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A single trace integral formulation of the

second kind for acoustic scattering

X.Claeys∗†

Abstract

We study the scattering of acoustic waves by an object composed of several adjacent
parts with different material properties. For this problem we derive an integral formulation
of the second kind. This formulation only involves one Dirichlet datum and one Neumann
datum at each point of each interface of the object, so that our formulation can be
considered to belong to the same family as the formulation of the first kind that was
analyzed by von Petersdorff in [16] for scalar problems and by Buffa in [3] for Maxwell’s
equations.

The simulation of wave propagation in a medium with piecewise constant wave number
is of practical interest in many applications related to acoustics and electromagnetics. To
tackle this type of problem one possible approach consists of formulating the problem as
an integral equation. As regards integral formulations though, most of the literature deals
with geometries where at most two different media of propagation are adjacent to each other.
However, in practice, there are many relevant geometrical configurations where three or more
different media are adjacent to each other; what we call multiple subdomain scattering is the
study of wave propagation in arrangements with this type of geometry.

Concerning multiple subdomain scattering, a first approach derived from Rumsey’s princi-
ple, was analyzed by von Petersdorff in [16] for scalar problems. This analysis was extended to
Maxwell’s equations by Buffa in [3]. In this approach the transmission conditions are taken
into account directly via the choice of well chosen variational spaces. Such a formulation
turns out to be the generalization for multiple subdomain configurations of the classical first
kind formulation well known for transmission problems where interfaces separate at most two
different media. One interesting feature of this formulation is that, at each point of each
interface, it involves only one Dirichlet datum and one Neumann datum. As a consequence,
we call it single trace formulation of the first kind. However no efficient preconditionner has
been proposed so far for this formulation in the case of multiple subdomain scattering.

In [8], Steinbach and co-workers developped another formulation of the first kind involving
only one Dirichlet datum and two Neumann data at each interface. Several variants of this
formulation were proposed later, see [11, 19] and references therein. It consists in a domain
decomposition approach where part of the transmission conditions are imposed by means of
Lagrange multipliers. Such a method can be readily preconditionned. However it requires
the inversion of a Steklov-Poincare operator in each subdomain.

∗Université de Toulouse, ISAE. email: xavier.claeys@isae.fr
†Work partly funded by the Seminar of Applied Mathematics, ETH Zürich, Switzerland.
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More recently, in [7], Hiptmair and Jerez-Hanckes developped yet another integral formu-
lation of the first kind that has also good properties in terms of preconditionning possibilities.
This approach is different since transmission conditions are not imposed through Lagrange
multipliers. The authors named this formulation multitrace formulation, as all unknows of
the problem are doubled on each interface. This formulation does not require the inversion of
any Steklov-Poincare operator, although preconditioning it requires the solution to integral
equations local to each subdomain.

In the present report, we propose yet another single trace formulation, that generalizes
second kind formulations i.e. the so-called Rokhlin-Müller scheme, already well established
for the case of a transmission problems for a single homogeneous scatterer, see [10, 14, 17, 1].
An important advantage of such an approach is that second kind formulations are intrisically
well conditionned provided that the identity operator can be discretized in a stable manner.

This paper is structured as follows. First of all we describe the problem that we consider.
It consists in the scattering of a scalar wave in a medium with piecewise constant caracteristics.
In Section 2 we introduce a functional setting that is well adapted to our problem. In Section
3 we recall some classical result about integral formulations. In Section 4 we provide a brief
review of the formulation that was introduced by VonPetersdorff in [16]. In Section 5 we
introduce an integral operator that will be the central ingredient in our formulation. We
show in particular that this operator can be used to caracterize Cauchy data associated to
our problem, at least in the case where contrasts between wave numbers are small enough. In
Section 6 we derive an integral formulation of the form ”identity+compact” for our problem.
In Section 7 we examine this formulation in the case of only two subdomains and one interface,
and we show that we recover the classical second kind formulation. In the last section we
present the results of a toy numerical experiment in a 2-D situation.

1 Setting of the problem

We consider a partition Rd = ∪n
i=0Ωi where ∪n

i=1Ωi is bounded and each Ωi is a connnected
open Lipschitz subset. We also set Γ = ∪n

i=1∂Ωi. Note that there may exist points where
three or more sub-domains would be contiguous, which is precisely the situation that we wish
to tackle. For each i the vector ni refers to the normal vector on ∂Ωi directed toward the
exterior of Ωi.

Elementary functional spaces Let us recall the definition of some elementary functional
spaces. For an open set ω ⊂ Rd, the space L2(ω) will refer to the set of measurable functions
v such that ‖v‖2L2(ω) =

´

ω |v|2dx < +∞, and we set

H1(ω) =
{
v ∈ L2(ω)

∣∣∣ ‖v‖2H1(ω) =

ˆ

ω
|v|2 + |∇v|2dx < +∞

}

H(div,ω) =
{
q ∈ L2(ω)3

∣∣∣ ‖q‖2H(div,ω) =

ˆ

ω
|q|2 + |div(q)|2dx < +∞

}

We also define the space H1(∆,ω) = { v ∈ H1(ω) | ∇v ∈ H(div,ω) } equipped with the norm
‖u‖2∆,ω = ‖u‖2H1(ω)+‖∆u‖2L2(ω). If H(ω) is any one of the spaces H1(ω),H(div,ω) or H1(∆,ω),

then we set Hloc(ω) = { v such that ϕv ∈ H(ω) ∀ϕ ∈ D(Rd) } where D(Rd) refers to the set
of compactly supported C∞ functions.
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n0

n1

n2

n3

Ω0

a =
exterior domain

Ω1
Ω2

Ω3

Trace spaces For an open set ω ⊂ Rd with Lipschitz boundary, it is well known that the
trace v (→ v|∂ω can be extended to a continuous map from H1(ω) into L2(∂ω), and that the

space H
1

2 (∂ω) = { v|∂ω | v ∈ H1(ω) } equipped with the norm

‖v‖
H

1
2 (∂ω)

= inf
{
‖u‖H1(ω) such that u ∈ H1(ω), u|∂ω = v

}
,

is a Banach space. Let us denote H−1/2(∂ω) its topological dual, that we equip with the
corresponding dual norm

‖q‖
H− 1

2 (∂ω)
= sup

v∈H
1
2 (∂ω)

1

‖v‖
H

1
2 (∂ω)

∣∣∣
ˆ

∂ω
v q dσ

∣∣∣ .

If n refers to the normal vector field over ∂ω, it is also well known that q (→ n ·q|∂ω defines a
continuous map from H(div,ω) onto H−1/2(∂ω). Moreover the trace n ·∇v|∂ω is well defined
whenever v ∈ H1

loc(∆,ω).

