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Eidgenössische Technische Hochschule

CH-8092 Zürich
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MULTI–LEVEL MONTE CARLO FINITE ELEMENT METHOD
FOR

ELLIPTIC PDES WITH STOCHASTIC COEFFICIENTS

ANDREA BARTH, CHRISTOPH SCHWAB, AND NATHANIEL ZOLLINGER

Abstract. It is a well–known property of Monte Carlo methods that quadrupling the sample
size halves the error. In the case of simulations of a stochastic partial differential equations,
this implies that the total work is the sample size times the discretization costs of the
equation. This leads to a convergence rate which is impractical for many simulations, namely
in finance, physics and geosciences. With the Multi–level Monte Carlo method introduced
herein, the overall work can be reduced to that of the discretization of the equation, which
results in the same convergence rate as for the standard Monte Carlo method. The model
problem is an elliptic equation with stochastic coefficients. Multi-level Monte Carlo errors
and work estimates are given both for the mean of the solutions and for higher moments.
Numerical examples complete the theoretical analysis.

1. Introduction

Monte Carlo methods are widely used in statistical simulation. In the case of partial
differential equations with random inputs, “sampling” entails the numerical solution of a
deterministic partial differential equation (PDE). For time dependent, parabolic problems
driven by noise (see, e.g. [3, 4, 5, 22, 15]), numerous paths must be simulated. Here, we are
concerned with Monte Carlo methods (MC methods) for elliptic problems where the source
of randomness lies in the coefficients. Such problems arise prominently in the numerical
simulation of subsurface flow problems (see, e.g., [25, 26] and the references therein). Some key
characteristics of elliptic problems with stochastic coefficients, which arise in computational
geosciences, are the low spatial regularity of the permeability samples, the small spatial
correlation lengths (this implies slow convergence of Karhúnen-Loève expansions), and, more
challenging, the possible nonstationarity of realistic stochastic models. All these factors hinder
the efficient numerical simulation of such problems. In order to deal with these difficulties,
we propose a Multi–level Monte Carlo method (MLMC method). This family of methods
was introduced, to the authors’ knowledge, by M. Giles in [18, 17] for Itô stochastic ordinary
differential equations after earlier work by A. Heinrich on numerical quadrature (see [21]).

As a model problem of the class of partial differential equations described above, we consider
the following elliptic model problem

−div(a∇u) = f in D,

Date: August 24, 2010.
Key words and phrases. Multi–level Monte Carlo, Stochastic partial differential equations, Stochastic finite

element methods, Multi–level approximations.
The authors wish to express their thanks to Roman Andreev and Claude J. Gittelson for fruitful discussions

and helpful comments. The research partially supported under ERC AdG Grant STAHDPDE No. 247277.
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2 BARTH, SCHWAB, AND ZOLLINGER

where D ⊂ Rd, d = 1, 2, . . .. We impose mixed Dirichlet and Neumann boundary conditions
and assume f to be in L2(D). The coefficient a is a correlated random field over the spatial
domain D. The random field solution u of Problem (1) not exclusively depends on x ∈ Rd,
but also on a stochastic parameter ω ∈ Ω, where Ω is the stochastic state space, which we
specify later. For a fixed ω, we face an elliptic PDE with a space dependent coefficient. This
can be solved by various numerical methods, for instance by a Galerkin approximation, which
leads to a Finite Element method (FE method). We shall be interest in the computation of
moments of the stochastic solution, which can be numerically calculated by a Monte Carlo
method (MC method). When the sample size increases, convergence is ensured by the law
of large numbers: A quadrupling of the sample size halves the error of the approximation.
To estimate the moments of the solution of Equation (1), we must solve the deterministic
equation for each sample. The cost of this algorithm is the number of samples times the cost
for the approximation in the space domain (in the case of a FE method this corresponds to
the degrees of freedom).

One of the aims of the Multi–level Monte Carlo Finite Element method (MLMC–FE
method), proposed here, is to decrease the cost of this computation. In order to do so,
we introduce a hierarchical system of Finite Element spaces (FE spaces), in each of which we
calculate a certain number of samples of the approximation of the solution. Dealing with a
large number of samples on a very coarse grid is computationally cheap, but convergence in
space is rather poor. On the other hand, on a fine grid the convergence in the space variable x
is fast, but solving the system of equations for each sample is expensive. The MLMC method
exploits this fact. The number of samples solved is inversely proportional to the fineness of
the grid. This strategy allows us to have the same overall convergence as the MC method
on the finest grid, but the computational costs are only a fraction of the latter. With the
use of a full Multigrid solver, the computational costs of the MLMC method are log–linear
in Rd, for d > 1. Since the error of the MLMC method balances the error of the space
approximation and the error of the MC approximation, the sample size should be increased
if the space approximation is “too good” or the solution “too smooth”. Depending on the
dimension of the physical domain, the approximation with linear Finite Elements becomes,
in terms of degrees of freedom, less efficient.

We further our calculations to approximate higher moments of the solution, with a similar
approach as above. We introduce a Wavelet transformation, since the tensor product of the
solution may then be estimated with linear complexity. This leads to a sparse tensor MLMC–
FE method, which exhibits once more log–linear complexity. We show that the solution
exhibits a certain “mix” regularity, which takes the form of r–summability of the stochastic
solution as a Bochner function in a scale {Xs}s≥0 of Sobolev spaces on the domain D.

This paper is structured as follows. In the second chapter we present all the preliminar-
ies. This is followed by the formulation of our model problem, where we also study the well
posedness and certain regularity conditions of the solution. In the fourth chapter we analyze
the rate of convergence of the Multi–level Monte Carlo method. We give convergence rates of
the Monte Carlo approximations for the continuous solution and its Galerkin Finite Element
approximation. Chapter 5 contains the extension of our previous results to the approxima-
tion of higher order moments of the solution. Here we derive rates of convergence for the
sparse tensor Multi–level Monte Carlo method for the k–th moment, 1 ≤ k ∈ N, of the solu-
tion. Subsequently we present the numerical analysis of some examples in one and two space
dimensions.
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2. Preliminaries

For the variational formulation as well as for our error analysis of the MLMC–FE method for
the problem at hand, given by Equations (1), we shall require Bochner spaces of r-summable
functions in D ⊂ Rd, for d = 1, 2, . . .. To this end, for any Banach space B of real-valued
functions on the domain D with norm ‖ ·‖ B, we denote the set of strongly measurable,
r–summable mappings v : Ω → B by

Lr(Ω,A,P;B) :=
{
v : Ω → B | v strongly measurable, ‖v‖Lr(Ω;B) < ∞

}
,

where, for 0 < r ≤ ∞,

‖v‖Lr(Ω;B) :=






(∫

Ω
‖v(ω, ·)‖rBdP(ω)

)1/r

if 0 < r < ∞,

esssupω∈Ω‖v(ω, ·)‖B if r = ∞ .

Here we introduced a probability space (Ω,A,P), where, as usual, Ω denotes a set elementary
events, A ⊂ 2Ω the σ-algebra of all possible events and where P : A → [0, 1] is a probability
measure. Let B ∈ L(X,Y ) denote a continuous linear mapping from X to another separable
Hilbert space Y . For a random field x ∈ Lr(Ω;X) this mapping defines a random variable
y(ω) = Bx(ω), and we have that y ∈ Lr(Ω;Y ) and

‖Bx‖Lr(Ω;Y ) ≤ C‖x‖Lr(Ω;X).

Furthermore, there holds

B
∫

Ω
x dP (ω) =

∫

Ω
Bx dP (ω).

We refer to Chapter 1 of [13] for a synopsis of these and further results of Banach space valued
random variables.

3. Model elliptic problem with stochastic coefficients

In the bounded Lipschitz polyhedron D ⊂ Rd, d = 1, 2, 3, . . ., we consider the elliptic
diffusion problem with stochastic diffusion coefficient a

(3.1) −div(a∇u) = f in D.

Here, f ∈ L2(D) is a given source term. We assume that the Lipschitz boundary Γ = ∂D is
partitioned into a finite union of d− 1–dimensional planes, which in turn are grouped into a
Dirichlet part ΓD and a Neumann part ΓN . We assume in addition that

(3.2) |ΓN | ≥ 0 and |ΓD| > 0.

Furthermore, the exterior unit normal vector $n to Γ exists almost everywhere on Γ. Equation
(3.1) is completed by the boundary conditions

(3.3) γ0u := u|ΓD = 0, γ1,au := (a$n ·∇u)|ΓN = g,

where g is a given normal flux on ΓN (specific assumptions on g will be given below). In the
case of the Laplacean, i.e. when a = 1, we write γ1 in place of γ1,a.

To ensure well–posedness of our problem, we require that the following assumption on the
stochastic diffusion coefficient a is fulfilled:
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Assumption 3.1. The stochastic diffusion coefficients a(ω, x) in Equation (3.1), and Equa-
tion (3.3) is assumed to be a strongly measurable mapping from Ω into L∞(D).

There exist constants 0 < a− < a+ < ∞ such that the random coefficient a(ω, x) in
Equation (3.1) is uniformly elliptic, i.e. for every ω ∈ Ω holds1

(3.4) 0 < a− ≤ essinfx∈Da(ω, x) ≤ ‖a(ω, ·)‖L∞(D) ≤ a+ < ∞.

We remark that for Lipschitz domains D the trace operator γ0 in Equation (3.3) is well-
defined and continuous from H1(D) onto H1/2(ΓD).

For the normal derivative operator γ1,a, we have

Lemma 3.2. Under Assumption 3.1, for f ∈ L2(D) and every 0 < r ≤ ∞, the co–normal
derivative operator γ1,a in Equation (3.3) is a well-defined and surjective linear operator from
Lr(Ω;H1

ΓD
(D,∆)) onto Lr(Ω;H−1/2(ΓN )) where

H1
ΓD

(D,∆) := {v ∈ H1(D) : γ0v = 0, ∆v ∈ L2(D)}

and H−1/2(ΓN ) := (H1/2
00 (ΓD))∗ (with duality being understood with respect to the “pivot”

space L2(Γ); see [24] for the definition of H1/2
00 (ΓD)).

3.1. Variational Formulation and Well-Posedness. To present the variational formula-
tion of Equation (3.1) we introduce the Hilbert space

(3.5) V = H1
ΓD

(D) = {v ∈ H1(D) : γ0v = 0}.
Due to the assumption |ΓD| > 0, by the continuity of the trace operator γ0 the space V is a
closed, linear subspace of H1(D) and by the Poincaré inequality the expression

V * v → ‖v‖ :=

(∫

D
|∇v|2dx

)1/2

is a norm on V . We identify L2(D) with its dual and denote by V ∗ the dual of V with respect
to the “pivot” space L2(D), i.e. we work in the triplet V ⊂ L2(D) + L2(D)∗ ⊂ V ∗.

To derive the variational formulation of the stochastic elliptic boundary value problem,
given by Equation (3.1) – (3.3) we fix ω ∈ Ω for the moment. We then multiply Equation (3.1)
by a test function v ∈ L2(Ω;V ) and integrate by parts in D to obtain (for fixed ω ∈ Ω) the
(formal) integral identity

∫

D
a∇v ·∇udx =

∫

D
fvdx+

∫

ΓN

gγ0vds.

