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Abstract

KL approximation of a possibly instationary random field a(ω, x) ∈ L2(Ω, dP ; L∞(D))
subject to prescribed meanfield Ea(x) =

∫
Ω a(ω, x)dP (ω) and covariance Va(x, x

′) =∫
Ω(a(ω, x) − Ea(x))(a(ω, x

′) − Ea(x
′))dP (ω) in a polyhedral domain D ⊂ R

d is an-
alyzed. We show how for stationary covariances Va(x, x

′) = ga(|x − x′|) with ga(z)
analytic outside of z = 0, an M -term approximate KL-expansion aM (ω, x) of a(ω, x)
can be computed in log-linear complexity. The approach applies in arbitrary domains
D and for nonseparable covariances Ca. It involves Galerkin approximation of the KL
eigenvalue problem discontinuous finite elements of degree p ≥ 0 on a quasiuniform,
possibly unstructured mesh of width h in D, plus a generalized Fast Multipole ac-
celerated Krylov-Eigensolver. The approximate KL-expansion aM (x, ω) of a(x, ω) has
accuracy O(exp(−bM 1/d)) if ga is analytic at z = 0 and accuracy O(M−k/d) if ga is Ck

at zero. It is obtained in O(MN(logN)b) operations where N = O(h−d).



1 Introduction

Accurate numerical prediction of properties for mass produced specimens requires ac-
counting for uncertainties in their components. Testing procedures (destructive or
nondestructive) that are limited to sample specimens allow only to collect statistical
data of mass-manufactured components. They can, in general, not ascertain material
properties for any particular specimen.

This mandates statistical modelling of, for example, spatially inhomogeneous ma-
terial and solution characteristics in Finite Element simulations.

To this end, we employ a finite probability space (Ω,Σ, P ) and assume that the
material property of interest is a spatially inhomogeneous random field, i.e. a P -
measurable map a(·, ω) : Ω → L∞(D). To be able to speak about mean and variances
of a(x, ω) we assume

a ∈ L2(Ω, dP ;L∞(D)). (1.1)

Random fields (1.1) arise in two broad classes of applications:

1. Measurements MN = {aj(x) : j = 1, ..., N} of a can be considered as realization
of N independent random variables {aj(·, ω)}N

j=1 distributed identically to the
underlying random field a(x, ω). For example, in digitized light microscopy or
computer tomography, samples a(·, ωj) correspond to (pixel or voxel) datasets
that are too large as input data for continuum mechanical simulations. Besides
accounting for measurement uncertainty, statistical modelling of a(x, ω) serves
the purpose of data reduction, i.e. description of the random field’s statistics in
terms of a finite, preferably small, number of parameters.

2. In subsurface flow and reservoir simulation, there is only one “specimen” with
given, deterministic a(x). Information about a(x) can only be gathered in a few
points, so that here MN = {a(xj) : j = 1, ..., N}, and the uncertainty in spatial
variation of a(x) in between xj is modelled by statistical procedures (see, e.g.,
[2, 3, 13, 16] for more on this). The uncertainty in a(x) is once more described
by a random field (1.1).

Given a random diffusion coefficient a(x, ω), prediction of, say, concentration u(x, ω)
requires solution of a stochastic partial differential equation such as

f(x) + div(a(x, ω)∇u(x, ω)) = 0 in D. (1.2)

The simplest approach to solution of (1.2) is Monte-Carlo (MC) simulation. Here,
samples a(x, ωj) of a(x, ω) with prescribed statistical properties are generated and, for
each sample, a deterministic problem (1.2) is solved for u(x, ωj). From a sufficiently
large set of solution samples, moments of the random solution u(x, ω) can be estimated.

An alternative to MC simulation is the Stochastic Galerkin Method. Proposed origi-
nally by N. Wiener [26], one selects a basis in (and thereby introduces coordinates into)
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L2(Ω, dP ). Then a(x, ω) is approximated by separating deterministic and stochastic
variables, i.e. by

aM (x, ω) =
M∑

m=1

φm(x)Ym(ω) (1.3)

where Ym : Ω → Ωm are suitably chosen random variables with ranges Ωm ⊆ R and
probability measures πm(dym) = πm(ym)dym.

The random solution u(x, ω) ∈ L2(Ω, dP ;V ) (with V denoting a suitable Hilbert
space of finite energy solutions) of (1.2) is projected onto the finite dimensional space
(ΠM

m=1Ωm,ΣM , PM ) where ΣM is the σ-algebra of Borel subsets of ΠM
m=1Ωm and PM =

π1(dy1) ⊗ ...⊗ πM (dyM ).
The computational efficiency of the stochastic Galerkin approach strongly depends

on judicious selection of the “coordinates” Ym in L2(Ω, dP ) ([8, 15]). N. Wiener and
many investigators afterwards (e.g. [7, 10] and the references there) proposed so-called
“chaos” expansions of u(x, ω) in Hermite polynomials of Gaussian random variables
Ym which are orthogonal with respect to the Gaussian probability density. They are
dense in L2(Ω, dP ) but not problem-adapted. Analogous polynomial systems which are
orthogonal with respect to more general probability measures were proposed recently
[22, 27].

Due to the high cost of the stochastic Galerkin FEM for large M ([5, 8]), consider-
able computational work could (and should) be spent on finding ‘optimal’ (with respect
to an error measure for a− aM ) separated approximations (1.3) of a.

In this paper, we address this issue under assumption (1.1), if a− aM is measured
in L2(Ω, dP ;L2(D)). In this case, an approximation (1.3) with certain optimality
properties is obtained by truncating the Karhunen-Loéve (KL) expansion of a(x, ω).
To define the KL-expansion, we assume that the known information on a(x, ω) includes
mean field and two-point correlation, i.e. that

Ea(x) :=

∫

Ω
a(x, ω) dP (ω) and Ca(x, x

′) :=

∫

Ω
a(x, ω)a(x′, ω) dP (ω) (1.4)

are known. An equivalent assumption is that the mean field Ea and its covariance Va

are known, since by definition,

Va(x, x
′) := Ca(x, x

′) −Ea(x)Ea(x
′). (1.5)

Due to (1.1), the 2-point correlation of a(x, ω) is well-defined and belongs to L∞(D×D).
Associate with Va a compact, self-adjoint operator Va : L2(D) → L2(D) via

(Vau)(x) =

∫

x′∈D
Va(x, x

′)u(x′)dx′ (1.6)

and denote by (λm, φm(x))∞m=1 the sequence of its eigenpairs, with λ1 ≥ λ2 ≥ ... ≥
λm → 0 and with φm(x) constituting an orthonormal basis of L2(D). Then the KL
expansion of the random field (1.1) takes the form

a(x, ω) = Ea(x) +

∞∑

m=1

√
λmφm(x)Xm(ω) (1.7)
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where Xm(ω) are centered at 0, pairwise uncorrelated random variables on probability
spaces (Ωm,Σm, Pm)m∈N. They relate to a(x, ω) via

Xm(ω) =

∫

x∈D
(a(x, ω) −Ea(x))φm(x)dx m = 1, 2, ... (1.8)

Note that, in order to allow a proper parametrization of the uncertainty space (indepen-
dence of the coordinates), the family (Xm)∞m=1 of random variables in the Karhunen-
Loève expansion is often assumed to be independent. This might not be the case in
general for an arbitrary random field a, so that the independence assumption could in
fact introduce an additional data representation error.

We compute a KL-approximation of a(x, ω) based on MN by truncation of (1.7)
after M terms and by Galerkin approximation of the first M KL-eigenpairs, for given
Covariance kernel Va: if (λh

m, φ
h
m(x))M

m=1 denote approximate eigenpairs of Va in (1.6)
based on a one-parameter family of subspaces Sh ⊂ L2(D), the corresponding ap-
proximate KL-expansion ah

M (x, ω) of the random field a(x, ω), based on MN , is given
by

ah
M (x, ω) = Ea(x) +

M∑

m=1

√
λh

mφ
h
m(x)Xh

m(ω) (1.9)

where the laws πh
m of the random variables Xh

m : Ω → R can be determined from
experiments MN and from (λh

m, φ
h
m(x))M

m=1 by a maximum likelihood estimate

min
Y h

m(ω)

∑

a(x)∈MN

∥∥∥∥∥a(x) −
{
Ea(x) +

M∑

m=1

√
λh

mφ
h
m(x)Y h

m(ω)

}∥∥∥∥∥

2

L2(Ω×D)

(1.10)

The laws πh
m of Y h

m are constrained such that the product measures PM (ω) :=
⊗M

m=1 π
h
m(ω)

are probability measures which approach, as M → ∞ and h → 0, the law of a(x, ω),
i.e measure P . Since the decay of a− ah

