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Abstract

We prove deep neural network (DNN for short) expressivity rate bounds for
solution sets of a model class of singularly perturbed, elliptic two-point boundary
value problems, in Sobolev norms, on the bounded interval (−1, 1). We assume
that the given source term and reaction coefficient are analytic in [−1, 1].
We establish expression rate bounds in Sobolev norms in terms of the NN size
which are uniform with respect to the singular perturbation parameter for several
classes of DNN architectures. In particular, ReLU NNs, spiking NNs, and tanh-
and sigmoid-activated NNs. The latter activations can represent “exponential
boundary layer solution features” explicitly, in the last hidden layer of the DNN,
i.e. in a shallow subnetwork, and afford improved robust expression rate bounds
in terms of the NN size.
We prove that all DNN architectures allow robust exponential solution expression

in so-called ‘energy’ as well as in ‘balanced’ Sobolev norms, for analytic input
data.
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1 Introduction

Singular perturbations are ubiquitous in engineering and in the sciences. Let us men-
tion only solid mechanics (theory of thin solids, such as beams, plates and shells),
fluid mechanics (viscous flows at large Reynolds number), and electromagnetics (eddy
current problems in lossy media). In all these applications, PDEs depend on a small
parameter ε ∈ (0, 1] in physically relevant regimes of input data. Standard numerical
approximation methods (Finite Volume, Finite Difference or Finite Element) gener-
ally do not perform uniformly w.r. to the physical perturbation parameter: in general,
a so-called scale resolution condition relating the discretization parameters (such as
the meshwidth h in Finite Element Methods) and ε needs to hold.

A common trait of singularly perturbed, elliptic PDE problems is an additive
decomposition of PDE solutions into a regular (typically analytic) part and into sin-
gular components. See, e.g., [7] and the references there. The regular solution part uS

ε

may depend on the singular perturbation parameter ε, but derivatives of the smooth
part uS

ε satisfy bounds in Sobolev norms which are uniform in terms of ε. We refer to
[7] and the references there for examples.

The singular perturbation part uBL
ε , on the contrary, is not uniformly smooth in

terms of ε. Its k-th derivative typically grows as O(ε−k). Due to their exponential
decay with respect to the distance to the boundary, they are referred to as boundary
layers, and denoted herein by uBL

ε .

1.1 Contributions

We prove that exponential boundary layer functions uBL
ε which arise in asymptotic

expansions of singularly perturbed elliptic boundary value problems can be expressed
at exponential (w.r. to the NN size) rates by various DNN architectures robustly,
i.e. uniformly with respect to the perturbation parameter, in various Sobolev norms.
The DNNs considered are strict ReLU NNs (Propositions 5.2 and 5.3), spiking NNs
(Theorem 6.6), and tanh-activated NNs (Theorem 7.4).

1.2 Layout

Section 2 introduces a model singularly perturbed reaction-diffusion two-point bound-
ary value problem, specifies the assumptions on the problem data and recaps several
results on the analytic regularity and the asymptotic behavior of its solutions.

Section 3 addresses mostly known FE approximation results, in particular featuring
so-called robust exponential convergence rates for the parametric solutions.

Section 4 introduces assumptions on the architecture of the NNs.
Section 5 shows robust exponential convergence of strict ReLU NNs, i.e. neural

networks with only ReLU activations: Proposition 5.2 states that emulation accu-
racy τ > 0 in a so-called “balanced norm” can be achieved uniformly w.r. to the
perturbation parameter 0 < ε ≤ 1 with a ReLU NN of size O(| log(τ)|2) and of
depth O(| log(τ)|(1 + | log(| log(τ)|)), i.e. the constants which are implicit in O( ) are
independent of ε.

Section 6 establishes a corresponding conclusion for spiking NNs using a ReLU
NN-to-spiking NN conversion algorithm from [23].
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Assuming a constant reaction coefficient function, stronger robust exponential solu-
tion expression rate bounds by strict tanh NNs are proved in Section 7. We prove in
Theorem 7.4 that to achieve expression error τ > 0 in balanced norms, tanh-activated
NNs of depth O(log | log(τ)|) and size O(| log(τ)|) are sufficient. A corresponding result
for the so-called sigmoid activation is shown in Appendix B.

Appendix A contains statement and proof of expression rate bounds for Chebyšev
polynomials by strict tanh NNs which are used in various places and are of independent
interest.

