
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Fully Discrete hp-Finite Elements:
Fast Quadrature

J.M. Melenk, K. Gerdes∗ and C. Schwab

Research Report No. 99-15
September 1999

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

∗Department of Mathematics, Chalmers University, SE-412 96 Göteborg, Sweden

Fully Discrete hp-Finite Elements: Fast Quadrature

J.M. Melenk, K. Gerdes∗ and C. Schwab

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

Research Report No. 99-15 September 1999

Abstract

A fully discrete hp finite element method is presented. It combines the features of the
standard hp finite element method (conforming Galerkin Formulation, variable order
quadrature schemes, geometric meshes, static condensation) and of the spectral
element method (special shape functions and spectral quadrature techniques). The
speed-up (relative to standard hp elements) is analyzed in detail both theoretically
and computationally.

Keywords: hp finite element method, spectral element method,
numerical integration

Subject Classification: Primary: 65N30, 65N35 Secondary: 65N50

∗Department of Mathematics, Chalmers University, SE-412 96 Göteborg, Sweden

1 Introduction

The Finite Element Method (FEM) is today the most widely used discretization technique
in solid and fluid mechanics. The classical approach still dominant in today’s industrial
applications is to partition the domain into many small subdomains of diameter O(h) and
to approximate the unknown solution by a piecewise polynomial of low order p (typically
in applications, 1 ≤ p ≤ 3). Convergence is achieved through mesh refinement, i.e., by
letting h → 0.

In the early eighties, the so-called p-version FEM emerged where the polynomial degree
p → ∞ on a fixed mesh in order to produce convergent sequences of FE-solutions (see,
e.g., [2, 24] and the references there). Very closely related to the p-version FEM are
spectral methods and Spectral Element Methods developed at the same time (cf. [10, 17,
5, 18, 13, 14, 3] together with the references therein), which may be viewed as weighted
collocation methods. It was noted early on that some of the Spectral Methods could
be interpreted as p-version FEMs with certain types of quadrature. Being collocation
methods, Spectral methods are much faster than the standard p-version FEM as the
generation of the stiffness is considerably cheaper. Additionally, various fast transform
techniques have been devised to speed up the generation of the stiffness matrix.

Many problems in fluid and solid mechanics have piecewise analytic solutions. For the
approximation of such functions, the h-version, p-version FEM, and the Spectral methods
can only lead to algebraic rates of convergence. In the context of the FEM, however,
it is possible to combine the h and the p-version FEM into the hp-FEM where mesh
refinement and an increase of the polynomial degree p can be done simultaneously. The
proper combination of geometric mesh refinement towards the singularities and increase
of the polynomial degree in regions where the solution is smooth (analytic) then leads
to exponential rates of convergence (see [2, 19]). Commercial FEM codes with p and hp
capabilities were developed since the mid 80ies. We mention here the pioneering code
PROBE by B. Szabó and his co-workers for heat transfer and elasticity problems, now
superseded by STRESSCHECK, [21], the code Stripe, [20], and PHLEX, [22]. A general 2-
D hp-FEM code for various problems from solid and fluid mechanics was developed in the
late 80ies by [6, 7]. There, general meshes consisting of triangles and/or quadrilaterals and
even certain types of irregular (“hanging”) nodes were admissible, which facilitate mesh
refinement and allow the construction of geometrically refined meshes in a simple manner.
More recently an improved implementation of this hp-FEM code has been presented in
[8].

As mentioned, the key to the success of the hp-FEM is the ability to combine p refinement
with mesh refinement. In contrast to this, the (original) Spectral method is based on
a fixed partitioning of the computational domain into (curvilinear) rectangles (hyper
cubes in more than 2 dimensions) and then increasing the spectral order. Among the
spectral element community, the observed need for mesh refinement has lead to various
non-conforming approaches such as the use of “mortar elements” (see, e.g., [4] and the
references therein), which also exhibit hp-like features.

From an approximation theory point of view, the flexibility of the hp-FEM to combine h
and p refinement makes it clearly superior to more traditional h-, p- version FEMs and
Spectral methods. The popularity of h-FEM is due to simple stiffness matrix generation
and available fast multilevel solvers (e.g., [11]), that of Spectral methods is due to the

1

availability of very efficient techniques for the stiffness matrix generation and precondi-
tioners. In contrast, the perception of hp-FEMs is that they are computationally expensive
in their stiffness matrix generation and that fast solution algorithms do not seem to exist,
although domain decomposition methods [15], combined with parallelization, [16], can be
very effective.

This paper is devoted to the development of hp-spectral Galerkin FEMs which unify and
generalize “standard” hp-FEM technology and spectral methods. The most prominent
features shared with hp-FEM are the decoupling of the quadrature rule from the ele-
mental polynomial degrees and the ability to employ mesh refinement via hanging nodes.
In the solution process, local static condensation and the element stiffness matrices are
obtained completely in parallel. Geometry representation is uncoupled from the ansatz
space, accomodating exact representations of the geometry via blending methods and the
use of hp-isoparametric elements that approximate the geometry. Spectral techniques,
are well-known to speed up the element stiffness matrix generation considerably. The
main idea in spectral methods is combining Gauss-Lobatto quadrature with the use of
shape functions that are Lagrange interpolation polynomials in the quadrature points. In
spectral methods, the quadrature order is thus linked to the elemental polynomial degree
and Gauss-Lobatto quadrature implies underintegration even for affine element maps in
2-D.

Here, we generalize the spectral quadrature to polynomial degrees p and quadrature rules
of order p + q, q ≥ 0 arbitrary. We show that the work per element is O(p4(1 + q)) and
O(qp6+p5) for problems in R2, R3 respectively (see Table 5 ahead for the details) 1. This
is to be compared with O(p3d) for problems in Rd for the standard quadrature algorithm.
We also show numerically that this speed-up is already visible for spectral orders p in the
range of 5 ≤ p ≤ 10.

We finally mention that similar algorithms have been proposed in, e.g., [12] for meshes
based on triangles/tetrahedra; the hp convergence analysis of these algorithms will be the
topic of a future paper.

The outline of our presentation is as follows: In Section 2, the spectral Galerkin Algorithm
(Algorithm 2.12) is presented. For clarity of exposition, the algorithm is presented for a
2D scalar model problem. The extension to higher dimensions is discussed in Section 3.1.
Section 3.2 demonstrates for a 3D hexahedral element that Algorithm 2.12 does indeed
realize significant computational savings already at moderate polynomial degrees p. Some
concluding remarks finish the paper.

2 hp Spectral Quadrature Algorithm

2.1 Model problem

We will illustrate the hp-spectral Galerkin algorithm for the following scalar model prob-
lem in two dimensions

−∇ · (A(x)∇u) = f(x) on Ω ⊂ R2, u = 0 on ∂Ω (2.1)

1here and in what follows the implied constant in the O(·) notation is independent of both p and q

2

where the matrix A is symmetric, positive definite, and piecewise smooth. The weak form
is: Find u ∈ H1

0 (Ω) such that

a(u, v) = l(v) ∀v ∈ H1
0 (Ω)

where the bilinear form a and the right hand side l are given by

a(u, v) =

∫

Ω

∇v · (A(x)∇u) dx dy, l(v) =

∫

Ω

fv dx dy.

We restrict here our attention to the model problem (2.1) for simplicity of notation. The
hp-spectral Galerkin algorithm adapts straight forwardly for equations involving lower
order terms and vector valued problems.

2.2 hp-FEM

In the hp-FEM the domain Ω is partitioned into elements K; each element K is the image
of the master element K̂ = (0, 1)2 under the (bijective) element map

FK : K̂ = (0, 1)2 → K. (2.2)

The elements K are collected into the triangulation T = {K}. The hp FE-space is then
a space of continuous, mapped polynomials:

S = {u ∈ H1
0 (Ω) | u|K ◦ FK ∈ SpK(K̂)} (2.3)

where the spaces SpK(K̂) are spaces of polynomials of degree pK on the master element
K̂. The subscript K in pK indicates that we allow for variable polynomial degree (see
Section 2.4 for a detailed description of the spaces SpK(K̂)). The hp-FEM then reads:
find u ∈ S such that a(u, v) = l(v) for all v ∈ S. The bilinear form a and the right
hand side functional l can be written as a sum of element integrals and the element maps
FK provide a means to express all integrals over elements K as integrals of the master
element K̂: find u ∈ S s.t.

