
Efficient Computation of Large-Scale

Statistical Solutions to Incompressible Fluid

Flows

T. Rohner and S. Mishra

Research Report No. 2024-04

January 2024

Latest revision: April 2024

Seminar für Angewandte Mathematik

Eidgenössische Technische Hochschule

CH-8092 Zürich

Switzerland

__

Funding ERC: 770880 COMANFLO

Efficient Computation of Large-Scale Statistical Solutions to
Incompressible Fluid Flows

Tobias Rohner
ETH Zürich

Zürich, Switzerland

tobias.rohner@sam.math.ethz.ch

Siddhartha Mishra
ETH Zürich

Zürich, Switzerland

ETH AI Center

Zürich, Switzerland

siddhartha.mishra@sam.math.ethz.ch

ABSTRACT

This work presents the development, performance analysis and

subsequent optimization of a GPU-based spectral hyperviscosity

solver for turbulent flows described by the three dimensional in-

compressible Navier-Stokes equations. The method solves for the

fluid velocity fields directly in Fourier space, eliminating the need

to solve a large-scale linear system of equations in order to find the

pressure field. Special focus is put on the communication intensive

transpose operation required by the fast Fourier transform when

using distributed memory parallelism. After multiple iterations of

benchmarking and improving the code, the simulation achieves

close to optimal performance on the Piz Daint supercomputer clus-

ter, even outperforming the Cray MPI implementation on Piz Daint

in its communication routines. This optimal performance enables

the computation of large-scale statistical solutions of incompress-

ible fluid flows in three space dimensions.

CCS CONCEPTS

· Applied computing→ Engineering; · Computing method-

ologies → Parallel computing methodologies; Simulation evalua-

tion.

KEYWORDS

Computational Fluid Dynamics, Direct Numerical Simulation, GPU

accelerated simulation

ACM Reference Format:

Tobias Rohner and Siddhartha Mishra. 2024. Efficient Computation of Large-

Scale Statistical Solutions to Incompressible Fluid Flows. In Platform for

Advanced Scientific Computing Conference (PASC ’24), June 3ś5, 2024, Zurich,

Switzerland. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/36

59914.3659922

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PASC ’24, June 3ś5, 2024, Zurich, Switzerland

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0639-4/24/06. . . $15.00
https://doi.org/10.1145/3659914.3659922

1 INTRODUCTION

The flow of an incompressible fluid is described by the Navier-

Stokes equations,

u𝑡 + (u · ∇) u + ∇𝑝 = 𝜈Δu, (𝑥, 𝑡) ∈ 𝐷 × [0,𝑇],

div u = 0,

u(𝑥, 0) = ū(𝑥), 𝑥 ∈ 𝐷.

(1.1)

Here, u(𝑥, 𝑡) ∈ R𝑑 is the velocity of the fluid, measured at the

spatial location 𝑥 ∈ 𝐷 ⊂ R𝑑 and time 𝑡 ∈ [0,𝑇] and 𝑝 ∈ R+ denotes

the fluid pressure. The kinematic viscosity is denoted by 𝜈 and

it scales inversely vis-à-vis the Reynolds number 𝑅𝑒 i.e., 𝜈 ∼ 1
𝑅𝑒 .

It is well-known that for most fluids of interest [13], particularly

in the atmosphere and the ocean as well as in flows of practical

engineering interest, the Reynolds number can be very high. Hence,

one is interested in the regime 𝜈 → 0, which also corresponds to

the zero-viscosity limit of the Navier-Stokes equations.

Formally, when we assume periodic boundary conditions by

setting 𝐷 = T
𝑑 to be the 𝑑-dimensional periodic Torus, letting

𝜈 → 0 in (1.1), one obtains the well-known Euler equations for an

ideal, incompressible fluid,

u𝑡 + (u · ∇) u + ∇𝑝 = 0, (𝑥, 𝑡) ∈ 𝐷 × [0,𝑇],

div u = 0,

u(𝑥, 0) = ū(𝑥), 𝑥 ∈ 𝐷.

(1.2)

1.1 The Role of Turbulence

Turbulence [13] is loosely defined as the presence of energetic ed-

dies that span a very large range of spatial and temporal scales, even

if the initial data is only varying at a single scale. This spontaneous

appearance of multiple scales is a manifestation of the nonlinear-

ities in the momentum equation in (1.1) and implies a cascade of

input energy into smaller and smaller scales.

Turbulence is the principal obstacle in the availability of global

well-posedness results for the Euler and Navier-Stokes equations.

It is also responsible for the possible lack of convergence of numer-

ical methods as a large number of scales, corresponding to wave

numbers of ≈ 𝑅𝑒
3
4 need to be resolved, making the computational

cost of a direct numerical simulation (DNS) of the Navier-Stokes

equations prohibitive. In particular, these facts automatically imply

that one can only expect convergence with respect to grid size for

the Navier-Stokes equations when grid sizes smaller than ≪ 𝜈
3
4

are considered. For the Euler equations, as 𝜈 = 0, this also implies

that classical numerical methods will not converge to a weak so-

lution. This fact is already computationally verified in two spatial

PASC ’24, June 3ś5, 2024, Zurich, Switzerland Tobias Rohner and Siddhartha Mishra

dimensions with rough initial data [15, 17]. Thus, it is unclear what

exactly a numerical method actually computes when approximating

the Euler and Navier-Stokes equations (for high Reynolds numbers)

at a given resolution.

1.2 Statistical Solutions

The above discussion clearly brings out the fact that the current

solution concepts of weak and strong solutions for the Navier-

Stokes (and Euler) equations are inadequate. They may not be

globally well-posed and numerical methods may not converge to

them on mesh refinement. This also provides the rationale for

the search of alternative, more suitable, solution paradigms for

incompressible flow.

One such alternative is the concept of measure-valued solutions,

first introduced in [4]. Herein, the solutions are sought for as Young

measures or space-time parametrized probability measures. One

can think of them as assigning a probability distribution (pdf) at

each point in space-time. Measure-valued solutions exist globally

[4] and can be realized as limits of popular numerical methods such

as the spectral viscosity method [15]. However, they are not unique.

This is due to the fact that there is no information on correlations

across different points in space.

Adding information about all possible multi-point correlations in

an attempt to recover uniqueness leads to the paradigm of Statistical

Solutions [11, 8] and references therein. Statistical solutions are

time-parametrized probability measures on the underlying function

space of square-integrable velocity fields. Their time evolution can

be written as an infinite system of nonlinear differential equations,

each evolving a particular moment in terms of other moments.

Statistical solutions provide a language to express turbulence

mathematically in terms of solutions of Euler and Navier-Stokes

equations [11]. Moreover, they also provide a natural framework

for quantifying the uncertainties that are inherent to fluid flows [8].

Recently, the equivalence of two different definitions of statistical

solutions was shown in [10]. Moreover, it was also shown that

under the assumptions analogous to (weaker than) those used by

Kolmogorov to derive his famous K41 phenomenological theory of

turbulence, one can prove that statistical solutions of the Navier-

Stokes equations (1.1) converge to statistical solutions of the Euler

equations (1.2) as 𝜈 → 0.

2 SIMULATION

The simulation developed in the scope of this work is written in

C++ using CUDA to realize optimized compute kernels to run on

GPGPUs. For performance considerations, the computational do-

main is restricted to the 𝑑-dimensional torus T𝑑 discretized by a

uniform rectangular grid with mesh width Δ =
1
𝑁 . Large simula-

tions are distributed over multiple compute nodes along a single

dimension of the grid, while communication of data between nodes

is implemented using MPI.

