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This paper studies time-dependent electromagnetic scattering from metamaterials that are described by

dispersive material laws. We consider the numerical treatment of a scattering problem in which a dis-

persive material law, for a causal and passive homogeneous material, determines the wave-material inter-

action in the scatterer. The resulting problem is nonlocal in time inside the scatterer and is posed on an

unbounded domain. Well-posedness of the scattering problem is shown using a formulation that is fully

given on the surface of the scatterer via a time-dependent boundary integral equation. Discretizing this

equation by convolution quadrature in time and boundary elements in space yields a provably stable and

convergent method that is fully parallel in time and space. Under regularity assumptions on the exact so-

lution we derive error bounds with explicit convergence rates in time and space. Numerical experiments

illustrate the theoretical results and show the effectiveness of the method.

Keywords: electromagnetic scattering, dispersive material laws, time-dependent partial differential equa-

tions, convolution quadrature, boundary element method

1. Introduction and setting

Since the pioneering work of Veselago (1968), dispersive materials and their interaction with electro-

magnetic waves have attracted much scientific interest. The use of metamaterials promises to advance

many applications in the context of optical devices and imaging. A collection of applications is found

in (Li, 2016, Section 5).

A survey of the mathematical literature is given by Li (2016) and a coherent presentation of basic

mathematical results is given by Cassier et al. (2017). Following that paper, we require the causality

principle and homogeneity for the metamaterials, and we consider the fundamental class of (strongly)

passive materials.

In the approach to time-dependent scattering taken here, the scattering problem posed in the exterior

domain and the dispersive bounded scattering object is reduced to a time-dependent boundary integral

equation for the tangential traces of the electric and magnetic fields. From the tangential traces, the

electromagnetic fields inside and outside the scatterer are then obtained via representation formulas.

We show well-posedness of the boundary integral equation and the scattering problem for causal and
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passive homogeneous dispersive materials. We use convolution quadrature and boundary elements for

the numerical discretization and provide a fully discrete error analysis. Numerical experiments illustrate

the theoretical results and show the effectiveness of the method.

The numerical simulation of wave propagation problems on exterior domains by discretizing time-

dependent boundary integral equations with convolution quadrature in time and boundary elements in

space originates from Lubich (1994). This approach has been taken up in the numerical literature both

in the acoustic case, e.g. Laliena & Sayas (2009); Banjai et al. (2015); Banjai & Sauter (2009); Banjai

& Rieder (2018); Banjai et al. (2022); Sayas (2016), and in the electromagnetic case, e.g. Chen et al.

(2012); Ballani et al. (2013); Chan & Monk (2015); Kovács & Lubich (2017); Nick et al. (2022). In Dölz

et al. (2021), a convolution quadrature discretization has been applied to dispersive electromagnetic

material laws in combination with finite volume techniques.

Further related literature is, e.g., Qiu & Sayas (2016), which considers the acoustic wave equation

and a reformulation as retarded boundary integral equation. The discretization is provided by a Galerkin

semi-discretization in space and convolution quadrature in time. In contrast to us, this paper uses evo-

lution equation techniques for the fully discrete system. In Eberle et al. (2021), a formulation of an

acoustic wave transmission problem with mixed boundary conditions as a retarded potential integral

equation is derived and wellposedness is shown. Chan & Monk (2015) solve dielectric scattering with

a homogeneous penetrable obstacle, by using boundary integral methods and convolution quadrature.

For a recent overview on convolution quadrature with applications to scattering problems, we refer

to Banjai & Sayas (2022).

1.1 Dispersive Maxwell’s equations on a single domain Ω

Let Ω ⊂ R
3 be an interior or exterior domain. We are interested in time-dependent (possibly disper-

sive) electromagnetic waves, which are modeled by Maxwell’s equations (here assumed with vanishing

current and charge)

∂tDDD− curlHHH = 0

∂tBBB+ curlEEE = 0
in Ω . (1.1)

These equations are complemented by the material laws

DDD = ε0EEE +PPP(EEE), BBB = µ0HHH +MMM(HHH), (1.2)

with the constant permittivity ε0 and permeability µ0 of vacuum and with the polarization field PPP and

the magnetization field MMM. For homogeneous materials, as will be considered here, these fields are of

the form of a temporal convolution

PPP(EEE)(t) = ε0

∫ t

0
χe(t

′)EEE(t− t ′)dt ′, (1.3)

MMM(HHH)(t) = µ0

∫ t

0
χm(t

′)HHH(t− t ′)dt ′, (1.4)

with the scalar susceptibility kernels χe and χm.

1.2 Examples of retarded material laws

We present various material laws, which can be found in Cassier et al. (2017); Busch et al. (2011). The

reaction of material, different from vacuum, is non-instantaneous when exposed to stress. It depends on

the past, it has a memory.
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A common example used in the literature is the Debye model, for which the susceptibility kernel is

given by

χe(t) = βe−λ t , for λ ,β > 0, (1.5a)

with relaxation parameter 1/λ . Here the distraction of the material depends stronger on the more recent

past, this is captured by the exponential damping. Kernels in physical applications often consist of sums

of the type given above or, more generally, are completely monotonic functions (cf. Widder (1941))

χe(t) =
∫ ∞

0
e−λ tβ (dλ ) with a positive measure β .

Another class of material laws simultaneously damps the system and introduces a temporal delay,

by some fixed t∗ > 0. The analysis of such systems has received significant attention, for example in

Nicaise & Pignotti (2006) and, for scattering problems, in Pignotti (2012). In our setting, such models

are described by the convolution with the shifted Heaviside function

χe(t) = α1 +α2Θ(t− t∗) =

{
α1 +α2, t ⩾ t∗
α1, t < t∗.

(1.5b)

We always assume that the parameters satisfy α1 ⩾ α2 > 0. In Nicaise & Pignotti (2006), the respective

material law in the acoustic setting has been shown to be exponentially stable for α1 > α2 > 0. The

authors further construct, for the converse case of α2 > α1, arbitrary small shifts t∗ that destabilize the

system. In the next sections we will show that the corresponding electromagnetic scattering problem is

well-posed and stable under the stated constraints.

Popular models for the propagation of light and its interaction with matter are the Drude and Lorentz

models in nanophotonics; see Busch et al. (2011); Cassier et al. (2017). The Drude model can be used to

model metal under the influence of an external electric field. Then, the conduction electrons behave as

charged free particles, they form an ideal classical gas. With the collision frequency γD and the plasma

frequency ωD, the temporal susceptibility kernel is given by

χ(t) =
ω2

D

γD

(
1− e−γDt

)
. (1.5c)

The Drude model has to be modified for metals in the visible regime, where interband transitions of the

electrons occur due to higher photon energies. In this case Lorentz oscillators provide a simple model:

with

χ(t) =
βL

λL

e−
αL
2 t sin(λLt), λL =

√
ω2

L−
αL

4
, (1.5d)

where ωL is the resonance frequency, 0 < αL < 4ω2
L is the damping coefficient and βL > 0 gives the

strength.

More involved models contain fractional derivatives, such as the Havriliak-Negami model, which

models dielectric relaxation in complex systems, cf. Wang & Weile (2010) and Garrappa (2015): with

positive coefficients β and γ and the exponent 0 < η < 2,

ε0

(
(1+ γ)∂t +β∂

1+η
t

)
EEE− curl

(
1+β∂

η
t

)
HHH = 0. (1.5e)

This can be reformulated as (1.2) with (1.3), where χe(t) is the convolution kernel given by its Laplace

transform χ̂e(s) = γ/(1+β sη).
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1.3 The time-dependent scattering problem

We decompose the complete space R
3 into the exterior domain Ω+, the interior (bounded) domain Ω−

and the interface Γ = ∂Ω+ = ∂Ω−, which yields the disjoint union R
3 =Ω−∪Γ ∪Ω+. Inside the scat-

terer, i.e. in the bounded domain Ω−, we enforce a retarded material law and couple it with Maxwell’s

equations with physical parameters corresponding to a vacuum in the exterior domain Ω+. We then

arrive at the following equations in their respective domains:

In the interior domain Ω−:

ε0∂tEEE
− +PPP(∂tEEE

−) − curlHHH− = 0,

µ0∂t HHH−+MMM(∂tHHH
−)+ curlEEE− = 0.

In the exterior domain Ω+:

ε0∂tEEE
+− curlHHH+ = 0,

µ0∂tHHH
++ curlEEE+ = 0.

(1.6)

Initially, we assume the system to be at rest with vanishing electromagnetic fields in the interior and the

exterior. The system is excited by an exterior incoming electromagnetic wave (EEE inc,HHH inc), a solution

of the exterior Maxwell’s equations with support initially away from the surface Γ of the scatterer. The

unknown exterior fields (EEE+,HHH+) are referred to as the scattered fields. They uniquely identify, together

with the incoming wave, the total electromagnetic fields via EEE tot = EEE++EEE inc and HHH tot = HHH++HHH inc. In-

side the scatterer there is only the initially vanishing scattered wave (EEE−,HHH−), making such a distinction

unnecessary.

Along the interface of the scatterer Γ = ∂Ω±, we enforce continuity of the tangential components

of the total electric and magnetic fields, which reads

γT EEE− = γT EEE++ γT EEE+
inc,

γT HHH− = γT HHH++ γT HHH+
inc

on Γ . (1.7)

The numerical treatment of this scattering problems needs to overcome the following main chal-

lenges of the problem above:

• The material laws (1.3)–(1.4) are nonlocal in time and therefore require, for general susceptibil-

ities (χe,χm), the whole history of the solution at any time t, which leads to a memory tail with

standard time-stepping discretizations.

• The exterior domain Ω+ is unbounded.

For the ease of presentation we consider a retarded material law inside the scatterer and vacuum

in the unbounded domain. The case of retarded material laws in both domains is a straightforward

extension of this work.

1.4 Outline and contributions of the paper

The present problem formulation is partly inspired by Chan & Monk (2015), which gives the first nu-

merical analysis for time-dependent electromagnetic scattering from dielectric penetrable obstacles. In

this paper, we go beyond the existing literature by a thorough numerical analysis for scattering from dis-

persive materials, which are described by non-local convolutional material laws in the time domain and

frequency-dependent permittivities and permeabilities in the Laplace domain. The mathematical theory

describing such materials has been extensively developed in the last years, see for example Cassier et al.

(2017) for an excellent overview.
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We transfer the techniques developed in Kovács & Lubich (2017) and Nick et al. (2022), which in

turn originate in the acoustic analogues of Banjai et al. (2015) and Banjai et al. (2022)), respectively.

On the analytical side, we show that the assumptions made on the mathematical models for dispersive

materials lead to well-posed boundary integral equations. On the numerical side, employing a tempo-

ral discretization based on the convolution quadrature method combined with a boundary element space

discretization, we provide the first provably stable and convergent numerical method for time-dependent

electromagnetic scattering from dispersive materials based on time-dependent boundary integral equa-

tions. In the following, we give an outline and discuss the contributions of each section.

In Section 2, we recall the foundation of dispersive Maxwell’s equations and describe the framework

of passive material laws used in the subsequent sections. Lemma 2.1 shows that all examples from the

introduction are included in the setting.

