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BANACH LATTICES WITH UPPER p-ESTIMATES: FREE AND INJECTIVE

OBJECTS

E. GARCÍA-SÁNCHEZ, D. H. LEUNG, M. A. TAYLOR, AND P. TRADACETE

Abstract. We study the free Banach lattice FBL(p,∞)[E] with upper p-estimates generated by
a Banach space E. Using a classical result of Pisier on factorization through Lp,∞(µ) together
with a finite dimensional reduction, it is shown that the spaces ℓp,∞(n) witness the universal prop-

erty of FBL(p,∞)[E] isomorphically. As a consequence, we obtain a functional representation for

FBL(p,∞)[E], answering a question from [28]. More generally, our proof allows us to identify the
norm of any free Banach lattice over E associated with a rearrangement invariant function space.

After obtaining the above functional representation, we take the first steps towards analyzing

the fine structure of FBL(p,∞)[E]. Notably, we prove that the norm for FBL(p,∞)[E] cannot be
isometrically witnessed by Lp,∞(µ) and settle the question of characterizing when an embedding
between Banach spaces extends to a lattice embedding between the corresponding free Banach
lattices with upper p-estimates. To prove this latter result, we introduce a novel push-out argument,
which when combined with the injectivity of ℓp allows us to give an alternative proof of the subspace
problem for free p-convex Banach lattices. On the other hand, we prove that ℓp,∞ is not injective
in the class of Banach lattices with upper p-estimates, elucidating one of many difficulties arising in

the study of FBL(p,∞)[E].
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1. Introduction

Given a Banach space E, the free Banach lattice generated by E is a Banach lattice FBL[E]
together with a linear isometric embedding φE : E → FBL[E] such that for every Banach lattice

X and every bounded linear operator T : E → X there is a unique lattice homomorphism T̂ :
FBL[E] → X such that T̂ ◦φE = T and ‖T̂‖ = ‖T‖. In other words, FBL[E] is the (unique) Banach
lattice which converts linear operators defined on E into lattice homomorphisms, in the sense of
the following diagram:

FBL[E]

E X

∃! T̂
φE

T

Over the past ten years, many novel techniques have been developed to understand the structural
properties of FBL[E] as well as the rigidity of the correspondence E 7→ FBL[E]. This has led
to a host of new developments in the theory of Banach spaces and Banach lattices, as well as to
the resolution of several outstanding open problems. To indicate just a few examples, free Banach
lattices are used in [7] to solve a question of J. Diestel on WCG spaces, in [28] to solve a question
from [40] regarding basic sequences satisfying maximal inequalities, and in [14] to produce the first
example of a lattice homomorphism which does not attain its norm. Free Banach lattices also play a
fundamental role in the theory of projective Banach lattices [4, 5, 15] and are used in [8] to construct
Banach lattices of universal disposition, separably injective Banach lattices and push-outs. On the
other hand, free Banach lattices are known to have a remarkably rigid structure in their own right.
Notably, it is proven in [6] that any disjoint collection in FBL[E] must be countable and in [28] that
FBL[E] determines E isometrically if E∗ is smooth. This latter result has initiated a program to
find geometric properties of a Banach space E which can be equivalently characterized via lattice
properties of FBL[E] – see [28] for several such properties.

Although defined in an abstract manner, free Banach lattices admit a very concrete functional
representation. To see this, denote by H [E] the linear subspace of RE

∗
consisting of all positively

homogeneous functions f : E∗ → R. For f ∈ H [E] define

‖f‖FBL[E] = sup

{
n∑

k=1

|f(x∗
k)| : n ∈ N, x∗

1, . . . , x
∗
n ∈ E∗, sup

x∈BE

n∑

k=1

|x∗
k(x)| ≤ 1

}
.

Given any x ∈ E, let δx ∈ H [E] be defined by

δx(x
∗) := x∗(x) for all x∗ ∈ E∗.

It is easy to see that

H1[E] :=
{
f ∈ H [E] : ‖f‖FBL[E] < ∞

}
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is a sublattice of H [E] and that ‖ · ‖FBL[E] defines a complete lattice norm on H1[E]. Moreover,
‖δx‖FBL[E] = ‖x‖ for every x ∈ E. As shown in [7], FBL[E] coincides with the closed sublattice of
H1[E] generated by {δx : x ∈ E} with respect to ‖ · ‖FBL[E], together with the map φE(x) = δx. In
particular, by positive homogeneity, we may view elements of FBL[E] as weak∗-continuous functions
on the dual ball.

For numerous reasons it is useful to introduce a scale of free Banach lattices, indexed by p ∈ [1,∞].
Recall that a Banach lattice X is p-convex if there exists a constant M ≥ 1 such that for every
x1, . . . , xm ∈ X we have

(1.1)

∥∥∥∥∥

(
m∑

k=1

|xk|
p

) 1
p
∥∥∥∥∥ ≤ M

(
m∑

k=1

‖xk‖
p

) 1
p

.

The least constant M satisfying the above inequality is called the p-convexity constant of X and
is denoted by M (p)(X). We say that X satisfies an upper p-estimate (or that X is a (p,∞)-convex
Banach lattice) if (1.1) holds for all pairwise disjoint vectors x1, . . . , xm ∈ X; the least constant is
then called the upper p-estimate constant of X and is denoted by M (p,∞)(X). A classical result [22,
Proposition 1.f.6] states that a Banach lattice X has an upper p-estimate if and only if

(1.2)

∥∥∥∥∥
m∨

k=1

|xk|

∥∥∥∥∥ ≤ M

(
m∑

k=1

‖xk‖
p

) 1
p

for all x1, . . . , xm ∈ X. Moreover, the best choice of M in (1.2) is exactly M (p,∞)(X). By [11, 22, 30],
every p-convex Banach lattice (resp. Banach lattice with an upper p-estimate) can be renormed to
have p-convexity (resp. upper p-estimate) constant one.

Given p ∈ [1,∞] and a Banach space E, one defines the free p-convex Banach lattice generated
by E analogously to FBL[E]: The free p-convex Banach lattice generated by E is a Banach lattice

FBL(p)[E] with p-convexity constant one together with a linear isometric embedding φE : E →

FBL(p)[E] such that for every p-convex Banach lattice X with p-convexity constant one and every

bounded linear operator T : E → X there is a unique lattice homomorphism T̂ : FBL(p)[E] → X

such that T̂ ◦φE = T and ‖T̂‖ = ‖T‖. By replacing p-convexity with upper p-estimates one obtains
the definition of the free Banach lattice with upper p-estimates generated by E, which is denoted by
FBL(p,∞)[E].

As shown in [21], FBL(p)[E] admits an analogous functional representation to FBL[E], but with
‖ · ‖FBL[E] replaced by

(1.3) ‖f‖FBL(p)[E] = sup





(
n∑

k=1

|f(x∗
k)|

p

) 1
p

: n ∈ N, x∗
1, . . . , x

∗
n ∈ E∗, sup

x∈BE

(
n∑

k=1

|x∗
k(x)|p

) 1
p

≤ 1





and H1[E] replaced by

Hp[E] :=
{
f ∈ H [E] : ‖f‖FBL(p)[E] < ∞

}
.

Making use of this explicit representation of FBL(p)[E], most of the major results on FBL[E] can be

shown to hold for FBL(p)[E]. On the other hand, [28, Sections 9.6 and 10] identify several interesting

properties of FBL(p)[E] which depend explicitly on p.
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The question of establishing a functional representation for FBL(p,∞)[E] was left as an open
problem in [21, Remark 6.2] and then reiterated in [28, Section 9.6]. The proof of the existence of

FBL(p,∞)[E] in [21] proceeds by equipping the free vector lattice with a “maximal” norm satisfying
an upper p-estimate and then completing the resulting space. However, this approach gives no
practical information about the norm and cannot even guarantee that the resulting Banach lattice
is a space of functions on the dual ball. For this reason, minimal progress has been made on
FBL(p,∞)[E], with the exception of some interesting results being proven in [27].

The first aim of this paper is to answer the above question and identify the norm for FBL(p,∞)[E].

As a consequence, we obtain the desired continuous injection FBL(p,∞)[E] ֒→ C(BE∗) and the
prospect of ascertaining the fine structure of these spaces. As it turns out, up to equivalence, we
have
(1.4)

‖f‖FBL(p,∞)[E] = sup

{
‖(f(x∗

k))
n
k=1‖ℓp,∞(n) : n ∈ N, x∗

1, . . . , x
∗
n ∈ E∗, sup

x∈BE

‖(x∗
k(x))nk=1‖ℓp,∞(n) ≤ 1

}
,

where ℓp,∞(n) denotes the canonical n-dimensional weak-Lp space. Moreover, as we will see below,
the proof that (1.4) is the correct norm is rather illuminating, in that it yields a formula for the
norm for the “free Banach lattice” associated to other classes of lattices.

From the above functional description of FBL(p,∞)[E], we obtain immediate access to many

results. For example, we learn from [6] that FBL(p,∞)[E] has only countable disjoint collections and

from [7] that lattice homomorphic functionals separate the points of FBL(p,∞)[E]. With more work,

one can prove analogues of many of the results in [28] which were initially proven for FBL(p)[E].

However, certain deeper theorems do not immediately generalize to FBL(p,∞)[E]. The purpose of
the second half of this paper is to prove results of this type. In particular, we solve the subspace
problem for FBL(p,∞) by characterizing when an embedding ι : F ֒→ E induces a lattice embedding
ι : FBL(p,∞)[F ] ֒→ FBL(p,∞)[E]. Obtaining such a characterization is by no means trivial, as the

proof of the subspace problem for FBL(p) relied heavily on the Lp-type structure of p-convex Banach
lattices.

1.1. Outline of the paper. In Section 2 we study the free Banach lattice generated by E asso-
ciated to a non-empty class C of Banach lattices. We begin in Section 2.1 by briefly reviewing the
construction of the free vector lattice generated by E. After this, we equip the free vector lattice
with the norm

ρC(f) := sup
{
‖T̂ f‖X : X ∈ C, T : E → X is a linear contraction

}
,

where T̂ denotes the unique lattice homomorphic extension of T , and define the free Banach lattice
generated by E associated to C as the completion of (FVL[E], ρC). This definition yields a Banach
lattice FBLC[E] containing an isometric copy of E with the ability to uniquely extend any operator
T : E → X ∈ C to a lattice homomorphism of the same norm. In Section 2.2 we “close” the class C

by constructing a class C ⊇ C such that FBLC[E] = FBLC[E] ∈ C. This then allows us to identify
FBLC[E] as a universal object in this new class. In Section 2.3 we find an explicit formula for the
norm of FBLC[E] when C consists of a single r.i. space. This, in particular, allows us to identify
FBLC[E] as a space of weak∗-continuous positively homogeneous functions on BE∗. In Section 2.4 we
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characterize when continuous injective lattice homomorphisms extend injectively to the completion
of a normed lattice, elucidating the difficulty in representing FBLC[E] inside of C(BE∗).

In Section 3 we combine the results of Section 2 with the Maurey and Pisier factorization theorems

to reproduce the norm (1.3) for FBL(p)[E] and show that (1.4) is a (1− 1
p
)

1
p

−1-equivalent lattice norm

for FBL(p,∞)[E] with upper p-estimate constant one. We also characterize in Theorem 3.8 all of the

C for which we have FBLC[E] = FBL(p)[E] and all of the C′ for which FBLC′

[E] ≈ FBL(p,∞)[E].
Then, in Section 4 we show that (1.4) is not 1-equivalent to the norm satisfying the universal

property of FBL(p,∞)[E]. In fact, by characterizing the sequence spaces that C-lattice embed into
(
⊕
µ∈Γ L

p,∞(µ))∞, we are able to show that the entire class of weak-Lp spaces (equipped with any
of the renormings in Section 4.1) fails to isometrically witness the norm of the free Banach lattice
with upper p-estimates.

Section 5 is devoted to the subspace problem for FBL(p,∞); that is, the problem of characterizing
those embeddings ι : F ֒→ E which induce a lattice embedding ι : FBL(p,∞)[F ] ֒→ FBL(p,∞)[E].
This is achieved in Section 5.1 by utilizing a novel push-out argument. A benefit of our argument
is that it applies equally well to FBL(p). However, a priori, it yields a slightly different solution to
the subspace problem for FBL(p) than the one in [28, Theorem 3.7]. To reconcile this, we prove the
injectivity of ℓp in the class of p-convex Banach lattices, which immediately yields the equivalence
of the two solutions, up to constants. On the other hand, in Section 5.3 we show that ℓp,∞ is not
injective in the class of Banach lattices with upper p-estimates, adding an additional novelty to our
solution to the subspace problem for FBL(p,∞)[E].

2. The free Banach lattice associated to a class of Banach lattices

In this section we define and investigate the free Banach lattice FBLC[E] generated by a Banach
space E associated to a class C of Banach lattices. We begin in Section 2.1 with a brief review of the
construction of the free vector lattice. Then, in Section 2.2, we define FBLC[E] as the completion of
FVL[E] under a certain norm, identify an associated class C ⊇ C of Banach lattices, and prove the
universality of FBLC[E] in the class C. In Section 2.3, an explicit formula for the norm of FBLC[E]
is obtained when C consists of a single rearrangement invariant Banach lattice. This, in particular,
yields a continuous injection FBLC [E] ֒→ C(BE∗) for such C. Finally, in Section 2.4 we supplement
the above results with a characterization of the normed lattices for which every continuous lattice
homomorphic injection extends injectively to the completion.

2.1. Review of the free vector lattice. Let E be a Banach space and endow BE∗ with the
weak∗-topology. For any x ∈ E, the function δx : BE∗ → R given by δx(x

∗) = x∗(x) belongs to the
space C(BE∗) of continuous functions on BE∗ . Define a sequence of subspaces of C(BE∗) as follows:

E0 = {δx : x ∈ E}; En = span(En−1 ∪ |En−1|) if n ∈ N.

Here, for a set A in a vector lattice X, we are denoting |A| = {|x| : x ∈ A}. Let FVL[E] =
⋃∞
n=0En

and note that E0 is a subspace of C(BE∗) since
∑n
k=1 akδxk

= δ∑n

k=1
akxk

.

Proposition 2.1. FVL[E] is the smallest vector sublattice of C(BE∗) containing E0.
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Proof. Obviously, span(En−1) ⊆ En for all n ∈ N. Hence, FVL[E] is a vector subspace of C(BE∗)
containing {δx : x ∈ E}. Assume that f ∈ FVL[E]. By definition, f ∈ En for some n ∈ N. Thus,
|f | ∈ |En| ⊆ En+1 ⊆ FVL[E], so that FVL[E] is a vector sublattice of C(BE∗).