The generalization of this Chebyšev polynomial emulation to general smooth
activation functions is established in Appendix B.

2 The Model Problem and its Regularity

Consider the following linear, singularly perturbed, reaction-diffusion boundary value
problem (BVP): find uε(x) such that

−ε2u′′
ε (x) + b(x)uε(x) = f(x) , x ∈ I = (−1, 1) , (2.1)

uε(±1) = 0, (2.2)

where ε ∈ (0, 1] is a small parameter that can approach zero, and b(x), f(x) are given
analytic functions on I = [−1, 1], with b(x) ≥ b > 0 on I for some constant b. Moreover,
we assume there exist positive constants Cf ,Kf , Cb,Kb such that ∀ n ∈ N0, there
holds

‖f (n)‖L∞(I) ≤ CfK
n
f n! , ‖b(n)‖L∞(I) ≤ CbK

n
b n!. (2.3)

The above problem was studied in [13] where the following result was established.
Theorem 2.1 ([13, Thm. 1]). For 0 < ε ≤ 1, there exists a unique solution uε ∈ H1

0 (I)
of (2.1)–(2.2). There exist positive constants C,K, independent of ε, such that

‖u(n)
ε ‖L2(I) ≤ CKn max{n, ε−1}n ∀ n ∈ N0. (2.4)

The above corresponds to classical differentiability and it is useful in the case when
ε is large. If one uses the method of matched asymptotic expansions, a more refined
regularity result can be obtained, as stated below.
Proposition 2.2 ([13]). Let uε ∈ H1

0 (I) be the solution of (2.1)–(2.2) and assume
(2.3) holds. Then, uε may be decomposed as

uε = uS
ε + uBL

ε + uR
ε = uS

ε + u+
ε + u−

ε + uR
ε , (2.5)

where uS
ε denotes the smooth part, u±

ε denote the boundary layers at the two end-
points, and uR

ε denotes the remainder. Furthermore, there exist positive constants
C1,K1, C2,K2, C3,K3 independent of ε, such that

∥∥∥
(
uS
ε

)(n)∥∥∥
L2(I)

≤C1K
n
1 n!, for all n ∈ N0, (2.6)

∣∣∣
(
u±
ε

)(n)
(x)
∣∣∣ ≤C2K

n
2 e

−
√

b(1∓x)/ε max{n, ε−1}n, ∀x ∈ I, n ∈ N0, (2.7)
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∥∥∥
(
uR
ε

)(n)∥∥∥
L2(I)

≤C3ε
2−ne−K3/ε, for all n ∈ {0, 1, 2}. (2.8)

Proof. This follows from the results in Section 2 of [13].

As can be seen from (2.4), the norms of the derivatives of uε may grow when ε→ 0.
For uε and its first derivative, a more precise estimate of this ε-dependence is stated
in the following lemma.
Lemma 2.3 ([14]). Let uε be the solution uε of (2.1)–(2.2) and assume (2.3) holds.
Then, there exists a constant C > 0, independent of ε, such that

‖uε‖L2(I) ≤ C, ‖u′
ε‖L2(I) ≤ Cε−1/2, ‖uε‖L∞(I) ≤ C.

Proof. From Proposition 2.2, it follows that there exist constants C1,K1 > 0
independent of ε such that, for every 0 < ε ≤ 1 and for every n ∈ N0 holds

‖(uS
ε )

(n)‖L2(I) ≤ C1K
n
1 n! .

This can be combined with the interpolation inequality1

‖uS
ε ‖L∞(I) ≤ C‖uS

ε ‖
1/2
L2(I)‖u

S
ε ‖

1/2
H1(I)

to obtain ‖uS
ε ‖L∞(I) ≤ C, for some C > 0 independent of ε.

Similarly, ‖uR
ε ‖L2(I) ≤ C3 and ‖(uR

ε )
′‖L2(I) ≤ C3 imply that ‖uR

ε ‖L∞(I) ≤ C, for
C > 0 independent of ε.

Finally, for the boundary layers we use [14, Equation (2.19)], which is a sharper
bound in terms of ε than (2.7) in Proposition 2.2. It states that

ε−1/2‖u±
ε ‖L2(I) + ε1/2‖(u±

ε )
′‖L2(I) + ‖u±

ε ‖L∞(I) ≤ C. (2.9)

Combining these estimates for the terms in (2.5) finishes the proof.