Taking expectations on both sides of this expression, we arrive at the weak formulation of the
stochastic elliptic boundary value problem (Equations (3.1) – (3.3)):

given a satisfies Assumption 3.1, f ∈ L2(Ω;V ∗) and g ∈ L2(Ω;H−1/2(ΓN )), which are
mutually independent, find u ∈ L2(Ω;V ) such that

(3.6) B(u, v) = F (v) ∀v ∈ L2(Ω;V ),

where the bilinear form B(·, ·) : L2(Ω;V )× L2(Ω;V ) → R is given by

B(u, v) = E

[∫

D
a(·, x)∇u(·, x) ·∇v(·, x)dx

]
,

1We assume that the random coefficient a is, possibly after modification of a given a on a null–set, well-
defined and computationally accessible for every ω ∈ Ω
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and

F (v) = E

[∫

D
f(·, x)v(·, x)dx

]
+ E

[∫

ΓN

gγ0v(·, x)dsx
]
,

where the ‘integrals’
∫
D f(·, x)v(·, x)dx and

∫
x∈ΓN

...dsx understood as L2(Ω;V )× L2(Ω;V ∗)

respectively as L2(Ω;H1/2
00 (ΓN ))× L2(Ω;H−1/2(ΓN )) duality pairings obtained by extending

the corresponding L2 inner products by continuity. By Riesz Representation Theorem there
exists a linear operator A(ω) ∈ L(V, V ∗) such that for all v, w ∈ V

(3.7) B(v, w) = V 〈w,A(ω)v〉V ∗ .

Theorem 3.3. Under Assumption 3.1, for every f ∈ L2(Ω;V ∗) and g ∈ L2(Ω;H−1/2(ΓN )),
the weak formulation, Equation (3.6), of the stochastic elliptic boundary value problem, given
by equation (3.1) – (3.3), admits a unique solution u ∈ L2(Ω;V ).

Proof. By Assumption 3.1, we have for every v, w ∈ V

(3.8) |B(v, w)| ≤ esssupω∈Ω‖a(·, x)‖L∞(D)‖v‖L2(Ω;V )‖w‖L2(Ω;V ) ≤ a+‖v‖L2(Ω;V )‖w‖L2(Ω;V )

and

(3.9) B(v, v) ≥ a−‖v‖2L2(Ω;V ).

Moreover, for given g ∈ L2(Ω;H−1/2(ΓN )) and f ∈ L2(Ω;V ∗), we have by the Cauchy-
Schwarz and Poincaré inequalities and the continuity of the trace operator γ0 that for every
w ∈ V

(3.10)

|F (w)| ≤‖ f‖L2(Ω;V ∗)‖w‖L2(Ω;V ) + ‖g‖L2(Ω;H−1/2(ΓN ))‖γ0w‖L2(Ω;H1/2(ΓD))

≤ C(D)
(
‖f‖2L2(Ω;V ∗) + ‖g‖2L2(Ω;H−1/2(ΓN ))

)1/2
‖w‖L2(Ω;V ).

The assertion now follows from the Lax-Milgram Lemma. !
Remark 3.4. The variational formulation, Equation (3.6), requires in Assumption 3.1 only
the definition and boundedness of the random coefficient a P-a.s.. The (stronger) Assump-
tion 3.1 implies in particular the unique solvability of the stochastic diffusion problem, defined
in Equation (3.1) for every sample ω; this is required for the MLMC–FE simulation. Assump-
tion 3.1 in addition also implies

(3.11) ∀ω ∈ Ω : ‖u(ω, ·)‖V ≤ 1

a−

(
‖f(ω, ·)‖2V ∗ + ‖g(ω, ·)‖2H−1/2(ΓN )

)1/2
.

3.2. Regularity of Solutions. To ensure local H2(D) regularity and the existence of higher
moments of the stochastic solution u ∈ L2(Ω;V ) we impose additional assumptions on the
data f and g:

Assumption 3.5. We assume that f ∈ Lr(Ω;L2(D)), g ∈ Lr(Ω;H1/2(ΓN )), for some 2 ≤
r ≤ ∞, and that the mapping Ω * ω → a(ω, ·) takes values in W 1,∞(D) for every ω ∈ Ω.
Moreover, we assume that the sources of randomness, i.e. a, f and (if |ΓN | > 0) g are
independent and strongly measurable as mappings taking values in the respective Banach
spaces W 1,∞(D), L2(D) and in H1/2(ΓN ).

By the usual elliptic regularity theory (see, e.g. [16]), Assumption 3.5 ensures in particular
that u ∈ H2

loc(D), P-a.s.. We have the following
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Proposition 3.6. Under Assumption 3.5 and by Equation (3.4), the elliptic problem, given
by Equation (3.1) – (3.3), admits a unique solution u ∈ Lr(Ω;W ). Here, the space W is
defined by

W := {w ∈ V : ∆w ∈ L2(D), γ0w = 0, γ1w ∈ H1/2(ΓN )},
equipped with the norm ‖ · ‖W given by

‖w‖W := ‖∆w‖L2(D) + ‖w‖L2(D).

Further, with 2 ≤ r ≤ ∞ as in Assumption 3.5, there holds the a-priori estimate

(3.12) ‖u‖Lr(Ω;W ) ≤ C(a)
(
‖f‖Lr(Ω;L2(D)) + ‖g‖Lr(Ω;H1/2(ΓN ))

)
.

Here, C(a) depends on a− and a+, resp. on ‖a‖L∞(Ω;W 1,∞(D)).

Proof. The proof is a consequence of the W 1,∞(D)–regularity of all realizations of the sto-
chastic coefficient a which implies that the stochastic solution u ∈ L2(Ω;V ) satisfies the
identity

−∆u(ω, ·) = f(ω, ·) +∇a(ω, ·) ·∇u(ω, ·) in L2(D), ∀ω ∈ Ω.

Therefore we may estimate for every ω ∈ Ω

‖∆u(ω, ·)‖L2(D) ≤ C(a)
(
‖f(ω, ·)‖L2(D) + ‖g(ω, ·)‖H1/2(ΓN )

)
, ω ∈ Ω.

Adding the corresponding L2(D) bound (which results from Equation (3.11) and the Poincaré-
inequality), raising both sides of the resulting bound on the ‖ ·‖ W norm of u to the power r
and taking expectations implies the assertion. !

We remark that the space W can be characterized as a weighted Sobolev space with weights
vanishing at vertices and (in case d = 3) at edges of the polyhedron D; see, e.g. [20].

In the following section we introduce the Galerkin projections our Finite Element method
will be based on. We prove convergence of the resulting discrete problem by a Monte Carlo
method, before we proceed with the convergence and a work estimate for the MLMC method
for the discrete equation.

4. Multi–level Monte Carlo Finite Element method

A key ingredient in MLMC–FE method are pathwise, hierarchic Finite Element discretiza-
tions of the stochastic elliptic problem (Equation (3.1)) which we present next. Followed by
an error estimate for the Monte Carlo method of the (non discrete) solution of the problem
at hand. From this result we derive a convergence rate for the MC method of the discrete
solution (full tensor MC–FE method) and finally for the Multi–level MC–FE method.

4.1. Mean Square Stability of the Galerkin Projection. The Finite Element method
which we consider is based on sequences of regular simplicial meshes of quasi–uniform triangles
or tetrahedra {Tl}∞l=0 of the polygonal respectively polyhedral domain D. For any l ≥ 0, we
denote the meshwidth of Tl by

hl = max
K∈Tl

{diam(K)} =: max
K∈Tl

{hK}.

We recall (see, e.g., [8, 9]) that the nested family {Tl}∞l=0 of regular, simplicial meshes is called

κ-shape regular if and only if there exists a κ < ∞ such that κ := supl κl = supl maxK∈Tl
hK
ρK

.
Here ρK is the radius of the largest ball that can be inscribed into any K ∈ Tl.
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The uniform refinement of the mesh is achieved by regular subdivision. This results in the
meshwidth hl = 2−lh0, since hl+1 = 1

2hl, where h0 is the maximal diameter of the coarsest
mesh. Constructed like this the nested family {Tl}∞l=0 is κ –shape regular, since κl = κ0 = κ.

For p ≥ n ≥ 0 we define the Finite Element spaces as

(4.1) Sp,n(D, T ) = {v ∈ Hn(D) : v|K ∈ Pp, ∀K ∈ T } ,

where we denote by Pp(K) = span{xα : |α| ≤ p} the space of polynomials of total degree ≤ p
on a set K. Equivalent we denote by

Sp,n
ΓD

(D, T ) = {v ∈ Hn
ΓD

(D) : v|K ∈ Pp, ∀K ∈ T } ,

the corresponding Finite Element space respecting boundary conditions.
The family of FE spaces that we employ is V = {S1,1

ΓD
(D, Tl)}∞l=0, which is the family

of spaces of continuous, piecewise linear functions on the regular, simplicial triangulation
{Tl}∞l=0 that satisfy the homogeneous essential boundary conditions on the Dirichlet boundary
ΓD (whose closure coincides, by assumption, with the union of all closed edges of elements
K ∈ Tl abutting at ΓD).

The Galerkin approximation is based on the weak formulation in Equation (3.6) of the
stochastic elliptic boundary value problem, presented in Equation (3.1) – (3.3).

Since for each level l of mesh refinement, Vl = S1,1
ΓD

(D, Tl) ⊂ H1
ΓD

(D) the corresponding

discrete problem reads: find ul ∈ L2(Ω;S1,1
ΓD

(D, Tl)) such that

(4.2) B(ul, vl) = F (vl) ∀vl ∈ L2(Ω;S1,1
ΓD

(D, Tl)),

where F (v) is defined as in Equation (3.6).
By Equation (3.8), Equation (3.9) and Equation (3.10), for each l = 0, 1, 2, . . . exists a

unique stochastic FE solution ul ∈ L2(Ω;S1,1
ΓD

(D, Tl)).
The operator Gl projecting the variational solution u ∈ L2(Ω;V ) into the stochastic Finite

Element solution ul ∈ L2(Ω;S1,1
ΓD

(D, Tl)) is an L2(Ω;V )-stable projection: by Equation (4.2)
and Equation (3.9), we have for every l

a−‖ul‖2L2(Ω;V ) ≤ B(ul, ul) = B(u, ul) ≤ a+‖u‖L2(Ω;V )‖ul‖L2(Ω;V ),

which implies

‖Glv‖L2(Ω;V ) ≤
1

a−
‖v‖L2(Ω;V ) ∀v ∈ L2(Ω;V ).

Under Assumption 3.1, the Galerkin projection Gl is well-known to be quasioptimal (see, e.g.
[8, 9]), i.e.

(4.3) ‖u− ul‖L2(Ω;V ) ≤ Ca inf
vl∈Vl

‖u− vl‖L2(Ω;V ),

where Ca =
√

a+
a−

.

