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EXPONENTIAL CONVERGENCE OF hp-ILGFEM FOR SEMILINEAR

ELLIPTIC BOUNDARY VALUE PROBLEMS WITH MONOMIAL REACTION

YANCHEN HE, PAUL HOUSTON, CHRISTOPH SCHWAB, AND THOMAS P. WIHLER

Abstract. We study the fully explicit numerical approximation of a semilinear elliptic bound-

ary value model problem, which features a monomial reaction and analytic forcing, in a bounded
polygon Ω ⊂ R2 with a finite number of straight edges. In particular, we analyze the convergence
of hp-type iterative linearized Galerkin (hp-ILG) solvers. Our convergence analysis is carried
out for conforming hp-finite element (FE) Galerkin discretizations on sequences of regular, sim-
plicial partitions of Ω, with geometric corner refinement, with polynomial degrees increasing in
sync with the geometric mesh refinement towards the corners of Ω. For a sequence of discrete
solutions generated by the ILG solver, with a stopping criterion that is consistent with the ex-
ponential convergence of the exact hp-FE Galerkin solution, we prove exponential convergence
in H1(Ω) to the unique weak solution of the boundary value problem. Numerical experiments

illustrate the exponential convergence of the numerical approximations obtained from the pro-
posed scheme in terms of the number of degrees of freedom as well as of the computational

complexity involved.

1. Introduction

On an open bounded polygon Ω ⊂ R
2 with straight edges we aim to design and analyze a fully

discrete numerical approximation scheme in terms of an exponentially convergent hp-version finite
element method (hp-FEM) for the semilinear elliptic diffusion-reaction model equation

−∆u+ λu2q+1 = f in Ω, (1a)

where q ∈ N0 is a fixed integer, λ > 0 is a positive constant, and f ∈ L2(q+1)/(2q+1)(Ω) is a given
source function (independent of u). In order to impose Dirichlet and Neumann boundary condi-
tions, we signify the individual (straight) edges of the boundary Γ := ∂Ω by Γi, i = 1, 2, . . . ,m;
here, we suppose that each edge Γi is the line connecting two consecutive corners ci and ci+1 of Ω
(where we let cm+1 = c1). For a nonempty index set D ⊆ {1, 2, . . . ,m}, which will be used to iden-
tity Dirichlet boundary edges, we define the remaining indices N := {1, 2, . . . ,m}\D to specify the
Neumann boundary part. In accordance with the (disjoint) decomposition D ∪ N = {1, . . . ,m},
we introduce the boundary conditions

u = 0 on ΓD :=
⋃

i∈D

Γi, (1b)

and

∂nu = 0 on ΓN :=
⋃

i∈N

Γi, (1c)

where ∂nu is the outward normal derivative along ΓN .
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School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7

2RD, UK
Seminar for Applied Mathematics, ETH Zürich, CH-8092 Zürich, Switzerland
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Admitting a variational formulation, see (2) below, the boundary value problem (1) will be
naturally discretized by applying conforming Galerkin projections on a sequence of subspaces
WN ⊂ H1

D(Ω) of finite dimension N ∼ dim(WN ), where

H1
D(Ω) := {v ∈ H1(Ω) : v|ΓD

= 0}

is the usual Sobolev space of all weakly differentiable functions in the Lebesgue space L2(Ω), with
first-order partial derivatives in L2(Ω), and zero boundary values along ΓD in the sense of traces.
Owing to the monotone structure of the nonlinear reaction term in (1), the associated standard
weak formulation is uniquely solvable, both in the continuous and in the discrete setting, and a
quasi-optimality property can be derived (see Propositions 1, 3, and 4 below).

The Galerkin discretization of (1) results in a nonlinear algebraic system of dim(WN ) equations,
whose structure depends on the subspace WN as well as on the choice of basis functions for WN ,
that must be solved by an appropriate numerical approximation procedure. The purpose of the
present paper is to propose an iterative solver for these nonlinear equations, which is based on
linear Galerkin discretizations in the individual steps, and to prove its global convergence. In
particular, in the case where WN is realized by a sequence of hp-finite element subspaces, for
analytic forcing f in Ω in (1a), we show that it is possible to terminate the iterative procedure
after finitely many steps in a way that the resulting numerical approximations exhibit exponential
rates of convergence in H1(Ω) as expressed in terms of the overall computational work (see the
main result, Theorem 3, of this paper).

Previous work. Earlier results on the numerical analysis of iterative Galerkin methods for non-
linear elliptic partial differential equations (PDEs), which are closely related to the approach
developed here, can be found, e.g., in (8; 9), where low-order (so-called “h-version”) FEM for the
solution of (1) have been proposed and analyzed. In the context of hp-version FEM, we refer to
the article (11) on strongly monotone elliptic problems. More generally, the so-called iterative lin-
earized Galerkin (ILG) methodology for nonlinear PDEs, which is based on a-posteriori residual
estimators for the Galerkin discretization error and the iterative solution of the associated nonlin-
ear algebraic equations, has been developed in the series of papers (4; 17; 18) and the references
cited therein. In addition, we refer to the works (12; 13), where the use of inexact linear solvers
was also taken into account. Finally, for iterative linearized hp-adaptive (discontinuous) Galerkin
discretizations for semilinear PDEs, we mention the paper (19).

Contribution. If the source term f in the PDE (1) is analytic in Ω, then the (unique) weak
solution of (1) belongs to a class of functions that are analytic at each point in (the open domain) Ω,
with quantitative control on the loss of analyticity of these functions in a vicinity of the corner
points; see the recent work (16). More precisely, the weak solution belongs to a class of functions
that satisfy analytic estimates in a scale of corner-weighted Hilbertian Sobolev spaces of Kondrat’ev
type. As it is well-known, see, e.g., (14; 21), membership of a function in such classes allows for
the establishment of exponential approximability in suitable discrete spaces of continuous piecewise
polynomial functions in Ω on regular, simplicial partitions that are geometrically refined towards
the corners of Ω. For the semilinear elliptic boundary value problem (1) under consideration, we
formulate the corresponding exponential approximability result in Theorem 2 below.

The Galerkin discretization of a suitable variational formulation of (1) amounts to a possi-
bly large nonlinear algebraic system of equations for the coefficients in the representation of the
Galerkin approximation. We present an iterative scheme for the efficient numerical solution of
these equations, and establish geometric convergence of the iterates in the H1(Ω)-norm in Theo-
rem 1 below. The proof is based on energy type arguments, and thereby, constants in the con-
traction rate bounds do not explicitly depend on the dimension dN of the underlying hp-Galerkin
approximation space.

The main achievement of our paper is a fully explicit, iterative hp-version finite element scheme
for the numerical solution of (1), with a rigorous theoretical analysis of its exponential approx-
imation properties and computational complexity. The key idea is to terminate the iteration in
tandem with the (asymptotically) exponential convergence rates in the hp-Galerkin discretization,
and thereby, to reach a prescribed target accuracy 0 < ε ≪ 1 in the H1(Ω)-norm. We prove
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that this procedure requires at most O(| log(ε)|7) floating point operations, which is confirmed
computationally in §5 of this paper, where we report on several numerical experiments for the
proposed hp-ILG method that are in complete agreement with the theoretical error bounds.