Assume that G is a vector sublattice of C(BE∗) containing {δx : x ∈ E} = E0. If En−1 ⊆ G for
some n ∈ N, then En−1 ∪ |En−1| ⊆ G. Hence, En ⊆ G. By induction, FVL[E] =

⋃∞
n=0 En ⊆ G. �

It follows from the expression for FVL[E] that each f ∈ FVL[E] is positively homogeneous in
the following sense: f(λx∗) = λf(x∗) if x∗ ∈ BE∗ and 0 ≤ λ ≤ 1. Define φ := φE : E → FVL[E] by
φ(x) = δx. Clearly, φ is a linear operator.

Proposition 2.2. Let f ∈ FVL[E]. There is a finite subset A of E so that f belongs to the sublattice
of FVL[E] generated by {δx : x ∈ A}.

Proof. The assertion is trivial if f ∈ E0. Assume that it holds whenever f ∈ En−1. Let f ∈ En and
represent f =

∑r
k=1(akfk + bk|fk|) where ak, bk ∈ R and fk ∈ En−1. By the inductive hypothesis,

there is a finite set A so that fk, 1 ≤ k ≤ r, belong to the sublattice generated by {δx : x ∈ A}. By
construction, f belongs to the same sublattice. �

An alternative way to prove Propositions 2.1 and 2.2 is to utilize [2, Exercise 8, p. 204]. The
following statement is implicit in [28, Theorem 2.1], but we include the details for the convenience
of the reader.

Proposition 2.3. (FVL[E], φ) is the free vector lattice generated by E in the following sense: If X
is an Archimedean vector lattice and T : E → X is a linear operator then there is a unique linear
vector lattice homomorphism T̂ : FVL[E] → X such that T̂ φ = T .

Proof. Let A be a finite set in E and let LA be the sublattice of C(BE∗) generated by {δx : x ∈ A}.
Let I = IA be the principal lattice ideal in X generated by

∑
x∈A |Tx|. By standard theory, there

is a compact Hausdorff space K and an injective vector lattice homomorphism i : I → C(K). For
each t ∈ K, define ℓt : spanA → R by ℓt(

∑
x∈A axx) =

∑
x∈A ax(iTx)(t). Note that if

∑
x∈A axx = 0

then
∑
x∈A axTx = 0. This implies that

∑
x∈A axiTx = 0 and thus ℓt(

∑
x∈A axx) = 0. Hence, ℓt is

a well-defined linear functional on spanA. Since spanA is a finite dimensional subspace of E, ℓt is
bounded. Let x∗

t ∈ E∗ be a Hahn-Banach extension of ℓt.

Suppose that f ∈ FVL[E]. By Proposition 2.2, there exists a finite set A = {x1, . . . , xn} in
E so that f ∈ LA. We can therefore write f = G(δx1, . . . , δxn

) where G is a finite sequence of

operations of taking linear combinations and | · |. Define T̂ f = G(Tx1, . . . , Txn) ∈ X. To see that

T̂ is well-defined, we have to show that T̂ (
∑
akfk) = 0 if

∑
akfk = 0, for any finite sum. We may

assume that fk ∈ LA for all k. In particular, we have T̂ fk ∈ IA. Write fk = Gk(δx1, . . . , δxn
) for

some lattice-linear Gk and note that for any t ∈ K,

[iT̂ (
∑

akfk)](t) =
∑

ak iGk(Tx1, . . . , Txn)(t)

=
∑

akGk(iTx1(t), . . . , iTxn(t))

=
∑

akGk(x
∗
t (x1), . . . , x

∗
t (xn))

=
∑

akGk(δx1(x
∗
t ), . . . , δxn

(x∗
t ))

=
∑

akfk(x
∗
t ).
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Thus,
∑
akfk = 0 implies iT̂ (

∑
akfk) = 0. Since i : IA → C(K) is injective, T̂ (

∑
akfk) = 0.

This proves that T̂ is well-defined. It follows from its definition that T̂ is a linear vector lattice
homomorphism.

It is easy to see that for any x ∈ E, T̂ φx = T̂ (δx) = Tx. Let S : FVL[E] → X be a vector lattice
homomorphism so that Sφx = Tx. Then for any f = G(δx1 , . . . , δxn

) we must have

Sf = G(Sδx1, . . . , Sδxn
) = G(Tx1, . . . , Txn) = T̂ f.

This proves the uniqueness of T̂ . �

Remark 2.4. In this paper we are identifying FVL[E] as a space of functions on BE∗ . This is in
contrast to previous works where FVL[E] was identified as a space of functions on E∗. By positive
homogeneity, these interpretations are clearly equivalent.

2.2. Universality of the free Banach lattice associated to a class of Banach lattices. Let
C be a (non-empty) class of Banach lattices. For instance, C could be the class of weak-Lp spaces or
the class of Banach lattices satisfying an upper p-estimate with constant 1. Given a Banach space
E, define a norm ρC on FVL[E] by

ρC(f) = sup
{
‖T̂ f‖X : X ∈ C, T : E → X is a linear contraction

}
.

Clearly, ρC is a lattice norm on FVL[E]. The free Banach lattice generated by E associated to C is
the completion of (FVL[E], ρC) and is denoted by FBLC[E]. It is easy to see that φE : E → FBLC[E]
is a linear isometric embedding. Define an enlarged class of Banach lattices C so that Y ∈ C if and
only if Y is lattice isometric to a closed sublattice of a Banach lattice of the form (

⊕
γ∈Γ Xγ)∞,

where Xγ ∈ C for all γ. Note that we do not require that the Xγ ’s be distinct.

Proposition 2.5. Suppose that Y ∈ C and T : E → Y is a bounded linear operator. Then
T̂ : (FVL[E], ρC) → Y is a vector lattice homomorphism such that ‖T̂‖ = ‖T‖.

Proof. Since Y is an Archimedean vector lattice, T̂ : FVL[E] → Y is a vector lattice homomorphism.

Note that φE is an isometric embedding and T̂ φE = T . Hence, ‖T‖ ≤ ‖T̂‖. On the other hand,
suppose that Y is a closed sublattice of X, where X = (

⊕
γ∈Γ Xγ)∞, with Xγ ∈ C for all γ. Let

πγ be the projection from X onto Xγ. Then πγT : E → Xγ is a bounded linear operator with

‖πγT‖ ≤ ‖T‖. By definition of ρC, ‖π̂γTf‖ ≤ ‖T‖ ρC(f) for any f ∈ FVL[E]. As πγ is a lattice

homomorphism, by the uniqueness of π̂γT , we have π̂γT = πγT̂ . Thus, ‖T̂ f‖ = supγ ‖πγT̂ f‖ ≤

‖T‖ ρC(f) for any f ∈ FVL[E]. This shows that ‖T̂‖ ≤ ‖T‖. �

Obviously, the operator T̂ in Proposition 2.5 extends to a lattice homomorphism from FBLC[E]

to Y , still denoted by T̂ .

Corollary 2.6. Let E be a Banach space. For any non-empty class C of Banach lattices, the norms

ρC and ρC agree on FVL[E]. In particular, FBLC[E] = FBLC[E] as Banach lattices.

Proof. Since C ⊆ C it is clear that ρC ≤ ρC . On the other hand, suppose that f ∈ FVL[E] and ε > 0

are given. There exists Y ∈ C and a linear contraction T : E → Y such that ρC(f) ≤ (1 + ε)‖T̂ f‖.

By Proposition 2.5, ‖T̂ f‖ ≤ ‖T‖ ρC(f) = ρC(f). It follows that ρC ≤ ρC. �

Proposition 2.7. The Banach lattice FBLC[E] belongs to the class C.
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Proof. For any f ∈ FVL[E] and n ∈ N, there exists X(f, n) ∈ C and a linear contraction T = Tf,n :

E → X(f, n) so that ρC(f) ≤ (1 + 1
n
)‖T̂ f‖. Let X = (

⊕
f∈FVL[E],n∈NX(f, n))∞. Clearly, X ∈ C.

Define j : FBLC [E] → X by jg = (T̂f,ng)f,n. Obviously, j is a vector lattice homomorphism. Let

g ∈ FVL[E]. By definition, ρC(g) ≥ ‖T̂f,ng‖ for all (f, n). Hence, j is a linear contraction. On the

other hand, ‖jg‖ ≥ ‖T̂g,ng‖ ≥ n
n+1

ρC(g) for all n, implying that ‖jg‖ ≥ ρC(g). This shows that

j : FVL[E] → X is a lattice isometry. Consequently, j : FBLC[E] → X is as well. �

The above discussion motivates the following question.

Problem 2.8. Find necessary and sufficient conditions on classes of Banach lattices C and D so
that ρC = ρD, or that ρC is equivalent to ρD.

In Section 3.1 we will provide a complete solution to Problem 2.8 when C is the class of p-convex
Banach lattices and when C is the class of Banach lattices with upper p-estimates.

2.3. Rearrangement invariant spaces and the norm for FBLC[E]. In this subsection, let
(Ω,Σ, µ) be a non-atomic σ-finite measure space and let X be a rearrangement invariant (r.i.)
Banach function space on Ω in the sense of [9, Definition II.4.1]. To be specific, X is a vector lattice
ideal of L0(Ω,Σ, µ), equipped with a complete lattice norm ‖ · ‖, so that f ∈ X, g ∈ L0(Ω,Σ, µ)
and µ{|f | > t} = µ{|g| > t} for all t ≥ 0 imply that g ∈ X and ‖f‖ = ‖g‖. We further assume
that X has the Fatou property: Whenever fn ∈ X, 0 ≤ fn ↑ f a.e. and sup ‖fn‖ < ∞ then f ∈ X
and ‖f‖ = supn ‖fn‖.

Let C be the class consisting of X only. Given a Banach space E, the aim of this subsection will
be to produce a formula for the norm ρC on FVL[E] and show that FBLC [E] ⊆ C(BE∗).

Given a sequence U = (Un) of disjoint measurable subsets of Ω so that 0 < µ(Un) < ∞ for all n,
we define for each f ∈ L0(Ω,Σ, µ) the conditional expectation over U by

PUf =
∑

n

∫
Un
f dµ

µ(Un)
χUn

.

Note that the above sum has at most one non-zero term at any given point of Ω, so is well-defined
as long as

∫
Un
f dµ is finite for every n ∈ N. This will be the case when f ∈ X.

Proposition 2.9. Let U = (Un) be a sequence of disjoint measurable subsets of Ω so that µ(Un) < ∞
for all n. Then PUf ∈ X if f ∈ X and PU is a positive contraction on X.

Proof. First note that, since X is a Banach function space,
∫
Un
f dµ is finite for every n ∈ N (see

property 5 in [9, Definition I.1.1]), so PUf is well-defined. It is straightforward to check that PU is
a positive contraction from L1(Ω,Σ, µ) to L1(Ω,Σ, µ) and from L∞(Ω,Σ, µ) to L∞(Ω,Σ, µ). Thus,
PU is an admissible operator for the compatible pair (L1(Ω,Σ, µ), L∞(Ω,Σ, µ)). Moreover, since X
is a r.i. space over a non-atomic σ-finite (in particular, resonant) measure space, it follows from [9,
Theorem II.2.2] that X is an exact interpolation space, so PU : X → X is a positive contraction. �

Lemma 2.10. Let h1, . . . , hn ∈ X and set h =
∑n
k=1 |hk|. Given ε > 0, there is a sequence U = (Un)

of disjoint measurable subsets of Ω so that 0 < µ(Un) < ∞ for all n and |hk−PUhk| ≤ εh, 1 ≤ k ≤ n.

Proof. We may assume that ε < 1. Let Vi = {εi ≤ h < εi−1}. Then (Vi)i∈Z is a sequence of disjoint
measurable subsets of Ω so that h = hk = 0 on (

⋃
i Vi)

c for any k. Since the measure space is σ-finite,
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for each i there is an at most countable measurable partition (Uij)j∈Ji
of Vi with 0 < µ(Uij) < ∞

and bkij ∈ R so that

|hkχVi
−
∑

j∈Ji

bkijχUij
| ≤

εi+1

2
, i ∈ Z, 1 ≤ k ≤ n.

Thus, for each 1 ≤ k ≤ n we have

(2.1) |hk −
∑

i,j

bkijχUij
| ≤

∑

i

εi+1

2
χVi

≤
εh

2

and
∣∣∣

1

µ(Uij)

∫

Uij

hk dµ− bkij
∣∣∣ =

∣∣∣
1

µ(Uij)

∫

Uij

hk − bkijχUij
dµ
∣∣∣ ≤

εi+1

2
.

Take U = (Uij)i∈Z,j∈Ji
. Note that PUhk = 0 on the set (

⋃
ij Uij)

c. For 1 ≤ k ≤ n,

(2.2) |PUhk −
∑

i,j

bkijχUij
| ≤

∑

i,j

εi+1

2
χUij

=
∑

i

εi+1

2
χVi

≤
εh

2
.

Summing (2.1) and (2.2) gives the desired result. �

Let I = {(m, r) ∈ N2 : m
r

≤ µ(Ω)}. If (m, r) ∈ I, take any sequence (Vi)
m
i=1 of disjoint measurable

subsets of Ω such that µ(Vi) = r−1, 1 ≤ i ≤ m. Define a norm ρmr on Rm by

ρmr(a1, . . . , am) = ‖
m∑

i=1

aiχVi
‖X .

Let E be a Banach space and define ρ : C(BE∗) → [0,∞] by

ρ(f) = sup ρmr(f(x∗
1), . . . , f(x∗

m)),

where the supremum is taken over all (m, r) ∈ I and x∗
1, . . . , x

∗
m ∈ E∗ which satisfy the constraint

supx∈BE
ρmr(x

∗
1(x), . . . , x∗

m(x)) ≤ 1. By definition, ρ(δx) = ‖x‖ for any x ∈ E. Moreover, it is easy
to check that ρ is a complete lattice norm on the vector lattice {f ∈ C(BE∗) : ρ(f) < ∞} which
contains FVL[E]. For our next result, recall that we are considering the case C = {X}.

Theorem 2.11. The norms ρ and ρC are equal on FVL[E]. In particular, FBLC[E] ⊆ {f ∈
C(BE∗) : ρ(f) < ∞}.

Proof. Suppose that f ∈ FVL[E]. There are x1, . . . , xn ∈ E and a lattice-linear function G so
that f = G(δx1 , . . . , δxn

). Let ε > 0 be given. There are (m, r) ∈ I and x∗
1, . . . , x

∗
m ∈ E∗ so that

supx∈BE
ρmr(x

∗
1(x), . . . , x∗

m(x)) ≤ 1 and

ρ(f) ≤ ρmr(f(x∗
1), . . . , f(x∗

m)) + ε = ‖
m∑

i=1

f(x∗
i )χVi

‖X + ε,

where (Vi)
m
i=1 is the sequence of disjoint measurable subsets of Ω chosen above, so that µ(Vi) = r−1,

1 ≤ i ≤ m. Define a linear operator S : FVL[E] → X by Sg =
∑m
i=1 g(x∗

i )χVi
. It is clear that S is

a lattice homomorphism. By definition of ρ, if ρ(g) ≤ 1, then ρmr(g(x∗
1), . . . , g(x∗

m)) ≤ 1 and thus
‖Sg‖ ≤ 1. Let T = SφE : E → X. Then ‖T‖ ≤ 1 and hence

ρC(f) ≥ ‖T̂ f‖ = ‖ŜφEf‖ = ‖G(Sδx1 , . . . , Sδxn
)‖ = ‖Sf‖,
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where the last step holds since S is a lattice homomorphism. Thus, ρC(f) ≥ ρ(f) − ε for any ε > 0.
Therefore, ρC(f) ≥ ρ(f).