∑

K∈T

aK(u, v) =
∑

K∈T

lK(v) ∀v ∈ S

aK(u, v) =

∫

K̂

∇û · (Â∇v̂)dξ1dξ2 =

∫

K̂

2
∑

i,j=1

∂û

∂ξi
Âij

∂v̂

∂ξj
dξ1dξ2

=:
2

∑

i,j=1

aijK(u, v)

lK(u, v) =

∫

K̂

f̂ v̂dξ1dξ2

Â = (F ′
K)

−T (A ◦ FK) (F
′
K)

−1 JK (2.4)

f̂ = f ◦ FKJK (2.5)

û = u ◦ FK , v̂ = v ◦ FK

3

with JK = detF ′
K . If {ϕi}Ni=1 is a basis of SpK (K̂), then the

AK := (aK(ϕj ,ϕi))
N
i,j=1 , LK := (lK(ϕi))

N
i=1

are the element stiffness matrix AK and the element load vector LK . In the assembly

process, these element stiffness matrices (and load vectors) are assembed into the global
linear system which can then be solved. Especially in the context of iterative solvers,
it may be advantageous to combine several elements into a mesh patch (also known as
substructure or subdomain) and first subassemble the elements of the mesh patch before
assembling the patches. The generic hp Galerkin FEM algorithm reads as follows:

Algorithm 2.1 (hp Galerkin FEM)

loop over all mesh patches

within each mesh patch loop over all elements

generate element stiffness matrix AK (and element load vector LK)

(optional) condense inner elemental dof

assemble elemental dof into mesh patch stiffness matrix

endloop over elements in mesh patch

(optional) condense inner mesh patch dof

assemble mesh patch dof into the global stiffness matrix

endloop over all mesh patches

solve global system

backsolve for inner mesh patch and inner element dof (optional)

Several comments on Algorithm 2.1 are in order. The main amount of (alphanumerical)
work arises in the generation ofAK and LK , due to the numerical quadrature unless the FK

are affine in which case the AK can be precomputed once and for all. In general, however,
curved domains entail complicated element mapsFK and numerical integration is required.
Additionally, the evaluation of the element maps FK may be expensive and isoparametric
or “quasi-regional” mappings, [1], are employed instead. For an error analysis of such
approximate mappings we refer to [9].

The most elementary quadrature algorithm is

Algorithm 2.2 (standard Galerkin element quadrature algorithm)
initialize AK = 0
for all quadrature points

for all basis functions ϕ of SpK

for all basis functions ψ of SpK

add contribution of aK(ϕ,ψ) at this quadrature point to AK

end
end

end

It is easy to see that in two dimensions for a quadrature rule with O(p2) points and
polynomials of degree p, Algorithm 2.2 requires O(p6) work. Fig. 1 shows the CPU time
spent on various components of Algorithm 2.1 for the polynomial degree p ranging from

4

10
0

10
1

10
!4

10
!3

10
!2

10
!1

10
0

10
1

Element CPU time

approximation order

se
co

nd
s

standard total
standard int.
element mod.
static cond.
assemblage

Figure 1: CPU time per quadrilateral element for standard element algorithms for scalar
model problem.

p = 1 to p = 8 and the tensor product space Qp, the space of polynomials of degree p in
each variable:

Qp(K̂) = span {xiyj | 0 ≤ i, j ≤ p}, dimQp(K̂) = (p+ 1)2. (2.6)

We clearly see that indeed the majority of the work is spent on the numerical quadrature
and not on other tasks such as condensation, enforcement of constraints, etc. Accordingly,
the remainder of this paper is devoted to the development and analysis of various forms
of accelerated quadrature routines. We propose to use Algorithm 2.12 below for the
generation of AK . One of the advantages of this algorithm is that it only affects the
so-called internal degrees of freedom; this implies that Algorithm 2.12 could easily be
incorporated in existing hp-FEM codes.

Remark 2.3 We formulated Algorithm 2.1 in the spirit of classical hp-FEM based on
direct solvers by using the notion of static condensation, mesh patches, etc. We point
out, however, that Algorithm 2.1 can also be employed in an environment where the
global solution process is done with iterative techniques. Even a “completely iterative”
scheme where condensation is not performed at all, is possible. Akin to spectral and
spectral element methods, Algorithm 2.12 can be reformulated to realize a matrix vector
multiplication rather than to generate explicitly the (local) stiffness matrices.

2.3 Element Stiffness Matrix Generation

The goal of the present subsection is to derive Algorithm 2.12, the Spectral Galerkin Ele-
ment Algorithm, unifying the standard Galerkin FEM and the Spectral Element Method.
We will only describe the construction of the element stiffness matrix AK . The element

5

load vector LK can be constructed using the same ideas but will have to account for
possibly non-smooth data f(x).

In order to derive Algorithm 2.12, we start by recalling Gauss-Lobatto quadrature in Sub-
section 2.3.1. Next, we describe a modified sum factorization technique (Algorithm 2.5).
Algorithm 2.10, which is at the heart of Algorithm 2.12, can then be understood as a
degenerate form of Algorithm 2.5. As mentioned above, we permit elements with gen-
eral polynomial degree. However, in order to illustrate the complexity of the algorithms
that we will describe below, we will always give an operation count for the case that
SpK(K̂) = Qp(K̂).

2.3.1 Gauss-Lobatto Quadrature

To evaluate the entries ofAK , one generally has to use quadrature rules. We will use tensor
product Gauss-Lobatto quadrature rules. We recall that in one dimension, the q+1 Gauss-
Lobatto points GLq = {x0, . . . , xq} are the zeros of the polynomial x +→ x(1 − x)L′

q(x)
where Lq stands for q-th Legendre polynomial associated with the unit interval (0, 1). It
is well-known [3], that these zeros are distinct and lie in the interval [0, 1]. Furthermore,
for each q one can find positive weights wi, i = 0, . . . , q such that the quadrature rule

GLq(u) :=
q

∑

k=0

wku(xk) ≈
∫ 1

0

u(x) dx

is exact for polynomials u of degree 2q − 1, [3]. Gauss-Lobatto quadrature rules in two
dimensions are then obtained by tensor product constructions. For example, quadrature
rules GLq1,q2(u) based on the points GLq1 × GLq2 are given by

GLq1,q2(u) :=
q1
∑

k=0

q2
∑

l=0

w1,kw2,lu(x1,k, x2,l) (2.7)

For simplicity of notation in some of the ensuing algorithms, we assume that x1,0 = 0,
x1,q1 = 1, x2,0 = 0, x1,q2 = 1.

Once a quadrature rule is chosen, the evaluation of the entries of the stiffness matrix AK

(and of the load vector) proceeds by replacing integrals over K̂ by (2.7). For example, for
ϕ, ψ ∈ SpK (K̂) the evaluation of ars(ϕ,ψ) is performed as

ars(ϕ,ψ) ≈ GLq1,q2

(

∂

∂ξr
ϕ ·

∂

∂ξs
ψ · Ârs

)

, r, s ∈ {1, 2}, (2.8)

where the functions Ârs are defined in (2.4).

2.3.2 Sum Factorization

Let us assume that a basis of the space SpK (K̂) is given in the form SpK (K̂) = span{E0 ∪
E1 ∪ E2 ∪ E3 ∪ E4 ∪ I}, where the sets Ek, I have the following tensor product structure

Ek = {χk
1,i(ξ1)χ

k
2,j(ξ2) |, 1 ≤ i ≤ Ik, 1 ≤ j ≤ Jk}, k = 0, . . . , 4, (2.9)

I = {χI
1,i(ξ1)χ

I
2,j(ξ2) |, 1 ≤ i ≤ II , 1 ≤ j ≤ JI}. (2.10)

6

This structure is motivated by the usual decomposition into vertex shape functions, side
shape functions, and internal shape functions. In that case, the numbers Ik, Jk, II , JI are
a measure for the polynomial degree associated with each of these entities. For example,
for the space Qp(K̂), a standard choice of these numbers is (see Section 2.4 for a more
specific example)

II = JI = p− 1, I0 = J0 = 2 (2.11)

(I2, J2) = (I4, I4) = (p− 1, 1) for the sides parallel to the y-axis (2.12)

(I1, J1) = (I3, J3) = (1, p− 1) for the sides parallel to the x-axis (2.13)

The element stiffness matrix AK has a 6×6 block structure, corresponding to the interac-
tion of the 6 different types of shape functions introduced in (2.9), (2.10). An algorithm
that exploits the tensor product structure of the basis functions and is based on sum
factorization is the following:

Algorithm 2.4
initialize AK = 0
for r,s=1:2

for B1 ∈ {E0, E1, E2, E3, E4, I}
for B2 ∈ {E0, E1, E2, E3, E4, I}

add sum fact
(

∂
∂ξr

B1,
∂
∂ξs

B2, Ârs

)

to the block B1-B2 of AK

end
end

end

Here, the operators ∂
∂ξr

, ∂
∂ξs

are understood to act elementwise on the shape function
blocks B1, B2. Each call to sum fact returns a dimB1 × dimB2 matrix whose entries
are just those calculated by the right hand side of (2.8) for all ϕ ∈ B1, ψ ∈ B2. We now
specify the function sum fact in Algorithm 2.4:

Algorithm 2.5 (sum factorization)
A := sum fact(B1, B2, a)

%input:
% B1 = {ϕ1

i (ξ1)ϕ
2
j (ξ2) | 1 ≤ i ≤ I, 1 ≤ j ≤ J}

% B2 = {ψ1
i (ξ1)ψ

2
j (ξ2) | 1 ≤ i ≤ I ′, 1 ≤ j ≤ J ′}

% function a : K̂ → R

%output: the matrix A with entries
%A(i,j),(i′,j′) =

∑q1
k=0

∑q2
l=0 ϕ

1
i (x1,k)ϕ2

j (x2,l)ψ1
i′(x1,k)ψ2

j′(x2,l)w1,kw2,la(x1,k, x2,l)