Section 3 formulates and analyses a basic dispersive time-harmonic transmission problem, for which

a central bound for the electromagnetic fields is shown in Lemma 3.2. As a consequence, bounds for the

potential and boundary operators corresponding to the time-harmonic dispersive Maxwell’s equations

are deduced. Moreover, the fundamental Calderón operator is constructed for the dispersive Maxwell’s

equations, which is differently scaled than its dielectric counterpart in the previous work by Kovács &

Lubich (2017). Assuming passivity of the material law, we obtain the crucial time-harmonic coercivity

result of Lemma 3.5.

In Section 4, we apply the previously established operators to derive a well-posed and stable time-

harmonic boundary integral equation and prove the equivalence to the time-harmonic scattering problem

of interest in Proposition 4.2. Moreover, s-specific bounds are shown which estimate the solution of the

scattering problem in terms of the incoming wave. Assuming a stronger passivity assumption on the

material law, we obtain simplified bounds of all operators, which can be transported into the time-

domain.

Section 5 carries the time-harmonic analysis over to the time-domain. The time-dependent boundary

integral equation is formulated in (5.1) and its central properties are collectively shown in Theorem 5.2.

In particular, we show the well-posedness of the boundary integral equation, the equivalence to the time-

dependent scattering problem and give estimates on the solution in terms of the incoming waves. All of

these results are the direct consequence of their time-harmonic counterparts.

In Section 6 we apply a convolution quadrature time discretization, based on the Radau IIA Runge–

Kutta methods, to the boundary integral equation, which yields a temporally discrete scheme for the

approximation of the scattering problem. We introduce some basic results surrounding the convolution

quadrature method and crucial notation for the error analysis in the subsequent section, but omit the

formulation of semi-discrete error bounds.

Section 7 introduces the spatial discretization based on Raviart–Thomas boundary elements and

cites the best-approximation result used in this paper. The main part of this section consists of the error

analysis, which leads to the main result of Theorem 7.1. Here, the bulk of the previous analysis enters,

however the structure of the proof is carried over from (Nick et al., 2022, Theorem 6.1). A complication

on the way towards pointwise estimates away from the boundary is overcome by requiring additional

regularity on the data (by following the ideas of the proof of Lemma 3.1 and (7.16)).

Finally in Section 8 we describe the numerical experiments conducted for the present setting. A

fractional material law is used with a simple domain to compute empirical convergence rates in space

and time, which illustrate the error bounds of the previous sections. An example with two cubes demon-

strates the use of the method and closes the paper.
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2. Reformulation of the problem and mathematical framework

2.1 Reformulation of the time-dependent scattering problem

Via the Laplace transforms (χ̂±e (s), χ̂±m (s)) of the susceptibility kernels (χ±e (t),χ±m (t)), we define the

functions

ε±(s) = ε0(1+ χ̂±e (s)), µ±(s) = µ0(1+ χ̂±m (s)), (2.1)

which are the Laplace transforms of the distributions ε0(δ + χ±e ) and µ0(δ + χ±m ) (with Dirac’s delta

distribution). We use the Heaviside notation for temporal convolution: for a function g defined on the

real line,

ε±(∂t)g = (L −1ε±)∗g, µ±(∂t)g = (L −1µ±)∗g, (2.2)

where L −1 denotes taking the inverse Laplace transform. (We will later use this notation also for tem-

poral convolutions related to other Laplace transforms.) We then arrive at the following reformulation

of the scattering problem:

In the interior domain Ω−:

ε−(∂t)∂tEEE
− − curlHHH− = 0,

µ−(∂t)∂tHHH
−+ curlEEE− = 0.

In the exterior domain Ω+:

ε+(∂t)∂tEEE
+− curlHHH+ = 0,

µ+(∂t)∂tHHH
++ curlEEE+ = 0.

(2.3)

This is completed by enforcing continuity of the tangential parts of the electromagnetic fields along

the boundary, as in (1.7).

2.2 Passivity conditions for the dispersive permittivities ε±(s) and permeabilities µ±(s)

As is explained in (Cassier et al., 2017, after Definition 2.5), passivity and causality of the time-varying

material law result from the following property :

Re
(
ε±(s)s

)
> 0 and Re

(
µ±(s)s

)
> 0 for Res > 0. (2.4)

This will be assumed throughout this paper. For our purposes it will sometimes be useful to assume a

stronger passivity condition:

Re
(
ε±(s)s

)
⩾ ε0 Res and Re

(
µ±(s)s

)
⩾ µ0 Res for Res > 0. (2.5)

This condition is equivalent to Re(χ̂±e (s)s)⩾ 0 and Re(χ̂±m (s)s)⩾ 0 for Res > 0.

We further assume a bound for ε±(s) and µ±(s): for every σ > 0, there exists Mσ < ∞ such that

∣∣ε±(s)
∣∣⩽ Mσ ε0 and

∣∣µ±(s)
∣∣⩽ Mσ µ0 for Res ⩾ σ > 0. (2.6)

LEMMA 2.1 All examples of (1.5) satisfy the strong passivity condition (2.5) and the bound (2.6).

Proof. (1.5a) For the Debye model with λ > 0 and β > 0 we have, for Res > 0,

χ̂e(s) = (L χe)(s) =
β

s+λ
and hence Re

(
χ̂e(s)s

)
=

β

|s+λ |2
(
|s|2 +λ Res

)
⩾ 0.

More generally, by the same argument we also obtain the strong passivity for completely monotonic

susceptibility kernels χe.
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(1.5b) The Laplace transform of the susceptibility kernel corresponding to the shifted Heaviside

function χe(t) = α1 +α2Θ(t− t∗) reads

χ̂e(s) = s−1
(
α1 +α2e−t∗s

)
,

for which we obtain the strong passivity under the condition α1 ⩾ α2.

(1.5c) The Laplace transform of the susceptibility kernel corresponding to the Drude model reads

χ̂e(s) =
ω2

D

s(s+ γD)
, such that Re

(
χ̂e(s)s

)
=

ω2
D

|s+ γD|2
(
γD +Res

)
⩾ 0.

(1.5d) The Lorentz model is determined by

χ̂e(s) =
β

s(s+α)+ω
, such that Re

(
χ̂e(s)s

)
=

β

|s(s+α)+ω|2
Re
(
|s|2 s+ |s|2 α + sω

)
⩾ 0.

(1.5e) The susceptibility kernel describing the fractional material law is characterized by the Laplace

domain function with β > 0,λ > 0 and 0 < η < 2,

χ̂e(s) =
β

sη +λ
, with Re

(
χ̂e(s)s

)
=

β
(

Re(ssη)+λ Res
)

|sη +λ |2
=

β
(
|s|2η (

Res1−η +λ Res
)

|sη +λ |2
⩾ 0.

The bound (2.6) is obvious for each example. □

2.3 Temporal convolution

Let K(s) : X → Y , for Res > 0, be an analytic family of bounded linear operators between two Hilbert

spaces X and Y . We assume that K is polynomially bounded: there exists a real κ , and for every σ > 0

there exists Mσ < ∞, such that

∥K(s)∥Y←X ⩽ Mσ |s|κ , Re s ⩾ σ > 0. (2.7)

This bound ensures that K is the Laplace transform of a distribution of finite order of differentiation

with support on the non-negative real half-line t ⩾ 0. For a function g : [0,T ]→ X , which together with

its extension by 0 to the negative real half-line is sufficiently regular, we use the Heaviside operational

calculus notation

K(∂t)g = (L −1K)∗g (2.8)

for the temporal convolution of the inverse Laplace transform of Z with g. For the identity operator

Id(s) = s, we have Id(∂t)g = ∂tg, the time derivative of g. For two such families of operators K(s) and

L(s) mapping into compatible spaces, the associativity of convolution and the product rule of Laplace

transforms yield the composition rule

K(∂t)L(∂t)g = (KL)(∂t)g. (2.9)

For a Hilbert space X , we let Hr(R,X) be the Sobolev space of order r of X-valued functions on R,

and on finite intervals (0,T ) we let

Hr
0(0,T ;X) = {g|(0,T ) : g ∈ Hr(R,X) with g = 0 on (−∞,0)},
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where the subscript 0 in Hr
0 only refers to the left end-point of the interval. For integer r ⩾ 0, the

norm ∥∂ r
t g∥L2(0,T ;X) is equivalent to the natural norm on Hr

0(0,T ;X). The Plancherel formula yields the

following bound (Lubich, 1994, Lemma 2.1): If K(s) is bounded by (2.7) in the half-plane Re s > 0,

then K(∂t) extends by density to a bounded linear operator K(∂t) from Hr+κ
0 (0,T ;X) to Hr

0(0,T ;Y )
with the bound

∥K(∂t)∥Hr
0(0,T ;Y )←Hr+κ

0 (0,T ;X) ⩽ eM1/T (2.10)

for arbitrary real r. Here the bound on the right-hand side arises from the bound eσT Mσ on choos-

ing σ = 1/T . We note that for any integer k ⩾ 0 and α > 1/2, we have the continuous embedding

Hk+α
0 (0,T ;X)⊂Ck([0,T ];X).

2.4 The tangential trace and the trace space XΓ

Let Ω be a bounded Lipschitz domain in R
3 with boundary surface Γ = ∂Ω or the complement of the

closure of such a domain. For a continuous vector field uuu : Ω → C
3, we define the tangential trace

γT uuu = uuu|Γ ×ννν on Γ ,

where ννν denotes the unit surface normal pointing into the exterior domain. We note that the tangential

component of uuu|Γ is uuuT = (III−νννννν⊤)uuu|Γ =−(γT uuu)×ννν .

By the version of Green’s formula for the curl operator, we have for sufficiently regular vector fields

uuu,υυυ : Ω → C
3 that ∫

Ω

(
curluuu ·υυυ−uuu · curlυυυ

)
dxxx =

∫

Γ
(γT uuu×ννν) · γT υυυ dσ , (2.11)

where the dot · stands for the Euclidean inner product on C
3, i.e., aaa ·bbb = aaa⊤bbb for aaa,bbb ∈ C

3. The right-

hand side in this formula defines a skew-hermitian sesquilinear form on continuous tangential vector

fields on the boundary, say φφφ ,ψψψ : Γ → C
3, which we write as

[φφφ ,ψψψ]Γ =
∫

Γ
(φφφ ×ννν) ·ψψψ dσ . (2.12)

As it was shown in Alonso & Valli (1996) for smooth domains and extended by Buffa et al. (2002) for

Lipschitz domains (see also the survey in (Buffa & Hiptmair, 2003, Sect. 2.2)), the trace operator γT can

be extended to a surjective bounded linear operator from the space that appears naturally for Maxwell’s

equations, HHH(curl,Ω) = {υυυ ∈ LLL2(Ω) : curlυυυ ∈ LLL2(Ω)}, to the

trace space: a Hilbert space denoted XXXΓ , with norm ∥ · ∥XXXΓ
.

This space is characterized as the tangential subspace of the Sobolev space HHH−1/2(Γ ) with surface

divergence in H−1/2(Γ ) (see the papers cited above for the precise formulation). It has the property that

the pairing [·, ·]Γ can be extended to a non-degenerate continuous sesquilinear form on XXXΓ ×XXXΓ . With

this pairing the space XXXΓ becomes its own dual.