M with ah
M in (1.9) as M → ∞ is essential for

the complexity of the stochastic Galerkin approximation of (1.2), we analyze the decay
of λm and the regularity of φm(x) in dependence on the smoothness of Va(x, x

′). We
show that the M -term KL truncation error behaves, asymptotically as M → ∞, as
the best approximation error of a(x, ω) from the usual FE-spaces in D. However, for
any finite and, particularly, small values of M , the KL-expansion is the best possible
M -term approximation of a(x, ω) in L2(Ω ×D)

The efficient computation of approximate Karhunen-Loève expansions (1.9) of a
possibly nonstationary random field a(x, ω) in a polyhedral domain D ⊂ R

d for given
mean fieldEa(x) and subject to arbitrary, prescribed spatial covariance function Va(x, x

′)
is the purpose of the present paper. Our approach is based on a Ritz-Galerkin approx-
imation of the KL-eigenvalue problem

Vaϕ = λϕ. (1.11)

Since the covariance operator Va in (1.6) is nonlocal, the matrix of its Galerkin dis-
cretization is fully populated.
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We approximate the leading M eigenpairs of Va by a Krylov subspace iteration
[9] requiring only matrix-vector multiplies. The fully populated moment matrix of
the discretized covariance Va need never be formed explicitly, since an approximate
matrix vector multiplication can be realized in linear complexity by a generalized Fast
Multipole Method (gFMM) in D.

This algorithm extends the Greengard-Rokhlin method (e.g. [12] and the references
there) which was developed and highly optimized for the Coulomb potential to most
covariances Va(x, x

′) used in statistical modelling of spatially inhomogeneous random
fields (e.g. [2, 3]), trading generality for efficiency in replacing spherical harmonic
expansions with tensorized polynomial interpolants, but retaining fast shift operations.

To ensure well-posedness of (1.2), we assume in addition to (1.1) that a ∈ L∞(D×Ω)
is strictly positive, with lower and upper bounds a− and a+, respectively, which satisfy

0 < a− ≤ a(x, ω) ≤ a+ <∞, λ× P − a.e. (x, ω) ∈ D × Ω. (1.12)

Note that the existence of Ca and Va is ensured by (1.1) and by (1.12).
The outline of the paper is as follows: in Section 2, we present formal definitions

and properties of the KL-expansion of random fields. We then give estimates on the
rate of decay of the KL eigenvalues λm. These estimates are crucial in determining the
approximation rate of truncated, M -term KL-expansions. In Section 3, we discuss the
Galerkin approximation of truncated M -term KL-expansions, for given kernel Va(x, x

′).
Section 4 addresses the generalized Fast Multipole Method, gives algorithmic details
such as kernel interpolation and the realization of the shift operations, and establishes
exponential convergence with respect to the expansion order of the multipole error.

2 Karhunen-Loève (KL) Expansion

We introduce the definitions and basic properties of KL expansions of random fields
a(x, ω) which are second order, i.e. which satisfy (1.1). The basic reference is [17],
Chap. XI. We analyze the rate of decay of the KL eigenvalues and regularity of the
KL eigenfunctions.

2.1 Correlation, KL Expansion

Let H1, 〈, 〉H1 , H2, 〈, 〉H2 and S, 〈, 〉S be separable Hilbert spaces. If (sm)m∈Λ is an
orthonormal basis (ONB) in S (Λ is either finite or N

?), any element f ∈ H1 ⊗ S can
be uniquely represented as a convergent series

f =
∑

m∈Λ

fm ⊗ sm. (2.1)

It is then easy to prove

Proposition 2.1. The mapping

H1 ⊗ S ×H2 ⊗ S 3 (f, g) −→ Cfg :=
∑

m∈Λ

fm ⊗ gm ∈ H1 ⊗H2 (2.2)
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is well-defined, bilinear and bounded with norm 1, and it does not depend on the choice
of the basis (sm)m∈Λ in S.

Based on Proposition 2.1 we give the following

Definition 2.2. For f ∈ H1 ⊗ S and g ∈ H2 ⊗ S, we call Cfg ∈ H1 ⊗H2 defined in
Proposition 2.1 the correlation of the pair (f, g).

If H1 = H2 = H and the corresponding scalar products also coincide, we show
next that the set {Cf := Cff | f ∈ H ⊗ S} of all correlation kernels is in one-to-one
correspondence with a certain class of operators on H.
We denote by Bsym(H) the space of symmetric bounded linear operators in a Hilbert
space H, 〈, 〉H , while for p > 0, Bc

sym,p(H) will be the space of symmetric compact linear
operators in H whose eigenvalue sequence belongs to `p. The operators in Bc

sym,1(H)
are termed trace class.

Theorem 2.3. If H, 〈, 〉H and S, 〈, 〉S are separable Hilbert spaces of the same dimen-
sion and (sm)m∈Λ is an ONB in S, the correlations of elements in H ⊗ S are in a
one-to-one correspondence with the positive definite trace class operators in H, via

∑

m∈Λ

fm ⊗ fm = Cf −→ Cf : H 3 x→
∑

m∈Λ

〈fm, x〉H · fm ∈ H, (2.3)

for f =
∑

m∈Λ fm ⊗ sm.

Proof. Obviously, the operator Cf defined on the r.h.s. of (2.3) is compact as a
norm limit of finite rank operators obtained by truncating the series. The positivity of
Cf is also clear, so it remains to check that its trace is finite. Choosing (em)m∈Λ ONB
in H, we have

Tr Cf =
∑

m∈Λ

〈Cfem, em〉H =
∑

m∈Λ

∑

n∈Λ

〈fm, en〉2H =
∑

m∈Λ

‖fm‖2
H = ‖f‖2

H⊗S <∞. (2.4)

The mapping (2.3) is therefore well-defined. From the identity

〈Cfx, y〉H = 〈Cf , x⊗ y〉H⊗H ∀x, y ∈ H (2.5)

it follows that the definition of Cf does not depend on the basis (sm)m∈Λ and that the
mapping (2.3) is injective.
We check the surjectivity of (2.3). To this end, let C be a positive definite trace class
operator in H. C is in particular compact and has an eigenpair sequence (λm, φm)m∈Λ,

Cφm = λmφm ∀m ∈ Λ. (2.6)

The eigenvalues (λm)m∈Λ have finite multiplicity, their sequence is nonincreasing and
may accumulate only in 0. Moreover, the trace class condition reads

∑

m∈Λ

λm <∞. (2.7)
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Then the series ∑

m∈Λ

√
λm · φm ⊗ sm (2.8)

converges due to (2.7) to an element f ∈ H ⊗ S for which we clearly have

Cf =
∑

m∈Λ

λm · φm ⊗ φm (2.9)

From (2.5),(2.6), (2.9) it follows that Cf has the same spectral decomposition as C, i.e.
Cf = C. �

As a consequence of Theorem 2.3 it is easily seen that

Corollary 2.4. Let H, 〈, 〉H be a separable Hilbert space and C ∈ H⊗H be a correlation
kernel. Then in terms of the spectral decomposition (2.6) of C ∈ B∞(H) defined as in
(2.5), C can be represented as

C =
∑

m∈Λ

λm · φm ⊗ φm. (2.10)

The description of all the elements in H ⊗ S with a given correlation kernel is
achieved in the following result.

Theorem 2.5. Consider H, 〈, 〉H , S, 〈, 〉S separable Hilbert spaces and C ∈ H ⊗ H a
correlation kernel, together with its representation (2.10). Then f ∈ H ⊗ S satisfies
Cf = C iff there exists an orthonormal family (Xm)m∈Λ ⊂ S, such that

f =
∑

m∈Λ

√
λm φm ⊗Xm. (2.11)

Proof. The ’if’ part follows by the arguments used to conclude the proof of Theorem
2.3, after completing the family (Xm)m∈Λ to an ONB.
Conversely, if Cf = C, then we expand

f =
∑

m∈Λ

φm ⊗ Ym, (2.12)

with (Ym)m∈Λ ⊂ S, from which it follows via Proposition 2.1

Cf =
∑

m,m′∈Λ

〈Ym, Y
′
m〉S · φm ⊗ φ′m (2.13)

Comparing (2.13) and (2.10), it follows that

〈Ym, Ym′〉S = λmδmm′ (2.14)

and (2.11) holds with Xm := Ym/
√
λm. �
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Definition 2.6. The expansion (2.11) of f in terms of the spectral decomposition of
Cf is called the Karhunen-Loève expansion of f .

Partial sums of the KL expansion of f ∈ H ⊗S are optimal approximations of f in
subspaces of H ⊗ S which are finite dimensional in the first argument.

Theorem 2.7. If f ∈ H⊗S has the KL expansion (2.11), then for any M ∈ N it holds

inf
U⊂H

dim U=M

‖f − PU⊗Sf‖2
H⊗S =

∑

m≥M+1

λm, (2.15)

with equality only for U = Span{φ1, φ2, . . . , φM} (and g consequently the M -th truncate
of (2.11)).