Conversely, given ε > 0, there exists a linear contraction T : E → X so that ρC(f) ≤ ‖T̂ f‖ + ε.
Let hk = Txk, 1 ≤ k ≤ n, and h =

∑n
k=1 |hk|. By Lemma 2.10, there is a sequence U = (Ui) of

disjoint measurable subsets of Ω so that 0 < µ(Ui) < ∞ for all i and |hk − PUhk| ≤ εh, 1 ≤ k ≤ n.
There is a constant CG < ∞, depending only on G, so that

|T̂ f −G(PUh1, . . . ,PUhn)| = |G(h1, . . . , hn) −G(PUh1, . . . ,PUhn)| ≤ CGεh.

Express PUhk as
∑
i akiχUi

, where T ∗χUi
= y∗

i and

aki =
1

µ(Ui)

∫

Ui

hk dµ =
y∗
i (xk)

µ(Ui)
.

Then

G(PUh1, . . . ,PUhn) = G(
∑

i

a1iχUi
, . . . ,

∑

i

aniχUi
)

=
∑

i

G(a1i, . . . , ani)χUi

=
∑

i

G(δx1 , . . . , δxn
)(y∗

i )
χUi

µ(Ui)

=
∑

i

f(y∗
i )

µ(Ui)
χUi

.

Since X has the Fatou property, there exists l ∈ N so that

‖
l∑

i=1

f(y∗
i )

µ(Ui)
χUi

‖ > ‖G(PUh1, . . . ,PUhn)‖ − ε ≥ ‖T̂ f‖ − (1 + CG‖h‖)ε.

Using the Fatou property once more, choose disjoint Lebesgue measurable sets V1, . . . , Vl so that
Vi ⊆ Ui, µ(Vi) ∈ Q and

‖T̂ f‖ − (1 + CG‖h‖)ε < ‖
l∑

j=1

f(y∗
i )

µ(Ui)
χVi

‖.

Write µ(Vi) = ji

r
, where ji, r ∈ N. Decompose each Vi as a disjoint union Vi =

⋃ji

s=1 Vis, with

µ(Vis) = r−1. Take j0 =
∑l
i=1 js. It follows that (j0, r) ∈ I. Consider the sequence where each

y∗
i

µ(Ui)

is repeated ji times. For any x ∈ BE , let b be the element of Rj0 so that each
y∗

i
(x)

µ(Ui)
occurs ji times.

Then

ρj0r(b) = ‖
l∑

i=1

y∗
i (x)

µ(Ui)
χVi

‖ ≤ ‖PU(Tx)‖ ≤ ‖T‖ = 1.

Recall that elements of FVL[E] have a homogeneity property given after Proposition 2.1. It follows

from the definition of ρ that, taking a to be the element of Rj0 where each
f(y∗

i )

µ(Ui)
occurs ji times,

ρ(f) ≥ ρj0r(a) = ‖
l∑

i=1

ji∑

s=1

f(y∗
i )

µ(Ui)
χVis

‖ = ‖
l∑

i=1

f(y∗
i )

µ(Ui)
χVi

‖

> ‖T̂ f‖ − (1 + CG‖h‖)ε ≥ ρC(f) − (2 + CG‖h‖)ε.
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Thus, ρ(f) ≥ ρC(f). �

The above construction of FBLC[E] motivates the following question.

Question 2.12. It is well-known that the properties of FBL(p)[E] depend heavily on whether p
is finite or infinite. Can the Banach lattices FBLC[E] be used to interpolate such properties? For
example, if (ek) is the unit vector basis of ℓ2, then by [28, Propositions 5.14 and 6.4] (|δek

|) gives a

copy of ℓ1 in FBL(p)[ℓ2] when p < ∞ and a copy of ℓ2 when p = ∞. Can we find for each r ∈ (1, 2)
a class Cr so that (|δek

|) behaves like ℓr in FBLCr [ℓ2]?

2.4. Injective homomorphisms need not extend to the norm completion. In Section 2.2
we defined FBLC[E] as the completion of (FVL[E], ρC). Clearly, there is a continuous lattice ho-
momorphic injection (FVL[E], ρC) ֒→ C(BE∗) because of the inequality ‖ · ‖∞ ≤ ρC(·) on FVL[E].
In [13] it is shown that under certain order continuity assumptions (which are not fulfilled in our
situation) continuous lattice homomorphic injections retain their injectivity after norm completion.
Moreover, it is claimed in [39, Lemma 14] that any continuous lattice homomorphic injection from a
normed vector lattice to a Banach lattice lifts injectively to the completion. If this were the case, it
would provide a straightforward solution to the question of finding a function lattice representation
for FBL(p,∞)[E] asked in [21, Remark 6.2]. In this subsection, we give a complete characterization
of when continuous injective lattice homomorphisms extend injectively to the completion, and, in
particular, show that this need not always be the case.

Throughout this subsection X will be a vector lattice equipped with a lattice norm and Y will be
a Banach lattice. We denote the norm completion of X by X̂ and consider polar sets with respect
to the duality 〈X̂,X∗〉: for A ⊆ X̂, set A◦ = {x∗ ∈ X∗ : 〈a, x∗〉 ≤ 1, ∀a ∈ A}.

Theorem 2.13. Let X be a normed vector lattice equipped with a lattice norm and let X̂ be its
norm completion. The following are equivalent.

(1) For any Banach lattice Y , any bounded linear injective lattice homomorphism T : X → Y

extends to a bounded linear injective operator T̂ : X̂ → Y .
(2) For any 0 < x ∈ X̂, Ix ∩X , {0}, where Ix is the closed ideal in X̂ generated by x.

Proof. (1) =⇒ (2): Suppose that there exists 0 < x ∈ X̂ so that Ix ∩X = {0}. By [38, Proposition
II.4.7], (Ix)

◦ is an ideal in X∗. Define ρ : X → R by

ρ(u) = sup
x∗∈(Ix)◦∩BX∗

|〈u, x∗〉|.

Since (Ix)
◦ ∩ BX∗ is a solid subset of BX∗ , ρ is a lattice semi-norm on X such that ρ(·) ≤ ‖ · ‖. If

0 < u ∈ X, then u < Ix. Since Ix is a closed subspace of X̂, there exists x∗ ∈ (Ix)
◦ ∩BX∗ such that

〈u, x∗〉 , 0. Hence, ρ(u) > 0. This shows that ρ is a norm on X.

Denote by Xρ the vector lattice X normed by ρ and let i : X → Xρ ⊆ X̂ρ be the formal identity,

where X̂ρ is the norm completion of Xρ. By construction, i is a bounded linear injective lattice

homomorphism. By (1), i extends to an injective bounded linear operator î : X̂ → X̂ρ. Denote

by ρ̂ the norm on X̂ρ. By injectivity of î, îx , 0. Let c = ρ̂(̂ix) > 0. There exists (xn) in X

that converges to x in X̂. By continuity, (ixn) converges in X̂ρ to îx. Choose N large enough so

that ρ̂(ixN − îx) < c
2
. Then ρ(ixN ) > c

2
. By definition of ρ, there exists x∗ ∈ (Ix)

◦ ∩ BX∗ so that
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|〈ixN , x
∗〉| > c

2
. By definition of ρ again, x∗ defines a bounded linear functional on Xρ with norm

ρ∗(x∗) ≤ 1. Hence,

|〈x, x∗〉| = |〈îx, x∗〉| ≥ |〈ixN , x
∗〉| − ρ̂(ixN − îx) · ρ∗(x∗) >

c

2
−
c

2
= 0.

This is impossible since x ∈ Ix and x∗ ∈ (Ix)
◦.

(2) =⇒ (1): Let T : X → Y be as in (1), and assume that its extension T̂ is not injective. There

exists some x ∈ X̂, x , 0, such that T̂ x = 0. Since T̂ is a lattice homomorphism, we can assume
that x > 0. Let Ix be the closed ideal in X̂ generated by x. By (2), there is a non-zero element

z ∈ Ix ∩ X. Since Ix is the closure of the ideal generated by x, there exists a sequence (zn) ⊆ X̂

converging to z in X̂ and some positive scalars (λn) such that 0 ≤ |zn| ≤ λnx. Therefore,

0 ≤ |T̂ zn| ≤ λnT̂ x = 0

and
Tz = T̂ z = lim

n
T̂ zn = 0,

so by the injectivity of T we conclude that z must be zero. This is a contradiction. �

The following example taken from [10] illustrates the above situation.

Example 2.14. There is a dense vector sublattice X of c0 such that I ∩ X = {0}, where I is the
closed ideal in c0 generated by e1; that is, I = {(an) ∈ c0 : an = 0 for all n ≥ 2.}. Consequently,
not every bounded linear injective lattice homomorphism from X into a Banach lattice Y extends
to an injective operator from c0 to Y .

Proof. Let X consist of all (an) ∈ c0 such that there exists m ∈ N so that an = a1

n
for all n ≥ m.

Clearly, X is a vector sublattice of c0 with en ∈ X if n ≥ 2. For any n ≥ 2, xn := e1 +
∑∞
k=n

ek

k
∈ X

and (xn) converges to e1 in c0. Thus, e1 ∈ X. It follows that X = c0. If a = (an) ∈ I ∩ X, then
an = 0 for all n ≥ 2. Since a1 = mam for sufficiently large m, a1 = 0 as well. Thus, a = 0. �

3. Applications to free p-convex and free (p,∞)-convex Banach lattices

We now apply the results of Sections 2.2 and 2.3 to the classes Cp and Cp,∞ consisting of all
Banach lattices with p-convexity constant 1 and all Banach lattices with upper p-estimate constant
1, respectively. For this purpose, we recall the following factorization theorems.

Theorem 3.1 (Maurey’s Factorization Theorem). Let 1 < p < ∞, A ⊆ L1(µ) and 0 < M < ∞.
The following are equivalent.

(1) For all finitely supported sequences (αi)i∈I of real numbers and (fi)i∈I ⊆ A,

‖(
∑

|αifi|
p)

1
p ‖L1(µ) ≤ M(

∑
|αi|

p)
1
p .

(2) There exists g ∈ L1(µ)+, ‖g‖1 = 1, such that for any f ∈ A,
∥∥∥
f

g

∥∥∥
Lp(g·µ)

≤ M.

Theorem 3.2 (Pisier’s Factorization Theorem). Let 1 < p < ∞, A ⊆ L1(µ), 0 < M < ∞ and

γp = (1 − 1
p
)

1
p

−1. Consider the following conditions.
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(1) For all finitely supported sequences (αi)i∈I of real numbers and (fi)i∈I ⊆ A,
∥∥∥
∨

|αifi|
∥∥∥
L1(µ)

≤ M(
∑

|αi|
p)

1
p .

(2) There exists g ∈ L1(µ)+, ‖g‖1 ≤ 1, such that for any f ∈ A and any µ-measurable set U ,
∥∥∥fχU

∥∥∥
L1(µ)

≤ γpM (
∫

U
g dµ)1− 1

p .

Then (1) =⇒ (2).

Theorem 3.1 is very well-known. See, for example, [1, Chapter 7]. Theorem 3.2 is the implication
(iii) =⇒ (i) in [30, Theorem 1.1]. Note that condition (2) in Theorem 3.2 is equivalent to

∥∥∥
f

g
χU‖L1(g·µ) ≤ γpM

(
(g · µ)(U)

)1− 1
p .

In particular, under the above conditions,
∥∥∥f
g

∥∥∥
Lp,∞(g·µ)

≤ γpM for all f ∈ A.

We will use the above factorization theorems to represent p-convex Banach lattices inside of
infinity sums of Lp spaces and Banach lattices with upper p-estimates inside of infinity sums of
weak-Lp spaces. Recall that, given a measure space (Ω,Σ, µ), the space Lp,∞(µ) is defined as the
set of all measurable functions h : Ω → R such that the quasinorm

sup
t>0

tµ({|h| > t})
1
p

is finite. Note, in particular, that every h ∈ Lp,∞(µ) has σ-finite support. Unless otherwise specified,
we will equip Lp,∞(µ) with the norm

‖h‖Lp,∞ = sup{µ(E)
1
p

−1
∫

E
|h|dµ : 0 < µ(E) < ∞}.

It is a standard fact (cf. [19, Exercise 1.1.12]) that the above norm is equivalent to the usual
quasinorm on weak-Lp; it can also be checked to be a lattice norm with upper-p estimate constant
one.

Proposition 3.3. The following statements hold:

(1) Let X be a p-convex Banach lattice with constant M . There is a family Γ of probability
measures and a lattice isomorphism

J : X →
(
⊕µ∈ΓL

p(µ)
)

∞

such that ‖x‖ ≤ ‖Jx‖ ≤ M‖x‖ for all x ∈ X.
(2) Let X be a (p,∞)-convex Banach lattice with constant M . There is a family Γ of probability

measures and a lattice isomorphism

J : X →
(
⊕µ∈ΓL

p,∞(µ)
)

∞

such that ‖x‖ ≤ ‖Jx‖ ≤ γpM‖x‖ for all x ∈ X.
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Proof. Let x ∈ S+
X = {z ∈ X+ : ‖z‖ = 1}. Choose x∗ ∈ X∗

+, ‖x∗‖ = 1, such that x∗(x) = 1. Define
ρx : X → R by ρx(z) = x∗(|z|). Then ρx is an L-norm on X/ ker ρx. Let qx : X → X/ ker ρx be
the quotient map. There exist a probability measure µx and a contractive lattice homomorphism
ix : X/ ker ρx → L1(µx) such that ixqxx = 1, the constant 1 function. Set Ax = ixqx(BX) ⊆ L1(µx).
Let αi be a finitely supported real sequence and let fi = ixqxxi for xi ∈ BX . Since ixqx is a lattice
homomorphism,

‖(
∑

|αifi|
p)

1
p ‖L1(µx) = 〈(

∑
|αixi|

p)
1
p , x∗〉 ≤ ‖(

∑
|αixi|

p)
1
p ‖

≤ M(
∑

|αi|
p)

1
p if X is p-convex with constant M,

‖
∨

|αifi|‖L1(µx) = 〈
∨

|αixi|, x
∗〉 ≤ ‖

∨
|αixi|‖

≤ M(
∑

|αi|
p)

1
p if X is (p,∞)-convex with constant M.