3. A time-harmonic transmission problem

For the derivation of the parameter-dependent operators and representation formulas we write in this

section ε(s) and µ(s) either for ε+(s) and µ+(s) or for ε−(s) and µ−(s). The single and double layer

potentials and the Calderón operator are defined for the same material parameters in the inner and outer
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domain. In the derivation of the boundary integral equation, this suits the situation, since the solutions of

Maxwell’s equations are extended to R
3 \Γ , by setting them to zero on either the inner or outer domain.

For notational simplicity, in the proofs we omit the frequency-dependence in the notation.

Formally applying the Laplace transform to Maxwell’s equation and inserting the material law (1.2)

in (1.1) yields the time-harmonic Maxwell’s equations

ε(s)sÊEE− curl ĤHH = 0

µ(s)sĤHH + curl ÊEE = 0
in R

3 \Γ (3.1)

with the complex-valued analytic functions ε and µ that satisfy the passivity condition (2.4).

3.1 Potential operators and representation formulas

The fundamental solution of the time-harmonic Maxwell’s equations with ε = µ = 1 reads

G(s,xxx) =
e−s|xxx|

4π |xxx| , Res > 0, xxx ∈ R
3 \{0}.

The electromagnetic single layer potential operator is denoted by S(s). Applied to a complex-

valued boundary function ϕϕϕ of sufficient regularity for the expressions to be finite, and evaluated at a

point xxx ∈ R
3 \Γ away from the boundary, it reads

S(s)ϕϕϕ(xxx) =−s

∫

Γ
G(s,xxx− yyy)ϕϕϕ(yyy)dyyy+ s−1∇

∫

Γ
G(s,xxx− yyy)divΓ ϕϕϕ(yyy)dyyy.

The electromagnetic double layer potential operator is denoted by D(s) and is given in the same context

by

D(s)ϕϕϕ(xxx) = curl

∫

Γ
G(s,xxx− yyy)ϕϕϕ(yyy)dyyy.

By construction, the potential operators satisfy the relations

sS(s)− curl◦D(s) = 0, sD(s)+ curl◦S(s) = 0. (3.2)

This section relies heavily on electromagnetic transmission problems, formulated on R
3 \Γ . Jumps and

averages for the tangential traces are defined by

[γT ] = γ+T − γ−T , {γT}= 1
2

(
γ+T + γ−T

)
.

The composition of the jumps with the potential operators reveals the jump relations

[γT ]◦S(s) = 0, [γT ]◦D(s) =−Id. (3.3)

For general ε,µ , we use the potential operators

Sε,µ(s) = S
(
s
√

ε(s)µ(s)
)
, Dε,µ(s) =D

(
s
√

ε(s)µ(s)
)
. (3.4)



10 of 33

The identities (3.2) and the jump relations (3.3) imply that any sufficiently regular boundary densities

(ϕ̂ϕϕ, ψ̂ψψ) are associated with electromagnetic fields (ÊEE, ĤHH) by

ÊEE =−
√

µ(s)√
ε(s)

Sε,µ(s)ϕ̂ϕϕ +Dε,µ(s)ψ̂ψψ, (3.5)

ĤHH =−Dε,µ(s)ϕ̂ϕϕ−
√

ε(s)√
µ(s)

Sε,µ(s) ψ̂ψψ, (3.6)

which solve the transmission problem

ε(s)sÊEE− curl ĤHH = 0 in R
3 \Γ , (3.7)

µ(s)sĤHH + curl ÊEE = 0 in R
3 \Γ , (3.8)

[γT ]ĤHH = ϕ̂ϕϕ , (3.9)

−[γT ]ÊEE = ψ̂ψψ . (3.10)

Up to this point, this section was restricted to the presentation of established operators and identities,

which hold for boundary densities of sufficient regularity. The next subsection provides bounds in

terms of the appropriate norms, which in particular gives a rigorous setting for the previously defined

operators. Before that, we turn to some useful estimates of the terms in formulas (3.4) and (3.5)–(3.6).

The following lemma shows that Sε,µ(s) and Dε,µ(s) behave well for Res > 0.

LEMMA 3.1 Under the passivity condition (2.4), the argument appearing in the definition of the potential

operators Sε,µ(s) and Dε,µ(s) has positive real part:

Re
(
s
√

ε(s)µ(s)
)
> 0 for Res > 0. (3.11)

Under the strong passivity condition (2.5), we have with c−1 =
√

ε0µ0

Re
(
s
√

ε(s)µ(s)
)
⩾ c−1 Res for Res > 0. (3.12)

Proof. We write ε(s)s = |ε(s)s|eiϕε and µ(s)s = |µ(s)s|eiϕµ , with ϕµ ,ϕε ∈ (−π/2,π/2) due to the

positivity (2.4). We then have

Re
(
s
√

ε(s)µ(s)
)
= |ε(s)s|1/2 |µ(s)s|1/2

Reei(ϕµ+ϕε )/2,

which is positive since Reei(ϕµ+ϕε )/2 = cos((ϕµ +ϕε)/2) > 0. The inequality (3.12) follows from the

general inequality, for a,b ∈ C with Rea ⩾ 0 and Reb ⩾ 0,

Re
√

ab ⩾
√

Rea ·Reb.

This inequality is proved using polar coordinates for a = |a|eiα and b = |b|eiβ and the inequalities

cos
(

1
2
(α +β )

)
⩾ 1

2

(
cosα + cosβ

)
⩾
√

cosα · cosβ ,

where the first inequality results from the concavity of the cosine on [−π/2,π/2] and the second in-

equality is the arithmetic-geometric mean inequality. □

In view of (3.5)–(3.6) we further note that under the strong passivity condition (2.5) and the bound

(2.6) we have the bounds, for Res ⩾ σ > 0,
∣∣∣∣∣

√
µ(s)√
ε(s)

∣∣∣∣∣=
∣∣∣∣∣

√
µ(s)s√
ε(s)s

∣∣∣∣∣⩽
(

µ0 Mσ

ε0

)1/2 |s|1/2

(Res)1/2
and

∣∣∣∣∣

√
ε(s)√
µ(s)

∣∣∣∣∣⩽
(

ε0 Mσ

µ0

)1/2 |s|1/2

(Res)1/2
. (3.13)
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3.2 Transmission problems and boundary operators

The right-hand side of the representation formula, namely the operator associated to the linear map

(ϕ̂ϕϕ, ψ̂ψψ) 7→ (ÊEE, ĤHH), extends by density to a bounded linear operator from the trace space XXXΓ
2 to HHH(curl,Ω)2.

The following lemma proves this and further provides an s-explicit bound. A related result can be found

in (Chan & Monk, 2015, Lemma 6.4).

LEMMA 3.2 Let (ϕ̂ϕϕ, ψ̂ψψ) ∈ XXXΓ
2 be some complex-valued boundary functions in the trace space. There

exist time-harmonic electromagnetic fields (ÊEE, ĤHH), that are defined by the representation formulas (3.5)–

(3.6), which solve the transmission problem (3.7)–(3.10) for Res > 0 and are bounded by

∥∥∥∥∥

(
ÊEE

ĤHH

)∥∥∥∥∥
HHH(curl,R3\Γ )2

⩽CΓ max

( |ε(s)s|2 +1

Reε(s)s
,
|µ(s)s|2 +1

Re µ(s)s

)∥∥∥∥
(

ϕ̂ϕϕ
ψ̂ψψ

)∥∥∥∥
XXXΓ

2

, (3.14)

where the constant CΓ = ∥{γT}∥XXXΓ←HHH(curl,R3\Γ ) is the operator norm of the tangential trace operator.

Proof. Throughout the proof, we omit the frequency variable s in the material parameters ε(s) and

µ(s). Green’s formula in combination with the time-harmonic Maxwell’s equations reads

±
[
γ±T ĤHH,γ±T ÊEE

]
Γ
=
∫

Ω±

(
curl ĤHH · ÊEE− ĤHH · curl ÊEE

)
dxxx

=
∫

Ω±

(
ε̄ s̄
∣∣ÊEE
∣∣2 +µs

∣∣ĤHH
∣∣2)dxxx. (3.15)

Recall that Ω− and Ω+ refer to the interior and exterior domain, respectively. The conjugation of the

Laplace parameter in the first summand stems from the anti-linearity of the inner product, which has

been defined via aaa ·bbb = aaa⊤bbb on C
3. Summation of these two terms yields the identity

I :=
∫

R3\Γ
ε̄ s̄
∣∣ÊEE
∣∣2 +µs

∣∣ĤHH
∣∣2dxxx =

[
γ+T ĤHH,γ+T ÊEE

]
Γ
−
[
γ−T ĤHH,γ−T ÊEE

]
Γ
. (3.16)

Any part of the time-harmonic electromagnetic fields can always be rewritten in terms of each others

curl, by inserting (3.7) and (3.8) respectively. Using the separation I = (1− θ)I+ θ I and inserting

the time-harmonic Maxwell problem in the second summand reformulates the left-hand side to the

expression

I =
∫

R3\Γ

(
(1−θ1)ε̄ s̄

∣∣ÊEE
∣∣2 +θ2µs

∣∣(µs)−1 curl ÊEE
∣∣2

+(1−θ2)µs
∣∣ĤHH
∣∣2 +θ1ε̄ s̄

∣∣(εs)−1 curl ĤHH
∣∣2
)

dxxx.

Taking the real part on both sides slightly simplifies the right-hand side to

ReI =
∫

R3\Γ

(
(1−θ1)Reεs

∣∣ÊEE
∣∣2 +θ2 |µs|−2

Re µs
∣∣curl ÊEE

∣∣2

+(1−θ2)Re µs
∣∣ĤHH
∣∣2 +θ1 |εs|−2

Reεs
∣∣curl ĤHH

∣∣2
)

dxxx.

The parameters (θ1,θ2) are free and chosen in such a way that the preceding factors of the summands

agree, which is achieved by setting 1− θ1 = θ1|εs|−2 and 1− θ2 = θ2|µs|−2. Rearranging this re-

quirement leads to the choice of θ1 = 1/(1+ |εs|−2)and θ2 = 1/(1+ |µs|−2). Inserting these particular
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choices of θ1 and θ2 yields the estimate

ReI ⩾ min

(
Reεs

|εs|2 +1
,

Re µs

|µs|2 +1

)(
∥ÊEE∥2

HHH(curl,R3\Γ )+∥ĤHH∥
2
HHH(curl,R3\Γ )

)
. (3.17)

The stated result follows now from following the proof of (Nick et al., 2022, Lemma 3.1) on from the

identity (3.14). To keep the proof self-contained, we conclude with the arguments given there.

The real part of I is, due to the right-hand side of (3.16), also characterized by

ReI = Re
([

γ+T ĤHH,γ+T ÊEE
]

Γ
−
[
γ−T ĤHH,γ−T ÊEE

]
Γ

)
.

Rewriting the right-hand side in terms of jumps and averages bysumming several mixed terms and using

the transmission conditions (3.9)–(3.10) yields

ReI = Re
([

[γT ]ĤHH,{γT}ÊEE
]

Γ
+
[
−[γT ]ÊEE,{γT}ĤHH

]
Γ

)
(3.18)

= Re
([

ϕ̂ϕϕ,{γT}ÊEE
]

Γ
+
[
ψ̂ψψ,{γT}ĤHH

]
Γ

)
.