Proof. It is clear that the equality holds for U = Span{φ1, φ2, . . . , φM}, since PU⊗Sf
is then the M -th truncate of (2.11). It is also clear that (2.15) holds for M = 0. It
suffices therefore to prove that the infimum in (2.15) can not be smaller than the r.h.s.
of (2.15). We argue by induction on M .
Note first that w.l.o.g. we can assume the family (Xm)m∈Λ to be an ONB of S. Consider
now U ⊂ H of dimension M and g ∈ U ⊗ S. g can be written as

g =
∑

m∈Λ

um ⊗Xm, (2.16)

with um ∈ V . Then we have

‖f − g‖2 =
∑

m∈Λ

λm‖φm − um‖2. (2.17)

Define now N ∈ N to be the largest integer such that for W := Span{u1, u2, . . . , uN}
it holds dimW = M − 1. Clearly, N ≥M − 1 and from (2.17) we deduce

‖f − g‖2 =
∑

m≤N

λm‖φm − um‖2 +
∑

m≥N+1

λm‖φm − um‖2

=
∑

m∈Λ

λm‖φm − PWum‖2 −
∑

m≥N+1

λm(‖φm − PWum‖2 − ‖φm − um‖2)

≥
∑

m∈Λ

λm‖φm − PWum‖2 −
∑

m≥N+1

λm‖PU	W (φm − PWum)‖2

=
∑

m∈Λ

λm‖φm − PWum‖2 −
∑

m≥N+1

λm‖PU	Wφm‖2

≥
∑

m∈Λ

λm‖φm − PWum‖2 − λM , (2.18)

since U 	W is one-dimensional and N ≥M − 1. W being M − 1 dimensional, (2.17)
and (2.18) show that

‖f − g‖2 ≥ inf
U⊂H

dimV =M−1

inf
h∈U⊗S

‖f − h‖2 − λM . (2.19)
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Taking the infimum over g and U in (2.19), the conclusion follows by induction onM . �

As an example, let us specialize now Theorem 2.5 by choosing as in Section 1
H := L2(D) and S := L2(Ω, dP ) and obtain (see also [17])

Proposition 2.8. If a ∈ L2(D × Ω), then there exists a sequence of random variables
(Xm)m≥1 ⊂ L2(Ω, dP ) satisfying

∫

Ω
Xm(ω) dP (ω) = 0,

∫

Ω
Xn(ω)Xm(ω) dP (ω) = δnm, ∀n,m ≥ 1, (2.20)

and such that the random field a can be expanded in L2(D × Ω) as

a(x, ω) = Ea(x) +

∞∑

m=1

√
λmφm(x)Xm(ω), (2.21)

where (λm, φm)m≥1 is the eigenpair sequence of the Carleman operator

Va : L2(D) → L2(D), (Vaφ)(x) :=

∫

D
Va(x, x

′)φ(x′)dx′. ∀φ ∈ L2(D) (2.22)

and Va := Ca−Ea. Moreover,

Xm(ω) :=
1√
λm

∫

D
a(x, ω)φm(x) dx. ∀m ≥ 1. (2.23)

Definition 2.9. The r.h.s. of (2.21) is called the Karhunen-Loève expansion (KL
expansion for short) of the random field a ∈ L2(D × Ω).

Let us briefly discuss the optimality result Theorem 2.7 in this context. The (mean
square) approximability of a(x, ω) by its KL truncates via Theorem 2.7 relies on the
knowledge of the exact eigenfunctions (which are not available in practice), and on
modeling the random variables given by (2.23) (achievable by testing the measure-
ments MN against the eigenfunctions, assumed to be known). Thus in general the
optimal approximations of the random field a(x, ω) can not be found, unless the co-
variance kernel and the domain D have simple structure (as, e.g. when Va is separable
and D of tensor product type; cf. e.g. [10] for examples). However, nearly optimal ap-
proximations can be constructed using computed (necessarily inexact) eigenfunctions of
Va, that is, exact eigenfunctions of PUVaPU , where U ⊂ L2(D) is a finite element space
and PU is a suitable (quasi-)interpolation operator. We formulate the corresponding
result in the abstract setting of Theorem 2.7.

Theorem 2.10. If f ∈ H ⊗ S and U is a closed subspace of H, we denote by
(λm, φm)m≥1 and (λU,m, φU,m)m≥1 the eigenpair sequences of Cf and PUCfPU respec-
tively. For any M ∈ N

? we define WM := span{φU,m | 1 ≤ m ≤M}. Then

dimWM = M, ‖f − PWM⊗Sf‖2
H⊗S =

M∑

m=1

(λm − λU,m) +
∞∑

m=M+1

λm. (2.24)
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Proof. Denote further by (λW>
M ,m)m≥1 the eigenvalue sequence of PW>

M
CfPW>

M
,

where W>
M is the orthogonal complement of WM in H. We have successively

‖f − PWM⊗Sf‖2
H⊗S = ‖PW>

M⊗Sf‖2
H⊗S =

∞∑

m=1

λW>
M ,m = Tr PW>

M
CfPW>

M

= Tr Cf − Tr PWM
CfPWM

=
∞∑

m=1

λm −
M∑

m=1

λU,m.

�

Definition 2.11. If f ∈ H ⊗ S, U is a closed subspace of H and M ∈ N ∪ {∞},
we denote by (λU,m, φU,m)m≥1 the eigenpair sequence of PUCfPU ∈ Bsym,∞(U) and by
WM the space spanned by (φU,m)1≤m≤M . Then there exists an orthonormal family
(XU,m)1≤m≤M ⊂ S such that

PWM⊗Sf =
∑

m≥1

√
λU,mφU,m ⊗XU,m (2.25)

and we call the expansion (2.25) the (U,M)-quasi Karhunen-Loève (KL) expan-
sion of f .

Note that the (H,∞)-quasi KL expansion coincides with the KL expansion of f
constructed in Theorem 2.5.

Remark 2.12. In our applications below, the subspace U will be a Finite Element
(FE) subspace of dimension N = dim(U) < ∞ much larger than M . The projection
(2.25) can be understood as projection of f onto the principal components of U .

If no eigensolver is available, the random field a(x, ω) still can be approximated
by an expansion separating the deterministic and stochastic parts and obtained by
testing a(x, ω) against a basis of an arbitrary space U ⊂ L2(D). The accuracy of this
approximation is just as high as that of the U ⊗ U Galerkin approximation of Va. We
further note that, although weaker than the methods presented in Theorems 2.7, 2.10,
(2.25) can become (e.g. in the case of an analytic covariance Va) asymptotically, i.e.
as M → ∞, optimal.

Proposition 2.13. Consider H,S separable Hilbert spaces and (Um)m≥1 a nested,
dense sequence of closed subspaces of H. If f ∈ H ⊗ S, define for any m ≥ 1

εm := ‖Cf − PUm⊗UmCf‖H⊗H . (2.26)

Then for any M ≥ 1 it holds

‖f − PUM⊗Sf‖2
H⊗S ≤

∞∑

m=M

(dimUm+1 − dimUm)1/2εm. (2.27)
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Proof. For m ≥ 1 let us denote by Nm the dimension of Um and choose (φm)m≥1

ONB in H such that Um = span{φ1, φ2, . . . , φNm} for any m ≥ 1. Then there exists a
family (Xm)m≥1 ⊂ S such that

f =
∑

m≥1

φm ⊗Xm, Cf =
∑

m,m′≥1

〈Xm, Xm′〉Sφm ⊗ φm′ . (2.28)

Clearly then,

‖f − PUM⊗Sf‖2
H⊗S = ‖

∑

m>NM

φm ⊗Xm‖2
H⊗S =

∑

m>NM

‖Xm‖2
S . (2.29)

But, using (2.28),

∑

m>NM

‖Xm‖4
S ≤

∑

max{m,m′}>NM

|〈Xm, Xm′〉S |2 = ‖Cf − PUM⊗UM
Cf‖2

H⊗H = ε2M ,

from which we deduce via the Cauchy-Schwarz inequality and for any M ≥ 1

∑

NM <m≤NM+1

‖Xm‖2
S ≤ (NM+1 −NM )1/2


 ∑

NM <m≤NM+1

‖Xm‖4
S




1/2

≤ (NM+1 −NM )1/2εM . (2.30)

The conclusion follows inserting (2.30) in (2.29). �

Since we are interested in the KL expansion of stochastic coefficients a(x, ω) of
partial differential equations such as the diffusion equation (1.2), a sufficient condition
for P − a.s., pointwise a.e. in D convergence of (2.21) is of interest.