By the factorization theorems above, there exists gx ∈ L1(µx)+, ‖gx‖L1(µx) ≤ 1, such that for any
f ∈ A and any µx measurable set U ,

∥∥∥
f

gx

∥∥∥
Lp(gx·µx)

≤ M, respectively,
∥∥∥
f

gx

∥∥∥
Lp,∞(gx·µx)

≤ γpM.

Define

J : X →
(
⊕x∈S+

X
Lp(gx · µx)

)
∞
, respectively J : X →

(
⊕x∈S+

X
Lp,∞(gx · µx)

)
∞

by Jz = (ixqxz/gx)x. It is easy to check that J is a lattice homomorphism. If z ∈ BX , we have
ixqxz ∈ Ax. Hence,

‖ixqxz/gx‖Lp(gx·µx) ≤ M, respectively ‖ixqxz/gx‖Lp,∞(gx·µx) ≤ γpM.

Thus, ‖Jz‖ ≤ M‖z‖, respectively ‖Jz‖ ≤ γpM‖z‖ for all z ∈ X.

On the other hand, if x ∈ S+
X , then in the p-convex case,

‖Jx‖ ≥ ‖ixqxx/gx‖Lp(gx·µx) ≥ ‖ixqxx/gx‖L1(gx·µx)

since ‖gx · µx‖ ≤ 1. Therefore, ‖Jx‖ ≥ ‖ixqxx‖L1(µx) = x∗(x) = 1. In the (p,∞)-convex case,
suppose that µx is a measure defined on Ωx. Then

∫
ixqxx

gx
d(gx · µx) =

∫
ixqxx dµx = x∗(x) = 1 ≥

(
(gx · µx)(Ωx)

)1− 1
p .

Hence, ‖Jx‖ ≥
∥∥∥ ixqxx

gx

∥∥∥
Lp,∞(gx·µx)

≥ 1. It follows that ‖Jx‖ ≥ ‖x‖ for all x ∈ X in both cases. �

Proposition 3.3 has the following interpretation. Assume that 1 < p < ∞. Let Cp be the class
of all p-convex Banach lattices with constant 1 and let Xp be the class of all Lp(µ) spaces for any
measure µ. Then Cp ⊆ X p. Since the reverse inclusion is evident, we have Cp = X p. By Corollary
2.6, for any Banach space E, ρCp

= ρXp
on FVL[E]. Note further that, since the measures µ ∈ Γ

in Proposition 3.3 are finite, we could restrict the class Xp to the class of Lp(µ) spaces with finite
measures (let us denote this class by X F

p ) and the equality of norms would still hold. Actually, it can

be proved by a standard argument that X F
p ⊆ Xp ⊆ X

F
p . The following result gives an alternative

method for computing ρCp
.
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Theorem 3.4. Let E be a Banach space and let 1 < p < ∞. The norm ρCp
on FVL[E] is given by

ρCp
(f) = ρp(f) := sup ‖(f(x∗

1), . . . , f(x∗
n))‖p,

where the supremum is taken over all finite collections x∗
1, . . . , x

∗
n ∈ BE∗ satisfying the constraint

supx∈BE
‖(x∗

1(x), . . . , x∗
n(x))‖p ≤ 1.

Proof. As observed above, ρCp
= ρXp

= ρX F
p

, where X F
p is the class of all Lp(µ) spaces with finite µ.

If X ∈ X F
p there exists a non-atomic finite measure µ so that X is lattice isometric to a sublattice

of Lp(µ). Thus, ρ{X} ≤ ρ{Lp(µ)}, where the two norms here are the ones associated to the classes
with single elements, as indicated. By Theorem 2.11, ρ{Lp(µ)}(f) = ρp(f). Finally, note that

ρX F
p

= sup
X∈X F

p

ρ{X} ≤ sup
µ non-atomic

finite

ρ{Lp(µ)} = ρp ≤ ρX F
p
.

Hence, ρCp
= ρp, as claimed. �

Let Cp,∞ be the class of all (p,∞)-convex Banach lattices with constant 1 and let X σ
p,∞ be the class

of all Lp,∞(µ) spaces for any σ-finite measure µ. Similarly to Theorem 3.4, we have the following
result.

Theorem 3.5. Let E be a Banach space and let 1 < p < ∞. The norm ρX σ
p,∞

on FVL[E] is given
by

ρX σ
p,∞

(f) = ρp,∞(f) := sup ‖(f(x∗
1), . . . , f(x∗

n))‖p,∞,

where the supremum is taken over all finite collections x∗
1, . . . , x

∗
n ∈ BE∗ satisfying the constraint

supx∈BE
‖(x∗

1(x), . . . , x∗
n(x))‖p,∞ ≤ 1. Moreover, ρp,∞ ≤ ρCp,∞ ≤ γp ρp,∞, where γp = (1 − 1

p
)

1
p

−1.

Proof. The proof that ρX σ
p,∞

= ρp,∞ is similar to the proof of Theorem 3.4. Since X σ
p,∞ ⊆ Cp,∞,

ρX σ
p,∞

≤ ρCp,∞ . On the other hand, let X ∈ Cp,∞. By Proposition 3.3, there exists Y ∈ X
σ
p,∞ and a

lattice isomorphism J : X → Y so that ‖x‖ ≤ ‖Jx‖ ≤ γp‖x‖ for all x ∈ X. Let T : E → X be a
linear contraction. Then γ−1

p JT : E → Y is a linear contraction. Since J is a lattice homomorphism,
̂γ−1
p JT = γ−1

p JT̂ . For any f ∈ FVL[E],

‖T̂ f‖ ≤ γp‖γ
−1
p JT̂ f‖ = γp‖ ̂γ−1

p JTf‖ ≤ γpρX σ
p,∞

(f).

Taking supremum over all linear contractions T : E → X for any X ∈ Cp,∞ shows that ρCp,∞ ≤
γpρX σ

p,∞
. �

Observe that Theorems 3.4 and 3.5 say that ρCp
= ρ{ℓp} and that ρ{ℓp,∞} ≤ ρCp,∞ ≤ γp ρ{ℓp,∞}. As

a result, FBLCp [E] = FBL{ℓp}[E] and FBLCp,∞[E] = FBL{ℓp,∞}[E] and it is clear that both of these
spaces are vector sublattices of C(BE∗). The proof works in exactly the same way if p = 1, in which
case we get that C1, the class of all (1-convex) Banach lattices, is equal to X 1, where X1 consists of
all L1(µ) spaces. The Banach lattice FBLC1 [E] is the free Banach lattice generated by E, which is
usually denoted by FBL[E]. From the above, we see that ρC1 = ρX1 = ρ{ℓ1}.

Remark 3.6. In this subsection we have made heavy use of factorization theorems through Lp

and weak-Lp to identify the norm of the associated free spaces as a type of nonlinear weak-strong
summing norm. We note that there is a large literature (see [24, 25, 26, 36] and related papers
of these authors) on factorization theory and generalized summing operators on Banach function
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spaces, which may prove to be useful in the study of FBLC[E]. There are also several papers [16, 32,
33, 34, 35, 37] which study factorizations of p-convex and q-concave operators. Although we will
not do so here, it is certainly possible to extend some of these results to other convexity/concavity
conditions, such as (p,∞)-convexity and (q, 1)-concavity.

3.1. Solution to Problem 2.8 for the classes Cp and Cp,∞. Let Cp and Cp,∞ be the class of p-
convex Banach lattices and the class of Banach lattices satisfying an upper p-estimate with constant
1, respectively. We will characterize the classes of Banach lattices D so that (FBLCp [E], ρCp

) and

(FBLD[E], ρD) agree for any Banach space E and also the classes D′ so that (FBLCp,∞[E], ρCp,∞)

and (FBLD′

[E], ρD′) are lattice isomorphic.

For the proofs of the above claims, we need an extension of the isometric lattice-lifting property
which may be of independent interest. A Banach lattice X is said to have the isometric lattice-lifting
property if there exists a lattice isometric embedding α from X to FBL[X] such that îdXα = idX .
This property was introduced in [3], inspired by previous works of Godefroy and Kalton [18] on
Lipschitz-free spaces. Notably, Banach lattices ordered by a 1-unconditional basis have this property.

In [28, Theorem 8.3] an alternative proof of the lattice lifting property for spaces ordered by a

1-unconditional basis was given, which also worked with FBL[E] replaced by FBL(p)[E]. We now
show how to generalize these results to FBLC[E].

Proposition 3.7. Let X ∈ C be a Banach space with a normalized 1-unconditional basis (ei), viewed
as a Banach lattice in the pointwise order induced by the basis. Then FBLC[X] contains a lattice
isometric copy of X. Moreover, there exists a contractive lattice homomorphic projection onto this
sublattice.

Proof. Using either [3, Theorem 4.1] or [28, Theorem 8.3] with p = 1 we obtain a lattice isometric
embedding α : X → FBLC1 [X]. Since C ⊆ C1, it follows that ρC(f) ≤ ρC1(f) for every f ∈ FVL[X],
so the formal identity extends to a norm one lattice homomorphism j : FBLC1 [X] → FBLC[X].
On the other hand, since X ∈ C, the identity operator on X extends to a contractive lattice
homomorphism îdX : FBLC[X] → X. It can be checked from the construction of α that îdXjα =
idX , from which it follows that

‖x‖X = ‖îdXjαx‖ ≤ ρC(jαx) ≤ ρC1(αx) ≤ ‖x‖X

for every x ∈ X. �

Theorem 3.8. The following are equivalent for a class of Banach lattices D.

(1) For any Banach space E, FBLCp[E] = FBLD[E] as sets and the norms ρCp
and ρD agree

there.
(2) D ⊆ Cp and ℓp ∈ D.

Proof. (1) =⇒ (2): By Proposition 3.7, FBLD[ℓp] = FBLCp [ℓp] contains a lattice isometric copy of
ℓp. By Proposition 2.7, FBLD[ℓp] ∈ D. Hence, ℓp ∈ D.

Suppose that X ∈ D. Let φX : X → FBLD[X] be the canonical embedding. The identity
i : X → X induces a lattice homomorphic contraction î : FBLD[X] → X so that îφX = i. Since
FBLD[X] = FBLCp [X] lattice isometrically, this space belongs to Cp = Cp by Proposition 2.7. Hence,
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so does FBLD[X]/ ker î. Define j : FBLD[X]/ ker î → X by j[f ] = îf , where [f ] is the equivalence
class of f . The map j is a lattice isomorphism so that ‖j‖ ≤ 1 and x = j[δx] for any x ∈ X. Hence,
BX = j(B

FBLD [X]/ ker î
). This shows that j is an onto lattice isometry. Therefore, X ∈ Cp.

(2) =⇒ (1): Since D ⊆ Cp, for any Banach space E, ρD ≤ ρCp
on FVL[E]. Similarly, since ℓp ∈ D,

ρ{ℓp} ≤ ρD. However, ρCp
= ρ{ℓp} and ρD = ρD by Corollary 2.6. Therefore, we have the reverse

inequality ρCp
≤ ρD. �

For the case of Cp,∞, the following result can be proven in essentially the same way as Theo-
rem 3.8. The only difference is that, since ℓp,∞ does not have a basis, Proposition 3.7 cannot be
applied directly. However, we can still use Proposition 3.7 to embed ℓp,∞ lattice isometrically into
(
⊕
m FBLCp,∞[ℓp,∞(m)])∞ and continue with the rest of the proof with slight adaptations.

Theorem 3.9. The following are equivalent for a class of Banach lattices D.

(1) There is a constant M1 < ∞ so that for any Banach space E, FBLCp,∞[E] = FBLD[E] as
sets and 1

M1
ρD ≤ ρCp,∞ ≤ M1ρD there.

(2) There is a constant M2 < ∞ so that any X ∈ D satisfies an upper p-estimate with constant
M2, and ℓp,∞ is M2-lattice isomorphic to a space Y ∈ D.

4. Distinguishing ρXp,∞ and ρCp,∞

A natural question that arises from Proposition 3.3 and Theorem 3.5 is whether the constant
γp can be improved to 1. In this section, we will show that the answer is negative in general. In
particular, there is a Banach space E so that ρCp,∞ , ρXp,∞ on FVL[E].

Let X, Y be Banach lattices and let 1 ≤ C < ∞. We say that X C-lattice embeds into Y if there
exists a lattice isomorphic injection T : X → Y such that C−1‖x‖ ≤ ‖Tx‖ ≤ ‖x‖ for all x ∈ X.
In this case, we call T a C-lattice embedding. If C = 1, then T is a lattice isometric embedding.
A Banach space with a normalized 1-unconditional basis is regarded as a Banach lattice in the
coordinate-wise order.

Theorem 4.1. Let X be a Banach lattice with a normalized 1-unconditional basis (ei). Denote the
biorthogonal functionals by (e∗

i ). For any C ≥ 1, the following statements are equivalent.

(1) For each normalized finitely supported a =
∑n
i=1 aiei ∈ X+ and every ε > 0, there exist

b =
∑n
i=1 bie

∗
i ∈ X∗

+ and d = (di)
n
i=1 ∈ Rn+ so that

∑n
i=1 aibi > 1 − ε,

∑n
i=1 di = 1 and

‖
∑
i∈I bie

∗
i ‖
p′

≤ Cp′ ∑
i∈I di for any I ⊆ {1, . . . , n}.

(2) There is a set Γ of (probability) measures such that X C-lattice embeds into (
⊕
µ∈Γ L

p,∞(µ))∞.

Proof. (1) =⇒ (2): Let a ∈ X+ be normalized and finitely supported, and let ε > 0 be given.
Obtain b and d from (1). Let (Ui)

n
i=1 be a measurable partition of (0, 1) such that λ(Ui) = di,

1 ≤ i ≤ n, where λ denotes the Lebesgue measure. Define

Sa,ε : X → Lp,∞(0, 1) by Sa,ε(
∞∑

i=1

ciei) =
n∑

i=1

cibiχUi

di
.

We have

‖Sa,εa‖ ≥ λ(0, 1)
− 1

p′

∫ 1

0
|Sa,εa| dλ =

n∑

i=1

aibi > 1 − ε.
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On the other hand, if ‖
∑∞
i=1 ciei‖ ≤ 1 then there exists I ⊆ {1, . . . , n} so that

‖Sa,εc‖ = λ(
⋃

i∈I

Ui)
− 1

p′

∫
⋃

i∈I
Ui

|Sa,εc| dλ = (
∑

i∈I

di)
− 1

p′
∑

i∈I

|ci|bi

= (
∑

i∈I

di)
− 1

p′ 〈
∞∑

i=1

|ci|ei,
∑

i∈I

bie
∗
i 〉 ≤ (

∑

i∈I

di)
− 1

p′ ‖
∑

i∈I

bie
∗
i ‖ ≤ C.