The self-duality of XXXΓ implies a Cauchy–Schwarz type inequality with the corresponding norm and the

duality pairing [·, ·]Γ . Combined with the Cauchy–Schwarz inequality on R
2, this yields

ReI ⩽ ∥ϕ̂ϕϕ∥XXXΓ
∥{γT}ÊEE∥XXXΓ

+∥ψ̂ψψ∥XXXΓ
∥{γT}ĤHH∥XXXΓ

=

(
∥ϕ̂ϕϕ∥XXXΓ

∥ψ̂ψψ∥XXXΓ

)
·
(
∥{γT}ÊEE∥XXXΓ

∥{γT}ĤHH∥XXXΓ

)

⩽

(
∥ϕ̂ϕϕ∥2

XXXΓ
+∥ψ̂ψψ∥2

XXXΓ

)1/2(
∥{γT}ÊEE∥2

XXXΓ
+∥{γT}ĤHH∥2

XXXΓ

)1/2

.

To estimate the second factor of the above expression, we intend to use the bound of the tangential

trace {γT} : HHH(curl,R3 \Γ )→ XXXΓ . The time-harmonic electromagnetic fields ÊEE and ĤHH are in the local

Sobolev space HHH loc(curl,R3 \Γ ) (c.f. Buffa & Hiptmair (2003)). Moreover, the tangential trace {γT}
extends to a bounded operator from HHH(curl,ΩΓ ) to XXXΓ , where ΩΓ is a bounded domain large enough

to contain the boundary Γ . Hence, the left-hand side ReI is bounded and the electromagnetic fields

are in the global Sobolev space HHH(curl,R3 \Γ ). With the operator norm of the tangential average

CΓ = ∥{γT}∥XXXΓ←HHH(curl,R3\Γ ), the right-hand side is therefore bounded via

ReI ⩽CΓ

(
∥ϕ̂ϕϕ∥2

XXXΓ
+∥ψ̂ψψ∥2

XXXΓ

)1/2(
∥ÊEE∥2

HHH(curl,R3\Γ )+∥ĤHH∥
2
HHH(curl,R3\Γ )

)1/2

.

Inserting (3.17) on the left-hand side and dividing through the second factor on the right-hand side yields

the stated bound. □

In both the time-dependent and time-harmonic situation, our approach consists of determining the

tangential traces of the Maxwell solutions by the respective boundary integral equation, and inserting

these into the representation formulas to obtain the electromagnetic fields. In this situation, the boundary

densities reduce to the tangential traces of the interior and exterior fields respectively, which is a setting

that enables an improvement of the bound described in Lemma 3.2. The following Lemma gives these

improved bounds.
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LEMMA 3.3 In the situation of Lemma 3.2 further assume that the interior (exterior) tangential traces of

ÊEE and ĤHH are indentically 0, which implies γ−T ĤHH = ϕ̂ϕϕ (−γ+T ĤHH = ϕ̂ϕϕ) and −γ−T ÊEE = ψ̂ψψ (γ+T ÊEE = ψ̂ψψ). Then,

the bound of Lemma 3.2 improves to

∥∥∥∥∥

(
ÊEE

ĤHH

)∥∥∥∥∥
HHH(curl,Ω±)2

⩽
1√
2

(
max

( |ε(s)s|2 +1

Reε(s)s
,
|µ(s)s|2 +1

Re µ(s)s

))1/2∥∥∥∥
(

ϕ̂ϕϕ
ψ̂ψψ

)∥∥∥∥
XXXΓ

2

. (3.19)

Furthermore, we have the L2-bound

∥∥∥∥∥

(
ÊEE

ĤHH

)∥∥∥∥∥
L2(Ω±)2

⩽
1√
2

(
max

(
1

Reε(s)s
,

1

Re µ(s)s

))1/2∥∥∥∥
(

ϕ̂ϕϕ
ψ̂ψψ

)∥∥∥∥
XXXΓ

2

.

Proof. The proof of the HHH(curl,Ω±) bound is identical to that of Lemma 3.2 down to (3.18), which now

implies the bound Re I ⩽ 1
2

(∥∥ϕ̂ϕϕ
∥∥2

XXXΓ
+∥ψ̂ψψ∥2

XXXΓ

)
and yields the stated result. The proof of the L2-bound

is even simpler, working directly with (3.16) instead of (3.17). □

3.3 Time-harmonic boundary integral operators and the Calderón operator

The composition of the tangential averages with the potential operators defines the electromagnetic

single and double layer boundary operators, which operate on the trace space XXXΓ and are defined as

VVV ε,µ(s) = {γT}◦Sε,µ(s), KKKε,µ(s) = {γT}◦Dε,µ(s).

The Calderón operator is a block operator consisting of these boundary operators and has, with a dif-

ferent scaling with respect to the magnetic permeability, been introduced in the dielectric setting (i.e.

real-valued and positive ε and µ) by Kovács & Lubich (2017) (note the sign correction from Nick et al.

(2021)). In the present setting we obtain the following Calderón operator, which reads

CCCε,µ(s) =



−
√

µ(s)√
ε(s)

VVV ε,µ(s) KKKε,µ(s)

−KKKε,µ(s) −
√

ε(s)√
µ(s)

VVV ε,µ(s)


 , (3.20)

where the form of the block operator on the right originates in the representation formula (3.5)–(3.6).

Consider outgoing solutions of the time-harmonic Maxwell’s equations ÊEE, ĤHH, thus characterized by the

representation formulas. The composition of the tangential averages with the representation formulas

reveals the jump relations of the Calderón operator (see (3.7)–(3.10)):

CCCε,µ(s)

(
[γT ]ĤHH

−[γT ]ÊEE

)
=

(
{γT}ÊEE
{γT}ĤHH

)
. (3.21)

The application of this operator is thus equivalent to transform jumps of the transmission problem to

averages, which directly implies bounds from above through Lemma 3.2.

As a direct consequence, we obtain the following bound, equivalent to (Nick et al., 2022, Lemma 3.4)

in the dielectric case. Earlier, slightly different bounds can be found in the dielectric case in (Ballani

et al., 2013, Theorem 4.4) and (Kovács & Lubich, 2017, Lemma 2.3), which are of the order O(|s|2) .
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LEMMA 3.4 For s with positive real part, the Calderón operator is a linear operator family on the trace

space CCCε,µ(s) : XXXΓ
2→ XXXΓ

2 and satisfies the bound

∥∥CCCε,µ(s)
∥∥

XXXΓ
2←XXXΓ

2 ⩽CΓ max

( |ε(s)s|2 +1

Reε(s)s
,
|µ(s)s|2 +1

Re µ(s)s

)
, (3.22)

where the constant is the norm of the tangential average CΓ = ∥{γT}∥XXXΓ←HHH(curl,R3\Γ ). The identical

bound holds for the components of the Calderón operator (3.20) and for the electromagnetic single and

double layer boundary operators VVV ε,µ(s) and KKKε,µ(s).

The skew-hermitian pairing [·, ·]Γ is notationally extended from XXXΓ × XXXΓ to XXXΓ
2 × XXXΓ

2 in the

natural way: [(
ϕϕϕ
ψψψ

)
,

(
υυυ
ξξξ

)]

Γ

= [ϕϕϕ,υυυ ]Γ +[ψψψ,ξξξ ]Γ . (3.23)

As was shown in (Kovács & Lubich, 2017, Lemma 3.1) in the dielectric case with positive and real-

valued ε and µ , the Calderón operator CCC(s) is positive with respect to this extended skew-symmetric

pairing [·, ·]Γ . The following lemma transfers this key property to the present setting of analytic ε(s)
and µ(s).

LEMMA 3.5 The Calderón operator is of positive type: for Res > 0,

Re

[(
ϕϕϕ
ψψψ

)
,CCCε,µ(s)

(
ϕϕϕ
ψψψ

)]

Γ

⩾ c−2
Γ min

(
Reε(s)s

|ε(s)s|2 +1
,

Re µ(s)s

|µ(s)s|2 +1

) (∥∥ϕϕϕ
∥∥2

XXXΓ
+
∥∥ψψψ
∥∥2

XXXΓ

)
(3.24)

for all (ϕϕϕ,ψψψ) ∈ XXXΓ
2. The constant is the norm of the jump operator associated to the tangential trace,

i.e. cΓ = ∥[γT ]∥XXXΓ←HHH(curl,R3\Γ ).

Proof. Consider (ϕ̂ϕϕ, ψ̂ψψ) ∈ XXXΓ
2 and let the time-harmonic fields ÊEE, ĤHH ∈ HHH(curl,R3 \Γ ) be given

through the representation formula, therefore solving the associated transmission problem of Lemma 3.2.

The result is then given by the following chain of inequalities, taken from the proof of (Nick et al., 2022,

Lemma 3.5)

∥∥∥∥
(

ϕ̂ϕϕ
ψ̂ψψ

)∥∥∥∥
2

XXXΓ×XXXΓ

=

∥∥∥∥∥

(
[γT ]ĤHH

−[γT ]ÊEE

)∥∥∥∥∥

2

XXXΓ×XXXΓ

by (3.9)–(3.10)

⩽ c2
Γ

(∥∥ĤHH
∥∥2

HHH(curl,R3\Γ )
+
∥∥ÊEE
∥∥2

HHH(curl,R3\Γ )

)
by def. of cΓ

⩽ c2
Γ max

( |εs|2 +1

Reεs
,
|µs|2 +1

Re µs

)
Re

[(
[γT ]ĤHH

−[γT ]ÊEE

)
,

(
{γT}ÊEE
{γT}ĤHH

)]

Γ

by (3.17)–(3.18)

= c2
Γ max

( |εs|2 +1

Reεs
,
|µs|2 +1

Re µs

)
Re

[(
[γT ]ĤHH

−[γT ]ÊEE

)
,CCCε,µ(s)

(
[γT ]ĤHH

−[γT ]ÊEE

)]

Γ

by (3.21)

= c2
Γ max

( |εs|2 +1

Reεs
,
|µs|2 +1

Re µs

)
Re

[(
ϕ̂ϕϕ
ψ̂ψψ

)
,CCCε,µ(s)

(
ϕ̂ϕϕ
ψ̂ψψ

)]

Γ

by (3.9)–(3.10).

□
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4. The time-harmonic scattering problem

The time-harmonic problem formulation reads

ε±(s)sÊEE
±− curl ĤHH

±
= 0

µ±(s)sĤHH
±
+ curl ÊEE

±
= 0

in Ω±, (4.1)

completed by the transmission conditions, which enforce the continuity of the time-harmonic electro-

magnetic fields ÊEE and ĤHH:

γT ÊEE
+
+ γT ÊEE

+

inc = γT ÊEE
−

γT ĤHH
+
+ γT ĤHH

+

inc = γT ĤHH
− on Γ . (4.2)

4.1 The time-harmonic boundary integral equation

In this subsection we derive the time-harmonic boundary integral equation, which determines the bound-

ary densities to be inserted into the representation formulas for the electromagnetic fields. Assuming

that we are given solutions to the time-harmonic Maxwell’s equations in the exterior or interior domain

Ω±, we obtain solutions on R
3 \Γ by extension to zero on Ω∓. Then, jumps and averages reduce

to outer or inner traces, respectively. We start by collecting the (supposed) solutions of the boundary

integral equations in the vectors

φ̂φφ
+
=

(
ϕ̂ϕϕ
+

ψ̂ψψ
+

)
=

(
γ+T ĤHH

+

−γ+T ÊEE
+

)
, φ̂φφ

−
=

(
ϕ̂ϕϕ
−

ψ̂ψψ
−

)
=

(
−γ−T ĤHH

−

γ−T ÊEE
−

)
,

and denote the block operator JJJ and the trace of the incoming wave ĝgg
inc

by

JJJ =
1

2

(
−Id

Id

)
, ĝgg

inc =
1

2

(
γ+T ÊEE

+

inc

γ+T ĤHH
+

inc

)
.