2.1 Computing Statistical Solutions

Given that statistical solutions are probability measures on the in-

finite dimensional space of square-integrable velocity fields, the

challenge of computing statistical solutions is formidable. However,

in recent papers [9, 18, 17], a Monte Carlo ensemble averaging algo-

rithm to compute statistical solutions for both compressible as well

as incompressible flows was proposed. Let the initial uncertainty in

(1.2) (for definiteness) be modeled in terms of a probability measure

𝜇 ∈ Prob((𝐿2 (T𝑑)𝑑)). The aim is to find a suitable approximation

to the statistical solution 𝜇𝑡 , whose correlation marginals satisfy

the corresponding moment equations. To approximate 𝜇𝑡 , [9] and

[17] proposed the following algorithm:

Algorithm 1:

1. Given initial measure 𝜇, find𝑀 Monte Carlo samples ū𝑖 (𝜔)

such that 𝜇 ≈ 1
𝑀

∑𝑀
𝑖=1 𝛿ū𝑖 (𝜔) .

2. ∀𝜔 , evolve ū𝑖 (𝜔) with suitable numerical method, at mesh

resolution Δ, to obtain u
Δ

𝑖 (𝑡).

3. Define approximate statistical solution by the empirical mea-

sure: 𝜇Δ,𝑀𝑡 =
1
𝑀

∑𝑀
𝑖=1 𝛿uΔ𝑖 (𝑡)

.

Note the possibility of two independent parallelization strategies

for accelerating the simulation. One approach computes multiple

samples uΔ𝑖 (𝑡) in parallel, while the other approach parallelizes

the evaluation of a single sample. Our simulation supports both

strategies, as well as using them in combination. Due to the em-

barrassingly parallel nature of Monte Carlo sampling, we will only

discuss parallelization of the evaluation of a single sample here.

2.2 Spectral Hyper-Viscosity Method

Note that in Algorithm 1 the number of Monte Carlo samples 𝑀

should ideally scale with 𝑀 ∝ 𝑁 2
=

1
Δ2 . It is therefore of utmost

importance that the computation of a single sample is implemented

as efficiently as possible. Fourier spectral methods are an obvious

choice of numerical method given our toroidal domain. In Fourier

space, enforcing the divergence-free constraint of (1.2) reduces

to a projection of each Fourier mode onto divergence-free vector

fields. This circumvents the expensive computation of the pressure

field reducing the computational complexity of the solver from

O(𝑁 2𝑑+1) to O(𝑁𝑑+1 log𝑁) where 𝑑 is the spatial dimension.

We consider the following spatial discretization of the incom-

pressible Navier-Stokes equations [17]

𝜕𝑡u
Δ + P𝑁 (uΔ · ∇uΔ) + ∇𝑝Δ = 𝜀𝑁 |∇|2𝑠 (𝑄𝑁 ∗ uΔ)

∇ · uΔ = 0

u
Δ |𝑡=0 = P𝑁 u0

(2.1)

where P𝑁 is the spatial Fourier projection operator mapping a func-

tion 𝑓 (𝑥, 𝑡) to its first 𝑁 Fourier modes: P𝑁 =

∑
|𝑘 |∞≤𝑁 𝑓𝑘 (𝑡)𝑒

𝑖𝑘 ·𝑥 .

We additionally introduce the hyperviscosity parameter 𝑠 ≥ 1.

When simulating the vanishing viscosity limit of the Navier-Stokes

equations, this parameter can be used to fine-tune the dampening

of the Fourier modes allowing for a large part of the spectrum to be

free of dissipation. The viscosity term we use for the stabilization

of the solver consists of a possibly resolution dependent viscosity

𝜀𝑁 and a Fourier multiplier 𝑄𝑁 controlling the strength at which

different Fourier modes are dampened. This allows us to remove the

dampening for the low frequencies, while applying some diffusion

to the problematic higher ones. The Fourier multiplier 𝑄𝑁 is of the

Efficient Computation of Large-Scale Statistical Solutions to Incompressible Fluid Flows PASC ’24, June 3ś5, 2024, Zurich, Switzerland

form

𝑄𝑁 (x) =
∑︁

k∈Z𝑑 , |k | ≤𝑁

�̂�k𝑒
𝑖k·x . (2.2)

In order to have convergence, the Fourier coefficients of 𝑄𝑁 need

to fulfill [24, 23, 17]

�̂�k = 0 for |k| ≤ 𝑚𝑁 , 1 −

(
𝑚𝑁

|k|

) 2𝑠−1
𝜃

≤ �̂�k ≤ 1 (2.3)

where we have introduced an additional parameter 𝜃 > 0. The

quantities𝑚𝑁 and 𝜀𝑁 are required to scale as

𝑚𝑁 ∼ 𝑁𝜃 , 𝜀𝑁 ∼
1

𝑁 2𝑠−1
, 0 < 𝜃 <

2𝑠 − 1

2𝑠
. (2.4)

The authors of [16] show convergence of the above numerical

method for a large class of initial conditions in the case of the two-

dimensional incompressible Euler equations. For three dimensions

no such result is available, but experimental evidence performed

by the authors suggest that the results persist for three dimensions

as well.

2.3 Implementation

Applying the Fourier transform to (2.1) and using the divergence-

free constraint to replace the pressure by its exact solution yields

𝜕𝑡 û
Δ

k
=

(
1 −

kk
𝑇

|k|2

)
· b̂k (2.5)

where b̂k = −𝑖k𝑇 · F
[
u
Δ ⊗ u

Δ
]
k
. Note that the equation enforces

the divergence-free constraint by orthogonally projecting the b̂k
onto vector fields fulfilling 𝑖k𝑇 · b̂k = 0. This represents a pointwise

operation in Fourier space resulting in the superior computational

complexity of this spectral method over other classical methods.

The nonlinear term F
[
u
Δ ⊗ u

Δ
]
is computed in physical space

and uses the well known 2/3-dealiasing rule [21] to ensure stability

of the solution. The algorithm to compute the time derivative 𝜕𝑡 ûk
can thus be described by the following steps, each represented by a

compute kernel in the code itself:

Algorithm 2:

1. Pad û
Δ with zeroes to size 3

2𝑁

2. Compute uΔ = F −1
[
û
Δ
]

3. Compute B = u
Δ ⊗ u

Δ

4. Compute B̂ = F [B]

5. Dealias by removing the upper third of frequencies in B̂

6. Use B̂ to compute 𝜕𝑡 û
Δ

k

Note that all kernels in Algorithm 2 have very low and (almost)

constant operational intensity in the mesh resolution 𝑁 . This sug-

gests that reducing the number of memory accesses is crucial for

obtaining a highly performant code. We do this with a combina-

tion of algorithmic improvements, kernel fusion, and blocking as

detailed later in this paper.

Given the O(𝑁𝑑) memory requirements to capture the current

state of the simulated flow field u
Δ, the need to distribute com-

putations across multiple compute nodes arises quite early when

striving for higher resolution simulations. (A single GPU on Piz

Daint is able to contain a simulation of size 2563). Note that the only

nonlocal kernels present in Algorithm 2 are the forward and back-

ward Fourier transforms, implying that the memory layout should

be optimized towards their most efficient computation. Computing

FFTs over distributed data, if desired to be efficient, is a nontrivial

task [6]. We desire to minimize the amount of inter-node commu-

nication required by the algorithm, as we expect all the compute

kernels to be memory bound. Hence, the optimal split of the data

over compute nodes is given by a slab decomposition requiring only

two transpose operations per FFT. Given all kernels, with mini-

mal modifications to the code, can work with transposed data, the

algorithm only needs a single transpose operation per FFT.