Notation. For a summability index r ∈ (0,∞], we denote by Lr(Ω) the usual spaces of Lebesgue
measurable, r-integrable functions in Ω. For a nonnegative integer k, we write Hk(Ω) to be the
Hilbertian Sobolev space of k-times weakly differentiable functions in Ω whose weak derivatives
of order k belong to L2(Ω), with the convention H0(Ω) = L2(Ω). Furthermore, in any state-
ments about “error-vs.-work”, the notion of “work” refers to an integer number of floating-point
operations.

Outline. In §2 we discuss the weak formulation of the boundary value problem (1). In particular,
in §2.3, we introduce corner-weighted Sobolev spaces of Kondrat’ev type, and revisit an analytic
regularity result for the weak solution from (16). Then, §3 deals with the design and analysis of
the ILG approach in abstract Galerkin spaces. Furthermore, in the context of hp-FE spaces, we
establish the geometric rate of convergence, i.e. reaching a target tolerance ε > 0 in O(| log(ε)|)
many iteration steps. We develop an error vs. complexity analysis of the hp-discretization, in-
cluding the nonlinear iteration with finite termination, in §4 . In §5 we present some numerical
examples that confirm the theoretical results within a computational context. Finally, in §6 we
summarize the principal findings of this article.

2. Weak solution

We introduce a weak formulation of (1), and establish the existence and uniqueness of weak
solutions. In addition, from (16), we recapitulate the analytic regularity of the weak solution u of
(1) in Ω, i.e., we discuss a priori estimates for u in corner-weighted Sobolev spaces of arbitrary
order, for given forcing f that is analytic in Ω. Crucially, this corner-weighted, analytic regularity
is known to imply exponential approximability of so-called hp-FE approximations which will be
discussed in §3.3 below.

2.1. Weak formulation. The weak formulation of (1) is to find u ∈ H1
D(Ω) such that

a(u, v) + λb(u; v) =

∫

Ω

fv dx ∀v ∈ H1
D(Ω), (2)

where we define the standard bilinear form via

a(v, w) :=

∫

Ω

∇v · ∇w dx, v, w ∈ H1
D(Ω), (3)

and, for any given u ∈ H1
D(Ω), the linear form

v 7→ b(u; v) :=

∫

Ω

u2q+1v dx, v ∈ H1
D(Ω). (4)

Remark 1. Exploiting the continuous Sobolev embedding bound

∥v∥L2(q+1)(Ω) ≤ Cq(Ω)∥∇v∥L2(Ω) ∀v ∈ H1
D(Ω), (5)

where Cq(Ω) > 0 is a constant depending only on Ω, D and N , and q ∈ [0,∞), for any fixed
u ∈ H1

D(Ω), we note that the mapping v 7→ b(u; v) is a bounded linear functional on H1
D(Ω).

Indeed, this follows immediately from Hölder’s inequality, which implies that

|b(u; v)| ≤ ∥u∥2q+1
L2(q+1)(Ω)

∥v∥L2(q+1)(Ω) ≤ Cq(Ω)
2(q+1)∥∇u∥2q+1

L2(Ω)∥∇v∥L2(Ω),

for any v ∈ H1
D(Ω).

The following technical result is instrumental for our ensuing convergence analysis of the hp-ILG
discretization of (1).
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Lemma 1. For any q ∈ N0 the nonlinear form from (4) satisfies the monotonicity property

b(u;u− v)− b(v;u− v) ≥ 0 ∀u, v ∈ H1
D(Ω). (6)

Furthermore, the (local) Lipschitz continuity bound holds

|b(u; v)− b(w; v)|

≤ (2q + 1)Cq(Ω)
2(q+1)

(
∥∇u∥L2(Ω) + ∥∇(u− w)∥L2(Ω)

)2q
∥∇(u− w)∥L2(Ω)∥∇v∥L2(Ω), (7)

for any u, v, w ∈ H1
D(Ω), with Cq(Ω) the constant from (5).

Proof. The estimate (6) follows immediately by noticing that the nonlinear reaction term g(t) :=
t2q+1, t ∈ R, occurring in (1) satisfies the monotonicity property

(g(t1)− g(t2))(t1 − t2) ≥ 0 ∀t1, t2 ∈ R;

then, for any u, v ∈ H1
D(Ω), we infer that

b(u;u− v)− b(v;u− v) =

∫

Ω

(
u2q+1 − v2q+1

)
(u− v) dx ≥ 0. (8)

In order to derive the bound (7), for any x, y ∈ R, we observe the binomial formula

x2q+1 =

2q+1∑

k=0

(
2q + 1

k

)
(x− y)2q+1−kyk,

or equivalently,

x2q+1 − y2q+1 =

2q∑

k=0

(
2q + 1

k

)
(x− y)2q+1−kyk.

Therefore, for any u, v, w ∈ H1
D(Ω), it follows that

|b(w; v)− b(u; v)| ≤

2q∑

k=0

(
2q + 1

k

)∫

Ω

|u− w|2q+1−k|u|k|v| dx.

Applying a (triple) Hölder inequality, for 1 ≤ k ≤ 2q, we note that

∫

Ω

|u− w|2q+1−k|u|k|v| dx

≤

(∫

Ω

|u− w|2(q+1)

)(2q+1−k)/2(q+1) (∫

Ω

|u|2(q+1)

)k/2(q+1) (∫

Ω

|v|2(q+1)

)1/2(q+1)

;

it is straightforward to see that this bound extends to the case k = 0. Hence, we obtain

|b(u; v)− b(w; v)| ≤ ∥v∥L2(q+1)(Ω)

2q∑

k=0

(
2q + 1

k

)
∥u− w∥2q+1−k

L2(q+1)(Ω)
∥u∥kL2(q+1)(Ω)

= ∥u− w∥L2(q+1)(Ω)∥v∥L2(q+1)(Ω)

2q∑

k=0

(
2q + 1

k

)
∥u− w∥2q−k

L2(q+1)(Ω)
∥u∥kL2(q+1)(Ω).

Noticing that
(
2q + 1

k

)
≤ (2q + 1)

(
2q

k

)
, 0 ≤ k ≤ 2q,

and recalling the Sobolev embedding bound (5), completes the proof. □



hp-ILGFEM FOR SEMILINEAR ELLIPTIC PDE 5

2.2. Well-posedness of weak formulation. The semilinear boundary value problem (1) admits
a unique weak solution in H1

D(Ω).

Proposition 1 (Existence, uniqueness, and stability). For the weak formulation (2) there exists
exactly one solution u ∈ H1

D(Ω). This solution is stable in the sense that

∥∇u∥L2(Ω) ≤ ρ, (9a)

where

ρ := Cq(Ω)∥f∥L2(q+1)/(2q+1)(Ω)
, (9b)

with Cq(Ω) > 0 the Sobolev embedding constant from (5).

Proof. We aim to apply the main theorem on monotone potential operators. To this end, we
define the functional

F(v) :=
1

2

∫

Ω

|∇v|2 dx+
λ

2(q + 1)

∫

Ω

v2(q+1)
dx−

∫

Ω

fv dx, v ∈ H1
D(Ω),

which is well-defined owing to the Sobolev embedding bound (5). For any v ∈ H1
D(Ω), employing

Hölder’s inequality, and exploiting (5), we note that
∣∣∣∣
∫

Ω

fv dx

∣∣∣∣ ≤ ∥f∥
L2(q+1)/(2q+1)(Ω)

∥v∥L2(q+1)(Ω) ≤ Cq(Ω)∥f∥L2(q+1)/(2q+1)(Ω)
∥∇v∥L2(Ω) ∀v ∈ H1

D(Ω).