S1 := (1 + q1)(1 + q2)J · J ′ + (1 + q1)I · I ′ · J · J ′ % flop count for
∑

k

∑

l

S2 := (1 + q1)(1 + q2)I · I ′ + (1 + q2)I · I ′ · J · J ′ % flop count for
∑

l

∑

k

if S1 ≤ S2 then { % choose summation order to minimize flop count
compute auxiliary array H(k, j, j′) :=

∑q2
l=0 ϕ

2
j(x2,l)ψ2

j′(x2,l)w2,la(x1,k, x2,l),
k ∈ {0, . . . , q1}, j ∈ {1, . . . , J}, j′ ∈ {1, . . . , J ′}
compute entries A(i,j),(i′,j′) :=

∑q1
k=0 ϕ

1
i (x1,k)ψ1

i′(x1,k)w1,kH(k, j, j′),
i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, i′ ∈ {1, . . . , I ′}, j′ ∈ {1, . . . , J ′}

}

7

else {
compute auxiliary array H(l, i, i′) :=

∑q1
k=0 ϕ

1
j(x1,k)ψ1

j′(x1,k)w1,ka(x1,k, x2,l),
l ∈ {0, . . . , q2}, i ∈ {1, . . . , I}, i′ ∈ {1, . . . , I ′}
compute entries A(i,j),(i′,j′) :=

∑q2
l=0 ϕ

2
j (x2,l)ψ2

j′(x2,l)w2,lH(l, i, i′),
i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, i′ ∈ {1, . . . , I ′}, j′ ∈ {1, . . . , J ′}

}
return A

Remark 2.6 Algorithm 2.5 is essentially the classical sum factorization algorithm, e.g.,
[17], which is used in several commercial 3-D hp-FEM code. The new feature here over
classical sum factorization is the comparison of S1 and S2. S1 and S2 estimate the oper-
ation count for the evaluation of the double sum as either

∑

k

∑

l or as
∑

l

∑

k, and the
smaller operation count is chosen. This modification of the classical sum factorization al-
gorithm is particularly suited for elements SpK with highly anisotropic polynomial degree
distribution and/or anisotropic quadrature rules.

Remark 2.7 We note in passing that another potential source of further savings is that
the quadrature rule could be chosen for each pairB1-B2 separately. To illustrate this point,
note that a typical choice for the vertex set E0 is the set of the 4 bilinear functions only and
that the set of internal shape functions I consists of polynomials of degree p. Assuming for
the moment that a ≡ 1 in Algorithm 2.5 we see that the rule GL$p/2%+1,$p/2%+1 is sufficient
to calculate sum fact(E0, I, a) whereas p+1 points in each direction are required for the
calculation in sum fact(I, I, a).

Example 2.8 (work for Algorithm 2.5) For the simplified case q1 = q2 = p+q, q ≥ 0,
inspection of Algorithm 2.5 shows that the complexity is

W = (1 + p+ q)2min {I · I ′, J · J ′}+ (1 + p+ q)I · I ′ · J · J ′. (2.14)

For our 2D model case SpK(K̂) = Qp(K̂), we can be more explicit. Assuming that the
sets I and Ek satisfy (2.11)–(2.13), (2.14) reveals that, for example, the call sum fact
(∂
∂ξ1

I, ∂
∂ξ2

I, Â12) takes work W = O(p4(p+ q) + p2(p+ q)2). Similarly, the calls sum fact

(∂
∂ξ1

I, ∂
∂ξ2

E1, Â12) and sum fact(∂
∂ξ1

E1, ∂
∂ξ2

E2, Â12) are of complexity W = O(p3(p + q) +

p(p+ q)2) and W = O(p(p+ q)2 + p2(p+ q)), respectively.

Remark 2.9 Clearly, Algorithm 2.5 can also be formulated for other tensor product
quadrature rule, e.g., the tensor product Gauss-Legendre quadrature rule.

2.3.3 Spectral Galerkin Sum Factorization

Algorithm 2.5 only assumes that the shape functions and the quadrature scheme have
tensor product structure. If, however, the shape functions and the quadrature scheme are
adapted to each other, then further savings are possible. The classical spectral method
may serve as an example (which we will elaborate below) where the shape functions are
just the base polynomials for the Lagrange interpolation in the quadrature points. The
following variant of Algorithm 2.5 allows us to exploit the resulting degeneracy.

8

Algorithm 2.10 (spectral Galerkin sum factorization)
A := spec sum fact(B1, B2, a)

%input:
% B1 = {ϕ1

i (ξ1)ϕ
2
j (ξ2) | 1 ≤ i ≤ I, 1 ≤ j ≤ J}

% B2 = {ψ1
i (ξ1)ψ

2
j (ξ2) | 1 ≤ i ≤ I ′, 1 ≤ j ≤ J ′}

% function a : K̂ → R

%output: the matrix A with entries
%A(i,j),(i′,j′) =

∑q1
k=0

∑q2
l=0 ϕ

1
i (x1,k)ϕ2

j (x2,l)ψ1
i′(x1,k)ψ2

j′(x2,l)w1,kw2,la(x1,k, x2,l)

for each pair i, i′ compute set K(i, i′) := {k ∈ {0, . . . , q1} |ϕ1
i (x1,k)ψ1

i′(x1,k) 0= 0}
for each pair j, j′ compute set L(j, j′) := {l ∈ {0, . . . , q2} |ϕ2

j(x2,l)ψ2
j′(x2,l) 0= 0}

S1 := (1 + q1)
∑

j,j′ |L(j, j
′) |+ J · J ′ ·

∑

i,i′ |K(i, i′) | % flop count for
∑q1

k

∑q2
l

S2 := (1 + q2)
∑

i,i′ |K(i, i′) |+ I · I ′ ·
∑

j,j′ |L(j, j
′) | % flop count for

∑q2
l

∑q1
k

if S1 ≤ S2 then { % choose summation order to minimize flop count
compute auxiliary array H(k, j, j′) :=

∑

l∈L(j,j′) ϕ
2
j (x2,l)ψ2

j′(x2,l)w2,la(x1,k, x2,l),

compute entries A(i,j),(i′,j′) :=
∑

k∈K(i,i′) ϕ
1
i (x1,k)ψ1

i′(x1,k)w1,kH(k, j, j′),
}

else {
compute auxiliary array H(l, i, i′) :=

∑

k∈K(i,i′) ϕ
1
j(x1,k)ψ1

j′(x1,k)w1,ka(x1,k, x2,l),

compute entries A(i,j),(i′,j′) :=
∑

l∈L(j,j′) ϕ
2
j(x2,l)ψ2

j′(x2,l)w2,lH(l, i, i′),
}
return A

Here, |L(j, j′) | and |K(i, i′) | stand for the number of elements of the sets L(j, j′), K(i, i′).
We note that Algorithm 2.10 does indeed reduce to Algorithm 2.5 if the shape functions
are not related to the quadrature rule: In that case L(j, j′) = {0, . . . , q2}, K(i, i′) =
{0, . . . , q1}, and hence Algorithm 2.10 indeed coincides with Algorithm 2.5. Let us now
show that Algorithm 2.10 does indeed lead to savings if the shape functions are adapted
to the quadrature rule.

Example 2.11 (spectral method) The classical spectral method (i.e., the use of GLp,p

in conjunction with the space Qp(K̂)) is a special case of Algorithm 2.10. The shape
functions Ek and I are assumed to satisfy (2.9), (2.10). The internal shape functions I
are additionally assumed to be of the form

χI
1,i(x) = l(p)i (x,N p), i = 1, . . . , II := p− 1,

χI
2,j(x) = l(p)j (x,N p), j = 1, . . . , JI := p− 1.

Here, the set N p = GLp = {xi |, i = 0, . . . , p} is the set of Gauss-Lobatto nodes and the

polynomials l(p)i (x,N p), i = 0, . . . , p are the Lagrange interpolation polynomials of degree
p associated with the set N p and they are given by

l(p)j (x,N p) :=
p
∏

i=0
i"=j

x− xi

xj − xi
. (2.15)

We note that there holds

l(p)i (xj ,N
p) = δij , i, j = 0, . . . , p.

9

Let us compute the cost of the call to spec sum fact(∂
∂ξ1

I, ∂
∂ξ2

E1, Â12). In doing so, we

do not assume that the shape functions comprising E1 are related to the quadrature rule.
The sets K(i, i′), L(j, j′) are then seen to be

K(i, i′) = {0, . . . , p}, L(j, j′) = {j}.

We now readily compute that this function call costs W = O(p4). For the call to the
function spec sum fact(∂

∂ξ1
I, ∂

∂ξ2
I, Â12) we calculate

K(i, i′) = {i′}, L(j, j′) = {j}.