The typical MPI setup of a simulation looks as follows: The

Monte Carlo samples are distributed over𝑀 independent subcom-

municators, each computing a single sample at a time parallelized

over 𝑁 compute nodes. This strategy enables optimal utilization

of compute resources. By taking 𝑁 to be the minimal amount of

compute nodes needed to fit a simulation of a single sample we

maximize the degree of parallelization over Monte Carlo samples.

As each sample can be computed independently, this provides us

with a near optimal scaling of our simulation on massively parallel

hardware.

Although our simulator supports arbitrary time-stepping schemes,

we generally use the third-order strong stability preserving Runge-

Kutta described by

𝑢 (1)
= 𝑢 (𝑡) + Δ𝑡 𝜕𝑡𝑢 (𝑡)

𝑢 (2)
=

3

4
𝑢 (𝑡) +

1

4
𝑢 (1) +

1

4
Δ𝑡 𝜕𝑡𝑢

(1)

𝑢 (𝑡 + Δ𝑡) =
1

3
𝑢 (𝑡) +

2

3
𝑢 (2) +

2

3
Δ𝑡 𝜕𝑡𝑢

(2) .

(2.6)

Contrary to other SSP Runge-Kutta schemes, the third-order one is

energy-diminishing in the context of linear hyperbolic systems[25].

This means that as long as the CFL condition is respected, the

simulation is much more likely to stay stable even with nonlinear

PDEs such as the incompressible Euler and Navier-Stokes equations.

2.4 In-Situ Processing

Our simulator’s flexible IO system allows us to perform most post-

processing of the data in-situ saving a massive amount of IO band-

width and disk space. Flexibility is achieved by abstracting away

the process of storing data to disk by introducing the concept of

a Writer. Each writer provides the simulation with a list of time

points at which it processes the current simulation state and stores

the result to disk. Furthermore, a simulation can contain an arbi-

trary number of different writers each one storing data at different

time intervals. Currently supported operations by writers include:

• Writing the whole flow field to disk

• Computing the energy spectrum

• Computing the enstrophy spectrum

• Computing various structure functions

• Perform visualization using ParaView and Catalyst [1]

All of these writers are parallelized over the MPI ranks of the simu-

lation and require minimal additional memory.

PASC ’24, June 3ś5, 2024, Zurich, Switzerland Tobias Rohner and Siddhartha Mishra

3 OPTIMIZATION STRATEGIES

The third-order Runge Kutta scheme employed for time-stepping

requires three evaluations of the time derivative 𝜕𝑡u
Δ. The focus

of this section will therefore be on the optimization of the kernels

used in Algorithm 2. Furthermore, all the benchmarking will be

performed on the GPU partition of the Piz Daint compute cluster

[3]. Each node contains an Intel Xeon E5-2690 v3 CPU paired with a

single NVIDIA Tesla P100 GPU. Device memory is limited to 16GB,

while the host provides 64GB of memory.

3.1 Fourier Transform

As the Fourier transforms in Algorithm 2 dominate its computa-

tional complexity, they can be expected to contribute to a significant

portion of the total computational time. It is therefore crucial to op-

timize them meticulously. To this end, we choose to use the highly

optimized and readily available FFT implementations FFTW [12]

on the host and cuFFT [20] on the device. Both implementations

excel when the size of the Fourier transform only contains small

prime factors. For general sizes, slower algorithms must be used.

This enables for some quite strong optimization by noticing that

the 2/3-law for dealiasing can be relaxed to allow larger padding

sizes. As the FFT is only applied to padded data, the size of this

data can be chosen arbitrarily as long as it is larger than 3
2𝑁 . By

default, we round the padded data’s size up to the next value of

the form 2𝑎3𝑏5𝑐7𝑑 enabling both FFTW and cuFFT to make use of

their optimized algorithms. Nonetheless, due to hardware and im-

plementation details, increasing the padding size even more might

still result in an overall speedup of the FFT computation. On any

new system, we therefore once run a benchmark of only the Fourier

transform storing its results and extracting the optimal padding

size from that generated data. If no suitable size is found in the

benchmark results, we choose the next larger 𝑁 with prime factors

at most 7 instead. This strategy guarantees the optimality of the

FFT on each system the simulation is deployed on.

Having an optimal FFT implementation on a single node is not

yet sufficient for problems where the domain is distributed over

multiple compute nodes. Although FFTW provides an MPI imple-

mentation for exactly this case, cuFFT can only distribute over

multiple GPUs given they are managed by the same process. We

are therefore forced to perform the Fourier transform in at least

three separate steps. First, we can apply it batchwise along the two

axis where each rank owns all the data. After, we transpose the data

to align the formerly distributed axis with one of the rank-local ones.

This then enables us to apply another batched Fourier transform

along this remaining axis. As the node interconnect bandwidth can

be assumed to be significantly lower than the GPU memory band-

width, special care should be taken when optimizing the required

transpose operation.

3.2 Padding

In a naive implementation, padding the data with zeros would

require an expensive MPI_Alltoallw call to redistribute data be-

tween ranks. However, by merging the padding with the Fourier

transform kernel, we can omit this call completely. Note that if the

Fourier transform is applied along a certain axis, it is sufficient for

the data to be only padded along the same axis. This way, all the

Pad in 𝑥 , 𝑦 Inverse FFT in 𝑥 , 𝑦

Transpose in 𝑥 , 𝑧

Pad in 𝑥 Inverse FFT in 𝑥

𝑥
𝑦

𝑧

Figure 1: Illustration of the combined padding and inverse

Fourier transform kernels for a domain size 𝑁 = 6, padded

size 𝑁𝑝𝑎𝑑 = 9, and 3 MPI ranks. Each cell of the domain

is drawn as a small cube, while the subdomain currently

located on a single MPI rank is illustrated as a block of these

small cubes. The subdomains located on each rank are spaced

apart from each other to reinforce the notion of them not

residing in the same shared memory space. The initial data

in Fourier space (top left) is complex valued and has shape

𝑁 × 𝑁 × (⌊𝑁 /2⌋ + 1), while the output of the kernel (bottom

right) is real valued and has shape 𝑁𝑝𝑎𝑑 × 𝑁𝑝𝑎𝑑 × 𝑁𝑝𝑎𝑑 .

communication can be condensed into the single MPI_Alltoall

call required by the Fourier transform itself. An illustration of the

resulting padded Fourier transform kernel is shown in Figure 1

where the algorithm is decomposed into the following five funda-

mental steps:

Algorithm 3:

1. Pad the data with zeros in the rank-local 𝑥- and 𝑦-axes.

2. Apply a batched complex-to-complex inverse Fourier trans-

form along the 𝑥- and 𝑦-axes.

3. Transpose by swapping the 𝑥- and 𝑧-axes

4. Pad with zeros in the new 𝑥-axis (formerly the 𝑧-axis)

5. Apply a batched complex-to-real inverse Fourier transform

along the new 𝑥-axis.