In order to derive the boundary integral equation, we first use (3.21), followed by the transmission

conditions (4.2). This yields

CCCε+,µ+(s)φ̂φφ
+
=

1

2

(
γ+T ÊEE

+

γ+T ĤHH
+

)
=

1

2

(
γ−T ÊEE

−

γ−T ĤHH
−

)
− ĝgg

inc =−JJJφ̂φφ
−− ĝgg

inc,

and

CCCε−,µ−(s)φ̂φφ
−
=

1

2

(
γ−T ÊEE

−

γ−T ĤHH
−

)
=

1

2

(
γ+T ÊEE

+

γ+T ĤHH
+

)
− ĝgg

inc = JJJφ̂φφ
+
+ ĝgg

inc.

Introducing the family of operators AAA(s) : XXXΓ
4→ XXXΓ

4 defined as

AAA(s) :=

(
CCCε+,µ+(s) JJJ

−JJJ CCCε−,µ−(s)

)
, (4.3)
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we arrive at the time-harmonic boundary integral equation

AAA(s)

(
φ̂φφ
+

φ̂φφ
−

)
=

(
−ĝgg

inc

ĝgg
inc

)
. (4.4)

This boundary integral equation will be considered in its weak formulation: For Res > 0 and given

ĝgg
inc ∈ XXXΓ

2, find (φφφ+,φφφ−) ∈ XXXΓ
4 such that, for all (υυυ ,ξξξ ) ∈ XXXΓ

4

[(
υυυ
ξξξ

)
,AAA(s)

(
φφφ+

φφφ−

)]

Γ

=

[(
υυυ
ξξξ

)
,

(
−ĝgg

inc

ĝgg
inc

)]

Γ

. (4.5)

Crucially, the bilinear form on the left-hand side is coercive, as will be shown next.

4.2 Well-posedness of the boundary integral equation

This section is dedicated to the well-posedness of the time-harmonic boundary integral equation, which

is shown by employing the Lax-Milgram Lemma. To simplify the expressions in this section, we use

the abbreviation

mε,µ (s) := max

( |ε+(s)s|2 +1

Reε+(s)s
,
|µ+(s)s|2 +1

Re µ+(s)s
,
|ε−(s)s|2 +1

Reε−(s)s
,
|µ−(s)s|2 +1

Re µ−(s)s

)
. (4.6)

Under the strong passivity condition (2.5) there is a convenient upper bound for mε,µ (s): (2.5)–(2.6)

imply that for every σ > 0 there exists Cσ < ∞ such that

mε,µ (s)⩽Cσ
|s|2
Res

for Res ⩾ σ . (4.7)

We start by giving a bound for the boundary integral operator.

LEMMA 4.1 The analytic operator family AAA(s) : XXXΓ
4← XXXΓ

4 satisfies, for Re s > 0, the bound

∥AAA(s)∥
XXXΓ

4←XXXΓ
4 ⩽CΓ mε ,µ (s)+

1

2
,

where CΓ = ∥{γT}∥XXXΓ←HHH(curl,R3\Γ ) is the norm of the tangential average.

Moreover, we have the following coercivity result for the integral operator corresponding to the

boundary integral equation.

LEMMA 4.2 The operator family AAA(s) satisfies the following coercivity property: for Res > 0 we have

the bound

Re

[(
φφφ+

φφφ−

)
,AAA(s)

(
φφφ+

φφφ−

)]

Γ

⩾ c−2
Γ mε,µ (s)

−1
(∥∥φφφ+

∥∥2

XXXΓ
2 +
∥∥φφφ−

∥∥2

XXXΓ
2

)
,

for all (φφφ+,φφφ−) ∈ XXXΓ
2×XXXΓ

2, where cΓ = ∥[γT ]∥XXXΓ←HHH(curl,R3\Γ ) is the norm of the tangential jump

operator.
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Proof. We split the operator in the pairing

Re

[(
φφφ+

φφφ−

)
,AAA(s)

(
φφφ+

φφφ−

)]

Γ

= Re

[(
φφφ+

φφφ−

)
,

(
CCCε+,µ+(s)

CCCε−,µ−(s)

)(
φφφ+

φφφ−

)]

Γ

+Re

[(
φφφ+

φφφ−

)
,

(
JJJ

−JJJ

)(
φφφ+

φφφ−

)]

Γ

,

where the first summand is bounded from below by the coercivity of the Calderón operators given in

Lemma 3.5. The second summand vanishes due to symmetry of JJJ, which we verify next. We have

2 Re
[
φ̃φφ , JJJφφφ

]
Γ
= Re

[
φφφ 1 ,−φ̃φφ 2

]
Γ
+Re

[
φφφ 2 , φ̃φφ 1

]
Γ
= 2Re

[
φφφ , JJJφ̃φφ

]
Γ
,

and therefore,

Re

[(
φφφ+

φφφ−

)
,

(
JJJ

−JJJ

)(
φφφ+

φφφ−

)]

Γ

= Re
[
φφφ+,JJJφφφ−

]
Γ
−Re

[
φφφ−,JJJφφφ+

]
Γ
= 0,

such that the claim follows. □

In view of this coercivity, we obtain the following well-posedness result.

PROPOSITION 4.1 (Well-posedness of the time-harmonic boundary integral equation) Consider the

boundary integral equation (4.4) for Res > 0. The boundary integral equation has a unique solution

(
φ̂φφ
+

φ̂φφ
−

)
= AAA(s)−1

(
−ĝgg

inc

ĝgg
inc

)
∈ XXXΓ

4,

which satisfies ∥∥∥∥∥

(
φ̂φφ
+

φ̂φφ
−

)∥∥∥∥∥
XXXΓ

4

⩽ c2
Γ mε,µ (s)

√
2

∥∥∥ĝgg
inc
∥∥∥

XXXΓ
2
. (4.8)

The constant cΓ is again the norm of the tangential jump operator, and mε ,µ (s) is defined in (4.6).

Proof. The statement follows directly from the Lax–Milgram lemma with the coercivity of Lemma 4.2.

□

Using the above properties, we prove the following result, where the domain Ω stands for either Ω+

or Ω−.

PROPOSITION 4.2 (Well-posedness of the time-harmonic scattering problem) For Res > 0 there exists

a unique solution(ÊEE, ĤHH) ∈ HHH(curl,Ω)×HHH(curl,Ω) to the time-harmonic transmission problem (4.1)–

(4.2) given by the representation formulas (3.5)–(3.6). The tangential traces are given by the unique

solution of the boundary integral equation (4.4) via

φ̂φφ
+
=

(
γ+T ĤHH

+

−γ+T ÊEE
+

)
, φ̂φφ

−
=

(
−γ−T ĤHH

−

γ−T ÊEE
−

)
.

The scattered electromagnetic fields are bounded by

∥∥∥∥∥

(
ÊEE

ĤHH

)∥∥∥∥∥
HHH(curl,R3\Γ )2

⩽CΓ

(
mε,µ (s)

)3/2
∥∥∥ĝgg

inc
∥∥∥

XXXΓ
2
. (4.9)
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Proof. Let (ϕ̂ϕϕ
+
, ψ̂ψψ

+
, ϕ̂ϕϕ
−
, ψ̂ψψ
−
) be the solution of the time-harmonic boundary integral equation.

We insert the boundary densities into the representation formulas and obtain electromagnetic fields

(ÊEE
+
, ÊEE
−
, ĤHH

+
, ĤHH
−
), each defined on R

3 \Γ , such that

φ̂φφ
+
=

(
ϕ̂ϕϕ
+

ψ̂ψψ
+

)
=

(
[γT ]ĤHH

+

−[γT ]ÊEE
+

)
and φ̂φφ

−
=

(
ϕ̂ϕϕ
−

ψ̂ψψ
−

)
=

(
[γT ]ĤHH

−

−[γT ]ÊEE
−

)
.

The first two components of the left-hand side of boundary integral equation read

−ĝgg
inc =CCCε+,µ+(s)φ̂φφ

+
+ JJJφ̂φφ

−
=

(
{γT}ÊEE

+

{γT}ĤHH
+

)
+

1

2

(
[γT ]ÊEE

−

[γT ]ĤHH
−

)
(4.10)

and

ĝgg
inc =−JJJφ̂φφ

+
+CCCε−,µ−(s)φ̂φφ

−
=

1

2

(
−[γT ]ÊEE

+

−[γT ]ĤHH
+

)
+

(
{γT}ÊEE

−

{γT}ĤHH
−

)
. (4.11)

Subtraction of these components yields precisely the transmission conditions, namely

(
γ+T ÊEE

+

inc

γ+T ĤHH
+

inc

)
=

(
−γ+T ÊEE

+
+ γ−T ÊEE

−

−γ+T ĤHH
+
+ γ−T ĤHH

−

)
.

The fields (ÊEE
+
, ĤHH

+
)|Ω+ and (ÊEE

−
, ĤHH
−
)|Ω− therefore uniquely solve the transmission problem of interest.

Summation of the components (4.10)–(4.11) yields conversely

(
γ−T ÊEE

+
+ γ+T ÊEE

−

γ−T ĤHH
+
+ γ+T ĤHH

−

)
= 0.

In the following, we test these equations via the anti-symmetric pairing and specific test functions.

Inserting the test function γ−T ĤHH
+

in the first component and γ+T ÊEE
−

in the second component yields

0 = Re
[
γ−T ĤHH

+
,γ−T ÊEE

+
+ γ+T ÊEE

−]
Γ
+Re

[
γ+T ÊEE

−
,γ−T ĤHH

+
+ γ+T ĤHH

−]
Γ

= Re
[
γ−T ĤHH

+
,γ−T ÊEE

+
]

Γ
−Re

[
γ+T ĤHH

−
,γ+T ÊEE

−]
Γ
.

As the direct consequence of (3.15), we observe that (ÊEE
+
, ĤHH

+
)|Ω− and (ÊEE

−
, ĤHH
−
)|Ω+ vanish.