Let Γ be the Cartesian product of the set of normalized finitely supported elements in X+ and the
interval (0, 1

2
). It is now clear that the map T : X → (

⊕
(a,ε)∈Γ L

p,∞(0, 1))∞ given by

T (
∞∑

i=1

ciei) = (C−1Sa,εc)(a,ε)∈Γ

is a C-lattice embedding.

(2) =⇒ (1): Let T : X → (
⊕
µ∈Γ L

p,∞(µ))∞ be a C-lattice embedding. Suppose that a =
∑n
i=1 aiei

is normalized and ε > 0. For each µ0 ∈ Γ, let Pµ0 be the projection of (
⊕
µ∈Γ L

p,∞(µ))∞ onto
the µ0-th component. There exists µ0 such that C‖Pµ0Ta‖ > 1 − ε. Let fi = Pµ0Tei. Choose a
µ0-measurable set U such that 0 < µ0(U) < ∞ and

C
∫

U
Pµ0Ta dµ0 > (1 − ε)(µ0(U))

1
p′ .

Set Ui = U ∩ supp fi and m = (
∑n
i=1 µ0(Ui))

1
p′ . Define

bi =
C
∫
Ui
fi dµ0

m
, di =

µ0(Ui)

mp′ , 1 ≤ i ≤ n.

We have di ≥ 0,
∑n
i=1 di = 1 and
n∑

i=1

aibi =
C

m

∫
⋃n

i=1
Ui

n∑

i=1

aifi dµ0 =
C

m

∫
⋃n

i=1
Ui

Pµ0Ta > 1 − ε.

On the other hand, suppose that I ⊆ {1, . . . , n}. If ‖
∑∞
i=1 ciei‖ ≤ 1, then

〈
∞∑

i=1

ciei,
∑

i∈I

bie
∗
i 〉 =

∑

i∈I

cibi =
C

m

∫
⋃

i∈I
Ui

∑

i∈I

cifi dµ0

≤
C

m
‖Pµ0T (

∞∑

i=1

ciei)‖ (µ0(
⋃

i∈I

Ui))
1
p′ ≤ C(

∑

i∈I

di)
1
p′ .

This proves that ‖
∑
i∈I bie

∗
i ‖
p′

≤ Cp′ ∑
i∈I di. �

Remark 4.2. If X is a two dimensional Banach lattice that satisfies an upper p-estimate with
constant one, then C = 1 works in Theorem 4.1. Indeed, let (e1, e2) be a normalized 1-unconditional
basis for X. Suppose that a = a1e1 +a2e2 is normalized and non-negative. Choose b = b1e

∗
1 + b2e

∗
2 ∈

X∗
+ such that 〈a, b〉 = 1 = ‖b‖. Define di = bp

′

i /(b
p′

1 + bp
′

2 ), i = 1, 2. Note that X∗ satisfies a lower
p′-estimate with constant one and e∗

1 and e∗
2 are disjoint, so

bp
′

1 + bp
′

2 = ‖b1e
∗
1‖
p′

+ ‖b2e
∗
2‖p

′

≤ ‖b‖p
′

= 1.

It is easy to check that ‖
∑
i∈I bie

∗
i ‖
p′

≤
∑
i∈I di for any I ⊆ {1, 2} and d1 + d2 = 1.
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Corollary 4.3. Suppose that X is a Banach lattice with a normalized 1-unconditional basis (ei)
that C-lattice embeds into (

⊕
µ∈Γ L

p,∞(µ))∞. For any normalized b =
∑n
i=1 bie

∗
i ∈ X∗

+ and any
Ij ⊆ {1, . . . , n}, 1 ≤ j ≤ m, such that

∑m
j=1 χIj

= lχ{1,...,n} for some l ∈ N, we have

m∑

j=1

‖
∑

i∈Ij

bie
∗
i ‖
p′

≤ Cp′

l.

Proof. Choose a normalized a =
∑n
i=1 aiei ∈ X+ so that

∑n
i=1 aibi = 1. First assume that [(ei)

n
i=1]

is uniformly convex. Let ε > 0 be given. There exists δ > 0 so that if b′ =
∑n
i=1 b

′
ie

∗
i ∈ X∗

+, ‖b′‖ = 1
and 〈a, b′〉 > 1 − δ, then ‖b− b′‖ < ε. By Theorem 4.1, there exists b′ ∈ X∗

+ and d = (di)
n
i=1 ∈ Rn+

so that 〈a, b′〉 > 1 − δ and ‖
∑
i∈I b

′
ie

∗
i ‖
p′

≤ Cp′ ∑
i∈I di for any I ⊆ {1, . . . , n}. It follows that for any

I ⊆ {1, . . . , n},

‖
∑

i∈I

bie
∗
i ‖ ≤ ‖

∑

i∈I

|bi − b′
i|e

∗
i ‖ + ‖

∑

i∈I

b′
ie

∗
i ‖ ≤ ε · #I + C(

∑

i∈I

di)
1
p′ .

Now assume that Ij ⊆ {1, . . . , n}, 1 ≤ j ≤ m, and that
∑m
j=1 χIj

= lχ{1,...,n} for some l ∈ N. Set

Aj = ε · #Ij and Bj = C(
∑
i∈Ij

di)
1
p′ . Then

(
m∑

j=1

‖
∑

i∈Ij

bie
∗
i ‖
p′

)
1
p′ ≤ (

m∑

j=1

(Aj +Bj)
p′

)
1
p′ ≤ (

m∑

j=1

Ap
′

j )
1
p′ + (

m∑

j=1

Bp′

j )
1
p′

≤
m∑

j=1

Aj + (
m∑

j=1

Bp′

j )
1
p′ = ε

m∑

j=1

#Ij + C(
m∑

j=1

∑

i∈Ij

di)
1
p′ ≤ εnl + Cl

1
p′ .

Taking ε ↓ 0 gives the desired result.

We now return to a general X with a normalized 1-unconditional basis (ei). Given a normalized
b =

∑n
i=1 bie

∗
i ∈ X∗

+ and ε > 0, there is a uniformly convex lattice norm ||| · ||| on [(ei)
n
i=1] such

that ‖x‖ ≤ |||x||| ≤ (1 + ε)‖x‖ for any x ∈ [(ei)
n
i=1]. Set ui = ei/|||ei|||, u

∗
i = e∗

i /|||e
∗
i ||| and

b′ =
∑n
i=1 b

′
iu

∗
i = b/|||b|||. Note that (ui)

n
i=1 is a 1-unconditional basis for [(ei)

n
i=1] = [(ui)

n
i=1] and b′

is ||| · |||-normalized. Moreover, if T : [(ei)
n
i=1] → (

⊕
µ∈Γ L

p,∞(µ))∞ is a C-lattice embedding, then

T̃ x = Tx : [(ui)
n
i=1] → (

⊕

µ∈Γ

Lp,∞(µ))∞

is a (1 + ε)C-lattice embedding. Assume that Ij ⊆ {1, . . . , n}, 1 ≤ j ≤ m, such that
∑m
j=1 χIj

=
lχ{1,...,n} for some l ∈ N. By the first part,

m∑

j=1

|||
∑

i∈Ij

b′
iu

∗
i |||

p′

≤ (1 + ε)p
′

Cp′

l.

Since |||b||| ≤ 1 + ε, for any I ⊆ {1, . . . , n} we have

|||
∑

i∈I

b′
iu

∗
i ||| =

1

|||b|||
|||
∑

i∈I

bie
∗
i ||| ≥

1

1 + ε
‖
∑

i∈I

bie
∗
i ‖.

Thus,
m∑

j=1

‖
∑

i∈I

bie
∗
i ‖
p′

≤ (1 + ε)2p′

Cp′

l.

Taking ε ↓ 0 gives the desired result. �
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The next example shows that γp cannot be made to be 1 in Proposition 3.3.

Example 4.4. Suppose that 1 < p < ∞. Denote by Cp the infimum of the set of constants C so
that every (p,∞)-convex Banach lattice with constant one C-lattice embeds into (

⊕
γ∈Γ L

p,∞(µ))∞

for some set of measures Γ. Then Cp′

p ≥ 3·2p′

2(1+2p′ )
> 1.

Proof. Let X = R3 so that the norm on X∗ is

‖(b1, b2, b3)‖X∗ = max
{(

|bi|
p′

+ (|bj| + |bk|)
p′
) 1

p′
: {i, j, k} = {1, 2, 3}

}
.

It is clear that the coordinate unit vectors form a normalized 1-unconditional basis for X. Suppose
that b = (b1, b2, b3) ∈ X∗ and I, J are disjoint non-empty subsets of {1, 2, 3}. Without loss of
generality, we may assume that I = {i, j} and J = {k}, where i, j, k are distinct. Then

‖bχI‖
p′

X∗ + ‖bχJ‖p
′

X∗ = (|bi| + |bj |)
p′

+ |bk|
p′

≤ ‖b‖p
′

X∗ .

Thus, X∗ satisfies a lower p′-estimate with constant 1. Hence, X satisfies an upper p-estimate
with constant 1. Suppose that X C-lattice embeds into some (

⊕
γ∈Γ L

p,∞(µ))∞. The vector (1 +

2p
′
)

− 1
p′ (1, 1, 1) is normalized in X∗

+. By Corollary 4.3,

1

1 + 2p′ (‖(1, 1, 0)‖p
′

+ ‖(1, 0, 1)‖p
′

+ ‖(0, 1, 1)‖p
′

) ≤ 2Cp′

.

Thus,

3 · 2p
′

2(1 + 2p′)
≤ Cp′

.

Taking infimum over the eligible C’s gives the desired result. Direct verification shows that 3·2p′

2(1+2p′ )
>

1 if 1 < p < ∞. �

Now we are ready to show that γp also cannot be made to be 1 in Theorem 3.5. Note that the
following result can be adapted to work for other classes of lattices C.

Proposition 4.5. Let X be a Banach lattice with a normalized 1-unconditional basis (ei) satisfying
upper p-estimates. Let C ≥ 1. The following are equivalent.

(1) X C-lattice embeds in (
⊕
γ∈Γ L

p,∞(µ))∞.

(2) For every operator T : X → X, the extension T̂ : FBLXp,∞[X] → X satisfies ‖T̂‖ ≤ C‖T‖.

(3) The extension îdX : FBLXp,∞[X] → X of the identity idX : X → X satisfies ‖îdX‖ ≤ C.

Proof. Clearly, (1) ⇒ (2) ⇒ (3).

For the proof of (3) ⇒ (1) we first note that by the remark after Theorem 3.5, for any Banach
space E, ρX σ

p,∞
= ρ{ℓp,∞} on FVL[E]. Thus, it follows from Proposition 2.7 that FBLXp,∞[E] belongs

to the class {ℓp,∞}, i.e., it lattice isometrically embeds into (
⊕
γ∈Γ ℓ

p,∞)∞.

We now adapt the proof of Proposition 3.7 to our setting. Recall that by [28, Theorem 8.3] there

is a lattice isometric embedding α : X → FBL[X] = FBLC1 [X] such that îdXα = idX . Moreover,
since X σ

p,∞ ⊆ C1, the formal identity j : FBLC1 [X] → FBLX σ
p,∞[X] is a continuous norm one injection

such that îdXjα = idX . We claim that jα : X → FBLX σ
p,∞ [X] defines a C-lattice embedding. If
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true, the previous paragraph gives the implication (3) ⇒ (1). To prove the claim, simply note that
for every x ∈ X

1

C
‖x‖ ≤

1

‖îdX‖
‖îdXjαx‖ ≤ ρXp∞(jαx) ≤ ρC1(αx) ≤ ‖x‖.

�

4.1. Equivalent renormings of Lp,∞(µ). Let 1 < p < ∞. As mentioned above, given a measure
space (Ω,Σ, µ), the space Lp,∞(µ) is the set of all measurable functions f : Ω → R such that

‖f‖∗
Lp,∞ := sup

t>0
tµ({ |f | > t})

1
p

is finite. In the previous subsections, we equipped Lp,∞(µ) with the norm

‖f‖Lp,∞ = sup{µ(E)
1
p

−1
∫

E
|f |dµ : 0 < µ(E) < ∞}.

However, for each 1 ≤ r < p, we could have equally chosen to equip Lp,∞(µ) with the norm

‖f‖Lp,∞
r

:= sup
0<µ(A)<∞

µ(A)− 1
r

+ 1
p

(∫

A
|f |r dµ

)1
r

.

Indeed, it is well-known (cf. [19, Exercise 1.1.12]) that

‖f‖∗
Lp,∞ ≤ ‖f‖Lp,∞

r
≤

(
p

p− r

) 1
r

‖f‖∗
Lp,∞

for every f ∈ Lp,∞(µ), and it is easy to see that for each 1 ≤ r < p, ‖ · ‖Lp,∞
r

defines a lattice
norm on Lp,∞(µ) with upper p-estimate constant 1. For this reason, it is natural to ask whether
the ambiguity in choosing a norm on Lp,∞(µ) is the reason why γp cannot be chosen to be 1 in
Proposition 3.3 and Theorem 3.5.

The aim of this subsection is to show that (Lp,∞(µ), ‖ · ‖Lp,∞
r

) lattice isometrically embeds into
a Banach lattice of the form (

⊕
µ∈Γ L

p,∞(ν))∞, where each Lp,∞(ν) is given the Lp,∞1 -norm. As
a consequence, we deduce that ρp,∞(·) = ρLp,∞

1
(·) ≥ ρLp,∞

r
(·) on FVL[E], proving that the above

renormings cannot eliminate the constant γp in Proposition 3.3 and Theorem 3.5.

We begin with a lemma.

Lemma 4.6. Let e = (1, . . . , 1) ∈ Rn and let (ei)
n
i=1 be the coordinate unit vector basis for Rn. Let

β, b ∈ Rn+, ‖β‖1, ‖b‖1 ≤ 1, and let 0 < s < 1. Define α : Rn+ → R by α(x) = (β · x)1−s (b · x)s,
where · is the dot product on Rn. Then α is positively homogeneous, α(e) = ‖β‖1−s

1 · ‖b‖s1 ≤ 1 and∑m
j=1 α(xj) ≤ α(

∑m
j=1 xj) for any sequence (xj)

m
j=1 ⊆ ℓ1(n)+.

Proof. Let (xj)
m
j=1 ⊆ Rn+. Then

m∑

j=1

α(xj) ≤ ‖(β · xj)
1−s‖ 1

1−s
‖(b · xj)

s‖ 1
s

= (β ·
m∑

j=1

xj)
1−s (b ·

m∑

j=1

xj)
s = α(

m∑

j=1

xj).

The remaining assertions are clear. �
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Let x ∈ Rn be expressed as (x(j))nj=1. In our next result, for fixed i ∈ N, we write x < i if
max supp x < i.