Proposition 2.14. The KL series (2.21) converges P-a.s. in L∞(D) if

∞∑

m=1

λm(logm)2 ‖φm‖2
L∞(D) Var(Xm) <∞. (2.31)

Follows from [17] Theorem 36.B (i), applied to
√
λm ‖φm‖L∞(D) Xm(ω) if we note

the Xm in (2.21) satisfy (2.20), i.e. have mean zero and are pairwise uncorrelated.

2.2 KL Eigenvalue Decay

From Proposition 2.14, the pointwise convergence of the KL expansion (2.21) is related
to eigenvalue decay and to pointwise eigenfunction bounds. We now prove such decay
rates for the KL eigenvalues in terms of regularity of the covariance kernel Va (pointwise
eigenfunction bounds will be considered in the next section).
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Definition 2.15. A correlation function Va : D × D → R is said to be piecewise
analytic/smooth/Hp,q on D × D (p, q ∈ [0,∞[) if there exists a partition D =
{Dj}J

j=1 of D into a finite sequence of simplices Dj and a finite family G = {Gj}J
j=1

of open sets in R
d such that

D =
J⋃

j=1

Dj, Dj ⊂ Gj ∀1 ≤ j ≤ J, (2.32)

and such that Va|Dj×Dj′
has an extension to Gj ×Gj′ which is analytic in Gj ×Gj′ /is

smooth in Gj ×Gj′ / is in Hp,q(Gj ×Gj′) := Hp(Gj) ⊗Hq(Gj′), for any pair (j, j ′).
We denote by AD,G(D2)/ C∞

D,G(D2)/ Hp,q
D,G(D2) the corresponding regularity spaces.

Similarly we introduce spaces of piecewise regular functions defined on D, which we
denote by AD,G(D)/ C∞

D,G(D)/ Hp
D,G(D).

To prove decay estimates for the eigenvalues of a piecewise analytic kernel (in the
sense of Definition 2.15) we need the following auxiliary result.

Lemma 2.16. Let (H, 〈·, ·〉) be a Hilbert space and C ∈ B(H) be symmetric, nonnegative
and compact operator whose eigenpair sequence is denoted by (λm, φm)m≥1.
If m ∈ N and Cm ∈ B(H) is an operator of rank at most m, then it holds

λm+1 ≤ ‖C − Cm‖B(H). (2.33)

Proof. Straightforward application of the minimax principle:

λm+1 = min
V ⊂H

dimV ⊥≤m

max
φ∈V

‖φ‖H=1

〈Cφ, φ〉 ≤ max
φ∈(RanCm)⊥

‖φ‖H=1

〈Cφ, φ〉

= max
φ∈(RanCm)⊥

‖φ‖H=1

〈(C − Cm)φ, φ〉 ≤ ‖C − Cm‖B(H)

�

We require approximation properties of the FE-spaces Sp
h(D). By Hk(D) we denote

the functions which belong to Hk(Dj) for every Dj ∈ D. Then we have

Proposition 2.17. Let Sp
h(D) denote the space of discontinuous, piecewise polynomial

functions of total degree p ≥ 0 on a quasiuniform triangulation Mh of mesh width
h subordinate to the partition D of D and denote by N = dimSp

h(D) its dimension.
Denote by Ph : L2(D) → Sp

h the L2(D) projection. Then for every ϕ ∈ Hk(D) it holds,
as h/(p+ 1) → 0,

‖ϕ− Phϕ‖L2(D) ≤ C(k)(h/(p + 1))min{p+1,k} ≤ C(k)N−min{p+1,k}/d (2.34)

and, if ϕ is analytic in each Dj, Dj ∈ D, there are b, C > 0 such that, as p→ ∞ on a
fixed triangulation M of D subordinate to D,

‖ϕ− Phϕ‖L2(D) ≤ C exp(−bp) ≤ C exp(−bN 1/d) (2.35)
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2.2.1 Piecewise Analytic Covariance

For piecewise analytic kernels in the sense of Definition 2.15 we have

Proposition 2.18. Let V ∈ L2(D × D) be a symmetric kernel defining the compact
and nonnegative integral operator

V : L2(D) → L2(D), (Vu)(x) =

∫

D
V (x, x′)u(x′) dx′. (2.36)

If V is piecewise analytic on D × D and (λm)m≥1 is the eigenvalue sequence of its
associated operator (2.36), then there exist constants c1,V , c2,V > 0 depending only on
V such that

0 ≤ λm ≤ c1,V e
−c2,V m1/d

, ∀m ≥ 1. (2.37)

Proof. Under the assumption of piecewise analyticity of the kernel V (x, x′) (in the
sense of Definition 2.15), the operator V maps L2(D) into the set of piecewise analytic
functions. Define Vm := PhV. Then N := rankVm = O(1/(p+1)d), and, by Proposition
2.17, (2.35) we get ‖V − Vm‖B(H) ≤ C exp(−bp) ≤ C exp(−bN 1/d). Lemma 2.16 then
implies (2.37). �

One is often interested in Gaussian covariance kernels of the form

Va(x, x
′) := σ2 exp(−|x− x′|2/(γ2Λ2)), ∀(x, x′) ∈ D ×D, (2.38)

where σ, γ > 0 are real parameters and Λ is the diameter of the domain D. Note that σ
and γ are in this case referred to as the standard deviation and the correlation length of
a respectively. Since this kernel admits an analytic continuation to the whole complex
space C

d, the eigenvalues decay is in this case even faster than in (2.37).

Proposition 2.19. If a ∈ L2(D×Ω) and Va is given by (2.38), then for the eigenvalue
sequence (λm)m≥1 of Va it holds

0 ≤ λm . σ2 (1/γ)m1/d+2

Γ(0.5m1/d)
∀m ≥ 1, (2.39)

where Γ is the gamma function interpolating the factorial.

Proof. A repetition of the argument in the proof of Proposition 2.18 using as ap-
proximations for Va the integral operators given by the Taylor truncates of Va. �

Remark 2.20. Note that the decay estimates (2.37), (2.39) are subexponential in
dimension d > 1. The exponent 1/d accounts for higher multiplicity of the eigenvalues
in the presence of symmetries in Va and D and cannot be removed, in general.
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2.2.2 Finitely Differentiable Covariance

So far, we assumed that the kernel function V (x, x′) is piecewise analytic which implied
exponential decay of the KL-eigenvalues. If the requirement of analyticity of V (x, x ′)
is weakened to finite Sobolev regularity, only algebraic decay holds true.

Proposition 2.21. Let D ⊂ R
d be a bounded domain and V ∈ L2(D × D) be the

symmetric kernel of the compact, nonnegative integral operator

V : L2(D) → L2(D), (Vu)(x) =

∫

D
V (x, x′)u(x′) dx′. (2.40)

If V is piecewise Hk,0 := Hk ⊗ L2 on D × D with k > 0 and (λm)m≥1 denotes the
eigenvalue sequence of V, there exists a constant c3,V > 0 such that

λm ≤ c3,Vm
−k/d, ∀m ≥ 1. (2.41)

Proof. Analogous to Proposition 2.18, using (2.34) in place of (2.35). �

Corollary 2.22. Let D ⊂ R
d be a bounded domain and V ∈ L2(D×D) be a symmetric

kernel defining a compact, nonnegative integral operator via (2.40). If V is piecewise
smooth on D×D and (λm)m≥1 denotes the eigenvalue sequence of its associated operator
V, then for any s > 0 there exists a constant cV,s > 0 such that

0 ≤ λm ≤ cV,sm
−s, ∀m ≥ 1. (2.42)

2.3 KL Eigenfunction Regularity

The regularity of the covariance kernel implies corresponding regularity of the KL eigen-
functions. The following result follows immediately from the KL-eigenvalue problem
(1.11).

Proposition 2.23. Assume that the covariance kernel Va(x, x
′) is piecewise analytic/

is Cp on the partition D of D in the sense of Definition 2.15. Then the KL eigenfunc-
tions ϕm(x) are analytic/ Cp in every Dj ∈ D.

Pointwise control of KL eigenfunctions is important to establish pointwise conver-
gence of the KL expansion, i.e. convergence in L2(Ω, dP ;L∞(D)). This in turn is
important to ensure the ellipticity and stable solvability of problems like (1.2) when
a(x, ω) is replaced by a finite KL-approximation.

