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WELL-BALANCED HIGH RESOLUTION FINITE VOLUME SCHEMES FOR THE

SIMULATION OF WAVE PROPAGATION IN THREE-DIMENSIONAL

NON-ISOTHERMAL STRATIFIED MAGNETO-ATMOSPHERES.

F. G. FUCHS, A. D. MCMURRY, S. MISHRA, AND K. WAAGAN

Abstract. We consider propagation of waves in a stratified non-isothermal magnetic atmosphere. The situation
of interest corresponds to waves in the outer solar (chromosphere and corona) and other stellar atmospheres.
The waves are simulated by using a high-resolution, well-balanced finite volume based massively parallel code
termed SURYA. Numerical experiments in both two and three space dimensions involving realistic temperature
distributions and magnetic field configurations are described, and diverse phenomena like mode mixing, wave
acceleration at the transition region, wave focusing due to the magnetic fields and movement of the transition
region are highlighted. The numerical experiments illustrate the robustness of the new computational framework.
In particular, we are able to report from a simulation based on observed magnetic fields and boundary conditions.

1. Introduction

Waves and oscillations are a significant means for the transport and circulation of energy in gravitationally
stratified highly conducting astrophysical plasmas. Examples include waves emitted by localized sources within
magnetic flux concentrations such as acoustic sources in the Sun’s magnetic network and within isolated magnetic
flux tubes, knots and sunspots. Other examples pertain to waves in late type stars and planetary magneto-
atmospheres. The study of wave propagation improves our understanding of the dynamical processes in the
solar and other stellar atmospheres and contributes to explanations for phenomena like coronal heating and
internetwork oscillations.

Consequently, the modeling and simulation of wave propagation in idealized magneto-atmospheres has at-
tracted considerable attention in the astrophysics community. A particular situation of interest in the context
of solar physics is to study how convection generated waves transport and deposit energy in overlaying chro-
mospheric and coronal plasmas. Recent papers like [7, 47] have presented simple models for this configuration
based on the equations of ideal MHD, augmented by a gravitational source term:

(1.1)

ρt + div (ρu) = 0,

(ρu)t + div

(
ρu⊗ u+

(
p+

1

2

∣∣B
∣∣2
)
I −B⊗B

)
= −ρge3,

Bt + div
(
u⊗B−B⊗ u

)
= 0,

Et + div

((
E + p+

1

2

∣∣B
∣∣2
)
u−

(
u ·B

)
B

)
= −ρg (u · e3) ,

div(B) = 0,

where ρ is the density, u = {u1, u2, u3} and B = {B1, B2, B3} are the velocity and magnetic fields respectively,
p is the thermal pressure, g is the constant acceleration due to gravity , e3 represents the unit vector in the
vertical (z-) direction. E is the total energy, for simplicity determined by the ideal gas equation of state:

(1.2) E =
p

γ − 1
+

1

2
ρ |u|2 + 1

2

∣∣B
∣∣2 ,

where γ > 1 is the adiabatic gas constant.

Date: March 16, 2010.
Key words and phrases. Stratified MHD, Non-isothermal atmospheres, Well balanced schemes.
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The starting point for wave propagation models based on (1.1) is to determine steady states and consider
waves as perturbations of these steady states. Two steady states of interest, considered in [47, 7] and recent
papers [20, 22], are

Hydrodynamic steady state. This steady state assumes that the velocity u and magnetic field B are set to
zero. From the ideal gas equation of state, we obtain

(1.3) p = gHρT,

for constant H and T is the temperature. We assume that the steady state temperature T = T (z) varies only
in the vertical direction. Substituting (1.3) in (1.1) and assuming u,B ≡ 0 leads to,

(1.4)
dp

dz
= − p

HT (z)
.

Solving the above equation explicitly yields,

p(x, y, z) = p(z) = p0e
−α(z)

H .

Here, p0 is a constant and

(1.5) α(x, y, z) = α(z) =

∫ z

0

1

T (s)
ds.

Similarly, we can calculate the steady state density as

ρ(x, y, z) = ρ(z) =
ρ0T0

T (z)
e−

α(z)
H ,

with (ρ0, T0) being constant. Combining the above expressions, we obtain the following steady state:

(1.6) u ≡ 0, B ≡ 0 ρ(z) =
ρ0T0

T (z)
e−

α(z)
H , p(z) = p0e

−α(z)
H .

Hence, the steady state pressure and density are scaled in terms of the function α which in turn depends on the
temperature. Furthermore α is a monotonically increasing function as the temperature is always positive. In
the simplest case of an isothermal atmosphere, i.e, T ≡ T̃ for some constant T̃ , the expression (1.6) simplifies
as

(1.7) u ≡ 0, B ≡ 0, ρ(x, y, z) = ρ0e
− z

T̃H , p(x, y, z) = p0e
− z

T̃H ,

and the pressure and density decay exponentially.

Magnetic steady state. The hydrodynamic steady state assumes that the magnetic field is zero. Any realistic
description of solar plasmas cannot ignore the effect of magnetic field since it plays a crucial role in the energy
transfer ([7]). Steady states with a magnetic field are easy to determine once the momentum balance in (1.1) is
rewritten as

(ρu)t + div (ρu⊗ u+ pI) = curl(B)×B− ρge3.

The above equation displays the role of the Lorentz force explicitly in the momentum balance. Under the
assumption that the velocity field is set to zero, the following magnetic steady states are easy to obtain,

(1.8)

u ≡ 0, div(B) ≡ 0, curl(B) ≡ 0,

ρ(z) =
ρ0T0

T (z)
e−

α(z)
H , p(z) = p0e

−α(z)
H .

The above conditions require that the magnetic field is both divergence free and curl free. It is easy to obtain
closed form solutions of such magnetic fields in terms of harmonic functions ([20, 22] and in section 2). Note
that the conditions on steady magnetic fields are quite general and imply that there is a rich variety of magnetic
steady states (1.8).



WELL-BALANCED SCHEMES FOR WAVE PROPAGATION IN NON-ISOTHERMAL ATMOSPHERES 3

Waves are induced as perturbations of the steady states (1.6) and (1.8). Following [47, 7], we focus on the
behavior of waves emanating from spatially localized sources at the bottom vertical (z−) boundary. From the
discussion of [7] and references therein, a key role is played by the plasma β given by

(1.9) β =
2p

|B|2
.

Following [7], one can differentiate between fast and slow magneto-acoustic gravity (MAG) waves in regions
of high as well as low β. However, in the magnetic canopy characterized by β ≈ 1, the fast, slow and Alfvén
waves interact and mode mixing may take place. Consequently, the dynamics of wave propagation and energy
transport in a stratified magneto-atmosphere is quite complex. The interaction between the waves and the
magnetic field as well as the interaction between different wave families in the magnetic canopy needs to be
resolved in-order to make qualitative and quantitative predictions for the rates of energy transfer.

In [47, 7], the atmosphere was assumed to be isothermal and the discussion was restricted to two space di-
mensions. The stratified MHD equations (1.1) were approximated numerically using a staggered finite difference
code and the results were analyzed to study mode mixing and dynamics of energy transfer. Detailed analysis
of the energy transfer mechanisms was employed to speculate on possible connections to solar phenomena like
sunspot, inter and intra-network oscillations. The framework of [47, 7] was simulated with high-resolution finite
volume schemes in recent papers [20, 22] and the results of the numerical simulations reinforced the conclusions
of [47, 7].

Given the restriction to a two-dimensional isothermal magneto-atmosphere in the afore mentioned papers, it
is now time to investigate three dimensional configurations in which the steady state temperature is no longer
assumed to be constant. In particular, the outer solar atmosphere is characterized by a vertical steady state
temperature distribution shown in figure 1. The temperature is indeed approximately constant over the chro-
mosphere and the isothermal atmosphere assumptions are justified. However, there is a large jump in the
temperature distribution from the chromosphere to the corona. This jump is over two orders of magnitude
and takes place in the very narrow (when compared to the total length scale) transition region. The coronal
temperature varies very slowly and can be approximated by a constant.

The temperature variation in the stratified atmosphere affects wave propagation considerably. In particular,
the large temperature jump (in the transition region) will change wave behavior, even in the absence of magnetic
fields. When magnetic fields are added to the model, the possible interplay between the transition region and
the magnetic canopy might lead to complicated interference of wave forms. Such questions can be resolved by
highly accurate direct numerical simulations of the underlying model.

Figure 1. Steady state temperature and density distributions in the solar atmosphere. Source: NASA

Similarly, the change from two spatial dimensions ([47, 7, 20]) to three dimensions leads to added complica-
tions. The computational cost is increased on account of the extra dimension. More complicated wave forms are
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present in three space dimensions and mode mixing might be quite involved. The study of a three dimensional
stratified magneto-atmosphere with a realistic steady state temperature distribution is the subject of this paper.
The focus is to describe the design of SURYA (a high-resolution well-balanced finite volume code) and discuss
numerical results obtained with it, in the context of wave propagation in a model of the solar atmosphere. We
must emphasize that the physics contained in a simplistic model like the stratified ideal MHD equations (1.1)
(even with steady states and boundary data based on observed data sets) is necessarily limited. In particular,
energy transfer due to radiation and detailed modeling of the transition region is ignored in the model under
consideration. Hence, we do not claim to be able to predict observational results. Rather, this study extends
the approach of [47, 7] and focuses on the range of complex phenomena that result from even simple physical
models like (1.1). Furthermore, it is highly non-trivial to design a robust numerical framework for (1.1) in
three dimensions with our steady state temperature distribution. We describe some of the numerical difficulties
below.

1.1. Numerical issues and literature survey.

(i.) Complicated wave structure. The MHD equations (1.1) are hyperbolic ([46]). The eigenvalues are asso-
ciated with four wave families: fast, slow, Alfvén and contact (shear) waves. However, the eigenvalues
can coincide and the system fails to be strictly hyperbolic. In particular, the fast, slow and Alfvén waves
can coincide near β ≈ 1 region. Non-strict hyperbolicity complicates the design of efficient numerical
schemes.

Since (1.1) is a system of non-linear balance laws, the solutions develop discontinuities in finite time
(even for smooth initial data) in the form of shock waves and contact discontinuities. The structure of
shocks and other discontinuities for the MHD equations is quite complicated (see [56] and references
therein).