(10)
Hence, we deduce that

F(v) ≥
1

2
∥∇v∥2L2(Ω) − Cq(Ω)∥f∥L2(q+1)/(2q+1)(Ω)

∥∇v∥L2(Ω) → +∞,

whenever ∥∇v∥L2(Ω) → ∞, i.e., F is weakly coercive. For the Gâteaux derivative of F we have that

⟨F′(u), v⟩ =

∫

Ω

∇u · ∇v dx+ λ

∫

Ω

u2q+1v dx−

∫

Ω

fv dx ∀u, v ∈ H1
D(Ω),

i.e., the weak formulation (2) is equivalent to

⟨F′(u), v⟩ = 0 ∀v ∈ H1
D(Ω), (11)

where ⟨·, ·⟩ signifies the dual product. Furthermore, using (6), we observe that

⟨F′(u)− F
′(v), u− v⟩ = ∥∇(u− v)∥2L2(Ω) + λ(b(u;u− v)− b(v;u− v)) ≥ ∥∇(u− v)∥2L2(Ω) > 0

for all u ̸= v in H1
D(Ω), i.e., F

′ is strictly monotone. Then, applying (24, Thm. 25.F) guarantees
that there exists a unique solution of the weak formulation (11). Finally, for v = u in (2),
applying (10), and invoking (9b), we conclude that

∥∇u∥2L2(Ω) ≤ a(u, u) + λb(u;u) =

∫

Ω

fu dx ≤ Cq(Ω)∥f∥L2(q+1)/(2q+1)(Ω)
∥∇u∥L2(Ω) ≤ ρ∥∇u∥L2(Ω),

which completes the argument. □

2.3. Analytic regularity in scales of Hilbertian, corner-weighted Sobolev spaces. If the
underlying domain Ω for the boundary value problem (1) exhibits corners then it is well-known
that the inverse Dirichlet Laplace operator does not provide full elliptic regularity. Indeed, for
f ∈ L2(Ω), the solution belongs to H2(Ω◦) in any open, interior subset Ω◦, with Ω◦ ⊂ Ω. The H2-
regularity does in general, however, not hold in a vicinity of the corners. To describe this behaviour

more precisely, the scale of Hilbertian, corner-weighted Sobolev spaces Hk,l
β (Ω), for k ≥ l ∈ N, has

been introduced, e.g., in (6); here, β = (β1, . . . , βm) is a vector of (scalar) corner weight exponents
βi ∈ [0, 1), i = 1, . . . ,m, that are associated to the m corner points c1, . . . , cm of Ω. Then, based
on the corner-weight function Φβ(x) :=

∏m
i=1 dist(x, ci)

βi , for integers k and ℓ with k ≥ ℓ ≥ 0, we
introduce the corner-weighted Sobolev norms ∥ ◦ ∥Hk,ℓ

β

in Ω via

∥v∥2
Hk,ℓ

β
(Ω)

:= ∥v∥2Hℓ−1(Ω) +

k∑

j=ℓ

∑

α1+α2=j

∥Φβ+j−ℓ∂
α1
x1

∂α2
x2

v∥2L2(Ω), (12)



6 Y. HE, P. HOUSTON, C. SCHWAB, AND T. P. WIHLER

and define corner-weighted Sobolev spaces

Hk,ℓ
β (Ω) =

{
v ∈ H1(Ω) : ∥v∥Hk,ℓ

β
(Ω) < ∞

}
.

In (12), for ℓ = 0, the term ∥v∥2Hℓ−1(Ω) is dropped. Referring to, e.g., (21) and the references cited

therein, it also holds that

H2,2
β (Ω) ⊂ C(Ω) with continuous embedding,

and

H2,2
β (Ω) ⊂ H1(Ω) with compact embedding.

Based on the corner-weighted Sobolev spaces Hk,ℓ
β (Ω) of finite order k, we introduce corner-

weighted, analytic classes Bℓ
β(Ω).

Definition 1 (Weighted analytic class Bℓ
β(Ω)). Let ℓ ≥ 0 be an integer. A function v belongs to

the class Bℓ
β(Ω) if

(1) v belongs to Hk,ℓ
β (Ω) for all integer k ≥ ℓ, and

(2) it holds that there exist constants Cv, dv > 0 such that

∀k ≥ ℓ :
∥∥Φβ+k−ℓ|D

k v|
∥∥
L2(Ω)

≤ Cvd
k−ℓ
v (k − ℓ)! ,

with the notation
∣∣Dk v

∣∣ =
∑

α1+α2=k

∣∣∂α1
x1

∂α2
x2

v
∣∣.

For 1 ≤ i ≤ m, we denote by ωi ∈ (0, 2π) the interior angle of Ω at the corner ci. The following
regularity result was established in (16).

Proposition 2 (Regularity of weak solution). Let β ∈ [0, 1)m such that, for any i ∈ {1, 2, . . . ,m},
it holds

{
βi > 1− π/ωi if {i− 1, i} ⊂ D or {i− 1, i} ⊂ N ,

βi > 1− π/2ωi otherwise.
(13)

Then for f ∈ B0
β(Ω) in (1), the solution u ∈ H1

D(Ω) of (1) belongs to B2
β(Ω).

Remark 2. We note that the first bound in (13) refers to a corner point ci that connects two
adjacent “Dirichlet edges” or two “Neumann edges”, while the second bound applies to a corner
point ci where the type of boundary condition changes.

3. Iterative linearized Galerkin (ILG) discretization

It is well-known that certain Galerkin discretizations of elliptic equations, which are based on
sequences {WN}N≥1 of subspaces WN ⊂ H1

D(Ω) of dimension at most N , are able to achieve
exponential rates of convergence if the underlying weak solution exhibits B2

β(Ω)-regularity as pro-

vided in Proposition 2 above; see, e.g., (21) and the reference therein. We point out, however,
that such results are based on assuming that the corresponding nonlinear Galerkin equations are
solved exactly. Evidently, this is an unrealistic hypothesis in the context of practical numerical
solution methods for nonlinear problems; indeed, in the absence of an exact nonlinear solver, the
corresponding system of O(N) nonlinear algebraic equations for the unknowns in the Galerkin
solution uN ∈ WN need to be solved approximately by some iterative process that must be run
to an accuracy of the order of the best approximation error. This approach will be addressed in
this section.

We begin by providing an abstract error analysis of approximate solutions in generic, closed
Galerkin subspaces of H1

D(Ω). Subsequently, we consider the specific context of hp-FE discretiza-
tions in §4.
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3.1. Finite-dimensional Galerkin approximations. In the sequel, let WN ⊂ H1
D(Ω) denote

any finite-dimensional (and thus closed) subspace, and consider the Galerkin discretization of the
boundary value problem (1) on WN in weak form: find U ∈ WN such that

a(U, v) + λb(U ; v) =

∫

Ω

fv dx ∀v ∈ WN . (14)

The following result follows verbatim as in the proof of Proposition 1.