Remark 2.4. In the case of constant coefficients, i.e. b(x) = b ∈ R, b > 0 in (2.1), the
boundary layer parts of the solution may be explicitly obtained, as was the case in [22,
Theorem 2.1]. Denote again by uε the solution of (2.1)–(2.2) and assume (2.3) holds.

Then, uε may be decomposed as

ũε = uS
ε + ũ+

ε + ũ−
ε + uR

ε , (2.10)

where uS
ε and uR

ε denote the smooth part and the remainder from Proposition 2.2 and

ũ±
ε (x) = C±e−

√
b(1∓x)/ε, (2.11)

where the constants C± are bounded independently of ε (see [22] for more details).
These boundary layer functions are related to u±

ε from Proposition 2.2 through u+
ε +

u−
ε = uBL

ε = ũ+
ε + ũ−

ε .

1Follows from Cauchy-Schwarz and (u(x))2−(u(y))2 =
∫ x
y
(u2)′(ξ)dξ for −1 ≤ y < x ≤ 1 and u ∈ H1(I).
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3 hp-Approximation

The approximation to the solution of (2.1)–(2.2) by the Finite Element Method (FEM)
was studied in [13], and in [22]. In this section we summarize the relevant results. First,
we cast (2.1) – (2.2) into an equivalent weak formulation that reads: find uε ∈ H1

0 (I)
such that for all v ∈ H1

0 (I) there holds

∫ 1

0

{
ε2u′

εv
′ + buεv

}
dx =

∫ 1

0

fvdx. (3.1)

In order to define the discrete version of (3.1), for N ∈ N, let ∆ = {xj}Nj=0 be an
arbitrary partition of I and set Ij = (xj−1, xj), hj = xj − xj−1, j = 1, . . . , N . With
Pp(I) the space of polynomials of degree at most p on I, we define the spaces

Sp(∆) := {w ∈ H1(I) : w|Ij ∈ Pp(Ij), j = 1, . . . , N}, (3.2)

Sp0 (∆) := Sp(∆) ∩H1
0 (I). (3.3)

The discrete version of (3.1), then reads: find uFEM
ε ∈ Sp0 (∆) such that for all v ∈

Sp0 (∆), there holds

∫ 1

0

{
ε2
(
uFEM
ε

)′
v′ + buFEM

ε v
}
dx =

∫ 1

0

fvdx. (3.4)

Associated with the above problem, we have the so-called energy norm:

‖w‖2ε :=

∫ 1

0

{
ε2(w′)2 + bw2

}
dx, w ∈ H1

0 (I), (3.5)

and the usual best approximation property holds:

‖uε − uFEM
ε ‖ε ≤ ‖uε − v‖ε ∀ v ∈ Sp0 (∆). (3.6)

The following spectral boundary layer mesh is the minimal one which yields expo-
nential convergence rates in terms of the number of degrees of freedom (i.e. the number
of “Finite-Element features”) as the polynomial degree p is increased.
Definition 3.1 (Spectral Boundary Layer mesh, [13, Definitions 13 and 14]). For
κ > 0, p ∈ N and 0 < ε ≤ 1, the Spectral Boundary Layer mesh ∆BL(κ, p) is defined
as

∆BL(κ, p) :=

{
{−1,−1 + κpε, 1− κpε, 1} if κpε < 1/2

{−1, 1} if κpε ≥ 1/2.

Furthermore, let us define the spaces V p(κ) and V p
0 (κ) of piecewise polynomials of

degree at most p via

V p(κ) := Sp(∆BL(κ, p)), V
p
0 (κ) := Sp0 (∆BL(κ, p)) = V p(κ) ∩H1

0 (I).
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Using the above mesh, the following was shown in [13].
Proposition 3.2 ([13, Thm. 16]). Assume that (2.3) holds and let uε be the solution
of (3.1). Then, there exists κ0 > 0 (depending only on b and f) such that for every
κ ∈ (0, κ0) and p ∈ N there exist positive constants C, β, independent of ε and p, such
that

inf
v∈V p

0 (κ)
‖uε − v‖ε ≤ Ce−βp. (3.7)

For the ensuing deep NN approximation constructions, it is important to note that
the proof of the above result is constructive, in that v ∈ V p

0 (κ) can be taken to be
the element-wise Gauß-Lobatto interpolant of uε. Hence, knowledge of the values of
uε in the Gauß-Lobatto points in each (sub)interval of ∆BL(κ, p) is the only required
information for constructing v.