To obtain the bound (4.9), observe that we are now in the situation of Lemma 3.3, and the claim

follows together with the bounds given in Proposition 4.1. □

REMARK 4.1 In view of the L2-bound of Lemma 3.3, we further obtain an improved L2-bound for the

solution of the time-harmonic scattering problem. Under the strong passivity condition (2.5) we have

the bound
∥∥∥∥∥

(
ÊEE

ĤHH

)∥∥∥∥∥
L2(Ω±)2

⩽ CΓ ,σ
|s|2

(Res)3/2

∥∥∥ĝgg
inc
∥∥∥

XXXΓ
2

for Res ⩾ σ > 0.
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5. The time-dependent scattering problem

5.1 The time-dependent boundary integral equation

Throughout this section we assume strong passivity condition (2.5). The time-dependent version of the

boundary integral equation (4.4) is obtained by formally replacing the Laplace transform variable s by

the time differentiation operator ∂t : Given ggginc : [0,T ]→ XXXΓ
2, find time-dependent boundary densities

(φφφ+,φφφ−) : [0,T ]→ XXXΓ
2×XXXΓ

2 (of temporal regularity to be specified later) such that for almost every

t ∈ [0,T ] we have

(
CCCε+,µ+(∂t) JJJ

−JJJ CCCε−,µ−(∂t)

)(
φφφ+

φφφ−

)
=

(
−ggginc

ggginc

)
. (5.1)

We abbreviate this as

AAA(∂t)φφφ = ggg with φφφ(t) =

(
φφφ+(t)
φφφ−(t)

)
∈ XXXΓ

4, ggg(t) =

(
−ggginc(t)
ggginc(t)

)
∈ XXXΓ

4. (5.2)

In view of the bound of Proposition 4.1 on the operator family AAA(s)−1 for Res > 0, the temporal convo-

lution operator

AAA−1(∂t)ggg = L
−1AAA−1 ∗ggg

is well-defined, and by the composition rule we have AAA−1(∂t)AAA(∂t) = Id and AAA(∂t)AAA
−1(∂t) = Id. So we

have the temporal convolution

φφφ = AAA−1(∂t)ggg (5.3)

as the unique solution of (5.2). More precisely, with the argument given above and the convolution

bound of (Lubich, 1994, Lemma 2.1), we obtain the following result. Here Hr
0(0,T ;XXXΓ

4) is the space

of functions on the interval (0,T ) taking values in XXXΓ
4 that have an extension to the real line that is in

the Sobolev space Hr(R,XXXΓ
4).

THEOREM 5.1 (Well-posedness of the time-dependent boundary integral equation) Let r ⩾ 0. For

ggg ∈ Hr+3
0 (0,T ;XXXΓ

4), the boundary integral equation (5.2) has a unique solution φφφ ∈ Hr+1
0 (0,T ;XXXΓ

4),
and

∥φφφ∥
Hr+1

0 (0,T ;XXXΓ
4) ⩽CT ∥ggg∥Hr+3

0 (0,T ;XXXΓ
4) . (5.4)

Here, CT depends on T and on the boundary Γ via norms of tangential trace operators.

5.2 Well-posedness of the time-dependent scattering problem

With the time-dependent boundary densities φφφ = (φφφ+,φφφ−)T of Theorem 5.1, the scattered wave is

obtained by the time-dependent representation formula, compactly denoted by the exterior and interior

block operators W±(∂t) via

(
EEE±

HHH±

)
=W±(∂t)φφφ

± =


−

√
µ±
ε± (∂t)S

±
ε,µ(∂t)ϕϕϕ

±+D±ε,µ(∂t)ψψψ
±

−D±ε,µ(∂t)ϕϕϕ
±−

√
ε±
µ± (∂t)S

±
ε,µ(∂t)ψψψ±


 , (5.5)

where we used (3.5) and (3.6).

We now give the well-posedness result for the time-dependent scattering problem, which follows

from the time-harmonic well-posedness result Proposition 4.2.
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THEOREM 5.2 (Well-posedness of the time-dependent scattering problem) Consider the time-dependent

scattering problem (2.3) equipped with (1.7) and ggginc ∈ Hr+3
0 (0,T ;XXXΓ

2) for some arbitrary r ⩾ 0.

(a) This problem has a unique solution

(EEE±,HHH±) ∈ Hr
0(0,T ;HHH(curl,Ω±)2)∩Hr+1

0 (0,T ;(LLL2(Ω±))2)

given by the representation formulas (5.5). The tangential traces are uniquely determined by the solution

of the system of boundary integral equations of Theorem 5.1,

(ϕϕϕ±,ψψψ±) = (γT HHH±,−γT EEE±) ∈ Hr+1
0 (0,T ;XXXΓ ×XXXΓ ).

(b) The electromagnetic fields are bounded by

∥EEE±∥Hr
0(0,T ;HHH(curl,Ω±))+∥HHH±∥Hr

0(0,T ;HHH(curl,Ω±)) ⩽CT∥ggginc∥
Hr+3

0 (0,T ;XXXΓ
2),

and the same bound is valid for the Hr+1
0 (0,T ;(LLL2(Ω±))2) norms. Here, CT depends polynomially

on T , on the boundary Γ via norms of tangential trace operators, and on the bounds of the frequency

dependent material parameters ε,µ .

Proof. The proof is identical to (Nick et al., 2022, Thm. 4.2). □

6. Semi-discretization in time by Runge–Kutta convolution quadrature

6.1 Recap: Runge–Kutta convolution quadrature

To approximate the omnipresent temporal convolutions K(∂t)g, we will employ the convolution quadra-

ture method based on Runge–Kutta time stepping schemes. In order to introduce the notation, we recall

an m-stage implicit Runge–Kutta discretization of the initial value problem y′ = f (t,y), y(0) = y0; see

Hairer & Wanner (1991). For some constant time step τ > 0, the approximations yn to y(tn) at time

tn = nτ , and the internal stages Y ni approximating y(tn + ciτ), are computed by solving the system

Y ni = yn + τ
m

∑
j=1

ai j f (tn + c jh,Y
n j), i = 1, . . . ,m,

yn+1 = yn + τ
m

∑
j=1

b j f (tn + c jh,Y
n j).

The method is uniquely defined by the Butcher-tableau, which collects its coefficients

A = (ai j)
m
i, j=1, bbb = (b1, . . . ,bm)

T , and ccc = (c1, . . . ,cm)
T .

The stability function of the Runge–Kutta method is given by R(z) = 1+ zbT (III− zA )−1
✶, where ✶ =

(1,1, . . . ,1)T ∈ R
m. We always assume that A is invertible.

Runge–Kutta methods can be used to construct convolution quadrature methods. Such methods were

first introduced in Lubich & Ostermann (1993) in the context of parabolic problems and were studied

for wave propagation problems in Banjai et al. (2011) and subsequently, e.g., in Banjai & Kachanovska

(2014); Banjai & Lubich (2019); Banjai et al. (2012); Banjai & Rieder (2018). Runge–Kutta convolution

quadrature was studied for the numerical solution of some exterior Maxwell problems in Ballani et al.

(2013); Chen et al. (2012); Nick et al. (2022) and of an eddy current problem with an impedance
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boundary condition in Hiptmair et al. (2014). For wave problems, Runge–Kutta convolution quadrature

methods such as those based on the Radau IIA methods, see (Hairer & Wanner, 1991, Section IV.5),

often enjoy more favourable properties than their BDF-based counterparts, which are more dissipative

and cannot exceed order 2 but are easier to understand and slightly easier to implement.

Let KKK(s) : XXX → YYY , Res ⩾ σ0 > 0, be an analytic family of linear operators between Banach spaces

XXX and YYY , satisfying the bound, for some exponents κ ∈ R and ν ⩾ 0,

∥KKK(s)∥YYY←XXX ⩽ Mσ
|s|κ

(Res)ν
, Res ⩾ σ > σ0. (6.1)

This yields a convolution operator KKK(∂t) : Hr+κ
0 (0,T ;XXX)→ HHHr

0(0,T ;YYY ) for arbitrary real r. For func-

tions ggg : [0,T ]→ XXX that are sufficiently regular (together with their extension by 0 to the negative real

half-axis t < 0), we wish to approximate the convolution (KKK(∂t)ggg)(t) at discrete times tn = nτ with a

step size τ > 0, using a discrete convolution.

To construct the convolution quadrature weights, we use the Runge–Kutta differentiation symbol

∆(ζ ) =
(
A +

ζ

1−ζ
✶bbbT

)−1

∈ C
m×m, ζ ∈ C with |ζ |< 1. (6.2)

This is well-defined for |ζ |< 1 if R(∞)= 1−bT A −1
✶ satisfies |R(∞)|⩽ 1, as is seen from the Sherman–

Woodbury formula. Moreover, for A-stable Runge–Kutta methods (e.g. the Radau IIA methods), the

eigenvalues of the matrices ∆(ζ ) have positive real part for |ζ |< 1 (Banjai et al., 2011, Lemma 3).

To formulate the Runge–Kutta convolution quadrature for KKK(∂t)ggg, we replace the complex argument

s in KKK(s) by the matrix ∆(ζ )/τ and expand

KKK
(∆(ζ )

τ

)
=

∞

∑
n=0

WWW n(KKK)ζ n. (6.3)

The operators WWW n(KKK) : XXXm → YYY m are used as the convolution quadrature “weights”. For the discrete

convolution of these operators with a sequence ggg = (gggn) with gggn = (gggn
i )

m
i=1 ∈ XXXm we use the notation

(
KKK(∂ τ

t )ggg
)n

=
n

∑
j=0

WWW n− j(KKK)ggg j ∈ YYY m. (6.4)

Given a function ggg : [0,T ]→ XXX , we use this notation for the vectors gggn =
(
ggg(tn + ciτ)

)m

i=1
of values of

ggg. The i-th component of the vector
(
KKK(∂ τ

t )ggg
)n

is then an approximation to
(
KKK(∂t)ggg

)
(tn + ciτ); see

(Banjai & Lubich, 2019, Theorem 4.2).

In particular, if cm = 1, as is the case with Radau IIA methods, the continuous convolution at tn is

approximated by the m-th, i.e. last component of the m-vector (6.4) for n−1:

(
KKK(∂t)ggg

)
(tn)≈

[(
KKK(∂ τ

t )ggg
)n−1

]
m
∈ YYY .

This discretization (6.4) inherits the composition rule (2.9): For two analytic families of operators KKK(s)
and LLL(s) mapping into compatible spaces, the convolution quadrature discretization satisfies

KKK(∂ τ
t )LLL(∂

τ
t )ggg = (KKKLLL)(∂ τ

t )ggg; (6.5)

see e.g. (Lubich, 1994, Equation (3.5)).
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The following error bound for Runge–Kutta convolution quadrature from Banjai et al. (2011), here

directly stated for the Radau IIA methods (Hairer & Wanner, 1991, Section IV.5) and transferred to a

Banach space setting, will be the basis for our error bounds of the time discretization.

LEMMA 6.1 ((Banjai et al., 2011, Theorem 3)) Let KKK(s) : XXX → YYY , Res > σ0 ⩾ 0, be an analytic family

of linear operators between Banach spaces XXX and YYY satisfying the bound (6.1) with exponents κ and

ν . Consider the Runge–Kutta convolution quadrature based on the Radau IIA method with m stages.

Let 1 ⩽ q ⩽ m (the most interesting case is q = m) and r > max(2q− 1+ κ,2q− 1,q+ 1). Let ggg ∈
CCCr([0,T ],XXX) satisfy ggg(0) = ggg′(0) = ... = ggg(r−1)(0) = 0. Then, the following error bound holds at tn =
nτ ∈ [0,T ]:

∥∥∥
[(

KKK(∂ τ
t )ggg
)n−1

]
m
− (KKK(∂t)ggg)(tn)

∥∥∥
YYY

⩽C M1/T τmin(2q−1,q+1−κ+ν)

(
∥ggg(r)(0)∥XXX +

∫ t

0
∥ggg(r+1)(t ′)∥XXX dt ′

)
.