In the absence of explicit solution formulas and a well-posedness theory, numerical simulations are
the main tools in the study of systems of balance laws like the MHD equations. Finite volume methods
([32]) are among the most popular numerical methods for approximating non-linear balance laws. The
computational domain is divided into control volumes or cells. The method consists of discretizing an
integral version of a balance law like (1.1) over each cell to obtain a time update of the cell averages of
the unknown. The key step in the update is to determine numerical fluxes by solving local Riemann
problems at each cell interface (along the normal direction). The source term in the balance law
(1.1) can be discretized in several ways. Higher order accuracy in space can be obtained by using
non-oscillatory piecewise polynomial reconstructions like the MUSCL ([58]), ENO ([26]) and WENO
([50]) reconstructions. High order temporal accuracy is obtained by using strong stability preserving
Runge-Kutta methods ([25]).

Finite volume schemes for ideal MHD equations have undergone considerable development in the
last fifteen or so years. In one space dimension, finite volume schemes for MHD equations include the
linearized solvers developed in [46, 11]. Other schemes are the non-linear HLL type solvers designed in
[34, 35, 24, 40, 8, 9, 19] and references therein. Some of the HLL type solvers have the added advantage
of being positive, i.e., ensuring that the computed pressure and density are positive. Comparisons
between different approximate Riemann solvers are performed in papers like [20, 51, 38].

(ii.) Divergence constraint. The divergence constraint complicates design of multi-dimensional MHD codes
([57]). Standard finite volume schemes may not satisfy a discrete version of the constraint. This might
lead to numerical instabilities in the computations. A number of strategies have been used to handle
the divergence constraint in MHD codes. They include the projection method, in which the magnetic
field is projected unto a zero divergence field by solving an elliptic equation at each time step ([10]), a
method which is computationally expensive. A cheaper alternative is the parabolic cleaning method of
[37] and [15].

Another popular method of handling the divergence constraint is the use of staggered grids to ensure
that a particular form of discrete divergence is zero. Several versions of staggered grid methods exist,
and an incomplete list includes those developed in [3, 2, 14, 17, 36, 49, 48, 51, 55, 57, 30] and other
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references therein. A possible disadvantage of staggered grid methods is the complexity of the book-
keeping at the code level, leading to overheads in parallelizing the code. It is also more difficult to
obtain numerical stability for these schemes, since some of the theoretical basis of finite volume schemes
is lost.

An alternative divergence cleaning procedure was presented in [44, 45] where a slightly different form
of the ideal MHD equations (with a source term proportional to divergence) was discretized. This
form, also called the Godunov-Powell form happens to be symmetrizable ([23]) and Galilean invariant.
Furthermore, in the Godunov-Powell form divergence errors are transported out of the domain with the
flow ([44]). Similar ideas were presented in [15]. A possible pitfall of this procedure was pointed out in
[18, 19, 21]. Examples were presented to argue that the Godunov-Powell form needs to be discretized
in a suitable manner for numerical stability. Various upwind discretizations of a partial form of the
Godunov-Powell source term were proposed recently in [8, 59, 19].

The Godunov-Powell form makes it mathematically feasible to deal with data not satisfying the
divergence constraint. Hence, it allows constructing one-dimensional schemes that immediately extend
to accurate and remarkably robust multidimensional schemes, as carried out by the authors in [21]
and [59]. The method involved designing suitable three- and five wave HLL type solvers such that the
Godunov-Powell source term could be discretized in an upwind manner. Positivity preserving high order
ENO and WENO reconstructions were also proposed. The resulting schemes were high order accurate
and robust in computations, particularly on very fine meshes. The numerical schemes designed in [21]
constitute an attractive framework for robust simulations of models involving MHD equations. We will
extend the approach proposed in [21] for discretizing (1.1)

(iii.) Well-balancing. The balance law (1.1) involves the gravity source term in addition to the ideal MHD
equations. The steady states (1.6) and (1.8) are of great interest in the computations as the waves are
realized as small perturbations of these steady states. Hence, it is crucial to preserve suitable discrete
versions of (1.6) and (1.8). Standard finite volume schemes are not designed to preserve discrete steady
states and may lead to large errors (particularly for long time scales). Furthermore, these numerical
errors might be of the same size as the waves, making resolution of waves impossible, except on very
fine meshes. In [20], we presented some of the difficulties associated with the lack of well-balancing in
finite volume schemes for (1.1).

We term schemes that preserve discrete versions of the steady states (1.6) and (1.8) as well balanced.
The design of well-balanced schemes for systems of balance laws like the shallow water equations with
bottom topography and Euler equations for gas flows in a nozzle have received considerable attention
in the literature (see [1, 12, 29, 31, 41, 42] and other references therein). However, very few well-
balanced schemes for stratified hydrodynamics and MHD are available. In a recent paper [22], we
designed high-resolution well-balanced schemes for the two-dimensional form of the stratified MHD
equations (1.1) under the assumption that the steady state was isothermal (1.6). The two key steps
in the design was to use an equivalent form of (1.1) with the perturbation to the background field as
the magnetic primary variable, and to employ novel equilibrium preserving hydrostatic reconstructions
of the conserved variables. The resulting scheme was successful in resolving waves as perturbations of
realistic isothermal magneto-atmospheres.

(iv.) Non-reflecting boundary conditions. Since we are interested in a small part of the solar atmosphere,
periodic boundary conditions are prescribed for the horizontal boundaries. The bottom vertical (z-)
boundary is the source of waves and time-dependent Dirichlet boundary conditions needs to be pre-
scribed for it. Due to the truncation of the computational domain, the top boundary is artificial and
suitable non-reflecting numerical boundary conditions need to be designed.

The design of non-reflecting numerical boundary conditions has received widespread attention in
the literature. Characteristic boundary conditions ([43, 54]) are quite popular in gas dynamics codes.
However, these boundary conditions are observed to be unstable for the stratified MHD equations
on account of failure to preserve positive pressures and densities (see [20] for counter examples and
explanation). Furthermore, the boundary conditions need to be well-balanced i.e, they should also lead
to a discrete version of the steady state to be preserved. A class of “non-reflecting” Neumann type
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numerical boundary conditions was proposed recently in [22], based on a novel extrapolation of the
equilibrium variables at the ghost cells in-order to ensure well-balancing.

1.2. Scope and content of the paper. In [22], the authors tackled all the afore mentioned issues to design
a robust high-order accurate finite volume scheme for discretizing the stratified MHD equations. The schemes
approximated an equivalent form of (1.1) that embedded the steady magnetic field as a co-efficient in the
equations. This form was also proposed in a different context in [53, 45]. The Godunov-Powell form of the
ideal MHD equations was discretized by an HLL three wave solver (proposed in [21]). Second-order of accuracy
was recovered using non-oscillatory minmod, ENO and WENO reconstructions. Well-balancing was achieved
by a novel reconstruction procedure involving local equilibria. Neumann type numerical boundary conditions
led to low amount of reflections at the top boundary. Numerical experiments illustrating the robustness of the
approach and reinforcing the conclusions of [7] were presented.

However, [22] considered only isothermal atmospheres and the numerical results were restricted to two space
dimensions. We extend the numerical framework of [22] to cover non-isothermal three dimensional magneto-
atmospheres in this paper. In terms of the algorithm, the key difference from [22] is the use of a novel local
reconstruction of the pressure, based on the scaling function α (1.5), that allows us to preserve discrete versions
of any non-isothermal steady state (1.6) and (1.8). Furthermore, a structural property of the numerical fluxes
is identified that enables any consistent reconstruction of the density, velocity and magnetic fields to be coupled
with the hydrostatic pressure reconstruction for obtaining a well-balanced scheme.

The schemes are implemented in the form of a scalable, massively parallel, C++ based code termed SURYA([52]).
The code is scheduled for public release and contains a wide variety of approximate Riemann solvers, recon-
struction routines and well-balancing sub-modules. SURYA is employed to investigate wave propagation in
non-isothermal magneto atmospheres. The basic two-dimensional configuration of [47, 7] is augmented by a
realistic temperature distribution approximating the one shown in figure 1. Furthermore, we present numer-
ical results for three-dimensional stratified magneto-atmospheres. The magnetic field configuration of [47, 7]
is extended to three-dimensional potential fields. The results are discussed in terms of the physics of mode
mixing, interactions of wave families and the role that the transition layer and the temperature jump play in
the transport of energy by waves and the resulting movement of the transition layer. In-order to demonstrate
the robustness and range of applicability of the code, we will report results from a simulation of waves with an
observed background magnetic field and basal boundary condition.

The rest of the paper is organized as follows: In section 2, we present an equivalent Godunov-Powell form of
(1.1) (with embedded steady states). Explicit forms of the steady magnetic field in both two and three space
dimensions are also presented. The well-balanced high-resolution finite volume scheme is presented in section
3. Two and three dimensional numerical results are presented in sections 4 and 5 respectively and the contents
of this paper are summarized in 6.

2. The Model

The semi-conservative Godunov-Powell form of the stratified MHD equations ([45]) are,

(2.1)

ρt + div(ρu) = 0,

(ρu)t + div

(
ρu⊗ u+

(
p+

1

2

∣∣B
∣∣2
)
I −B⊗B

)
= −B(divB)− ρge2,

Bt + div(u⊗B−B⊗ u) = −u(divB),

Et + div

((
E + p+

1

2

∣∣B
∣∣2
)
u− (u ·B)B

)
= −(u ·B)(divB)− ρg (u · e3) .

The system is coupled with an ideal gas equation of state (1.2) and all the quantities in (2.1) are as defined
before. The difference between the standard form (1.1) and (2.1) lies in the source term that is proportional
to the divergence of the magnetic field. However, applying the divergence operator to both sides of (2.1), we
obtain

(2.2) (divB)t + div
(
u
(
divB

))
= 0.
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Hence, initial divergence free fields remain divergence free under time evolution in (2.1) showing that the two
forms are equivalent. Furthermore, the Godunov-Powell system is Galilean invariant ([45]) and symmetrizable
([23]). Hence, we discretize the Godunov-Powell form (2.1) instead of the standard form (1.1).

Since we are interested in dynamics near the steady states (1.6) and (1.8), we consider a further modification

of the system (2.1). Assume that there exists a magnetic field B̃ satisfying the following assumptions,

(2.3) B̃t = 0, div(B̃) = 0, and curl(B̃) = 0.