Hence, the work estimate also reduces to W = O(p4). The reader will convince himself
that for any r, s ∈ {1, 2}, k ∈ {0, . . . , 4}, the work estimate for the calls to the functions
spec sum fact(∂

∂ξr
I, ∂

∂ξs
I, Ârs) and spec sum fact(∂

∂ξr
I, ∂

∂ξs
Ek, Ârs), is always O(p4).

Example 2.11 is in essence the classical spectral method (there, however, the external
shape functions Ek are also related to the quadrature rule thus allowing for improving the
constant in the work estimate O(p4)). Note that the use of the Gauss-Lobatto rule GLp,p

leads to underintegration as even for affine elements, the stiffness matrix is not computed
exactly. For our scalar problem, we will show in [9] that the rule GLp,p in conjunction
with the space Qp(K̂) leads to a stable method and gives, in polygons and for piecewise
analytic solution, exponential rates of convergence. However, this “minimal” spectral
quadrature scheme performs poorly in the presence of very distorted meshes. For vector-
valued problems such as the Lamé equations, to the knowledge of the authors, stability
of the Spectral Element Method (i.e., the use of the rule GLp,p) is an open problem on
meshes containing non-affine elements. These considerations make it desirable to allow
for overintegration, i.e., the ability to use the rule GLp+q,p+q (q ≥ 0) in conjunction with
the space Qp(K̂). We will show in the ensuing subsection that this is possible with work
W = O(p4(1 + q) + p2q2).

2.3.4 Transition from Spectral to Galerkin via overintegration

Following Example 2.11, we restrict our attention first to the quadrature rules GLp+q,p+q

in conjunction with the space Qp(K̂). The external shape functions Ek are again chosen
to satisfy (2.9). For a set of nodal points N p satisfying

{0, 1} ⊂ N p | N p | = p+ 1, (2.16)

the internal shape functions I are Lagrange interpolation polynomials for this nodal set
N p (cf. (2.15)) and given by

χI
1,i(x) = l(p)i (x,N p), i = 1, . . . , II := p− 1,

χI
2,j(x) = l(p)j (x,N p), j = 1, . . . , JJ := p− 1.

It remains to choose the nodal set N p. Let GLp+q = {xi | i = 0, . . . , p+ q} be the Gauss-
Lobatto quadrature points for the rule GLp+q and N p be any subset of GLp+q satisfying
(2.16). For such a choice of N p there holds
∣

∣

∣
{xj ∈ GLp+q | l(p)i (xj ,N

p) 0= 0}
∣

∣

∣
=

∣

∣ ({i} ∪ GLp+q \ N p)
∣

∣ = 1 + q, i = 1, . . . , p− 1.

10

In this situation, let us calculate the cost of evaluating spec sum fact(∂
∂ξ1

I, ∂
∂ξ2

E2, Â12).
We see that

|K(i, i′) | =
∣

∣GLp+q
∣

∣ = | {0, . . . , p+ q} | = p+ q + 1,

|L(j, j′) | =
∣

∣

(

{j} ∪ (GLp+q \ N p)
)
∣

∣ = 1 + q.

Inspection of Algorithm 2.10 shows that the work estimate is thenW = O((p+q)p(p2+q)).
Similarly, for the call of spec sum fact(∂

∂ξ1
I, ∂

∂ξ2
I, Â12) we get

|K(i, i′) | =
∣

∣

(

{i′} ∪ GLp+q \ N p
)
∣

∣ = q + 1,

|L(j, j′) | =
∣

∣

(

{j} ∪ (GLp+q \ N p)
)
∣

∣ = q + 1.

Thus, the work can be bounded byW = O(p2(p+q)(1+q))+O(p4(q+1)) = O(p4(1+q)+
p2q2)). In two dimensions, the use of the Gauss-Lobatto rule of order p + q with a fixed
q ≥ 0 does therefore have the same asymptotic complexity as the pure spectral method
of Example 2.11. We presented these ideas here for the case of the rule GLp+q,p+q for the
space Qp(K̂). Similar arguments apply for more general polynomial degree distribution
and anisotropic quadrature rules.

2.3.5 Choice of the interpolation nodes N p

In the preceding subsection 2.3.4, we merely assumed that the interpolation nodes N p

were a subset of the quadrature points GLp+q. In the present subsection, we discuss
criteria for the selection of the interpolation set N p and suggest some specific choices.

For a given nodal set N p satisfying (2.16) we consider two types of 1-D shape functions
on (0, 1):

χ1
0(x) := 1− x, χ1

p(x) := x, χ1
i (x) := l(p)i (x,N p), i = 1, . . . , p− 1, (2.17)

χ2
i (x) := l(p)i (x,N p), i = 0, . . . , p. (2.18)

The set χ1
i is motivated by the traditional hp-FEM codes that always include the linear

(bilinear/trilinear shape functions in 2D/3D) shape functions. The set χ2
i is closer to

the typical choices in spectral methods. Note that these 1-D shape functions were used
in the preceding subsection 2.3.4 to define the internal shape functions–this is the main
motivation for imposing (2.16).

For these two sets of shape functions (2.17), (2.18), we can define the mass matrix Mm

(m ∈ {1, 2}) in the usual fashion:

Mm
ij (N

p) :=

∫ 1

0

χm
i (x)χ

m
j (x) dx, i, j = 0, . . . , p+ 1.

The two mass matrices Mm(N p), m ∈ {1, 2} depend of course on the nodal set N p

through the shape functions χm
i , and we included the argument N p in the definition of

Mm in order to emphasize this dependence. Given p ≥ 1, q ≥ 0, the first criterion for
the selection of the subset N p of GLp+q is that the mass matrix Mm (m ∈ {1, 2}) have
minimal condition number. The corresponding optimal choice of the nodal set is then
denoted by N p,q

1 for the shape functions (2.17) and N p,q
2 for the shape functions (2.18):

N p,q
m := argmin {cond (Mm(N p)) | N p ⊂ GLp+q and N p satisfies (2.16)}, m ∈ {1, 2}.

(2.19)

11

Tables 1, 2 give the optimal sets N p,q
1 , N p,q

2 (up to symmetry); in the interest of brevity,
Tables 1, 2 list the indices of the sets GLp+q \N p,q

m (m ∈ {1, 2}) rather than the indices of
the sets N p,q

m . Figs. 2, 3 show the condition numbers for these optimal choices of nodes.
It is noteworthy that especially in the case of the shape functions (2.17), the condition
number is fairly insensitive to q, that is, it is possible to simultaneously use overintegration
and adapt the shape functions to the quadrature rule without an adverse effect on the
condition number.

Another measure of the quality of a set of nodal points N p is its Lebesgue number Λ(N p),
which is the stability constant of the corresponding nodal interpolation operator:

Λ(N p) := sup
x∈(0,1)

p
∑

i=0

∣

∣

∣
l(p)i (x)

∣

∣

∣
. (2.20)

Figs. 4, 5 show the Lebesgue numbers for our optimal sets N p,q
m , m ∈ {1, 2} (the Lebesgue

numbers were calculated numerically by replacing the interval (0, 1) in (2.20) with 2000
uniformly distributed points). The Gauss-Lobatto set GLp (corresponding to q = 0 in
Figs. 4, 5), is essentially the best possible choice with Λ(GLp) = O(ln p), [23]. Neverthe-
less, in the practical regime p = 2, . . . , 20 the Lebesgue numbers Λ(N p,q

m) are at most one
order of magnitude away from the “optimal” value Λ(GLp).

We note that in both Tables 1, 2, the optimal points are not distributed symmetrically
with respect to the mid-point 1/2. For implementational purposes during the assembly
procedure, it is more convenient to have symmetrically distributed nodal points N p as
this leads to shape functions that are either symmetric or anti-symmetric. This motivates
to restrict the minimization in (2.19) to sets N p that are symmetric with respect to the
midpoint 1/2:

N p,q
m,sym := argmin {cond (Mm(N p)) |

N p ⊂ GLp+q, N p satisfies (2.16), N p is sym. w.r.t. 1/2 }, m ∈ {1, 2}.

The optimal sets are listed in Tables 3, 4 (again, Tables 3, 4 actually list the indices of
GLp+q \N p,q

m,sym). Figs. 6, 7 show the corresponding condition numbers. Comparing these
with Figs. 2, 3 we note that imposing a symmetry condition on the nodal sets N p has
practially no effect on the conditioning of the resulting mass matrix. A similar conclusion
holds for the Lebesgue numbers as can be seen by comparing Figs. 8, 9 and Figs. 4, 5.

p 2 3 4 5 6 7 8 9 10

q=0 - - - - - - - - -

q=1 1 3 3 3 3 4 4 6 6

q=2 1,3 1,4 2,4 2,5 1,6 2,7 2,9 2,9 1,10

q=3 1,3,4 1,3,5 2,4,6 2,4,6 2,4,7 2,5,8 2,5,9 2,6,10 2,7,11

q=4 1,2,4,5 1,2,4,6 1,3,5,7 2,4,6,8 2,4,6,8 2,4,7,9 2,5,7,10 2,5,8,11 2,5,10,11

q=5 1,2,4,5,6 1,2,4,6,7 1,2,4,6,8 1,3,5,7,9 2,4,6,8,10 2,4,6,8,10 2,4,7,9,11 2,4,7,9,12 2,5,7,10,13

q=6 1,2,3,5,6,7 1,2,3,5,6,8 1,3,4,6,7,9 1,3,5,7,9,10 2,3,5,7,9,10 2,3,6,8,10,11 2,4,6,8,10,12 2,3,6,9,12,13 2,5,7,9,11,14

Table 1: index lists of GLp+q \ N p,q
1 .