Proposition 4.7. There is a sequence (di)
n
i=1 of non-negative real numbers such that for each i,

i−1∑

j=1

x(j)dj + α(z) −m−
i−1∑

j=1

y(j)dj ≤ di ≤ m′ +
i−1∑

j=1

y′(j)dj −
i−1∑

j=1

x′(j)dj − α(z′)

provided that m,m′ ∈ R+, x, y, z, x′, y′, z′ ∈ Rn+,

(4.1) x, y, x′, y′ < i, x+ z = ei +me + y and ei + x′ + z′ = m′e+ y′.

Proof. The proof is by induction on i. For i = 1, x = y = x′ = y′ = 0. Thus it suffices to show that

α(z) −m ≤ m′ − α(z′) if z = e1 +me and e1 + z′ = m′e.

To see this, note that

m+m′ ≥ α((m+m′)e) = α(z + z′) ≥ α(z) + α(z′),

from which the desired conclusion follows.

Assume now that dj, 1 ≤ j < i, have been chosen to satisfy the proposition. To be able to choose
di satisfying the proposition, we need to show that

i−1∑

j=1

x(j)dj + α(z) −m−
i−1∑

j=1

y(j)dj ≤ m′ +
i−1∑

j=1

y′(j)dj −
i−1∑

j=1

x′(j)dj − α(z′)

if m,m′, x, y, z, x′, y′, z′ satisfy (4.1). Equivalently, we must show that

(4.2)
i−1∑

j=1

(x(j) + x′(j))dj + α(z) + α(z′) ≤ m+m′ +
i−1∑

j=1

(y(j) + y′(j))dj.

If x+ x′ = y+ y′, then (4.1) gives z + z′ = (m+m′)e. Thus, m+m′ ≥ α(z) +α(z′), yielding (4.2).
Otherwise, let u = (x + x′) ∧ (y + y′) ∈ Rn+. Then u < i and v1 := x + x′ − u, v2 := y + y′ − u
are disjoint in Rn+, not both 0. Assume that j0 = max supp v1 > max supp v2, as the other case is
similar. Set w = v1 − v1(j0)ej0 . Then w, v2 < j0, w(j) = v1(j) if j < j0 and

v1(j0)ej0 + w + (z + z′) = (m+m′)e+ v2.

Using the right inequality in the inductive hypothesis and the positive homogeneity of α, we see
that

v1(j0)dj0 ≤ (m+m′) +
j0−1∑

j=1

v2(j)dj −
j0−1∑

j=1

v1(j)dj − α(z + z′).

Adding
∑i−1
j=1 u(j)dj to both sides and rearranging gives

i−1∑

j=1

(x(j) + x′(j))dj + α(z + z′) ≤ m+m′ +
i−1∑

j=1

(y(j) + y′(j))dj.

The desired inequality (4.2) then follows since α(z) + α(z′) ≤ α(z + z′). �

Corollary 4.8. In the above notation, we have d = (di)
n
i=1 ∈ Rn+, α(e) ≤ ‖d‖1 ≤ 1 and α(x) ≤ x · d

for any x ∈ Rn+.
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Proof. Taking i = n in Proposition 4.7, we have

x = 0, y = e− en, z = e, m = 0; x′ = e− en, y
′ = 0, z′ = 0, m′ = 1.

Note that x, y, x′, y′ < n, x+ z = en +me + y and en + x′ + z′ = m′e+ y′. Thus,

α(e) −
n−1∑

j=1

dj ≤ dn ≤ 1 −
n−1∑

j=1

dj .

Hence, α(e) ≤ ‖d‖1 ≤ 1. Finally, if u ∈ Rn+, let x = 0, z = u, m = 0 and y = u − u(n)en. Then
x+ z = u(n)en +me + y. By Proposition 4.7 and the positive homogeneity of α,

α(u) −
n−1∑

j=1

u(j)dj ≤ u(n)dn =⇒ α(u) ≤ u · d.

�

Lemma 4.9. Let (Ω,Σ, µ) be a measure space. Suppose that (ai)
n
i=1 ∈ Rn+ and (Ui)

n
i=1 is a disjoint

sequence in Σ with 0 < µ(Ui) < ∞ so that C := (
∑n
i=1 µ(Ui))

− 1
r

+ 1
p ‖
∑n
i=1 aiχUi

‖Lr(µ) ≤ 1. There is
a measure ν on Σ and a linear lattice homomorphism S : Lp,∞r (µ) → Lp,∞1 (ν) so that ‖S‖ ≤ 1 and
‖S(

∑n
i=1 aiχUi

)‖ ≥ Cr.

Proof. Define M =
∑n
j=1 µ(Uj), bi = µ(Ui)

M
, b = (bi)

n
i=1 and βi = M

r
p

−1µ(Ui)a
r
i , β = (βi)

n
i=1. Clearly,

β, b ∈ Rn+ and ‖b‖1 = 1. Moreover,

‖β‖1 = M r( 1
p

− 1
r

) ‖
n∑

i=1

aiχUi
‖rLr(µ) = Cr ≤ 1.

Take s = p′(1
r

− 1
p
) and define α as in Lemma 4.6. Note that α(e) = ‖β‖1−s

1 ‖b‖s1 = Cr(1−s) ≤ 1.

Obtain d using Proposition 4.7. Define a measure ν on Σ by ν(A) =
∑n
i=1

di µ(A∩Ui)
µ(Ui)

and a linear
operator

S : Lp,∞r (µ) → Lp,∞1 (ν) by Sf = M
r
p

n∑

i=1

ar−1
i bi
di

fχUi
.

Clearly, S is a linear lattice homomorphism. Note that ν(
⋃n
i=1 Ui) =

∑n
i=1 di ≤ 1. Hence,

‖S(
n∑

i=1

aiχUi
)‖ ≥ M

r
p ‖

n∑

i=1

ari bi
di

χUi
‖L1(ν) = M

r
p

n∑

i=1

ari bi

= M
r
p

−1‖
n∑

i=1

aiχUi
‖rLr(µ) = Cr.

On the other hand, let f ∈ Lp,∞r (µ) with ‖f‖ ≤ 1. If A ∈ Σ with 0 < ν(A) < ∞ then
∫

A
|Sf | dν = M

r
p

n∑

i=1

ar−1
i bi
di

∫

A∩Ui

|f | dν = M
r
p

−1
n∑

i=1

ar−1
i

∫

A∩Ui

|f | dµ

≤ M
r
p

−1
∥∥∥
n∑

i=1

ar−1
i χA∩Ui

∥∥∥
Lr′(µ)

∥∥∥fχ⋃n

i=1
(A∩Ui)

∥∥∥
Lr(µ)

≤

(
n∑

i=1

βi
µ(A ∩ Ui)

µ(Ui)

) 1
r′
(

n∑

i=1

bi
µ(A ∩ Ui)

µ(Ui)

) 1
r

− 1
p

.
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Let x =
(
µ(A∩Ui)
µ(Ui)

)n
i=1

∈ Rn+. By direct calculation, 1 − s = p′

r′ . Thus,

∣∣∣
∫

A
Sf dν

∣∣∣ ≤ (β · x)
1−s

p′ (b · x)
s

p′ = α(x)
1
p′ ≤ (x · d)

1
p′ = ν(A)

1
p′ .

Hence, ‖Sf‖ ≤ 1. �

Theorem 4.10. Suppose that (Ω,Σ, µ) is a measure space and 1 < r < p. There is a set Γ of
measures on Σ so that Lp,∞r (µ) lattice isometrically embeds into (

⊕
ν∈Γ L

p,∞
1 (ν))∞.

Proof. Let Γ be the set of simple functions f =
∑n
i=1 aiχUi

, where n ∈ N, ai > 0, 0 < µ(Ui) < ∞
and (Ui)

n
i=1 is a disjoint sequence in Σ with

Cf = (
n∑

i=1

µ(Ui))
− 1

r
+ 1

p ‖
n∑

i=1

aiχUi
‖r ≤ 1.

For each f ∈ Γ, use the above results to choose a lattice homomorphism S : Lp,∞r (µ) → Lp,∞1 (νf ) so
that ‖Sf‖ ≤ 1 and ‖Sff‖ ≥ Cr

f . Define

T : Lp,∞r (µ) → (
⊕

f∈Γ

Lp,∞1 (νf))∞ by Tg = (Sfg)f∈Γ.

Clearly, T is a lattice homomorphism and ‖T‖ ≤ 1. Suppose that g ∈ Lp,∞r (µ)+ with ‖g‖Lp,∞
r

= 1.
For any ε > 0, there exists a non-negative simple function h such that g ≥ h and ‖h‖Lp,∞

r
≥ 1 − ε.

Write h =
∑n
i=1 aiχUi

. There exists I ⊆ {1, . . . , n} so that

‖(
∑

i∈I

µ(Ui))
− 1

r
+ 1

p

∑

i∈I

aiχUi
‖r = ‖h‖Lp,∞

r
≥ 1 − ε.

Then f :=
∑
i∈I aiχUi

∈ Γ with Cf ≥ 1 − ε. Thus,

‖Tg‖ ≥ ‖Sfg‖ ≥ ‖Sff‖ ≥ Cr
f ≥ (1 − ε)r,

so that ‖Tg‖ ≥ 1. This shows that T is an isometric embedding. �

5. Subspace problem

In this section we characterize when an embedding ι : F ֒→ E induces a lattice embedding
ι : FBL(p,∞)[F ] ֒→ FBL(p,∞)[E]. The analogous problem for FBL(p) was solved in [28, Theorem 3.7]
by making use of an extension theorem for regular operators due to Pisier [31, Theorem 4]. This

scheme of proof, however, does not seem to be applicable to FBL(p,∞). For this reason, we develop
in Section 5.1 an entirely new approach to the subspace problem which is based on push-outs. Then,
in Section 5.2 we prove the injectivity of ℓp in the class of p-convex Banach lattices, which shows
that our solution to the subspace problem for FBL(p) is equivalent to the one in [28]. Finally, in
Section 5.3 we prove that ℓp,∞ is not injective in the class of Banach lattices with upper p-estimates.

We begin with some preliminaries. Let F be a closed subspace of a Banach space E and let
ι : F → E be the inclusion map. Let q = ι∗ : E∗ → F ∗ and note that q is weak∗-to-weak∗

continuous with q(BE∗) = BF ∗. Hence, f ◦ q ∈ C(BE∗) if f ∈ FVL[F ].

Proposition 5.1. The map ι : FVL[F ] → FVL[E], ιf = f ◦ q, is a vector lattice isomorphism from
FVL[F ] onto the sublattice L of FVL[E] generated by {διy : y ∈ F}.
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Proof. Clearly, ι is a lattice homomorphism from FVL[F ] into C(BE∗). Moreover, (ιδy)(x
∗) =

(δy ◦ q)(x∗) = διy(x
∗) for all y ∈ F and x∗ ∈ BE∗ . Hence, ιδy = διy. Thus, ιFVL[F ] is a sublattice

of C(BE∗) that contains διy for all y ∈ F , which implies that L ⊆ ιFVL[F ]. On the other hand,
ι−1L is a sublattice of FVL[F ] containing δy for all y ∈ F . Hence, ι−1L = FVL[F ], which implies
that ιFVL[F ] = L. �

Note that φEι : F → FBLC[E] is a contraction (in fact, an isometry) and FBLC[E] ∈ C. By

Proposition 2.5, φ̂Eι : (FVL[F ], ρC) → FBLC[E] is a contraction.

Proposition 5.2. Let ι be the map from Proposition 5.1. Then φ̂Eιf = ιf for any f ∈ FVL[F ].

Proof. Let f ∈ FVL[F ]. Suppose that f = G(δy1 , . . . , δyn
), where G is a lattice-linear expression

and y1, . . . , yn ∈ F . For any x∗ ∈ BE∗ ,

(ιf)(x∗) = f(qx∗) = G(qx∗(y1), . . . , qx
∗(yn)) = G(x∗(ιy1), . . . , x

∗(ιyn))

= G(διy1 , . . . , διyn
)(x∗).

Thus, ιf = G(διy1 , . . . , διyn
). On the other hand,

φ̂Eι(f) = G(φEιy1, . . . , φEιyn) = G(διy1 , . . . , διyn
).

Therefore, ι = φ̂Eι. �

The operator ι extends to a contraction from FBLC[F ] into FBLC[E], which we denote again by ι.
The objective now is to determine when ι is an embedding. We begin with the following elementary
observation.

Proposition 5.3. Suppose that for any X ∈ C, any contraction T : F → X extends to a contraction
S : E → X. Then ι is a lattice isometric embedding.

Proof. In view of the preceding propositions and the fact that φ̂Eι is a contraction, it suffices to
show that ρC(f) ≤ ρC(ιf) for all f ∈ FVL[F ]. Let X ∈ C and let T : F → X be a contraction.
There exists a contraction S : E → X so that Sι = T . Suppose that f = G(δy1, . . . , δyn

), where G
is a lattice-linear expression and y1, . . . , yn ∈ F . We have

Ŝ(ιf) = Ŝφ̂Eι(f) = G(Sιy1, . . . , Sιyn) = G(Ty1, . . . , T yn) = T̂ f.

Thus, ‖T̂ f‖ ≤ ρC(ιf). Taking supremum over all such T shows that ρC(f) ≤ ρC(ιf). �

Using the above results we may now characterize when FBLC[F ] embeds via ι onto a comple-
mented sublattice of FBLC[E]. This characterization should be contrasted with [28, Proposition
3.12] and our solution to the subspace problem in Theorem 5.8. Note, in particular, that if condition
(1) in Theorem 5.4 holds for a class C then it also holds for any class C′ such that C′ ⊆ C.

Theorem 5.4. Let F be a closed subspace of a Banach space E and let ι : F → E be the inclusion
map. Set ι = φ̂Eι. The following are equivalent.

(1) For any X ∈ C, any bounded linear operator T : F → X has a bounded linear extension

T̃ : E → X with ‖T̃‖ = ‖T‖.
(2) ι is a lattice isometric embedding and there is a contractive lattice homomorphic projection

P from FBLC[E] onto ι(FBLC[F ]).
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Proof. (1) =⇒ (2): By the above, ι is a contraction. Furthermore, ι = φ̂Eι is a lattice homomor-
phism. Since FBLC[F ] ∈ C, the isometric embedding φF : F → FBLC[F ] has a bounded linear

extension φ̃F : E → FBLC[F ] such that ‖φ̃F‖ = 1. Therefore,
̂̃
φF : FBLC[E] → FBLC[F ] is a lattice

homomorphism such that ‖
̂̃
φF‖ = ‖φ̃F‖ = 1 and

̂̃
φFφE = φ̃F . For y ∈ F , it is easy to see that

̂̃
φF ιδy =

̂̃
φF διy = φ̃F (ιy) = φFy = δy.

Since
̂̃
φF ι is a lattice homomorphism, it follows that

̂̃
φF ι is the identity map on FBLC[F ]. In

particular,

ρC(f) = ρC(
̂̃
φF ιf) ≤ ρC(ιf) ≤ ρC(f) for any f ∈ FBLC[F ].