Specific examples of such potential magnetic fields will be given in the sequel. We define deviations B of this
potential field B̃ by,

B = B− B̃.

We substitute the above form in (2.1) and after some calculations (see [45]), we obtain the following modified
system,

(2.4)

ρt + div(ρu) = 0,

(ρu)t + div

(
ρu⊗ u+

(
p+

1

2
|B|2 + B̃ ·B

)
I −B⊗B− B̃⊗B−B⊗ B̃

)

= −
(
B+ B̃

)
(divB)− ρge3,

Bt + div
(
u⊗B−B⊗ u+ u⊗ B̃− B̃⊗ u

)
= −u(divB),

Et + div

((
E + p+

1

2
|B|2 +B · B̃

)
u− (u ·B)B−

(
u · B̃

)
B

)

= −(u ·B)(divB)− ρg (u · e3) ,

where E = p
γ−1 + 1

2 |B|2 + 1
2ρ|u|

2. The variable of interest is now the magnetic field deviation B, and the

background magnetic field B̃ satisfying (2.3) appears as a coefficient in the above equations.

Remark 2.1. The only assumptions used in deriving (2.4) are given by (2.3). In particular, no linearization
assumptions were made nor was any condition imposed on the magnitude of B. Hence, the above equations
(2.4) can be thought of as an equivalent form of the MHD equations with gravity (1.1).

Writing (2.4) as a balance law explicitly, we obtain,

(2.5) Ut + (f(U, B̃)x + g(U, B̃)y + h(U, B̃)z = s1(U, B̃) + s2(U, B̃) + +s3(U, B̃) + sg(U),

where

U = {ρ, ρu1, ρu2, ρu3, B1, B2, B3, E}

is the vector of conserved variables and B̃ = {B̃1, B̃2, B̃3} is any background magnetic field defined by (2.4).
The above form clearly illustrates that the fluxes and the Godunov-Powell source term depend on the coefficient
B̃. Hence, (2.5) is an example of a balance law with spatially varying coefficients. Such equations have many
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interesting properties (see [39]) for a detailed exposition). The fluxes and sources in (2.5) are given by
(2.6)

f =





ρu1

ρu2
1 + π1 − B2

1
2 − B̃1B1

ρu1u2 −B1B2 − B̃1B2 −B1B̃2

ρu1u3 −B1B3 − B̃1B3 −B1B̃3

0

u1

(
B2 + B̃2

)
− u2

(
B1 + B̃1

)

u1

(
B3 + B̃3

)
− u3

(
B3 + B̃3

)

(E + π1)u1 − u1
B2

1
2 −

(
B1 + B̃1

)
(u2B2 + u3B3)





, s1 =





0,

−
(

B2
1
2

)

x
− B̃1 (B1)x

−
(
B2 + B̃2

)
(B1)x

−
(
B3 + B̃3

)
(B1)x

−u1 (B1)x
−u2 (B1)x
−u3 (B1)x

−u1

(
B2

1
2

)

x
− (u2B2 + u3B3) (B1)x





,

g =





ρu2

ρu1u2 −B1B2 − B̃1B2 −B1B̃2

ρu2
2 + π2 − B2

2
2 − B̃2B2

ρu2u3 −B2B3 − B̃2B3 −B2B̃3

u2

(
B2 + B̃2

)
− u2

(
B2 + B̃2

)

0

u2

(
B3 + B̃3

)
− u3

(
B3 + B̃3

)

(E + π2)u2 − u2
B2

2
2 −

(
B2 + B̃2

)
(u2B2 + u3B3)





, s2 =





0,

−
(
B1 + B̃1

)
(B2)y

−
(

B2
2
2

)

y
− B̃2 (B2)y

−
(
B3 + B̃3

)
(B2)y

−u1 (B2)y
−u2 (B2)y
−u3 (B2)y

−u2

(
B2

2
2

)

y
− (u1B1 + u3B3) (B2)y





h =





ρu3

ρu1u3 −B1B3 − B̃1B3 −B1B̃3

ρu2u3 −B2B3 − B̃2B3 −B2B̃3

ρu2
3 + π3 − B2

3
2 − B̃3B3

u3

(
B1 + B̃1

)
− u3

(
B1 + B̃1

)

u3

(
B2 + B̃2

)
− u3

(
B2 + B̃2

)

(E + π3)u3 − u3
B2

3
2 −

(
B3 + B̃3

)
(u1B1 + u2B2)





, s3 =





0,

−
(
B1 + B̃1

)
(B3)z

−
(
B2 + B̃2

)
(B3)z

−
(

B2
3
2

)

z
− B̃3 (B3)

−u1 (B3)z
−u2 (B3)z
−u3 (B3)z

−u3

(
B2

3
2

)

z
− (u1B1 + u2B2) (B3)z ,





where we have defined,

(2.7)
π1 = p+

B2
2 +B2

3

2
+B2B̃2 +B3B̃3, π2 = p+

B2
1 +B2

3

2
+B1B̃1 +B3B̃3,

π3 = p+
B2

1 +B2
2

2
+B1B̃1 +B2B̃2.

Finally, the gravitational source term is given by

(2.8) sg = {0, 0,−ρg, 0, 0, 0, 0,−ρu3 g}.

Considering the primitive variables V = {ρ,u,B, p}, we can write (2.5) in the quasilinear form

Vt +AVx +BVy + CVz = S̃,

where (A,B,C) = (∂Uf , ∂Ug, ∂Uh) are the flux Jacobians. Denoting the sound speed a2 = γp
ρ and b1,2,3 = B1,2,3√

ρ

, b2 = b21 + b22 + b23, the eigenvalues of A are calculated (see [45]) as

(2.9)
λ1 = u1 − cf , λ2 = u1 − b1, λ3 = u1 − cs, λ4 = u1,

λ5 = u1, λ6 = u1 + cs, λ7 = u1 + b1, λ8 = u1 + cf ,
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where cf , cs are given by

c2f =
1

2

(
a2 + b2 +

√
(a2 + b2)2 − 4a2b21

)
, c2s =

1

2

(
a2 + b2 −

√
(a2 + b2)2 − 4a2b21

)
.

The waves corresponding to λ1,λ8 are termed as fast waves, ones corresponding to λ3,λ6 as slow waves, those
corresponding to λ2,λ7 as Alfvén waves and the wave associated with λ4,5 is a contact or shear wave. Note that

the coefficient B̃ enters into the expressions for the eigenvalues. The eigenvalues of B and C are analogously
defined.

2.1. Characterization of steady states. In terms of the system (2.4), the hydrodynamic steady state (1.6)
leads to a zero embedded magnetic field,

(2.10) B̃ ≡ 0.

2.1.1. Magnetic steady states. Non-trivial solutions of (2.3) lead to interesting magnetic steady states. Note
that solutions of (2.3) can be characterized by vector harmonic functions. In three space dimensions, a Fourier
solution of (2.3) can be written down explicitly as,

(2.11)

B̃1(x, y, z) =
L∑

l=1

M∑

m=0

l αlm√
l2 +m2

e−2π
√
l2+m2z

(
alm sin(2πlx) cos(2πmy)− blm cos(2πlx) sin(2πmy)

− clm cos(2πlx) cos(2πmy) + dlm sin(2πlx) sin(2πmy)
)
,

B̃2(x, y, z) =
L∑

l=0

M∑

m=1

m αlm√
l2 +m2

e−2π
√
l2+m2z

(
alm cos(2πlx) sin(2πmy)− blm sin(2πlx) cos(2πmy)

+ clm sin(2πlx) sin(2πmy)− dlm cos(2πlx) cos(2πmy)
)
,

B̃3(x, y, z) =
L∑

l=0

M∑

m=0

αlme−2π
√
l2+m2z

(
alm cos(2πlx) cos(2πmy) + blm sin(2πlx) sin(2πmy)

+ clm sin(2πlx) cos(2πmy) + dlm cos(2πlx) sin(2πmy)
)
,

where alm, blm, clm, dlm are the Fourier co-efficients corresponding to the background magnetic field B̃3(x, y, 0)
at the bottom of the domain, and L,M are the maximum number of modes for the indices l and m respectively.
The factor αlm is 1/4 if l = m = 0, 1/2 if l or m is zero, and 1 otherwise. It can be readily checked that (2.11)
satisfies (2.3). See also [20, 22] for a two dimensional version.

In all the cases, the steady state is given by

(2.12) u ≡ 0, B ≡ 0 ρ(z) =
ρ0T0

T (z)
e−

α(z)
H , p(z) = p0e

−α(z)
H .

Hence, the only difference lies in the choice of the background magnetic field B̃. This formulation allows us to
treat a wide array of steady states within a unified framework.

3. Numerical Schemes

For simplicity, we approximate (2.5) in a Cartesian domain x = (x, y, z) ∈ [Xl, Xr] × [Yl, Yr] × [Zb, Zt] and
discretize it by a uniform grid in all directions with the grid spacing ∆x,∆y and ∆z. We set xi = Xl+i∆x , yj =
Yl+ j∆y and zk = Zb+k∆z. The indices are 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny and 0 ≤ k ≤ Nz. Set xi+1/2 = xi+∆x/2,
yj+1/2 = yj +∆y/2 and zk+1/2 = zk+∆z/2, and let Ci,j,k = [xi−1/2, xi+1/2)× [yj−1/2, yj+1/2)× [zk−1/2, zk+1/2)
denote a typical cell. The cell average of the unknown state vector W (approximating U) over Ci,j,k at time tn

is denoted Wn
i,j,k.
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3.1. First order schemes. A standard finite volume scheme (first-order in both space and time) (see [32]) is
obtained by integrating the balance law (2.5) over the cell Ci,j,k and the time interval [tn, tn+1) with tn+1 =
tn+∆tn, where the time-step ∆tn is determined by a suitable CFL condition. The resulting fully-discrete form
of the scheme is

(3.1)
Wn+1

i,j,k = Wn
i,j,k − ∆tn

∆x
(Fn

i+1/2,j,k − Fn
i−1/2,j,k)−

∆tn

∆y
(Gn

i,j+1/2,k −Gn
i,j−1/2,k)

− ∆tn

∆z
(Hn

i,j,k+1/2 −Hn
i,j,k−1/2) +∆tn(S1,n

i,j,k + S2,n
i,j,k ++S3,n

i,j,k + Sg,n
i,j,k).