12

p 2 3 4 5 6 7 8 9 10

q=0 - - - - - - - - -

q=1 2 2 2 3 3 4 4 5 6

q=2 1,3 1,4 2,5 2,5 2,6 2,7 3,7 3,8 3,9

q=3 1,2,4 1,3,5 1,3,6 1,4,7 2,5,8 2,5,8 1,5,9 2,6,10 2,6,10

q=4 1,2,4,5 1,3,5,6 1,3,5,7 1,3,5,8 1,3,6,9 1,4,7,10 1,4,7,10 2,5,8,11 1,5,9,13

q=5 1,2,3,5,6 1,2,4,6,7 1,3,5,7,8 1,3,5,7,9 1,3,5,7,10 1,3,6,9,11 1,3,6,9,12 1,4,7,10,13 2,5,8,11,14

q=6 1,2,3,5,6,7 1,2,4,5,7,8 1,2,4,6,8,9 1,2,4,6,8,10 1,3,5,7,9,11 1,3,5,7,9,12 1,3,6,8,11,13 1,3,6,9,12,14 1,3,6,9,12,15

Table 2: index lists of GLp+q \ N p,q
2 .

10
0

10
1

10
0

10
1

10
2

10
3

10
4

condition number for optimal choice of nodal set

co
nd

. n
um

be
r

of
 1
!

D
 m

as
s

m
at

rix

polynomial degree p

q=0
q=1
q=2
q=3
q=4
q=5
q=6

Figure 2: cond (M1(N p,q
1)) as a function of p = 2, . . . , 20 and amount of overintegration q

10
0

10
1

10
0

10
1

10
2

10
3

10
4

condition number for optimal choice of nodal set

co
nd

. n
um

be
r

of
 1
!

D
 m

as
s

m
at

rix

polynomial degree p

q=0
q=1
q=2
q=3
q=4
q=5
q=6

Figure 3: cond (M2(N p,q
2)) as a function of p = 2, . . . , 20 and amount of overintegration q

13

10
0

10
1

10
0

10
1

Lebesgue constants for optimal choice of nodal set

Le
be

sg
ue

 c
on

st
an

t

polynomial degree p

q=0
q=1
q=2
q=3
q=4
q=5
q=6

Figure 4: Lebesgue number of set N p,q
1 as a function of p = 2, . . . , 20 and amount of

overintegration q

10
0

10
1

10
0

10
1

Lebesgue constants for optimal choice of nodal set

Le
be

sg
ue

 c
on

st
an

t

polynomial degree p

q=0
q=1
q=2
q=3
q=4
q=5
q=6

Figure 5: Lebesgue number of set N p,q
2 as a function of p = 2, . . . , 20 and amount of

overintegration q

p 2 3 4 5 6 7 8 9 10

q=0 - - - - - - - - -

q=2 1,3 1,4 2,4 2,5 2,6 2,7 2,8 2,9 1,11

q=4 1,2,4,5 1,3,4,6 1,3,5,7 1,3,6,8 2,4,6,8 2,4,7,9 2,5,7,10 2,5,8,11 2,6,8,12

q=6 1,2,3,5,6,7 1,2,4,5,7,8 1,3,4,6,7,9 1,2,4,7,9,10 2,3,5,7,9,10 2,3,5,8,10,11 2,4,6,8,10,12 2,3,6,9,12,13 2,5,7,9,11,14

Table 3: index list of GLp+q \ N p,q
1,sym.

14

p 2 3 4 5 6 7 8 9 10

q=0 - - - - - - - - -

q=2 1,3 1,4 1,5 2,5 2,6 2,7 3,7 3,8 3,9

q=4 1,2,4,5 1,3,4,6 1,3,5,7 1,3,6,8 1,4,6,9 1,4,7,10 1,4,8,11 2,5,8,11 1,5,9,13

q=6 1,2,3,5,6,7 1,2,4,5,7,8 1,2,4,6,8,9 1,3,5,6,8,10 1,3,5,7,9,11 1,3,5,8,10,12 1,3,6,8,11,13 1,3,6,9,12,14 1,4,7,9,12,15

Table 4: index list of GLp+q \ N p,q
2,sym.

10
0

10
1

10
0

10
1

10
2

10
3

10
4

condition number for optimal symmetric choice of nodal set

co
nd

. n
um

be
r

of
 1
!

D
 m

as
s

m
at

rix

polynomial degree p

q=0
q=2
q=4
q=6

Figure 6: cond
(

M1(N p,q
1,sym)

)

as a function of p = 2, . . . , 20 and amount of overintegration
q

10
0

10
1

10
0

10
1

10
2

10
3

10
4

condition number for optimal symmetric choice of nodal set

co
nd

. n
um

be
r

of
 1
!

D
 m

as
s

m
at

rix

polynomial degree p

q=0
q=2
q=4
q=6

Figure 7: cond
(

M2(N p,q
2,sym)

)

as a function of p = 2, . . . , 20 and amount of overintegration
q

15

10
0

10
1

10
0

10
1

Lebesgue constants for optimal symmetric choice of nodal set

Le
be

sg
ue

 c
on

st
an

t

polynomial degree p

q=0
q=2
q=4
q=6

Figure 8: Lebesgue number of set N p,q
1,sym as a function of p = 2, . . . , 20 and amount of

overintegration q

16

10
0

10
1

10
0

10
1

Lebesgue constants for optimal symmetric choice of nodal set

Le
be

sg
ue

 c
on

st
an

t

polynomial degree p

q=0
q=2
q=4
q=6

Figure 9: Lebesgue number of set N p,q
2,sym as a function of p = 2, . . . , 20 and amount of

overintegration q

2.3.6 Spectral Galerkin Algorithm

We are now in position to combine all the above considerations together to formulate
Algorithm 2.12. The algorithm assumes that the space SpK is of the form (2.9), (2.10).
The internal shape functions I are additionally adapted to the quadrature rule chosen:

Algorithm 2.12 (spectral Galerkin Element Algorithm)
initialize AK = 0
choose external shape functions Ek, k = 0, . . . , 4 for SpK

determine poly. deg. p1 := II + 1, p2 := JI + 1 of internal shape functions
choose qh, qv ≥ 0 and define quadrature rule GLp1+qh,p2+qv

determine sets N p1,qh, N p2,qv according to one of Tables 1, 2, 3, 4

set I = {l(p1)i (x,N p1,qh) · l(p2)j (y,N p2,qv) | 1 ≤ i ≤ p1 − 1, 1 ≤ j ≤ p2 − 1}
for r,s=1:2

for B1 ∈ {E0, E1, E2, E3, E4, I}
for B2 ∈ {E0, E1, E2, E3, E4, I}

add spec sum fact
(

∂
∂ξr

B1,
∂
∂ξs

B2, Ârs

)

to the block B1-B2 of AK

end
end

end

17

1

1

0
a

a

a

a

a

2

1

^

^

^^

^

a

a

a

a

^ ^

^
^

4 3

6

5

8

9

7

!

!

2

1

Figure 10: Quadrilateral master element K̂ of order p = (p1, p2, p3, p4, p5).

Remark 2.13 In Algorithm 2.12 the same quadrature rule is used in the computation
of all B1-B2 interactions. Of course, the quadrature rule could be chosen individually for
each combination, cf. Remark 2.7.

In Algorithm 2.12, we did not specify the external shape functions. Specific choices are
the topic of the following subsection.

2.4 hp quadrilateral elements

In this section, we present explicitly the shape functions that we use in Algorithm 2.12.
In particular, we will illustrate the concept of anisotropic polynomial degree distribution.

We start by introducing the 1-D hierarchical shape functions of degree p of [24] as

h1(x) = 1− x, h2(x) = x, hi(x) =

√

1

4(2i− 1)
(Li(x)− Li−2(x)) , i = 3, . . . (2.21)

where we recall that the polynomials Li are the Legendre polynomials associated with the
interval (0, 1) normalized to satisfy Li(1) = 1.

For each quadrilateral element K ∈ T we introduce the element polynomial degree vector
pK in order to describe the polynomial approximation, i.e

pK =
(

p1K , · · · , p
5
K

)

, (2.22)

where piK , 1 ≤ i ≤ 4, represents the polynomial degree on the i-th edge of the element,
i.e. piK represents the approximation order of the mid-side node âi+4 in Figure 10. p5K =
(phK , p

v
K) is the polynomial degree in the interior of the element which we even allow to be

anisotropic, where phK represents the horizontal and pvK the vertical approximation order2.
We only require that

phK ≥ max
{

p1K , p
3
K

}

, pvK ≥ max
{

p2K , p
4
K

}

, ∀ K ∈ T . (2.23)

The nodes â1, · · · , â9 represent the dof corresponding to the quadrilateral master element
shown in Figure 10 and are divided into three categories:

2This feature is essential in the context of thin solids.