Proposition 3 (Well-posedness of Galerkin discretization). There exists a unique solution U ∈
WN of the discrete weak formulation (14), and the stability bound ∥∇U∥L2(Ω) ≤ ρ holds, with ρ
from (9b).

The Galerkin approximation U is a quasi-optimal approximation of u.

Proposition 4 (Quasi-optimality). For the error between the solution u ∈ H1
D(Ω) of (2) and its

Galerkin approximation U ∈ WN of (14), the following bound holds

∥∇(u− U)∥L2(Ω) ≤ C inf
w∈WN

∥∇(u− w)∥L2(Ω),

for a constant C > 0 depending only on λ, q, Ω, and f in (1).

Proof. Introducing the error eWN
:= u− U , we observe the Galerkin orthogonality of eWN

:

a(eWN
, v) + λb(u; v)− λb(U ; v) = 0 ∀v ∈ WN .

Thereby, for any w ∈ WN , the following identity holds

∥∇eWN
∥2L2(Ω) = a(eWN

, u− w) + a(eWN
, w − U)

= a(eWN
, u− w)− λb(u;w − U) + λb(U ;w − U)

= a(eWN
, u− w)− λb(u;u− U) + λb(U ;u− U)− λb(u;w − u) + λb(U ;w − u),

for the exact Galerkin approximation U ∈ WN . Exploiting the monotonicity property stated
in (6), we observe that

∥∇eWN
∥2L2(Ω) ≤ ∥∇eWN

∥L2(Ω)∥∇(u− w)∥L2(Ω) − λb(u;w − u) + λb(U ;w − u).

Recalling the stability estimate (9a), which holds for both u and U , cf. Proposition 3, and apply-
ing (7), we deduce that

∥∇eWN
∥L2(Ω) ≤ ∥∇(u− w)∥L2(Ω) + λ(2q + 1)Cq(Ω)

2(q+1) (3ρ)
2q ∥∇(u− w)∥L2(Ω),

with ρ from (9b). Since w ∈ WN was chosen arbitrarily, the proof is complete. □

3.2. Iterative solution. We consider an iterative linearization for the solution of the discrete
Galerkin formulation (14) in terms of a Picard scheme (also called Zarantanello iteration), cf. (11;
18): starting from any initial guess U0 ∈ H1

D(Ω), for a (fixed) parameter 0 < α ≤ 1, consider a
sequence {Un}n≥1 ⊂ WN that is generated by the iteration

a(Un+1, v) = (1− α)a(Un, v) + α

(∫

Ω

fv dx− λb(Un; v)

)
∀v ∈ WN , (15)

for n ≥ 0.

Proposition 5 (Contraction of ILG procedure). For any initial guess U0 ∈ H1
D(Ω), the itera-

tion (15), with
α ∈ (0, 1] ∩ (0, 2/(L2+1)), (16)

where
L := λ(2q + 1)Cq(Ω)

2(q+1)
(
2ρ+ ∥∇U0∥L2(Ω)

)2q
, (17)

satisfies the bound

∥∇(U − Un+1)∥L2(Ω) ≤ rn+1
α ∥∇(U − U0)∥L2(Ω) ∀n ≥ 0,

with the contraction constant
rα :=

√
(1− α)2 + α2L2 < 1. (18)
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Here, U ∈ WN is the solution of the Galerkin formulation (14), ρ is defined in (9b), and Cq(Ω)
is the Sobolev embedding constant from (5). In particular, the iteration (15) converges strongly in
H1

D(Ω), i.e., limn→∞ ∥∇(U − Un)∥L2(Ω) = 0.

Remark 3. For the value α⋆ :=
(
1 + L2

)−1
< 1, with L from (17), we note that rmin := rα⋆ =

L(1 + L2)−1/2 < 1 is the minimal value of rα in (18).

Proof of Proposition 5. We proceed by induction with respect to n ≥ 0. To this end, we follow
along the lines of the classical theory for monotone operators, see, e.g., (20, §3.3), whereby we work
with a local Lipschitz continuity property similar to the analysis in (7). Let R := ∥∇(U−U0)∥L2(Ω),
and suppose that

∥∇(U − Uk)∥L2(Ω) ≤ Rrkα, for k = 0, . . . , n, (19)

which is obviously true for n = 0. Then, by virtue of Remark 1, we are able to define a unique
(Riesz representer) ξn ∈ WN by the weak formulation

a(ξn, v) = b(U ; v)− b(Un; v) ∀v ∈ WN . (20)

In light of (7) we note that

|b(U ; v)− b(Un; v)|

≤ (2q + 1)Cq(Ω)
2(q+1)

(
∥∇U∥L2(Ω) + ∥∇(U − Un)∥L2(Ω)

)2q
∥∇(U − Un)∥L2(Ω)∥∇v∥L2(Ω),

for any v ∈ H1
D(Ω). Furthermore, by virtue of Proposition 3 and due to the induction assump-

tion (19), it follows that

|b(U ; v)− b(Un; v)| ≤ (2q + 1)Cq(Ω)
2(q+1) (ρ+R)

2q ∥∇(U − Un)∥L2(Ω)∥∇v∥L2(Ω), (21)

for any v ∈ H1
D(Ω), i.e., the right-hand side of (20) is a bounded linear functional with respect

to v, and thus, ξn ∈ WN is well-defined. In addition, letting v = ξn in (20) and (21), we infer that

∥∇ξn∥L2(Ω) ≤ (2q + 1)Cq(Ω)
2(q+1) (ρ+R)

2q ∥∇(U − Un)∥L2(Ω). (22)

Moreover, upon subtracting the weak formulations (14) and (15), we observe that

a(U − Un+1, v) = (1− α)a(U − Un, v) + αλ (b(Un; v)− b(U ; v))

= (1− α)a(U − Un, v)− αλa(ξn, v),

for any v ∈ WN , which implies the identity

U − Un+1 = (1− α)(U − Un)− αλξn.

Thus,

∥∇(U − Un+1)∥
2
L2(Ω)

= (1− α)2∥∇(U − Un)∥
2
L2(Ω) − 2α(1− α)λa(ξn, U − Un) + α2λ2∥∇ξn∥

2
L2(Ω).

Inserting v = U − Un in (20), and using (6), we notice that a(ξn, U − Un) ≥ 0. Therefore,
recalling (22), we deduce that

∥∇(U − Un+1)∥
2
L2(Ω) ≤

(
(1− α)2 + α2λ2(2q + 1)2Cq(Ω)

4(q+1) (ρ+R)
4q
)
∥∇(U − Un)∥

2
L2(Ω).

Employing Proposition 3, gives

R ≤ ∥∇U∥L2(Ω) + ∥∇U0∥L2(Ω) ≤ ρ+ ∥∇U0∥L2(Ω),

and thereby the bound ∥∇(U − Un+1)∥L2(Ω) ≤ Rrn+1
α holds, which concludes the induction argu-

ment. □
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3.3. Exponential convergence of the ILG iteration. We consider sequences {WN}N≥1 ⊂
H1

D(Ω) of subspaces WN of finite dimension dim(WN ) ∼ N which allow for exponentially conver-
gent approximations of functions u ∈ B2

β′(Ω), where we set β′ := (β′
1, . . . , β

′
m) ∈ [0, 1)m with

β′
i :=

1

2
(1 + max(βi, 1− π/2ωi)) , 1 ≤ i ≤ m. (23)

More precisely, we suppose that there exist constants K, b, γ > 0 independent of N with

inf
w∈WN

∥∇(u− w)∥L2(Ω) ≤ K exp (−bdγN ) , where dN ≥ dim(WN ), N ≥ 0 . (24)

Specific choices of {WN}N≥1 that realize (24) with γ = 1/3 will be given in §4 below.