Assumptions 3.1 and 3.5 imply local H2(D) –regularity of the solution. More precisely,
with the space W ⊂ V as defined in Equation (3.6), there exists a unique weak solution
u ∈ L2(Ω;W ) and Equation (3.12) holds. Then, C(a) depends on a− and a+ resp. on
‖a‖L∞(Ω;W 1,∞(D)). With the same assumptions and by well known results (see for example
[8, 9]) we have for all w ∈ W

(4.4) inf
vl∈S1

ΓD
(D,Tl)

‖w − vl‖H1
ΓD

(D) ≤ CI2
−lh0‖w‖W ,
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where CI > 0 is some constant, independent of l.
We proceed with an analysis of the rate of convergence of the Monte Carlo method for

the solution of the stochastic elliptic problem at hand. First we derive the estimate for the
solution which is not discretized in space and then generalize this result to the Finite Element
solution.

4.2. Rate of convergence of the Monte Carlo method. The stochastic solution is char-
acterized by its moments. We estimate the expectation E[u] ∈ V by the mean over solution
samples ûi ∈ V , i = 1, . . . ,M corresponding to M independent, identically distributed real-
izations of the random input data a, f and g:

(4.5) EM [u] :=
1

M

M∑

i=1

ûi ∈ V.

The following result is a bound on the statistical error resulting from this Monte Carlo esti-
mator.

Lemma 4.1. For any M ∈ N and for u ∈ L2(Ω;V ) holds

‖E[u]− EM [u]‖L2(Ω;V ) ≤ M−1/2‖u‖L2(Ω;V ).

Proof. Let us denote by ûM the sample average over M samples. Defined as such ûM is a
random variable that maps Ω into V . With the independence of the identically distributed
samples it follows

‖E[u]− EM [u]‖2L2(Ω;V ) = E

[
‖E[u]− 1

M

M∑

i=1

ûi‖2V

]
=

1

M2

M∑

i=1

E
[
‖E[u]− ûi‖2V

]

=
1

M
E
[
‖E[u]− u‖2V

]
=

1

M
(E‖u‖2V − ‖E[u]‖2V ) ≤

1

M
‖u‖2L2(Ω;V ).

!

4.3. Single–level Monte Carlo Finite Element method. The implementation of the
estimator EM [u] in Equation (4.5) requires a Finite Element approximation of the ‘samples’
ûi which we choose from a continuous, piecewise linear Finite Element space on a family of
shape regular, affine and simplicial triangulations {Tl}∞l=0.

The key question which arises naturally here is which is the optimal choice of the sample
size in dependence of the grid size to achieve a prescribed error level with minimal work.

We shall address this question under the following assumptions on the Finite Element
method.

Assumption 4.2. For a given Finite Element mesh Tl from the family of meshes the FE
solution for a given realization âi ∈ W 1,∞(D) of the stochastic coefficient which satisfies
Assumption 3.1, the Galerkin projection ul = Glu ∈ Vl on the Finite Element subspace
Vl = S1,1

ΓD
(D, Tl) of dimension Nl = dim(S1,1

ΓD
(D, Tl)) can be realized in O(Nl) work and

memory. The approximation has the accuracy

‖w −Glw‖V ≤ CaCIhl‖w‖W ,

where hl = 2−lh0 = maxK∈Tl diam(K) denotes the meshwidth of Tl.
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We remark that for polygonal domains D ⊂ R2, Assumption 4.2 on the space W can be
satisfied by standard Multilevel solvers for the Finite Element equations on families of meshes
with suitable refinement towards the vertices of D. We now establish a first error estimate
for the MC–FE method in the case when the same Finite Element mesh Tl is used for all
samples: we estimate the expectation of the solution, E[u], by

(4.6) EM [ul] :=
1

M

M∑

i=1

Glû
i ∈ S1,1(D, Tl)

Theorem 4.3. Under Assumptions 3.1 and 3.5 holds the error bound

(4.7) ‖E[u]− EM [ul]‖L2(Ω;V ) ≤ C(a)

(
1√
M

+ hl

)(
‖f‖L2(Ω;L2(D)) + ‖g‖L2(Ω;H3/2(ΓN ))

)
.

Proof. We split the left hand side of the Equation above as follows

‖E[u]− EM [ul]‖L2(Ω;V ) ≤ ‖E[u]− E[ul]‖L2(Ω;V ) + ‖E[ul]− EM [ul]‖L2(Ω;V )

≤ E [‖[u]− [ul]‖V ] + ‖E[ul]− EM [ul]‖L2(Ω;V ).

The first term on the right hand side is bounded by Assumption 4.2 and Proposition 3.6. The
assertion follows with Lemma 4.1 for the second term. !

The optimal choice of sample size versus grid size for a fixed error is reached when the

statistical and the discretization errors are equilibrated, i.e. when M− 1
2 = O(hl) = O(2−l).

In terms of the degrees of freedom of the Finite Element method, Nl, therefore, we obtain
from Equation (4.7) the basic relation

(4.8) M− 1
2 = O(hl) = O(N

− 1
d

l ).

We have a closer look at the computational cost of the Monte Carlo method. We work under
Assumption 4.2 and take the same estimate as before, i.e. we estimate E[u] by the mean of
ûil, i = 1, . . . ,M for M independent samples with the fixed discretization level l:

E[ul] + EM [ul] =
1

M

M∑

i=1

ûil =
1

M

M∑

i=1

Glû
i.

Under Assumption 4.2, the computational cost of this estimate is O(M ·Nl) work and mem-
ory, i.e. the number of samples times the cost for each Finite Element solution with Nl = 2ld

degrees of freedom. With the previous calculation on the optimal sample size, i.e. Equa-

tion (4.8), which implies M = N
2
d
l = O(22l), we may write for the computational cost

O(2l(2+d)).
Subsequently we generalize these calculations to the case of a Multi-level approximation of

the Monte Carlo method.

4.4. Multi–level Monte Carlo Finite Element method. For the MLMC method we
discretize the variational formulation, given by Equation (3.6), by Galerkin projection onto a
hierarchic sequence of finite dimensional sub–spaces

V0(D) ⊂ V1(D) ⊂ . . . ⊂ Vl(D) ⊂ . . . ⊂ V (D),
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where Vl(D) := S1,1
ΓD

(D, Tl), here l denotes the level of mesh refinement. With the notation
u0 := 0 we may write

uL =
L∑

l=1

(ul − ul−1)

and, by linearity of the expectation operator E[·],

E[uL] = E

[
L∑

l=1

(ul − ul−1)

]
=

L∑

l=1

E[ul − ul−1] =
L∑

l=1

(E[ul]− E[ul−1]) .

In the MLMC–FE method, we estimate E[ul − ul−1] by a level dependent number Ml of
samples, which implies that we may estimate E[u] by

(4.9) EL[u] :=
L∑

l=1

EMl [Glu−Gl−1u] =
L∑

l=1

(EMl [ul]− EMl [ul−1]) .

Convergence of the MLMC–FE method is guaranteed by the following

Lemma 4.4. Under Assumptions 3.1, 3.5 and 4.2, the MLMC–FE approximation, Equa-
tion (4.9) of the expectation E[u] of the solution u ∈ L2(Ω;W ) to the stochastic elliptic
boundary value problem, presented in Equation (3.1) – (3.3), in the polyhedral domain D ⊂ Rd

admits the error bound
(4.10)

‖E[u]− EL[u]‖L2(Ω;V ) ≤ C

(
hL +

L∑

l=1

hlM
−1/2
l

)(
‖f‖L2(Ω;L2(D)) + ‖g‖L2(Ω;H1/2(ΓN ))

)
.

Here, the constant C depends only on d, a− and on the bound ‖a‖L∞(Ω;W 1,∞(D)) in Assump-
tion 3.5.

Proof. We rewrite the error to be estimated as in the proof of Theorem 4.3 as

‖E[u]− EL[u]‖L2(Ω;V ) = ‖E[u]− E[uL] + E[uL]−
L∑

l=1

EMl [ul − ul−1]‖L2(Ω;V )

≤ ‖E[u]− E[uL]‖L2(Ω;V ) + ‖
L∑

l=1

(E[ul − ul−1]− EMl [ul − ul−1]) ‖L2(Ω;V )

=: I + II.

We calculate the error bounds for the terms I and II separately.
Term I: By Jensen’s and the Cauchy-Schwarz inequality, for every l = 1, ..., L, we get

I ≤
(
[‖E(u−Glu)‖2L2(Ω;V )]

)1/2
= ‖u− ul‖L2(Ω;V ) ≤ CICa hl‖u‖L2(Ω;W ).

In particular for l = L we obtain the asserted bound for Term I.
Term II: by the triangle inequality, we must consider for each l = 1, ..., L the term

‖E[ul − ul−1]− EMl [ul − ul−1]‖L2(Ω;V ) .
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Each of these terms is estimated as follows:

‖E[ul − ul−1]− EMl [ul − ul−1]‖L2(Ω;V ) = ‖(E− EMl)[ul − ul−1]‖L2(Ω;V )

≤ M−1/2
l ‖ul − ul−1‖L2(Ω;V )

≤ M−1/2
l

(
‖u− ul‖L2(Ω;V ) + ‖u− ul−1‖L2(Ω;V )

)

≤ CaCI M
−1/2
l (hl + hl−1)‖u‖L2(Ω;W )

= 3CaCI hlM
−1/2
l ‖u‖L2(Ω;W ).

Here we used Lemma 4.1, Equation (4.3) and Equation (4.4). Summing these estimates from
l = 1, ..., L completes the proof. !

The preceding result gives an error bound for the MLMC–FE approximation, for any
distribution {Ml}Ll=1 of samples over the mesh levels. Like in the single–level Monte Carlo
approximation one is interested in the optimal ratio of sample size versus grid size in every
level, i.e. how Ml relates to hl to achieve an overall convergence rate of O(hL).

Theorem 4.5. Under Assumptions 3.1, 3.5 and 4.2, the MLMC–FE approximation, given
by Equation (4.9), of the expectation of the solution of the stochastic elliptic boundary value
problem (Equation (3.1) – (3.3)) in the polyhedral domain D ⊂ Rd with Ml samples on mesh
level l given by

Ml = l2+2ε22(L−l)h0, l = 1, 2, ..., L,

where ε > 0 is arbitrarily small, admits the error bound

‖E[u]− EL[u]‖L2(Ω;V ) ≤ ChL
(
‖f‖L2(Ω;L2(D)) + ‖g‖L2(Ω;H3/2(ΓN ))

)
.

If, at each level l the Finite Element equations for each sample ûil in the estimator EMl [ul]
are solved approximately with a full Multigrid method to accuracy O(hl) in the energy norm,
the total work Work(L) and memory for computing EL[u] approximately to accuracy O(hL)
is bounded by

Work(L) ≤ Cε






N2
L for d = 1,

NL(logNL)3+ε for d = 2,
NL(logNL)2+ε for d = 3,

where the constant C depends on ε but is independent of L.

Proof. The convergence result in Lemma 4.4 suggests that we choose Ml such that the overall
rate of convergence is O(hL). With the choice

(4.11) Ml = l2+2ε(hl/hL)
2 = O(l2+2ε22(L−l)), l = 1, . . . , L
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for some ε > 0, we obtain from Equation (4.10) the asserted error bound, since for ε > 0 this
implies

L∑

l=1

hlM
−1/2
l ≤ C

L∑

l=1

2−lh0(l)
−(1+ε)2(l−L)h0

≤ C2−Lh0

L∑

l=1

(l)−(1+ε)

≤ ChL

L∑

l=1

(l)−(1+ε)

= C(ε)hL.