Note that in this fused padding and Fourier transform kernel, the

amount of data to be transposed is reduced by a factor of approxi-

mately 1.5, as it is only partially padded at that stage. Compared to

the unfused kernels, this padded Fourier transform thus reduces

the communicated data by almost a factor three. Furthermore, the

forward Fourier transform needed in the simulation simultaneously

Efficient Computation of Large-Scale Statistical Solutions to Incompressible Fluid Flows PASC ’24, June 3ś5, 2024, Zurich, Switzerland

removes the padding from the data. This is achieved by executing

Algorithm 3 in reverse.

3.3 Transpose

The transpose operation is the kernel with the most potential for

optimization as it contains slow MPI communication between com-

pute nodes and a strided memory access pattern resulting in cache

unfriendly code and diminishing of the memory bandwidth. Dur-

ing the distributed transpose operation, the data is redistributed

among the MPI ranks according to step 3 depicted in Figure 1. Each

rank splits its data along the 𝑥-axis where the sizes of these blocks

are given by their respective shapes in the transposed data. The

slices are then transposed locally and sent to their corresponding

ranks. This redistribution of the data requires copying the data

from the GPU to the host, sending it to the other MPI ranks with an

MPI_Alltoall call, and finally copying the received data back onto

the GPU while at some point also performing the local transpose.

The path a single packet of data takes in the implementation of the

transpose is visualized in Figure 2. The local transpose operation is

performed on the GPU benefiting from its higher bandwidth com-

pared to the CPU. The data is then copied down into page locked

memory enabling asynchronous transfers and doubling the band-

width. From there it is sent to the receiver node on which it takes

the same path in reverse. All of these operations are independent

between the blocks sent to different nodes. It is therefore possible

to completely parallelize them by overlapping most of the local

transposes and moving data from and to the GPU with the slow

inter node communication. However, note that communication can

only start if the first block of memory was already transposed and

copied to host memory. Hence, the first block is not able to be

overlapped with the communication making it necessary to also

optimize the locally performed operations. The local transpose is a

prime candidate for optimization, as a naive implementation has

very bad cache locality. This can be solved with the well known

technique called blocking [5] where the transpose of an array is

evaluated in small blocklets each fully fitting into cache. This way,

no data that will later still be used is ever displaced from the cache

allowing the algorithm to fully exploit the memory bandwidth.

3.4 Memory Optimizations

Computing the Fourier transform over data shared by multiple

MPI ranks is a lot more expensive than computing a rank local

Fourier transform due to the transpose operation required. We

therefore want to fit large domains onto a single compute node.

The main restriction for this is the amount of memory needed by

the simulation. Reducing the memory requirements for a single

kernel is difficult if not impossible. However, all the kernels are

called sequentially and none of them require storing a significant

amount of information across iterations of the simulation. Because

most kernels are very cheap frequent allocation and deallocation

of memory would result in a considerable hit on performance. We

therefore implemented the reduction of memory requirements by

introducing the concept of shared Workspaces. A workspace is

nothing but a contiguous buffer of memory that is provided to a

kernel as storage for in- or outputs or temporary results. Because

these workspaces are managed by the simulation itself and not by

Node A

H
o
st

Pageable Memory Pinned Memory

D
ev
ic
e

Source Transposed Buffer

Node B
D
ev
ic
e

Destination Buffer

H
o
st

Pageable Memory Pinned Memory

Figure 2: Unidirectional data path between two nodes for

the distributed transpose operation on GPUs. We first pre-

process the data by transposing it locally on the GPU. This

data is then copied down into pinned memory on the host

bypassing pageable memory doubling the bandwidth for de-

vice to host transfers. This is followed by sending the data

asynchronously over MPI to the receiving node. There, the

data is received directly into another pinned memory block

and consequently copied onto the GPU. Finally, the data is

then distributed into the destination array containing the

transposed data.

each individual kernel, they can be shared across kernel boundaries

enabling a significant portion of the buffers to overlap. This resulted

in 12.5% memory savings for the single node simulation and in over

50% savings for the MPI implementation.

4 VALIDATION

For the validation of the code, over 150 tests have been implemented.

First, the 2D solver is validated by simulating some analytically

known solutions to the incompressible Euler equations and check-

ing their convergence. Examples thereof are the 2D Taylor-Green

Vortex [26], or the vortex patch [19]. The 3D solver is then checked

by initializing the flow field with the previously checked 2D initial

conditions while keeping the extra dimension constant. Both the

2D and the 3D versions are additionally verified visually by com-

puting non-stationary solutions which were simulated/observed in

previous work such as the discontinuous shear layer in [17], the

double shear layer from [2], or the 3D Taylor-Green vortex [26].

This is especially important for the 3D incompressible Euler code,

as there are no non-trivial stationary solutions in that case. Finally,

PASC ’24, June 3ś5, 2024, Zurich, Switzerland Tobias Rohner and Siddhartha Mishra

Table 1: Measured Bandwidths on the Piz Daint Cluster used

to compute the lower bounds on the runtime of the compute

kernels.

Type Speed

𝛽𝐻 21.24GB/s

𝛽𝐷 488.64GB/s

𝛽𝐻−𝐷 19.24GB/s

𝛽𝑀𝑃𝐼 9GB/s

we compute observables and the structure functions of some sta-

tistical solutions and compare them with structure functions from

previous experiments done with different solvers as in [17, 22].

5 PERFORMANCE ASSESSMENT

Denote the host memory bandwidth by 𝛽𝐻 , the device memory

bandwidth by 𝛽𝐷 , the bandwidth of the link between host and

device by 𝛽𝐷−𝐻 , and the MPI communication bandwidth by 𝛽𝑀𝑃𝐼 .

Their values as measured on Piz Daint can be found in Table 1.

Henceforth, we will assume that the FFTW and cuFFT implementa-

tions are optimal and not include them in the performance assess-

ment of the simulation. The execution speed of all other kernels

including the transpose operation will be compared against their

theoretical optimum obtained by carefully analyzing their required

data movements.We denote the resolution of the simulation domain

by 𝑁 , the padded size by 𝑁𝑝𝑎𝑑 , and the number of MPI processes

by 𝑝 . Additionally, 𝑠 will denote the size of the underlying scalar

datatype of our simulation in bytes. This will either be 𝑠 = 4 for

floats or 𝑠 = 8 for doubles.

5.1 Padding and Unpadding

Padding is performed in two steps as depicted in Figure 1. As both

of these padding operations only need to copy data to another ar-

ray without performing any computations on them, the kernel is

certainly memory bound. Hence, we only need to take the memory

bandwidth of the system into account in order to obtain a lower

bound for the runtime. Both steps must read each element of the

input array exactly once and write to each element of the output

exactly once as well. Counting the total number of (complex val-

ued) elements in the arrays, we obtain 3𝑁 2 ⌊𝑁 /2⌋+1
𝑝 , 3𝑁 2

𝑝𝑎𝑑
⌊𝑁 /2⌋+1

𝑝 ,

3(⌊𝑁 /2⌋ +1)𝑁𝑝𝑎𝑑
𝑁𝑝𝑎𝑑

𝑝 , and 3(
⌊
𝑁𝑝𝑎𝑑/2

⌋
+1)𝑁𝑝𝑎𝑑

𝑁𝑝𝑎𝑑

𝑝 . Collecting

all the reads and writes on these elements and combining them

with the memory bandwidth of our system, we obtain the following

lower bound for the execution time of the padding kernel:

𝑡𝑝𝑎𝑑 (𝑁, 𝑝) ≈
213

16

𝑁 3

𝑝

2𝑠

𝛽
(5.1)

where we have used that ⌊𝑁 /2⌋ + 1 ≈ 𝑁 /2 and 𝑁𝑝𝑎𝑑 ≈ 3
2𝑁 for

large 𝑁 . 𝛽 takes the value of either the host memory bandwidth

𝛽𝐻 or the device memory bandwidth 𝛽𝐷 depending on where the

kernel is executed.