Trace operators For i = 0 . . . n and v ∈ H1
loc(∆,Ωi) define γi

d
(v) = v|∂Ωi

and γi
n
(v) =

ni ·∇v|∂Ωi
where the Dirichlet and Neumann traces are taken from the interior of Ωi. The

exterior Dirichlet and Neumann traces on ∂Ωi will be denoted γi
d,c and γi

n,c (with normal
vector directed toward the exterior of Ωi). We also consider mean and jump combinations of
these operators

[γjd] = γjd − γjd,c and [γjn] = γjn − γjn,c,

{γjd} =
1

2
(γjd + γjd,c) and {γjn} =

1

2
(γjn + γjn,c).

(1)

The problem that we study Let uinc ∈ H1
loc(R

d) satisfy ∆uinc + κ20 uinc = 0 in Rd for
some κ0 ∈ R. This function will plays the role of incident field. In the present report we
study the following problem:

Find u ∈ H1
loc(∆,Rd) such that (2)

3



{
∆u+ κ2iu = 0 in Ωi , i = 0, . . . n

u− uinc outgoing radiating in Ω0

(3)

where each κi ∈ R+ refers to the wave number inside Ωi. In Equation (3), the outgoing
radiation condition refers to the standard Sommerfeld radiation condition, see [13, 5]. It can
be reformulated as

lim
r→∞

ˆ

∂Br

|∂ru− iκ0u|
2dσr = 0 with r = |x| . (4)

where Br = {x ∈ Rd| |x| < r}. Problem (2)-(3) is a transmission problem whose well
posedness is a classical result, see [13, 5] for exemple. The transmission conditions are im-
posed through Equation (2). Indeed u ∈ H1

loc(∆,Rd) implies that u ∈ H1
loc(R

d) and ∇u ∈
Hloc(div,Rd), which implies that u has no Dirichlet jump across any interface ∂Ωk∩∂Ωj , j, k =
0 . . . n, and that ∇u has no normal jump across such interfaces.

2 Adapted functional spaces

In this paragraph we adopt a perspective of trace spaces that seems less standard but that
appears much more convenient for the integral formulation that we consider in Section 4 and
6.

Multi trace space In order to reformulate Problem (3) as an integral equation posed over
Γ, a natural functional setting consists in taking cartesian products of trace spaces, namely

H(Γ) =
n
Π
j=0

[
H

1

2 (∂Ωj)×H− 1

2 (∂Ωj)
]

equipped with the norm

‖U‖ =
( n∑

j=0

‖uj‖
2

H
1
2 (∂Ωj)

+ ‖pj‖
2

H− 1
2 (∂Ωj)

) 1

2

when U = (uj , pj)0≤j≤n

It is a Hilbert space. Observe that this space can be identified to its own dual by means of
the following duality pairing

B(U, V ) =
n∑

i=0

ˆ

∂Ωi

ui qi dσ +

ˆ

∂Ωi

pi vi dσ

where U = (uj , pj)0≤j≤n ∈ H(Γ) and V = (vj , qj)0≤j≤n ∈ H(Γ)

This bilinear form is non-degenerate: if B(U, V ) = 0 ∀V ∈ H(Γ) then U = 0.

Single trace space Now we introduce spaces that seem more adapted to the treatment of
transmission conditions. This setting is inspired by [2]. We set

X
+ 1

2 (Γ) =
{
(vi) ∈

n
Π
i=0

H
1

2 (∂Ωi)
∣∣∣ ∃v ∈ H1(Rd) with v|∂Ωj

= vj , ∀j = 0 . . . n
}

X
− 1

2 (Γ) =
{
(qi) ∈

n
Π
i=0

H− 1

2 (∂Ωi)
∣∣∣ ∃q ∈ H(div,Rd) with nj · q|∂Ωj

= qj , ∀j = 0 . . . n
}

X(Γ) =
{
(vj , qj)0≤j≤n ∈ H(Γ)

∣∣∣ (vj) ∈ X
+ 1

2 (Γ) and (qj) ∈ X
− 1

2 (Γ)
}
.
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To get an intuition of these spaces, observe that in the case where Rd = Ω0 ∪ Ω1 so that
Γ = ∂Ω0 = ∂Ω1, there holds X(Γ) = { (v, q, v,−q) | v ∈ H1/2(Γ), q ∈ H−1/2(Γ) }.

Proposition 2.1.

Let (uj) ∈ Πn
j=0H

+ 1

2 (∂Ωj) and (pj) ∈ Πn
j=0H

− 1

2 (∂Ωj). We have

i) (uj) ∈ X
+ 1

2 (Γ) ⇐⇒
n∑

j=0

ˆ

∂Ωj

ujqj dσ = 0 ∀(qj) ∈ X
− 1

2 (Γ)

ii) (pj) ∈ X
− 1

2 (Γ) ⇐⇒
n∑

j=0

ˆ

∂Ωj

pjvj dσ = 0 ∀(vj) ∈ X
+ 1

2 (Γ)

Proof:

We only present the proof for i) since the proof for ii) is very similar. First assume that
(uj) ∈ X1/2(Γ) and take u ∈ H1(Rd) such that u|∂Ωj

= uj , j = 0 . . . n. Since Γ is bounded,
we may assume that supp(u) is bounded, using a cut-off function if necessary. Consider an
arbitary (qj) ∈ X−1/2(Γ) and take q ∈ H(div,Rd) such that nj ·q|∂Ωj

= qj . Applying Green’s
Formula, and taking into account that supp(u) is bounded, we obtain

n∑

j=0

ˆ

∂Ωj

ujqjdσ =
n∑

j=0

ˆ

Ωj

u div(q) +∇u · q dx =

ˆ

Rd

u div(q) +∇u · q dx = 0

Now let us consider an arbitrary (uj) ∈ Πn
j=0H

+ 1

2 (∂Ωj) and assume that it satisfies the

condition in the right hand side of i). For any j = 0 . . . n there exists vj ∈ H1(Ωj) such that
vj |∂Ωj

= uj . Define u ∈ L2(Rd) by u|Ωj
= vj , and p ∈ L2(Rd)3 by p|Ωj

= ∇vj . For any

q ∈ H(div,Rd), setting qj = nj · q|∂Ωj
, we have

ˆ

Rd

u div(q) dx =
n∑

j=0

ˆ

Ωj

vj div(q) dx =
n∑

j=0

ˆ

∂Ωj

uj qj dσ −
n∑

j=0

ˆ

Ωj

∇vj · q dx

= −

ˆ

Rd

p · q dx

as (qj) ∈ X
− 1

2 (Γ) by definition. Since the preceding identity holds for any q ∈ H(div,Rd),
this proves that u ∈ H1(Rd), so that (uj) ∈ X1/2(Γ). !