Theorem 2.24. For D ⊂ R
d a bounded domain and V piecewise smooth on D ×D,

such that the domains Dj in Definition 2.15 all have the uniform cone property, we
denote by (λm, φm)m≥1 the eigenpair sequence of the associated integral operator V via
(2.36), such that ‖φm‖L2(D) = 1,∀m ≥ 1. Then for any s > 0 and any multiindex

α ∈ N
d there exists cV,s,α > 0 such that

‖∂αφm‖L∞(Dj) ≤ cV,s,α |λm|−s, ∀m ≥ 1,∀1 ≤ j ≤ J. (2.43)
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Remark 2.25. Under the regularity assumptions of Proposition 2.24 the estimate
(2.43) is optimal in the sense that for any α it fails to hold with s = 0. This can
be seen for instance on D :=]0, 1[ by taking

V :=
∑

m≥1

λm · φm ⊗ φm

where λm := e−m and φm(x) := m·φ(m2x−m), ∀x ∈]0, 1[,∀m ≥ 1, with φ ∈ C∞
0 (]0, 1[)

satisfying ‖φ‖L2(]0,1[) = 1.

Remark 2.26. Further assumptions (like stationarity of a(x, ω)) lead to the uniform
L∞ boundedness of the eigenfunctions, but not of their derivatives.

For the proofs of the results presented in this section we refer the reader to Appendix
and to [24].

3 Approximate KL Expansion

In order to use the (truncated) KL expansion (2.21) in practice, we must be able to
compute efficiently and accurately approximations to the first M KL-eigenpairs in ar-
bitrary domains D. In one dimension, for particular kernels, explicit eigenfunctions
are known (see, e.g., [10]). These can be used to obtain explicit eigenpairs also for
multidimensional tensor product domains D, if the covariance Va(x, x

′) is separable.
This is often the case in subsurface flow problems, where D is a box and the covariance
kernel Va is Gaussian as in (2.38). To deal with random coefficients in arbitrary geome-
tries, however, an efficient numerical approximation of the eigenpairs of the covariance
operator (2.36) is an essential step in the efficient numerical solution of problem (1.2).

3.1 Galerkin Discretization of the KL Eigenvalue Problem

Let h ∈ H (it will be either h or p) be a discretization parameter and let Sh ⊂ L2(D)
denote the corresponding finite element space. The variational formulation of the
eigenvalue problem reads, in discretized form,
Find (λh,m, φh,m)m≥1 ⊂ R × Sh such that

∫

D×D
Va(x, x

′)φh,m(x′)ψ(x) dx′dx = λh,m

∫

D
φh,m(x)ψ(x) dx ∀ψ ∈ Sh. (3.1)

(3.1) shows that the sequence (λh,m, φh,m)m≥1 is nothing but the eigenvalue sequence
of the compact, self-adjoint operator PhKPh in L2(D). Theorem 2.10 implies then
(with U = Sh) that an important contribution to the error introduced by a quasi-KL
expansion of the random field a(x, ω) comes from the difference between the traces of
the continuous and discretized operator. In order to control the trace discretization
error we make the following
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Assumption 3.1. The eigenpair sequence (λm, φm)m≥1 of the integral operator V has
the property that for any s > 0 there exists cV,S,s > 0 such that

‖φm − Phφm‖L2(D) ≤ cV,S,sλ
−s
m Φ(h) ∀m ≥ 1,∀h ∈ H (3.2)

where the function Φ : R → R describes the convergence rate of the finite element spaces
S := (Sh)h∈H.

Later we will see that Assumption 3.1 is satisfied again in the case of a piecewise
regular kernel K for both the h and p finite element methods.
Based on Assumption 3.1 we prove the main result of this section.

Theorem 3.2. If V ∈ L2(D×D) is piecewise smooth on D×D, defining a nonnegative
self-adjoint operator V via (2.36) such that Assumption 3.1 is satisfied, there exists a
constant cV,S > 0 such that

0 ≤ Tr V − Tr PhVPh ≤ cV,SΦ(h)2 ∀h ∈ H. (3.3)

Proof. Fix h ∈ H. From the minimax principle we immediately deduce λh,m ≤
λm ∀m ≥ 1, so that

Tr PhVPh ≤ Tr V. (3.4)

Further, the obvious identity

V − PhVPh = (I − Ph)V + V(I − Ph) − (I − Ph)V(I − Ph)

together with the fact that V is nonnegative ensure that (H := L2(D))

〈(V − PhVPh)u, u〉H ≤ 2|〈Vu, (I − Ph)u〉H | ∀u ∈ H. (3.5)

Using (3.5) and Assumption 3.1 it follows

Tr V − Tr PhVPh =
∑

m≥1

〈(V − PhVPh)φm, φm〉H ≤ 2
∑

m≥1

|〈Vφm, (I − Ph)φm〉H |

≤ 2
∑

m≥1

λm‖(I − Ph)φm‖2
H ≤ cV,S,sΦ(h)2

∑

m≥1

λ1−2s
m . (3.6)

By Corollary 2.22 the series on the r.h.s. of (3.6) converges which concludes the proof.
�

3.2 Convergence of the Discretized KL Expansion

From Theorems 2.10, 3.2 we immediately deduce
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Proposition 3.3. Consider a ∈ L2(D × Ω) such that Va ∈ L2(D × D) is piecewise
smooth on D × D, defining a nonnegative self-adjoint operator Va via (2.36). If As-
sumption 3.1 holds, then there exists a constant cV,S > 0 such that for any h ∈ H and
M ≥ 1 the (Sh,M)-quasi KL expansion of a, defined by

ah,M(x, ω) = Ea(x) +
M∑

m=1

√
λh,mφh,m(x)Xh,m(ω) (3.7)

satisfies

‖a− ah,M‖2
L2(D×Ω) ≤ cV,SΦ(h)2 +

∞∑

m=M+1

λm ∀h ∈ H. (3.8)

In applications to partial differential equations with random coefficients, it is neces-
sary to ensure that the approximate, truncated KL expansion satisfies sign conditions
pointwise in x ∈ D an P -a.s. in ω ∈ Ω. Using the pointwise eigenfunction bounds
Theorem 2.24, it is possible to establish pointwise convergence of the KL expansion.

Assumption 3.4. The family (Xm)∞M=1 of random variables the KL expansion (1.7)
is uniformly bounded, i.e.

∃cX > 0 ‖Xm‖L∞(Ω,dP ) ≤ cX ∀m ≥ 1. (3.9)

We then have

Theorem 3.5. If Va is piecewise analytic on D×D and if Assumption 3.4 holds, then
the KL expansion (1.7) converges pointwise exponentially. More precisely, there exist
constants C > 0 and c2 > 0 such that for all s > 0 as in Theorem 2.24 and for all
M ≥ 1 holds

‖a− aM‖L∞(D×Ω) ≤ C exp(−c2(1/2 − s)M 1/d) (3.10)

4 Fast Multipole Covariance Approximation

Computation of an approximate KL-expansion requires numerical solution of the matrix
eigenproblem corresponding to (3.1), i.e. of

Vφ = λMφ. (4.1)

If Sp
h(D) = span{bi(x) : i = 1, ..., N}, we have

Vii′ =

∫

D

∫

D
bi(x)Va(x, x

′)bi′(x
′)dxdx′, Mii′ =

∫

D

∫

D
bi(x)bi′(x

′)dxdx′. (4.2)

Both matrices V and M are symmetric and positive definite, with M being diagonal
if we choose as basis of Sp

h polynomials which are L2(D)-orthogonal and supported on
the elements π ∈ Mh. The size N of the KL eigenproblem (4.1) can be as large as 106

and dense eigensolvers are not applicable. We compute KL eigenpairs corresponding
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to the largest eigenvalues of (4.1) by an iterative Krylov subspace eigensolver [9] which
requires only matrix-vector multiplies.

If a(x, ω) is stationary, its covariance is translation invariant, i.e. Va(x, x
′) = Va(x−

x′). If, moreover, D is an axiparallel cube and the triangulation Mh is uniform and
axiparallel, Fast Fourier techniques can be used to realize x→ Vx in O(N) operations.

For polyhedra in dimension d = 3 and unstructured meshes Mh, Fourier techniques
can no longer be applied. We show in certain situations that for large N the matrix-
vector multiplication φ → Vφ can be done approximately in O(N logN) operations
and memory using a generalized fast multipole method (gFMM) applicable to general,
piecewise analytic correlation kernels Va(x, x

′). It generalizes the Greengard-Rokhlin
method for the Coulomb potential. Using this cluster approximation of the far field
yields a perturbed matrix Ṽ and, consequently, perturbed KL-eigenpairs. We estimate
the error due to clustering the far field and show that an expansion orderm = O(| log h|)
is sufficient to preserve the consistency of the Galerkin approximation of the eigenpairs.