Although the unpadding operation is very similar, there are still

a few key differences compared to the padding operation. Firstly, as

unpadding is performed on the upper triangularmatrix𝐵 = 𝑢⊗𝑢, we

have 6 instead of 3 components to unpad. Secondly, the unpadding

does not require reading the high frequency modes, as they are

discarded anyway. Considering these changes, the lower bound for

the execution time of the unpadding operation is given by

𝑡𝑢𝑛𝑝𝑎𝑑 (𝑁, 𝑝) ≈
78

4

𝑁 3

𝑝

2𝑠

𝛽
(5.2)

where we have used the same simplifications as above.

Table 2 shows the timings and achieved performances of our

kernels. Note that the padding kernel achieves around 50% of the

optimal performance we computed. This is most probably due to

expensive index computations and the branching operation to de-

cide whether to copy or write zero to the destination array. This

hypothesis is also supported by the fact that the unpadding oper-

ation achieves almost 80% of the optimal performance, as it can

reuse a single index computation for 6 instead of 3 components of

the array. Additionally, it does not require branching leading to its

improved performance results.

5.2 Transpose

In order to find the optimal execution speed to the transpose kernel,

we need to know the critical path of the algorithm limiting the speed

of the solver. As the pre-, and post-processing, and communication

are independent, they can be overlapped in order to maximize

parallelization. The algorithm must start by locally transposing a

single block of data containing 3
𝑁𝑝𝑎𝑑

𝑝 𝑁𝑝𝑎𝑑
⌊𝑁 /2⌋+1

𝑝 complex valued

elements on the GPU. This is followed by copying the block of data

down into host memory, while simultaneously starting the local

transpose of the second block. After the whole first block is located

in host memory, the MPI communication can begin and the last

block of data will be communicated after each MPI rank has sent

its 3𝑁𝑝𝑎𝑑𝑁𝑝𝑎𝑑
⌊𝑁 /2⌋+1

𝑝 local elements. The algorithm then finishes

by copying this last block of data from the host onto the GPU and

finally inserting that data in the destination buffer. Adding up all

of these contributions, the lower bound for the execution time of

the transpose operation of a single velocity component is given by

𝑡𝑇 (𝑁, 𝑝) ≈
9

2

𝑁 3

𝑝2
2𝑠

𝛽𝐷
+
9

4

𝑁 3

𝑝2
2𝑠

𝛽𝐻−𝐷
+
9

8

𝑁 3

𝑝

2𝑠

𝛽𝑀𝑃𝐼
. (5.3)

To find the times for transposing 𝑢 or 𝐵, this estimate can simply

be multiplied by their respective number of components.

The benchmarking results in Table 2 show that the kernels

achieve around 50% of the previously computed optimal perfor-

mance estimate. This changes, however, if 𝛽𝑀𝑃𝐼 is changed from

the point-to-point message bandwidth to the bandwidth of an all-

to-all communication reducing it to approximately 𝛽𝑀𝑃𝐼
= 4GB/s.

This has a large effect on the value of 𝑡𝑜𝑝𝑡 increasing it by almost

a factor of two. Consequently also the efficiency is increased by

the same amount. The resulting timings and efficiencies are listed

in Table 2 in parentheses. Note that the transpose of 𝐵 achieves

over 100% efficiency. This can be contributed to the new upper

bound of the MPI bandwidth obtained through a benchmark of

MPI_Alltoall. Our custom implementation beats the native MPI

on Piz Daint for messages larger than 1MB, achieving a transfer

speed of approximately 5GB/s instead of the 4GB/s of the native

MPI in the case covered by the benchmark problem considered.

Efficient Computation of Large-Scale Statistical Solutions to Incompressible Fluid Flows PASC ’24, June 3ś5, 2024, Zurich, Switzerland

Table 2: Runtimes of the compute kernels for a single precision floating point simulation of resolution 𝑁 = 512 computed on

the GPUs of 8MPI ranks on the Piz Daint cluster. We measure the runtime 𝑡 of a single call to the kernel, compare it to the

lower bound 𝑡𝑜𝑝𝑡 previously computed, and also give the contribution to the total runtime of the simulation for each kernel.

The execution time 𝑡 , and the efficiency 𝑡𝑜𝑝𝑡/𝑡 for the transpose is given twice. The value in parentheses is obtained by taking

the MPI_Alltoall bandwidth instead of the point-to-point bandwidth on Piz Daint for the computation of the lower bound 𝑡𝑜𝑝𝑡 .

Kernel 𝑡 𝑡𝑜𝑝𝑡 𝑡𝑜𝑝𝑡/𝑡 Total Runtime %

Padding 6.982ms 3.657ms 52.4% 1.7%

Unpadding 6.783ms 5.356ms 79% 3%

Transpose 𝑢 120.765ms 56.681ms (119.596ms) 46.9% (99%) 29.8%

Transpose 𝐵 200.895ms 113.362ms (239.191ms) 56.4% (119.1%) 49.6%

5.3 Parallel Scaling

We measure strong and weak scaling of parallelization in both a

single sample and over multiple Monte Carlo samples. The results

can be found in Figures 3, and 4. Note that for statistical solutions,

we are particularly interested in computing many Monte Carlo

samples, even at the expense of some drop in spatial resolution.

For a single sample, we therefore usually use close to the fewest

number of ranks such that the sample still fits in memory and

the main parallelization is done over Monte Carlo samples. This

strategy is in agreement with the scaling of the solver, as the strong

scaling seems to be slightly better in the number of samples per

MPI rank than in the number of MPI ranks per sample. Also, the

weak scaling efficiency of both the parallelization of a single sample

and parallelization over Monte Carlo samples are almost optimal.

The weak scaling efficiency over a single sample (Figure 3, right)

even grows to be larger than 100% when using only slightly more

ranks than necessary for the problem. Same can be observed for

the weak scaling over Monte Carlo samples. After an early peak in

efficiency, it levels off at approximately 97%. This small decrease in

efficiency can most probably be attributed to more parallel accesses

to the file system.