Clearly X(Γ) is closed in H(Γ) for ‖ ‖ since, according to the previous proposition, the con-
straints caracterizing X1/2(Γ) (resp. X−1/2(Γ)) involve continuous functionals over H1/2(∂Ωj)
(resp. H−1/2(∂Ωj)), j = 0 . . . n. Moreover, one obvious consequence of the preceding propo-
sition is that X(Γ) can be identified with its own polar set under the duality pairing B( , ).
More precisely: for any U ∈ H(Γ) we have

U ∈ X(Γ) ⇐⇒ B(U, V ) = 0 ∀V ∈ X(Γ) (5)

Our motivation for introducing the space X(Γ) is that the transmission conditions contained
in Equation (2) can be restated as follows

u satisfies (2) ⇐⇒






u|Ωj
∈ H1

loc(∆,Ωj), j = 0 . . . n,

(γjdu, γ
j
nu)0≤j≤n ∈ X(Γ) .

(6)
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3 Classical results on potential operators

In this section we recall very classical results related to integral formulations for Helmholtz
equation. Since what follows is already well known, we do not provide any proof for these
results and refer the reader to the textbooks [13, 15, 18].

In the sequel Gκ(x) will refer to the Green Kernel of the operator −∆− κ2 that satisfies the
Sommerfeld radiation condition at infinity. For any subdomain Ωi, consider

SLi
κ{q}(x) =

ˆ

∂Ωi

Gκ(x− y)q(y)dσ(y) ∀q ∈ H− 1

2 (∂Ωi)

DLi
κ{v}(x) = −

ˆ

∂Ωi

ni(y) ·∇Gκ(x− y)v(y)dσ(y) ∀v ∈ H+ 1

2 (∂Ωi)
(7)

The potentials SLi
κi
{pi}(x) and DLi

κi
{ui}(x) are well defined functions over Rd \ Γ. They

induce continuous maps SLi
κi

: H−1/2(∂Ωi) → Πn
j=0H

1
loc(∆,Ωj) and DLi

κi
: H+1/2(∂Ωi) →

Πn
j=0H

1
loc(∆,Ωj). Let us recall a crucial result about these potential operators, see for exemple

[13, 15, 18]

Proposition 3.1.

Let u ∈ H1
loc(Ωj) such that ∆u + κ2ju = 0 in Ωj and u outgoing if j = 0. We have the

representation formula

DLj
κj
{γjdu}(x) + SLj

κj
{γjnu}(x) =

{
u(x) if x ∈ Ωj

0 if x ∈ Rd \ Ωj

We shall say that (v, q) ∈ H1/2(∂Ωj)× H−1/2(∂Ωj) is a Cauchy datum of Ωj whenever there
exists u ∈ H1

loc(∆,Ωj) such that ∆u+ κ2ju = 0 in Ωj , with u outgoing if j = 0, and such that

γjdu = v and γjnu = q. We set

C(∂Ωj) = { Cauchy data of Ωj } and C(Γ) =
n
Π
j=0

C(∂Ωj)

The operators DLj
κj
, SLj

κj
provide a convenient caracterization of Cauchy data of Ωj . The

following result is once again very classical, see [13, 15, 18].

Proposition 3.2.

For any j = 0 . . . n and any (v, q) ∈ H
1

2 (∂Ωj)×H− 1

2 (∂Ωj), we have

(v, q) ∈ C(∂Ωj) ⇐⇒






γjd ·DLj
κj
{v}+ γjd · SLj

κj
{q} = v

γjn ·DLj
κj
{v}+ γjn · SL

j
κj
{q} = q

In the sequel, we will also need the jump relations that describe the behaviour of potentials
across ∂Ωj . For any (v, q) ∈ H1/2(∂Ωj)×H−1/2(∂Ωj) we have (cf [13, 15, 18])

[γjd] ·DLj
κj
{v} = v, [γjd] · SL

j
κj
{q} = 0,

[γjn] ·DLj
κj
{v} = 0, [γjn] · SL

j
κj
{q} = q .

(8)
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We conclude this section by recalling that the set of Cauchy data can also be caracterized by
means of a continuous operator Cj

κj : H1/2(∂Ωj) × H−1/2(∂Ωj) → H1/2(∂Ωj) × H−1/2(∂Ωj)
named as Calderon projector and defined by

Id

2
+ Cj

κj
=

[
γjd ·DLj

κj
γjd · SLj

κj

γjn ·DLj
κj

γjn · SL
j
κj

]

This operator is indeed a projector: it satisfies ( Id2 +Cj
κj )

2 = Id
2 +Cj

κj . Besides Im( Id2 +Cj
κj ) =

C(∂Ωj). As a consequence, for any U ∈ H(Γ), we have

U ∈ C(Γ) ⇐⇒
( Id

2
+ Cκ

)
U = U where Cκ =





C0
κ0

0 · · · 0

0 C1
κ1

. . .
...

...
. . .

. . . 0
0 · · · 0 Cn

κn





This also shows that C(Γ) is a closed subspace of H(Γ) since C(Γ) = Ker( Id2 − Cκ). Finally

recall also that we have (v, q) ∈ Im( Id/2− Cj
κj ) if and only if there exists u ∈ H1

loc(R
d \ Ωj)

such that ∆u+ κ2ju = 0 in Rd \ Ωj , u outgoing if j 0= 0, and γjd,c(u) = v and γjn,c(u) = q.

4 Classical single trace formulation of the first kind

In this section we give a brief review of the formulation that was first analyzed by Von-
Petersdorff in [16]. Note however that we state this formulation relying on a different func-
tional setting. First of all, set Uinc = (γ0

d
uinc, γ0nuinc, 0 . . . , 0)

' and observe that, according to
(6), Problem (2)-(3) can be reformulated as

Find U ∈ X(Γ) such that
( Id

2
− Cκ

)(
U − Uinc

)
= 0

(9)

Equation (9) is well posed, as Problem (2)-(3) is. Recalling that B(U, V ) = 0 whenever both
U and V belong to ∈ X(Γ), the above equation implies

Find U ∈ X(Γ) such that

B(CκU, V ) = −B
(
( Id/2− Cκ )Uinc, V

)
∀V ∈ X(Γ) .

(10)

At first sight though, it is not clear whether (10) implies (9). Actually both equations are
equivalent, since Formulation (10) admits a unique solution as well.

Proposition 4.1.

For any F ∈ H(Γ), there exists a unique U ∈ X(Γ) such that

B(CκU, V ) = B(F, V ) ∀V ∈ X(Γ) .

For the sake of completeness, the proof of Proposition 4.1 is put in appendix. We use the
existence part of this proposition to prove what seems to be another valuable result that was
not pointed out in [16].
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Proposition 4.2.

We have H(Γ) = X(Γ)⊕ C(Γ).