4.1 Covariance Kernel Expansions

Assumption 4.1. Given a separation constant 0 ≤ η < 1, Va : D ×D → C a kernel
function and I an index set, for all x0, y0 ∈ D, x0 6= y0, and expansion orders m ∈ N0

there exists a degenerate covariance kernel V m
a

Va(x, y) ≈ V m
a (x, y;x0, y0) :=

∑

(µ,ν)∈Im

κ(µ,ν)(x0, y0)Xµ(x;x0)Yν(y; y0) (4.3)

for Im ⊂ I × I such that for all x, y ∈ D satisfying

|y − y0| + |x− x0| ≤ η|y0 − x0| (4.4)

the error Va − V m
a in (4.3) is bounded by

|Va(x, y) − V m
a (x, y;x0, y0)| ≤ Φ(m; η, V )|y − x|s (4.5)

with the convergence rate Φ(m; η, V ) exponentially decreasing with respect to the ex-
pansion order m and with s > 0 denoting the singularity order at x = y.

Note we admit covariance kernels Va which are singular on the diagonal x = y;
s ≥ 0 is required due to (1.1) – the following assertions are actually valid for s > −d.

The purpose of the expansion (4.3) is to decouple the source points y from the field
points x. The simplest example of such a decoupling is Taylor expansion.

If the random field a(s, ω) is stationary, the covariance Va is translation invariant:

Va(x, y) = Va(y − x). (4.6)

We expand Va(y−x) formally into a Taylor series centered at y0 −x0 with x0, y0 ∈ R
d:

Va(y − x) =
∑

(ν,µ)∈Nd
0×Nd

0

(Dµ+νVa)(y0 − x0)
(x0 − x)µ

µ!

(y − y0)
ν

ν!
.
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With this we get an approximation (4.3) where

I := N
d
0, Im := {(µ, ν) ∈ I × I : |µ+ ν| < m},
κ(µ,ν)(x0, y0) := (Dµ+νVa)(y0 − x0),

Xµ(x;x0) :=
(x0 − x)µ

µ!
, Yν(y; y0) :=

(y − y0)
ν

ν!
.

(4.7)

Applying the binomial formula the expansion (4.3) can be shifted from x0 to x1 and
from y0 to y1 by

Xµ(x;x1) =
(x1 − x)µ

µ!
=

∑

ν∈Nd
0

ν≤µ

(x1 − x0)
µ−ν

(µ− ν)!
Xν(x;x0)

Yν(y; y1) =
(y − y1)

ν

ν!
=

∑

µ∈N
d
0

µ≤ν

(y0 − y1)
ν−µ

(ν − µ)!
Yµ(y; y0)

(4.8)

The Taylor expansion coefficients have to be calculated by differentiation of the
covariance kernel Va. To avoid this we interpolate Va(x, y) by Čebyšev polynomials so
that only the kernel has to be evaluated at O(md) different points and no derivatives
come into play. Let I := [−1, 1], m ∈ N0 and Tµ(x) = cos(µ arccos(x)), µ ∈ Z, denote
the Čebyšev polynomials of the first kind. For any function f , defined on I, we consider
the formal Čebyšev expansion

f(x) =
∑

µ∈Z

f̂(µ)Tµ(x), f̂(µ) :=
1

π

∫ 1

−1

f(ξ)Tµ(ξ)√
1 − ξ2

dξ (4.9)

and the Čebyšev interpolant

fm(x) :=
∑

µ∈Z

|µ|<m

f̂µTµ(x), f̂µ :=
1

m

∑

0≤i<m

f(xi)Tµ(xi) (4.10)

where we assume f to be known at the m Čebyšev-points xi := cos((i+1/2)π/m) ∈ I,
i.e., the m roots of Tm. Employing tensor products,

Tµ(x) :=
∏

1≤i≤d

Tµi(xi), µ ∈ Z
d, x ∈ Id (4.11)

we extend expansion and interpolation to the d-dimensional case with xi denoting the
i-th component of x ∈ Id. This yields

f(x) =
∑

µ∈Zd

f̂(µ)Tµ(x), f̂(µ) := π−d

∫

Id

f(ξ)Tµ(ξ)
∏

1≤i≤d

√
1 − ((ξ)i)2

dξ (4.12)

and

fm(x) :=
∑

µ∈Zd

|µ|<m

f̂µTµ(x), f̂µ := m−d
∑

ν∈Nd
0

νi<m

f(xν)Tµ(xν) (4.13)

where xν := (xνi)1≤i≤d ∈ Id.
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Remark 4.2. Note that Tµi(x) = T−µi(x),
∑

µ∈Zd

|µ|<m

f̂µTµ(x) =
∑

µ∈Nd
0

|µ|<m

2d−|δµ0|f̂µTµ(x).

For the Fast Multipole algorithms, we require the following connection between
interpolation and expansion from [21]: Suppose f : I d → R to be a continuous function
that admits a Čebyšev expansion. Then interpolation (4.13) and expansion (4.12) are
related by

f̂µ =
∑

ζ∈Zd

(−1)|ζ|f̂(2mζ + µ) (4.14)

for all µ ∈ Z
d with |µ| < m. In particular, the Čebyšev interpolant of Tν , ν ∈ Z

d,
is given by (−1)|ν−µ|/(2m)Tµ where ν ≡ µ mod 2m. In the following result from [21],
sufficient conditions on Va(x, x

′) are given for the validity of Assumption 4.1 with
exponential convergence with respect to the expansion order m.

Theorem 4.3. For sufficiently small separation parameter 0 < η < 1, singularity order
s ≥ 0 and a kernel function

Va : D ×D → R; Va(x, y) := K(y − x)|y − x|s (4.15)

where K admits an analytic extension into C
d\{0}. Suppose χ denotes for any x0, y0 ∈

D, x0 6= y0, the affine transformation

χ : R
d → R

d; χ(ξ) := η‖y0 − x0‖∞ξ + y0 − x0. (4.16)

Then, the approximation of the stationary covariance Va given by the Čebyšev inter-
polant of f(·;x0, y0) := (K ◦ χ)|χ|s on Id,

V m
a (x, y;x0, y0) :=

∑

µ∈Zd

|µ|<m

f̂µ(x0, y0)Tµ(χ−1(y − x)), (4.17)

satisfies the error bound (4.5) with Φ(m; η, V ) = C exp(−b(η)m). In addition, V m
a

admits the representation (4.3) with

Im := {(µ, ν) ∈ N
d
0 × N

d
0 : |µ+ ν| < m},

κ(µ,ν)(x0, y0) := (µ+ ν)!cµ+ν(x0, y0),
(4.18)

where the cµ, µ ∈ N
d
0, are the coefficients of the interpolation polynomial defined by

∑

µ∈Zd

|µ|<m

f̂µ(x0, y0)Tµ

( z

η‖y0 − x0‖∞

)
=

∑

µ∈N
d
0

|µ|<m

cµ(x0, y0)z
µ. (4.19)

Remark 4.4. If the kernel Va belongs to Ck, approximation properties of the Chebysev
polynomials and the L∞ stability bounds for the interpolation operator in the Chebysev
points imply that V m

a admits the representation (4.3) with Im as in (4.18), but only
with the algebric convergence rate Φ(m; η, V ) = Cm−k.
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Remark 4.5. Theorem 4.3 implies exponential convergence of the Čebyšev- interpo-
lated covariance V M

a for covariance kernels (4.15) which possibly are singular on the
diagonal x = y with singularity order s > −d/2. An important example is

Va(x, x
′) = C exp(−γ|x− x′|δ), 1 ≤ δ ≤ 2. (4.20)

For δ = 2, the kernel is analytic and Galerkin approximations to KL eigenpairs converge
exponentially as p→ ∞, requiring therefore a small, dense matrix V and, in the gFMM,
the (mandatory!) choice m = p will yield no gain in complexity over a dense matrix
approach. For δ < 2, such kernels exhibit only very low regularity in the sense of
Definition 2.15. Therefore, the Galerkin approximation (3.1) will use subspaces S p

h(D)
of low, fixed polynomial degree p, and convergence by h-refinement. The resulting low,
algebraic convergence rates mean that very large matrix eigenvalue problems (4.1) must
be solved to obtain accurate KL eigenpairs. The exponential error bound exp(−bm) of
the FMM implies in this case that m grows polynomially in logN . The gFMM reduced,
in this case, the work of a matrix vector multiply from N 2 to a polylogarithmic bound
in N .

To compute (4.18) we interpolate the kernel function by Čebyšev polynomials

V m
a (x, y;x0, y0) =

∑

µ∈Zd

|µ|<m

f̂µ(x0, y0)Tµ(χ−1(y − x)) (4.21)

where the md expansion coefficients are given by

f̂µ(x0, y0) = m−d
∑

ν∈Nd
0

νi<m

(K ◦ χ)(xν)|χ(xν)|sTµ(xν) (4.22)

Expanding the interpolant by Taylor we get

V m
a (x, y;x0, y0) =

∑

ζ∈Zd

|ζ|<m

f̂ζ(x0, y0)Tζ(χ
−1(y − x))

=
∑

ζ∈Zd

|ζ|<m

f̂ζ(x0, y0)Tζ

(
y − x− y0 + x0

η‖y0 − x0‖∞

)

=
∑

ζ∈Nd
0

|ζ|<m

cζ(x0, y0)(y − x− y0 + x0)
ζ

=
∑

(ν,µ)∈Nd
0×Nd

0

∑

ζ∈Nd
0

|ζ|<m

cζ(x0, y0)D
µ+ν(zζ)(0)

(x0 − x)µ

µ!