5.4 Baselines

In order to provide a benchmark demonstrating the speed of the

whole parallelized FFT implementation, we present a comparison

to the FFT used in the HACC (Hardware/Hybrid Accelerated Cos-

mology Code) introduced in [14]. The comparison of our imple-

mentation versus the SWFFT used in the HACC can be found in

Table 3. The benchmark problems are chosen to be representative

of the conditions encountered during typical use of our simula-

tion. The domain sizes 𝑁 = 7683 and 𝑁 = 15363 reflect the most

common resolutions used in the context of statistical solutions

computed with our solver and, due to padding according to the 2/3-

dealiasing rule, correspond to an effective resolution of 𝑁 = 5123

and 𝑁 = 10243. Simulations with resolutions lower than that fit

onto a single GPU on Piz Daint and therefore use cuFFT directly,

while resolutions larger than the𝑁 = 10243 are computationally too

expensive to draw the necessary number of Monte Carlo samples

from. As SWFFT is highly configurable, we run a grid search over

all configurations selecting the fastest one for each individual prob-

lem. Nonetheless, our implementation consistently outperforms

the SWFFT implementation by approximately 20%. This is mainly

enabled by the fact that for statistical solutions we are able to trade

Figure 3: Strong (left) and weak (right) scaling of our simula-

tion when parallelizing over a single sample. Strong scaling

is computed at a domain size of 𝑁 = 512 and 𝑝 = 4 MPI ranks

in the base case. Scaling can be observed to be almost op-

timal. To measure the weak scaling, we start with 𝑁 = 256

parallelized over 𝑝 = 2 MPI ranks. Then, to keep the amount

of work per rank constant according to the computational

complexity O(𝑁 3 log2 (𝑁)) of the solver, we add more bench-

marks for 𝑝 up to 16 ranks while adjusting the domain size

𝑁 accordingly. We observe the parallel efficiency to be opti-

mal with some configurations even reaching efficiencies over

100%. This can be attributed to the more efficient overlap of

computation with communication due to the smaller size

and higher amount of data blocks to be communicated.

Figure 4: Strong (left) and weak (right) scaling of our simula-

tion when parallelizing over multiple Monte Carlo samples

at a fixed resolution 𝑁 = 512 with 4 MPI ranks per sample.

Strong scaling considers𝑀 = 128 samples, while for the weak

scaling, we use𝑀 = 128 samples computed with 𝑝 = 256 MPI

ranks and scale down both𝑀 and 𝑝 down accordingly to keep

the work per rank constant. As expected from Monte Carlo

sampling, both the strong and the weak scaling are close to

optimal, with the only inefficiencies probably coming from

parallel accesses to the file system.

PASC ’24, June 3ś5, 2024, Zurich, Switzerland Tobias Rohner and Siddhartha Mishra

Table 3: Runtimes of the GPU-based forward and backward

Fourier transform performed with SWFFT and our imple-

mentation averaged over 8 runs. Domain sizes of 𝑁 = 7683

and 𝑁 = 15363 were tested as these are the most common use

cases in our simulation. Furthermore, each domain size was

parallelized over 𝑝 = 8, 16, 32, 64 MPI ranks. For SWFFT we

ran a grid search to find the fastest configuration for each

problem instance separately. Nonetheless, our implementa-

tion consistently outperformed SWFFT by around 20%.

𝑁 𝑝 SWFFT Ours Speedup

768 8 0.9754s 0.7945s 22.8%

768 16 0.4994s 0.4048s 23.4%

768 32 0.257s 0.2177s 18.1%

768 64 0.1382s 0.1301s 6.2%

1536 8 crashed 6.5391s Ð

1536 16 4.057s 3.3237s 22.1%

1536 32 2.06s 1.7186s 19.9%

1536 64 1.0646s 0.87s 22.4%

resolution for the number of Monte Carlo samples drawn. The FFT

used in our solver can exploit this by optimizing specifically for

these (in comparison to HACC) low resolutions. In particular, we

are able to use a slab instead of a pencil decomposition resulting

in a significant reduction in communication overhead. Further-

more, smaller optimizations like overlapping communication with

computation are able to be specifically tuned for the resolutions

encountered when computing statistical solutions.

6 APPLICATION TO TURBULENT FLOWS

Recall that the concept of statistical solutions was originally intro-

duced to restore convergence of the simulation results under mesh

refinement. In this section we provide two examples to demon-

strate this property. To this end, we use our solver to approximate

statistical solutions to given initial conditions and demonstrate

convergence of key statistical quantities such as the mean and the

variance, as well as convergence in the Wasserstein distance of the

empirical measures to a high-resolution reference solution.

6.1 Taylor-Green Vortex

The famous Taylor-Green Vortex in 3D [26] initializes the flow field

with

𝑢0 (𝑥,𝑦, 𝑧) = 𝐴 cos(2𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑧)

𝑣0 (𝑥,𝑦, 𝑧) = 𝐵 sin(2𝜋𝑥) cos(2𝜋𝑦) sin(2𝜋𝑧)

𝑤0 (𝑥,𝑦, 𝑧) = 𝐶 sin(2𝜋𝑥) sin(2𝜋𝑦) cos(2𝜋𝑧).

(6.1)

In order for the flow to be divergence free, we need to satisfy the

constraint 𝐴 + 𝐵 +𝐶 = 0. To do so, we choose 𝐴 = 1, 𝐵 = −1, and

𝐶 = 0. We add a small perturbation to the initial conditions which

is given by the first-order harmonics with random amplitudes.We

define 8𝑑 i.i.d uniformly distributed random variables 𝛿𝑑,𝑖, 𝑗,𝑘 ∼

U[−0.025,0.025] . We then define the perturbation 𝜀𝑑 (𝑥,𝑦, 𝑧) on the

Figure 5: Vorticity magnitude of the perturbed Taylor-Green

vortex at time 𝑡 = 0 (left) and time 𝑡 = 5 (right) at a resolution

of 𝑁 = 512.

𝑑-th velocity component as

𝜀𝑑 (𝑥,𝑦, 𝑧) =
1

8

∑︁

(𝑖, 𝑗,𝑘) ∈{0,1}3

𝛿𝑑,𝑖, 𝑗,𝑘𝛼𝑖 (4𝜋𝑥)𝛼 𝑗 (4𝜋𝑦)𝛼𝑘 (4𝜋𝑧),

where 𝛼𝑖 (𝑥) =

{
sin(𝑥) if 𝑖 = 0,

cos(𝑥) if 𝑖 = 1
.

(6.2)

Finally, we arrive at the initial measure by perturbing the initial

conditions 𝑢0, 𝑣0, and𝑤0 with 𝜀𝑑

𝑢0 (𝑥,𝑦, 𝑧) = cos(2𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑧) + 𝜀0 (𝑥,𝑦, 𝑧)

𝑣0 (𝑥,𝑦, 𝑧) = − sin(2𝜋𝑥) cos(2𝜋𝑦) sin(2𝜋𝑧) + 𝜀1 (𝑥,𝑦, 𝑧)

𝑤0 (𝑥,𝑦, 𝑧) = 𝜀2 (𝑥,𝑦, 𝑧) .

(6.3)

For the simulations we choose the hyperviscosity parameter

𝑠 = 1.5 as this increases the range of the intermittent scales in the

simulation. A realization of a simulation with the given random

initial conditions can be found in Figure 5. Upon zooming in, an

intricate web of vortex filaments can be seen at time 𝑡 = 5.

According to the famous K41 theory [13] we expect to observe an

anomalous energy dissipation even in the limit 𝜈 → 0. The flexible

IO design of our simulator enables the periodic computation of the

kinetic energy of the system at short time intervals. By consequently

doing finite differences in time, we are able to compute the evolution

of the energy dissipation rate of the system (Figure 6). The obtained

rates agree well with results in common literature [7] providing

additional verification of the solver.

To demonstrate the need for statistical instead of classical solu-

tions, we plot the convergence under mesh refinement of a single

sample, the mean, the variance, and the Wasserstein distance in

Figure 7. As expected, we observe no sample-wise convergence.

Contrary to this, the statistical quantities considered do converge

at a reasonable rate. In particular does the convergence in Wasser-

stein distance of the one-point correlation marginals imply the

convergence of all pointwise statistical moments.