Theorem 1 (Convergence of Picard iteration). Suppose that the right-hand side in (1) satisfies
f ∈ B0

β(Ω). Furthermore, consider a family of Galerkin spaces {WN}N≥1 that features the expo-

nential approximation property (24). Then, for any fixed N ≥ 1 and any initial guess U0 ∈ H1
D(Ω),

performing n = O (dγN ) steps of the Picard iteration scheme (15), with suitable α ∈ (0, 1] cf. Propo-
sition 5, leads to the error estimate

∥∇(u− Un)∥L2(Ω) ≤ C exp (−κdγN ) , (25)

where u ∈ H1
D(Ω) is the weak solution of (1), with constants C, κ > 0 that are independent of N ,

and with γ > 0 from (24).

Proof. If β′ ∈ (0, 1)m is defined as in (23) then f ∈ B0
β′(Ω). Owing to Proposition 2, we note that

the solution of (2) satisfies u ∈ B2
β′(Ω). Then, for any subspace WN and any n ≥ 0, using the

triangle inequality, we have

∥∇(u− Un)∥L2(Ω) ≤ ∥∇(u− U)∥L2(Ω) + ∥∇(U − Un)∥L2(Ω),

where U ∈ WN is the solution of (14). The first term on the right-hand side of the above
inequality can be estimated by combining the quasi-optimality property from Proposition 4 and
the exponential approximation bound (24), thereby yielding

∥∇(u− U)∥L2(Ω) ≤ C1 exp (−bdγN ) , (26)

for a constant C1 > 0. Furthermore, the second term is bounded by employing Proposition 5, i.e.,
we have that

∥∇(U − Un)∥L2(Ω) ≤ C2 r
n
α, (27)

with constants 0 < rα < 1 and C2 > 0. Choosing n = O (dγN ) shows that

rnα ≤ exp (−b′dγN ) , (28)

for some b′ > 0 independent of n and N , which completes the proof. □

4. Exponential Convergence and ε-Complexity of hp-ILGFEM

Based on the convergence result for the Picard iteration (15) from Theorem 1, we are ready to
formulate a fully discrete ILG scheme, and to establish its exponential convergence, respectively,
polylogarithmic ε-complexity for the numerical approximation of the semilinear boundary value
problem (1) in a polygon Ω with analytic data f ∈ B0

β(Ω). We first discuss the design of (sequences

of) so-called hp-FE spaces WN , which, together with the analytic regularity u ∈ B2
β′(Ω) stated in

Proposition 2, affords the exponential convergence rate (24) with γ = 1/3 for the corresponding
exact Galerkin solutions U ∈ WN , cf. (14). We then address the realization of the iteration (15),
in particular, the solver complexity of the linear part based on the hp-FE spaces WN . Here,
we emphasize that the Laplace operator and the monomial nonlinearity in (1) allow for an exact
computation (assuming absence of rounding errors) of all bilinear and nonlinear forms (in terms of
a(·, ·) and b(·; ·), respectively) in the ILG iteration (15), and thus, to dispense with a quadrature
error analysis.
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4.1. hp-Approximations on geometric corner meshes. Under the analytic B2
β(Ω)-regularity

in scales of corner-weighted Sobolev spaces of the weak solution u ∈ H1
D(Ω) of (1), which has been

shown in (16), see also §2.3, subspace sequences {WN}N≥1 in (14) that satisfy (24) with γ = 1/3
have been constructed in (14; 21) and the references cited therein. We briefly recapitulate their
construction here.

For integers k ≥ 1, we denote by Tk a regular, simplicial partition of the polygon Ω into at
most O(k) open triangles T . We assume that the partitions {Tk}k≥1 are nested, uniformly shape
regular, and geometrically refined to the corners C = {ci}

m
i=1 ⊂ ∂Ω of the polygon Ω; the last

property refers to the existence of constants C > 0 and σ ∈ (0, 1) such that it holds

∀k ∀T ∈ Tk : T ∩ C = ∅ : 0 < σ ≤ diam(T )/dist(T,C) ≤ σ−1 , (29a)

and

∀k ∀T ∈ Tk : T ∩ C ̸= ∅ : diam(T ) ≤ Cσk . (29b)

Geometric partitions satisfying the above conditions can be constructed in any polygon Ω by
recursive bisection refinement departing from a regular, admissible initial triangulation T1 of Ω.
We shall refer to triangulations generated in this way as geometric corner meshes in Ω. The
aforementioned recursive bisection refinement constructions yield the existence of a constant C > 0
(depending on Ω and on T1) such that

∀k ∈ N : #(Tk) ≤ Ck .

With the geometric corner meshes in hand, the spaces WN of dimension dN = O(N) consist of
continuous functions in Ω whose restriction to each element T ∈ Tk, k ≥ 1, are polynomials of uni-
form total polynomial degree pk ≥ 1, and obey the homogenous Dirichlet boundary condition (1b).
The spaces WN are built on the sequences {Tk}k≥1 of geometric corner meshes

WN = S
pk

D (Ω; Tk) = {v ∈ H1
D(Ω) | ∀T ∈ Tk : v|T ∈ P

pk(T )} , (30)

with P
pk(T ) signifying the space of all polynomials of total degree at most pk over T , T ∈ Tk,

k ≥ 1, whereby we choose pk ≃ ck, for some fixed sufficiently large constant c > 0. Then it follows
that there exists a constant C > 0 such that

dN = dim(Spk

D (Ω; Tk)) ≤ Ck3 ≃ p3k,

for all N . Based on the above construction (30) of the hp-FE spaces WN , the corresponding
Galerkin discretizations of (1), cf. (14), exhibit the exponential approximability (24) with γ = 1/3.

Theorem 2 (Exponential convergence of hp-Galerkin approximations). For β ∈ [0, 1)m, consider
the semilinear boundary value problem (1) with data f ∈ B0

β(Ω). Then, for the Galerkin projection

of the weak solution u ∈ H1
D(Ω) of (1) in the hp-FE spaces WN of dimension dN = O(N)

from (30), there exists constants b, C > 0 (generally depending on u) such that the following
exponential approximability bound holds

inf
wN∈WN

∥∇(u− wN )∥L2(Ω) ≤ C exp(−bN
1/3) . (31)

In particular the exact Galerkin solutions U ∈ WN in (14), whose existence and uniqueness was
ensured in Proposition 3, satisfy the exponential convergence bound (24) with γ = 1/3.

Proof. Based on the assumed analytic regularity f ∈ B0
β(Ω) on the data, by Proposition 2 and (16),

the unique weak solution u ∈ H1
D(Ω) of (1) belongs to the corner-weighted analytic class B2

β(Ω).