The numerical fluxes F, G, H and discretized sources S1, S2, S3 and Sg are specified in the following sections

3.1.1. Numerical flux and Godunov-Powell source in the x-direction. Following [21, 22], we determine the nu-
merical flux Fn

i+1/2,j and the source term S1,n
i,j from the (approximate) solution of the following Riemann

problem

(3.2) Wt + f
(
W, B̃M

)

x
= s1

(
W, B̃M ,Wx

)
, W(x, 0) =

{
WL x < 0,

WR x > 0,

where f and s1 are defined in (2.6). The coefficient B̃M in (3.2) is given by the average,

(3.3) B̃M = B̃i+1/2,j =
B̃i,j + B̃i+1,j

2
.

Hence, we stagger the coefficient B̃ in defining the approximate Riemann solver. This approach is a popular
discretization of balance laws with coefficients ([28]) and results in a simplification of the Riemann problem.

3.1.2. The HLL three wave solver. There are eight possible waves in the exact solution of the Riemann problem
(3.2). We will approximate these eight waves with three waves, i.e, two representing the outermost fast waves
and a middle wave approximating the material contact discontinuity. This approximate solution and fluxes for
(3.2) are given by

(3.4) WH3 =






WL if x
t ≤ sL,

W∗
L if sL < x

t < sM ,

W∗
R if sM < x

t < sR,

WR if sR ≤ x
t ,

FH3

(
WL,WR, B̃M

)
=






FL if x
t ≤ sL,

F∗
L if sL < x

t < sM ,

F∗
R if sM < x

t < sR,

FR if sR ≤ x
t .

The outer wave speeds sL and sR model the fast magneto-sonic waves and are defined as in [24, 16], i.e.,

(3.5) sL = min {u1L − cfL, u1 − cf} , sR = max {u1R + cfR, u1 + cf} ,

where u1 and cf are the normal velocity and the fast wave speed of the Jacobian matrix A((WL + WR)/2)
respectively. This choice is important for numerical stability and accuracy.

In order to describe the solver, we need to prescribe the speed of the middle wave sM and the intermediate
states W∗

L,W
∗
R. The middle wave models a material contact discontinuity. Hence, the velocity field and

the tangential magnetic fields are assumed to be constant across the middle wave. This allows us to define
u∗ = u∗

L = u∗
R, B

∗
2 = B∗

2L = B∗
2R and B∗

3 = B∗
3L = B∗

3R. As in [21, 22], the normal magnetic field B1 is not
assumed to be constant but jumps only across the middle wave (modeling the linear degenerate “divergence
wave” implied by (2.2)). The intermediate states are determined by local conservation. Local conservation
across the outermost waves means that

(3.6) sLW
∗
L − F∗

L = sLWL − FL, and sRWR − FR = sRW
∗
R − F∗

R.

Conservation across the middle wave sM involves taking the source term s1 in (3.2) into account. The conser-
vation relation reads

(3.7) sMW∗
R − sMW∗

L = F∗
R − F∗

L + s1,∗
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where

(3.8) s1,∗ =





0

−B2
1R−B2

1L
2 − B̃1M (B1R −B1L)

−
(
B∗

2 + B̃2M

)
(B1R −B1L)

−
(
B∗

3 + B̃3M

)
(B1R −B1L)

−u∗ (B1R −B1L)

−u∗
1
B2

1R−B2
1L

2 − (u∗
2B

∗
2 + u∗

3B
∗
3) (B1R −B1L)





.

The above expression follows from the assumption that B1 jumps only across the middle wave while the velocity
field and the tangential components of the magnetic field remain constant.

Applying the conservation relations (3.6) and (3.7), we obtain (check [22], section 3.1.2 for details) the
following intermediate states,

(3.9)

ρ∗θ = ρθ
u1θ − sθ
sM − sθ

, θ ∈ {L,R},

sM = u∗
1 =

π1R − π1L + ρRu1R(u1R − sR)− ρLu1L(u1L − sL)

ρR(u1R − sR)− ρL(u1L − sL)
,

π∗
1θ = π1θ + ρθ(u1θ − sθ)(u1θ − sM ), θ ∈ {L,R},

u∗
σ =

ζcσ − ξdσ
αζ + ξ2

, σ ∈ {2, 3}

B∗
σ =

−αdσ − ξcσ
αζ + ξ2

, σ ∈ {2, 3},

E∗
θ =

1

sM − sθ

(
Eθ (u1θ − sθ) + π1θu1θ − π∗

1θsM +
B2

1θ

2
(u1θ − sM )

+
(
B1θ + B̃1M

)
(B2θu2θ +B3θu3θ −B∗

2θu
∗
2θ −B∗

3θu
∗
3θ)

)
, θ ∈ {L,R},

where

(3.10)

cσ = ρRuσR (u1R − sR)− ρLuσL (u1L − sL)− (B1RBσR −B1LBσL)− B̃1M (BσR −BσL) ,

dσ = BσR (u1R − sR)−BσL (u1L − sL)− (B1LuσL −B1RuσR) + B̃σM (u1R − u1L)− B̃1 (uσR − uσL) ,

α = ρR (u1R − sR)− ρL (u1L − sL) , ζ = sR − sL, ξ = B1R −B1L.

The denominator αζ + ξ2 in (3.9) may become zero in some cases leading to degenerate states. This can easily
be avoided by widening the wave fan slightly. The recipe is prescribed in [22], remark 3.1.

The intermediate fluxes are obtained in terms of the intermediate states by local conservation (3.6),

F∗
L = FL + sL(W

∗
L −WL), F∗

R = FR + sR(W
∗
R −WR).

Note that F∗
L/R may differ from F(W∗

L/R). Combining the above expressions for the states and the fluxes, we
write down our explicit flux formula for the three-wave solver as

(3.11) FH3

i+1/2,j,k =






Fi,j,k , if (sL)i+1/2,j,k > 0,

F∗
i,j,k , if (sL)i+1/2,j,k ≤ 0 ∧ (sM )i+1/2,j,k ≥ 0,

F∗
i+1,j,k , if (sM )i+1/2,j,k < 0 ∧ (sR)i+1/2,j,k ≥ 0,

Fi+1,j,k , if (sR)i+1/2,j,k < 0.

while the discrete source S1 takes the form

(3.12) S1,n
i,j,k = s1,∗i−1/2,j,k1{(sM,i−1/2,j,k≥0)} + s1,∗i+1/2,j,k1{(sM,i+1/2,j,k<0)},

where s1,∗i±1/2,j,k is defined in analogy to (3.8).
We emphasize that the discrete Godunov-Powell source term in each cell is naturally derived from Riemann

solutions at the bordering interfaces and depends on the sign of the middle wave at each interface. Thus, the
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Godunov-Powell source term is suitably upwinded. Note that assuming the normal magnetic field B1 to be
constant for the whole domain leads to the source term being zero. This approach follows [21],[8],[22] and is
very different from the usual centered discretization of the Godunov-Powell source term ([45] and references
therein).

Remark 3.1. The above fluxes and sources are designed using a three wave solver. An alternative would be
to design a five wave solver like in [40],[21]. This solver models Alfvén waves in addition to the fast waves and
the contact discontinuity. We can follow the steps of [20] to design a five wave solver for (3.2).

3.1.3. Fluxes and sources in the y-direction. The numerical flux G and discrete Godunov-Powell source term
S2 in (3.1) are similarly described in terms of the following Riemann problem

(3.13) Wt + g(W, B̃M )y = s2(W, B̃M ,Wy), W(y, 0) =

{
WL y < 0,

WR y > 0,

where g and s2 are defined in (2.6). We substitute

WL = Wi,j,k, WR = Wi,j+1,k, B̃M =
B̃i,j + B̃i,j+1

2

and obtain the numerical flux Gi,j+1/2,k and discrete Godunov-Powell source S2
i,j,k analogously to the procedure

outlined in the previous section for obtaining the numerical flux and source in the x-direction.

3.1.4. Fluxes and sources in the z-direction. The numerical flux H and discrete Godunov-Powell source term
S3 in (3.1) are similarly described in terms of the following Riemann problem

(3.14) Wt + h(W, B̃M )z = s3(W, B̃M ,Wz), W(y, 0) =

{
WT y < 0,

WB y > 0,

where h and s3 are defined in (2.6). The straight forward way to specify initial data WT,B in the above problem
is to use the states WB = Wn

i,j,k and WT = Wn
i,j,k+1. However, this approach leads to a scheme that does

not preserve discrete versions of the interesting steady states (1.6) and (1.8). Therefore we must design suitable
fluxes in order to design well-balanced schemes.

3.1.5. Local Hydrostatic pressure reconstructions. Instead of just using the cell averages below and above the
interface as data in (3.14), we perform a local hydrostatic reconstruction of the pressure inside the cell by
utilizing the special structure of the steady states (1.6),(1.8), i.e., we observe that the pressure at steady state
(1.6) and (1.8) has an exponentially decaying profile that is scaled in terms of the function α (1.5). We will use
the same structure locally inside a cell to define the vector of primitive variables,

(3.15) VB = {ρni.j,k,un
i,j,k,B

n
i,j,k, p

n,−
i,j,k+1/2}, VT = {ρni,j,k+1,u

n
i,j,k+1,B

n
i,j,k+1, p

n,+
i,j+1/2},

where the reconstructed pressure is given in terms of extrapolated cell averages by first defining the local
temperature,

(3.16) Tn
i,j,k =

pni,j,k
gHρni,j,k

.

The piecewise constant temperature defines the scaling function α by (1.5). We can compute the differences in
α and use it to define the reconstructed local pressure,

(3.17) pn,−i,j,k+1/2 = pni,j,ke
−∆z

2HTn
i,j,k , pn,+i,j,k+1/2 = pni,j,k+1e

∆z
2HTn

i,j,k+1 ,

The above sub-cell hydrostatic reconstruction is similar to the one proposed in [22]. Note that the local
reconstructed pressures pn,±i,j,k+1/2 (3.17) are inspired by the form of the steady state pressure in (1.6) and (1.8),
and will be shown to lead to a well-balanced scheme in the sequel.
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The data WB and WT (in terms of conservative variables) are easily obtained from the primitive variables

VB , VT . The coefficient B̃M in (3.14) is given by the average,

(3.18) B̃M = B̃i,j,k+1/2 =
B̃i,j,k + B̃i,j,k+1

2
.