6.2 Cylindrical Shear Flow

The Cylindrical Shear Flow is heavily inspired by the Flat Vortex

Sheet experiment in [17] and is introduced as a 3D equivalent to

Efficient Computation of Large-Scale Statistical Solutions to Incompressible Fluid Flows PASC ’24, June 3ś5, 2024, Zurich, Switzerland

Figure 6: Evolution of energy dissipation − d𝐸
d𝑡

in the Taylor-

Green vortex experiment. Visually, there seems to be a good

agreement with energy dissipation rates commonly found

in literature [7].

Figure 7: Convergence rates under mesh refinement of a

single sample (top left), the mean (top right), the variance

(bottom left), and the 1-point Wasserstein distance (bottom

right) for the Taylor-Green Vortex. As expected, no sample

wise convergence can be observed which can be explained by

the ever smaller vortices being resolved and influencing the

larger scales of the flow. Nevertheless, the pointwise mean

and variance both seem to converge with a reasonable rate.

This is confirmed by the convergence in the Wasserstein dis-

tance of the one-point correlationmarginals of the statistical

solution.

the latter. The initial conditions are given by

𝑢0 (𝑥,𝑦, 𝑧) = tanh

(
2𝜋

𝑟 − 0.25

𝜌

)

𝑣0 (𝑥,𝑦, 𝑧) = 0

𝑤0 (𝑥,𝑦, 𝑧) = 0

(6.4)

where 𝑟2 = (𝑦−0.5+𝜎
𝑦

𝛿
(𝑥))2+(𝑧−0.5+𝜎𝑧

𝛿
(𝑥))2 and 𝜌 is the smooth-

ness parameter. We define the perturbations 𝜎
𝑦

𝛿
(𝑥) and 𝜎𝑧

𝛿
(𝑥) in

the following way: Let 𝛼
𝑦

𝑘
and 𝛼𝑧

𝑘
be i.i.d uniformly distributed on

[0, 1] and let 𝛽
𝑦

𝑘
and 𝛽𝑧

𝑘
be i.i.d uniformly distributed on [0, 2𝜋].

Then 𝜎
𝑦

𝛿
(𝑥) and 𝜎𝑧

𝛿
are given by

𝜎
𝑦

𝛿
(𝑥) = 𝛿

𝑝∑︁

𝑘=1

𝛼
𝑦

𝑘
sin(2𝜋𝑘𝑥 − 𝛽

𝑦

𝑘
)

𝜎𝑧
𝛿
(𝑥) = 𝛿

𝑝∑︁

𝑘=1

𝛼𝑧
𝑘
sin(2𝜋𝑘𝑥 − 𝛽𝑧

𝑘
)

(6.5)

where we have chosen 𝑝 = 10 and 𝛿 = 0.025. These initial conditions

are well defined in the limit 𝜌 → 0 where the interface between

the flow directions becomes discontinuous and are then equal to

𝑢0 (𝑥,𝑦, 𝑧) =

{
−1 for 𝑟 ≤ 0.25

1 otherwise

𝑣0 (𝑥,𝑦, 𝑧) = 0

𝑤0 (𝑥,𝑦, 𝑧) = 0

(6.6)

where 𝑟 is defined as above.

The solutions to this experiment contain a multitude of different

flow regimes as the turbulence starts to develop at the interface

𝑟 =
√︁
𝑦2 + 𝑧2 ≈ 0.25 and slowly propagates outward.

The simulations again use hyperviscosity parameter 𝑠 = 1.5 in

order to extend the intermittent range. A single realization of the

initial and final conditions for 𝜌 = 0 is shown in Figure 8 where we

plot the vorticity magnitude of the flow field. As expected, turbu-

lence spreads from the initial shear layer outward giving a beautiful

view into its delicate structures. Likewise, we visualize the mean

(Figure 9) and the variance (Figure 10) for different mesh resolu-

tions. These low moments of the statistical solution contain only

relatively low frequencies resulting in their smeared out appear-

ance. This also suggests that in theory only few Fourier modes

are needed to accurately approximate the mean and variance of

statistical solutions and hints at the possibility of quite accurate

simulations thereof with e.g. sophisticated turbulence modeling.

7 CONCLUSIONS

We have successfully implemented and optimized a spectral hyper-

viscosity solver for the incompressible Navier-Stokes equations and

their vanishing viscosity limit. The solver’s efficiency enables com-

putation of both two- and three-dimensional large-scale statistical

solutions to fluid flows which in turn can be used to deepen our

knowledge about turbulence and serve as an invaluable source of

training data for scientific Machine Learning models. Benchmarks

of the code show close to optimal performance on the Piz Daint

supercomputer, while also having excellent strong and weak scaling

properties.

Optimality of the computational kernels was assessed by com-

paring their runtimes against their analytically computed lower

bounds. These bounds assume zero cost for arithmetic operations

and use memory bandwidths measured on the Piz Daint cluster.

Furthermore, all additional simplifications were chosen such that

they introduce a bias toward lower runtimes. Nonetheless, the MPI

PASC ’24, June 3ś5, 2024, Zurich, Switzerland Tobias Rohner and Siddhartha Mishra

Figure 8: Vorticity magnitude of the Cylindrical Shear Flow at time 𝑡 = 0 (left) and time 𝑡 = 1 (right) at a resolution of 𝑁 = 512.

This experiment provides an especially good view of the vortex stretching in turbulent flows, as vortex tubes are clearly visible

on the boundary between turbulent and laminar flow regimes.

(a) 𝑁 = 64 (b) 𝑁 = 128 (c) 𝑁 = 256 (d) 𝑁 = 512

Figure 9: Mean 𝑥-component of the flow field for the Cylindrical Shear Flow at time 𝑡 = 1 at different resolutions.

(a) 𝑁 = 64 (b) 𝑁 = 128 (c) 𝑁 = 256 (d) 𝑁 = 512

Figure 10: Variance of 𝑥-component of the flow field for the Cylindrical Shear Flow at time 𝑡 = 1 at different resolutions.

Efficient Computation of Large-Scale Statistical Solutions to Incompressible Fluid Flows PASC ’24, June 3ś5, 2024, Zurich, Switzerland

transpose responsible for half of the total runtime of the simu-

lation still gets over 50% efficiency in these highly conservative

estimates. Even more notably, it beats the speed of the native MPI

implementation on Piz Daint by almost 20%.

We present the results of two simulations performed using our

code. The well-known Taylor-Green vortex [26] demonstrates the

need for statistical solutions excellently by developing turbulence

throughout the domain early in the simulation and consequently

not showing any sample wise convergence under mesh refinement.

Statistical quantities on the other hand converge with a good rate

making them useful in further research on turbulence. Additionally,

the experiment clearly demonstrates Kolmogorov’s hypothesized

energy dissipation in the vanishing viscosity limit of the Navier-

Stokes equations. As a second experiment, the Cylindrical Shear

Flow demonstrates the statistical solutions ability to capture proper-

ties of flow fields with highly varying turbulence regimes accurately.

Particular focus is put on the demonstration of the approximation

capabilities on the pointwise mean and variance as they belong

to the most important quantities used to conceptualize probability

distributions.

The work introduced here paves the way for considerably more

research into the behavior of turbulent fluid flows, especially their

statistical properties. Combined with the convergence of statistical

solutions under mesh refinement, this provides a promising path

towards more accurate solutions to turbulent fluids than possible

with current turbulence modeling strategies.

ACKNOWLEDGMENTS

This work was supported by a grant from the Swiss National Su-

percomputing Centre (CSCS) under project ID 1217.