The exponential approximability (31) is then a direct consequence of well-known approximation
properties of the hp-FE spaces WN introduced above, see e.g. (14; 21) and the references cited
therein. □

Remark 4. For subspaces WN ⊂ H1
D(Ω) spanned by continuous, piecewise polynomial functions

on regular, simplicial partitions Tk, k ≥ 1, of the polygon Ω, under the present assumption of
the polynomial nonlinearity in the reaction term in (1), we emphasize that the stiffness matrix
corresponding to the Galerkin discretization of the bilinear form a(·, ·) from (3), and the discrete



hp-ILGFEM FOR SEMILINEAR ELLIPTIC PDE 11

representation of the nonlinear form b(·; ·) from (4) can be evaluated exactly, e.g., by Gaussian
quadrature rules of sufficiently high order applied on each element T ∈ Tk, k ≥ 1.

4.2. Solution of the nonlinear algebraic system. On any given finite-dimensional subspace
WN ⊂ H1

D(Ω), we emphasize that the solution of the linear algebraic system resulting from the
ILG scheme (15) features the same stiffness matrix (associated to the Laplace operator) in each
iteration step. On a related note, for n ≥ 0, exploiting Remark 1, we can introduce a unique
(Riesz representative) ηn ∈ WN by

a(ηn, v) =

∫

Ω

fv dx− λb(Un; v) ∀v ∈ WN , (32)

which allows us to write the iterative scheme (15) in the strong form

Un+1 = (1− α)Un + αηn, n ≥ 0. (33)

We will now estimate the operation count incurred in the implementation of iteration (33). We
begin our discussion with the observation that, on a given Galerkin spaceWN , the Cholesky decom-
position of the stiffness matrix corresponding to the bilinear form a(·, ·) : WN ×WN → R from (3)
can be performed once and for all, so that the computational work is limited to one backsolve only
in each step of (33). Without any further assumption, the Cholesky decomposition of the matrix
corresponding to the bilinear form a(·, ·) incurs work of O(d3N ), where dN = dim(WN ) = O(N).
From Theorem 1, the number n of iterations of (33) required to reach the approximation error
bound (26) is given by O(dγN ).

4.2.1. Evaluation cost of the nonlinear term. In the sequel, for ease of notation, for meshes Tk with
an associated polynomial degree pk, cf. §4.1, we will simply write Tp and p, instead, respectively.
Recalling that Ω ⊂ R

2 is a polygon, and that WN in (30) is a space of continuous, piecewise
polynomial functions on a regular triangulation Tp of Ω with a corresponding (uniform throughout
Tp) total degree p ≥ 1, we require O(p2) many Gauss points in each triangle T ∈ Tp for an exact
integration of the (polynomial) nonlinear form

∫
T
w2q+1v dx, for w, v ∈ P

p(T ); here, our focus is
on high-order hp-approximations where p ≫ q, and thus

deg(w2q+1v) ≤ 2p(q + 1) = O(p).

Therefore, in total, the evaluation of the nonlinear form

b(w; v) =
∑

T∈Tp

bT (w; v) :=
∑

T∈Tp

∫

T

w2q+1v dx , v, w ∈ WN ,

occurring on the right-hand side of (32), amounts to a work of O(#(Tp)p
2). In addition, if the

right-hand side source function f in (1) is a polynomial (which we henceforth assume) then we
note that the evaluation of the linear form

∫
Ω
fv dx amounts to the same cost.

4.2.2. Error vs. work for dense Cholesky decomposition. Assuming that we have at hand the
Cholesky factors of the global stiffness matrix associated to the bilinear form a(·, ·), which requires
O(N3) operations once only, each iteration step in (32) necessitates only one backsolve of O(N2)
work as well as one evaluation of the nonlinearity. Then, in view of our considerations in §4.2.1,
the total work for the approximate solution of the nonlinear algebraic system using n iteration
steps amounts to a computational work of

O(N3) + n(O(N2) +O(#(Tp)p
2)).

In case of hp-FE approximations with #(Tp) = O(p) many triangles and dN = O(N) = O(p3),
γ = 1/3, cf. Theorem 2, this transforms to O(p9) + n(O(p6) + O(p3)). Therefore, in light of
Theorem 1, applying n = O(dγN ) = O(N 1/3) = O(p) iterations in (32) to obtain consistency with
the Galerkin discretization error, a total work of

O(p9) + p(O(p6) +O(p3)) = O(p9) +O(p7) (34)

many operations are required. In particular, if we do not exploit any sparsity structure in the hp-FE
matrices of the linear principal part of (1), the total work for the computation of the approximate
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Galerkin solution to the accuracy of the hp-FE discretization error (with exact solution of the
Galerkin equations) is still dominated by the work for the linear solve O(N3).

4.2.3. Static condensation Cholesky decomposition. We discuss how to reduce the above operation
count by exploiting a suitable separation of the polynomial basis functions on each triangle T ∈ Tp,
p ≥ 1, into 3 nodal, O(p) face and O(p2) internal modes; see (10; 15; 21; 23) for details. Using
static condensation on each of the O(p) elements in the geometric mesh Tp, p ≥ 1, and noting that

#dof/#elements = O(p3)/O(p) = O(p2),

costs O(p6) flops per element T ∈ Tp, p ≥ 1. Hence, multiplying by the number of elements,
results in the following result.

Proposition 6. The work for a global Cholesky decomposition of the stiffness matrix (corre-
sponding to the bilinear form a(·, ·) from (3)) on the hp-FE space S

p
D(Ω; Tp), p ≥ 1, with prior

elementwise static condensation requires asymptotically, as p → ∞, O(p7) flops.

Proof. We apply elementwise static condensation which yields only O(p) “external” unknowns on
O(p) inter-element edges in Tp. Consequently, upon condensation, a global dense linear system of
size O(p2) is obtained. The work of a Cholesky decomposition for this condensed system scales
as O((p2)3) = O(p6) flops. This, in turn, implies that work for a nested dissection version of the
initial Cholesky decomposition of the bilinear form a(·, ·) : WN ×WN → R can be reduced from
O(d3N ) = O(p9) to O(p7) flops. □

Remark 5. In particular, the above Proposition 6 shows that the work for the initial Cholesky
decomposition of the condensed stiffness matrix of the linear part a(·, ·) : WN × WN → R is
asymptotically (as dN → ∞) of the same order as the work required to run the iteration (32) on
each Galerkin space WN = S

p
D(Ω; Tp) in n(O(N2) +O(#(Tp)p

2)) = O(p7) operations, cf. (34), to
termination at “hp approximation accuracy” (31).

Remark 6 (Static condensation Cholesky decomposition exploiting affine equivalence). The argu-
ment in Proposition 6 is not sharp in the sense that it does not exploit the constant-coefficient
structure of the linear principal part of the operator in (1). Indeed, in this case, in the element
stiffness matrix generation there is no necessity to employ numerical integration. In contrast, for
a linear principal part of the form − div(A(x)∇(·)) with non-constant coefficients, i.e., for a diffu-
sion matrix A : Ω → R

2×2
sym with variable coefficient functions aij that are analytic in Ω, numerical

quadrature in the element stiffness matrices is necessary. The work needed to build the global
stiffness matrix then scales by a constant factor compared to the work required to compute the
stiffness matrix in the constant coefficient case. The use of quadrature will cause a further con-
sistency error that is, however, of the same order as the discretization error bounds. We therefore
expect the present error vs. work bound to hold also in this more general setting.

