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MULTI-LEVEL MONTE CARLO FINITE VOLUME METHODS

FOR NONLINEAR SYSTEMS OF CONSERVATION LAWS IN

MULTI-DIMENSIONS

S. MISHRA, CH. SCHWAB, AND J. ŠUKYS

Abstract. We extend the Multi-Level Monte Carlo (MLMC) algorithm of [19]
in order to quantify uncertainty in the solutions of multi-dimensional hyper-
bolic systems of conservation laws with uncertain initial data. The algorithm
is presented and several issues arising in the massively parallel numerical im-
plementation are addressed. In particular, we present a novel load balancing
procedure that ensures scalability of the MLMC algorithm on massively par-
allel hardware. A new code ALSVID-UQ is described and applied to simulate
uncertain solutions of the Euler equations and ideal MHD equations. Nu-
merical experiments showing the robustness, efficiency and scalability of the
proposed algorithm are presented.

1. Introduction

A number of problems in physics and engineering are modeled in terms of systems
of conservation laws:

(1.1)
Ut + div(F(U)) = 0, ∀(x, t) ∈ Rd × R+,

U(x, 0) = U0(x),

Here, U : D ⊂ Rd %→ Rm denotes the vector of conserved variables and F : Rm ×
Rm %→ Rm×d is the collection of directional flux vectors. The partial differential
equation is augmented with initial data U0 .

Examples for conservation laws include the shallow water equations of oceanog-
raphy, the Euler equations of gas dynamics, the Magnetohydrodynamics (MHD)
equations of plasma physics and the equations of non-linear elasticity.

It is well known that solutions of (1.1) in general develop discontinuities or shock
waves in finite time even for smooth initial data. Hence, solutions of (1.1) are sought
in the sense of distributions, see [6]. Furthermore, additional admissibility criteria
or entropy conditions are imposed to ensure uniqueness.

As the equations are non-linear, analytical solution formulas are only available
in very special situations. Consequently, numerical schemes are the main tools for
the study of systems of conservation laws. Many efficient numerical schemes for ap-
proximating systems of conservation laws are currently available. They include the
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2 SIDDHARTHA MISHRA, CHRISTOPH SCHWAB, AND JONAS ŠUKYS

Finite Volume, conservative Finite Difference and Discontinuous Galerkin methods,
see [15, 9].

Existing numerical methods for approximating (1.1) require the initial data U0

as the input. However, in most practical situations, it is not possible to measure
this input precisely. The measurement of other inputs like sources, boundary data
and coefficients is also prone to uncertainty. This uncertainty in the inputs for
(1.1) results in the propagation of uncertainty in the solution. The modeling and
approximation of the propagation of uncertainty in the solution due to uncertainty
in inputs constitutes the theme of uncertainty quantification (UQ).

Uncertainty in inputs and solutions of PDEs is frequently modeled in a prob-
abilistic manner. The inputs are random fields with prescribed probability laws.
The solution is also realized as a random field and the statistical moments of the
solutions like the expectation and variance are the quantities of interest.

It is highly non-trivial to develop efficient algorithms for quantifying uncertainty
in conservation laws. The biggest challenge lies in the fact that the discontinuities
in physical space may lead to the propagation of discontinuities in the probability
space. A robust numerical method should be able to deal with these discontinuities.
Another challenge lies in dealing with the fact that the number of random sources
driving the uncertainty may be very large (possibly infinite).

The design of efficient numerical schemes for quantifying uncertainty in solutions
of conservation laws has seen a lot of activity in recent years. The most popu-
lar methods are the stochastic Galerkin methods based on generalized Polynomial
Chaos (gPC for short). An incomplete list of references on gPC methods for uncer-
tainty quantification in hyperbolic conservation laws includes [2, 5, 16, 26, 21, 27]
and other references therein. Although these deterministic methods show some
promise, they suffer from the disadvantage that they are highly intrusive. Exist-
ing codes for computing deterministic solutions of conservation laws need to be
completely reconfigured for implementation of the gPC based stochastic Galerkin
methods. Furthermore, some of the intrusive schemes appear rather difficult to
parallelize.

Another class of methods for computational uncertainty quantification in numer-
ical solutions of PDEs are statistical sampling methods, most notably Monte Carlo
(MC) sampling. In a MC method, the probability space is sampled and the under-
lying deterministic PDE is solved for each sample. The MC samples of numerical
solutions of the PDE are combined into statistical estimates of expectation and
other statistical moments of the random solution which are necessary to quantify
uncertainty. In uncertainy quantification for hyperbolic scalar conservation laws
(SCLs) with random initial data, MC type methods together with Finite Volume
(FV) spatio-temporal discretizations of the PDE were proposed in a recent paper
[19]. The MCFVM methods were analyzed in the context of a SCL with random
initial data and corresponding estimates of the combined discretization and statis-
tical sampling errors were obtained. MC methods are non-intrusive and therefore
are very easy to code. Existing deterministic PDE solvers are reused in MC codes.
As it was shown in [19], MC methods converge at rate 1/2 as the number M of
MC samples increases. The asymptotic convergence rate M−1/2 is non-improvable
by the central limit theorem. Therefore, MC methods require a large number of
“samples” (with each “sample” involving the numerical solution of (1.1) with a
given draw of initial data U0) in order to ensure low statistical errors. This slow
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convergence entails high computational costs for MC type methods. In particu-
lar, quantifying uncertainty with MC methods for systems of conservation laws in
several space dimensions with moderately high number of sources of uncertainty
becomes very costly.

In order to address this drawback of the MC methods, we proposed a novelMulti-
level Monte Carlo (MLMC) algorithm for SCLs in [19]. Multi-Level MC methods
were introduced by S. Heinrich for numerical quadrature [11] and developed by
M. Giles to enhance the efficiency of path simulations for Itô stochastic ordinary
differential equations in [7, 8]. More recently, MLMC finite element methods for
elliptic problems with stochastic coefficients were introduced by Barth, Schwab and
Zollinger in [3].

In [19], we presented and analyzed MLMCFVM for SCLs with random initial
data. Based on our asymptotic error analysis, we derived in [19] an optimized
combination of sampling sizes on different levels of spatial and temporal resolution
to achieve maximum accuracy in the statistical estimates of first and higher order
moments of the random solution. We proved that for first order FV solvers of the
SCL, the MLMCFVM obtained in this way allows the computation of approximate
statistical moments with the same accuracy versus cost ratio as a single determin-
istic solve on the same mesh. While offering dramatically improved efficiency over
standard MC methods, the MLMC FV methods developed in [19] are still totally
non-intrusive and are as easy to code and parallelize as traditional, single level MC
FV methods. Numerical examples in one space dimension showed that MLMCFVM
was orders of magnitude faster than standard MCFVM.