The constant C is independent of τ and ggg and Mσ of (6.1), but depends on the exponents κ and ν in

(6.1) and on the final time T .

6.2 Convolution quadrature for the scattering problem

Throughout the following sections, we assume strong passivity (2.5) for the frequency dependent param-

eters ε(s),µ(s). Applying a Runge–Kutta based convolution quadrature discretization to the temporal

convolution equation (5.2) reads

AAA(∂ τ
t )φφφ τ = ggg, or equivalently, φφφ τ = AAA−1(∂ τ

t )ggg, (6.6)

where φφφ and ggg are defined in (5.2), and the equivalence of the two formulations is a consequence of

the discrete composition rule (6.5). This formulation, which is equivalent to discretizing the boundary

integral equation (5.2) with the convolution quadrature method and inverting the quadrature weights,

interprets the solution of the discretized boundary integral equation as a forward convolution quadrature.

The error of this formulation is then bounded by the error estimate of Lemma 6.1, through the bound

of AAA−1(s) given in Proposition 4.1. This argument for the stability of the formulation and the resulting

path to error estimates originates from Lubich (1994), for a time-dependent boundary integral equation

derived in the context of an acoustic problem.

The time discretizations of the electromagnetic fields are then obtained by applying the convolution

quadrature to the representation formulas (5.5) with φφφ±τ = (ϕϕϕ±τ ,ψψψ
±
τ ):

(
EEE±τ
HHH±τ

)
=W±

ε,µ
(∂ τ

t )φφφ
±
τ =


−

√
µ±
ε± (∂

τ
t )S

±
ε,µ(∂

τ
t )ϕϕϕ

±
τ +D±ε,µ(∂

τ
t )ψψψ

±
τ

−D±ε,µ(∂ τ
t )ϕϕϕ

±
τ −

√
ε±
µ± (∂

τ
t )S

±
ε,µ(∂

τ
t )ψψψ±τ


 . (6.7)

By the discrete composition rule (6.5), this is the convolution quadrature discretization of the com-

posed operator (
EEE±τ
HHH±τ

)
= U±

ε,µ
(∂ τ

t )ggg
inc of

(
EEE±

HHH±

)
= U±

ε ,µ
(∂t)ggg

inc, (6.8)

where we have by Theorem 5.2 that U±
ε ,µ
(s) : XXXΓ

2→ HHH(curl,Ω±)2 is given by

U±
ε,µ
(s) =W±

ε,µ
(s)P±AAA−1(s)N , (6.9)
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with the auxiliary maps P± : XXXΓ
4 → XXXΓ

2 projecting on the exterior and interior boundary densities

respectively and N : XXXΓ
2→ XXXΓ

4 expanding the terms of the incident wave via

P+ =
(
Id 0

)
, P− =

(
0 Id

)
and N =

(
−Id Id

)⊤
.

Under the stronger passivity condition, we then have by Proposition 4.2 the bound

∥U±
ε ,µ
(s)∥

HHH(curl,Ω±)2←XXXΓ
2 ⩽Cσ

|s|3
(Res)3/2

, for Res ⩾ σ > 0. (6.10)

Moreover, away from the boundary on Ω±d = {xxx ∈ Ω± : dist(xxx,Γ ) > d} with d > 0, bounds that

decay exponentially with the real part of s hold. The following lemma is a direct consequence of (Nick

et al., 2022, Lemma 3.8) and of Lemma 3.1 to obtain the following parameter-dependent bound.

LEMMA 6.2 Under the strong passivity condition (2.5), we have the following bounds at xxx ∈ R
3 \Γ

with d = dist(xxx,Γ )> 0 and for Res ⩾ σ > 0

∣∣(Sε,µ(s)ϕϕϕ
)
(x)
∣∣⩽Cσ |s|2 e−dcRes ∥ϕϕϕ∥XXXΓ

,
∣∣(Dε,µ(s)ϕϕϕ

)
(x)
∣∣⩽Cσ |s|2 e−dcRes ∥ϕϕϕ∥XXXΓ

.

for all ϕϕϕ ∈ XXXΓ .

Combining Lemma 6.2 and Theorem 4.1 yields, under the assumption of strong passivity (2.5) and

using (3.13),

∥U±ε,µ(s)∥(CCC1(Ω
±
d )3)2←XXXΓ

2 ⩽Cσ
|s|1/2

(Res)1/2

|s|4
Res

e−dcRes
∥∥∥ĝgg

inc
∥∥∥

XXXΓ
2
, (6.11)

for Res ⩾ σ > 0. The CCC1(Ω
±
d )-norm denotes the maximum norm on continuously differentiable func-

tions and their derivatives on the closure of the domains Ω±d respectively.

For the sake of brevity, we omit a formulation of error bounds for the temporal semi-discretization

and continue with a full discretization for the boundary integral equation.

7. Full discretization

Finally, we combine a convolution quadrature time discretization of (5.2) with a spatial Galerkin approx-

imation of the boundary operators, based on a boundary element space XXXh ⊂ XXXΓ , which corresponds to

a family of triangulations with decreasing mesh width h→ 0. Throughout this paper, we use Raviart–

Thomas boundary elements of order k ⩾ 0, which are defined on the unit triangle K̂ by

RTk(K̂) =
{

xxx 7→ ppp1(xxx)+ p2(xxx)xxx : ppp1 ∈ Pk(K̂)2, p2 ∈ Pk(K̂)
}
,

where Pk(K̂) contains all polynomials of degree k on K̂. The definition is then extended to arbitrary

triangles in the standard way via pull-back to the reference element. Details are found in the original

paper Raviart & Thomas (1977).

The following approximation result holds with respect to the XXXΓ -norm; see also the original refer-

ences (Brezzi & Fortin, 1991, Section III.3.3) and Buffa & Christiansen (2003). Here we use the same

notation HHH
p
×(Γ ) = γT HHH p+1/2(Ω) as in Buffa & Hiptmair (2003).
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LEMMA 7.1 ((Buffa & Hiptmair, 2003, Theorem 14)) Let XXXh be the k-th order Raviart–Thomas bound-

ary element space on Γ . There exists a constant C, such that the best-approximation error of any

ξξξ ∈ XXXΓ ∩HHHk+1
× (Γ ) is bounded by

inf
ξξξ h∈XXXh

∥ξξξ h−ξξξ∥XXXΓ
⩽Chk+3/2∥ξξξ∥

HHHk+1
× (Γ )

.

The full discretization of boundary integral equation (5.2) on XXX4
h then reads

[ξξξ h , AAA(∂ τ
t )φφφ

τ
h]Γ = [ ξξξ h , ggginc]Γ ∀ξξξ h ∈ (XXX4

h)
m. (7.1)

This formulation determines the approximate boundary densities, by

(φφφ τ
h)

n =
(
(ϕϕϕ+

τ,h)
n,(ψψψ+

τ,h)
n,(ϕϕϕ−τ,h)

n,(ψψψ+
τ,h)

n
)⊤
∈ XXX4

h, (7.2)

where ϕϕϕ±τ,h =
(
(ϕϕϕ±τ,h)

n
)

with (ϕϕϕ±τ,h)
n =

(
(ϕϕϕ±τ,h)

n
i

)m

i=1
∈ XXXm

h . The electric densities ψψψ±τ,h are defined

in the same way. The approximations to the electromagnetic fields are obtained via the time-discrete

representation formulas on the interior domain Ω− and the exterior domain Ω+:

EEE±τ,h =−
√

µ

ε
(∂ τ

t )Sε,µ(∂
τ
t )ϕϕϕ

±
τ,h +Dε,µ(∂

τ
t )ψψψ

±
τ,h, (7.3)

HHH±τ,h =−Dε,µ(∂
τ
t )ϕϕϕ

±
τ,h−

√
ε

µ
(∂ τ

t )Sε,µ(∂
τ
t )ψψψ

±
τ,h. (7.4)

These fully discrete approximations satisfy the following error bounds, obtained under regularity as-

sumptions that are presumably stronger than necessary.

THEOREM 7.1 (Error bound of the full discretization) Consider the setting and assumptions of Theo-

rem 5.2 and further let ε± and µ± satisfy the strong passivity (2.5).

Consider the fully discrete scheme (7.1) and the temporally discrete representation formulas (7.3)–

(7.4), where the m−stage Radau IIA convolution quadrature discretization and k-th order Raviart–

Thomas boundary element discretization have been employed as described in the previous sections.

For r > 2m+3 we assume the incoming waves to satisfy ggginc ∈CCCr([0,T ],XXXΓ
4). Moreover, we assume

ggginc to vanish at t = 0 together with its first r− 1 time derivatives. Furthermore, it is assumed that the

solution φφφ of the boundary integral equation (5.2) is at least in CCC10([0,T ],HHHk+1
× (Γ )2), vanishing at t = 0

together with its time derivatives.

Then, the approximations to the electromagnetic fields at time tn, both in the interior and the exterior

domain, (
EEE±τ,h

)n

=
[
(EEE±τ,h)

n−1
]

m
and

(
HHH±τ,h

)n

=
[
(HHH±τ,h)

n−1
]

m
,

satisfy the following error bound of order m−1/2 in time and order k+3/2 in space at tn = nτ ∈ [0,T ]:
∥∥∥
(

EEE±τ,h

)n

−EEE(tn)
∥∥∥

HHH(curl,Ω±)
+
∥∥∥
(

HHH±τ,h

)n

−HHH(tn)
∥∥∥

HHH(curl,Ω±)
⩽C

(
τm−1/2 +hk+3/2

)
.

For r > 2m+ 4, we obtain the full order 2m− 1 in time away from the interface Γ , on the domains

Ω±d = {xxx ∈Ω : dist(xxx,Γ )> d} with d > 0, which reads

∥∥∥
(

EEE±τ,h

)n

−EEE(tn)
∥∥∥

CCC1(Ω
±
d )3

+
∥∥∥
(

HHH±τ,h

)n

−HHH(tn)
∥∥∥

CCC1(Ω
±
d )3

⩽Cd

(
τ2m−1 +hk+3/2

)
.
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The constants C and Cd are independent of n, τ and h, but depend on the final time T and on the

regularity of ggginc and (ϕϕϕ,ψψψ) as stated. Cd additionally depends on the distance d.

Proof. The proof is, due to the similarities of the time-harmonic bounds, essentially identical to the

proof of (Nick et al., 2022, Theorem 6.1). We repeat the arguments given there and apply them to the

present setting, to keep the paper self-contained. We structure the proof into three parts (a)–(c).

(a) (Discretized time-harmonic boundary integral equation). We start with the time-harmonic bound-

ary integral equation (4.5), for Res > 0. We denote by LLLh(s) : XXXΓ
4→ XXX4

h the solution operator ĝgg 7→ φ̂φφ h

of the Galerkin approximation in XXX4
h,

[
ξξξ h,AAA(s)φ̂φφ h

]
Γ
= [ξξξ h, ĝgg]Γ ∀ξξξ h ∈ XXX4

h, (7.5)

which by the bound of AAA(s) in Lemma 4.1, the coercivity estimate of Lemma 4.2 and the Lax–Milgram

lemma yields, for Res ⩾ σ > 0, the bound

∥LLLh(s)∥XXX4
h←XXXΓ

4 ⩽Cσ
|s|2
Res

, (7.6)

where Cσ depends on the surface Γ and σ . The associated Ritz projection RRRh(s) : XXXΓ
4 → XXX4

h maps

(φ̂φφ) ∈ XXXΓ
4 to φ̂φφ h ∈ XXX4

h, determined by

[
ξξξ h,AAA(s)φ̂φφ h

]
Γ
=
[
ξξξ h,AAA(s)φ̂φφ

]
Γ

∀ξξξ h ∈ XXX4
h.