In addition, assuming that Tp, p ≥ 1, is a regular partition of Ω into affine-equivalent trian-
gles, all element stiffness matrices are affine equivalent to the reference element stiffness matrix.
Therefore, element stiffness matrix Cholesky factorization and Schur complement formation could
be done once and for all on the reference element. This would reduce the cost bound of nested
dissection Cholesky factorization of the stiffness matrix for the linear principal part to O(p6).
We refer to (10) for further exploitation of reference element stiffness and mass matrix sparsity
afforded by the choice of a particular set of shape functions. As the total work for the evaluation
of the nonlinearity during the ILG iteration is already O(p7), we do not account for this lower
complexity in the present article.

4.3. Exponential convergence of fully discrete iterative linearized hp-FE approxima-

tion. We will now investigate the complexity of the fully discrete iteration (15). To this end, in
order to deal with potential quadrature errors of integrals involving the right-hand side function f
in (1a), we make the following assumption:

Assumption 1. For a sequence {Tp}p≥1 of regular partitions of Ω into triangles, with geometric
corner refinement and associated polynomial degrees p = 1, 2, . . ., cf. §4.1–4.2, we suppose that
the right-hand side function f ∈ L2(Ω) ∩ B0

β(Ω) in (1a) can be approximated by a corresponding
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sequence of functions Πp(f) with Πp(f)|T ∈ P
p(T ) for all T ∈ Tp, p = 1, 2, . . ., where p = O(p),

such that
∥f −Πp(f)∥L2(Ω) ≤ C exp(−cN

1/3), (35)

with N = N(p) = dim(SpD(Ω; Tp)) = O(p3), as in (31), and constants c, C > 0.

Remark 7. This assumption is satisfied, evidently, if f ∈ L2(Ω) ∩ B0
β(Ω) is a polynomial function

in Ω, and, in particular, for all functions that are real-analytic in Ω. More general conditions and
fully discrete approximation methods, which are based on point-queries of A(x), cf. Remark 6, and
f(x) in Ω, will be studied in a forthcoming article.

Instead of the discrete iteration (15), which relies on exact integration of f , we now consider
the fully discrete hp-ILG scheme given by

a(Un+1, v) = (1− α)a(Un, v)− αλb(Un; v) + α
∑

T∈Tp

QT,p(Πp(f)v) ∀v ∈ WN , (36)

where QT,p is an elementwise quadrature rule on each triangle T ∈ Tp, which is based on O(p2)
(e.g. Gauss-type) quadrature points, and integrates any polynomial in P

p+p(T ) exactly. Similar
to our previous discussion in §4.2.1, we note that the work for the evaluation of the quadrature
in (36) amounts to O(#(Tp)p

2).

Lemma 2. Let α satisfy (16), and suppose that the iterations (15) and (36) are initiated with
the same starting guess U0 ∈ WN . Then, under Assumption 1, for the difference between the
corresponding iterative solutions Un and Un the following bound holds

∥∇(Un − Un)∥L2(Ω) ≤ C exp
(
−κN

1/3
)
, n ≥ 0,

with constants C, κ > 0 independent of N .

Proof. We consider the auxiliary problem of finding Ũ ∈ WN such that

a(Ũ , v) + λb(Ũ ; v) =
∑

T∈Tp

QT,p(Πp(f)v) ∀v ∈ WN .

By Assumption 1, we observe that

a(Ũ , v) + λb(Ũ ; v) =

∫

Ω

Πp(f)v dx ∀v ∈ WN .

This shows that Proposition 5 can be applied to the perturbed iteration (36), with the same
contraction constant rα from (18). In particular, we have the bound

∥∇(Ũ − Un+1)∥L2(Ω) ≤ rn+1
α ∥∇(Ũ − U0)∥L2(Ω) ∀n ≥ 0.

In addition, for the difference of Ũ and the solution U of (14) it holds

a(U − Ũ , v) + λ
(
b(U ; v)− b(Ũ ; v)

)
=

∫

Ω

(f −Πp(f))v dx ∀v ∈ WN .

Testing with v = U − Ũ ∈ WN , and applying (8), leads to

∥∇(U − Ũ)∥2L2(Ω) ≤ ∥f −Πp(f)∥L2(Ω)∥U − Ũ∥L2(Ω),

which, by means of the Poincaré inequality, results in

∥∇(U − Ũ)∥L2(Ω) ≤ CP ∥f −Πp(f)∥L2(Ω),

for a constant CP > 0 only depending on Ω. Hence, owing to the triangle inequality, we deduce
that

∥∇(U − Un+1)∥L2(Ω) ≤ ∥∇(U − Ũ)∥L2(Ω) + ∥∇(Ũ − Un+1)∥L2(Ω)

≤ CP ∥f −Πp(f)∥L2(Ω) + rn+1
α ∥∇(Ũ − U0)∥L2(Ω).

The first term on the right-hand side of the above bound can be estimated with (35), whilst the
second term can be dealt with as in (27)–(28) with dN = O(N) and γ = 1/3, see §4.1. □
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We are now prepared to state and prove our main result.

Theorem 3 (Polylogarithmic ε-complexity). Suppose that the semilinear boundary value prob-
lem (1) features a corner-weighted analytic source term f ∈ L2(Ω) ∩ B0

β(Ω) for which Assump-

tion 1 can be satisfied. Consider the hp-ILG discretization based on a sequence {Tp}p≥1 of regu-
lar partitions of Ω into triangles, with geometric corner refinement, cf. (29), and on Galerkin
projections onto the associated discrete spaces WN(p) = S

p
D(Ω; Tp), p ≥ 1, from (30), with

N = N(p) = dim(SpD(Ω; Tp)) = O(p3), and with n(p) = O(p) steps of the linearized iteration (15)
on WN(p). Then, the following hold true:

(a) For every 0 < ε ≤ 1, there exists a polynomial degree p = O(| log(ε)|) such that upon apply-
ing n(p) steps of the fully discrete hp-ILG iteration procedure (36) the approximate Galerkin
solutions Un(p) ≡ Un ∈ WN(p) satisfy the error bound ∥∇(u− Un(p))∥L2(Ω) ≤ ε .

(b) The total computational cost work(ε) ∈ N, measured in terms of float point operations nec-
essary to compute the hp-ILG approximations Un(p) ∈ WN(p) to accuracy ε > 0, is bounded
by

work(ε) ≤ C(1 + | log(ε)|)7 . (37)

(c) In terms of the number N(p) of unknowns, or in terms of work(ε) required for the computation
of the hp-ILG discretization of (1), there are constants b, C > 0 such that it holds

∥∇(u− Un(p))∥L2(Ω) ≤ C exp(−b(N(p))
1/3) ≤ C exp(−bwork(ε)

1/7),

for p = 1, 2, . . .