18

1. vertex nodes â1, â2, â3, â4: the shape functions associated with the four vertices form
the set E0; they are always taken as the set of the four bilinear functions:

E0 = {hi(x) · hj(y) | (i, j) ∈ {1, 2}× {1, 2}} (2.24)

2. middle node â9: the shape functions associated with this node form the set I; they
are always taken to be of the form

I = {l(p
h)

i (x,N ph,qh) · l(p
v)

j (y,N pv,qv) | 1 ≤ i ≤ ph − 1, 1 ≤ j ≤ pv − 1} (2.25)

here, the sets N ph,qh, N pv,qv can be any of those from Tables 1, 2, 3, 4.

3. mid-side nodes â5, â6, â7, â8: the shape functions associated with these four nodes
form the side shape functions Ek, k = 1, . . . , 4; several possible choices will be given
in the following two subsections.

2.4.1 Side shape functions of type (2.17)

The set of hierarchical side shape functions of type (2.17) is given by

E1 = {hi(x) · h1(y) | 1 ≤ i ≤ p1 − 1} (2.26a)

E2 = {h2(x) · hi(y) | 1 ≤ i ≤ p2 − 1} (2.26b)

E3 = {hi(x) · h2(y) | 1 ≤ i ≤ p3 − 1} (2.26c)

E4 = {h1(x) · hi(y) | 1 ≤ i ≤ p4 − 1} (2.26d)

The side shape functions may also be taken as nodal-based functions. Representative for
this approach is the following set:

E1 = {l(p1)i (x,GLp1) · h1(y) | 1 ≤ i ≤ p1 − 1} (2.27a)

E2 = {h2(x) · l
(p2)
i (y,GLp2) | 1 ≤ i ≤ p2 − 1} (2.27b)

E3 = {l(p3)i (x,GLp3) · h2(y) | 1 ≤ i ≤ p3 − 1} (2.27c)

E4 = {h1(x) · l
(p4)
i (y,GLp4) | 1 ≤ i ≤ p4 − 1}. (2.27d)

Remark 2.14 The nodal sets GLp1, . . . , may be replaced by other sets, e.g., the sets
N p,q. This is, for example, of interest if p1 = ph or p3 = ph or p2 = pv or p4 = pv as then
(at least some of) the side shape functions are adapted to the quadrature as well, which
is then automatically exploited by Algorithm 2.10.

2.4.2 side shape functions of type (2.18)

The side shape functions can of course also be taken of the form (2.18). Specifically, the
hierarchical version is given by

E1 = {hi(x) · l
(pv)
0 (y,N pv,qv) | 1 ≤ i ≤ p1 − 1} (2.28a)

E2 = {l(p
h)

ph (x,N (ph),qh) · hi(y) | 1 ≤ i ≤ p2 − 1} (2.28b)

E3 = {hi(x) · l
(pv)
pv (y,N pv,qv) | 1 ≤ i ≤ p3 − 1} (2.28c)

E4 = {l(p
h)

0 (x,N ph,qh) · hi(y) | 1 ≤ i ≤ p4 − 1} (2.28d)

(2.28e)

19

where the sets N ph,qh, N pv,qv are now chosen from Table 2 or 4. Here, ph, pv, qh, qv

are determined by the internal shape functions and the quadrature rule. Note that these
side shape functions are (at least partially) adapted to the quadrature rule which is
automatically exploited by Algorithm 2.10.

Analogously, the version using Gauss-Lobatto side shape functions is given by

E1 = {l(p1)i (x,GLp1)l(p
v)

0 (y,N pv,qv) | 1 ≤ i ≤ p1 − 1} (2.29a)

E2 = {l(p
h)

ph (x,N ph,qh)l(p2)i (y,GLp2) | 1 ≤ i ≤ p2 − 1} (2.29b)

E3 = {l(p3)i (x,GLp3)l(p
v)

pv (y,N pv,qv) | 1 ≤ i ≤ p3 − 1} (2.29c)

E4 = {l(p
h)

0 (x,N ph,qh)l(p4)i (y,GLp4) | 1 ≤ i ≤ p4 − 1}. (2.29d)

Again, as in the case (2.27), the sets GLp1, . . . ,GLp4 could be replaced with sets of the
form N p,q.

Remark 2.15 Note that the vertex shape functions are always taken as the bilinear
shape functions. This is motivated by implementational issues. Clearly, other choices are
possible.

3 Extensions to 3D

3.1 Work estimates in 3D

The ideas presented for the 2D model problem can be extended to 3D. Table 5 collects the
work estimates for the 2D and the 3D variants of the standard quadrature Algorithm 2.2,
the sum factorization Algorithm 2.5, and the spectral-Galerkin Algorithm 2.10. In this
subsection, we will briefly point at some of the differences between 2D and 3D and illus-
trate how the work estimates of Table 5 were obtained.

A common decomposition of the spaces SpK is into vertex shape functions, edge shape
functions, face shape functions, and internal shape functions with the following two prop-
erties: first, all shape functions have tensor product structure and may be represented in
the following fashion (note that a 3D hexahedron has 8 vertices, 12 edges, and 6 faces for
a total of 26 geometric entities)

Ek = {χm
1,i(ξ1)χ

m
2,j(ξ2)χ

m
3,k(ξ3) |, 1 ≤ i ≤ Im, 1 ≤ j ≤ Jm, 1 ≤ k ≤ Km}, m = 1, . . . , 26,

I = {χI
1,i(ξ1)χ

I
2,j(ξ2)χ

I
3,k(ξ3) |, 1 ≤ i ≤ II , 1 ≤ j ≤ JI , 1 ≤ k ≤ KI}.

Second, the numbers Im, Jm, Km satisfy

∀m ∈ {1, . . . , 26} at least one of the numbers Im, Jm, Km is equal to 1. (3.30)

In order to fix ideas, we will again consider for our work estimates the case Qp(K̂). The
estimates, however, are valid for the general case as well. In that case, the values Im, Jm,

20

Km, and II , JI , KI would typically satisfy the following conditions:

for the 8 vertices, m ∈ {1, . . . , 8}: Im = Jm = Km = 1

for the 12 edges, m ∈ {9, . . . , 20}: exactly one of the three numbers Im, Jm, Km

equals p− 1 and the other two equal 1

for the 6 faces, m ∈ {21, . . . , 26}: exactly two of the three numbers Im, Jm, Km

equal p− 1 and the remaining one equals 1

for I: II = JI = KI = p− 1.

Since the shape functions have tensor product structure, the sum factorization Algo-
rithm 2.5 can be employed to evaluate the stiffness matrix with an operation count of
O(p4(p + q)3) (the use of GLp+q,p+q,p+q is assumed). Before proceeding to the analysis
of the 3D analogon of Algorithm 2.12 we point out that the calculation of all the Em-En

blocks of the stiffness matrix is done with O(p4(p + q) + p2(p + q)2 + p(p + q)3) work
by Algorithm 2.5. This operation count is due to the fact that our version of sum fac-
torization re-orders the triple sums of the quadrature rule so as to minimize the work.
Assumption (3.30) ensures that there is always one ordering of the triple sums which
yields this operation count (which is O(p5) for fixed q). If no reordering is performed,
it is easy to see that sum factorization techniques perform the calculation of the Em-En

blocks in O(p6) complexity. This re-ordering is therefore essential for the efficiency of our
hp-spectral Galerkin algorithm in 3D.

We now turn to the work estimates for the I-E and I-I blocks with internal shape
functions that are adapted to the quadrature rule. In the 3-D version of Algorithm 2.10,
6 possible reorderings of the triple quadrature sum have to be checked. However, in order
to obtain work estimates for the 3-D version of Algorithm 2.10, it suffices to consider
the floating point operation count for one particular, judiciously chosen ordering. We
illustrate this with an example, the calculation of spec sum fact(∂

∂ξ1
I, ∂

∂ξ2
E21, a). Here,

E21 is a set of face shape functions satisfying I21 = J21 = p− 1, K21 = 1. We evaluate the
triple quadrature sum as

Aijk,i′j′k′ =
∑

q2

χI
2,j(x2,q2)

(

χ21
2,j′

)′
(x2,q2)H1(q2, k, k

′, i, i′),

where H1(q2, k, k
′, i, i′) =

∑

q3

χI
3,k(x3,q3)χ

21
3,k′(x3,q3)H2(q2, q3, i, i

′),

and H2(q2, q3, i, i
′) =

∑

q1

(

χI
1,i

)′
(x1,q1)χ

21
1,i′(x1,q1)a(x1,q1 , x2,q2, x3,q3)w1,q1w2,q2w3,q3.