Hence, we stagger the coefficient B̃ in defining the approximate Riemann solver as in the other directions.
An approximate Riemann solution of the problem (3.2) in terms of the HLL three wave solver of the previous

section is easily obtained by repeating the approach of describing the solver in the x- and y-direction. This can
be used to describe the flux H and source S3. Note that the difference between the design of the fluxes and
Godunov-Powell sources in the x, y- and the z-directions is due to the use of local hydrostatic reconstructions
of the pressure in the z-direction. We remark that although the steady state density has a scaled exponential
profile, we will not be reconstructing it locally as it is not necessary for well-balancing (In [22] where the local
hydrostatic density was also reconstructed).

We need the following useful lemma in the sequel,

Lemma 3.1. We denote the numerical flux (in the z-direction) defined by the HLL three wave solver as

Hi,j,k+1/2 = H
(
ρi,j,k,ui,j,k,Bi,j,k, p

−
i,j,k+1/2, ρi,j,k+1,ui,j,k+1,Bi,j,k+1, p

+
i,j,k+1/2, B̃i,j,k+1/2

)
.

If we have,

(3.19)
p−i,j,k+1.2 = p+i,j,k+1/2 = pi,j,k+1/2,

(ui,j,k,Bi,j,k) = (ui,j,k+1,Bi,j,k+1) = (0,0),

then the numerical flux is given by,

(3.20)
Hi,j,k+1/2 = H

(
ρi,j,k,0,0, pi,j,k+1/2, ρi,j,k+1,0,0, pi,j,k+1/2, B̃i,j,k+1/2

)

=
{
0, 0, 0, pi,j,k+1/2, 0, 0, 0, 0

}
,

where 0 = (0, 0, 0).

The proof of this lemma lies in checking (3.20) in a straightforward manner when the adjacent states in
(3.14) satisfy (3.19) by plugging in (3.19) in expressions analogous to (3.9). The interpretation of the lemma
is that our approximate Riemann solver exactly resolves stationary material contact discontinuities. We need
this property to prove well-balancing. Since e.g. two-wave HLL solvers diffuse stationary contacts, they will
not suffice for our purpose.

3.1.6. Discretization of the gravitational source term. We need to discretize the gravity source term to define Sg

in (3.1). Instead of using a simple evaluation of the gravity term (it does not involve any derivatives) inside each
cell, we follow an approach suggested in [1] for shallow water equations with topography and [22] for stratified
MHD to define

(3.21) Sg,n
i,j,k =

{
0, 0,

pn,−i,j,k+1/2 − pn,+i,j,k−1/2

∆z
, 0, 0, 0, 0,−ρni,j,k(u

n
3 )i,j,k g

}
.

where pn,−i,j,k+1/2, p
n,+
i,j,k−1/2 are defined in (3.17). We will prove that this discretization of the gravity source term

is consistent, and that it ensures well-balancing of the scheme.

3.1.7. Boundary conditions: In order to complete our description of the scheme (3.1), we need to specify bound-
ary conditions in all directions. As mentioned before, we use periodic boundary conditions in the horizontal
directions by setting,

(3.22) Wn
0,j,k = Wn

Nx,j,k, Wn
Nx+1,j,k = Wn

1,j,k, Wn
i,0,k = Wn

i,Ny,k, Wn
i,Ny+1,k = Wn

i,1,k.
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In the vertical z-direction, we follow [22] and use the following balanced Neumann type boundary conditions,

(3.23)

Bn
i,j,0 = Bn

i,j,1,B
n
i,j,Nz+1 = Bn

i,j,Nz
,

un
i,j,0 = un

i,j,1,u
n
i,j,Nz+1 = un

i,j,Nz
,

ρni,j,0 = ρni,j,1e
∆z

Ti,j,1H , ρni,j,Nz+1 = ρni,j,Nz
e
− ∆z

Ti,j,Nz
H ,

pni,j,0 = pni,j,1e
∆z

Ti,j,1H , pni,j,Nz+1 = pni,j,Nz
e
− ∆z

Ti,j,Nz
H .

This completes the description of the first order scheme (3.1). Some properties of this scheme are summarized
in the theorem below,

Theorem 3.1. Consider the scheme (3.1) approximating the system (2.5). This scheme has the following
properties,

(i.) The scheme (3.1) is consistent with (2.4), and it is first order accurate in both space and time (for
smooth solutions).

(ii.) The scheme (3.1) is well-balanced and preserves discrete versions of the steady states (2.12) in the
following sense: Given data satisfying

(3.24) un
i,j,k = 0, Bn

i,j,k = 0, ρni,j,k =
ρ0T0

Tk
e

−αk
H , pni,j = p0e

−αk
H ,

with αk defined from the piecewise constant temperature distribution,

(3.25) T (x, y, z) = T (z) = Tk, zk−1/2 < z < zk+1/2,

by the formula (1.5), then the numerical update is computed as, Wn+1
i,j,k is

Wn+1
i,j,k ≡ Wn

i,j,k ∀i, j, k.

Proof. The proof of (i.) is straightforward except for the consistency of the gravitational source term Sg.
Consistency of the source follows from the definition (3.21) and (3.16) and the following elementary identity,

(3.26)

pn,−i,j,k+1/2 − pn,+i,j,k−1/2

∆z
= pni,j,k

(
e
− ∆z

2HTn
i,j,k − e

∆z
2HTn

i,j,k

)

= −gρni,j,k
e

∆z
2HTn

i,j,k − e
−∆z

2HTn
i,j,k

∆z
HTn

i,j,k

= −gρni,j,k +O(∆z2).

The above identity also shows that the gravity source term is second-order accurate.
The discrete steady conservative variables (3.24) do not vary in either the x or y directions. Therefore, the

flux differences Fi+1/2,j,k − Fi−1/2,j,k and Gi,j+1/2,k −Gi,j−1/2,k vanish. As Bi,j,k ≡ 0 for all cells, we obtain
that the discrete Godunov-Powell source terms S1,2,3 also vanish.

The steady state pressure in (3.24) satisfies,

Pn
i,j,k+1 = Pn

i,j,ke
−αk+1−αk

H .

The definition of α (1.5) in terms of the piecewise constant temperature distribution (3.16) yields,

αk+1 − αk =
∆z

2TkH
+

∆z

2Tk+1H
.

Substituting the above identity for the steady state pressure, we obtain,

Pn
i,j,k+1 = Pn

i,j,ke
−∆z
2TkH e

−∆z
2Tk+1H .

This implies that the reconstructed pressures from (3.17) satisfy,

pn,+i,j,k+1/2 = pni,j,k+1(e
∆z

2Tk+1H ) = pni,j,k(e
−∆z
2TkH e

−Dz
2Tk+1H e

∆z
2Tk+1H ) = pni,j,ke

−∆z
2TkH = pn,−i,j,k+1/2 = pni,j,k+1/2.
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Hence we can use (3.19) and (3.20) to obtain,

Hi,j,k+1/2 = H
(
ρni,j,k,u

n
i,j,k,B

n
i,j,k, p

n,−
i,j,k+1/2, ρ

n
i,j,k+1,u

n
i,j,k+1,B

n
i,j,k+1, p

n,+
i,j,k+1/2, B̃i,j,k+1/2

)
,

= H
(
ρni,j,k,0,0, p

n
i,j,k+1/2, ρ

n
i,j,k+1,0,0, p

n
i,j,k+1/2, B̃i,j,k+1/2

)

=
{
0, 0, 0, pni,j,k+1/2, 0, 0, 0, 0

}
,

Similarly an explicit evaluation of the gravity source term (3.21) yields,

Sg,n
i,j,k =

{
0, 0,

pni,j,k+1/2 − pni,j,k−1/2

∆z
, 0, 0, 0, 0, 0

}
.

Therefore combining the above two expressions, we obtain

Hn
i,j,k+1/2 −Hn

i,j,k−1/2

∆z
= Sn,g

i,j,k for all i,j and j.

Combining the above identity with the fact the flux differences in the horizontal directions and the Godunov-
Powell source terms are zero at the discrete steady state, we obtain that

Wn+1
i,j,k = Wn

i,j,k, ∀i, j, k.

!

Note that the well-balanced property includes the boundary points also as the Neumann type boundary
condition (3.23) is well-balanced. Furthermore, the proof does not assume any prior information about the
parameters of the discrete steady state. Given any initial configuration that satisfies (3.24), the scheme (3.1)
preserves it. Any piecewise constant temperature distribution and background magnetic field can be taken to
define the scheme. For arbitrary temperature distributions, we have to compute a piecewise constant approxi-
mation based on cell averages.

A key difference from [20] is the fact that the temperature is allowed to vary arbitrarily in the vertical
direction. In fact, the temperature can be discontinuous and can contain large jumps as the data in figure
1. Furthermore, local hydrostatic reconstructions of the density are not necessary on account of the condition
(3.20), that the HLL three wave solver satisfies. This concludes the description of the first-order scheme (3.1).

3.2. The second order scheme. A first-order accurate scheme like (3.1) may not suffice for realistic compu-
tations. We need to extend (3.1) to second-order of accuracy. At any time t, given the cell averages Wi,j,k(t),
the semi-discrete form of the second order scheme is given by

(3.27)

d

dt
Wi,j,k = F i,j,k = − 1

∆x
(F̃i+1/2,j,k − F̃i−1/2,j,k)−

1

∆y
(G̃i,j+1/2,k − G̃i,j−1/2,k)

− 1

∆z
(H̃i,j,k+1/2 − H̃i,j,k−1/2) + S̃1

i,j,k + S̃2
i,j,k + S̃3

i,j,k + Sg
i,j,k.

The numerical fluxes F,G,H and the sources S̃1,2,3 are defined below. The time dependence in the above
expression is suppressed for notational convenience.

It is standard (see [32]) to replace the piecewise constant approximation Wi,j,k with a non-oscillatory piece-
wise linear reconstruction in-order to obtain second-order spatial accuracy. There are a variety of reconstruc-
tions including the popular TVD-MUSCL limiters [58], ENO reconstruction [26] and WENO reconstruction
[50]. However, we need (3.27) to preserve a suitable discrete version of (2.12) and a standard reconstruction of
the conservative variables does not lead to a well-balanced scheme.