Proof:

First of all, we have X(Γ) ∩ C(Γ) = {0}. Indeed take any U ∈ X(Γ) ∩ C(Γ) with U =
(uj , pj)0≤j≤n and define u(x) = DLj

κj
{uj}(x) + SLj

κj
{pj}(x) for x ∈ Ωj . Clearly we have

∆u + κ2ju = 0 in Ωj . Besides, for any j = 0 . . . n, we have γjd(u) = uj and γjn(u) = pj since

(uj , pj) ∈ C(∂Ωj), hence (γjdu, γ
j
nu)0≤j≤n ∈ X(Γ) since U ∈ X(Γ). As a consequence u would

satisfy Problem (2)-(3) with no incident field, so that u = 0, and actually U = 0.
Second, we prove that X(Γ)+C(Γ) = H(Γ). Take any U ∈ H(Γ). According to Proposition

4.1, there exists a unique Û ∈ X(Γ) such that B( (Id/2+Cκ)Û , V ) = B(U, V ) for all V ∈ X(Γ).
Setting Ũ = U − (Id/2 + Cκ)Û , we clearly have B(Ũ , V ) = 0, ∀V ∈ X(Γ). As a consequence,
according to (5) we have Ũ ∈ X(Γ). Since U = Ũ + (Id/2 + Cκ)Û , and since (Id/2 + Cκ)Û ∈
C(Γ), this proves that U ∈ X(Γ) + C(Γ). !

5 Multi potential operator

In this section we introduce a way to combine the classical results of Section 3 so as to obtain
another formulation of our multi sub-domain problem. Let us define a continuous operator
Aκ : H(Γ) → H(Γ) by

Φ(U)(x) =
n∑

i=0

DLi
κi
{ui}(x) + SLi

κi
{pi}(x) x ∈ R

d \ Γ

and Aκ = (γ0
d
· Φ, γ0

n
· Φ, . . . , γn

d
· Φ, γn

n
· Φ)'

for U = (u0, p0, . . . , un, pn)'

(11)

Important here is to note that, in Definition (11), all potentials are considered as functions
defined everywhere except on Γ.

5.1 The case where all wave numbers are equal

Before studying the operators defined above in the general case, we state two lemmas in the
particular situation where κj = κ0 for all j = 1 . . . n.

Lemma 5.1.

Assume that κj = κ0, ∀j = 1 . . . n. In this case, Φ(U)(x) = 0 ∀x ∈ Rd for any U ∈ X(Γ).

Proof:

Pick an arbitrary x ∈ Rd \Γ, and consider a cut-off function χ : Rd → R+ such that χ = 0
over a neighborhood of x, and χ = 1 over a neighborhood of Γ. Let vx ∈ C∞(Rd) be defined
by vx(y) = χ(y)Gκ0

(x − y). Let V = (γ0
d
(vx), γ0n(vx), . . . , γ

n
d
(vx), γnn (vx))

' ∈ X(Γ). Since
vx(y) = Gκ0

(x− y) for any y chosen sufficiently close to Γ, we have Φ(U)(x) = B(U, V ) = 0
∀U ∈ X(Γ) !

Lemma 5.2.

Assume that κj = κ0, ∀j = 1 . . . n. In this case, for any U ∈ H(Γ), we have AκU = U if and
only if U ∈ C(Γ).

8



Proof:

Assume first that U ∈ C(Γ). According to Proposition 3.1, we have γjd(DLi
κi
{ui} +

SLi
κi
{pi}) = 0 and γjn(DLi

κi
{ui} + SLi

κi
{pi}) = 0 if i 0= j, and γi

d
(DLi

κi
{ui} + SLi

κi
{pi}) = ui

and γi
n
(DLi

κi
{ui}+SLi

κi
{pi}) = pi. Hence γid ·Φ(U) = ui and γi

n
·Φ(U) = pi, for any i = 0 . . . n.

Thus, according to (11), we have Aκ ·U = U . Now assume that U ∈ H(Γ) such that AκU = U .
Since κ0 = · · · = κn, it is clear that Im(Aκ) ⊂ C(Γ), so that U ∈ C(Γ). !

5.2 The case of arbitrary wave numbers

It would be interesting to establish the same result as Lemma 5.2, without the restrictive
assumption that κj = κ0, ∀j = 1 . . . n. Although we were not able to prove such a result in
the general case, we prove a result slightly stronger than Lemma 5.2. To do so, we need a
key proposition.

Proposition 5.1.

We have B(AκU, V ) = B(U, V ), ∀U ∈ H(Γ), ∀V ∈ X(Γ)

Proof:

Choose U ∈ H(Γ) and V ∈ X(Γ) arbitrarily, denoting U = (u0, p0, . . . , un, pn) and V =
(v0, q0, . . . , vn, qn). Let us develop the expression of B(AκU, V ). According to (7), we have

B(AκU, V ) =
n∑

j=0

n∑

i=0

( ˆ

∂Ωi

qi γ
i
d
·DLj

κj
{uj}dσ +

ˆ

∂Ωi

vi γ
i
n
· SLj

κj
{pj}dσ

)

+
n∑

j=0

n∑

i=0

( ˆ

∂Ωi

qi γ
i
d
· SLj

κj
{pj}dσ +

ˆ

∂Ωi

vi γ
i
n
·DLj

κj
{uj}dσ

) (12)

Take a fixed j arbitrarily. Then according to jump relations (8), we have (γ0
d
·SLj

κj
{pj}, . . . , γnd ·

SLj
κj
{pj}) ∈ X1/2(Γ) and (γ0

n
·DLj

κj
{uj}, . . . , γnn ·DLj

κj
{uj}) ∈ X−1/2(Γ). So according to the

very definition of X±1/2(Γ), we have

n∑

i=0

( ˆ

∂Ωi

qi γ
i
d
· SLj

κj
{pj}dσ −

ˆ

∂Ωi

vi γ
i
n
·DLj

κj
{uj}dσ

)
= 0 ∀j = 0 . . . n .

Since this holds for any j, we see that all terms in the second line of (12) vanish. To study
the remaining terms, take once again a fixed j chosen arbitrarily. Let γjd,c refer to the
Dirichlet trace taken from the exterior of Ωj . There exists a function w ∈ H1

loc(R
d) such that

DLj
κj
(uj) = w in Rd \ Ωj . Observe that

γi
d
(w) = γi

d
·DLj

κj
{uj} if i 0= j and γjd{wj} = γjd,c ·DLj

κj
{uj} .

Observe that (γ0
d
(w), . . . , γn

d
(w)) ∈ X

1

2 (Γ) since w ∈ H1
loc(R

d). Denote [γjd] = γjd − γjd,c and

recall that [γjd] ·DLj
κj
{uj} = uj according to jump relations (8). As a consequence we have

n∑

i=0

ˆ

∂Ωi

qi γ
i
d
·DLj

κj
{uj}dσ =

ˆ

∂Ωj

qj [γ
j
d] ·DLj

κj
{uj}dσ +

n∑

i=0

ˆ

∂Ωi

qi γ
i
d
(w) dσ

︸ ︷︷ ︸
= 0

=

ˆ

∂Ωj

qj ujdσ
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Since j has been chosen arbitrarily, this holds for any j. As a consequence, summing over all
j = 0 . . . n, we obtain

n∑

j=0

n∑

i=0

ˆ

∂Ωi

qi γ
i
d
·DLj

κj
(uj)dσ =

n∑

j=0

ˆ

∂Ωj

qj uj dσ .