Hence, ι is a lattice isometric embedding. Furthermore, P := ι
̂̃
φF is a lattice homomorphic projec-

tion on FBLC[E] such that PFBLC[E] = ιFBLC[F ] and ‖P‖ = 1.

(2) =⇒ (1): Let X ∈ C and let T : F → X be a bounded linear operator. Then T̂ : FBLC[F ] → X

is a lattice homomorphism such that ‖T̂‖ = ‖T‖ and T̂ φF = T . Let T̃ = T̂ ι−1PφE : E → X. For
any y ∈ F ,

T̃ y = T̂ ι−1Pδιy = T̂ ι−1διy = T̂ δy = Ty.

Hence, T̃ is a bounded linear extension of T . Clearly, ‖T̃‖ ≤ ‖T̂‖ = ‖T‖. Hence, ‖T̃‖ = ‖T‖. �

We conclude this preliminary subsection with another simple observation.

Proposition 5.5. Assume that ι : FBLC[F ] → FBLC[E] is a lattice isometric embedding. Let X ∈ C
and let T : F → X be a bounded linear operator. The following are equivalent.

(1) There exists an operator S : E → X such that Sι = T and ‖S‖ = ‖T‖.

(2) There exists a lattice homomorphism R : FBLC[E] → X such that Rι = T̂ and ‖R‖ = ‖T‖.

Proof. (1) =⇒ (2): Suppose that S is as given. Then Ŝ : FBLC[E] → X is a lattice homomorphism

such that ‖Ŝ‖ = ‖S‖ = ‖T‖. If f = G(δy1, . . . , δyn
) ∈ FVL[F ], then from the proof of Proposition

5.2, ιf = G(διy1 , . . . , διyn
). Thus,

Ŝιf = ŜG(διy1 , . . . , διyn
) = G(Sιy1, . . . , Sιyn) = G(Ty1, . . . , T yn) = T̂ f,

so (2) holds with R = Ŝ.

(2) =⇒ (1): Assume that R is as given. Let S = RφE : E → X. Then ‖S‖ = ‖R‖ = ‖T‖.
Moreover, if y ∈ F then

Sιy = RφEιy = Rδιy = Rιδy = T̂ δy = Ty.

Thus, (1) holds. �

5.1. Push-outs in C. Recall that for objects A0, A1, A2 and morphisms αi : A0 → Ai, i = 1, 2, a
push-out diagram is an object PO = PO(α1, α2) together with morphisms βi : Ai → PO, i = 1, 2,
making the following diagram commutative

A1 PO

A0 A2

β1

α2

α1 β2
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and with the universal property that if β ′
i : Ai → B are such that β ′

1α1 = β ′
2α2, then there is a

unique γ : PO → B such that γβi = β ′
i for i = 1, 2, as follows:

B

A1 PO

A0 A2

β1

β′
1

γ

α2

α1 β2

β′
2

In the category of Banach lattices and lattice homomorphisms, isometric push-outs were shown
to exist in [8] – these are push-outs satisfying the extra condition that max{‖β1‖, ‖β2‖} ≤ 1 and
which guarantee the inequality ‖γ‖ ≤ max{‖β ′

1‖, ‖β ′
2‖} in the universal property. The construction

of such push-outs can be adapted to Banach lattices within certain classes C, as follows.

Theorem 5.6. Let C be a class of Banach lattices such that C is closed under lattice quotients.
Given Banach lattices X0, X1, X2 in C and lattice homomorphisms Ti : X0 → Xi for i = 1, 2, there

is a Banach lattice POC in C and lattice homomorphisms S1, S2 so that the following is an isometric
push-out diagram in C:

X1 POC

X0 X2

S1

T2

T1 S2

Proof. Let X1 ⊕1X2 denote the direct sum equipped with the norm ‖(x1, x2)‖ = ‖x1‖+‖x2‖ and let
ji : Xi → X1⊕1X2 denote the canonical embedding for i = 1, 2. Let φ : X1⊕1X2 → FBLC[X1⊕1X2]
be the canonical embedding and Z be the (closed) ideal in FBLC[X1 ⊕1X2] generated by the families
(φ(j1|x|) − |φ(j1x)|)x∈X1, (φ(j2|y|) − |φ(j2y)|)y∈X2 and (φj1T1z − φj2T2z)z∈X0 . Let

POC = FBLC[X1 ⊕1 X2]/Z,

and let Si = qφji : Xi → POC, for i = 1, 2, where q : FBLC[X1 ⊕1X2] → POC denotes the canonical
quotient map.

Since C is closed under lattice quotients and FBLC [X1 ⊕1 X2] is in C, so is POC. The rest of the
proof follows exactly as in [8, Theorem 4.3]. �

Theorem 5.6 applies, in particular, when C is the class of p-convex Banach lattices or the class
of Banach lattices with an upper p-estimate (with constant one). Moreover, as in [8, Theorem 4.4],
for these classes we have the following.

Theorem 5.7. Let C be the class of p-convex Banach lattices or Banach lattices with an upper

p-estimate. Set KC = 21− 1
p if C = Cp and KC = 21− 1

pγp if C = Cp,∞, and let

X1 POC

X0 X2

T̃1

T2

T1 T̃2
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be an isometric push-out diagram in C. If ‖T1‖ ≤ 1 and the lower arrow T2 is an isometric embedding

then the upper arrow T̃1 is a KC-embedding.

Proof. Fix x1 ∈ X1. We aim to show that ‖x1‖ ≤ KC‖T̃1(x1)‖. The reverse inequality is trivially

true since ‖T̃1‖ ≤ 1. Since we are dealing with lattice norms and lattice homomorphisms, we can
suppose that x1 is positive. By the push-out universal property, as given in Theorem 5.6, it is
enough to find a commutative diagram in C

X1 Z

X0 X2

T̂1

T2

T1 T̂2

such that ‖x1‖ ≤ ‖T̂1(x1)‖ and max{‖T̂1‖, ‖T̂2‖} ≤ KC.

To this end, by [8, Theorem 4.4] we have a Banach lattice isometric push-out diagram

X1 PO

X0 X2

T̃1

T2

T1 T̃2

such that T̃1 is an isometric embedding. Hence, by [8, Lemma 3.3], we can pick a positive σ-finite

element x∗ ∈ PO∗ of norm one such that x∗(|T̃1x1|) = ‖x1‖.

The functional x∗ induces a lattice semi-norm on PO given by ‖z‖x∗ = x∗(|z|). After making a
quotient by the elements of norm 0, this becomes a norm that satisfies ‖|x| + |y|‖x∗ = ‖x‖x∗ + ‖y‖x∗

for all x, y. This identity extends to the completion of this normed lattice, which, by Kakutani’s
representation theorem [22, Theorem 1.b.2], is lattice isometric to a Banach lattice of the form
L1(νx∗). The formal identity induces a homomorphism ψx∗ : PO → L1(νx∗) of norm one.

For i = 1, 2, let Ai = ψx∗(T̃i(BXi
)) and set A = A1 ∪ A2 ⊆ L1(νx∗). We will distinguish the

following cases:

(1) Let C = Cp denote the class of p-convex Banach lattices (with constant 1). Since the Xi are

p-convex and the Ψx∗T̃i are contractive lattice homomorphisms we have that for all finitely
supported sequences (αi)i∈I of real numbers and (fi)i∈I ⊆ A,

∥∥∥∥(
∑

|αifi|
p)

1
p

∥∥∥∥
1

≤
∥∥∥∥(
∑

fi∈A1

|αifi|
p)

1
p

∥∥∥∥
1

+
∥∥∥∥(
∑

fi∈A2

|αifi|
p)

1
p

∥∥∥∥
1

≤ 21− 1
p (
∑

|αi|
p)

1
p .

Hence, by Theorem 3.1, there is g ∈ L1(νx∗)+ with ‖g‖1 ≤ 1 and lattice homomorphisms

T̂i : Xi → Lp(gνx∗) that make the following diagram commutative

Xi PO L1(νx∗)

Lp(gνx∗)

T̃i

T̂i

ψx∗

Mg
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with ‖T̂i‖ ≤ 21− 1
p = KCp

and Mg the operator of multiplication by g. It follows that

X1 Lp(gνx∗)

X0 X2

T̂1

T2

T1 T̂2

is a commutative diagram in Cp and

‖x1‖ = x∗|T̃1x1| = ‖ψx∗T̃1x1‖L1(νx∗ ) ≤ ‖T̂1x1‖Lp(gνx∗ ).

(2) Let C = Cp,∞ denote the class of Banach lattices satisfying an upper p-estimate (with

constant 1). Since the Xi satisfy an upper p-estimate and the Ψx∗T̃i are contractive lattice
homomorphisms we have that for all finitely supported sequences (αi)i∈I of real numbers
and (fi)i∈I ⊆ A,

∥∥∥∥
∨

|αifi|
∥∥∥∥

1
≤
∥∥∥∥
∨

fi∈A1

|αifi|
∥∥∥∥

1
+
∥∥∥∥
∨

fi∈A2

|αifi|
∥∥∥∥

1
≤ 21− 1

p (
∑

|αi|
p)

1
p .

Hence, by Theorem 3.2, there is g ∈ L1(νx∗)+ with ‖g‖1 ≤ 1 and lattice homomorphisms

T̂i : Xi → Lp,∞(gνx∗) that make the following diagram commutative

Xi PO L1(νx∗)

Lp,∞(gνx∗)

T̃i

T̂i

ψx∗

Mg

with ‖T̂i‖ ≤ 21− 1
pγp = KCp,∞ and Mg the operator of multiplication by g. It follows that

X1 Lp,∞(gνx∗)

X0 X2

T̂1

T2

T1 T̂2

is a commutative diagram in Cp,∞ and

‖x1‖ = x∗|T̃1x1| = ‖ψx∗T̃1x1‖L1(νx∗ ) ≤ ‖T̂1x1‖Lp,∞(gνx∗ ).

�

As a consequence of the above, we get our desired solution to the subspace problem.

Theorem 5.8. Suppose that ι : F → E is an isometric embedding and let C denote either the class
of p-convex Banach lattices or the class of Banach lattices with upper p-estimates. The following
are equivalent.

(1) ι : FBLC[F ] → FBLC[E] is a c1-lattice embedding.
(2) For every operator T : F → X with X in C, there is Y in C, a (norm one) KC-lattice

embedding j : X → Y and S : E → Y so that jT = Sι and ‖S‖ ≤ c2‖T‖.

Here, c2 ≤ c1 ≤ KCc2.
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Proof. (1) =⇒ (2): Let X ∈ C and T : F → X an operator. By Theorem 5.6, let us consider the

isometric push-out diagram in C for X0 = ι(FBLC(F )), X1 = X, X2 = FBLC(E), T1 = T̂ ι−1

‖T̂ ι−1‖
:

X0 → X1 and T2 the formal identity from X0 to X2, where T̂ : FBLC[F ] → X denotes the lattice
homomorphism extending T .

X POC

FBLC[F ] ι(FBLC(F )) FBLC[E]

F E

S1

ι

T̂

‖T̂ ι−1‖

T1

T2

S2

φF

ι

φE

Let us write Y = POC and j = S1. Since T2 is an isometric embedding, we can apply Theorem 5.7
to obtain that j is a norm one KC-embedding. On the other hand, let S = ‖T̂ ι−1‖S2φE : E → Y .
It follows that

jT = jT̂φF = ‖T̂ ι−1‖jT1ιφF = ‖T̂ ι−1‖S2T2ιφF = ‖T̂ ι−1‖S2φEι = Sι,

and ‖S‖ ≤ ‖T̂‖‖ι−1‖ ≤ c1‖T‖, so c2 ≤ c1.

(2) =⇒ (1): First, note that ‖ι‖ = 1. Now, take f ∈ FVL[F ] and a contraction T : F → X, X
in C. By the hypothesis, there exists Y in C, a norm one KC-lattice embedding j : X → Y and
S : E → Y so that jT = Sι and ‖S‖ ≤ c2. It follows that jT̂ = Ŝι, so

‖T̂ f‖X = ‖j−1Ŝιf‖X ≤ ‖j−1‖‖S‖ρC(ιf) ≤ KCc2ρC(ιf)

and ι is a KCc2-embedding. �

5.2. Recovering the POE-p via injectivity. Recall that a Banach lattice X is injective if for
every Banach lattice Z, every closed linear sublattice Y of Z and every positive linear operator
T : Y → X there is a positive linear extension T̃ : Z → X with ‖T̃‖ = ‖T‖. Equivalently, X
is injective if whenever X lattice isometrically embeds into a Banach lattice Y there is a positive
contractive projection from Y onto X. Note that this notion of injectivity corresponds to the
category of Banach lattices with positive linear maps, which is considerably different from the
category of Banach lattices with lattice homomorphisms (where in fact there are no injective objects
[8]). The study of injective Banach lattices is classical [12, 20, 23]; however, it seems that not
much is known on injectivity (or projectivity) in subcategories of Banach lattices. Here, we study
the injectivity of ℓp in the class of p-convex Banach lattices, with an aim towards showing that
Theorem 5.8 together with Proposition 5.3 recover [28, Theorem 3.7], up to constants. Although
the injectivity of Lp spaces in the p-convex category is implicit in [31], we provide an independent
argument in order to give an alternative proof of [28, Theorem 3.7]. See also [17, Corollary 4.13]
for a related result.

Theorem 5.9. Let X be a p-convex Banach lattice and suppose that (xn) is a disjoint positive
sequence in X equivalent to the ℓp-basis. Then [(xn)] is the image of a positive projection on X.
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Proof. We may assume that X is a closed sublattice of Z = (
⊕
µ∈Γ L

p(µ))∞ by Proposition 3.3.
It suffices to show that [(xn)] is the range of a positive projection on Z. Assume that c‖(an)‖p <
‖
∑
anxn‖ ≤ ‖(an)‖p for any non-zero (an) ∈ ℓp. Let m ∈ N. There exists a finite set Γm, k ∈ N,

and a positive contraction T : (
⊕
µ∈Γ L

p(µ))∞ → (ℓp(k))Γm
∞ so that (Txn)mn=1 is a positive disjoint

sequence satisfying c‖(an)mn=1‖p < ‖
∑m
n=1 anTxn‖ ≤ ‖(an)mn=1‖p for any non-zero (an)mn=1 ∈ ℓp(m).

Write Txn = (yn(γ))γ∈Γm
with yn(γ) ∈ ℓp(k). Define S : ℓ1(m) → ℓ∞(Γm) by

S(b1, . . . , bm) = (
m∑

n=1

bn‖yn(γ)‖p)γ∈Γm
.

Since (yn(γ))mn=1 is a disjoint sequence for each γ, if b = (b1, . . . , bm) ≥ 0, then

‖Sb‖ = max
γ∈Γm

‖
m∑

n=1

b
1
p
nyn(γ)‖pp = ‖

m∑

n=1

b
1
p
nTxn‖p ≥ cp‖(b

1
p
n )mn=1‖

p
p = cp‖b‖1.