To estimate the work, we observe that the approximate solution given by the Finite Element
equation solved by a full Multigrid method at mesh level l to accuracy hl is of linear complexity
in the number Nl of unknowns at mesh level l (see, e.g., [8, 9]). For Ml samples (possibly in
parallel) this requires a total of O(MlNl) computational work and memory. This amounts to
the following bound for the overall work for the MLMC–FE method at level L

Work(L) "
L∑

l=1

MlNl

≤
L∑

l=1

(l)2+2ε22(L−l)2dl

= 2dL
L∑

l=1

(l)2+2ε22(L−l)2d(l−L)

= 2dL
L∑

l=1

(l)2+2ε2(d−2)(l−L)

" NL






∑L−1
l′=0(L− l′)2+2ε2l

′
for d = 1,∑L−1

l′=0(L− l′)2+2ε for d = 2,∑L−1
l′=0(L− l′)2+2ε2−l′ for d = 3.

This implies the asserted work estimates, if we use in the case d = 1 for 0 < ε< 1 summation
by parts three times. !
Remark 4.6. We remark that in the particular case d = 1, i.e. when the domain D coincides
with an interval, with the standard “hat function” basis for S1,1(D, Tl) the stiffness matrix is
tridiagonal and symmetric positive definite provided Assumption 3.1 is satisfied. Therefore,
direct solvers are applicable with complexity O(Nl).

Remark 4.7. In the same particular case d = 1, the approximation with standard “hat
functions” is already too accurate for the model problem. Since we equilibrate the errors of
the MC method and the FE method, the MC error is dominating the overall error, leading
to an increase of the samples which causes the quadratic complexity. In the cases of higher
space dimensions the accuracy of the FE approximation, expressed in terms of the degrees of
freedom, is lower. In this case the overall error is not dominated by the MC error.
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In the subsequent chapter we further detail these results for the mean field to the approx-
imation of higher moments of the solution of the elliptic model problem.

5. Multi–level Monte Carlo Finite Element approximation of higher moments

We now address two generalizations of the MLMC–FE approximation: the efficient com-
putation of k-th moments of the stochastic solution u ∈ L2(Ω;V ), and the use of Finite
Elements which are based on continuous, piecewise polynomials of degree p ≥ 1. In particu-
lar the case k = 2, i.e. second moments, is of substantial interest in practice. Since, however,
k-th moments (which are sometimes referred to as k-point correlation functions) are functions
on the k-fold product domain Dk = D × . . . ×D, a naive MC estimation (with M samples)
of the product of the solution vectors will entail complexity MNk

L. The main result of the
present section states that in order to recover log-linear complexity of k-th moments with
k ≥ 2, the MLMC–FE approximation must be combined with a wavelet compression of the
Finite Element solutions for each sample. For k = 1, the results constitute a generalization
of the preceding analysis to higher order elements. For k = 2 in two spatial dimensions (i.e.
when d = 2) we obtain in particular a log–linear complexity scheme for the computation of a
Galerkin approximation to the so–called “4d-VAR” of the stochastic solution.

Therefore, we first establish the regularity of the k-th moment of the solution of the elliptic
problem given certain smoothness and regularity conditions on the data and the coefficient
and we introduce wavelet bases for the hierarchical meshes. Under these assumptions we
derive full and sparse tensor error bounds for the Finite Element approximation. Those
bounds are essential for the error of the sparse tensor MLMC–FE approximation.

5.1. Existence and Regularity of k-th Moments. We are interested in statistical mo-
ments of the stochastic solution u: for any k ∈ N we denote the k-fold tensor products of a
separable Hilbert space X as

X(k) = X ⊗ · · ·⊗X︸ ︷︷ ︸
k-times

,

equipped with the natural norm ‖ · ‖X(k) . This norm has the property that for every
u1, . . . , uk ∈ X there holds the isometry

‖u1 ⊗ · · ·⊗ uk‖X(k) = ‖u1‖X · · · ‖uk‖X .

For u ∈ Lk(Ω;X) we now consider the random field (u)(k) defined by u(ω)⊗ · · ·⊗u(ω). Then
(u)(k) = u⊗ · · ·⊗ u ∈ L1(Ω, X(k)) and we have the isometry

(5.1) ‖(u)(k)‖L1(Ω;X(k)) =

∫

Ω
‖u(ω)⊗· · ·⊗u(ω)‖X(k)dP (ω) =

∫

Ω
‖u(ω)‖kXdP (ω) = ‖u‖kLk(Ω;X).

Therefore, we define the moment Mku as the expectation of (u)(k) = u⊗ · · ·⊗ u︸ ︷︷ ︸
k−times

:

Definition 5.1. For u ∈ Lk(Ω;V ), for some integer k ≥ 1, the k-th moment (or k-point
correlation function) of u(ω) is defined by

(5.2) Mku = E[(u)(k)] = E[u⊗ · · ·⊗ u︸ ︷︷ ︸
k−times

] =

∫

ω∈Ω
u(ω)⊗ · · ·⊗ u(ω)︸ ︷︷ ︸

k−times

dP (ω) ∈ V (k).
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As above, the numerical analysis of the higher order MLMC–FE method requires a regu-
larity theory for solutions of Equation (3.1) - (3.3). To this end we introduce a smoothness
scale (Ys)s≥0 for the data f , g with Y0 = H−1(D)×H−1/2(ΓN ) and with Ys ⊂ Yt for s > t.

We assume that we have a corresponding scale (Xs)s≥0 of “smoothness spaces” for the
solutions with X0 = V = H1

ΓD
(D) and with Xs ⊂ Xt for s > t, such that (A(ω))−1 : Ys → Xs,

defined in Equation (3.7), is continuous for all coefficient realization P-a.s..
For example, for our model problem, Equation (3.1) - (3.3) with smooth random coefficients

a(ω, x) in a domain D with smooth boundary ∂D and with ΓN = ∅, we may choose Ys =
V ∗ ∩ H−1+s(D) × H−1/2+s(ΓN ) and Xs = V ∩ H1+s(D) for any s > 0. We remark that
in non–smooth domains such as polyhedra in R3 the spaces Xs are weighted spaces which
contain functions which are singular at corners and edges (see, e.g. [20]). We can now state
our assumptions on the data of the model problem, given by Equation (3.1) - (3.3):

Assumption 5.2. For some r∗ ≥ 2 and some s∗ > 0, the data (f, g) in Problem (3.1) - (3.3)
belong to Lr∗(Ω;Ys∗) and the mapping Ω * ω → a(ω, ·) is such that the operator A(ω) is
boundedly invertible from Ys to Xs ⊂ V P-a.s. for all 0 < s ≤ s∗ for some s∗ > 0. Moreover,
the random inputs a, f and g are independent.

We remark that Assumption 5.2 is satisfied if a(·,ω) ∈ W s,∞(D) for P-a.e. ω ∈ Ω and
every 0 ≤ s ≤ s∗.

Theorem 5.3. If Assumptions 3.1 and 5.2 hold, then for every 2 ≤ k ≤ r∗, for all 1 ≤ r ≤
r∗/k, and every 0 ≤ s < s∗ holds the apriori estimate

(5.3) ‖(u)(k)‖
Lr(Ω;X

(k)
s )

≤ C‖(f, g)(k)‖
Lr(Ω;Y

(k)
s )

≤ C‖(f, g)‖kLrk(Ω;Ys)
.

Proof. Under Assumption 5.2, the operator A(ω)(k) is boundedly invertible from Ys to Xs

for each coefficient realization P-a.s.. The stochastic solution satisfies, for ω ∈ Ω P-a.s., the
apriori estimate

‖u(ω, ·)‖Xs ≤ C(s,ω)‖(f, g)(ω, ·)‖Ys , 0 ≤ s ≤ s∗,

with a constant C(ω) bounded independently of ω. Raising both sides of the bounds to the
r-th power and integrating the resulting inequality over ω ∈ Ω with respect to the probability
measure P(dω), we obtain the first inequality. The second inequality follows from the isometry
given in Equation (5.1). !

Note in particular that in the case s = 1, we have W = X1, Y1 = H1/2(ΓN ) × L2(D) and
for k = 2 Assumption 3.5 and Equation (3.12) imply the a-priori estimates

‖M2u‖W (2) = ‖E[(u)(2)]‖W (2) ≤ ‖u‖2L4(Ω;W )

≤ C(a)
(
‖f‖2L4(Ω;L2(D)) + ‖g‖2L4(Ω;H1/2(ΓN ))

)
,

and

‖(u)(2)‖L2(Ω;W (2)) ≤ C(a)
(
‖f‖2L4(Ω;L2(D)) + ‖g‖2L4(Ω;H1/2(ΓN ))

)
.

5.2. Finite elements with uniform mesh refinement. We will now generalize the sub-
spaces Vl to simplicial Finite Elements of order p ≥ 1.

Let us first consider the case of a bounded polyhedron D ⊂ Rd. Let {Tl}∞l=0 be the sequence
of partitions obtained by uniform mesh refinement: we can bisect the edges of Tl and obtain
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a new partition into simplices which belong to finitely many congruency classes. Then we set
Vl = Sp,1(D, Tl) and hl = max{diam(K) : K ∈ Tl}. We obtain Nl = dimVl = O(h−d

l ).
With V as before, and Xs = V ∩ H1+s(D) the standard Finite Element approximation

results give that the following bound holds for s ∈ [0, p].

(5.4) inf
v∈Vl

‖u− v‖V ≤ C N−s/d
l ‖u‖Xs .

For a d–dimensional domain D ⊂ Rd with a smooth boundary we first divide D into patches
DJ which can be mapped to a simplex S by smooth, bijective mappings ΦJ : DJ → S (which
must be C0 compatible where two pieces DJ and DJ ′ touch). Then we define on D Finite
Elements functions which on DJ are of the form γ ◦ ΦJ where γ is a polynomial.

For a d–dimensional smooth surface D ⊂ Rd+1 we similarly divide D into patches which
can be mapped to simplices in Rd, and again define Finite Elements using these mappings.

5.3. Wavelet basis for Vl. We introduce a hierarchical basis for the nested spaces V0 ⊂
· · · ⊂ VL: we start with a basis {(ψl)j}j=1,...,N0 for the space V0. We write the finer spaces
Vl with l > 0 as a direct sum Vl = Vl−1 ⊕Wl with a suitable space Wl. We assume available
explicitly basis functions {(ψl)j}j=1,...,N̄l

. Therefore we have that VL = V0 ⊕W1 ⊕ · · ·⊕WL,
and { (ψl)j | l = 0, . . . , L; j = 1, . . . , N̄l } is a hierarchical basis for VL where N̄0 := N0:

(W1) Vl = span{(ψl)j |1 ≤ j ≤ N̄k, 0 ≤ k ≤ l},
with Nl := dimVl and, N̄l := Nl −Nl−1 for l ≥ 0.