Again by Lemmas 4.1 and 4.2 and the Lax–Milgram lemma, this problem has a unique solution (ϕ̂ϕϕh, ψ̂ψψh)∈
XXX4

h, and by Céa’s lemma, where the right-hand side is further bounded by Lemma 7.1. With the stronger

passivity, we arrive at the bound

∥∥∥φ̂φφ h− φ̂φφ
∥∥∥

XXXΓ
4
⩽

Cσ

cσ

( |s|2
Res

)2

inf
ξξξ h∈XXX4

h

∥∥∥ξξξ h− φ̂φφ
∥∥∥

XXXΓ
4
,

for all Res ⩾ σ > 0.

In combination with the approximation result of Lemma 7.1, we can thus bound the associated

error operator Eh(s) = RRRh(s)− Id in the operator norm from HHHk+1
× (Γ )4 to XXXΓ

4 with the bound, for

Res ⩾ σ > 0,

∥Eh(s)∥VVVΓ×XXXΓ←HHHk+1
× (Γ )2 ⩽ C̃σ

|s|4
(Res)2

hk+3/2. (7.7)

(b) (Error of the spatial semi-discretization). We continue with the spatial semi-discretization of the

time-dependent boundary integral equation (5.2), which reads

[ξξξ h,AAA(∂t)φφφ ] = [ξξξ h,ggg]Γ ∀ξξξ h ∈ XXX4
h. (7.8)

This formulation has the unique solution

φφφ h = LLLh(∂t)ggg = RRRh(∂t)φφφ ,

where φφφ = AAA−1(∂t)ggg is the solution of (5.2). With the exterior and interior potential operators collected

in the block operators W±(s) and the auxiliary operators P± and N defined in (6.9) we set

U±h (s) =W±(s)P±LLLh(s)N : XXXΓ
2→ HHH(curl,Ω±)2. (7.9)
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With the established bounds from Lemma 3.2 and (7.6), this operator family is bounded by

∥U±h (s)∥
HHH(curl,Ω±)2←XXXΓ

2 ⩽ C̄σ
|s|4

(Res)2
. (7.10)

The spatial semi-discretization of the scattering problem is then the forward convolution of U±h (∂t) with

the incident wave, which reads (
EEE±h
HHH±h

)
= U±h (∂t)ggg

inc.

In view of (6.8), its error is
(

EEE±h
HHH±h

)
−
(

EEE±

HHH±

)
= U±h (∂t)ggg

inc−U±(∂t)ggg
inc =W±(∂t)φφφ

±
h −W±(∂t)φφφ

±

=W±(∂t)(RRRh− Id)φφφ± =W±(∂t)Eh(∂t)φφφ
±.

Using the bound of Lemma 3.2 for the potential operator W±(s), the bound (7.7) for the error operator

Eh(s), and the temporal Sobolev bound stated in (Lubich, 1994, Lemma 2.1) (with κ = 6) for their

composition, and finally the Sobolev embedding H1(0,T ;H)⊂C([0,T ],H) for any Hilbert space H, we

obtain for the error of the spatial semi-discretization

max
0⩽t⩽T

∥∥∥∥
(

EEE±h (t)
HHH±h (t)

)
−
(

EEE±(t)
HHH±(t)

)∥∥∥∥
HHH(curl,Ω±)2

(7.11)

⩽C

∥∥∥∥
(

EEE±h
HHH±h

)
−
(

EEE±

HHH±

)∥∥∥∥
H1

0 (0,T ;HHH(curl,Ω±)2)

⩽CT hk+3/2
∥∥φφφ±

∥∥
H7

0 (0,T ;HHHk+1
× (Γ )2)

.

Using the same argument with the pointwise bounds away from the boundary given by Lemma 6.2, we

further obtain

max
0⩽t⩽T

∥∥∥∥
(

EEE±h (t)
HHH±h (t)

)
−
(

EEE±(t)
HHH±(t)

)∥∥∥∥
CCC1(Ω

±
d )2

⩽CT hk+3/2
∥∥φφφ±

∥∥
HHH9

0(0,T ;HHHk+1
× (Γ )4)

. (7.12)

(c) (Error of the full discretization). The total error is (omitting here the omnipresent superscript n)

(
EEE±τ,h
HHH±τ,h

)
−
(

EEE±τ
EEE±τ

)
+

(
EEE±τ
EEE±τ

)
−
(

EEE±

HHH±

)
. (7.13)

The second difference is the error of the temporal semi-discretization, which is bounded by applying

Lemma 6.4 with the time-harmonic bounds on U±(s) due to
(

EEE±τ
HHH±τ

)
−
(

EEE±

HHH±

)
=
(
U±(∂ τ

t )−U±(∂t)
)

ggginc. (7.14)

With the time-harmonic bound (6.10), we obtain an estimate of the order O(τm−1/2) in the HHH(curl,Ω±)-
norm, whereas applying the time-harmonic (6.11) yields an error estimate of the order O(τ2m−1) in the

CCC1(Ω
±
d )-norm.

The first difference of the total error (7.13) is rewritten as

W±(∂ τ
t )Eh(∂

τ
t )φφφ

± =
(
W±(∂ τ

t )Eh(∂
τ
t )φφφ

±−W±(∂t)Eh(∂t)φφφ
±)

+ W±(∂t)Eh(∂t)φφφ
±.

(7.15)
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The final error term is the spatial semi-discretization studied in part (b), which is therefore bounded by

(7.11). To bound the remaining difference, which is a convolution quadrature error, we employ Lem-

ma 6.1. This gives an O(hk+3/2) error in the HHH(curl,Ω±)2 norm, using that by Lemma 3.2 and (7.7)

we have here Mσ ⩽Cσ hk+3/2, κ = 6, ν = 3 in (6.1) with W(s)Eh(s) in the role of KKK(s), and choosing

q = 2 and r = 10 > 2q−1+κ . Note that here min(2q−1,q+1−κ +ν) = q−2 = 0. Altogether, this

yields the stated O(τm−1/2 +hk+3/2) error bound in the HHH(curl,Ω±)2 norm.

The full-order error bound away from the boundary can be shown without requiring this additional

assumption on r. To show this bound, we rewrite the error as



(

EEE±τ,h

)n

(
HHH±τ,h

)n


−

(
EEE±h (tn)
EEE±h (tn)

)
+

(
EEE±h (tn)
EEE±h (tn)

)
−
(

EEE±(tn)
HHH±(tn)

)
.

The second difference is the error of the spatial semi-discretization studied in part (b). The first differ-

ence is a convolution quadrature error for the transfer operator U±h (s) of (7.9):



(

EEE±τ,h

)n

(
HHH±τ,h

)n


−

(
EEE±h (tn)
HHH±h (tn)

)
=
[(
U±h (∂ τ

t )ggg
inc
)n−1

]
m
−U±h (∂t)ggg

inc(tn).

Using this argument to bound the error in the HHH(curl,Ω±) norm by Lemma 6.1 would reduce the

predicted error rate to O(τm−1), hence the different argument structure before.

The exponential decay in the bound (6.11) exceeds any polynomial decay, which gives with (7.6) a

constant Cσ ,d , depending only on σ and d, such that

∥U±h (s)∥
(CCC1(Ω

±
d )3)2←XXXΓ

2 ⩽Cσ ,d
|s|

9
2

(Res)
3
2+m+1

∥∥∥ĝgg
inc
∥∥∥

XXXΓ
2
, (7.16)

for Res ⩾ σ > 0, by using e−x ⩽ Cx−m−1 for x ⩾ σ . We then obtain the stated full convergence rates

in the HHH(curl,Ω±d ) norm and the CCC1(Ω
±
d ) norm by Lemma 6.1, with r > 2m+ 7/2 and κ,ν chosen

accordingly to the bound above.

□

8. Numerical experiments

We complement the theory of the previous sections by the following experiments. The boundary element

approximations of the boundary and potential operators of the Maxwell problem were realized by the

library Bempp, which is described in Śmigaj et al. (2015). The codes used to generate the simulation

data and the figures are available via github.1

All experiments have been conducted with the following setting. One or several scatterers are illu-

minated by an incoming plane wave of the form

EEE inc(xxx, t) = pppe−c∥ddd·xxx+t−t0∥2 , (8.1)

The polarization vector is set to ppp = 1√
2
(−1,0,−1)T , the direction to ddd = 1√

2
((−1,0,1)T and the tem-

poral shift to t0 = 4. We observe the interaction of the wave with different scatterers until the final time

1https://github.com/joergnick/cqExperiments, last accessed on 25/10/2023.
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T = 8. The physical constants in the exterior domain Ω+ are set to one, i.e. ε+ = µ+ = 1. Inside the

obstacle, we enforce a fractional material law, which reads

ε−(s) =
1

2
+

1

1+ s1/2
, µ−(s) =

1

2
. (8.2)

The corresponding time-varying material law includes fractional time derivatives and is therefore non-

local in time. Moreover, since ε−(s) is not a rational function, techniques based on memory variables

are not available.

8.1 Scattering from a sphere: Convergence plots

To investigate empirical convergence rates, we consider the following simple setting. The exterior of

a unit sphere centered at the origin is initially at rest and excited by the plane wave (8.1) with c = 10.

A sequence of grids, with the mesh widths h j = 2− j/2 for j = 0, ...,7 is used with 0-th order Raviart–

Thomas elements as the space discretization. As the time discretization, we employ the convolution

quadrature method based on the 2-stage Radau IIA method, for N j = 8 ·2 j for j = 0, ...,7. The numerical

approximations are compared with a reference solution obtained by the same discretization, that has

been computed with h = 2−4, which corresponds to a boundary element space of 12534 degrees of

freedom, and N = 2048 time steps.

FIG. 1. Time convergence plot of the fully discrete system for a spherical scatterer, for 0th order Raviart–Thomas boundary

elements and the 2-stage Radau IIA based Runge–Kutta convolution quadrature method.
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FIG. 2. Space convergence plot of the fully discrete system for a spherical scatterer, for 0th order Raviart–Thomas boundary

elements and the 2-stage Radau IIA based Runge–Kutta convolution quadrature method.

8.2 Scattering from two cubes: Visualization of the numerical solution

In the second experiment, we choose the union of two unit cubes, separated by a gap of length l = 0.5, as

the interior domain Ω−. The plane wave (8.1) illuminates the scatterers, and c = 100. Figure 3 depicts

the approximation of the total wave, evaluated in the y = 0.5 plane, which cuts through the middle

of the cubes, at several time points. The scheme has been used with a 0− th order Raviart–Thomas

boundary element discretization with 11088 degrees of freedom and the convolution quadrature time

discretization based on the 2–stage Radau IIA method with N = 2096 time steps.
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