(y − y0)
ν

ν!

=
∑

(ν,µ)∈Nd
0
×Nd

0
|µ+ν|<m

(x0 − x)µ

µ!

(y − y0)
ν

ν!
(µ+ ν)!cµ+ν(x0, y0).
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Remark 4.6. The coefficients f̂µ(x0, y0) in (4.19) - (4.22) require O(md) kernel eval-
uations at the Čebyšev points of order m.

4.2 Cluster Expansions

Assumption 4.1 provides an approximation of the covariance kernel which is in general
not valid for all (x, y) ∈ D×D. In order to define a global approximation on D×D, a
collection of local approximations is used, where each local approximation is associated
with an appropriate block of a given partition of D ×D. We call the blocks clusters

and the combination of local approximations cluster expansion.
More precisely, let P(D) denote the set of all subsets of D, řA := infx∈Rd supy∈A |y−

x| ∈ R the Čebyšev radius of a set A ⊂ R
d and čA ∈ R

d with řA = supy∈A |y − čA| its

Čebyšev center.

Definition 4.7. Suppose C ⊂ P(D) × P(D) to be a finite partition of D × D which
is subordinate to D in Definition 2.15 and let 0 < η < 1 be a separation constant. An
element (σ, τ) ∈ C is called η-cluster iff

řσ + řτ ≤ η |čσ − čτ | . (4.23)

The set of all η-clusters in C,

F := F(C, η) = {(σ, τ) ∈ C : (σ, τ) is η-cluster} , (4.24)

is called far field of grain η and its complement N := N (C, η) = C \ F(C, η) the near
field of grain η. Moreover, let the kernel Va(x, y) satisfy Assumption 4.1. Then

V m
a (x, y) :=

{
V m

a (x, y; čσ , čτ ) if (x, y) ∈ σ × τ and (σ, τ) ∈ F
Va(x, y) otherwise

(4.25)

for all (x, y) ∈ D × D, x 6= y, defines a cluster expansion of the correlation kernel
Va(x, y).

Replacing the covariance kernel Va(x, y) in the definition of the matrix V in (4.1)
by its cluster expansion V m

a introduces, for u, v ∈ L2(D), an approximate matrix Ṽ :

(Ṽ )ij =

∫

D

∫

D

V m
a (x, y) bi(x) bj(y) dy dx . (4.26)

The matrix Ṽ may be decomposed according to

Ṽ = N +
∑

(σ,τ)∈F

Xσ
T
F στY τ (4.27)

with

(N )i,j :=
∑

(σ,τ)∈N

∫

σ

∫

τ

Va(x, y)bi(x) bj(y) dy dx , (F στ )µ,ν := κ(µ,ν)(čσ, čτ ),

(Xσ)µ,i :=

∫

σ
Xµ(x; čσ)bi(x) dx, (Y τ )ν,j :=

∫

τ
Yν(y; čτ )bj(y) dy
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for (σ, τ) ∈ F and (µ, ν) ∈ Im. In (4.27), the matrix N represents the near field part of
Ṽ whereas the sum of matrices describes the influence of the far field. If the partition
C is chosen as discussed in the next Section, N is a sparse matrix. In addition, the
matrix vector multiplication related to the far field part can be evaluated in essentially
linear complexity.

Remark 4.8. The matrices F στ are never formed explicitly. Typically, their entries
(F στ )µν only depend on µ+ν with |ν+µ| < m. Therefore, O(md) rather than O(m2d)
expansion coefficients have to be evaluated and stored.

Remark 4.9. The expansions in the previous Section preserve symmetry of the kernel
Va, i.e. V m

a (x, y) = V m
a (y, x). If, in addition, the given partition C exhibits symmetry,

i.e. (σ, τ) ∈ C ⇒ (τ, σ) ∈ C, then Ṽ is symmetric.

Remark 4.10. (Collocation) For continuous covariances Va(x, x
′), we may allow in

definitions (4.2), (4.26) of V ij and Ṽ ij, respectively, the choice bi(x) = δ(xi), the Dirac
delta function at xi, the barycenter of element πi ∈ Mh. Then all integrals in (4.2) and
(4.27) become point evaluations and, with the choice M = 1, the matrix eigenvalue
problem (4.1) becomes a collocation approximation of (1.11). The components of φ
correspond to point values of piecewise constant approximations of the eigenfunctions.

4.3 Cluster Algorithm

Equation (4.27) specifies an approximation Ṽ of the matrix V which allows to control
the approximation error (see Section 4.4). To reduce the complexity of assembly and
storage of V we must choose the partition C appropriately. An efficient way which also
provides the desired complexity reduction from N 2 to O(N logN) is to start with a
recursive hierarchical decomposition of the mesh Mh represented by a tree T := (V, E).
An algorithm similar to Algorithm 4.1 might be used to generate such a decomposition,
i.e. T := tree(Mh).

Algorithm 4.1 (V, E) := tree(A)

if |A| < c then

return ({A}, ∅);
else

(A0, A1) := split(A)

(V0, E0) := tree(A0); (V1, E1) := tree(A1);
return (V0 ∪ V1 ∪ {A}, E0 ∪ E1 ∪ {(A,A0), (A,A1)});

The function split(A) bisects a set of elements A into two disjoint sets A0 and A1

such that the Čebyšev radius of both sets is reduced. This, for example, could be
achieved by splitting the bounding box of A along the longest side and distribute the
elements with respect to the two parts.
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Given a hierarchical decomposition T of Mh, it is straightforward to construct a
partition C as outlined in Algorithm 4.2. The decomposition T serves two purposes
during the construction process: (i) it defines the pool V of subsets available for the
construction of clusters and (ii) it defines the sets children(A) := {A′ ∈ V : ∃(A,A′) ∈
E}. Calling partition(Mh,Mh) generates a partition C by specifying its far field F and
near field N . The resulting partition is symmetric in the sense of Remark 4.9.

Note that in Algorithm 4.2 N and F are given in terms of sets of elements π of the
triangulation M of D.

Algorithm 4.2 (N ,F) := partition(A,B)

if (
⋃

π∈A π,
⋃

π∈B π) is an η-cluster then

return (∅, {(A,B)});
else

A′ := children(A); B ′ := children(B);

return





⋃
a∈A′,b∈B′ partition(a, b) if A′ 6= ∅ and B′ 6= ∅ and |A| = |B|,⋃
a∈A′ partition(a,B) if A′ 6= ∅ and (|A| > |B| or B ′ = ∅),⋃
b∈B′ partition(A, b) if (|A| < |B| or A′ = ∅) and B′ 6= ∅,

({(A,B)}, ∅) otherwise;

The approximate matrix vector product ~v = Ṽ ~u is evaluated in five steps:

(i) compute ~vN := N
L~u,

(ii) for all τ compute ~uτ := Y
L
τ ~u,

(iii) for all σ compute ~vσ :=
∑

(σ,τ)∈F F στ~uτ ,

(iv) compute ~vF :=
∑

σ X
L
σ

T
~vσ,

(v) compute ~v = ~vN + ~vF .

Steps (ii) and (iv) can be accelerated using the hierarchical decomposition as it is
possible to represent the matrices Xσ and Y τ by the corresponding matrices related
to children of σ and τ :

Xσ =
∑

σ′∈children(σ)

Cσσ′Xσ′ , (4.28)

Y τ =
∑

τ ′∈children(τ)

Dττ ′Y τ ′ , (4.29)

where the matrices Cσσ′ and Dττ ′ represent so-called shift operators as e.g. in (4.8).
These relationships are exploited in Algorithms 4.3 and 4.4 which replace steps (ii) and
(iv) above, i.e. by scatter(M, u) and ~vF := gather(M, 0). Note that only the matrices
Y τ and Xσ, where τ and σ are leafs of the decomposition, are necessary. By Remark
4.8, these matrices contain O(md) entries.
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Algorithm 4.3 scatter(A, ~u)

τ :=
⋃

π∈A π; A′ := children(A);

if A′ = ∅ then
~uτ := Y

L
τ u;

else
~uτ :=

∑
a∈A′ Dττ ′ scatter(a, ~u) with τ ′ :=

⋃
π∈a π;

return ~uτ ;

Algorithm 4.4 gather(A, ~wA)

σ :=
⋃

π∈A π; A′ := children(A);

if A′ = ∅ then
return X

L
σ

T
(~vσ + ~wA);

else
return

∑
a∈A′ gather(a,Cσσ′

T (~vσ + ~wA)) with σ′ :=
⋃

π∈a π;