Our main aim in this paper is to extend the MLMCFVM algorithm to systems of
conservation laws in several space dimensions. As compared to [19], in the present
paper several interesting implementation issues are addressed: due to the massive
computational effort entailed by the accurate numerical solution of multi dimen-
sional systems of conservation laws, numerical solves of (1.1) for single samples of
random initial data U0 can not be performed on a single processor. Therefore,
in the present paper the MLMC FV algorithm is extended towards several forms
of parallelism: parallel computation of large numbers of samples on a coarse grid,
and parallelism by mesh paritioning of the (few) samples on the finest grid. To
this end, we describe a novel (static) load balancing paradigm for a scalable version
of the MLMCFVM on a certain class of massively parallel hardware. Although
the theoretical MLMC FV convergence results of [19] no longer hold for hyperbolic
systems (there are no convergence results for numerical schemes even for systems
with deterministic data), the MLMC FV algorithm developed in [19] is tested on
a series of hyperbolic benchmark problems and is shown to be robust: the basic
conclusions drawn based on the numerical analysis of MLMC FVM for SCL in [19]
appear to be applicable also to algorithm design for a wide range of hyperbolic
conservation laws. In particular, we consider the Euler equations of gas dynamics
and the system of compressible, ideal MHD equations in two space dimensions and
show that the MLMCFVM methods can quantify uncertainty in very complex re-
alistic situations; for instance, the MLMC FVM is able to handle a large number
of sources of uncertainty (reminiscent to large number of stochastic dimensions in
a gPC method) that appear to be beyond the reach of other existing UQ methods
for systems of hyperbolic conservation laws.
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The rest of the paper is organized as follows: The mathematical setup is de-
scribed in Section 2. We note that conservation laws with uncertain sources and
boundary data can be handled similarly. We present the MC and MLMC algo-
rithms from [19] in Sections 4 and 5, respectively. The serial implementation of
the FV solver is briefly recapitulated in Section 6. In Section 7, we describe the
parallelization algorithm and numerical experiments in several space dimensions
are presented in Section 8.

2. Mathematical Preliminaries

Let (Ω,F ,P) denote a complete probability space, then:

Definition 2.1 (Random field). A random field is a measurable mapping U : Ω '
ω %→ U(x, t,ω) from (Ω,F) to ((C([0, T ], L1(Rd)))m, B((C([0, T ], L1(Rd)))m).

The conservation law (1.1) with random initial data is

(2.1)

∂U(x, t,ω)

∂t
+ div(F(U(x, t,ω))) = 0,

U(x, 0,ω) = U0(x,ω).
x ∈ Rd, t > 0, ∀ω ∈ Ω.

Here, the initial data U0 is a random field i.e, U0 : Ω ' ω %→ U0(x,ω) that is a
measurable from (Ω,F) to ((L1(Rd))m,B((L1(Rd))m)).

Assuming that the underlying deterministic conservation law (1.1) has an en-
tropy formulation [6, 9], we define the following notion of solutions of (2.1):

Definition 2.2 (Random entropy solution). A random field U : Ω ' ω %→ U(x, t,ω)
is an entropy solution to stochastic conservation law (2.1) if it is a weak solution
and if it satisfies an entropy condition (corresponding to the entropy formulation
for (1.1)) for P-a.e. ω ∈ Ω.

In MLMC methods random entropy solutions are sought path-wise. It is not
possible to prove that the random entropy solutions defined above exist for systems
of conservation laws. This is not surprising as there are no global well-posedness
results for systems of conservation laws, even in one space dimension.

In [19], the authors analyzed the special case of scalar conservation laws with
uncertain initial data,

(2.2)

∂u(x, t,ω)

∂t
+ div(f(u(x, t,ω))) = 0,

u(x, 0,ω) = u0(x,ω).
x ∈ Rd, t > 0, ∀ω ∈ Ω,

and showed that the random entropy solutions exist and satisfy certain stability
estimates, see Theorem 3.3 of [19]. Furthermore, under suitable regularity assump-
tions on the initial data, the authors showed that statistical moments of the random
entropy solution also exist and are bounded, see Theorem 3.4 of [19].

For the remainder of this paper, we will assume that unique random entropy
solutions for the system (2.1) exist. Furthermore, we assume that for L1(Rd)-valued
random initial data with finite variances, this entropy solution has have finite second
moments as L1(Rd)m-valued random field. Based on this, we generalize the design
principles for MLMC FVM from [19] to hyperbolic systems (2.1).
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3. Finite volume methods

We aim to design an efficient MC type scheme for approximating the stochastic
conservation law (2.1). This entails discretizing space, time as well as the probabil-
ity space. For spatio-temporal discretization, we will employ finite volume methods.

Let the time step be ∆t > 0 and a triangulation T of the spatial domain D ⊂
Rd of interest. Here, a triangulation T will be understood as a partition of the
physical domain into a finite set of disjoint open, convex polyhedra K ⊂ Rd with
boundary being a finite union of plane faces. Let ∆xK := diamK and by ∆x(T ) :=
max{∆xK : K ∈ T } denote the mesh width of T . For any volume K ∈ T , we define
the set N (K) of neighboring volumes

(3.1) N (K) := {K ′ ∈ T : K ′ (= K ∧measd−1(K ∩K ′) > 0}.

For every K ∈ T and K ′ ∈ N (K) denote νK,K′ to be the unit normal pointing
outward from the volume K at the face K ∩K ′. We set:

(3.2) λ = ∆t/min{∆xK : K ∈ T }

by assuming a uniform discretization in time with time step ∆t. The constant λ
is determined by a standard CFL condition (see [9]) based on the maximum wave
speed.
Then, an explicit first-order finite volume ([9]) for approximating (1.1) is given by

(3.3) Un+1
K = Un

K − ∆t

meas(K)

∑

K′∈N (K)

F(Un
K ,Un

K′),

where

Un
K ≈ 1

meas(K)

∫

K
U(x, tn)dx

is an approximation to the cell average of the solution and F(·, ·) is a numerical flux
that is consistent with F · νK,K′ . Numerical fluxes are usually derived by (approxi-
mately) solving Riemann problems at each cell edge resulting in the Godunov, Roe
and HLL fluxes, see [15].

Higher order spatial accuracy is obtained by reconstructing U from Un
K in

non-oscillatory piecewise polynomial functions or by the Discontinuous Galerkin
method. Higher order temporal accuracy is achieved by employing strong stability
preserving Runge-Kutta methods.

4. Monte Carlo Finite Volume Method

4.1. MCFVM algorithm. The MCFVM algorithm consists of the following three
steps:

1. Sample: We draw M independent identically distributed (i.i.d.) initial
data samples Ui

0 with i = 1, 2, · · · ,M from the random field U0 and ap-
proximate these by piecewise constant cell averages on the FV mesh.

2. Solve: For each realization Ui
0, the underlying conservation law (1.1) is

solved numerically by the finite volume method (3.3). We denote the finite
volume solutions by Ui,n

K for the volume K at time level tn.
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3. Compute Statistics: We estimate the expectation of the random solution
field with the sample mean (ensemble average) of the approximate solution:

(4.1) EM [Un
T ] :=

1

M

M∑

i=1

Ui,n
T .

Here,
Ui,n

T (x) = Ui,n
K , ∀ x ∈ K.

Higher statistical moments can be approximated analogously.

The above algorithm is quite simple to implement. We remark that step 1
requires a (pseudo) random number generator. In step 2, any standard (high-order)
finite volume scheme can be used. Hence, existing code for FVM can be used and
there is no need to rewrite FVM code. Furthermore, the only (data) interaction
between different samples is in step 3 when ensemble averages are computed. Thus,
the MCFVM is non-intrusive as well as easily parallelizable.

4.2. Convergence analysis. It is not possible to show rigorously that the MCFVM
algorithm converges for systems of conservation laws. In the special case of the sto-
chastic scalar conservation law (2.2), a rigorous error estimate for the MCFVM
scheme was obtained in [19]. We refer the reader to [19], Theorem 4.6 for details
on the assumptions and directly state the error estimate:

(4.2)
‖E[u(·, t)]− EM [un

T ]‖L2(Ω;L1(Rd)) ≤

C
{
M− 1

2 ‖u0‖L2(Ω;L1(Rd)) + tn∆xs ‖TV (u0(·,ω))‖L∞(Ω;dP)
}

Here, C is a constant independent of M and ∆x and s is the convergence rate of
the deterministic FVM solver. The results of Kusznetsov [10] show that s = 1

2 ,
when a first-order FVM is used to approximate scalar conservation laws.