It is well known (see, e.g. [14] and the references therein) that the energy norm
‖ ◦ ‖ε defined in (3.5) is deficient in the sense that it does not “see the layers”: as
ε→ 0, it holds that

‖uS
ε ‖ε = O(1) while ‖u±

ε ‖ε = O(ε1/2).

A correctly balanced norm should yield ‖uS
ε ‖B = O(1) = ‖u±

ε ‖B . The so-called
balanced norm ‖ ◦ ‖B defined in the following expression is such a norm:

‖w‖2B := ε‖w′‖2L2(I) + ‖w‖2L2(I). (3.8)

Unfortunately, the bilinear form associated with the weak formulation (3.1) is not
coercive with respect to this norm, and standard numerical analysis techniques fail in
proving exponential convergence with respect to this norm. In [14] this was by-passed
through an alternative analysis (see [14] for details) and the following was shown.
Proposition 3.3 ([14, Thm. 2.6 and Cor. 2.7]). Assume that (2.3) holds and let uε

be the solution of (3.1).
Then, there exists κ̃0 > 0 (depending only on b and f) such that for every κ ∈

(0, κ̃0) and every p ∈ N, the following holds.
Denoting by uFEM

ε ∈ V p
0 (κ) the Galerkin Finite-Element solution of (3.4), there

exist positive constants C, β that are independent of ε and p, such that

{
ε1/2‖u′

ε − (uFEM
ε )′‖L2(I) + ‖uε − uFEM

ε ‖L2(I)

}
≤Ce−βp, (3.9)

‖uε − uFEM
ε ‖L∞(I) ≤Ce−βp. (3.10)

The proof of the above proposition is again constructive, as it is based on the proof
of Proposition 3.2 (see [14]).

Finally, for the approximation of the explicit boundary layer expressions from
Remark 2.4 we recall the following result from [22]. We state our result for the bound-
ary layer function ũ−

ε (x) = exp((1 + x)/e) for x ∈ (−1, 1), corresponding to the left
boundary point, and corresponding to b = 1 in Remark 2.4.
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Proposition 3.4 ([22, Thm. 5.1, Cor. 5.1], [21, Thm. 3.74, Cor. 3.77]). For ε ∈ (0, 1]
and p ∈ N, let the mesh ∆ be as follows:

∆ =

{
{−1,−1 + κp̃ε, 1}, if κp̃ε < 2,

{−1, 1}, if κp̃ε ≥ 2,
(3.11)

for p̃ := p+ 1
2 and constants 0 < κ1 and κ1 ≤ κ < 4/e =: κ0 which are independent of

p and ε.
Then, with ũ−

ε (x) = exp((1 + x)/e) for x ∈ (−1, 1) as defined in Remark 2.4 with
b = 1, there exists v ∈ Sp(∆) with v(±1) = ũ−

ε (±1) and

ε1/2
∥∥(ũ−

ε )
′ − v′

∥∥
L2(I)

+ ε−1/2
∥∥ũ−

ε − v
∥∥
L2(I)

+
∥∥ũ−

ε − v
∥∥
L∞(I)

≤ C exp(−βp), (3.12)

for constants C, β > 0 independent of p and ε.
Remark 3.5. In [21, 22], for the case κp̃ε < 2, it is shown to be sufficient to use
polynomial degree 1 in the element (−1 + κp̃ε, 1). Also, β is specified explicitly. For
the case κp̃ε ≥ 2, it is shown that the error converges faster than exponentially.
There exists C > 0 such that the error bounds also hold if we replace C exp(−βp) by
C exp(−p̃ log(2p̃ε/e)).

4 Neural Network Definitions

As usual (e.g. [16–18]), we define a neural network (NN) in terms of its weight matrices
and bias vectors. We distinguish between a neural network and the function it real-
izes, called realization of the NN, which is the composition of parameter-dependent
affine transformations and nonlinear activations. We recall some NN formalism in the
notation of [18, Section 2].
Definition 4.1 ([18, Definition 2.1]). For d, L ∈ N, a neural network Φ with input
dimension d ≥ 1 and number of layers L ≥ 1, comprises a finite sequence of matrix-
vector tuples, i.e.