A similar technique can be applied to treat the terms containing γi
n
· SLj

κj
(pj), the only

difference is that we have to consider extensions that match Neumann data. !

Using the caracterization of X(Γ) given by (5), we see that the following stability statement
is a direct consequence of the preceding proposition.

Corollary 5.1.

The operator Aκ maps X(Γ) into itself.

The operator Aκ actually coincides with a compact operator when restricted to X(Γ).

Proposition 5.2.

There exists a compact operator Kκ : H(Γ) → H(Γ) satisfying Im(Kκ) ⊂ X(Γ) and such that
KκU = AκU , ∀U ∈ X(Γ).

Proof:

Since x (→ Gκi(x) − Gκ0
(x) is continuous over Rd, using the arguments of Remark 3.1.3

and Lemma 3.9.8 in [18], we see that the following operators are compact

γjd · (SLi
κi

− SLi
κ0
), γjd · (DLi

κi
−DLi

κ0
), γjn · (SL

i
κi

− SLi
κ0
) and γjn · (DLi

κi
−DLi

κ0
)

Denote by A0 : H(Γ) → H(Γ) the operator defined in the same manner as Aκ except that we
replace Gκi by Gκ0

in each sub-domain, so that Kκ = Aκ − A0 is compact according to the
remarks above.

Observe also that, for pi ∈ H−1/2(∂Ωi), i = 0 . . . n, we have [γi
d
] · SLi

κi
{pi} = 0 =

[γi
d
] · SLi

κ0
{pi} and [γi

n
] · SLi

κi
{pi} = pi = [γi

n
] · SLi

κ0
{pi}. If v = (SLi

κi
− SLi

κ0
){pi}, the

preceding remark shows that (γ0
d
(v), γ0

n
(v), . . . , γn

d
(v), γn

n
(v)) ∈ X(Γ). The same remark can

be formulated, replacing the operators SLi
κi

− SLi
κ0

by the operators DLi
κi

− DLi
κ0
. Since

Kκ is defined by composing γjd, γ
j
n, j = 0 . . . n with operators of the form SLi

κi
− SLi

κ0
and

DLi
κi

− DLi
κ0
, i = 0 . . . n, the preceding remarks show that Im(Kκ) ⊂ X(Γ). To finish the

proof, it remains to show that A0U = 0 if U ∈ X(Γ). This is a straightforward consequence
of Lemma 5.1. !

Proposition 5.2 shows that the operator Id−Aκ is of Fredholm type whenever it is restricted to
X(Γ). Besides Lemma 5.2 shows that (Id−Aκ)|X(Γ) is one-to-one hence isomorphic whenever
κj = κ0, ∀j = 0 . . . n. This can be generalized at least in the case of small contrasts.

Theorem 5.1.

For any κ0 ∈ R+ there exists δ > 0 such that, if maxj=1...n|κj − κ0| < δ, then the operator
Id−Aκ isomorphically maps X(Γ) onto itself.
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Proof:

We simply use a continuity argument. First of all consider L(X(Γ),X(Γ)) the space of
continuous linear operators over X(Γ). Equip this space with the following norm

‖L‖ = sup
V ∈X(Γ)

‖LV ‖

‖V ‖
when L : X(Γ) → X(Γ) is continuous. (13)

The set of continuous isomorphisms of X(Γ) is open in the space of continuous linear operators
over X(Γ) for the norm above. According to Proposition 8.2 in appendix, the operator Aκ

continuously depends on the wave numbers κj , j = 0 . . . n with respect to this norm. Since
Id−Aκ is an isomorphism of X(Γ) when κj = κ0, j = 0 . . . n, this concludes the proof. !

Corollary 5.2.

For any κ0 ∈ R+ there exists δ > 0 such that, if maxj=1...n|κj − κ0| < δ, then the operator
Id−Kκ isomorphically maps H(Γ) onto itself.

Proof:

If maxj=1...n|κj−κ0| < δ where δ is chosen as in the statement of Theorem 5.1, then Id−Kκ

is one-to-one over H(Γ). Indeed take U ∈ H(Γ) such that U = KκU . Since Im(Kκ) ⊂ X(Γ)
according to Proposition 5.1, we have U ∈ X(Γ) so U − KκU = U − AκU = 0 which implies
U = 0. Since Id−Kκ is of Fredholm type, the proof is finished. !

6 Variational formulation

In Theorem 5.1 and Corollary 5.2 we assumed that the wave numbers are sufficiently close to
each other. We shall refer to this hypothesis as the ”small contrast assumption”.

The operator Id−Aκ leads to an integral formulation of Problem (2). Set Uinc = (γ0
d
uinc, γ0nuinc,

0 . . . , 0). The following lemma is a simple rewriting of (2)-(3) by means of Theorem 5.2.

Proposition 6.1.

Suppose that the small contrast assumption of Theorem 5.1 is satisfied. Then u ∈ H1
loc(R

d) is
solution to Problem (2)-(3) if and only if U = ( γ0

d
(u), γ0

n
(u), . . . , γn

d
(u), γn

n
(u) )' satisfies

U ∈ X(Γ) and (Id−Aκ)U = (Id−Aκ)Uinc (14)

Equation (14) is particularly interesting because, in the present case, it takes the form ”iden-
tity + compact” according to Proposition 5.2. To obtain a variational formulation, we need
to select a space of test functions. Proposition 5.1 shows that taking X(Γ) as the set of test
functions is pointless.

A relevant space of test functions may consist in any closed space Y of H(Γ) such that
X(Γ) ⊕ Y = H(Γ). For small contrasts, Im(Id−Aκ) = X(Γ), and Equation (14) is then
equivalent to the following variational formulation

Find U ∈ X(Γ) such that

B
(
(Id−Aκ)U, V

)
= B

(
(Id−Aκ)Uinc, V

)
∀V ∈ Y .

(15)

It is not clear to us wether there exists a distinguished choice of Y. One may take Y = C(Γ),
but such a choice does not seem to be really interesting from a computational point of view.
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7 The case of two sub-domains

In this section we apply the preceding analysis to the particular case where n = 1. This is
an already well known transmission problem where the diffracting object is homogeneous i.e.
only contains one sub-domain. We show that our analysis leads to Rokhlin-Müller scheme
i.e. the classical second kind integral equation, see [10, 14, 17, 1]. Note that this analysis is
interesting also because it will be possible to write every calculation explicitely.

First of all, in this case Γ = ∂Ω0 = ∂Ω1 and (v0, v1) ∈ X
+ 1

2 (Γ) if and only if v0 = v1.