Consequently we will modify the novel equilibrium variables based reconstruction algorithm of [22] to the
setting of non-isothermal atmospheres below. Given the cell averages Wi,j,k at any given time, we define a
piecewise constant local temperature distribution by (3.16) and denote the cell temperature as Ti,j,k. We have
the following reconstruction algorithms.
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3.3. Minmod reconstruction (MM). Given the cell values qi,j,k of a state variable q, denote the minmod
derivatives as
(3.28)

Dxqi,j,k = minmod

(
qi+1,j,k − qi,j,k

∆x
,
qi,j,k − qi−1,j,k

∆x

)
, Dyqi,j,k = minmod

(
qi,j+1,k − qi,j,k

∆y
,
qi,j,k − qi,j−1,j,k

∆y

)
,

Dzqi,j,k = minmod

(
qi,j,k+1 − qi,j,k

∆z
,
qi,j,k − qi,j,k−1

∆z

)
, minmod(a, b) =

1

2
(sgn(a) + sgn(b))min(|a|, |b|).

Then a piecewise linear non-oscillatory approximation of q is of the form,

(3.29) q(x, y, z) = qi,j,k(x, y, z) = qi,j,k +Dxq(x− xi) +Dyq(y − yj) +Dzq(z − zk), (x, y, z) ∈ Ci,j,k.

From the cell values of ρ,u and B, we define the minmod slopes by (3.28) and obtain the corresponding
piecewise linear approximations of these variables by (3.29). However, a minmod reconstruction of the pressure
does not lead to a well balanced scheme. We need a novel pressure reconstruction, based on a corresponding
reconstruction of the temperature.

Given the cell averages Wi,j,k, compute the cell temperature Ti,j,k by (3.16). We define a continuous

piecewise linear reconstruction of the temperature T̂i,j(z), taking the values T̂i,j,k at the cell centers. This
piecewise linear temperature can be used to compute the corresponding α function by (1.5). However, we only
need the differences in α given by,

(3.30) αi,j,k+λ − αi,j,k =

∫ zk+λ

zk

1

T̂i,j(z)
dz =

∆z

Ti,j,k+1 − Ti,j,k
log

(
T̂i,j(zk+λ)

Ti,j,k

)
, λ ∈ {1/2, 1}.

Note that the difference in α is always well-defined and for Ti,j,k+1 = Ti,j,k degenerates to

(3.31) αi,j,k+λ − αi,j,k = (zi,j,k+λ − zi,j,k)/Ti,j,k, λ ∈ {1/2, 1}.

We use the α function to reconstruct the pressure.
As in [22], we define

(3.32) Lpi,j,k = log(pi,j,k),

and compute the minmod derivatives Dx,yLp by (3.28). A scaled minmod derivative in the z-direction takes
the form,

(3.33) DzLpi,j,k = minmod

(
Lpi,j,k+1 − Lpi,j,k
αi,j,k+1 − αi,j,k

,
Lpi,j,k − Lpi,j,k−1

αi,j,k − αi,j,k−1

)
,

where the difference in α is computed in (3.30). Then a piecewise linear approximation of the pressure is
computed by

(3.34) p(x, y, z) = pi,j,ke
DxLpi,j,k(x−xi)eD

yLpi,j,k(y−yj)eD
zLpi,j,k(α(z)−α(zk)),

where α is again computed from (3.30). The cell edge values of the conservative variables can be easily obtained
from the piecewise linear approximations of the primitive variables. The minmod limiter is one possible choice
among many reconstruction procedures. Other limiters like the MC, superbee, ENO and WENO limiters can
be modified analogously.

We denote the reconstructed piecewise linear conservative variables in the cell Ci,j,k as Wi,j,k(x, y, z) and
define the following corner values,

WE
i,j,k = Wi,j,k(xi+1/2, yj , zk), WW

i,j,k = Wi,j,k(xi−1/2, yj , zk),

WN
i,j,k = Wi,j,k(xi, yj+1/2, zk), WS

i,j,k = Wi,j,k(xi, yj−1/2, zk),

Wt
i,j,k = Wi,j,k(xi, yj , zk+1/2), Wb

i,j,k = Wi,j,k(xi, yj , zk−1/2),
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and define the numerical fluxes by

(3.35)
F̃i+1/2,j,k = F

(
WE

i,j,k,W
W
i+1,j,k, B̃i+1/2,j,k

)
, G̃i,j+1/2,k = G

(
WN

i,j,k,W
S
i,j+1,k, B̃i,j+1/2,k

)
,

H̃i,j,k+1/2 = H
(
Wt

i,j,k,W
b
i,j,k+1, B̃i,j,k+1/2

)
,

where F,G,and H are given by the three wave solver of the previous section. The value of the staggered
coefficient B̃ is given by a simple evaluation,

B̃i+1/2,j,k = B̃(xi+1/2, yj , zk), B̃i,j+1/2,k = B̃(xi, yj+1/2, zk), B̃i,j,k+1/2 = B̃(xi, yj , zk+1/2),

This choice ensures formal second order accuracy for a smooth background magnetic field.
The discrete Godunov-Powell source terms in (3.27) can be defined in analogy with the first-order case by

replacing the cell averages with the corresponding corner point values defined above. A correction (see [21, 22])
is needed to ensure consistency. The discretized gravity source term Sg is given by,

(3.36) Sg
i,j,k =

{
0, 0,

pti,j,k − pbi,j,k
∆z

, 0, 0, 0, 0,−ρni,j,k(u
n
3 )i,j,kg

}
.

This source can be shown to be consistent with the gravity source term in (2.5) to second order by modifying
(3.26).

Summarizing, we perform a standard piecewise linear reconstruction, except for the hydrostatic reconstruction
of the pressure, given by (3.30)-(3.34).

3.3.1. Boundary conditions for the second order scheme. The boundary is treated in the following way. We
need to specify two layers of ghost cells in each direction for a second order scheme. We use periodic boundary
conditions in the x- and y- directions, i.e., for 1 ≤ j ≤ Ny and 1 ≤ k ≤ Nz, we have

(3.37) W0,j,k = WNx,j,k, W−1,j,k = WNx−1,j,k, WNx+1,j,k = W1,j,k, WNx+2,j,k = W2,j,k

The ghost cell values in the y-direction can be defined analogously.
In the z-direction, we use second-order extrapolated Neumann boundary conditions for the velocity and the

magnetic field, i.e., for w = {u,B},
(3.38) wi,j,d = wi,j,1, wi,j,Nz+2+d = wi,j,Nz

for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny and d ∈ {0,−1} in order to define the values in the ghost cells.
The pressure and the density in the ghost cells are extrapolated in terms of its logarithm Lp = log(p) and

Lρ = log(ρ) according to (3.34) and simplify to

(3.39)
pi,j,d = pi,j,1e

(αi,j,d−αi,j,1)/H , pi,j,Nz+2+d = pi,j,Nze
(αi,j,Nz+2+d−αi,j,Nz )/H ,

ρi,j,d = ρi,j,1e
(αi,j,d−αi,j,1)/H , ρi,j,Nz+2+d = ρi,j,Nze

(αi,j,Nz+2+d−αi,j,Nz )/H ,

where the differences in α are given by (3.31). This amounts to using a scaled version of the extrapolated
Neumann type boundary conditions of [20] for the primitive variables.

3.3.2. Time Stepping. The standard scheme for a first order approximation in time is the forward Euler time
stepping, formally written as

Wn+1
i,j,k = Wn

i,j,k +∆tnFn
i,j,k

where Fn
i,j,k is defined in (3.27). For second-order schemes, we use the second-order strong-stability preserving

Runge-Kutta (SSP) time stepping (see [25])

W∗
i,j,k = Wn

i,j,k +∆tnFn
i,j,k,

W∗∗
i,j,k = W∗

i,j,k +∆tnF∗
i,j,k,

Wn+1
i,j,k =

1

2
(Wn

i,j,k +W∗∗
i,j,k).

The time step is determined by a standard CFL condition.
The properties of the second-order scheme are summarized in the theorem below,
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Theorem 3.2. Consider the scheme (3.27) approximating the system (2.5). This scheme has the following
properties,

(i.) The scheme (3.27) is consistent with (2.5) and is second-order accurate.
(ii.) The scheme (3.27) is well-balanced and preserves a second order accurate version of the steady state

(2.12), i.e, given data satisfying

(3.40) ui,j,k = 0, Bi,j,k = 0, ρi,j,k = ρ0e
−αk
H , pi,j,k = p0e

−αk
H , for all i, j and k,

with αk defined by (3.30), and any background field B̃, then the approximate solutions computed by
(3.27) satisfy,

(3.41)
d

dt
Wi,j,k ≡ 0,

for all i, j and k.

Proof. The proof of the second-order accuracy is straightforward. As the data satisfy (3.40), we obtain

Lpi,j,k = Lpk = log(pk) = log(p0)−
αk

H
.

Therefore, the minmod slopes (3.33) lead to

(3.42) DzLpk = minmod

(
− 1

H
,− 1

H

)
= − 1

H
.

Hence, the reconstructed pressure (3.34) is of the form,

(3.43) pi,j,k(x, y, z) = pk(z) = pke
−α(z)−αk

H .

Therefore, using (3.40), we obtain

pbi,j,k+1 = pbk+1 = pk+1e
αk+1−αk+1/2

H = pke
− ak+1−ak

H e
αk+1−αk+1/2

H = pke
−

αk+1/2−αk
H = ptk = pk+1/2.

As ui,j,k = Bi,j,k ≡ 0, the reconstructed velocity and magnetic fields are identically zero. We combine the above
facts with (3.19) and (3.20) to obtain,

Hi,j,k+1/2 = {0, 0, 0, pk+1/2, 0, 0, 0, 0}.

Therefore, (3.36) yields,

Hi,j,k+1/2 −Hi,j,k−1/2

∆z
= Sg

i,j,k, ∀i, j, k.

The data do not vary in the x and y directions. Hence, the flux differences in these directions vanish. Similarly,
the Godunov-Powell source terms in each direction are identically zero as B ≡ 0. Substituting all the above
identities in (3.27) leads to (3.41).

!