4.4 Cluster Error

By construction, the local error bound (4.5) remains valid for a cluster expansion:

Theorem 4.11. If the covariance Va(x, x
′) satisfies Assumption 4.1, there are C0, C1 >

0 independent of x, y ∈ D and of m such that for all (x, y) ∈ Dj ×Dj′, x 6= y and all
m it holds

|Va(x, y) − V m
a (x, y)| ≤ C0(C1η)

m |Va(x, y)|. (4.30)

The replacement (4.3) of Va(x, y) by the global cluster expansion V m
a in the far field

introduces an approximate bilinear form via

Ṽ m(u, v) =

∫

D

∫

D

v(x) V m
a (x, x′)u(x′)dx′dx ∀u, v ∈ L2(D). (4.31)

We associate the perturbed form Ṽ m(·, ·) with the matrix Ṽ and approximate eigenpairs
via the perturbed variational problem:

φ̃h ∈ Sp
h : Ṽ m(φ̃h, v) = λ̃(φ̃h, v) ∀v ∈ Sp

h(D) . (4.32)

Our purpose is to estimate the error ‖φm − φ̃m,h‖L2(D). To apply the classical theory
[18], we estimate the error in the Carlemann operators corresponding to the cluster
expansions:

Theorem 4.12. Let a cluster approximation V m
a of the two point correlation Va be

given which satisfies Assumption 4.1 with sufficiently small η. Then the corresponding
covariance operators Va and Vm

a satisfy for all m ∈ N for any 0 < η < 1 the error
bounds

‖Va − Vm
a ‖L2(D)→L2(D) ≤ C0(C1η)

m|D|2 (4.33)

‖Va − Vm
a ‖L∞(D)→L∞(D) ≤ C0(C1η)

m (4.34)
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Proof. To show (4.33) we estimate for arbitrary f ∈ L2(D)

‖Vaf − Vm
a f‖2

L2(D) =

∫

x∈D

(∫

y∈D
(Va(x, y) − V m

a (x, y))f(y)dy

)2

dx

≤ ‖Va − V m
a ‖2

L∞(D×D)|D|2‖f‖2
L2(D)

and refer to (4.30). The proof of (4.34) is analogous.

As an immediate consequence, we obtain

Corollary 4.13. If Assumption 4.1 holds, the family {Vm
a }m∈N of operators converges

as m → ∞ in B(L2(D)) and B(L∞(D)) with rate Φ(m; η, V ) = exp(−b(η)m) to Va.
The aproximate covariance operators {Vm

a }m∈N are, in particular, collectively compact
in these spaces.

Corollary 4.14. Let Ph : L2(D) → Sp
h(D) denote the L2(D) projection. If Assump-

tion 4.1 holds, the family {PhVm
a Ph}m∈N of operators obtained from the cluster approx-

imation with expansion order m converges as m → ∞ and h → 0 in B(L2(D)) and
B(L∞(D)) to Va.

The aproximate covariance operators {PhVm
a Ph}m∈N are, in particular, collectively

compact approximations in the sense of [4] of Va in these spaces.

Corollary 4.14 implies that the abstract error analysis of [18] is applicable to assess
the impact of the cluster-approximation on the approximate KL eigenpairs obtained
from PhVm

a Ph.

5 Conclusion

Computation of approximate KL expansions in general domains D ⊂ R
d for given

covariance function Va(x, x
′) with gFMM accelerated matrix-vector multiplication is

only advised if

i) the accuracy of the Galerkin eigenpairs of PhVaPh is preserved and

ii) the complexity of the cluster-approximated matrix-vector multiplication of PhVm
a Ph

with the orderm chosen to satisfy i) is substantially lower than for the full matrix-
vector multiplication.

In the case that Va is piecewise analytic in D×D and a p-FEM is used to approximate
the KL-eigenfunctions, the gFMM will not yield significant speed up, since the expan-
sion order m must grow proportionally to the polynomial degree p of the FE subspace
in order for the cluster error to match the exponential gFMM convergence rate.

In the case that Va belongs to Ck in the sense of Definition 2.15, the convergence
rate of the Galerkin approximated KL eigenpairs is at best algebraic, but so is the
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Figure 4.1: Eigenfunctions No. 1,6,11,16 of Gaussian covariance kernel ((4.20) with
δ = 2, C = 1) on L-shaped domain D =]− 1, 1[2\([0, 1] × [−1, 0]) for correlation length
0.5, computed using clustering on a regular triangulation of D with 16384 triangular
elements. PC w. 1GB RAM, generalized FMM and [9] was used.

convergence rate Φ(m; η, V ) of the cluster-approximated operator Vm
a (see Remark

4.5).
Computation of approximate KL-approximations using gFMM is thus preferable

over dense matrix eigensolves of the KL EVP only for covariances Va with low regularity
in the sense of Definition 2.15 which satisfy Assumption 4.1.

We mention that for all discrete eigenproblems the solver [9] yielded approxima-
tions accurate to about 14 decimals to the first 20 eigenpairs in about 70 iterations,
independent of δ in (4.20). The results are presented in Figures 4.1, 4.2.

A Appendix: Proof of Theorem 2.24

The proof of Theorem 2.24 is based on the Ehrling-Nirenberg-Gagliardo inequalities
(see [1]) to which we refer the reader for the following result.

Theorem A.1. Let D ⊂ R
d be a bounded domain having the uniform cone property and

ε0 ∈ (0,∞), n ∈ N, p ∈ [1,∞). Then there exists cε0,n,p,D > 0 such that ∀ε ∈ (0, ε0],
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Figure 4.2: Eigenfunctions No. 1,6,11,16 of exponential covariance kernel ((4.20) with
δ = 1, C = 1) on unit square D =]0, 1[2 for correlation length 1, computed using
clustering on a regular triangulation of D with 32768 triangular elements. PC w. 1GB
RAM, generalized FMM and [9] was used.

∀j ∈ {0, 1, . . . , n− 1} and ∀u ∈W n,p(D),

|u|j,p ≤ cε0,n,p,D

{
ε|u|n,p + ε−j/(n−j)|u|0,p

}
, (A.1)

where

|uj,p|p :=

∫

D

∑

|α|=j

|∂αu|p. (A.2)

We note now that piecewise regularity of eigenfunctions follows from that of the
kernel V .

Proposition A.2. If V ∈ AD,G(D2)/C∞
D,G(D2)/Hp,q

D,G(D2), then the eigenfunctions of
the associated Carleman operator V given by (2.36) corresponding to nontrivial eigen-
values belong to AD,G(D)/C∞

D,G(D)/Hp
D,G(D).

Proof. The conclusion follows at once from the eigenvalue equation

φm(x) =
1

λm

∑

j′∈J

∫

Dj′

V (x, x′)φm(x′) dx′ ∀x ∈ Dj (A.3)
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which can be naturally extended to Gj by replacing V by its regular continuation on
Gj ×Gj′ . �

Proof of Theorem 2.24. We first note that the eigenvalue equation (A.3) implies (by
differentiating and applying the Cauchy-Schwarz inequality to estimate the resulting
integrals) for any α ∈ N

d the existence of a constant cK,α > 0 such that

‖∂αφm‖L∞(Dj) ≤ cK,α|λm|−1 ∀m ≥ 1,∀1 ≤ j ≤ J. (A.4)

We apply now Theorem A.1 on Dj with p = 2, ε0 := maxm∈N+ |λm| and choose in
(A.1) ε = λm, u = φm for an arbitrary m ≥ 1 (we assume w.l.o.g. λm 6= 0). It follows
that for any n ∈ N there exists cε0,n,Dj > 0 such that for all l ∈ {0, 1, . . . , n− 1}

|φm|Dj ,l,2 ≤ cε0,n,Dj

{
λm|φm|n,2 + λ−l/(n−l)

m |φm|0,2

}

≤ cε0,n,Dj ,K

{
1 + λ−l/(n−l)

m

}
≤ cε0,n,Dj ,Kλ

−l/(n−l)
m , (A.5)

due to (A.4).
Now, for any s > 0 and α ∈ N

d we choose l = dd/2e + |α| and n > l such that
l/(n− l) < s. From (A.5) and the Sobolev embedding theorems we deduce then

‖∂αφm‖L∞(Dj) ≤ cα,Dj‖φm‖Hl(Dj) ≤ cα,Dj

l∑

k=0

|φm|Dj ,k,2

≤ cε0,n,Dj ,K,α

l∑

k=0

λ−k/(n−k)
m

≤ cε0,n,Dj ,K,αλ
−l/(n−l)
m ≤ cε0,n,Dj ,K,αλ

−s
m

for all m ≥ 1, and the proof is concluded. �
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