Similarly (q0, q1) ∈ X
− 1

2 (Γ) if and only if q1 = −q0. As a consequence, in this particular case

X(Γ) =
{ [

Id
Q

]
· V

∣∣∣ V ∈ H
1

2 (Γ)×H− 1

2 (Γ)
}

with Id =

[
1 0
0 1

]
and Q =

[
1 0
0 −1

]

In the particular case of two sub-domains, there is a choice for Y(Γ) that appears rather
natural, namely

Y(Γ) =
{ [

Id
−Q

]
· V

∣∣∣ V ∈ H
1

2 (Γ)×H− 1

2 (Γ)
}

Here, it is straightforward to verify that H(Γ) = X(Γ)⊕ Y(Γ). The expression of the duality
pairing in the matrix form used above is the following

B
([

U0

U1

]
,

[
V0

V1

])
=

[
U'
0 U'

1

]
·

[
P 0
0 P

]
·

[
V0

V1

]
with P =

[
0 1
−1 0

]
.

Finally, it is possible to give a very explicit expression for the operator A, using the Calderon
projectors that have been defined in Section 3. Indeed we have

Aκ =




Id/2 + C0

κ0
Q(−Id/2 + C1

κ1
)

Q(−Id/2 + C0
κ0
) Id/2 + C1

κ1



 .

Then we obtain an explicit expression for B(U, V ) when U ∈ X(Γ), U' = [U'
0 U'

1 ] and
V ∈ Y(Γ), V ' = [V '

0 V '
1 ], using the fact that Q2 = Id and QP = −PQ, we have

B(U, V ) = V '
0 · [Id −Q] ·

[
P 0
0 P

]
·

[
Id
Q

]
· U0 = 2V '

0 · P · U0

The same calculus can be achieved with U replaced by Uinc = (γ0
d
(uinc), γ0n(uinc), 0, 0)

', which
yields B(Uinc, V ) = V '

0 · P · U0
inc where U0

inc = (γ0
d
(uinc), γ0n(uinc) )

'. A similar calculus yields

B(Aκ U, V ) = V '
0 · [Id −Q] ·

[
P 0
0 P

]
·




Id/2 + C0

κ0
Q(−Id/2 + C1

κ1
)

Q(−Id/2 + C0
κ0
) Id/2 + C1

κ1



 ·

[
Id
Q

]
·U0

hence
B(Aκ U, V ) = 2V '

0 · P ·
(
C0
κ0

+QC1
κ1
Q
)
· U0

12



To compute the right hand side, first observe that (Id/2+C0
κ0
)U0

inc = 0 since U0
inc is a Cauchy

datum for the interior problem i.e. U0
inc ∈ C(∂Ω1). This remark yields B(Aκ Uinc, V ) =

−V '
0 PU0

inc. According to the expressions that we derived above, Formulation (15) explicitely
writes as follows

Find U0 ∈ H
1

2 (Γ)×H− 1

2 (Γ) such that

V '
0 · P ·

(
Id− C0

κ0
−QC1

κ1
Q
)
· U0 = V '

0 PU0
inc , ∀V0 ∈ H

1

2 (Γ)×H− 1

2 (Γ) .
(16)

Note that C0
κ0

+ QC1
κ1
Q is a compact operator. Indeed, C1

κ1
− C1

κ0
is a compact operator

from H1/2(Γ) × H−1/2(Γ) into H1/2(Γ) × H−1/2(Γ). In this case, it is easy to check that
QC0

κ0
= −C1

κ0
Q. This means that C0

κ0
+QC1

κ1
Q = Q(C1

κ1
− C1

κ0
)Q.

A careful inspection should convince the reader that Equation (16) takes a very standard
form such as in chapter 3 of [4], see also [10, 14, 17, 1]. The only reason why it does not take
strictly the same form lies in our choice of orientation for normal vectors: we have n1 = −n0

whereas most articles take the opposite convention.

The conclusion of this section is that formulation (15) is a ”multiple sub-domain gener-
alization” of the already well established second kind integral formulation of transmission
problems.

8 Numerical experiments

In this section we present numerical results obtained by discretizing Formulation (15) by
means of a Galerkin method that we describe now. Note however that we have not been able
to prove any theoretical result concerning the consistency of this numerical scheme.

In this numerical experiment, we considered a problem of diffraction of a plane wave by a
dielectric object that has the shape of a disk. This disk is artificially split in two subdomains,
as is represented in the picture below.

Ω0 Ω1 Ω2

Ω1 ∪ Ω2 = D(0, 1),
κ0 = 1,
κ1 = κ2 = κd

We take uinc(x, y) = e−iκ0x as incident field. For this geometry and this incident field, the
solution is obtained using the method of separation of variables and the Jacobi-Anger Formula
uinc(r, θ) =

∑
p∈Z(−i)|p|J|p|(κ0r)e

ipθ, see Identity (5.12.2) in [12]. This leads to the following
expression for the exact solution to our problem,
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for r > 1






u(r, θ) =
+∞∑

p=−∞

[
αpH

(1)
|p| (κ0r) + (−1)|p|J|p|(κ0r)

]
eipθ

with αp = (−1)|p|+1
κ0J′|p|(κ0)J|p|(κd)− κdJ|p|(κ0)J

′
|p|(κd)

κ0H
(1)′
|p| (κ0)J|p|(κd)− κdH

(1)
|p| (κ0)J

′
|p|(κd)

for r < 1






u(r, θ) =
+∞∑

p=−∞

βp J|p|(κdr) e
ipθ

with βp = (−1)|p|+1
κ0J′|p|(κ0)H

(1)
|p| (κ0)− κdJ|p|(κ0)H

(1)′
|p| (κ0)

κ0H
(1)′
|p| (κ0)J|p|(κd)− κdH

(1)
|p| (κ0)J

′
|p|(κd)

(17)

For discretization, we considered a paneling Γ = ∪Q
q=1Γ

q
h where each Γq

h is a segment. Then
we considered the space Vh(Γ) = Πn

j=0V(∂Ωj) where

V(∂Ωj) = {vh ∈ C0(∂Ωj) | vh|Γq
h
∈ P1 for Γq

h ⊂ ∂Ωj , q = 1 . . .Q}

We take X+
h = Vh(Γ)∩X1/2(Γ) as an approximation space for X1/2(Γ). For the approximation

of X−1/2(Γ), we base our construction on a discrete counterpart of Proposition 2.1. We
approximate X−1/2(Γ) by a space X

+
h defined by

X
−
h =

{
(qj)j=0...n ∈ Vh(Γ)

∣∣∣
n∑

j=0

 

∂Ωj

qj vj dσ = 0 ∀(vj)j=0...n ∈ X
+
h

}

where the symbol
ffl

means that the quadrature has been achieved using the trapezoidal rule
(which provides mass lumping). The discrete counterpart that we considered for X(Γ) and Y

are given by
Xh(Γ) = { (vj , qj)j=0...n | (vj) ∈ X

+
h , (qj) ∈ X

−
h }

Yh = { (vj , qj)j=0...n | (vj) ∈ X
−
h , (qj) ∈ X

+
h } .