Φ = ((A1, b1), (A2, b2), . . . , (AL, bL)).

For N0 := d and numbers of neurons N1, . . . , NL ∈ N per layer, for all ℓ = 1, . . . , L
it holds that Aℓ ∈ R

Nℓ×Nℓ−1 and bℓ ∈ R
Nℓ .

For a NN Φ and an activation function ̺ : R → R, we define the associated
realization of Φ as the function

R(Φ) : Rd → R
NL : x→ xL,

where

x0 := x,

xℓ := ̺(Aℓxℓ−1 + bℓ), for ℓ = 1, . . . , L− 1,
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xL := ALxL−1 + bL.

Here ̺ acts componentwise on vector-valued inputs, ̺(y) = (̺(y1), . . . , ̺(ym)) for all
y = (y1, . . . , ym) ∈ R

m. We call the layers indexed by ℓ = 1, . . . , L − 1 hidden layers,
in those layers the activation function is applied. No activation is applied in the last
layer of the NN.

We refer to L(Φ) := L as the depth of Φ and call M(Φ) :=
∑L

ℓ=1 ‖Aℓ‖0 + ‖bℓ‖0
the size of Φ, which is the number of nonzero components in the weight matrices Aℓ

and the bias vectors bℓ. Furthermore, we call d and NL the input dimension and the
output dimension.

Some related works, e.g. [4], use the width as a measure for the complexity of a
NN, which is defined as maxLℓ=0 Nℓ. Note that in each layer of a fully connected NN
the number of nonzero weights can be as large as the width squared.

We will refer to NNs with only activation function ̺ as strict ̺-NNs, or simply
as ̺-NNs. This includes NNs of depth 1, which do not have hidden layers and which
exactly realize affine transformations.

5 ReLU Neural Network Approximations

In this section, we consider the approximation of univariate functions on bounded
intervals by neural networks with the ReLU activation function ρ : R → R :
x 7→ max{0, x}. In Proposition 5.1 below, we recall the ReLU NN approximation
of continuous, piecewise polynomial functions from [17, Proposition 3.11].2 It allows
us to transfer the finite element approximation results from Section 3 and obtain
approximation rate bounds for ReLU NNs in Propositions 5.2 and 5.3.
Proposition 5.1 ([17, Proposition 3.11]). For −∞ < a < b <∞, let I := (a, b). For
all N ∈ N, all p ∈ N, all partitions ∆ = {xj}Nj=0 of I into N open, disjoint, connected

subintervals Ij = (xj−1, xj) of length hj = xj − xj−1, j = 1, . . . , N , h = maxNj=1 hj,

and for all v ∈ Sp(∆), 3 for all relative tolerances τ ∈ (0, 1) there exists a ReLU NN
Φv,∆,p

τ such that for all 1 ≤ r, r′ ≤ ∞ there holds

(2/hi)
1−t
∣∣v − R

(
Φv,∆,p

τ

)∣∣
W t,r(Ii)

≤ τ 1
2 (2/hi)

1+1/r′−1/r min
u∈Pp:

u′′=v′′|Ii

‖u‖Lr′ (Ii)
, (5.1)

for all i = 1, . . . , N and t = 0, 1,

1
h

∥∥v − R
(
Φv,∆,p

τ

)∥∥
Lr(I)

≤
∣∣v − R

(
Φv,∆,p

τ

)∣∣
W 1,r(I)

≤ 1
2τ |v|W 1,r(I) , (5.2)

L
(
Φv,∆,p

τ

)
≤C(1 + log2(p)) log2(1/τ) + C(1 + log2(p))

3,

M
(
Φv,∆,p

τ

)
≤CNp

(
1 + log2(1/τ) + log2(p)

)
,

2 The result in [17, Proposition 3.11] is stated for different polynomial degrees p1, . . . , pN ∈ N in the
elements I1, . . . , IN of the partition. Here, we only state that result for the special case that p1 = · · · =
pN = p ∈ N.

3The definition of Sp(∆) in (3.2) also applies to general intervals I = (a, b) instead of I = (−1, 1).
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for a constant C > 0 which is independent of I, N , p, ∆, τ and v.
In addition, it holds that R

(
Φv,∆,p

τ

)
(xj) = v(xj) for all j ∈ {0, . . . , N}. The

weights and biases in the hidden layers are independent of v. The weights and biases in
the output layer are linear combinations of the function values of v in the Clenshaw–
Curtis points in Ii for i = 1, . . . , N .