Note that the error estimate for the mean requires that the initial random field
has finite second moments. A similar error estimate for the k-th moment was
obtained in [19] provided that the initial data has finite 2k moments.

Using standard error estimates for numerical schemes approximating scalar con-
servation laws (see e.g. [9, 19]), it is straightforward to deduce that the (computa-
tional) work needed to solve one MC sample is, asymptotically,

(4.3) Work1(∆x) = O(∆x−(d+1))

In order to equilibrate the statistical error in (4.2) with the spatio-temporal
discretization error, we need to choose

(4.4) M = O(∆x−2s)

samples. Hence, the amount of computational work needed to solve M samples is

(4.5) WorkM (∆x) = O(M∆x−(d+1)) = O(∆x−2s∆x−(d+1)).

This leads to the asymptotic error vs. work estimate

(4.6) ‖E[u(·, tn)]− EM [un
T ]‖L2(Ω;L1(Rd)) ! (Work)

−s
(d+1+2s) .

The above error vs. work estimate should be compared to the deterministic FVM

error which scales as (Work)
−s

(d+1) .
Hence, the MCFVM is considerably more expensive than the standard FVM for a

deterministic conservation law. As an example, a first order scheme (s = 1/2) leads
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to a convergence rate of 1/6 for the MCFVM as compared to a convergence rate of
1/4 for the standard FVM for a deterministic conservation law. Moreover, even for
smooth solutions and high order FV schemes, i.e. as s → ∞, the convergence rate
is dominated by the MC rate of 1/2.

Remark 4.1. We are unable to prove a version of the error estimate (4.2) for
systems of conservation laws. This is primarily on account of the fact that there
are no convergence results for numerical schemes approximating (1.1). However,
we will choose the number of MC samples by (4.4) and test numerically whether
the above convergence rates and error vs. work estimates hold also for particular
hyperbolic systems.

5. Multi-level Monte Carlo Finite Volume Method

Given the slow convergence of MCFVM, we propose the multi-level Monte Carlo
finite volume method (MLMCFVM). The key idea behind MLMCFVM is to simul-
taneously draw MC samples on a hierarchy of nested grids [19].

5.1. MLMCFVM algorithm. The algorithm consists of the following four steps:

1. Nested meshes: Consider nested triangulations {T!}∞!=0 of the spatial
domain D with corresponding mesh widths ∆x! that satisfy:

(5.1) ∆x! = ∆x(T!) = sup{diam(K) : K ∈ T!} = O(2−!∆x0), % ∈ N0,

where ∆x0 is the mesh width for the coarsest resolution and corresponds
to the lowest level % = 0.

2. Sample: For each level of resolution % ∈ N0, we draw M! independent
identically distributed (i.i.d) samples Ui

0,! with i = 1, 2, · · · ,M! from the
initial random field U0.

3. Solve: For each resolution level % and each realization Ui
0,!, the underlying

conservation law (1.1) is solved by the finite volume method (3.3) with
mesh width ∆x!. Let the finite volume solutions be denoted by Ui,n

K,! for
the volume K and at the time level tn and resolution level %.

4. Estimate Solution Statistics: Fix some positive integer L < ∞ corre-
sponding to the highest level. We estimate the expectation of the random
solution field with the following estimator:

(5.2) EL[U(·, tn)] :=
L∑

!=0

EMl [U
n
T ,! −Un

T ,!−1],

with EMl being the MC estimator defined in (4.1) for the level %. Higher
statistical moments can be approximated analogously (see, e.g., [19]).

A few remarks are in order. First, the estimator (5.2) indicates that for each draw
of the random data, the hyperbolic system must be solved numerically on two consec-
utive meshes and time steps, for this data sample. In the present implementation,
we did not exploit this fact to accelerate the solves, e.g. by the use of multilevel
techniques, but rather invoked two instances of the deterministic solver ALSVID
with the same initial data, but different discretization levels.

Second, MLMCFVM is also non-intrusive as any standard FVM code can be
used in step 2. Furthermore, MLMCFVM is amenable to efficient parallelization
as data from different grid resolutions and different samples only interacts in step
4 where the sample statistics are computed.
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5.2. Convergence analysis. Again we have rigorous convergence results for the
MLMCFVM algorithm in the scalar case (2.2), see Theorem 4.8 of [19] for the
assumptions on the grid, the finite volume scheme and the initial data. The resulting
error estimate is

(5.3)

‖E[u(·, t)]− EL[u(·, t)]‖L2(Ω;L1(Rd)) ≤
≤ C

{
t∆xs

L‖TV (u0)‖L1(Ω,dP) +∆xs
L‖u0‖L∞(Ω;W s,1(Rd))

}

+ C
{ L∑

!=0

M
− 1

2
! ∆xs

!

}{
‖u0‖L2(Ω;W s,1(Rd)) + t‖TV (u0)‖L2(Ω;dP)

}
.

Here s refers to the convergence rate of the deterministic finite volume scheme.
From the error estimate (5.3), we obtain that the number of samples to equilibrate
the statistical and spatio-temporal discretization errors in (5.2) is given by:

(5.4) M! = O(22(L−!)s)

Notice that (5.4) implies that the largest number of MC samples is required on the
coarsest mesh level % = 0, whereas only a small fixed number of MC samples are
needed on the finest discretization levels.

Combining (5.2) with (5.4) we obtain the following computational cost (WorkL)
estimates for the MLMCFVM,

WorkL =
L∑

!=0

M!O(∆x−(d+1)
! ) ≤ C

L∑

!=0

22(L−!)s+!(d+1) = C22Ls
L∑

!=0

2(d+1−2s)!

=

{
C22Ls+[(d+1)−2s]L = C2(d+1)L = O(∆x−(d+1)

L ) if s < (d+ 1)/2,

C2(d+1)L(L+ 1) = O(∆x−(d+1)
L log2(∆x−1

L )) if s = (d+ 1)/2.

(5.5)

Note that the above result is a generalization of the work estimates for MLMCFVM
obtained in [19] as we can cover the case of s = (d+ 1)/2.

From the above work estimate, we obtain the corresponding error vs. work
estimate for MLMCFVM,
(5.6)

‖E[u(·, t)]− EM [u(·, t)]‖L2(Ω;L1(Rd)) !





(Work)−s/(d+1) if s < (d+ 1)/2,
(

Work
log(Work)

)−s/(d+1)
if s = (d+ 1)/2.

The above estimates show that the MLMCFVM is superior to the MCFVM since

the asymptotic computational cost for MLMCFVM scales as Work
−s
d+1 ; compare to

Work
−s

d+1+2s for the MCFVM scheme. Furthermore, if s < (d + 1)/2 then this
error vs. work estimate is exactly of the same order as the error vs. work of
the deterministic finite volume scheme. Hence, the MLMCFVM is expected to be
considerably faster than the MCFVM for the same magnitude of error.

Remark 5.1. Although we are unable to prove rigorously an error estimate like
(5.3) for systems of conservation laws, we choose the number of samples at each
resolution level by (5.4) and test numerically whether the MLMCFVM for systems
obeys the same asymptotic estimates. This is done in the next section.
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6. Serial Implementation of MLMCFVM

We begin the description of implementation of the MLMCFVM algorithm by
presenting its implementation on a single processor. The implementation on a
parallel architecture is more intricate and is postponed to the next section.

As stated in the last section, the MLMCFVM algorithm has four stages. We
discuss implementation issues that arise in each stage below.

6.1. Step 1: Hierarchy of nested grids. We will solve systems of conservation
laws (2.1) in one and two space dimensions. In two space dimensions, we choose
Cartesian meshes for simplicity. It is relatively straightforward to choose a hierarchy
of nested grids in both one and two space dimensions.

