hyperbolic problem

dX(t) = BX(t) dt+G(X(t)) dM(t)(3.12)

with initial condition X(0) = X0, where M ∈ M2
b(U), G : H → L(U,H) is linear and B

is a first order differential operator that is the generator of a C0-semigroup of contractions
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S = (S(t), t ∈ [0, T ]). For a given vector field b, the first order differential operator B is
defined as

Bφ(x) :=
d∑

i=1

bi(x)∂iφ(x),

for x ∈ D and φ ∈ C1
c (D), where ∂i denotes the derivative in the i-th direction. The inflow

boundary is the set

∂D− := {x ∈ ∂D, b(x) · n(x) > 0},
where n(x) denotes the exterior normal to ∂D at x. For convenience, we impose Dirichlet
boundary conditions X(t) = 0 on the inflow boundary ∂D−, for all t ∈ [0, T ]. This particular
structure has to be taken into consideration when defining the finite dimensional spaces for
the approximation of the stochastic partial differential equation (3.12). Let (S−

! , ! ∈ N0)
be a family of Finite Element spaces in H1(D) consisting of piecewise linear, continuous
polynomials with respect to a family of triangulations (T!, ! ∈ N0), which vanish on the inflow
boundary ∂D−. We define the bilinear form BB : H1(D)×H → R by

BB(φ,ψ) := (Bφ,ψ)H ,

for all φ ∈ H1(D) and ψ ∈ H. We approximate the solution X of Equation (3.12) by the
linearized backward Euler scheme as introduced in Section 3 in [1]. The fully discrete problem
is to find X!,n for !, n ∈ N0 such that for all time discretization points tnk ∈ Θn

(3.13)

(X!,n(t
n
k),φ)H = (X0,φ)H + δtn

k∑

i=1

BB(X!,n(t
n
i−1),φ)H +

k∑

i=1

∫ tni

tni−1

(G∗(X!,n(t
n
i−1)φ, dM(s))H,

where G∗ denotes the adjoint of G. This approximation converges by Theorem 4.3 in [1] with

‖X(t)−X!,n(t)‖L2(Ω;H) = O(h! +
√
δtn),

when we impose sufficient smoothness on the equation, where (h!, ! ∈ N0) denotes the se-
quence of meshwidths as introduced in Section 3.2. If we plug this estimate into Theorem 2.3,
we get the following corollary. As the convergence is similar to the parabolic case in Sec-
tion 3.1, the corollary is similar to Corollary 3.7 and the proof is therefore omitted.

Corollary 3.9. Let Equation (3.13) define the approximation to the hyperbolic problem (3.12).
For L ∈ N0 and ! = 0, . . . , L, set h2! 0 2−2! 0 δt2!,

N0 0 h−2
L , and N! 0 h2!h

−2
L !2(1+ε),

for ! = 1, . . . , L and any ε > 0. Then, for fixed t ∈ [0, T ], it holds that

‖E[ϕ(X(t))]− EL[ϕ(XL,2L(t))]‖L2(Ω;B) ≤ C(ε)hL (1 + ‖X0‖L2(Ω;V )).

Furthermore, the computational complexity WL for the computation of the multilevel Monte
Carlo estimate is bounded by

WL = O(h−(2+d)
L | log(hL)|3+2ε),

if it is assumed that the computation in each time step of each sample has linear complex-
ity, i.e., WH

L 0 h−d
! for some d = dim(D), which includes the subtraction and addition of

approximate solutions on different levels !.
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(a) One run of the MLMC algorithm.
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(b) 10 runs of the MLMC algorithm.

Figure 1. Mean square error of the multilevel Monte Carlo estimator of the
heat equation driven by additive Wiener noise according to the convergence
of an Euler scheme.

4. Simulations

In this section, some simulation results of the theory of the previous sections are shown.
First, we reproduce the error bounds for a parabolic problem, then for a hyperbolic one.