3.4. Implementation. The well-balanced high-order schemes presented above are implemented in a modular
C++ based code termed SURYA,[52]. The code includes a set of approximate Riemann solvers, high-order
non-oscillatory reconstruction and time integration routines. Realistic initial and boundary conditions are also
specified. A wide range of background magnetic fields B̃ are included. The code is parallelized with the MPI
library, using a domain decomposition technique. The parallelization is also straightforward as the schemes are
explicit and do not need any staggered grids. A python front end to the code is included for configuring data and
results are visualized using matplotlib for two-dimensional visualizations and MAYAVI for three-dimensional
visualizations. All the results presented below are from experiments performed on the TITAN cluster of the
University of Oslo.
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4. Two dimensional numerical results

We test the first order (3.1) and second order (3.27) schemes on a suite of numerical experiments. For the
sake of comparison, we consider a standard unbalanced version of the first order scheme similar to (3.1) based
on the HLL three wave solver and upwind discretizations of the Godunov-Powell source terms. This scheme
does not use local hydrostatic reconstructions of the pressure (3.17) and discretizes gravity by the simpler form,

(4.1) S̃g
i,j = {0, 0, 0,−ρi,j,kg, 0, 0, 0,−ρi,j,k(u3)i,j,k g} .

Similarly, we consider a second-order version of the above unbalanced scheme based on the minmod reconstruc-
tion in the conservative variables, as opposed to the novel pressure reconstruction of the scheme (3.27). Hence,
we test the following four schemes:

H3 First order unbalanced HLL three wave solver,
H3WB well-balanced version of H3 (3.1),
H3M second order unbalanced HLL three-wave solver

with Minmod reconstruction.
H3WBM second order well-balanced HLL three-wave solver

(3.27) with Minmod reconstruction.

The first order schemes are evolved with a CFL number of 0.45 and the second order schemes use a CFL number
of 0.9. In all our computations we set γ = 5/3.

As stated earlier, the main difference between this paper and [22] lies in the study of non-isothermal at-
mospheres. We choose a realistic steady state temperature distribution T (z) that is modeled on the observed
temperature presented in figure 1. Our model steady state temperature, shown in figure 2, is given by

T (z) =






1, if z ≤ 1

+99 · 8 · (z − 1)2 + 1, if 1 < z ≤ 1.25

−99 · 8 · (z − 1.5)2 + 100, if 1.25 < z ≤ 1.5

100, if 1.5 < z

The model temperature distribution approximates the observed temperature qualitatively and consists of two
regions of constant temperature (modeling the chromosphere and the corona, respectively), separated by a
rapidly varying gradient (modeling the transition region). Furthermore, the non-dimensional temperature jump
is of two orders of magnitude, replicating the corresponding jump in figure 1. The corresponding steady state
pressure and density are readily calculated from (2.12).

All the quantities are non-dimensionalized suitably from the realistic solar parameters used in [7]. The
constants are acceleration due to gravity, g = 2.74, constant H = 0.158 and initial pressure p0 = 1.13. All
subsequent two-dimensional experiments are performed on the domain [x, z] ∈ [0, 4]× [0, 8]. At the steady state,
we assume that there is no variation in the y-direction.

Regarding the measurement of errors, if we have a reference solution available, then we define the relative
error as

100× ‖α− αref‖
‖αref‖

,

where α is (a component of) the numerical approximation and αref is (the same component of) the reference
solution, and ‖ ·‖ is some (usually L1) norm.

4.1. Hydrodynamics: steady state. We begin with a zero background magnetic field B̃ and test the well-
balancing properties of the schemes. The initial conditions are given by (2.12) and the parameters are chosen
as above. The steady state temperature is given in figure 2. We show the relatives errors in the L1 norm for the
pressure in table 1. The reference solution is the steady state pressure distribution (2.12), with α evaluated in
an appropriate discrete form. The table clearly shows that both the well-balanced H3WB and H3WBM schemes
maintain the steady state to machine precision. The unbalanced H3 and H3M schemes generate large errors and
do not preserve a discrete steady state. Although the errors seem to decrease with decreasing mesh size, they
are still quite large on very fine meshes. This makes the unbalanced schemes unsuitable for wave propagation
experiments as waves are realized as small perturbations of the steady state (see [20]).
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Figure 2. Steady state temperature distribution for the model atmosphere.

% L1-error in p H3 H3M H3WB H3WBM
100x200 4.9e+2 8.2e+0 7.0e-13 1.1e-12
200x400 1.6e+2 1.1e+0 3.7e-14 7.2e-14
400x800 6.7e+1 1.4e-1 4.8e-13 4.3e-13
800x1600 3.0e+1 1.7e-2 6.4e-13 7.1e-13

Table 1. Relative L1 errors in pressure at the hydrodynamic steady state for a sequence of meshes.

4.2. Hydrodynamics: wave propagation. Next, we simulate waves in the model non-isothermal hydro-
atmosphere. The background magnetic field B̃ is set to zero and the waves are modeled ([7, 20, 22]) by
perturbing the bottom vertical boundary. The bottom boundary acts a piston and sends temporally sinusoidal
waves up the domain. This perturbation is expressed by the following boundary condition for the normal
velocity field,

(4.2) u3,n
i,j,{0,−1} = 0.3e−100(xi,j,{0,−1}−1.9)2 sin (6πtn)1{[1.65,2.15]}.

Note that the wave source is spatially localized as in [7]. The waves move up and are influenced by the
background state. The results for the normal velocity u3 for a 400 × 800 mesh at time t = 1.17 are shown in
figure 3. The figure clearly shows that the waves are resolved quite well by the well-balanced schemes. The
first-order H3WB is diffusive whereas the second-order H3WBM resolves the wave fronts very sharply. At the
time depicted in the plot, the piston has sent in a train of waves that have traveled up the atmosphere. The
waves spread out with spherical wave fronts till they reach the model transition region (depicted in gray) where
they encounter the rapid jump in temperature and speed up considerably. The wave acceleration is depicted
very well in figure 3. This acceleration is to be expected as the wave velocity scales as a square root of the local
temperature. A jump of two orders of magnitude in the temperature leads to an increase in speed by an order
of magnitude. The results in figure 3 illustrate that the well-balanced schemes are quite robust with respect
to this jump in the temperature. The second-order scheme resolves the accelerating wave fronts quite sharply
whereas the first-order scheme is more diffusive in the model corona than in the model chromosphere.

4.3. Magneto-hydrodynamics: steady state. The above experiment illustrated the non-trivial role played
by temperature variations in the acceleration of waves as they hit the transition region. Next, we study the
impact of magnetic fields on wave propagation. We start with an approximation to the steady state (1.8)

realized by specifying a non-zero background magnetic field B̃ in (2.4). Following [7, 20, 22], we choose a
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(a) H3WB (b) H3WBM

Figure 3. Hydrodynamic wave propagation. Normal velocity field u3 on a 400× 800 mesh at
time t = 1.17.

realistic two-dimensional background magnetic field of the form (2.11) as follows: We let B̃3(x, y) approximate

(4.3) B̄3(x, y, 0) =

{
2.7e−(x−4)2 − 1.9e−((x−2.7)/0.37)2 − 1.9e−((x−5.3)/0.37)2 − 0.0168565, if 1.84 ≤ x < 6.17

0, otherwise.

up to the first fourteen terms in the Fourier series. The Fourier coefficients of B̃1 and B̃2 follow from the
potential field assumption as in (2.11). The resulting potential field consists of a large unipolar magnetic flux
concentration surrounded on each side by two smaller concentrations of opposite polarity field (see [7], figure 1
for an illustration). The initial conditions are set to the steady state (2.12) and the errors in the pressure are
shown in table 2. The table shows that the unbalanced schemes lead to large errors whereas the well-balanced
schemes preserve the magneto-hydrodynamic steady state to machine precision, even for a complex magnetic
field and a complex temperature distribution.

4.4. Wave propagation with magnetic fields. Following, [7] and [22], we consider two different configu-
rations for the magnetic field. First, we take a weak magnetic field, termed FR2, derived as in the previous
section from (4.3). This field is termed weak relative to a strong field, which we take as FR2 multiplied by 3.
Hence, the two fields have the same topology. The waves are induced as perturbations of the bottom boundary,

(4.4) un
i,j,{0,−1} = 0.3

Bn
i,j,k,{0,−1}

|Bn
i,j,k,{0,−1}|

sin (6πtn)1{[1.65,2.15]}.
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% L1-error in p H3 H3M H3WB H3WBM
100x200 3.5e+2 6.3e+0 9.8e-20 2.5e-18
200x400 1.2e+2 8.1e-1 1.6e-18 3.6e-18
400x800 4.9e+1 1.2e-1 3.5e-18 3.5e-18
800x1600 2.2e+1 1.5e-2 1.4e-17 4.6e-18

Table 2. Relative L1 errors in pressure at the magneto-hydrodynamic steady state for a
sequence of meshes

Observe that the factor “B/|B|” makes sure that the waves are sent in aligned with the magnetic field. The
results with the well-balanced H3WB and H3WBM schemes for the weak and strong magnetic fields are presented
in figures 4 and 5 respectively.

The figures 4 and 5 show the velocity u in the direction of the magnetic field B and the velocity perpendicular
to the magnetic field, denoted as u‖ and u⊥ respectively. The temperature is also shown. The results at time
t = 1.71, computed with the well-balanced H3WB and H3WBM schemes on a 400 × 800 mesh are presented.
The numerical resolution for both magnetic configurations is quite good. The first-order results are dissipative,
but show qualitative agreement. The second-order H3WBM is much more accurate and the waves and fronts
are resolved very sharply. The non-reflecting boundary conditions at the top boundary work quite well. They
are stable and the magnitude of reflections is low. Several waves exit the top boundary without large reflections
allowing us to perform much longer time simulations than performed previously. However, there are still some
reflections (bottom right of figure 5) and we are currently addressing the issue of minimizing reflections.