Property (W1) is in principle sufficient for the formulation and implementation of the sparse
MC–FE method and the deterministic sparse Finite Element method. In order to obtain an
algorithm with log-linear complexity we will need that the hierarchical basis satisfies the
additional properties (W2)–(W6) of a wavelet basis. This will allow us to perform matrix
compression, and to obtain optimal preconditioning for the iterative linear system solver.

(W2) Small support: diam supp((ψl)j) = O(2−l).

(W3) Biorthogonal Basis: there exists a biorthogonal basis Ψ̃ = {(ψ̃l)j : 1 ≤ j ≤ N̄k, 0 ≤
k ≤ l = 1, 2, ...} such that

〈(ψl)j , (ψ̃l′)j′〉 = δll′δjj′ .

(W4) Energy norm stability: there is a constant CB > 0 independent of level L, such

that for all vL =
∑L

l=0

∑N̄l
j=1 (vl)j (ψl)j(x) ∈ VL holds (vl)j = 〈v, (ψl)j〉 and

1

CB

L∑

l=0

N̄l∑

j=1

|(vl)j |2 ≤ ‖vL‖2V ≤ CB

L∑

l=0

N̄l∑

j=1

|(vl)j |2.

(W5) Wavelets (ψl)j with l ≥ l0 have vanishing moments up to order p0 ≥ p− 2
∫
(ψl)j(x)x

α dx = 0, 0 ≤ |α| ≤ p0.

Except possibly for wavelets where the closure of the support intersects the boundary
∂D or the boundaries of the coarsest mesh.
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(W6) Decay of coefficients for “smooth” functions in Xs:
there exists C > 0 independent of L such that for every v ∈ Xs and every L holds

∑L
l=0

∑N̄l
j=1 |(vl)j |

2 22ls ≤ CLν‖v‖2Xs
,

ν =

{
0 for 0 ≤ s < p,

1 for s = p .

Many concrete, piecewise polynomial wavelet systems satisfying (W1)-(W6) are available, also
in polygonal and polyhydral domains D. Any function u ∈ V admits a wavelet expansion

(a) Full grid (b) Sparse grid

Figure 1. Biorthogonal, piecewise linear spline wavelets

∑∞
l=0

∑N̄l
j=1 (ul)j (ψl)j . We define the projection PL : V → VL by the truncating this wavelet

expansion of u, i.e.,

PLu :=
L∑

&=0

N̄l∑

j=1

(ul)j (ψl)j , (ul)j = 〈u, (ψ̃l)j〉.

With the stability (W3) and the approximation property in Equation (5.4) we obtain that
the wavelet projection PL is quasioptimal: with NL = dimVL, we have for 0 ≤ s ≤ s∗ and
u ∈ Xs the asymptotic error bound

‖u− PLu‖V ≤ C N−s/d
L ‖u‖Xs .

5.4. Full and sparse tensor product spaces. To compute MLMC–FE approximations for
Mku ∈ V ⊗ · · · ⊗ V = V (k) (cf. Equation (5.2)), we project Mku onto a finite dimensional

subspace of V (k). The choice of the k-fold tensor product space V (k)
L = VL⊗ · · ·⊗VL leads to

the full tensor MC–FE estimates for Mku in Equation (5.2):

(5.5) EM [(ul)
(k)] =

1

M

M∑

i=1

(ûil)
(k) .

Here, the ûil ∈ Vl are the previously discussed Galerkin approximations for i = 1, ...,Ml i.i.d.
samples of the stochastic coefficients.
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The space V (k)
L has dimension Nk

L and even forming one tensor product (ûjL)
(k) of a Finite

Element sample in the Monte Carlo estimate of Equation (5.5) would destroy the linear
complexity of the MC–FE estimator for moments of order k > 1.

A reduction in cost at, as we shall show, essentially no loss in accuracy, is possible by using
so-called sparse tensor products of the Finite Element spaces Vl which we define next.

We now define the k-fold sparse tensor product space V̂ (k)
L by

V̂ (k)
L =

∑

!"∈Nk
0

|!"|≤L

V&1 ⊗ · · ·⊗ V&k ,

where we denote by $- the vector (-1, . . . , -k) ∈ Nk
0 and its length by |$-| = -1 + · · · + -k. We

can write V as a direct sum by using the complement spaces Wl:

V̂ (k)
L =

∑

!"∈Nk
0

|!"|≤L

W&1 ⊗ · · ·⊗W&k .

We define a projection operator P̂ (k)
L : V (k) → V̂ (k)

L , for x = (x1, ..., xk) ∈ D(k) by truncating
the wavelet expansion:

(5.6) (P̂ (k)
L v)(x) :=

∑

0≤"1+···+"k≤L

1≤jν≤N̄"ν ,ν=1,...,k

(v&1...&k)j1...jk (ψ&1)j1(x1) . . . (ψ&k)jk(xk) .

Here, the coefficients are given by

(v&1...&k)j1...jk = V (k)〈v, (ψ̃&1)j1 ⊗ ...⊗ (ψ̃&k)jk〉(V (k))′ .

With the projections Πl := Pl − Pl−1, l = 0, 1, . . . and P−1 := 0 we can express P̂ (k)
L as

P̂ (k)
L =

∑

0≤&1+···+&k≤L

Π&1 ⊗ · · ·⊗Π&k .

The approximation property of sparse tensor products of the finite element spaces, i.e. of

V̂ (k)
L , was established for example in [29, 30, Proposition 4.2], [19], [33].

Proposition 5.4. For u ∈ X(k)
s with 0 ≤ s ≤ s∗ we have

inf
v∈V̂ (k)

L

‖u− v‖V (k) ≤ C(k)

{
N−s/d

L ‖u‖
X

(k)
s

if 0 ≤ s < p,

N−s/d
L L(k−1)/2‖u‖

X
(k)
s

if s = p .

The stability property (W3) implies the following result (see, e.g., [33]):

Lemma 5.5. (Properties of P̂ (k)
L )

Assume (W1)–(W6) and that the component spaces V& of V̂
(k)
L have the approximation property

given in Equation (5.4). Then for u ∈ V (k) the truncated tensorized wavelet expansion is
stable, i.e. for every k ∈ N exists C(k) > 0 such that for every u ∈ V (k) and every L holds

(5.7) ‖P̂ (k)
L u‖V (k) ≤ C(k) ‖u‖V (k) .

For u ∈ X(k)
s and 0 ≤ s ≤ s∗ we have quasioptimal convergence of P̂ (k)

L u:

(5.8) ‖u− P̂ (k)
L u‖V (k) ≤ C(k)N−s/d

L (logNL)
(k−1)/2‖u‖

X
(k)
s

.
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This results provide us with the necessary tools to estimate the rate of convergence for the
sparse tensor MLMC–FE method for Mku.

5.5. Sparse tensor Multi–level Monte Carlo approximation of higher moments.
We aim at estimating

Mku = E[(u)(k)] = E[u⊗ ...⊗ u].

To do so, we have at our disposal coefficient samples a(ωi, x) and the Galerkin Finite Element
approximations ûil(x) defined in Equation (4.2). We therefore define MLMC–FE estimates
as statistical averages of the compressed tensor products of the Galerkin Finite Element
approximations as follows:

(5.9) ÊL[(uL)
(k)] :=

L∑

l=1

EMl

[
P̂ (k)
l (ul)

(k) − P̂ (k)
l−1(ul−1)

(k)
]
,

where we once again used the convention that u0 := 0 and that P̂ (k)
0 := 0. We remark that

due to P̂ (1)
l = Pl, the estimator in Equation (5.9) will coincide with our standard MLMC–FE

estimator in the case k = 1, i.e. for estimating the expectation of u. We can now state our
MLMC–FE error bound for moments Mku of order k ≥ 2.

Theorem 5.6. Assume that (f, g) ∈ L2k(Ω, Ys) and that the operators A(ω) ∈ L(Xs, Ys), as
defined in (3.7), are boundedly invertible for 0 ≤ s ≤ s∗ P-a.s., and that the Finite Element
spaces Sp,n(D, τl), for l = 1, . . . , L, defined in Equation (4.1), satisfy the approximation
property in Equation (5.4).

Then there holds for 0 ≤ s ≤ min(s∗, p) and for any numbers Ml of coefficient samples in
the Galerkin Finite Element method on mesh Tl the bound

∥∥∥Mku− ÊL[(uL)
(k)]

∥∥∥
L2(Ω;V (k))

"
(

L∑

l=1

M−1/2
l hsl | log hl|(k−1)/2

)
‖(f, g)‖kL2k(Ω;Ys)

.

Here, ML = 1 and the constant in " depends on s, p, k but is independent of the number L
of mesh refinements and of the distribution of the numbers Ml of samples at mesh levels l.

Proof. We write

‖Mku− ÊL[(uL)
(k)]‖L2(Ω;V (k)) = ‖E[(u)(k)]− ÊL[(uL)

(k)]‖L2(Ω;V (k))

≤ ‖E[(u)(k)]− E[P̂ (k)
L (uL)

(k)]‖L2(Ω;V (k))

+ ‖E[P̂ (k)
L (uL)

(k)]−
L∑

l=1

EMl

[
P̂ (k)
l (ul)

(k) − P̂ (k)
l−1(ul−1)

(k)
]
‖L2(Ω;V (k))

=: I + II.
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We estimate the terms separately. For term I, we obtain with Jensen’s inequality and Equa-
tion (5.7), for any 0 ≤ s ≤ min(p, s∗), the error bound

I =
∥∥∥E[(u)(k)]− E[P̂ (k)

L (uL)
(k)]

∥∥∥
L2(Ω;V (k))

≤
∥∥∥E[(u)(k) − P̂ (k)

L (uL)
(k)]

∥∥∥
V (k)

≤
∥∥∥(u)(k) − P̂ (k)

L (u)(k)
∥∥∥
L1(Ω;V (k))

+
∥∥∥P̂ (k)

L

(
(u)(k) − (uL)

(k)
)∥∥∥

L1(Ω;V (k))

"
∥∥∥
(
I − P̂ (k)

L

)
(u)(k)

∥∥∥
L1(Ω;V (k))

+ ‖(u)(k) − (uL)
(k)‖L1(Ω;V (k))

=: Ia + Ib.

Term Ia is a consistency error which is bounded with Equation (5.8). To estimate term Ib,
we denote the k dependence of this term by Ib(k), then we write

Ib(k) = ‖(u)(k) − (uL)
(k)‖L1(Ω;V (k))

≤ ‖(u− uL)⊗ (u)(k)‖L1(Ω;V (k)) + ‖uL ⊗ ((u)(k−1) − (uL)
(k−1))‖L1(Ω;V (k))

≤ ‖u− uL‖L2(Ω;V )‖(u)(k−1)‖L2(Ω;V (k−1)) + ‖uL‖L∞(Ω;V )‖(u)(k−1) − (uL)
(k−1)‖L1(Ω;V (k−1))

= ‖u− uL‖L2(Ω;V )‖u‖k−1
L2k−2(Ω;V )

+ ‖uL‖L∞(Ω;V )Ib(k − 1)

≤ C(s)N−s/d
L ‖f‖L2(Ω;Ys)‖f‖

k−1
L2k−2(Ω;V ∗)

+ C(a)Ib(k − 1) .