As a direct corollary of Propositions 3.3 and 5.1 we obtain:
Proposition 5.2. Assume that (2.3) holds. For ε ∈ (0, 1], let uε be the solution of
(3.1).

Then, there exists κ̃0 > 0 (depending only on b and f) such that for every κ ∈
(0, κ̃0) and p ∈ N there exists a ReLU NN ΦFEM,κ,p

ε such that, with positive constants
C, β, independent of ε and p, it holds that

{
ε1/2‖u′

ε − R(ΦFEM,κ,p
ε )′‖L2(I) + ‖uε − R(ΦFEM,κ,p

ε )‖L2(I)

}
≤Ce−βp, (5.3)

‖uε − R(ΦFEM,κ,p
ε )‖L∞(I) ≤Ce−βp, (5.4)

and R(ΦFEM,κ,p
ε )(±1) = 0.

For a constant C̃ = C̃(β) > 0 depending only on β, the network depth and size are
bounded as follows:

L
(
ΦFEM,κ,p

ε

)
≤ C̃p(1 + log2(p)), M

(
ΦFEM,κ,p

ε

)
≤ C̃p2. (5.5)

The weights and biases in the hidden layers are independent of uε and depend only on
κ, p, ε and β.

Proof. We apply Proposition 5.1 to uFEM
ε ∈ V p

0 (κ) from Proposition 3.3, with
accuracy parameter τ = e−βp for β given in Proposition 3.3 and the Spectral Bound-
ary Layer mesh ∆ := ∆BL(κ, p) from Definition 3.1, i.e. if κpε < 1/2, then the
number of elements is N = 3, whereas if κpε ≥ 1/2, then N = 1. We define

ΦFEM,κ,p
ε := Φ

uFEM
ε ,∆,p

τ . We obtain from (5.1), with t = 0, r = r′ ∈ {2,∞}
and u = v, that on all elements Ij ∈ ∆BL(κ, p), j = 1, . . . , N , it holds that∥∥uFEM

ε − R(ΦFEM,κ,p
ε )

∥∥
Lr(Ij)

≤ 1
2τ
∥∥uFEM

ε

∥∥
Lr(Ij)

, and thus

∥∥uFEM
ε − R(ΦFEM,κ,p

ε )
∥∥
L2(I)

≤ 1
2τ
∥∥uFEM

ε

∥∥
L2(I)

≤ 1
2τ
(
‖uε‖L2(I) +

∥∥uε − uFEM
ε

∥∥
L2(I)

)

≤ 1
2e

−βp
(
C + Ce−βp

)
≤ Ce−βp,

where we used Lemma 2.3 and (3.9) in the third step. Here, and in the remainder of
the proof, β is as in Proposition 3.3 and C denotes a generic positive constant which
is independent of ε and p, but may be different at each appearance. We have the same
result as above, also in the maximum norm:

∥∥uFEM
ε − R(ΦFEM,κ,p

ε )
∥∥
L∞(I)

≤ 1
2e

−βp
(
‖uε‖L∞(I) + Ce−βp

)
≤ Ce−βp.
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From (5.2) we obtain

∥∥(uFEM
ε )′ − R(ΦFEM,κ,p

ε )′
∥∥
L2(I)

≤ 1
2τ
∥∥(uFEM

ε )′
∥∥
L2(I)

.

Combined with Lemma 2.3 and (3.9), this gives

∥∥(uFEM
ε )′ − R(ΦFEM,κ,p

ε )′
∥∥
L2(I)

≤ 1
2τ
∥∥(uFEM

ε )′
∥∥
L2(I)

≤ 1
2τ
(
‖u′

ε‖L2(I) +
∥∥u′

ε − (uFEM
ε )′

∥∥
L2(I)

)

≤ 1
2e

−βp
(
Cε−1/2 + Cε−1/2e−βp

)

≤Cε−1/2e−βp.

Using the triangle inequality to combine these estimates with Equations (3.9)–(3.10)
finishes the proof of Equations (5.3)–(5.4). By Proposition 5.1, it also holds that
R(ΦFEM,κ,p

ε )(±1) = uFEM
ε (±1) = 0 = uε(±1).