Generating the auxiliary arrayH2 can be achieved with workW (H2) = O((p+q)2p2(p+q)).
Next, as the internal shape functions are adapted to the quadrature rule, the sum in
the definition of H1 has only q + 1 non-vanishing entries for each k, and we arrive at
W (H1) = O((p + q)p3(1 + q)) for the generation of H1. Computing the final sum, we
can again exploit that the internal shape functions are adapted to the quadrature rule to
obtain W = O(p3p2(1+q)). The total cost is therefore W (A) = O(p5(1+q)+q2p3+q3p2).
We note that the essential feature of the above summation order is that the two outer
sums have only 1+ q non-zero terms and that only the innermost sum has p+ q+ 1 non-
zero terms; for our second-order model problem, the triple quadrature sums can always
be arranged in this way for the I-E blocks.

21

Let us consider now the calculation of the I-I block. We consider spec sum fact(∂
∂ξ1

I, ∂
∂ξ1

I, a).
This is evaluated as

Aijk,i′j′k′ =
∑

q2

χI
2,j(x2,q2)χ

I
2,j′(x2,q2)H1(q2, k, k

′, i, i′),

H1(q2, k, k
′, i, i′) =

∑

q3

χI
3,k(x3,q3)χ

I
3,k′(x3,q3)H2(q2, q3, i, i

′)

H2(q2, q3, i, i
′) =

∑

q1

(

χI
1,i

)′
(x1,q1)

(

χI
1,i′

)′
(x1,q1)a(x1,q1 , x2,q2, x3,q3)w1,q1w2,q2w3,q3.

We check that generating the auxiliary array H2 costs W (H2) = O((p+ q)3p2). Next, for
the evaluation of the array H1 it is convenient to write the set of quadrature points GLp+q

as GLp+q = N p,q ∪
(

GLp+q \ N p,q
)

and express H1 as

H1 =
∑

x∈N p,q

χI
3,k(x)χ

I
3,k′(x)H2 +

∑

x∈GLp+q\N p,q

χI
3,k(x)χ

I
3,k′(x)H2

= δk,k′H2(q2, k, i, i
′) +

∑

x∈GLp+q\N p,q

χI
3,k(x)χ

I
3,k′(x)H2.

The first term can be evaluated with work W = O((p+ q)p3). The sum has only q terms
and it costs W = O(q(p + q)p4) flops. The cost for the evaluation of H1 is therefore
W (H1) = O(p4 + qp5 + q2p4). Completely analogously, we conclude that the outermost
sum is performed with work W = O(qp6 + p5). The total cost for the I − I block is
therefore W (A) = O(qp6 + p5 + q2p4 + q3p2). Hence, the (p + 1)6 entries of the stiffness
matrix can be computed in optimal complexity O(p6).

Remark 3.1 It is interesting to note that the case of “minimal” quadrature, q = 0, is
special: The leading order term qp6 vanishes, and the complexity reduces again to O(p5)
3. This reduction of the complexity for q = 0 is due to the fact that adapting the internal
shape functions to the minimal quadrature rule introduces a significant amount of sparsity
in the I-I block of the stiffness matrix as only O(p5) entries of this block of size O(p6)
are non-zero.

We collect the work estimates for the standard Algorithm 2.2, the sum factorization
Algorithm 2.5, and our Algorithm 2.12 for the quadrature ruleGLp+q,p+q,p+q in conjunction
with the space Qp(K̂) in Table 5. For Algorithm 2.12, we included in Table 5 only the
work for the computation of the non-zero entries of the stiffness matrix.

3.2 Work estimates in 3D: numerical example

In the present section, we illustrate the quadrature speed-up of Algorithm 2.12 over both
the standard quadrature Algorithm 2.2 and the sum factorization Algorithm 2.5. All

3The work estimates in Table 5 ignore the initialization phase AK = 0, which is also an O(p6)
algorithm. To obtain a truely O(p5) algorithm for the case q = 0, a special storage format for AK has
to be used, that stores the non-zero entries only. From a practical point of view, one can assume that
initializing AK = 0 is done very efficiently by the operating system so that the O(p6) contribution is
negligible in the practical regime of polynomial degrees p.

22

algorithm 2D 3D
standard O(p4(p+ q)2) O(p6(p+ q)3)
sum fact. O(p4(p+ q) + p2(p+ q)2) O(p6(p+ q) + p4(p+ q)2 + p2(p+ q)3)
spect.-Gal. O(p4(1 + q) + p2q2) O(qp6 + p5 + q2p4 + q3p2)

Table 5: Asymptotic flop estimates for various quadrature schemes with overintegration
of order q ≥ 0

three algorithms were used to generate the stiffness matrix for a 3D scalar Poisson prob-
lem with zero-order term (hence, the mass matrix has to be generated also) with variable
coefficients for the space Qp(K̂), p = 1, . . . , 9. The actual shape functions are taken as
the 3D analogs of (2.24) for the vertex shape functions, of (2.25) for the internal shape
functions, and of (2.26) for the edges and faces. The stiffness matrix calculation was done
with the 3D-version of the hp-code HP90, [8], a general hp-code written in Fortran 90;
actual calculations were performed on a SUN UltraSparc running at 336Mhz using the
manufacturer provided F90 compiler with optimization flag (“-fast”) set. In Fig. 11 we
compare three algorithms: the standard Algorithm 2.2 (with Gauss-Legendre quadrature
with (p + 1)3 points), the sum factorization Algorithm 2.5 (again with Gauss-Legendre
quadrature with (p+1)3 points) and Algorithm 2.12 with Gauss-Lobatto quadrature rule
GLp,p,p (i.e., q = 0). For comparison reasons, we additionally show the time needed
to condense out the internal degrees of freedom as for environments where static con-
densation is performed as part of the element stiffness matrix generation routine, this
determines a lower bound for the speed-up. Fig. 11 in fact contains the timings for
two different condensation schemes: the faster of the two (labelled “blas3 condensation”)
uses the manufacturer-optimized LAPACK routine dposv and the BLAS3 routine dgemm.
For the element generation, the Spectral-Galerkin algorithm outperforms both the sum-
factorization and the standard algorithm: For p = 9, the stiffness matrix is generated in
228 secs. by the standard algorithm, in 46 secs. by the sum factorization and in only 19.6
secs. by the Spectral-Galerkin algorithm. The regular static condensation takes 28 secs.
whereas the optimized one takes 2.7 secs. Thus, for our scalar model problem and the
range p = 1, . . . , 9, our Spectral-Galerkin algorithm does provide a means to significantly
speed up the element CPU-time: compared with (even our improved version of) the sum
factorization algorithm, the Spectral-Galerkin algorithm generates the condensed element
matrix by a factor 2 faster (46 + 2.7 secs. vs. 19.6 + 2.7 secs.).

Comparing the slopes of the curves in Fig. 11, we also see that the Spectral-Galerkin
algorithm is of lower complexity than the sum factorization algorithm showing that our
asymptotic complexity analysis above is valid for small p as well.

A detailed break-down of the timings for the generation of the different blocks of the
stiffness matrix for the sum factorization technique and the Spectral-Galerkin Algorithm
is done in Figs. 12, 13. Adapting the internal shape functions to the quadrature rule has
the biggest impact on the timings for the I-I block (the “bubble-bubble” block): Whereas
for the sum factorization (cf. Fig. 12) it is the most expensive part, it is the cheapest for
the Spectral-Galerkin algorithm in the range p = 2—9 (cf. Fig. 13). Some speed-up is also
visible for the generation of the bubble-face block. Note, however, that the timings here
are given for our sum factorization Algorithm 2.5, which is an improved version of the
classical algorithm in that re-ordering of the quadrature sums is performed. Otherwise, the

23

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

1 10 100 1000

s
e

c
o

n
d

s

Degrees of Freedom

Comparison of different algorithms

spectral Galerkin
sum factorization

standard algorithm
static condensation

BLAS3 condensation

Figure 11: CPU time per hexahedral element for standard, sum factorization, and
spectral-Galerkin algorithm for scalar 3D model problem; also included: standard con-
densation and condensation based on optimized LAPACK and BLAS routines.

discrepancy between the classical sum factorization algorithm and the Spectral-Galerkin
algorithm for the bubble-face block would have been bigger. As the Spectral-Galerkin
algorithm reduces to sum factorization techniques for the En-Em blocks, the timings for
the blocks not involving the internal shape functions are identical.

Fig. 14 finally shows the timings for various auxiliary and book-keeping procedures: the
evaluation of the 1-D shape functions in the quadrature points, dealing with constraint
nodes, and the computation of the right hand side are seen to be negligible compared to
the quadrature.

In our algorithms, we did not focus on the cost of evaluating the geometry and the
coefficient matrix at the quadrature points. In our calculations, the actual element map
was a trilinear function and the coefficient matrix A was very simple, thus leading to an
operation count of O((p + q)3) for sampling these data in the quadrature points. The
timings for this part of the element computation are given in Fig. 14 and labelled “eval.
Jacobian”. We point out that this part of the computation does depend strongly on the
actual element maps (or approximations thereof) and the coefficients of the differential
equations.