We claim that B+
ℓ∞(m) ⊆ c−p co so{S∗e∗

γ : γ ∈ Γm}. Here, for a subset A of a Banach lattice X,

soA =
⋃
a∈A[−|a|, |a|] denotes the solid hull of A and, as usual, co(A) denotes the convex hull. To

prove the claim, note that if 0 ≤ y∗
< c−p co so{S∗e∗

γ : γ ∈ Γm} then by [29, Proposition 3.1] there

exists y ∈ ℓ1(m)+ so that

‖y∗‖ ‖y‖ ≥ y∗(y) > c−p max
γ∈Γm

(S∗e∗
γ)(y) = c−p‖Sy‖ ≥ ‖y‖.

Hence, ‖y∗‖ > 1. This completes the proof of the claim.

By the claim we can find a convex combination
∑
γ∈Γm

αγS
∗e∗
γ ≥ cp

m︷         ︸︸         ︷
(1, . . . , 1). Choose y∗

n(γ) ∈

ℓp
′
(k)+ so that supp y∗

n(γ) = supp yn(γ) =: In, ‖y∗
n(γ)‖p′ = 1 and 〈yn(γ), y∗

n(γ)〉 = ‖yn(γ)‖p. If
x ∈ (

⊕
µ∈Γ L

p(µ))∞ and Tx = (y(γ))γ∈Γm
, let

z∗
n(x) =

∑

γ∈Γm

αγ‖yn(γ)‖p−1
p 〈y(γ), y∗

n(γ)〉.

It is easy to see that z∗
n is a positive linear functional and for any x ∈ (

⊕
µ∈Γ L

p(µ))∞,

‖(z∗
n(x))mn=1‖p ≤

∑

γ∈Γm

αγ
∥∥∥(‖yn(γ)‖p−1

p ‖y(γ)χIn
‖p)

m
n=1

∥∥∥
p

≤ sup
γ∈Γm

sup
n

‖yn(γ)‖p−1
p

∥∥∥
m∑

n=1

y(γ)χIn

∥∥∥
p

≤ sup
γ∈Γm

sup
n

‖yn(γ)‖p−1
p ‖y(γ)‖p

≤ sup
n

‖Txn‖p−1 · ‖Tx‖ ≤ ‖Tx‖ ≤ ‖x‖.

On the other hand, z∗
l (xn) = 0 if l , n and

z∗
n(xn) =

∑

γ∈Γm

αγ‖yn(γ)‖p−1
p 〈yn(γ), y∗

n(γ)〉 =
∑

γ∈Γm

αγ‖yn(γ)‖pp ≥ cp,
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since
∑
γ∈Γm

αγ‖yn(γ)‖pp is the n-th coordinate of the sum
∑
γ∈Γm

αγS
∗e∗
γ. Therefore, the map Pm

on (
⊕
µ∈Γ L

p(µ))∞ given by

Pmx =
m∑

n=1

z∗
n(x)

z∗
n(xn)

xn

is a positive projection from (
⊕
µ∈Γ L

p(µ))∞ onto [(xn)mn=1] such that ‖Pm‖ ≤ c−p. Finally, let U be a

free ultrafilter on N. Regard [(xn)∞
n=1] as a dual Banach lattice (either the dual of an isomorph of ℓp

′

if 1 < p ≤ ∞ or the dual of an isomorph of c0 if p = 1). The operator P : (
⊕

µ∈Γ L
p(µ))∞ → [(xn)]

given by Px = w∗-limm→U Pmx is a positive projection onto [(xn)]. �

As a corollary of Theorems 5.8 and 5.9, we recover the solution to the subspace problem for
FBL(p) given in [28, Theorem 3.7].

Corollary 5.10. Let ι : F ֒→ E be an isometric embedding and 1 ≤ p < ∞. The following are
equivalent.

(1) ι : FBL(p)[F ] → FBL(p)[E] is a c1-lattice embedding.
(2) For every operator T : F → ℓp there is R : E → ℓp so that T = Rι and ‖R‖ ≤ c2‖T‖.

Here, c1 ≤ c2 ≤ 2p− 1
p c1.

Proof. We use the identification FBL(p) = FBLC where C denotes the class of p-convex Banach
lattices and invoke Theorem 5.8. The implication (2) ⇒ (1) is clear. For the converse, we get that

there exist a p-convex Banach lattice Y , a 21− 1
p -lattice embedding j : ℓp → Y and S : E → Y such

that jT = Sι with ‖S‖ ≤ c1‖T‖. By Theorem 5.9, there is a (positive) projection P : Y → j(ℓp) ⊆ Y

with ‖P‖ ≤ (21− 1
p )p (as j is a 21− 1

p -embedding). Thus, we can take R = j−1PS. �

5.3. ℓp,∞ is not injective for Banach lattices with upper p-estimates. We now show that
for any 1 < p < ∞, ℓp,∞ is not injective in the class of Banach lattices with upper p-estimates.

Theorem 5.11. For any 1 < p < ∞ there is a Banach lattice X with an upper p-estimate and an
uncomplemented closed sublattice Y of X that is lattice isomorphic to ℓp,∞.

Proof. We begin with some notation. Let X be the Banach lattice (
⊕
N ℓ

p,∞)∞. Clearly, X satisfies
an upper p-estimate with constant 1. We may express any x ∈ X as x = (x(j))∞

j=1 = (x(i, j))∞
i,j=1,

where (x(j)) is a bounded sequence in ℓp,∞ and x(j) = (x(i, j))∞
i=1 for each j. Given m ∈ N, define

Pm on X by

(Pmx)(i, j) =




x(m, j) if i = m,

0 if i , m.

Clearly, Pm is a band projection on X and the projection band PmX is lattice isometric to ℓ∞ via
the map

Lm : ℓ∞ → PmX, (Lmy)(i, j) =




y(j) if i = m, where y = (y(j))∞

j=1,

0 otherwise.

Let S be the Schreier family, i.e., all subsets I of N so that |I| ≤ min I. Since S is countable, we
can list its elements in a sequence (Sj)

∞
j=1. Given a = (ai) ∈ ℓp,∞, let

xa(i, j) =




ai if i ∈ Sj,

0 otherwise.
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Denote the sequence of coordinate unit vectors in ℓp,∞ by (ei). For any j,

‖(xa(i, j))
∞
i=1‖p,∞ = ‖

∑

i∈Sj

aiei‖p,∞ ≤ ‖(ai)‖p,∞.

Hence, T : ℓp,∞ → X, a 7→ xa is a bounded linear map which is clearly a lattice homomorphism. On

the other hand, if ‖a‖p,∞ > 1 then there exists a non-empty finite set L in N so that |ai| ≥ (p′|L|
1
p )−1

for all i ∈ L. Let Sj ∈ S be such that Sj ⊆ L and |Sj | ≥ |L|/2. Then,

‖xa‖ ≥ ‖
∑

i∈Sj

aiei‖p,∞ ≥ (p′|L|
1
p )−1‖

∑

i∈Sj

ei‖p,∞ =
1

p′

(
|Sj |

|L|

) 1
p′

≥
1

p′2
1
p′
.

This shows that T is a lattice isomorphism from ℓp,∞ into X.

Let Y = Tℓp,∞. We will show that there is no bounded projection from X onto Y . Assume on the
contrary that there is a projection P from X onto Y . Then there is a sequence (x∗

i ) in X∗ so that
(x∗

i (x))i ∈ ℓp,∞ for any x ∈ X and x∗
i (Ta) = ai for any i and a = (ak) ∈ ℓp,∞. It follows readily that

(x∗
i )i ⊆ X∗ is equivalent to the unit vector basis of ℓp

′,1. In particular, it is an unconditional basic
sequence in a Banach lattice that is q-concave for some q < ∞. Since (P ∗

i ) is a disjoint sequence
of band projections on X∗, the sequence (P ∗

i x
∗
i ) is disjoint and hence also unconditional in X∗. By

[22, Theorem 1.d.6(i)], for any finitely nonzero real sequence (bi),

‖(bi)‖p′,1 ∼ ‖
∑

bix
∗
i ‖ ∼ ‖

√∑
|bix∗

i |
2‖ ≥ ‖

√∑
|biP ∗

i x
∗
i |

2‖ ∼ ‖
∑

biP
∗
i x

∗
i ‖.

Thus, the linear map Q : X → ℓp,∞ defined by Qx = (P ∗
i x

∗
i (x))i is bounded. On the other hand,

observe that Tek ∈ PkX. Therefore,

(5.1) 〈Tek, P
∗
i x

∗
i 〉 =





〈Tei, x
∗
i 〉 = 1 if k = i,

0 otherwise.

Hence, QTei = ei for any i ∈ N.

Regard Li as a lattice isometric embedding from ℓ∞ into X. Define y∗
i = L∗

iP
∗
i x

∗
i in (ℓ∞)∗. Let I

be a finite subset of N. Suppose that (ui)i∈I is a sequence in ℓ∞ so that ‖(
∑
i∈I |ui|

p)
1
p ‖∞ ≤ 1. Set

u =
∑
i∈I Liui ∈ X. Then ‖u‖ ≤ ‖(

∑
i∈I |ui|

p)
1
p ‖∞ ≤ 1. Thus,

∑

i∈I

y∗
i (ui) =

∑

i∈I

〈ui, L
∗
iP

∗
i x

∗
i 〉 =

∑

i∈I

(P ∗
i x

∗
i )(u)

≤ ‖(P ∗
i x

∗
i (u))‖p,∞ · |I|

1
p′ = ‖Qu‖ · |I|

1
p′ . |I|

1
p′ .

Making use of the duality described on [22, p. 47], we conclude that there is an absolute constant
C < ∞ so that

(5.2) ‖(
∑

i∈I

|y∗
i |
p′

)
1
p′ ‖ ≤ C|I|

1
p′

for any finite subset I of N. Since (ℓ∞)∗ is anAL-space, the bounded sequence (y∗
i ) has a subsequence

(y∗
ik

) that has a splitting

y∗
ik

= u∗
k + v∗

k, |u∗
k| ∧ |v∗

k| = 0, (u∗
k) is almost order bounded, (v∗

k) is disjoint.
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See, e.g., [41]. Since |v∗
k| ≤ |y∗

ik
| for all k, it follows from (5.2) that ‖v∗

k‖ → 0. Thus, the whole
sequence (y∗

ik
) is almost order bounded in (ℓ∞)∗ and hence it is relatively weakly compact.

Since xi := Tei ∈ PiX and Li : ℓ∞ → PiX is a surjective lattice isometry, we may find a sequence
(uk) in ℓ∞ so that Likuk = xik for each k. If we write uk = (uk(j))

∞
j=1 then uk(j) = 1 if k ∈ Sj and

0 otherwise. Hence, for any finitely supported real sequence (ak),

‖
∑

akuk‖∞ = sup
j

|
∑

k∈Sj

ak|.

The expression on the right is the norm of the Schreier space. The preceding equation says that (uk)
is equivalent to the unit vector basis of the Schreier space. Thus, (uk) is a weakly null sequence (in
ℓ∞). Since ℓ∞ has the Dunford-Pettis property, the weakly null sequence (uk) converges uniformly
to 0 on the relatively weakly compact set (y∗

ik
). In particular,

0 = lim y∗
ik

(uk) = lim〈uk, L
∗
ik
P ∗
ik
x∗
ik

〉 = lim〈xik , P
∗
ik
x∗
ik

〉.

However,
eik = QTeik = Qxik = (P ∗

j x
∗
j (xik))j.

Taking the ik-th component yields that 〈xik , P
∗
ik
x∗
ik

〉 = 1 for any k, which is the desired contradiction.
�

A finite dimensional version of Theorem 5.11 can be achieved via a gluing argument. We begin
with some preliminaries.

By the above, the map T : ℓp,∞ → X := (⊕Nℓ
p,∞)∞ given by Ta = (aχSj

)∞
j=1 where a = (ai) ∈ ℓp,∞

and (Sj) is the sequence of Schreier sets is a lattice isomorphism so that T (ℓp,∞) is not complemented
in X. For each m ∈ N, regard ℓp,∞(m) as the subspace [(ei)

m
i=1] in ℓp,∞. Define Tm : ℓp,∞(m) → X by

Tm = T |ℓp,∞(m). Clearly, there is a constant C so that every Tm is a C-lattice embedding. If (Em),
(Fm) are sequences of Banach spaces and Um : Em → Fm is a bounded linear operator for each m so
that supm ‖Um‖ < ∞, we let

⊕
Um : (

⊕
Em)∞ → (

⊕
Fm)∞ be the bounded linear operator defined

by (
⊕
Um)((um)∞

m=1) = (Umum)∞
m=1.

Corollary 5.12. Let the notation be as above. Suppose that for each m, πm is a projection from X
onto Ym := Tm(ℓp,∞(m)). Then supm ‖πm‖ = ∞.

Proof. Assume, on the contrary, that there is such a sequence (πm) so that sup ‖πm‖ < ∞. First of
all, it is clear that the composition

(
⊕

T−1
m )(

⊕
πm)(

⊕
Tm) =

⊕
(T−1

m πmTm)

is the identity operator on (
⊕
ℓp,∞(m))∞. Let U be a free ultrafilter on N. If b = (bm) ∈

(
⊕
ℓp,∞(m))∞, bm = (bm(j))mj=1, let Qb = (limm→U bm(j))∞

j=1. It is clear that Qb ∈ ℓp,∞ and
Q : (

⊕
ℓp,∞(m))∞ → ℓp,∞ is a contraction. Define J : ℓp,∞ → (

⊕
ℓp,∞(m))∞ by Ja = (aχ[1,m])

∞
m=1.

Then J is a lattice isometric embedding and Q
⊕

(T−1
m πmTm)J = QJ is the identity map on ℓp,∞.

Finally, define one more map V : X = (⊕ℓp,∞)∞ → (⊕X)∞ as follows: for c = (cj)
∞
j=1 ∈ (⊕ℓp,∞)∞,

let
V c = ((cjχ[1,m])

∞
j=1)

∞
m=1.

Obviously, V is a contraction. Moreover, for any a ∈ ℓp,∞,

V Ta = V ((aχSj
)∞
j=1) = ((aχSj

χ[1,m])
∞
j=1)

∞
m=1 = (Tm(aχ[1,m]))

∞
m=1 = (

⊕
Tm)Ja.
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In summary, we have the commutative diagram

ℓp,∞ (
⊕
ℓp,∞(m))∞ (

⊕
X)∞

X

J

T

⊕
Tm

V

and

ℓp,∞
(
⊕

Tm)J
−→ (

⊕
X)∞

Q(
⊕

T−1
m πm)

−→ ℓp,∞

is the identity map. Thus, the map R := TQ(
⊕
T−1
m πm)V : X → X is a projection on X so that

RT = T . Hence, rangeR = T (ℓp,∞), contrary to what we previously established for T . �

Acknowledgements
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