6.2. Step 2: Sample. In this step, we have to drawM! i.i.d. samples for the initial
random fieldU0 corresponding to the underlying probability distribution. Standard
random number generators (RNG) can be readily used to draw such samples. For
the serial implementation, any reasonable RNG works well in practice.

6.3. Step 3: Solve. For each realization of the initial random field, we need to
solve (2.1) with a finite volume scheme. In this paper, we consider two numerical
examples. First, the Euler equations of gas dynamics are considered. In several
space dimensions, these equations are

(6.1)

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u+ pID) = 0,

Et + div((E + p)u) = 0.

Here, ρ is the density and u is the velocity field. The pressure p and total energy
E are related by the ideal gas equation of state:

(6.2) E :=
p

γ − 1
+

1

2
ρ|u|2,

with γ being the ratio of specific heats. It is well known that the Euler equations are
strictly hyperbolic and the corresponding eigenvalues and eigenvectors are readily
computed, see [15].

The second numerical example that we will consider are the equations of Mag-
netohydrodynamics (MHD) given by

(6.3)

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u+ (p+
1

2
|B|2)I −B⊗B) = 0,

Bt + div(u⊗B−B⊗ u) = 0,

Et + div((E + p+
1

2
|B|2)u− (u ·B)B) = 0,

div(B) = 0,

Here, B denotes the magnetic field and the total energy is given by the equation of
state:

(6.4) E :=
p

γ − 1
+

1

2
ρ|u|2 + 1

2
|B|2.

In contrast to the Euler equations, the MHD equations are not strictly hyperbolic.
Furthermore, the design of robust numerical schemes for MHD is quite challenging
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as the equations (6.3) involve the divergence constraint. This constraint needs to
be handled in a suitable manner in order to avoid spurious oscillations, see [25].
Note that the Euler equations (6.1) are recovered from the MHD equations (6.3)
by setting the magnetic field B ≡ 0.

As the solve step in the MLMCFVM algorithm will be repeated for a large
number of samples on different space-time resolution levels, we need a robust and
efficient FVM code for the Euler and MHD equations. We choose the code named
ALSVID [1] that was designed by researchers at CMA, University of Oslo and SAM,
ETH Zürich. As ALSVID is extensively used in the examples of this paper, we
describe it briefly below.

6.3.1. ALSVID. This finite volume code approximates the Euler equations and
MHD equations in one, two and three space dimensions. It is based on the following
ingredients:

1. Approximate Riemann solver: The numerical fluxes in the finite vol-
ume scheme (3.3) used in ALSVID are based on approximate Riemann solvers
of the HLL type. For the Euler equations (6.1), the code uses the HLL three
wave solver proposed by Toro et. al [24]. This approximate Riemann solver
resolves contact discontinuities and has the same resolution as the standard
Roe solver but computationally is less expensive and is known to preserve
positive densities and pressures in the absence of round-off errors, see [13].

For the MHD equations (6.3), ALSVID uses the three and five wave HLL
type solvers designed in [13]. These solvers aim at approximating the mod-
ified Godunov-Powell form of the MHD equations, see [22, 13].

2. Divergence constraint. The divergence constraint in the MHD equations
(6.3) is handled in ALSVID by adding the Godunov-Powell source term to
the MHD equations. This source term is proportional to the divergence and
allows divergence errors to be swept out of the domain. Numerical stability
can only be ensured by a careful upwinding of the source term, see [13].

3. Non-oscillatory reconstructions. ALSVID employs a variety of piecewise
polynomial non-oscillatory reconstruction procedures for attaining high or-
der of spatial accuracy. In particular, second order ENO and WENO pro-
cedures are employed, see section 2 of [13].

However, these procedures need to be modified in order to preserve pos-
itivity of the density and pressure. Such modifications are described in
section 2 of [13].

4. Time stepping. High-order accurate time stepping procedures of the SSP
Runge-Kutta [14] are employed in ALSVID.

Fluxes on the boundary of the computational domain are defined using so-called
ghost cells, see chapter 10 in [15].

ALSVID uses a modular structure in C++ with a Python front end for pre- and post-
processing. One and two dimensional visualizations are performed with MatPlotLib
and three dimensional data sets are visualized using MayaVi2. Extensive testing of
ALSVID has been performed and reported in [13].

6.4. Computing sample statistics. For both MCFVM and MLMCFVM algo-
rithms we need to combine individual realizations to compute ensemble averages. It
is straightforward to compute the sample mean for the MCFVM and the estimator
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(5.2) for MLMCFVM. A straightforward algorithm to compute an unbiased esti-
mate of the variance for scalar u = u(x, t) with fixed x, t is the following statistical
estimator:

(6.5) Var[u] := E[u2]− E[u]2 ≈ VarM [u] :=
1

M − 1

M∑

i=1

(ui)2 −
(

1

M − 1

M∑

i=1

ui

)2

where ui are MCFVM samples. This way, it suffices to loop over all samples only
once; unfortunately, both quantities are almost equal in the regions of vanishing
variance which leads to subtractive cancellation and loss of accuracy in floating
point arithmetic. In [28], the authors propose an alternative stable ”on-line” vari-
ance computation algorithm:

Set ū0 = 0 and Φ0 = 0; then proceed iteratively:

ūi =
i∑

j=1

uj/i(6.6)

Φi :=
i∑

j=1

(uj − ūi)2 = Φi−1 + (ui − ūi)(ui − ūi−1)(6.7)

Then, the unbiased mean and variance estimates are given by:

(6.8) EM [u] = ūM , VarM [u] = ΦM/(M − 1).

Although identical in exact arithmetic, the above algorithm can deal with small
cancellation errors.

We combine a standard RNG in step 2, ASLVID in step 3 and the above estimators
in step 4 to obtain an efficient MLMCFVM for a single processor. The resulting code
is also written in C++ with Python front and back ends. Note that the deterministic
code ALSVID is reused without any alterations in the solve step as MCFVM and
MLMCFVM are non-intrusive. As the UQ module is based on ALSVID, we call it
as ALSVID-UQ. The parallel version of ALSVID-UQ will be described later.

6.5. Numerical experiments for systems in 1D. We describe numerical ex-
periments for one dimensional systems of conservation laws to test ALSVID-UQ.

6.5.1. Sod shock tube with uncertain shock location. Let Y ∼ 1 + U(0, 1
10 ) be a

random variable. We consider the one dimensional version of the Euler equations
(6.1) with random initial shock with uncertain location (near x = 1):

(6.9) U0(x,ω) = {ρ0(x,ω), u0(x,ω), p0(x,ω)} =

{
{3.0, 0.0, 3.0} if x < Y (ω),

{1.0, 0.0, 1.0} if x > Y (ω).

The initial data (6.9) and the reference MLMC solution at time t = 0.5 are depicted
in Figure 1. At every point x ∈ [0, 2] the solid line represents the mean and the
dashed lines represent the mean ± standard deviation of the (random) solution.
For each sample the initial shock splits into three waves: a left going rarefaction
wave, a right going contact discontinuity and a right going shock wave. Notice the
improvement of the regularity in the stochastic solution: deterministic path-wise
solutions for each sample are discontinuous due to formation of the shock and the
contact; nevertheless, the mean of the solution is continuous. In [20], a detailed
regularity analysis for these quantities is given, as well as a mathematical analysis
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of the space-time regularity of statistical moments, as well as for (generalized)
polynomial chaos coefficients.

Figure 1. Reference solution using MLMCFVM. Initial shock
splits into 3 waves all having uncertain location. The resulting
ensemble average is more regular (continuous) than its paths (with
shocks).