REFERENCES
[1] Utkarsh Ayachit, Andrew Bauer, Berk Geveci, Patrick O’Leary, Kenneth More-

land, Nathan Fabian, and Jeffrey Mauldin. 2015. Paraview catalyst: enabling
in situ data analysis and visualization. In Proceedings of the First Workshop on
In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
(ISAV2015). Association for Computing Machinery, Austin, TX, USA, 25ś29.
isbn: 9781450340038. doi: 10.1145/2828612.2828624.

[2] David L. Brown. 1995. Performance of under-resolved two-dimensional incom-
pressible flow simulations. Journal of Computational Physics, 122, 1, 165ś183.
doi: https://doi.org/10.1006/jcph.1995.1205.

[3] CSCS. 2023. Piz daint. Retrieved October 04, 2023 from https://www.cscs.ch/co
mputers/piz-daint/.

[4] Ronald J. DiPerna and Andrew J. Majda. 1987. Oscillations and concentrations
in weak solutions of the incompressible fluid equations. Communications in
Mathematical Physics, 108, 4, 667ś689. doi: 10.1007/BF01214424.

[5] Ulrich Drepper. 2007. What every programmer should know about memory.
Retrieved February 20, 2024 from https://www.akkadia.org/drepper/cpumemo
ry.pdf.

[6] Truong Vinh Truong Duy and Taisuke Ozaki. 2014. A decomposition method
with minimum communication amount for parallelization of multi-dimensional
ffts. Computer Physics Communications, 185, 1, 153ś164. doi: https://doi.org/10
.1016/j.cpc.2013.08.028.

[7] Niklas Fehn, Martin Kronbichler, Peter Munch, and Wolfgang A. Wall. 2022.
Numerical evidence of anomalous energy dissipation in incompressible euler
flows: towards grid-converged results for the inviscid taylorśgreen problem.
Journal of Fluid Mechanics, 932, A40. doi: 10.1017/jfm.2021.1003.

[8] Ulrik S. Fjordholm, Samuel Lanthaler, and Siddhartha Mishra. 2017. Statistical
solutions of hyperbolic conservation laws: foundations. Archive for Rational
Mechanics and Analysis, 226, 2, (Nov. 2017), 809ś849. doi: 10.1007/s00205-017-
1145-9.

[9] Ulrik S. Fjordholm, Kjetil O. Lye, Siddhartha Mishra, and Franziska Weber.
2020. Statistical solutions of hyperbolic systems of conservation law: Numerical
approximation. Mathematical Models and Methods in Applied Sciences, 30, 3,
539ś609. doi: 10.1142/S0218202520500141.

[10] Ulrik S. Fjordholm, Siddhartha Mishra, and Franziska Weber. 2022. On the
vanishing viscosity limit of statistical solutions of the incompressible navier-
stokes equations. arXiv: 2110.04674. doi: 10.48550/arXiv.2110.04674.

[11] Ciprian Foias, Oscar Manley, Ricardo Rosa, and Roger Temam. 2001. Navier-
Stokes Equations and Turbulence. Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press. doi: 10.1017/CBO9780511546754.

[12] Matteo Frigo and Steven G. Johnson. 2005. The design and implementation of
fftw3. Proceedings of the IEEE, 93, 2, 216ś231. doi: 10.1109/JPROC.2004.840301.

[13] Uriel Frisch. 1995. Turbulence: The Legacy of A.N. Kolmogorov. Cambridge
University Press. isbn: 9780521451031.

[14] Salman Habib et al. 2016. Hacc: simulating sky surveys on state-of-the-art
supercomputing architectures. New Astronomy, 42, 49ś65. doi: https://doi.org
/10.1016/j.newast.2015.06.003.

[15] Samuel Lanthaler and Siddhartha Mishra. 2015. Computation of measure-
valued solutions for the incompressible Euler equations. Mathematical Models
and Methods in Applied Sciences, 25, 11, 2043ś2088. doi: 10.1142/S02182025155
00529.

[16] Samuel Lanthaler and Siddhartha Mishra. 2020. On the convergence of the
spectral viscosity method for the two-dimensional incompressible euler equa-
tions with rough initial data. Foundations of Computational Mathematics, 20, 5,
(Oct. 2020), 1309ś1362. doi: 10.1007/s10208-019-09440-0.

[17] Samuel Lanthaler, Siddhartha Mishra, and Carlos Parés-Pulido. 2021. Statistical
solutions of the incompressible euler equations. Mathematical Models and
Methods in Applied Sciences, 31, 02, (Feb. 2021), 223ś292. doi: 10.1142/s0218202
521500068.

[18] Kjetil O. Lye. 2020. Computation of statistical solutions of hyperbolic systems of
conservation laws. Ph.D. Dissertation.

[19] Siddhartha Mishra, Carlos Parés-Pulido, and Kyle G. Pressel. 2020. Arbitrarily
high-order (weighted) essentially non-oscillatory finite difference schemes for
anelastic flows on staggered meshes. (2020). arXiv: 1905.13665. doi: 10.48550/a
rXiv.1905.13665.

[20] NVIDIA. 2023. Cufft library user’s guide. NVIDIA. Retrieved October 04, 2023
from https://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf.

[21] Steven A. Orszag. 1971. On the elimination of aliasing in finite-difference
schemes by filtering high-wavenumber components. Journal of Atmospheric
Sciences, 28, 6, 1074ś1074. doi: 10.1175/1520-0469(1971)028<1074:OTEOAI>2.0
.CO;2.

[22] Carlos Pares-Pulido. 2021. Statistical solutions of the incompressible Euler equa-
tions with finite volume methods. Ph.D. Dissertation.

[23] Eitan Tadmor. 2004. Burgers’ Equation with Vanishing Hyper-Viscosity. Com-
munications in Mathematical Sciences, 2, 2, 317ś324. doi: 10.4310/CMS.2004.v2
.n2.a9.

[24] Eitan Tadmor. 1989. Convergence of spectral methods for nonlinear conserva-
tion laws. SIAM Journal on Numerical Analysis, 26, 1, 30ś44. doi: 10.1137/0726
003.

[25] 2002. From semidiscrete to fully discrete: stability of runge-kutta schemes by the
energymethod. ii. D.J. Estep and S. Tavener.Collected Lectures on the Preservation
of Stability Under Discretization. Chap. 3.

[26] Geoffrey I. Taylor and Albert E. Green. 1937. Mechanism of the production of
small eddies from large ones. Proceedings of the Royal Society of London. Series
A - Mathematical and Physical Sciences, 158, 895, 499ś521. doi: 10.1098/rspa.19
37.0036.

	Abstract
	1 Introduction
	1.1 The Role of Turbulence
	1.2 Statistical Solutions

	2 Simulation
	2.1 Computing Statistical Solutions
	2.2 Spectral Hyper-Viscosity Method
	2.3 Implementation
	2.4 In-Situ Processing

	3 Optimization Strategies
	3.1 Fourier Transform
	3.2 Padding
	3.3 Transpose
	3.4 Memory Optimizations

	4 Validation
	5 Performance Assessment
	5.1 Padding and Unpadding
	5.2 Transpose
	5.3 Parallel Scaling
	5.4 Baselines

	6 Application to Turbulent Flows
	6.1 Taylor-Green Vortex
	6.2 Cylindrical Shear Flow

	7 Conclusions
	Acknowledgments