Thanks to this particular choice for the space Yh, the matrix associated to the term B(Uh, Vh)
is symmetric. For the assembly of the matrix associated to the integral operator A, we used
the MATLAB toolbox ie2m developped by A.Bendali. We used uniform meshes so that there
exists a constant C > 0 such that

Number of degrees of freedom = C/h

where h is the caracteristic size of the length of the segments in the mesh i.e. there exists
α > 0 such that α h ≤ length(Γq

h) ≤ h/α for any segment Γq
h of the mesh.

In figures Fig.1 and Fig.2 below we represent the relative errors u0−u0,h and p0−p0,h, where
on the one hand u0, p0 refer to the Dirichlet and Neumann component on ∂Ω0 of the exact
solution, and on the other hand u0,h, p0,h refer to the Dirichlet and Neumann component on
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∂Ω0 of the approximate solution. We represented these errors both for Formulation (15) and
Formulation (10).

These pictures clearly show that relative errors are in O(h). Although we use piecewise
linear shape functions, we do not use curved boundary elements. As a consequence, this rate
of convergence seems optimal because of the error induced by the approximation of Γ by
means of simple segments.
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We also see that the second kind formulation (15) is as precise as the equation of the first
kind studied in [16]. In figure Fig.3we represent the L2 norm of the far field pattern for the
first and second kind formulation.
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In Fig.3 the far field patterns F∞(θ) and F∞,h(θ) are defined in the sense of Corollary 3.7
of chapter 3 in [4]. The main davantage of Formulation (15) is the condition number of the
boundary element matrices that it induces. It remains bounded independently of the step of
the mesh.
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This is put into evidence in figure Fig.4 and Fig.5 above. In particular, we observe that
the condition number of the matrix associated to (15) by means of a Galerkin discretization
remains low, in accordance with §14.1 in [9], while the condition number of the matrix for the
first kind formulation diverges like O(h−1) which is standard, see §4.5 in [18]. Note however
that we did not try to apply any preconditioner to the first kind formulation (10).

Appendix

Proposition 8.1.

For any F ∈ H(Γ), there exists a unique U ∈ X(Γ) such that

B(CκU, V ) = B(F, V ) ∀V ∈ X(Γ) .

Proof:

According to (ii) §2.1 in [16], there exists a compact operator T : H(Γ) → H(Γ) and a
constant α > 0 such that 3e{B( (Cκ + T)V, V )} ≥ α‖V ‖, ∀V ∈ H(Γ) (note that our choice
for the duality pairing differs from the one in [16]). As a consequence, according to Fredholm
alternative, in order to prove the result, we only need to show that the only U ∈ X(Γ) satis-
fying B(CκU, V ) = 0, ∀V ∈ X(Γ) is U = 0.

Take any U = (U0, . . . , Un)' ∈ X(Γ) satisfying B(CκU, V ) = 0, ∀V ∈ X(Γ). Define ψj(x) =

Gj
κj{Uj}(x). First, let us prove that ψj = 0 in Ωj for all j = 0 . . . n. Define ϕ ∈ L2

loc(R
d) such
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that ϕ|Ωj
= ψj , and set Wint = (Id/2 + Cκ)U . We have Wint = (γ0(ϕ), . . . , γn(ϕ)) and since

B(Wint, V ) = B((Id/2 +Cκ)U, V ) = B(CκU, V ) = 0 , ∀V ∈ X(Γ), we deduce that Wint ∈ X(Γ)
hence ϕ ∈ H1

loc(∆,Rd). To sum up

ϕ ∈ H1
loc(∆,Rd) such that

∆ϕ+ κ2jϕ = 0 in Ωj , j = 0 . . . n

ϕ is outgoing radiating in Ω0.

As a consequence ϕ is solution to an homogeneous transmission problem (that is classically
well posed). Hence ϕ = 0 i.e. ψj = 0 in Ωj for all j = 0 . . . n.

Now let us show that ψj = 0 in Rd \ Ωj for all j = 0 . . . n. Set Wext = −(Id/2 − Cκ)U . We
have B(Wext, V ) = −B((Id/2 − Cκ)U, V ) = B(CκU, V ) = 0 , ∀V ∈ X(Γ) so that Wext ∈ X(Γ)
according to (5). Clearly

∆ψj + κ2jψj = 0 in Rd \ Ωj

and ψj is outgoing (for the wave number κj) for j 0= 0.

Since Wext ∈ Im(Id/2− Cκ), we have Wext = (γ0c (ψ0), . . . , γnc (ψn)) ∈ X(Γ). Take r > 0 large
enough to ensure that (Rd \ Ω0) ⊂ Br = {x ∈ Rd | |x| < r }. Applying Green formulas in
each Br \ Ωj we obtain

ˆ

∂Br

ψj ∂rψjdσ =

ˆ

Br\Ωj

|∇ψj |
2 − κ2j |ψj |

2 dx+

ˆ

∂Ωj

γjd,c(ψj)γ
j
n,c(ψj)dσ ∀j 0= 0

0 =

ˆ

Br\Ω0

|∇ψ0|
2 − κ20 |ψ0|

2 dx+

ˆ

∂Ω0

γ0
d,c(ψ0)γ

0
n,c(ψ0)dσ.

In the equations above ∂r refers to the radial derivative. Take the imaginary part of the
identity above, and sum over j = 0 . . . n, taking into account that (γjd,c(ψj))0≤j≤n ∈ X1/2(Γ)

and (γjn,c(ψj))0≤j≤n ∈ X−1/2(Γ) (since Wext ∈ X(Γ)). This yields

n∑

j=1

Im
{ ˆ

∂Br

ψj ∂nψjdσ
}

= Im
{ n∑

j=0

ˆ

∂Ωj

γd,c(ψj)γn,c(ψj) dσ
}
= 0.

In the last equality above we used Proposition 2.1. Note that, by construction, ψj is outgoing
radiating with respect to the wave number κj . Combining this condition at infinity with the
identity above for j = 1 . . . n yields

n∑

j=1

ˆ

∂Br

|∂rψj |
2 + κ2j |ψj |

2dσ

=
n∑

j=1

ˆ

∂Br

|∂rψj − iκjψj |
2dσ −

n∑

j=1

Im
{ ˆ

∂Br

ψj ∂rψjdσ
}
−→
r→∞

0.