As upper bounds on the network depth and size, we obtain from Proposition 5.1

L
(
ΦFEM,κ,p

ε

)
≤C(1 + log2(p)) log2(1/τ) + C(1 + log2(p))

3

≤ C̃p(1 + log2(p)),

M
(
ΦFEM,κ,p

ε

)
≤CNp

(
1 + log2(1/τ) + log2(p)

)

≤ C̃p2,

for C̃ = C̃(β) > 0 depending only on β. In the last step, we used that N ≤ 3.

By the same arguments as in the proof of Proposition 5.2, we obtain from Propo-
sitions 3.4 and 5.1 the following result on the approximation of exponential boundary
layer functions.
Proposition 5.3. There exists κ̃1 > 0 such that for every κ ∈ (κ̃1, 4/e) and p ∈ N

there exists a ReLU NN Φexp,κ,p
ε such that, with positive constants C, β, independent

of ε and p, it holds that

ε1/2‖ − exp(− · /ε)/ε− R(Φexp,κ,p
ε )′‖L2((0,1)) ≤Ce−βp, (5.6)

‖ exp(− · /ε)− R(Φexp,κ,p
ε )‖L2((0,1)) ≤Ce−βp, (5.7)

‖ exp(− · /ε)− R(Φexp,κ,p
ε )‖L∞((0,1)) ≤Ce−βp. (5.8)

For a constant C̃ = C̃(β) > 0 depending only on β, the NN depth and size are
bounded as follows:

L (Φexp,κ,p
ε ) ≤ C̃p(1 + log2(p)), M (Φexp,κ,p

ε ) ≤ C̃p2. (5.9)

Proof. Let ũ−
2ε and v be as in Proposition 3.4, with 2ε in place of ε. Composing both

ũ−
2ε and v with the affine transformation P : [0, 1] → [−1, 1] : x 7→ 2x − 1 gives
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exp(−x/ε) = ũ−
2ε ◦ P (x) for all x ∈ (0, 1) and, for r = 2,∞,

‖ exp(−x/ε)− v ◦ P‖Lr((0,1)) ≤‖ũ−
2ε − v‖Lr((−1,1)) ≤ C exp(−βp),

ε1/2‖ − 1
ε exp(−x/ε)− (v ◦ P )′‖L2((0,1)) ≤ ε1/2‖(ũ−

2ε)
′ − v′‖L2((−1,1))‖P ′‖L∞((0,1))

≤C exp(−βp) · 2 = C exp(−βp).

Now, we can apply Proposition 5.1 to v ◦ P and ∆̃ = {0, κp̃ε/2, 1} with accuracy

τ = exp(−βp) to obtain the existence of a ReLU NN Φexp,κ,p
ε := Φv◦P,∆̃,p

τ which
satisfies for r = 2,∞

‖v ◦ P − R(Φexp,κ,p
ε )‖Lr((0,1)) ≤ 1

2 exp(−βp)‖v ◦ P‖Lr((0,1)),

‖(v ◦ P )′ − R(Φexp,κ,p
ε )′‖L2((0,1)) ≤ 1

2 exp(−βp)‖(v ◦ P )′‖L2((0,1)),

from which we obtain the desired error bounds using the same arguments as in the
proof of Proposition 5.2, using (2.9).

We also find the bounds on the network depth and size as in Proposition 5.2:

L (Φexp,κ,p
ε ) ≤C(1 + log2(p)) log2(1/τ) + C(1 + log2(p))

3 ≤ C̃p(1 + log2(p)),

M (Φexp,κ,p
ε ) ≤CNp

(
1 + log2(1/τ) + log2(p)

)
≤ C̃p2,

for C̃ = C̃(β) > 0 depending only on β.

6 Spiking Neural Network Approximation

So far, we obtained expression rate bounds of strict ReLU NNs where all activations are
ReLUs, for solutions of the singularly perturbed, two-point boundary value problem
(2.1)–(2.2). Approximation rates for ReLU NNs transfer to so-called spiking neural
networks (SNNs) which are at the core of some models of so-called neuromorphic
computing (see, e.g., [23] and the references there). Results in this direction go back
several decades, see e.g. [9, 10] and the references there. More recently, Algorithms
1 and 2 in [23] produce for every strict ReLU NN Φ a SNN S(Φ) whose realization
R(S(Φ)) is identical to the input-output map x 7→ R(Φ)(x) of the ReLU NN Φ up to
an affine transformation of the input, see Proposition 6.5 for details.