In both cases, the waves behave differently in the model chromosphere than in the corona. In particular, the
wave speeds are much (an order of magnitude) higher in the corona than in the chromosphere. At low β, the
velocity in the direction of the magnetic field depicts the slow modes of the system. From figure 4 (left column),
we observe that the magnetic field is not strong enough to focus the waves in this case. Furthermore the waves
interact with the magnetic canopy (the β = 1 isoline) in this case. As observed in [7, 22], there is a large amount
of mode mixing between the fast and slow mode. On reaching themodel transition region (again marked in grey),
the waves of both families are accelerated. The transition region does not seem to contribute to any further
mode mixing. The velocity, perpendicular to the direction of the magnetic field (shown in the middle column of
both figures) illustrates the formation of fast waves. As the slow waves hit the magnetic canopy, mode conversion
takes place and fast waves are formed. This differential in the velocities at the magnetic canopy leads to wave
turning. This turning effect was observed in [7] and is also seen here. The perpendicular component is very
small in the top region of the atmosphere. The right column of figure 4 shows the variation of the temperature
in the domain. The temperature varies on account of wave motion. The variation in the temperature is about
five percent of the initial temperature. Furthermore, the transition region is no longer static but is perturbed by
the incoming wave. The main difference between the strong and weak magnetic field cases lies in the focusing
of the waves. As shown in figure 5 (left column), the waves in the chromosphere are focused by the strong
magnetic field. The waves hit the transition region and are accelerated. The magnetic field is such that there is
much less interaction between the waves and the β = 1 isolines. Hence, mode mixing is less pronounced in this
case. The temperature variation is clearly visible in figure 5 (right column). The perturbations of the transition
regions are also larger, when compared to the weak magnetic field. This demonstrates that the magnetic field
plays a prominent role in the temperature variation in the atmosphere.

The key difference between the results of [7],[22] and those presented here lie in the introduction of temper-
ature variation in the atmosphere. The waves interact with the temperature jump and are accelerated. The
magnetic field influences this interaction considerably. This phenomena is best depicted by the movement of
the transition region. The results in figure 4 and 5 clearly demonstrate that the transition region is far from
static and moves during the computation. The motion seems to be sinusoidal as the incoming waves vary
sinusoidally in time. The motion of the transition region is due to the movement of matter by waves. This is
shown in figure 6, where we plot the relative change in density with respect to the steady state density (2.12),
for both strong and weak magnetic field configurations. Both results are with the H3WBM scheme and show
that the movement of matter and the transition layer in the bottom right of figures 4 and 5 are correlated.
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(a) u‖, H3WB (b) u⊥, H3WB (c) T,H3WB

(d) u‖, H3WBM (e) u⊥, H3WBM (f) T,H3WBM

Figure 4. wave propagation with weak magnetic field on a 400× 800 mesh at time t = 1.71.
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(a) u‖, H3WB (b) u⊥, H3WB (c) T,H3WB

(d) u‖, H3WBM (e) u⊥, H3WBM (f) T,H3WBM

Figure 5. wave propagation with strong magnetic field on a 400× 800 mesh at time t = 1.71.
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Furthermore, this movement is much more focused for the strong magnetic field. The weak magnetic field is
unable to constrain matter in a preferred direction and the corresponding waves move matter along the cross
section whereas the strong magnetic field ensures that matter moves only in a certain part of the cross section
due to the focusing of the waves. Consequently, the amplitude of the variation of the transition layer is greater.

(a) weak field (b) strong field

Figure 6. Relative change in density at time t = 1.71 computed with H3WBM on a 400× 800 mesh.

5. Three dimensional numerical results

We present numerical experiments for a three-dimensional non-isothermal magneto-atmosphere in this sec-
tion. The background magnetic field B̃ in (2.4) is expressed by (2.11). The co-efficients in (2.11) are computed
as the modes of the function

(5.1) B3(x, y, 0) = e−r2 − 0.25e−8(r−1.5)2 , where r =
√

(x− 4)2 + (y − 4)2.

The computational domain is (x, y, z) ∈ [0, 4]× [0, 4]× [0, 8] and the parameters g,H and p0 are similar to the
previous section. Furthermore, the steady temperature distribution is identical to the one used in the previous
section and shown in figure 2. We test for the two configurations: the weak background field, FR3, with co-
efficients given by the first 16× 16 coefficients of (5.1) and the strong background field with co-efficients 3FR3,
in analogy with the previous section. The magnetic field configurations, together with β = 1, at the steady
state are displayed in figure 7. Experiments testing the preservation of the steady state (2.12) showed that the
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(a) weak field (b) strong field

Figure 7. 3-D magnetic field configurations with the β = 1 iso-surface shown in blue.

well-balanced schemes preserved a discrete version (3.40) of the steady state to machine precision. The errors
for pressure were very similar to those shown in table 2 and we omit them here to concentrate on the wave
propagation. The waves are induced as perturbations of the bottom boundary as in (4.4). We show results
with the H3WBM scheme only as the first-order results were quite dissipative. The waves are shown in figures 8
and 9 for the weak and strong field respectively. They reveal that the well-balanced scheme was quite robust in
three dimensions and resolved the waves very sharply. The weak field results in figure 8 show that the magnetic
field is not strong enough to focus the waves and the waves spread out spherically in the chromosphere. As the
waves reach the β = 1 iso-surface, mode conversion takes place in a manner similar to two space dimensions.
Further on, the waves reach the transition region and are accelerated. The temperature varies due to the waves
and there are sinusoidal movements in the transition region.

On the other hand, the strong field in figure 9 focuses the waves in certain directions. These waves do not
interact with the β = 1 iso-surface and reach the transition region, where they are accelerated by an order of
magnitude. The movement of the transition region is more pronounced in this case. Both tests demonstrate
the robustness of our schemes in three space dimensions and their ability to resolve the complex physics of wave
propagation in a non-isothermal magneto-atmosphere.

5.1. Simulations with observed data. The above numerical experiments were performed with synthetic
magnetic fields and bottom boundary conditions modeling the generation of waves. The real test of a code like
SURYA is its performance on observed data sets. For this purpose, we present a three-dimensional simulation
on an isothermal atmosphere (modeling only the chromosphere). The background magnetic field B̃ is given by
(2.11) where the Fourier co-efficients are extracted from the magnetic field at the bottom boundary. Using the
3d data model of [13], measurements of the solar radial magnetic field by the MDI instrument on SOHO in
1997 are used to obtain the magnetic field at the bottom boundary. A fourier expansion of this observed field
yields the co-efficients {a, b, c, d}lm which are used to define the background magnetic field by extrapolation as
in (2.11). This observed background field is depicted in figure 10. The resulting magnetic field is very complex
with a rather chaotic combination of open loop and closed loop field lines. In particular, there is a pronounced
coming together of open field lines near the y = 4 axis where (x, y, z) ∈ [0, 4]× [0, 4]× [0, 8] is the computational
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(a) u‖, t = 0.6 (b) u‖, t = 1.2 (c) u‖, t = 1.8

(d) T, t = 0.6 (e) T, t = 1.2 (f) T, t = 1.8

Figure 8. 3-D wave propagation with weak magnetic field on a 400 × 400 × 800 mesh
with H3WBM scheme. Top: Iso-surfaces of u‖ and a two-dimensional slice. Bottom: Two-
dimensional slice of temperature

domain. Other parts of the domain contain closed loop configurations. To add to the complexity, the boundary
conditions at the bottom boundary, generating the waves, are from measurements of the radial velocity from
the same area of the solar surface, and starting at the same time as the measurement of the magnetic field
data, also using MDI. A time series of these velocity measurements is used. The resulting wave propagation
on a 120× 60× 120 mesh with the second-order H3WBM scheme (the first order results were quite dissipative)
are shown in figure 11. The figures show snapshots of the velocity in the direction of the magnetic field u‖ at
six different time levels. The results illustrate the robustness of SURYA as it is able to handle observed data
sets quite efficiently. The waves generated with observed bottom boundary conditions show quite complicated
behavior in different parts of the domain. However, two features are quite pronounced: in those parts of the
domain where the magnetic field is either weak or has a completely open topology (like near the y = 0 axis),
the waves spread out and behave like hydrodynamic waves. On the other hand, in those parts of the domain
(like near x = 0, y = 4) where the magnetic field is strong and there is a closed loop topology, the waves are
focused by the field and follow the field lines as illustrated in figure 11. These results highlight the role of the
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(a) u‖, t = 0.6 (b) u‖, t = 1.2 (c) u‖, t = 1.8

(d) T, t = 0.6 (e) T, t = 1.2 (f) T, t = 1.8

Figure 9. 3-D wave propagation with strong magnetic field on a 400 × 400 × 800 mesh
with H3WBM scheme. Top: Iso-surfaces of u‖ and a two-dimensional slice. Bottom: Two-
dimensional slice of temperature

magnetic field in shaping wave behavior quite well. The results presented here are preliminary and are intended
to demonstrate the ability of the code to deal with very complicated realistic configurations. Detailed analysis
of the results from a physics point of view will be considered in a forthcoming paper.

6. Conclusion

The paper follows [47, 7, 22] and considers the propagation of waves in idealized stratified magnetic atmo-
spheres. The situation of interest is modeled by the equations of ideal MHD, augmented with a gravitational
source term and suitable initial and boundary conditions. The waves are realized as perturbations of interesting
steady states. In contrast to the aforementioned papers, we consider non-isothermal atmospheres with realis-
tic steady state temperature distributions. Furthermore, the simulations are also carried out in three spatial
dimensions.

The design of a robust and efficient numerical framework consists of the following ingredients:
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Figure 10. The background magnetic field for simulations with observed data.

• Using a version of the ideal MHD equations with embedded steady state potential magnetic fields.
• Stable HLL type three wave solvers for approximating the solutions of the resulting Riemann problems

at each interface.
• Introducing and discretizing the Godunov-Powell source term in a novel upwind manner to handle the

divergence constraint for multi-dimensional MHD.
• Suitable slope limiters and time stepping routines that lead to high-resolution finite volume schemes.
• Novel scaled logarithmic reconstruction of the pressure that leads to a well-balanced scheme and en-

sures the preservation of any discrete steady state of the form (3.40) for any arbitrary temperature
distribution.

• Neumann type non-reflecting boundary conditions at the top vertical boundary.

All these ingredients are implemented in the form of a massively parallel C++ based code termed SURYA.
Numerical results from SURYA for two- and three-dimensional configurations are presented. These results

demonstrate the crucial role played by the temperature variation in wave acceleration. Furthermore, the inter-
action between the waves and the magnetic field results in mode mixing and wave turning. Another highlight
is the ability of the model and the code to resolve the motion of the transition region. The role of the magnetic
field in shaping this transition is clearly brought out. Furthermore, we present results from test case based on
background magnetic field and boundary conditions, observed by SOHO. The numerical results illustrate the
robustness of the code as well as its ability to deal with and resolve very complicated physical processes and
configurations.

As stated before, the model for wave propagation ignores vital energy transfer mechanisms like radiation.
However, it is still able to highlight some of the dynamical mechanisms in stellar atmospheres. At the time of
writing, radiation is being added as a module in SURYA and results will be presented in forthcoming papers.
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