Remark 6.1. The “overshoots” in dashed lines representing standard deviation do
not imply that the random shock amplitude can exceed the mean depicted in solid
line; in fact, the shock amplitude is the same for every sample path.

Remark 6.2. The small font lines (OPTS, VARS and INFO) in the lower left cor-
ner of every figure indicate the parameters of the simulation. Detailed explanation
of these parameters is provided in the tables below;

OPTS description
equation system of conservation laws
model initial data (always specified explicitly)
multi parallelization type (single (serial) or mpi)
solver Godunov-type solver (hll, hll3, hll5, etc.)
space spacial reconstruction

VARS description
ML number of samples at the finest mesh level (ML)
L number of hierarchical mesh levels (L)
NX, NY number of cells in X and in Y directions
MULTIM #cores for MC samples (samplersL)
MULTIX #cores in X direction for domain decomposition
MULTIY #cores in Y direction for domain decomposition

INFO description
cores total number of cores used in the simulation
runtime clock-time (serial runs) or wall-time (parallel runs); hrs:min:sec
efficiency MPI efficiency, as defined in (7.9)

Remark. Using the notation from subsection 7.2, we infer the identity:

subdomainsL = MULTIX×MULTIY.
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6.5.2. Numerical convergence analysis. Using MLMCFVM approximation from Fig-
ure 1 as a reference solution, we run MCFVM and MLMCFVM methods on the
series of mesh resolutions ranging from 32 cells up to 8192 cells and monitor the
convergence behavior. The number of levels for the MLMCFVM method is chosen
so that the coarsest level contains 8 cells.

Error estimator. Since the solution is a random field, the discretization error is a
random quantity as well. For convergence analysis we therefore compute a statisti-
cal estimator by averaging estimated discretization errors from several independent
runs. We will compute the error in (4.2) by approximating L2(Ω;L1(Rd)) norm
with MC quadrature. Let Uref denote the reference solution and {Uk}k=1,...,K be
a sequence of independent approximate solutions obtained by running MCFVM or
MLMCFVM solver K times corresponding to K realizations of the stochastic space.
Then the L2(Ω;L1(Rd))-based relative error estimator is defined as in [19],

(6.10) RE =

√√√√
K∑

k=1

(REk)2/K

where:

(6.11) REk = 100× ‖Uref − Uk‖l1
‖Uref‖l1

The extensive analysis for the appropriate choice of K is conducted in [19]; we
choose K = 30 which was shown to be more than sufficient.

Notation. Notation for different combinations of ML(MC) and FVM methods:

MC Monte Carlo with 1st order FVM scheme M = O(∆x−1)
MC2 Monte Carlo with 2nd order FVM scheme M = O(∆x−2)
MLMC multilevel MC with 1st order FVM scheme M! = ML2

(L−!)

MLMC2 multilevel MC with 2nd order FVM scheme M! = ML4
(L−!)

The parameter ML corresponds to the number of samples in the finest level and
can be freely chosen. Analysis in [19] suggests that ML = 16 is a reasonable choice;
however, ML = 4 yielded better results for the problems with particularly large
number of levels. In the convergence analysis we choose ML = 16 unless indicated
otherwise. Having notations and definitions in place, we proceed to the convergence
plots of mean and variance.

Dashed lines in Figure 2 (and all subsequent figures) indicate expected conver-
gence rate slopes obtained by theory for scalar case (see (4.2) and (5.3)). We expect
them to coincide with the observed convergence rates for systems of conservation
laws and in this particular case they are actually very similar. Findings coincide
with the results published in [19] confirming the robustness of the implementation.

Remark. Convergence rate for MLMC2 w.r.t. runtime is achieved only asymp-
totically due to additional log2(Work) term for the case s = (d+ 1)/2 in (5.6).

In Figure 3, we show convergence plots for variance. The observed convergence
rate for MLMC2 is again slightly smaller than expected. This could be attributed
to two reasons. First, as indicated before, the optimal convergence rate is only
expected asymptotically when s = (d + 1)/2 which is the case for formally second
order schemes in one space dimension. We assume that second order schemes
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Figure 2. Convergence of mean for 1-D Euler. Both MLMC
(MLMC2) and MC (MC2) give similar errors for the same spatial
resolution. However, there is a significant difference in runtime:
multi-level MC methods are almost 2 orders of magnitude faster
that pure MC.

Figure 3. Convergence of variance for 1-D Euler.

converge with rate one in the presence of shocks. The second reason could be the
amplitude of the fourth moment as the error estimate of the variance relies on the
fourth moment. We compute the the 4th centered moment in Figure 4 and find
that it is of relatively small amplitude.

The results in the above figures clearly show that the second order methods are
more efficient (faster) than the corresponding first order methods. Moreover, the
MLMC(2) methods are more than two orders of magnitude faster than the MC(2)
methods in computing the mean as well as in computing the variance.

7. Parallel implementation of MLMCFVM

We recall that MLMC consists of four steps. In the first step, we select a nested
hierarchy of triangulations. This step is straightforward for any parallel architec-
ture. In step 2, we draw samples for the initial random field with a given probability
distribution. Here, we need a robust random number generator (RNG) described
below.
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Figure 4. 4th centered moment using MLMC

7.1. Robust pseudo random number generation. Random number generation
becomes a very sensitive part of Monte Carlo type algorithms on massively parallel
architectures. Inconsistent seeding and insufficient period length of the RNG might
cause correlations in presumably i.i.d. draws which might potentially lead to biased
solutions such as in Figure 5.

Figure 5. A parallel MLMC2 run with faulty seeding and short
RNG period - solution becomes biased and variance is no longer
symmetric around shocks.

Such spurious correlations are due to two factors: firstly, for a large number
of MC samples, we need a longer period and hence a larger buffer of the RNG.
Secondly, the seeding of the buffer for each core must be done very carefully to
preserve statistical independence.

For the numerical simulations reported below, we used the WELL-series of pseudo
random number generators from [18, 17]. These generators have been designed with
particular attention towards large periods and good equidistribution. To deal with
the seeding issues, we injectively (i.e. one-to-one) map the unique rank of each core
to some corresponding element in the hardcoded array of prime numbers (hence-
forth, the array of seeds). In this way the independence is preserved. Different
random solutions needed for error estimates (6.10) in convergence analysis can be
obtained by introducing a deterministic shift on the hardcoded array of seeds; this
shift must be sufficiently large to guarantee non-overlapping sets of seeds.
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For all numerical experiments reported in this paper the RNG WELL512a was
used. We found WELL512a to have a sufficiently large period 2512 − 1 and to be
reasonably efficient (33 CPU sec for 109 draws). We emphasize that there are
plenty of alternatives to WELL512a with even longer periods (which, however, use
more memory than WELL512a). To name a few: WELL1024a with period 21024 − 1,
takes 34 sec and WELLRNG44497 with period 244497−1 which takes 41 sec to generate
109 draws.

In step 3 of the MLMCFVM algorithm, we solve the conservation law (2.1) for
each draw of the initial data. This is performed with ALSVID. A massively parallel
version of ALSVID has already been developed for deterministic problems; refer to
[1] for further details. The parallelization paradigm for ALSVID is based on domain
decomposition using Message Passing Interface (MPI) standard and its particular
implementation OpenMPI. Refer to [29] and [30] for detailed descriptions of MPI and
OpenMPI, respectively. For the sake of consistency, we briefly recapitulate frequently
used terms:

core an independent unit running the program in parallel with other such
units. We assume one MPI processes per every core.

node multiple cores sharing the same physical memory.
sample initial data computed for some particular random draw of ω.