4.1. Parabolic problem. We simulate similarly to [3] the heat equation driven by additive
Wiener noise

dX(t) = ∆X(t) dt+ dW (t)

on the space interval (0, 1) and the time interval [0, 1] with initial condition X(0, x) = sin(πx)
for x ∈ (0, 1). The covariance kernel CQ of the Q-Wiener process W is given by

CQ(x, y) = exp(−2(x− y)2),

for x, y ∈ (0, 1), and W is constructed of independent, real-valued Wiener processes (Wi, i ∈
N). The solution to the corresponding deterministic system with u(t) = E[X(t)] for t ∈ [0, 1]

du(t) = ∆u(t) dt

is in this case u(t, x) = exp(−π2t) sin(πx), for x ∈ (0, 1) and t ∈ [0, 1].
The space discretization is done with a Finite Element method and the hat function basis,

i.e., with the spaces (Sh, h > 0) of piecewise linear, continuous polynomials, see e.g., Sec-
tion 3.1 in [4]. We use a Crank–Nicolson method for the time stepping and truncate the
Karhunen–Loève expansion of the Wiener process according to Lemma 3.1 in [3] to be able
to do simulations. The number of multilevel Monte Carlo samples is calculated according to
Section 3.1. In Figure 1(a), the multilevel Monte Carlo estimator EL[XL,2L(1)] was calculated
for L = 1, . . . , 6, i.e., we chose ϕ to be the identity. The plot shows the approximation of

‖E[X(1)]− EL[XL,2L(1)]‖H =
(∫ 1

0
(exp(−π2) sin(πx)− EL[XL,2L(1, x)])

2 dx
)1/2

,
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(a) One run of the MLMC algorithm.

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

grid points on finest level

L
2
 e

rr
o
r

 

 
MLMC error

O(h2)

(b) 10 runs of the MLMC algorithm.

Figure 2. Mean square error of the multilevel Monte Carlo estimator of the
heat equation driven by additive Wiener noise according to the convergence
of a Milstein scheme.

i.e.,

e1(XL,2L) :=
( 1

m

m∑

k=1

(exp(−π2) sin(πxk)− EL[XL,2L(1, xk)])
2
)1/2

.

Here, for all levels L = 1, . . . , 6, m = 26 + 1 and xk, k = 1, . . . ,m, are the nodal points of
the finest discretization, i.e., on level 6. The multilevel Monte Carlo estimator EL[XL,2L] is
calculated at these points by its basis representation, for L = 1, . . . , 5, which is equal to the
linear interpolation to all grid points xk, k = 1, . . . ,m. One observes the convergence of one
multilevel Monte Carlo estimator, i.e., the almost sure convergence of the method, which can
be shown using the mean square convergence and the Borel–Cantelli lemma. In Figure 1(b),
the error is estimated according to Corollary 3.7. For the estimation of the L2(Ω;H) norm
we chose

eN (XL,2L) :=
( 1

N

N∑

i=1

e1(X
i
L,2L)

2
)1/2

,

where (Xi
L,2L, i = 1, . . . , N) is a sequence of independent, identically distributed samples

of XL,2L and N = 10. The simulation results confirm the theory.
Furthermore, it is known that the used approximation scheme for a heat equation with ad-

ditive noise converges better than presented in Section 3.1. In this case the Euler–Maruyama
scheme is equal to the Milstein scheme and converges strongly with order δtn in time and
h2! in space. In Figure 2, we chose the number of samples according to the convergence of a
Milstein scheme as presented in Section 5 in [4]. The convergence of one run of the multi-
level Monte Carlo algorithm in Figure 2(a) appears to be stable and the slope is as expected,
where the calculated error is e1. Figure 2(b) shows the error e10, where the L2(Ω;H) error
was estimated from 10 samples. The convergence plots verify the theoretical results.
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(a) One run of the MLMC algorithm.
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(b) 10 runs of the MLMC algorithm.

Figure 3. Mean square error of the multilevel Monte Carlo estimator of the
solution of the advection equation driven by additive Wiener noise.