4 Conclusions

We have presented and discussed quadrature techniques for hp-FEM in two and three
dimensional elliptic problems. The main idea consisted in the design of shapefunctions
that are adapted to the quadrature rule and in the classical sum-factorization used. A
special case is the spectral element method which is well-established in computational

24

0.0001

0.001

0.01

0.1

1

10

100

1 10 100 1000

s
e

c
o

n
d

s

Degrees of Freedom

detailed timings for sum factorization

total time
vertex-vertex
edge-vertex
edge-edge
face-vertex
face-edge
face-face

bubble-vertex
bubble-edge
bubble-face

bubble-bubble

Figure 12: Break-down of timing for sum factorization algorithm for scalar 3D model
problem.

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1 10 100 1000

s
e
c
o
n
d
s

Degrees of Freedom

detailed timings for spectral Galerkin algorithm

total time
vertex-vertex
edge-vertex
edge-edge
face-vertex
face-edge
face-face

bubble-vertex
bubble-edge
bubble-face

bubble-bubble

Figure 13: Break-down of timing for Spectral-Galerkin algorithm for scalar 3D model
problem.

25

0.0001

0.001

0.01

0.1

1

1 10 100 1000

s
e

c
o

n
d

s

Degrees of Freedom

miscellaneous auxiliary function timings

eval. shape fcts
eval. Jacobian
reorder matrix

right-hand side
enforce constraints

Figure 14: Timings for auxiliary functions sum factorization/spectral Galerkin algorithm
for scalar 3D model problem.

fluid dynamics. The spectral element method is well-known, however, to underintegrate
the element stiffness matrices which is known to cause stability problems if elliptic systems
are thus discretized. We generalized therefore the ideas in the spectral element method by
decoupling the quadrature order from the elemental degree, as is customary in Galerkin
hp-FEM. Lagrange shapefunctions based on a suitable subset of the Gauss-Lobatto nodes
were proposed. New choices of nodal sets for these functions were given based on the
criterion of small condition number for the resulting stiffness matrices. The condition
numbers thus obtained were found to be marginally worse than those of the spectral
element method, while the CPU-times for the element stiffness matrix generation were
comparable to those of the spectral element method. The new algorithm was found
to outperform the standard Galerkin scheme with sum-factorization. For polynomial
degrees between 1 and 10, static condensation was found to be considerably cheaper than
the quadrature for the stiffness matrix generation. The ideas in the present paper have
natural generalizations to triangles and tetrahedra which will be presented elsewhere.

Acknowledgement: We thank Philipp Frauenfelder for implementing the 3D quadrature
rules in the code HP90, [8].

References

[1] R. Actis, B. Szabó, C. Schwab, Hierarchic models for laminated plates and shells,
Comput. Meths. Appl. Mech. Eng. vol. 172 (1999), p.79–107

[2] I. Babuška and M. Suri. The p and hp Versions of the Finite Element Methods, Basic
Principles and Properties. SIAM review 36 (1994) 578-632.

26

[3] C. Bernardi and Y. Maday. Approximations spectrales de problèmes aux limites
elliptiques. Springer, 1992.

[4] F. Ben Belgacem, Y. Maday. A spectral element methodology tuned to parallel im-
plementations. Comput. Meths. Appl. Mech. Eng. 116 (1994), p. 59–67.

[5] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zhang. Spectral Methods in
Fluid Dynamics, Springer Verlag, 1986.

[6] L. Demkowicz, J.T. Oden, W. Rachowicz and O. Hardy. Toward a Universal hp
Adaptive Finite Element Strategy. Part 1: Constrained Approximation and Data
Structure. Computer Methods in Applied Mechanics and Engineering, 77 (1989),
79-112.

[7] L. Demkowicz, W. Rachowicz, K. Banas and J. Kucwaj. 2-D hp Adaptive Package
(2DhpAP). Technical Report, Section of Applied Mathematics, Technical University
of Cracow, Poland, 1992.

[8] L. Demkowicz, K. Gerdes, C. Schwab, A. Bajer and T. Walsh. HP90: A general and
flexible Fortran 90 hp-FE code. Computing and Visualization in Science 1 (1998)
145-163.

[9] K. Gerdes, J.M. Melenk, and C. Schwab. Fully Discrete hp-FEM: Error Analysis. (in
preparation)

[10] D. Gottlieb and S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and
Applications, CBMS 26, SIAM, 1977.

[11] W. Hackbusch. Multigrid Methods and Applications. Springer Verlag, 1985.

[12] G.E. Karniadakis and S.J. Sherwin, Spectral/hp Element Methods for CFD, Oxford
University Press, 1999

[13] K.Z. Korczak and A.T. Patera, An Isoparametric Spectral Element Method for So-
lution of the Navier-Stokes Equations in Complex Geometry. J. Comput. Phys. 62
(1986), p. 361–382

[14] Y. Maday and A.T. Patera. Spectral Element Method for Navier-Stokes Equations.
In: State of the Art Surveys in Computational Mechanics (A.K. Noor and J.T. Oden,
eds.), (1989), p. 71–143

[15] P. Le Tallec and A. Patra. Non-overlapping domain decomposition methods for adap-
tive hp approximations of the Stokes problem with discontinuous pressure fields.
Comput. Methods Appl. Mech. Engrg. 145 (1997) 361-379.

[16] J. T. Oden, A. Patra and Y. Feng. Parallel Domain Decomposition Solver for Adap-
tive hp Finite Element Methods. SIAM J. Numer. Anal. vol. 34 (1997) 2090-2118.

[17] S.A. Orszag, spectral methods for problems in complex geometries, J. Comput. Phys.,
vol. 37 (1980), 70–92.

[18] A.T. Patera, Spectral Element Method for Fluid Dynamics: Laminar Flow in a
Channel Epansion, J. Comput. Phys. 54 (1984), p. 568–488

27

[19] C. Schwab. The p and hp FEM. Oxford University Press, 1998.

[20] STRIPE, Flygtekniska Försöksanstalten, Box 11021, S-16111 Bromma, Sweden.

[21] Stresscheck, ESRD Inc., 10845 Olive Boulevard, Suite 170, St. Louis, MO 63141-7760,
http://www.esrd.com

[22] PHLEX, Computational Mechanics Company, Inc. 7800 Shoal Creek Blvd, Suite
290E, Austin, TX 78757-1024, http://www.comco.com

[23] Burkhard Sündermann. Lebesgue Constants in Lagrangian Interpolation at the
Fekete points. Ergebnisberichte der Lehrstühle Mathematik III und VIII (Ange-
wandte Mathematik) 44, Universität Dortmund, 1980.

[24] B. Szabó and I. Babuška. Finite Element Analysis. Wiley 1991.

28

Research Reports

No. Authors Title

99-15 J.M. Melenk, K. Gerdes,
C. Schwab

Fully Discrete hp-Finite Elements: Fast
Quadrature

99-14 E. Süli, P. Houston,
C. Schwab

hp-Finite Element Methods for Hyperbolic
Problems

99-13 E. Süli, C. Schwab,
P. Houston

hp-DGFEM for Partial Differential Equations
with Nonnegative Characteristic Form

99-12 K. Nipp Numerical integration of differential algebraic
systems and invariant manifolds

99-11 C. Lage, C. Schwab Advanced boundary element algorithms
99-10 D. Schötzau, C. Schwab Exponential Convergence in a Galerkin Least

Squares hp-FEM for Stokes Flow
99-09 A.M. Matache, C. Schwab Homogenization via p-FEM for Problems

with Microstructure
99-08 D. Braess, C. Schwab Approximation on Simplices with respect to

Weighted Sobolev Norms
99-07 M. Feistauer, C. Schwab Coupled Problems for Viscous Incompressible

Flow in Exterior Domains
99-06 J. Maurer, M. Fey A Scale-Residual Model for Large-Eddy

Simulation
99-05 M.J. Grote Am Rande des Unendlichen: Numerische Ver-

fahren für unbegrenzte Gebiete
99-04 D. Schötzau, C. Schwab Time Discretization of Parabolic Problems by

the hp-Version of the Discontinuous Galerkin
Finite Element Method

99-03 S.A. Zimmermann The Method of Transport for the Euler Equa-
tions Written as a Kinetic Scheme

99-02 M.J. Grote, A.J. Majda Crude Closure for Flow with Topography
Through Large Scale Statistical Theory

99-01 A.M. Matache, I. Babuška,
C. Schwab

Generalized p-FEM in Homogenization

98-10 J.M. Melenk, C. Schwab The hp Streamline Diffusion Finite Element
Method for Convection Dominated Problems
in one Space Dimension

98-09 M.J. Grote Nonreflecting Boundary Conditions For Elec-
tromagnetic Scattering

98-08 M.J. Grote, J.B. Keller Exact Nonreflecting Boundary Condition For
Elastic Waves

98-07 C. Lage Concept Oriented Design of Numerical
Software

98-06 N.P. Hancke, J.M. Melenk,
C. Schwab

A Spectral Galerkin Method for Hydrody-
namic Stability Problems