The key issue in the parallel implementation of the solve step is to distribute
computational work evenly among the cores. In what follows, we assume a homoge-
nous computing environment meaning that all cores are assumed to have identical
CPUs and RAM per node, and equal bandwidth and latency to all other cores.
Next, we describe our load balancing strategy.

7.2. Static load balancing. There are 3 levels of parallelization: over mesh res-
olution levels, over MC samples and inside the deterministic solver using domain
decomposition. Domain decomposition parallelization is used only in the few levels
with the finest mesh resolution. On these levels, the number of MC samples is small.
However, these levels require most of the computational effort (unless s = (d+1)/2
in (5.5) holds). For the finest mesh level % = L we fix the number of cores:

(7.1) coresL︸ ︷︷ ︸
# of cores

= subdomainsL︸ ︷︷ ︸
# of subdomains

× samplersL︸ ︷︷ ︸
# of groups for MC samples

Then, the number of cores for all the remaining levels (coresL−1, . . . , cores0) are
computed using the a-priori work estimates from (4.3) combined with (5.4):
(7.2)

WorkM!(∆x!)

WorkMl−1(∆x!−1)
∼

ML22(L−!)s∆x−(d+1)
!

ML22(L−(!−1))s∆x−(d+1)
!−1

=
2−2!s

2−2(!+1)s2−(d+1)
= 2d+1−2s

In this way the positive integer parameters subdomainsL and samplersL ≤ ML

recursively determine the number of cores needed for each level % <L :

(7.3) cores! =
⌈cores!+1

2d+1−2s

⌉
, ∀% < L.

Notice, that the denominator 2d+1−2s in (7.3) is a positive integer (a power of 2)
provided s ∈ N/2 and s ≤ (d+1)/2 (the latter is not an additional constraint as it
is also present in (5.6)). However, when s < (d+ 1)/2, we have:

(7.4) 2d+1−2s ≥ 2
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which (when L is large) leads to inefficient load distribution for levels % ≤ %∗, where:

(7.5) %∗ := min{0 ≤ % ≤ L : cores!+1 < 2d+1−2s}

We investigate the amount of total work required for “inefficient” levels % ∈ {0, . . . , %∗}:

Work{0,...,!∗} : =
!∗∑

!=0

Work!
(7.2)
=

!∗∑

!=0

Work!∗

2(d+1−2s)(!∗−!)
≤

!∗∑

!=−∞

Work!∗

2(d+1−2s)(!∗−!)

=
Work!∗

1− (2d+1−2s)−1

(7.4)
≤ Work!∗

1− 1
2

= 2 ·Work!∗

(7.6)

For the sake of simplicity, assume that samplersL and subdomainsL are nonneg-
ative integer powers of 2. Under this assumption, definition (7.5) of %∗ together
with recurrence relation (7.3) without rounding up (4·5) implies that cores!∗ ≤ 1/2.
Hence, total work estimate (7.6) for all levels % ∈ {0, . . . , %∗} translates into an
estimate for sufficient number of cores, which, instead of %∗ + 1, turns out to be
only 1:

(7.7) Work{0,...,!∗} ≤ 2 ·Work!∗ −→ cores{0,...,!∗} ≤ 2 · 1
2
= 1

The implementation of (7.7) (i.e. multiple levels per 1 core) is essential to obtain
highly scalable and efficient parallelization of MLMC-FVM schemes with s < d+1

2 .
The example of static load distribution for MLMC-FVM algorithm using all

three parallelization levels is given in Figure 6, where the parameters are set to:

L = 5, ML = 4, d = 1, s =
1

2
, subdomainsL = 2, samplersL = 4.
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Figure 6. Static load distribution structure

This concludes the discussion of static load balancing and of step 3. In step
4 of MLMCFVM, we combine the results to compute sample mean and variance.
Special attention needs to be paid to the computation of variance.

7.3. Variance computation for parallel runs. Assume we have 2 cores A and
B each computing MA and MB (M = MA +MB) number of samples respectively.
Then keeping the notation and definitions as in the previous section, the unbiased
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estimate for mean and variance can be obtained by: (see [4])

(7.8)

EM [u] =
MAEMA [u] +MBEMB [u]

M
,

δ = EMB [u]− EMA [u],

ΦM = ΦMA + ΦMB + δ2 · MA ·MB

M
,

VarM [u] =
ΦM

M − 1
.

This algorithm (7.8) is then recursively extended to arbitrary finite number of cores
by combining any two of them until only one is left.

7.4. Parallelization results. To verify the reliability of the parallelization proce-
dure, we repeat the convergence analysis simulations that were conducted with the
serial version of the algorithm in the last section.

The error vs. resolution plot should be identical and the error vs. runtime plot
should have longer runtimes due to parallelization overhead. We observe this behav-
ior in Figure 7 and Figure 8. The runtime of the parallel algorithm is obtained by
measuring the so-called wall-time, i.e. the total time passed during the simulation.
The wall-time is accessible as MPI Wtime() routine in MPI2.0. It is always larger
than CPU clock time since additionally it takes into account the time consumed
by the operating system, networking, waiting or other auxiliary processes present
on the core. In the convergence plots we use cumulative wall-time (obtained by
adding wall-times from each core); this way the dependence on the used number of
cores is reduced allowing for straightforward comparison of the results.

Figure 7. Convergence of mean is consistent with convergence of
mean for the serial version of the algorithm in Figure 2.

7.5. Efficiency and Scaling. In Figure 9, we investigate the parallelization ef-
ficiency for the convergence analysis conducted in the previous subsection. The
parallel efficiency is defined as

(7.9) efficiency :=
(cumulative wall-time)− (cumulative wall-time of MPI calls)

cumulative wall-time
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Figure 8. Convergence of variance is consistent with convergence
of variance for the serial version of the algorithm in Figure 3.

Figure 9. MPI efficiency of the convergence analysis simulations
in Figure 7 and Figure 8. For large problems (more than 256
cells) the parallelization is very efficient - only negligible amount
of runtime is spent on auxiliary networking and waiting.

It separates the amount of time spent in computing from the amount of time spent
in communicating (the latter is indicated with dashed lines in runtime plots). We
see that high efficiency (∼ 98%) is achieved for large problems.

Furthermore, in Figure 10 we verify strong scaling (fixed discretization and sam-
pling parameters while increasing #cores) of the parallel algorithm and in Figure 11
we verify weak scaling (problem size is equivalent to #cores) of our implementa-
tion. We observe that our implementation scales linearly (strongly) upto 200 cores.
Similarly, weak scaling is also realized upto 200 cores. We believe that our paral-
lelization algorithm will scale linearly for a much larger number of cores. Numerical
investigation of scaling for massively parallel versions of ALSVID-UQ will be reported
in forthcoming papers.

8. Numerical experiments for systems in 2d

The efficient parallelization of ALSVID in the previous section provides us with a
robust and efficient cod e (ALSVID-UQ) for uncertainty quantification in hyperbolic
systems of conservation laws. Consequently, we are able to conduct large scale
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Figure 10. Strong scaling. Domain decomposition parallelization
is enabled from 101.5 cores onwards (for MLMC only); its scala-
bility is inferior to pure (ML)MC parallelization due to additional
networking between sub-domain boundaries.

Figure 11. Weak scaling. Analogously as in Figure 10, the slight
deterioration in MLMC scaling from 101.5 cores onwards could have
been caused by inferior scaling of domain decomposition method.

numerical experiments in d = 2 (and possibly d = 3) space dimensions. Note that
quantification of uncertainty poses a considerably larger challenge than that of a
single run of the deterministic solver since a large number of samples (or stochastic
dimensions in gPC based methods) are needed.

8.1. Euler equations of gas dynamics. We consider Euler equation of gas dy-
namics (6.1) in two space dimensions. We conduct two numerical experiments for
the Euler equations and report the results below.