4.2. First order hyperbolic problem. We simulate the linear advection equation driven
by additive Wiener noise

dX(t) = ∇X(t) dt+ dW (t)

on the space interval (0, 1) and the time interval [0, 1] with initial condition X(0, x) = sin(πx),
for x ∈ (0, 1), and inflow boundary conditionX(t, 1) = − sin(πt), for t ∈ [0, 1]. The covariance
kernel CQ of the Q-Wiener process W is given by

CQ(x, y) = exp(−10(x− y)2),

for x, y ∈ (0, 1), and W is constructed of independent, real-valued Wiener processes (Wi, i ∈
N). The solution to the corresponding deterministic system with u(t) = E[X(t)], for t ∈ [0, 1],

du(t) = ∇u(t) dt

is in this case u(t, x) = sin(π(x+ t)), for x ∈ (0, 1) and t ∈ [0, 1].
The space discretization is done with a first order SUPG method as introduced in [6]. We

use a Crank–Nicolson method for the time stepping and truncate the Karhunen–Loève expan-
sion of the Wiener process according to Lemma 3.1 in [3] as in the parabolic case. The number
of multilevel Monte Carlo samples is calculated according to Section 3.3. Note, that we used
for this calculation a convergence result based on a Galerkin method. Since the Galerkin
approximation is for a first order hyperbolic equation only asymptotically stable, we use for
the simulation a (stabilized) SUPG scheme. However, as the SUPG approximation converges
slightly better, the number of multilevel Monte Carlo samples calculated in Section 3.3 is too
little. This means that in our simulation the error is dominated by the Monte Carlo error.

As in the parabolic case, Figure 3(a) shows the mean square error of the multilevel Monte
Carlo estimator EL[XL,2L(1)] for L = 1, . . . , 6. The plot shows the approximation of

‖E[X(1)]− EL[XL,2L(1)]‖H =
(∫ 1

0
(sin(π(x+ 1))− EL[XL,2L(1, x)])

2 dx
)1/2

,
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i.e.,

e1(XL,2L) :=
( 1

m

m∑

k=1

(sin(π(xk + 1))− EL[XL,2L(1, xk)])
2
)1/2

.

Here, as in the parabolic simulation, for all levels L = 1, . . . , 6, m = 26 + 1 and xk, k =
1, . . . ,m, are the nodal points of the finest discretization, i.e., on level 6. The multilevel
Monte Carlo estimator EL[XL,2L], for L = 1, . . . , 5, is again equal to the linear interpolation
to all grid points xk, k = 1, . . . ,m. We see the convergence of one multilevel Monte Carlo
estimator in dependence of the number of grid points on the finest grid. One sample for the
estimation of the mean of the multilevel Monte Carlo estimator might, as in the parabolic
case, not be sufficient. Therefore, in Figure 3(b) the error eN (XL,2L), for N = 10, is plotted.
As before, for the estimation of the L2(Ω;H) norm, we chose

eN (XL,2L) :=
( 1

N

N∑

i=1

e1(X
i
L,2L)

2
)1/2

.

The convergence plot verifies the theoretical findings.

References

[1] A. Barth, A Finite Element Method for martingale-driven stochastic partial differential equations, Comm.
Stoch. Anal., 4 (2010), pp. 355–375.

[2] A. Barth and A. Lang, Milstein approximation for advection-diffusion equations driven by multiplicative
noncontinuous martingale noises. SAM-Report 2011-36, 2011.

[3] , Simulation of stochastic partial differential equations using finite element methods, Stochastics, 84
(2012), pp. 217–231.

[4] A. Barth, A. Lang, and C. Schwab, Multilevel Monte Carlo Finite Element method for parabolic
stochastic partial differential equations. SAM-Report 2011-30, May 2011.

[5] A. Barth, C. Schwab, and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic
PDEs with stochastic coefficients, Numerische Mathematik, 119 (2011), pp. 123–161.

[6] P. Bochev, M. Gunzburger, and J. Shadid, Stability of the SUPG finite element method for transient
advection-diffusion problems., Comp. Meth. Appl. Mech. Engrg., 193 (2004), pp. 2301–2323.

[7] K. Cliffe, M. Giles, R. Scheichl, and A. Teckentrup, Multilevel Monte Carlo methods and ap-
plications to elliptic PDEs with random coefficients, Computing and Visualization in Science, 14 (2011),
pp. 3–15.

[8] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, vol. 44 of Encyclopedia of
Mathematics and its Applications, Cambridge University Press, Cambridge, 1992.

[9] S. Dereich and F. Heidenreich, A multilevel Monte Carlo algorithm for Lévy-driven stochastic differ-
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