Induction with respect to k leads to the overall bound for I

I ≤ Ia + Ib(k) ≤ C(a, f, k)N−s/d
L (logNL)

(k−1)/2 .

We estimate term II as follows.

II = ‖E
[
P̂ (k)
L (uL)

(k)
]
−

L∑

l=1

EMl

[
P̂ (k)
l (ul)

(k) − P̂ (k)
l−1(ul−1)

(k)
]
‖L2(Ω;V (k))

= ‖
L∑

l=0

{
(E− EMl)

[
P̂ (k)
l (ul)

(k) − P̂ (k)
l−1(ul−1)

(k)
]}

‖L2(Ω;V (k))

≤
L∑

l=1

M−1/2
l

∥∥∥P̂ (k)
l (ul)

(k) − P̂ (k)
l−1(ul−1)

(k)
∥∥∥
L2(Ω;V (k))

≤
L∑

l=1

M−1/2
l

{∥∥∥(u)(k) − P̂ (k)
l (ul)

(k)
∥∥∥
L2(Ω;V (k))

+
∥∥∥(u)(k) − P̂ (k)

l−1(ul−1)
(k)

∥∥∥
L2(Ω;V (k))

}

=:
L∑

l=1

M−1/2
l (III(l) + III(l − 1)).
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Each of the terms in the sum is bounded as

III(l) :=
∥∥∥(u)(k) − P̂ (k)

l (u)(k)l

∥∥∥
L2(Ω;V (k))

≤
∥∥∥(u)(k) − P̂ (k)

l (u)(k)
∥∥∥
L2(Ω;V (k))

+
∥∥∥P̂ (k)

l ((u)(k) − (ul)
(k))

∥∥∥
L2(Ω;V (k))

"
∥∥∥(u)(k) − P̂ (k)

l (u)(k)
∥∥∥
L2(Ω;V (k))

+
∥∥∥(u)(k) − (ul)

(k)
∥∥∥
L2(Ω;V (k))

=: IIIa + IIIb.

We estimate IIIa with Equation (5.8). Term IIIb is bounded as term Ib(k), with l in place

of L. Combining the bounds for IIIa and IIIb, we obtain with hl + N−1/d
l for every k ≥ 1

and every l ≥ 0 the error estimate

III ≤ C(k)N−min(s,p)/d
l (logNl)

(k−1)/2‖(u)(k)‖
L2(Ω;X

(k)
s )

+ hkmin(s,p)
l ‖u‖kL2k(Ω;Xs)

≤ C(k, s)N−min(s,p)/d
l (logNl)

(k−1)/2‖u‖kL2k(Ω;Xs)

= C(k, s)hmin(s,p)
l | log hl|(k−1)/2‖u‖kL2k(Ω;Xs)

.

Using this estimate for each l = 0, ..., L to bound II, and referring to Equation (5.3) with
p = 2, we obtain with the estimate for I the asserted error bound. !

We observe that in the case k = 1 and p = 1, with the choices X0 = V and X1 = W , we
recover the previous results. We now optimize the selection of MC samples {Ml}Ll=0 and state
the resulting overall convergence rate of the MLMC–FE method for moments, Mku, for any
order k ≥ 1.

Theorem 5.7. Assume that (f, g) ∈ L2k(Ω, Ys) and that the operators A(ω) ∈ L(Xs, Ys) are
boundedly invertible, for 0 ≤ s ≤ min(s∗, p) for ω ∈ Ω, P-a.s..

Given any k ∈ N, we choose the number of MC samples in the MC–FE method at level l
used in the computation of the MLMC–FE estimators in Equation (5.9) as

(5.10) Ml = O(22s(L−l)(l/L)k−1), l = 1, ..., L.

Then there holds for 0 ≤ s ≤ min(s∗, p) the error bound
∥∥∥Mku− ÊL[(uL)

(k)]
∥∥∥
L2(Ω;V (k))

" hsL| log hL|(k+1)/2‖(f, g)‖kL2k(Ω;Ys)
.

and the total work Ŵ (L) for computing the MLMC–FE estimator in Equation (5.9) is bounded
by

(5.11) Ŵ (L) ≤ C(k)

{
NL(logNL)k−1 2s ≤ d,

N2s/d
L (logNL)k−1 2s > d.

Proof. In Theorem 5.6, we choose the numbers Ml of samples at mesh level l such that
the error contributions from the levels to the error bound are equilibrated. This gives, for
l = 1, 2, ..., L,

M−1/2
l = 2−s(L−l)(L/l)(k−1)/2,

which implies Equation (5.10). Inserting this into the error bound of Theorem 5.6, we obtain
Equation (5.7).

To estimate the complexity, we observe that the work to solve the Galerkin Finite Element
equations to the required accuracy O(hsl ) in the ‖ ·‖ V -norm can be achieved in linear com-
plexity, i.e. in O(Nl) = O(2ld) work and memory; this complexity estimate can be attained
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in two ways: either by using the standard (one-scale) Finite Element basis and full Multigrid
(see e.g. [8, 9]), or by using a diagonally preconditioned Richardson iteration in wavelet bases.
In the latter case, the wavelet Galerkin Finite Element solution vector is directly obtained
in the wavelet representation, so that the formation of the sparse tensor approximation in
Equation (5.6) of the k-th moment of the Galerkin Finite Element approximation is obtained
at cost O(Nl(logNl)k−1) work and memory.

In case the Finite Element solution is computed in the standard (one-scale) basis, the solu-
tion vector for each sample must first be transformed into the wavelet basis. This is achieved
as usual in O(Nl) work and memory by the pyramid scheme (see e.g. [10]). Then the formation

of the k-fold sparse tensor product of P̂lu
(k)
l proceeds again according to Equation (5.6).

For the work estimate, we therefore obtain

Ŵ (L) =
L∑

l=1

MlNl(logNl)
k−1

"
L∑

l=1

22s(L−l)(l/L)k−12dllk−1

= 2dL
L∑

l=1

L−(k−1)l2(k−1)22sL+l(d−2s)−dL

= NLL
−(k−1)

L∑

l=1

l2(k−1)2(l−L)(d−2s)

= NLL
−(k−1)

L−1∑

l′=0

(L− l′)2(k−1)2l
′(2s−d)

" NLL
−(k−1)

{
L2(k−1) 2s ≤ d,∑L−1

l′=0(L− l′)2(k−1)2l
′(2s−d) 2s > d.

!

Remark 5.8. We remark that the case discussed in Theorem 4.5 corresponds to the case
k = 1, s = 1 and p = 1 in Theorems 5.6 and 5.7. Upon comparing both error bounds and the
corresponding work estimates, we observe slight differences in the logarithmic terms; this is
due to the slightly more conservative choice of the numbers Ml of samples in Equation (4.11)
which we made in order to avoid the appearance of loghL terms in the error bound of Equa-
tion (4.10). For moments of order k ≥ 2, however, such terms appear in any case due to
the sparse tensor approximation error bound in Proposition 5.4 which is sharp, so that the
slightly more straightforward selection in Equation (5.10) is sufficient to achieve the expected
convergence rates.

Remark 5.9. The complexity bound in Equation (5.11) in Theorem 5.7 indicates loss of log–
linear complexity as soon as 2s > d. In this case, the smoothness s of the solution mapping
A(ω)−1 allows for higher convergence rates of the Galerkin Finite Element approximation in
D which, when combined with a linear complexity solver such as Multigrid or a diagonally
preconditioned wavelet solver, will imply that the efficiency of the MLMC-FE method (i.e.
accuracy versus work) is dominated by the “weaker” of the two methods. In the case s > d/2,
this is the MC method. We conclude from Theorem 5.7 that, therefore, the use of a MLMC-
FE method is only advisable in connection with low order Finite Element methods: in spatial
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dimension d = 2, log-linear complexity will be retained with linear simplicial Finite Element
methods where p = 1. In spatial dimension d = 3, linear complexity can be retained up to
s = 3/2; to access this range of convergence orders, it will suffice to use simplicial Finite
Element methods of polynomial degree p = 2. With these methods, convergence for the

expectation and k–th moments can be achieved in overall complexity of O(N4/3
L (logNL)k−1)

for work and O(NL(logNL)k−1) for memory.

6. Implementation and Examples

In this section we discuss the approximation of the stochastic coefficient a for ω ∈ Ω.
Followed by numerical examples in R and R2.

6.1. Coefficient Representations. For numerical simulations, the random field a(ω, x) in
Equation (3.1) must be represented parametrically. Here, we discuss the implementation and
the complexity of two choices: a Karhúnen-Loève expansion and a (multi)wavelet expansion
of a(ω, x).

6.1.1. Karhúnen-Loève -expansion. Random diffusion coefficients a(ω, x) ∈ L2(Ω;L2(D)), ad-
mit a Karhúnen-Loève expansion in terms of the eigenpairs (λk,ϕk)∞k=1 of the covariance
operator which is the compact and self-adjoint integral operator with kernel qa given by

(6.1) qa := E[(a− E[a])⊗ (a− E[a])]

or defined pointwise formally by

(6.2) qa(x, x
′) := E[(a(·, x)− E[a](x))(a(·, x′)− E[a](x′))] , x, x′ ∈ D.

We assume that the eigenfunctions ϕk are normalized in L2(D) and the λk are enumerated
in decreasing magnitude, then the random diffusion coefficient admits the Karhúnen-Loève
expansion

(6.3) a(ω, x) = E[a](x) +
∞∑

i=1

√
λiYi(ω)ϕi(x),

where the random coefficients Yi(ω), for i = 1, 2, . . ., are defined by

(6.4) Yi(ω) =






1√
λi

∫

D
(a(ω, x)− E[a](x))ϕi(x)dx , if λi > 0,

0 otherwise.

The Karhúnen-Loève series in Equation (6.3) converges in L2(Ω;L2(D)) (see [31]).
Estimation of the probability density function for the stochastic coefficients Yk in the

Karhúnen-Loève expansion, Equation (6.3), from an ensemble {âi ∈ L∞(D) : i = 1, ..., I},
can be performed via Equation (6.4) provided the Covariance Qa(x, x′) in Equation (6.2)
is known. In this case, the smoothness of the covariance kernel qa(x, x′) is well known to
determine the rate of decay of the eigenvalues to zero in the Karhúnen-Loève expansion (e.g.
[32]). Moreover, approximate eigenpairs can be computed via variational methods using Finite
Element subspaces, and rates of pointwise convergence in D can be established almost surely.
We emphasize that to determine the Karhúnen-Loève expansion of the stochastic coefficient
a explicit knowledge of the covariance kernel qa in Equation (6.1) and (6.2) is required.
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6.1.2. Wavelet–expansion. The Finite Element spaces Vl = S1,1
ΓD

(D, Tl), as defined in Equa-
tion (4.1), in the domain D are built on the nested sequence {Tl}∞l=0 of regular, simplicial
triangulations τl, obtained by l uniform refinements of some initial, regular partition T0 of
D into simplices (K0)j , j = 1, ...,#T0. Therefore, for each l ∈ N0, every simplex (Kl)j ∈ Tl
is affinely equivalent to the reference simplex K̂ = {x̂ ∈ Rd

+ : ‖x̂‖1 < 1}: there are affine
mappings

(Fl)j : K̂ * x̂ → x ∈ (Kl)j ∈ Tl,
such that, for all j = 1, ...,#(Tl),

det|D(Fl)j | = |(Kl)j |/|K̂| = O(2−ld) .