8.1.1. Shock-vortex interaction. In this standard test case for deterministic solvers
(see [23]), the computational domain is taken to be [0, 1] × [0, 1]. Let Y ∼ 1

2 +
U(0, 1

10 ). The initial random stationary Mach 1.1 shock is normal to x axis and has
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uncertain location with mean at x1 = 1
2 + 1

20 . The resulting initial data are:
(8.1)

{ρ0(x,ω), u0(x,ω), p0(x,ω)} =






{1, (
√
γ, 0)', 1} if x1 < Y (ω),

{ 1

1.1
, (1.1

√
γ, 0)', 1− γ

10
} if x1 > Y (ω).

This base flow is superposed with the a vortex centered at (xc, yc):

ū0(x,ω) = (ετeα(1−τ2) sin θ, −ετeα(1−τ2) cos θ)'(8.2)

p̄0(x,ω) = −(γ − 1)
ε2e2α(1−τ2)

4αγρ
(8.3)

where:
(8.4)

r =
√
(x1 − xc)2 + (x2 − yc)2, τ =

r

rc
, sin θ =

x2 − yc
r

, cos θ =
x1 − xc

r
.

and we choose the parameters to be:

(8.5) ε = 0.3, rc = 0.05, α = 0.204, xc = 0.25, yc = 0.5.

Figure 12. Shock-vortex interaction solution at time t = 0.35
using MLMC

The location of the initial stationary supersonic shock is uncertain in this ex-
periment. For each realization of the initial data, the pathwise solution consists of
the vortex moving to the right, interacting with the shock and emerging out of the
shock. Since the shock location is uncertain, we expect the mean to be smoother
than the pathwise solutions. A priori, it is unclear how the variance is going to be
redistributed.

The results of uncertain shock-vortex interaction simulation at time t = 0.35
are given in Figure 12. At this time instant, the vortex has just emerged out of
the shock. We present results for a MLMC run with a second-order WENO dis-
cretization in physical space. The HLLC solver is used for computing the numerical
fluxes. The results are computed on 9 nested levels of resolution (L = 8) with the
finest resolution being on a 2048× 2048 mesh and with timesteps reduced accord-
ingly in order to maintain the same CFL constant over all discretization levels.
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The simulation is run on 128 cores and 16 samples are taken for the finest mesh
resolution.

The results in Figure 12 show that the MLMC-WENO scheme is quite robust.
The mean of the pressure shows that the stationary shock (with uncertain location)
is smoothed out. Similarly, the vortex (in mean) has emerged from the shock at
this time instant. The vortex is resolved quite sharply. The plot for the variance of
the pressure is more interesting. Although the initial variance was concentrated on
the shock, we see that the variance is redistributed by the flow. A large proportion
of the variance is still concentrated on the shock. However, the profile is deviated
near the point where the vortex was incident at the shock. Furthermore, there is
a clear signature of the vortex in the variance although the vortex (in mean) has
already crossed the shock. The above experiment reveals that the variance (and
possibly higher moments) can have a much more complex behavior than the mean
flow field. It requires a very efficient numerical method to be able to resolve such
complex features.

8.1.2. Cloud shock. So far, we have presented numerical experiments for the Eu-
ler equations with only one source of uncertainty - uniformly random initial shock
location. In reality, the number of uncertainty sources can be quite large. Stochas-
tic Galerkin methods based on gPC expansions will be deficient at resolving such
problems as the computational complexity grows exponentially with the number of
uncertainty sources (number of stochastic dimensions or terms in the gPC expan-
sion). On the other hand, methods that are based on MC-sampling scale favourably
with respect to high dimension of the parameter space. As an example, consider
uncertain initial data with a large number of sources for uncertainty. There is a
very negligible increase of computational cost over the case of a single source of un-
certainty as a random vector (with the number of components corresponding to the
number of uncertainty sources) is drawn instead of a random number at each mesh
point and only at the initial time step. If the boundary conditions or sources are
uncertain, then the computational cost increases only linearly w.r.t. the number of
uncertain parameters.

We put the above hypothesis to test on a problem with a high number of un-
certainty sources. We consider the so-called cloud-shock interaction problem from
[12]. The computational domain is taken to be [0, 1]× [0, 1]. Let Y ∼ 1

25 +U(0, 1
50 )

and let Y1, ..., Y7 ∼ U(0, 1) be i.i.d. random variables independent from Y .
The initial data consists of an initial shock with the uncertain amplitude and

uncertain location and is given by:
(8.6)
{ρ0(x,ω), u0(x,ω), p0(x,ω)} =

=





{3.86859 + 1

10
Y6(ω), (11.2536, 0)', 167.345 + Y7(ω)} if x1 < Y (ω),

{1, (0, 0)', 1} if x1 > Y (ω).
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Furthermore, a high density cloud or bubble with uncertain amplitude and uncer-
tain shape of the form
(8.7)

ρ0(x,ω) = 10 +
1

2
Y1(ω) + Y2(ω) sin(4(x1 − 0.25)) +

1

2
Y3(ω) cos(8(x2 − 0.5))

if r ≤ 0.13 +
1

50
Y4(ω) sin θ +

1

100
Y5(ω) sin(10θ),

where

(8.8) r =
√
(x1 − 0.25)2 + (x2 − 0.5)2, θ =

x1 − 0.25

r
,

lies to the right of the shock. The mean and the variance of the initial data is
depicted in Figure 13(a). Note that there are 8 sources of uncertainty in the above
problem. A parametric representation of the initial data results in a 11 dimensional
problem consisting of two space, one time and eight stochastic dimensions. To the
best of our knowledge, such high dimensional problems have not been considered
in the literature.

The mean and variance of the solution at time t = 0.06 is shown in Figure 13(b).
The results are from a MLMC-WENO run with 9 nested levels of resolution (L = 8)
and the finest resolution is set to 2048×2048 mesh. The number ML of MC samples
at the finest resolution is 8 and number of cores for this run is 128. Note that time
taken for this simulation is comparable to that for the shock-vortex interaction
where we had only one source of uncertainty. This justifies our claim that MLMC
methods are robust with respect to a high number of sources of uncertainty.

The physics of the flow in this case consists of the supersonic initial shock moving
to the right, interacting with the high density bubble and leading to a complex flow
pattern that consists of a leading bow shock, trailing tail shocks and a very complex
region (near the center) possessing sharp gradients as well as turbulent like smooth
features. The mean flow (for the density) consists of the bow shock, tail shocks and
a complex region with sharp gradients as well as smooth regions. The variance is
concentrated in the smooth region at the center; it is significantly smaller at the
tail shocks and almost vanishing at the bow shock. The initial uncertainty in the
shape of the bubble seems to lead to a more complex distribution of the variance.

8.2. MHD equations of plasma physics. Next, we describe a couple of numer-
ical experiments for MHD equations of plasma physics.

8.2.1. Orszag-Tang vortex. The deterministic version of the Orszag-Tang vortex is
the standard benchmark for MHD codes. We adapt it to include stochastic initial
data. The computational domain is taken to be [0, 2]× [0, 2]. Let Y1, Y2 ∼ U(0, 1).
The standard initial data (from [25]) for the Orszag-Tang vortex is randomly per-
turbed: the phases of the velocities are uncertain and depend on the scaled random
variables Y1 and Y2:
(8.9)

{ρ0(x,ω), u0(x,ω)} = {γ2, (− sin(πx2 +
1

20
Y1(ω)), sin(πx1 +

1

10
Y2(ω)))

'},

{p0(x,ω), B(x,ω)} = {γ, (− sin(πx2), sin(2πx1))
'}.