Proof. In accordance with (25) and Lemma 2, the error ∥∇(u−Un(p))∥L2(Ω) for the fully discrete
hp-ILG scheme (36) after employing n(p) = O(p) iteration steps is of order C exp(−bp) for suitable
constants b, C > 0. In particular, the hp-ILG iteration error is of the order of the hp-discretization
error, cf. (31). Furthermore, coupling the parameter p (i.e., the polynomial degree, viz. the number
of geometric mesh layers) to the prescribed target accuracy 0 < ε ≤ 1 as in the statement of the
theorem via p ≥ C| log(ε)| for a sufficiently large uniform constant C > 0, shows (a). The work
estimate in (b) follows from Proposition 6 and from the discussion in §4.2.1 on the complexity
for one evaluation of the hp-discretization of the nonlinearity. Finally, (c) is a direct consequence
of (a) and (b). □

Remark 8. We remark that the error vs. work bound (37) is analogous in asymptotic order to the
(exponential) error vs. work bound for the hp-FE Galerkin solution of the corresponding linear
problem in Ω.

5. Numerical Experiments

In this section we present a series of numerical experiments to computationally verify the
theoretical error vs. work bounds derived in Theorem 3 for the hp-ILG discretization of the
semilinear boundary value problem (1). To this end, we consider the semilinear boundary value
problem (1), for λ = q = 1 and the constant function f ≡ 1, on two different domains:

• Example 1: We let Ω be the unit square (0, 1)2.
• Example 2: Here, Ω is the “L-shaped domain”, (−1, 1)2 \ [0, 1)× (−1, 0] ⊂ R

2.

We remark that in both settings, the analytical solution to (1) is unknown and hence a suitably
fine hp-mesh approximation is computed for the purposes of evaluating the corresponding L2(Ω)-
norm of the (gradient of the) error in the hp-ILG approximation defined by (36). Given that f = 1
throughout this section, the integral involving f can be computed exactly, and hence (15) and (36)
are equivalent. The sequence of FE spaces WN(p) := S

p
D(Ω; Tp), p ≥ 1, are constructed as outlined

in §4.1; namely, given an initial uniform triangular mesh T1, the space S
1
D(Ω; T1) is constructed

based on employing (uniform order) continuous piecewise linear polynomials. Subsequently we
undertake geometric refinement of each mesh Tp, p ≥ 1, whereby elements in the vicinity of the
four, respectively, six corners of the domain Ω are subdivided, while simultaneously (uniformly)
increasing the polynomial order p. For the construction of the underlying hp-FE polynomial
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Figure 1. Example 1 (square domain): (a) Comparison of the error with respect
to the third root of the number of degrees of freedom; (b) Comparison of the error
with respect to the seventh root of the work (CPU time) measured in seconds.

spaces, we exploit the hierarchical basis defined in (22). Additionally, the sequences of corner-
refined, geometric meshes used in the numerical experiments are built based on employing the
standard red-green refinement strategy whereby (temporary) green refinement is undertaken to
remove hanging nodes in the underlying computational mesh. The resulting sequence of meshes are
generally not nested; however, we observe in the ensuing numerical experiments that nestedness
of partitions is not necessary to ensure that the theoretical bounds in Theorem 3 still hold.

For the purposes of comparison, we consider the implementation of two different linear solvers
for the factorization of the underlying matrix arising from the bilinear form a(·, ·) from (3). In
addition to the Cholesky factorization DPOTRF implemented in LAPACK for dense matrices, cf.
(5), we also consider the application of the MUltifrontal Massively Parallel Solver (MUMPS),
see (1; 2; 3), which utilizes sparse (symmetric) storage of the underlying matrix problem. In
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Figure 2. Example 2 (L-shaped domain): (a) Comparison of the error with
respect to the third root of the number of degrees of freedom; (b) Comparison of
the error with respect to the seventh root of the work (CPU time) measured in
seconds.

Figures 1 & 2 we present a comparison of the norm of the error in the computed numerical
solution Un(p) for p = 1, 2, . . . , 12, respectively, p = 1, 2, . . . , 15, based on employing a starting
mesh T1 comprising of 32, respectively 24, uniform triangular elements. Once the hp-ILG solution
Un(p) ∈ S

p
D(Ω; Tp) has been computed on a given mesh Tp, for a particular polynomial degree p,

this solution is then projected onto the refined finite element space S
p+1
D (Ω; Tp+1) to serve as the

initial guess in the Picard fixed point scheme (36); for p = 1 the initial guess is the zero solution.
The iteration defined in (36) is terminated once the ℓ2-norm of the difference in the coefficient
vector between two subsequent computed solutions has been reduced by a factor of 10−2, relative
to the corresponding quantity computed between the initial guess and the first iterate computed
using (36); furthermore we set α = 1/2. Here we consider the impact of static condensation, as per
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§4.2.3, as well as when both MUMPS and LAPACK are applied to the full matrix problem arising
in (36). In Figures 1(a) & 2(a) we plot the L2(Ω)-norm of the gradient of the error u−Un(p) against
the third root of the number of degrees of freedom in the FE space WN(p) ≡ S

p
D(Ω; Tp) on a semi-

log plot; here we observe that for both examples, as p is increased (and as the mesh is concurrently
geometrically refined towards the corners of Ω), the convergence lines become straight, thereby
indicating exponential convergence, cf. Theorem 3. Of course, all four numerical approaches
produce identical results, as we would expect. Figures 1(b) & 2(b) present analogous results for
both examples where we now plot ∥∇(u − Un(p))∥L2(Ω) against the seventh root of the work,
measured in CPU seconds, required to compute the hp-ILG solution Un(p) on each FE space. As
expected, when static condensation is employed both MUMPS and LAPACK lead to exponential
rates of convergence, which is in agreement with Theorem 3. Furthermore, when LAPACK is
exploited without static condensation, then we clearly observe a degeneration in the performance
of the proposed approach. In contrast, we do not observe a similar degradation in the performance
of the MUMPS solver applied to the full matrix (i.e., the assembled global stiffness matrix, without
static condensation); we postulate that this is due to the fact that MUMPS can automatically
exploit the structure of the matrix within the initial analyse phase, which is performed prior to
computation of the factorisation. This ensures that exponential rates of convergence, in terms
of the work required to compute the hp-ILG solution, are retained in this setting. Finally, we
observe that the MUMPS solver, which stores the matrix in sparse format, is typically slightly
more efficient than LAPACK which utilizes dense matrix storage.

6. Conclusions

For a model semilinear elliptic boundary value problem in a polygonal domain Ω ⊂ R
2, with

a monotone, polynomial nonlinearity and analytic in Ω source term f in (1), we proved that
the underlying solution u ∈ H1

D(Ω) can be approximated numerically to accuracy ε > 0 with
no more than O((1 + | log(ε)|7) many operations. This is, up to the constant hidden in O(·),
the same asymptotic complexity than resulting for the corresponding linear elliptic problem, if a
direct solver is used for the associated (linear) Galerkin system. Key in these results is analytic
regularity of the weak solution (16) in scales of corner-weighted Sobolev spaces. The generalization
to diffusion matrices with analytic in Ω coefficients is possible at the expense of a quadrature error
analysis in the (linear) principal part of (1) by means of an auxiliary result of Strang type. By
similar arguments the presence of nonlinear reactions with variable analytic coefficients may be
realized as well (not considered here). It could also be of interest to combine the present results
with hp-adaptive refinement, similar to (7), where fixed order, Langrangian FE discretizations
were studied.
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