We observe that for every p ≥ 1 and any regular, simplicial partition T of D holds

(6.5) ∇(Sp,1
ΓD

(D, T )) ⊆ Sp−1,0(D, T )d ⊂ L2(D)d .

For any L, q ∈ N0, we have the orthonormal decomposition

Sq,0(D, TL) =
L⊕

l=0

Rl,

where

Rl := Sq,0(D, Tl) ∩ Sq,0(D, Tl−1)
⊥ if l ≥ 1, and R0 := Sq,0(D, T0) .

An L2(D)-orthonormal basis of Sq,0(D, T ) can be explicitly constructed as follows: let T̂0 =
{K̂} and define T̂1 = {(K̂1)j : j = 1, ..., 2d}, the set of 2d many simplices (K̂1)j that are

obtained by regular subdivision of the reference simplex K̂. We define for any q ∈ N0,

Nq := dim(Sq,0(K̂, T̂0)) =
(

q + d
d

)
,

and, for d = 1, 2, ... and q = 0, 1, ...,

Ñq := dim(Sq,0(K̂, T̂1) ∩ Sq,0(K̂, T̂0)⊥) = (2d − 1)

(
q + d
d

)
.

Denote by {ϕ̂n}
Nq

n=1 an L2(K̂) orthonormal basis of

Ŵ0 := Sq,0(K̂, T̂0) = Pq(K̂)

and by {ψ̂n}
Ñq

n=1 an L2(K̂) orthonormal basis of

(6.6) Ŵ1 := Sq,0(K̂, T̂1) ∩ Sq,0(K̂, T̂0)⊥ .

For l = 0 we define the basis Ψ0 by

(6.7) Ψ0 :=
{
(ψ0)j,n| ∀(K0)j ∈ T0 : (ψ0)j,n|(K0)j ◦ (F0)j = ϕ̂n, ; ϕ̂k ∈ Ŵ0

}

and, for every l ≥ 1, we define Ψl by

(6.8) Ψl := {(ψl)j,n : j = 1, ...,#(Tl−1), n = 1, ..., Ñq},

i.e. by the set of affine images of the (mother-wavelets) ψ̂n under (Fl−1)j :

(ψl)j,n ◦ (Fl−1)j = ψ̂n, l ≥ 1, j = 1, ...,#(Tl−1), n = 1, ..., Ñq.

By construction, (ψl)j,n = ψ̂k ◦ ((Fl−1)j)−1 forms an L2(D) orthogonal system.
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Proposition 6.1. Assume that the elements (ψl)j,n of the sets Ψl defined in Equation (6.7)
and (6.8) are L2(D) normalized, i.e. that

((ψl)j,n, (ψl′)j′,n′)L2(D) = δl,l′δj,j′δn,n′ , ∀l, l′ ∈ N0, j = 1, ...,#(Tl), j′ = 1, ...,#(Tl′).
Then

(6.9) L2(D) =
∞⊕

l=0

Rl, where Rl := span{Ψl}, l ≥ 0.

Proof. Since the (ψl)j,n are L2(D) orthonormal by construction, the algebraic sums Ψ0+Ψ1+
... of subspaces are direct. Since, for every L ∈ N0 and every q ∈ N0

(6.10) Sq,0(D, TL) =
L⊕

l=0

Ψl ⊇ S0,0(D, TL)

and since the space of simple functions on the partition TL coincides with S0,0(D, TL), the
sequence of subspaces defined in Equation (6.10) is dense in L2(D) as L → ∞, which proves
Equation (6.9). !

Every stochastic diffusion coefficient a(ω, x) ∈ L2(Ω;L2(D)) = L2(Ω,A,P;L2(D)) admits,
by Equation (6.9), a multi-wavelet expansion

(6.11) a(ω, x) =
∞∑

l=0

N̄l∑

j=1

Ñq∑

n=1

(al)j,n(ω)(ψl)j,n(x),

where the “coefficients” (al)j,n(ω) ∈ L2(Ω,A,P;R) are random variables defined by

(6.12) (al)j,n(ω) =

∫

D
a(ω, x)(ψl)j,n(x)dx = (a(ω, ·), (ψl)j,n)L2(D).

The convergence in Equation (6.11) is, as in the case of the Karhúnen-Loève expansion, in
L2(Ω, L2(D)). However, unlike in the case of a Karhúnen-Loève expansion, in certain cases
the Finite Element discretization of Equation (4.2) on mesh TL coincides exactly with the
discretization of a diffusion problem where the wavelet coefficient expansion, Equation (6.11),
is truncated at level L.

Proposition 6.2. Assume that the stochastic coefficient a(ω, x) in Equation (3.1) is given
in the form of Equation (6.11). Denote for 1 ≤ L < ∞ by aL(ω, x) the partial sum

(6.13) aL(ω, ·) =
L∑

l=0

N̄l∑

j=1

Ñq∑

n=1

(al)j,n(ω)(ψl)j,n

and define the corresponding bilinear form BL(·, ·) by

(6.14) BL(v, w) = E

[∫

D
aL(ω, x)∇xv ·∇xwdx

]
, v, w ∈ L2(Ω;V ).

Then, under the assumption

(6.15) q ≥ 2p− 2,

the bilinear forms B(·, ·) in Equation (3.6) and BL(·, ·) in Equation (6.14) coincide on the
FE spaces Sp,1(D, TL):
(6.16) ∀vL, wL ∈ L2(Ω;Sp,1(D, TL)) : B(vL, wL) = BL(vL, wL).
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Figure 2. Ñq = 3 Mother–Multi–wavelets in Equation (6.6) for q = 0 and d = 2.

Proof. The proof follows from the definition of B(·, ·) and of BL(·, ·), upon noting that by
Equation (6.5) for every vL, wL ∈ Sp,1(D, TL) it holds that ∇vL ·∇wL ∈ S2p−2,0(D, TL). The
orthogonal sum property of the decomposition in Equation (6.9) then implies with Equa-
tion (6.15) the assertion. !
Remark 6.3. The identity, Equation (6.16), has the important implication that in the
MLMC–FE method, in one Finite Element simulation at mesh level l the bilinear form B(·, ·)
can be evaluated on the exact stochastic diffusion coefficient a(ω, x) in Equation (6.11) with
O(Nl) work. This is easily verified from Equation (6.13) together with the identity in Equa-
tion (6.16).

Remark 6.4. From Equation (6.15) and Remark 5.9 we see that for linear scaling MLMC–FE
methods for the most important spatial dimensions d = 2, 3, piecewise constant (i.e. q = 0 for
p = 1) and piecewise quadratic (i.e. q = 2 for p = 2) discontinuous multiwavelets will have to
be used in the wavelet representation, Equation (6.11), of the stochastic diffusion coefficient.
For q = 0 in spatial dimension d = 2, the Ñq = 3 generating mother–wavelets ψ̂n are shown
in Figure 2.

6.2. Numerical example on D = [0, 1]. In our implementation the mesh Tl at level l
is the family of intervals of the form [(i − 1)2−l, i2−l] for i = 1, ..., 2l, the mesh width is
then given by hl = 2−lh0 = 2−l, with 2l elements per level. This results in a 2-shape
regular mesh and the family {Tl}∞l=1 is nested. Here we employ Dirichlet boundary conditions,

i.e. S1,0
ΓD

(D, T0) = S1,0(D, T0) ∩ H1
0 (D) = {0}, which implies no degrees of freedom on the

boundary. The hat basis (bl)i at each level l is defined, for i = 1, . . . , 2l − 1, as:

(6.17) (bl)i(x) = 2l






x− (i− 1)hl for x ∈ [(i− 1)hl, ihl],

(i+ 1)hl − x for x ∈ [ihl, (i+ 1)hl],

0 otherwise.

We consider the following example adapted from [6]
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Example 6.1. Let D = [0, 1], Ea(x) = 5 + x, qa(x, x′) = min{x,x′}+1
2 ∈ H1(D) ⊗ H1(D).

The corresponding eigenpairs in the Karhúnen-Loève expansion are given by λ̃m = 8
π2(2m−1)2 ,

φ̃m(x) = sin((x+ 1)/
√
2λ̃m), for m ≥ 1. The eigenvalues feature algebraic decay with rate 2.

The data f , on the right hand side of Equation (3.1), is set equal to 1.

The diffusion coefficient a expressed in the Karhúnen-Loève expansion (see Equation (6.3))
was truncated after the first term. With independent and [−1, 1]-uniformly distributed ran-
dom variables Yk we may write

a1(ω, x) := 5 + x+
2
√
2

π
· Y (ω) · sin

(
π(x+ 1)

4

)
.

This leads to an increased consistency error between the exact moment of the solution of
Equation (3.1) and the MC-FE method, resp. MLMC-FE approximation.

To establish the error bounds, proven in the previous chapters, in simulations we calcu-
late the exact solution of Equation (3.1). Therefore, we integrate Equation (3.1), given the
stochastic diffusion coefficient a1 and the right hand side f = 1, to obtain for the first moment:

E[u(ω, x)] =
∞∑

i=0

2
√
2

π(2i+ 1)

∫ x

0

c− y

5 + y




sin

(
π(y+1)

4

)

5 + y




2i

dy,

The constant c is the solution of the above expression set to zero when integrating over the
whole domain D = [0, 1]. The integral was calculated with Mathematica 2, terminating the
sum after i = 5, this leads to c ≈ 0.4850. The integration in each term in the sum is tedious.
For the simulations we terminate the series after i = 5. The L2–norm between the expansion
up to i = 4 and to i ≥ 5 is of order O(10−10). Up to level L = 10, where hL ≈ 10−3 we
can neglect the remainder of the series. This error is insignificant given the accuracy of the
approximation for simulations up to level L = 10 for point estimates and for the L2-norm on
the domain D = [0, 1].

The error estimates are calculated in the first order Sobolev semi-norm accordingly, given
in Equation (3.5). The m-th order Sobolev semi-norm, for m ∈ N, for sufficiently smooth
u : D → R is defined as

|u|2Hm(D) :=
∑

α∈Nd,|α|≤m

∫

D
|Dαu|2dx.

For ul ∈ Vl = S1,1
ΓD

(D, Tl) we have

|ul|2H1(D) =

∫

D
(
2l−1∑

i=1

(ul)i∇(bl)i(x))(
2l−1∑

i=1

(ul)i∇(bl)i(x)) dx.

If we denote by Sl the stiffness matrix of the Laplace operator with respect to the nodal hat
basis bl at level l we may write

(6.18) |ul|H1(D) = (ulSlul)
1/2

The simulation was carried out on a Computer with a two GHz processor with one GB
RAM using Matlab 3. As a solver we used the backslash operator in Matlab.