This shows in particular that limr→∞
´

∂Br
|ψj |2dσ = 0 for all j = 1 . . . n. As a consequence,

we can apply Rellich Lemma, see Lemma 2.11 in [5], which implies that ψj = 0 in Rd \Ωj , j =
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1 . . . n. There only remains to deal with ψ0. According to the transmission conditions satisfied
by ψ0 we have γ0d,c(ψ0) = 0 and γ0

n,c(ψ0) = 0. Hence −ψ0(x) = G0
κ0
{γ0c (ψ0)}(x) = 0 in Rd\Ω0.

Since U = (U0, U1, . . . , Un) with Uj = γj(ψj)−γjc (ψj) = 0 for all j = 0 . . . n, we have U = 0. !

Proposition 8.2.

The operator Aκ : H(Γ) → H(Γ) defined by (11) has continuous dependency, in the sense of
the operator norm (13), with respect to each wave number κj , j = 0 . . . n.

Proof:

First of all recall that, for any open ball Br ⊂ Rd of radius r > 0 centered at 0 such that
(Rd \Ω0) ⊂ Br, the trace operators γid : H1(∆,Br∩Ωi) → H

1

2 (∂Ωi) and γi
n
: H1(∆,Br∩Ωi) →

H− 1

2 (∂Ωi) are continuous. As a consequence, according to the definition of Aκ, it suffices
to show that DLj

κj
(resp. SLj

κj
) continuously depends on κj as a continuous operator from

H1/2(∂Ωj) (resp. H−1/2(∂Ωj)) to H1(∆,Br∩Ωj) or H1(∆,Br \Ωj), for any open ball Br ⊂ Rd

of radius r > 0 centered at 0 such that (Rd \ Ω0) ⊂ Br.
We will show this only for j = 0 and for a fixed Br containing Rd \Ω0, since for j = 1, . . . n

the proof is the same. Set ψκ{u, p} = DL0
κ{u} + SL0

κ{p} for (u, p) ∈ H
1

2 (∂Ω0) × H− 1

2 (∂Ω0).

Set also ξκ{u, p} = ψκ{u, p}−ψκ0
{u, p}. For each κ ∈ C define ϕκ : H

1

2 (∂Ω0)×H− 1

2 (∂Ω0) →

H
1

2 (∂Br)×H− 1

2 (∂Br) by

ϕκ{u, p} = −∂rξκ{u, p}|∂Br − i ξκ{u, p}|∂Br .

Note that ϕκ0
= 0. Moreover, since ∂Br ∩ ∂Ω0 = ∅, the integral kernel involved in the

definition of ϕκ is of class C∞, so the family ϕκ admits continuous dependency with respect
to κ. To be more precise, there exists α : C → R+ with limκ→κ0

α(κ) = 0 such that

‖ϕκ{u, p}‖
H

1
2 (∂Br)

≤ α(κ)
(
‖u‖

H
1
2 (∂Ω0)

+ ‖p‖
H− 1

2 (∂Ω0)

)

for any (u, p) ∈ H
1

2 (∂Br)×H− 1

2 (∂Br). Note also that [γ0
d
] · ξκ{u, p} = 0 and [γ0

n
] · ξκ{u, p} = 0

where [γ0
d
] and [γ0

n
] were defined in (1). Besides ξκ{u, p} satisfies

−∆ξκ{u, p}− κ2ξκ{u, p} = (κ2 − κ20)ψκ0
{u, p} in Br

∂rξκ{u, p}|∂Br + iξκ{u, p}|∂Br = ϕκ{u, p} on ∂Br

The equations above can be put in a variational form: ξκ{u, p} ∈ H1(Br) satisfies

aκ(ξκ{u, p}, η) = (κ2 − κ20)

ˆ

Br

ψκ0
{u, p} η dx+

ˆ

∂Br

ϕκ{u, p} η dσ ∀η ∈ H1(Br)

aκ(ξ, η) =

ˆ

Br

∇ξ ·∇η dx− κ2
ˆ

Br

ξη dx+ i

ˆ

∂Br

ξ η dσ ∀ξ, η ∈ H1(Br) .

The form aκ( , ) is sesquilinear and continuous. Consider a scalar product of H1(Br) that we
denote 〈 〉1,Br

. According to Riesz representation theorem, there exists a unique continuous

operator Rκ : H1(Br) → H1(Br) and a unique Fκ{V } ∈ H1(Br) such that

〈Rκξ, η〉1,Br
= aκ(ξ, η)

〈Fκ{u, p}, η〉1,Br
=

ˆ

Br

(κ2 − κ20)ψκ0
{u, p} η dx+

ˆ

∂Br

ϕκ{u, p} η dσ ∀ξ, η ∈ H1(Br)
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As a family valued in L(H1(Br),H1(Br)) (the space of continuous linear maps from H1(Br) to
H1(Br)), the function κ (→ Rκ has analytical dependency. For κ ∈ iR \ {0}, the operator Rκ

is invertible since 3e{aκ(ξ, ξ)} ≥ min(1, |κ|) ‖ξ‖H1(Br) in this case. Besides, the operator Rκ

is of Fredholm type for any κ as the only term depending on κ in aκ( , ) is a compact term.
As a consequence we can apply analytic Fredholm theory to the family Rκ, see for exemple
Corollary 8.4 of chapter XI in [6], and conclude that R−1

κ is well defined and analytic except
at countably many isolated poles.

Let us verify that Rκ is invertible at any κ ∈ R+. Since Rκ is of Fredholm type, we only
need to check that Rκ is one-to-one for κ ∈ R+. Assume that Rκξ = 0 for some ξ ∈ H1(Br).
In this case we have Im{aκ(ξ, ξ)} =

´

∂Br
|ξ|2dσ = 0, so that ξ|∂Br = 0. From the variational

formulation aκ(ξ, η) = 0 for all η ∈ H1(Br) we also obtain that ∆ξ + κ2ξ = 0 in Br and
∂rξ|∂Br + iξ|∂Br = 0. As a consequence we have both ∂rξ|∂Br = 0 and u|∂Br = 0. Since
∆ξ + κ2ξ = 0 in Br, this is a consequence of Proposition 3.1 (considering Br instead of Ωj)
that u = 0.

Since ϕκ continuously depends on κ, so does Fκ{u, p}. Besides we also have Fκ0
{u, p} = 0.

Hence ψκ{u, p} = R−1
κ · Fκ{u, p} admits continuous dependency with respect to κ, i.e. there

exists β : C → R+ such that limκ→κ0
β(κ) = 0 and

‖ψκ{u, p}‖H1(Br) ≤ β(κ)
(
‖u‖

H
1
2 (∂Ω0)

+ ‖p‖
H− 1

2 (∂Ω0)

)

∀u ∈ H
1

2 (∂Ω0) , ∀p ∈ H− 1

2 (∂Ω0)

There only remain to check that continuity holds also for ‖∆ψκ{u, p}‖L2(Br). This is a con-
sequence of the equation −∆ξκ{u, p} = κ2ξκ{u, p}+ (κ2 − κ20)ψκ0

{u, p} in Br. !
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