The mean field and the variance (for the plasma density) are shown in Figure 14.
The computation is performed using the MLMCFVM scheme with second-order
WENO reconstruction, and with the HLL three wave solver of [13]. The code uses
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(a) initial data

(b) solution at t = 0.06

Figure 13. Cloud shock at t = 0 and t = 0.06 using MLMC-FVM

an upwind discretization of the Godunov-Powell source term. The results shown in
this figure are from a computation with 8 levels of refinement (L = 7) and the finest
mesh resolution of 2048 × 2048 mesh points. The number of MC samples at the
finest resolution is 4. The problem has more than 109 degrees of freedom per time
step and the total number of time steps is about 104 making the computational
volume of problem between 1012 and 1013. These numbers show that the simulation
is extremely challenging and requires massively parallel architectures. In fact, the
above problem took about 6 hours (wall-clock) on 128 cores.

It is well known (see [25, 13]) that stable computation of numerical solutions of
the Orszag-Tang problem on very fine meshes is quite challenging. Since our spatial
resolution at mesh level L = 7 is very fine, we need an extremely robust code like
ALSVID for the solve step in MLMCFVM in order to resolve this problem.
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Figure 14. Uncertain Orszag-Tang vortex solution at t = 1.0
using MLMC-FVM. Variance is very large near discontinuities of
the path-wise solutions.

The mean density is quite complicated with shocks along the diagonals of the
domain as well a (smooth) current sheet at the center of the domain. The solution
consists of discontinuities interspersed within interesting smooth features. Our
simulations show that the variance is concentrated at shocks as well as at the current
sheets and other interesting smooth regions. From this problem as well as the results
of the previous section, we observe that the variance is a very good indicator of
where the discontinuities and sharp gradients of the solution are concentrated and
would serve a good a posteriori error indicator for adaptive mesh refinement.

8.2.2. Numerical convergence analysis. We analyze this particular two dimensional
numerical experiment in greater detail. We investigate convergence of error vs.
work in Figure 15 and Figure 16. The error in the mean field converges at expected
rates. At comparable numerical resolution and accuracy, the MLMC(2) is about
two orders of magnitude faster than the MC(2) method for this problem. We
observe a slight deterioration in the estimated convergence rates for the variance.
This could well be a pre-asymptotic effect. As seen in Figure 16, the curves are
steeping which seems to indicate better rates with further refinement. Again, the
MLMC(2) appears considerably faster than the corresponding MC(2) method in
delivering variance estimates of comparable numerical accuracy.

8.2.3. Efficiency of parallelization. We test the efficiency of static load balancing
for parallelization procedure described in section 7 in this two-dimensional example.
In Figure 17, we show the parallelization efficiency of the MLMCFVM and see that
the algorithm is quite efficient and most of the time is spent computing rather than
communicating or waiting.

The strong scaling for this problem is shown in Figure 18. We see that the
algorithm scales linearly to around 200 cores. Similarly, Figure 19 shows a weak
scaling upto similar number of processors. We have not tested the algorithm for a
larger number of processors but expect it to scale upto a much larger number of
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Figure 15. Convergence of mean in the uncertain Orszag-Tang
vortex simulation.

Figure 16. Convergence of variance in the uncertain Orszag-Tang
vortex simulation.

cores. The results in both one and two space dimensions show that our static load
balancing algorithm is quite efficient.

Figure 17. MPI overhead. For large problems (more than 64 cells
in each dimension) efficiency of parallelization is as good as it was
for d = 1 experiments in Figure 9.
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Figure 18. Strong scaling.

Figure 19. Weak scaling.

8.2.4. Isothermal blast wave. In the numerical experiments presented so far, we
have considered the initial randomness to be uniformly distributed. The MLM-
CFVM algorithm allows, however, initial data with any probability distribution
which can be sampled numerically. We demonstrate its versatility with respect
to the initial probability distribution in the following experiment where the initial
uncertainty is distributed normally.

The computational domain for this isothermal blast wave experiment is taken
to be [0, 1] × [0, 1]. Let Y ∼ N (0, 1). The magnetic field from the initial data for
the deterministic isothermal blast wave is perturbed - its magnitude depends on Y
that is drawn from a normal distribution:
(8.10)

ρ0(x,ω) =

{
100 if (x1 − 1

2 )
2 + (x2 − 1

2 )
2 < ( 1

20 )
2,

0 otherwise.

{u0(x,ω), p0(x,ω), B(x,ω)} = {(0, 0)', ρ0(x,ω), (
5√
π
+

1

5
Y (ω), 0)'}.
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The resulting solution is shown in Figure 20. We present results of a simulation
performed with five levels of refinement and with the mesh at the finest level con-
sisting of 256× 256 points. The number of samples on the finest level is 4 and the
computation is performed on 128 cores.

The results show that the mean plasma density has a rotating profile with the
initial blast wave spreading out from the center of the domain. Furthermore, the
variance is concentrated at the outer blast wave.

We point out that even a single deterministic run for the isothermal blast wave
at mesh level L = 5 is known to be challenging, (see, e.g. [13]). Additionally, as the
MC and MLMC are based on randomly generated initial scenarios, robustness of
the path-wise solver ALSVID is crucial to handle each run. Furthermore, given the
time scales of the problem, only a fast method like MLMCFVM can handle such
complex problems.

Figure 20. Isothermal blast wave solution at t = 0.09 using
MLMC-FVM with normally distributed perturbation of initial
magnetic field.

9. Conclusion

We consider systems of conservation laws in several space dimensions but with
uncertain initial data. The problem of quantifying the uncertainty in such solutions
is quite challenging. In this paper we extend the MLMCFVM of [19] and present
it in the context of systems of conservation laws in several space dimensions.

The algorithm is described in detail and some underlying theoretical properties
(for scalar conservation laws) are discussed. Several key issues that are encountered
in the efficient implementation of this algorithm are presented. They include the
choice of the underlying finite volume solver. We choose the ALSVID FVM code [1]
as our base code as it provides a robust and efficient approximation of the Euler and
MHD equations. Another key issue is the implementation of the MLMC algorithm
on parallel architectures. We discuss this issue in considerable detail and propose
a novel load balancing procedure of MLMCFVM for parallel architectures.

The MLMCFVM is tested on a suite of one and two dimensional numerical
experiments for both Euler as well as MHD equations. We demonstrate that the
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MLMCFVM algorithm is robust, efficient and able to resolve very complex flows
governed by systems of nonlinear hyperbolic conservation laws with uncertain initial
conditions. In particular, this method can handle problems with a large number of
stochastic dimensions or sources of uncertainty. Such problems are beyond the reach
of other existing methods. Furthermore, the parallel version of ALSVID-UQ described
here is shown to scale weakly and strongly up to to 200 cores. It is expected to
scale substantially beyond this range of cores. We describe several complex flows
with random initial data, simulated with MLMCFVM, and emphasize the subtle
role played by the non-linearity in the evolution of the variance as well as regularity
improvement of the mean due to ensemble averaging.

The main advantages of the MLMCFVM method are its simplicity and non-
intrusiveness. It is easy to code and to parallelize. The parallelization can be made
more efficient by the load balancing procedure designed in this paper. Furthermore,
existing deterministic codes for solving hyperbolic systems of conservation laws
can be reused in entirety. Hence, we advocate the use of MLMCFVM algorithms
for numerical quantification of uncertainty in solutions of systems of conservation
laws. The source code ALSVID-UQ can be downloaded from mlmc.origo.ethz.ch/
download.

We confine ourselves to the case of uncertain initial data in this paper. Un-
certain boundary conditions and source terms can be handled analogously. The
development of MLMCFVM algorithms for this kind of uncertainty is currently in
progress.
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