2Wolfram Research, Inc., Mathematica, Version 7.0; Champaign, IL (2008).
3MATLAB, version 7.9.0.529 (R2009b); Natick, Massachusetts: The MathWorks Inc., 2009.
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Figure 3. Rate of convergence of the MLMC–FE method with respect to
the H1-semi-norm for the approximation of E(u) in (a) and M2(u) in (b) in
dimension d = 1 against the level.

6.2.1. MLMC-FE method for the approximation of E[u]. Our aim is to verify the theoretical
approximation error for the MLMC–FE method ‖E[u] − EL[u]‖V , given in Theorem 4.5.
Therefore, we consider the nested family {Tl}Ll=1 and the spaces Vl = S1,1(D,Tl) with basis

functions {(bl)i}2
l−1

i=1 , defined in Equation (6.17), on each level l = 1, . . . , L. Each level is
constructed by adding the mid points between two vertices to the mesh of the previous level.
Thus, we get 2(l−1) additional linear independent basis functions passing from Vl−1 to Vl. To

construct the single scale basis {(bl)i}2
l−1

i=1 , we transform each basis function of level l − 1
into the basis function of level l plus 2(l−1) additional basis functions. This allows us to
calculate EL[u], since we need to subtract the solution in Vl−1 from the solution in Vl (see
Equation (4.9)). For each sample of the stochastic coefficient on each level we assemble the
stiffness matrix and solve the deterministic system of equations, given in Equation (3.6), to
obtain uil. With this and the exact solution we get with Equation (6.18) the desired error.

The rate of convergence of the MLMC–FE approximation, depending on the level L, is
displayed in Figure 3(a). The theoretical convergence rate of Theorem 4.5, O(hL), is resembled
in the simulation (as indicated by the reference slope). Figure 4(a) shows the total CPU–time
needed to calculate EL[u] for different levels L. It reflects the calculated expected behavior
of the total work Work(L) ≤ CεN2

L in Theorem 4.5 for d = 1. In Figure 5(a) is the CPU–time
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Figure 4. Total CPU time for the MLMC–FE approximation of EL(u) in (a)
and M2(u) in (b) in 1d against the level.

per sublevel l, for l = 1, . . . , L, depicted. For Ml as in Theorem 4.5 the CPU–time at each
sublevel l is of rate O(l2 2−l).

6.2.2. MLMC-FE method for the approximation of M2[u]. The calculation of the second
moment M2u is performed in three steps. First we set up the linear Finite Element equation
using a standard nodal hat basis for a given level l, as described above, to compute uil. In a
second step, we transform the result into a hierarchic B–spline linear wavelet basis. Finally, in
a third step, we generate the sparse tensor product by implementing Equation (5.6), the sparse
tensor projection. This algorithm is repeated for each level and, according to Equation (5.8),
this leads to the MLMC–FE approximation ÊL((uL)2) of M2u.

In Figure 3(b) we compare the sparse tensor product solution to the sparse tensor product
of the solution ÊL((uL+4)2). The error resembles the theoretical results of Theorem 5.7, as
the reference slope indicates. The total CPU–time in dependence of the degrees of freedom
has quadratic growth as stated in Equation (5.11), is displayed in Figure 4(b). Figure 5(b)
shows the CPU–time on all sublevels l, for l = 1, . . . , L for a fixed level L. Theoretically this
is, for fixed level L, Ml Nl = O(l 2−l), with Ml as in Theorem 4.5.

6.3. Numerical example on D = [0, 1]2. We consider the unit square and define level l = 0
to be the space of the boundary basis functions with four vertices P1 = (0, 0), P2 = (1, 0),
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Figure 5. CPU–time per sublevel for different levels for the MLMC–FE ap-
proximation of E(u) in (a) and M2(u) in (b) in dimension d = 1.

P3 = (1, 1) and P4 = (0, 1), the triangulation of the unit square is given by the triangles
P1P2P4 and P2P3P4. Given the Dirichlet boundary condition the simulation on this level
is superfluous. The nested family Tl+1 is constructed by dividing each triangle of level l
into four congruent triangles of the same size. The resulting mesh is then (2 −

√
2)-shape

regular. Figure 6 shows the T2 mesh. Similar to the example in one space dimension, we
apply Dirichlet boundary conditions. We adapt Example 6.1 to R2 as follows:

Example 6.2. Let D = [0, 1]2 and choose the sequence {fm}m≥1 as the tensor product of the
sequence from Example 6.1, ordered by the magnitude of the resulting eigenvalues {λ̃}m≥1.
The eigenvalues λm are chosen as λm = (λ̃m)θ with θ = 2.5, such that the algebraic decay of
{λ}m≥1 is of rate 5/2.

The simulation in dimension d = 2 was carried out on a cluster compute server with AMD
Opteron Processors, between 2.4 and 2.8 GHz per core. We used here, as in the case d = 1,
the backslash operator to solve each linear system.

6.3.1. MLMC–FE method for the approximation of E[u]. For d = 2 we did not calculate the
exact solution E[uL] as before. In this case the reference solution is either the solution of a
Monte Carlo simulation with high sample count (10000 samples) or the solution of the MLMC–
FE simulation on level L+1. Further, we did not integrate the entries of the stiffness matrix,
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Figure 6. Grid for level 2 (d = 2)

B given in Equation (3.6), exactly. Here we use a seven point Gaussian quadrature rule of
order six. Figure 7(a) shows the error of the MLMC–FE approximation for the mean field in
dependence of the level. The theoretical results from Theorem 4.5 are resembled. For the total
computational costs we calculated in Theorem 4.5, for d = 2, Work(L) = O(NL(logNl)3+ε).
This is also apparent in Figure 8(a). We deduce that the MLMC–FE method has log–linear
computational time, whereas the convergence is the same as in the Monte Carlo method.
The results can be compared to those in Figure 4(a) for d = 1, where the CPU–time was
quadratic. The work load on each sublevel l, for l = 1, . . . , L can easily be computed as O(l2),
matching the results of the simulation in Figure 9(a).

6.3.2. MLMC–FE method for the second moment. For the calculation of the error of the
MLMC–FE method for M2[u] we proceed as in the one–dimensional case. Results in Fig-
ure 7(b) reflect the theoretical error for the MLMC–FE approximation of rate O(hL(log hL)3/2)
as stated in Theorem 5.7 for k = 2 and s = 1. Equally the simulation results on the to-
tal CPU-time pictured in Figure 8(b) for the theoretical result in Equation 5.11 (Ŵ (L) =
O(NL(logNL))), slight differences in the rate of convergence are due to the nonoptimality of
the backslash operator for large systems. This indicates that the use of a Multigrid method
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Figure 7. Rate of convergence of the MLMC–FE method with respect to
the H1-semi-norm for the approximation of E(u) in (a) and M2(u) in (b) in
dimension d = 2 against the level.

should give optimal results for large L. For the CPU–time on the sublevels l, for l = 1, . . . , L,
we have a linear growth with increasing sublevel. This can be easily calculated with Ml as
in Equation (5.10) and Nl = 22l. The results in Figure 9(b) are influenced by the use of the
backslash operator, such that the linear behaviour is not fully reflected.

Remark 6.5. The serial Monte Carlo and therefore the MLMC–FE simulations can easily be
implemented for parallel computing. No communication between processes is needed during
execution if available memory allows for the handling of one sample on one processor. This
means load balancing can easily be achieved without the need for communication between
the processors during execution. However, the random number streams for each processor
should be low correlated. The results are gathered at the end of the computation. In the
case of a single–level MC-FE method each result can be added independently to the result of
any other processor and data loss only leads to a reduction in the convergence speed. In the
case of a MLMC–FE method the correct order of summation of the final result on each level
has to be respected. This means that the MLMC–FE simulation is much more sensitive to
data loss then is the MC–FE simulation. In our example the sample size of the finest level
was normalized to one. In dimension d = 1 for the calculation of the mean field and the
second moment we have decreasing load with increasing mesh refinements (see Figure 5). If
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Figure 8. Total CPU time for the MLMC–FE approximation of EL(u) in (a)
and M2(u) in (b) in 2d against the level.

the calculation on the finest sublevel (normalized to one sample) can be performed on one
processor, we can balance the work load for the other sublevels, with higher work load due to
higher sample sizes, by splitting the random streams to more than one processor. In the case
of d = 2 we have an increasing work load with finer meshes. This means that load balancing
can only be achieved by domain decomposition, or, depending on the number of processors
available, both, domain decomposition and sample splitting.

For all the simulations we truncated the sum in the Karhúnen-Loève expansion after the
first term. This truncation could be coupled to the degrees of freedom of the spatial approx-
imation as well, or it could be fixed to some higher term. This leads to a more complex
calculation of the exact solution and the stiffness matrix, but also to an error reduction in
the approximation of the exact moments of the solution. An algorithm to generate correlated
Gaussian random fields is given in [23].

7. Conclusions

Our error and complexity analysis reveals that for low order Finite Element discretizations
in the physical domain D, the proposed MLMC–FE method achieves an approximation of
the mean field of the random solution and its k-th moments with efficiency (i.e. error versus
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Figure 9. CPU–time per sublevel for different levels for the MLMC–FE ap-
proximation of E(u) in (a) and M2(u) in (b) in dimension d = 2.

computational work) which is comparable to one solve of a linear complexity Finite Element
method for a deterministic elliptic problem of the same type.

The analysis also shows that preservation of increased convergence rates of higher or-
der Finite Element methods for the approximation of stochastic solutions with higher spatial
regularity entails corresponding increase of the MC samples at each mesh level. This im-
plies a loss of the overall log-linear complexity of the MLMC–FE scheme. For problems
with random solutions that exhibit high spacial smoothness as well as high summability,
higher convergence rates of the overall discretization scheme will require apart from high
order Finite Element methods in the physical domain also improved discretization strate-
gies in the stochastic domain such as spectral, polynomial chaos based discretizations (see,
e.g. [11, 12, 2, 1, 28, 27, 7, 6]).

Therefore, the MLMC–FE method proposed here is competitive for stochastic PDE prob-
lems whose solutions have low smoothness in physical space, and moderate summability in
ω ∈ Ω as, e.g., finite second moments. This is typically the case in Gaussian models of porous
media where realizations of a are, roughly speaking, Hölder continuous with exponent at most
1/2.

In closing, we emphasize that the presently proposed MLMC—FE method does not require
stationarity or Gaussianity of the stochastic diffusion coefficient a in any way. For station-
ary, Gaussian random inputs, linear scaling simulation methods can be built on tensorized
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Fast Fourier Transform algorithms (see, e.g. [14] and the references therein). Both methods
proposed here, the Karhúnen-Loève based and the wavelet based parametrization of a(ω, x),
allow for non–stationary and irregular random inputs.

The representations in Equation (6.11) and Equation (6.13) can, due to the L2(D) orthog-
onality in Equation (6.12) of the (multi) wavelets be utilized directly in scenario generation
based on a stream of “coefficient realizations” of a, possibly in digital form with uniform
pixel resolution ≥ L. In this case, Equation (6.16) implies that a “forward” MLMC—FE
simulation on mesh TL can account for all available data on a exactly.
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