We use [23, Alg. 1 and 2] to deduce from the approximation rate bounds in Section 5
corresponding results for SNNs in terms of the number of nonzero weights in the SNN.
We proceed as follows. After defining SNNs, we recall the exact mapping from ReLU
NNs to SNNs in Algorithms 6.1 and 6.2 below. In Proposition 6.5 we estimate the
size of the resulting SNN in terms of the size of the ReLU NN. SNN approximation
of solutions to the singularly perturbed model problem in Section 2 is the topic of
Theorem 6.6.

6.1 Spiking Neural Network Definitions

As in [23], we consider SNNs with integrate-and-fire neurons in the hidden layers,
in which each hidden layer neuron fires exactly once during each evaluation of the

11



network. The output of a hidden layer neuron i in layer ℓ is the spiking time (tℓ)i ∈
[tmin
ℓ , tmax

ℓ ]. The spiking time is defined (and computed) as the first time t ≥ tmin
ℓ at

which the voltage trajectory (Vℓ)i(t) of neuron i in layer ℓ attains the threshold value
(ϑℓ)i, as detailed in the following definition. The output layer consists of integration
neurons, which do not fire. The output of each such neuron i in the last layer is the
voltage at the final time (VL)i(t

max
L ).

Definition 6.1 (Spiking neural network (SNN)). ([23, Section 2.1]) For d, L ∈ N, a
spiking neural network Φ with input dimension d ≥ 1 and number of layers L ≥ 1, is
given by a finite sequence of matrix-vector-vector-number-number tuples, i.e.

Φ =
(
(J1, ϑ1, α1, t

min
1 , tmax

1 ), . . . , (JL−1, ϑL−1, αL−1, t
min
L−1, t

max
L−1),

(JL, αL, t
min
L , tmax

L )
)
,

where in the last tuple, the vector ϑL is omitted. For N0 := d and numbers of neurons
N1, . . . , NL ∈ N per layer, for all ℓ = 1, . . . , L it holds that Jℓ ∈ R

Nℓ×Nℓ−1 , ϑℓ, αℓ ∈
R

Nℓ and tmin
ℓ , tmax

ℓ ∈ R, with the exception that we do not consider ϑL. In addition,
we require that tmax

ℓ−1 = tmin
ℓ for all ℓ = 1, . . . , L and that

0 = tmin
0 < tmin

1 = 1 < · · · < tmin
L and tmax

0 = 1 < tmax
1 < · · · < tmax

L−1 = tmax
L .

The input of Φ comprises the firing times t0 ∈ [tmin
0 , tmax

0 ]d of the neurons in
the input layer. For all ℓ = 1, . . . , L− 1 and i = 1, . . . , Nℓ, the spiking time (tℓ)i ∈
[tmin
ℓ , tmax

ℓ ] of neuron i in layer ℓ is defined as the first time t ≥ tmin
ℓ at which the

voltage trajectory (Vℓ)i(t) attains or exceeds the threshold (ϑℓ)i ∈ R, where (Vℓ)i(t) is
defined by (Vℓ)i(t

min
ℓ−1) = 0 and the following ODE, which holds for all t ∈ (tmin

ℓ−1, t
max
ℓ ):

d
dt (Vℓ)i(t) = (αℓ)iH(t− tmin

ℓ−1) +

Nℓ−1∑

j=1

(Jℓ)ijH(t− (tℓ−1)j) + (Iℓ)i(t). (6.1)

Here, H : R → R denotes the Heaviside function, defined by H(x) = 1 for x > 0 and
H(x) = 0 else. The values (Jℓ)ij are called weights and (αℓ)i is the slope parameter.
In layers ℓ = 1, . . . , L−1, a nonnegative short pulse (Iℓ)i(t) is used to force the neuron
to spike at the latest at tmax

ℓ . In the output layer ℓ = L, the voltage trajectory is also
defined by (6.1), with IL ≡ 0. The output of Φ comprises the voltages of the neurons
in the output layer at time tmax

L = tmax
L−1, which we denote by R(Φ)(t0) := (VL)(t

max
L ) ∈

R
NL .
We refer to L(Φ) := L as the depth of Φ and call M(Φ) :=

∑L
ℓ=1 ‖Jℓ‖0 the size of

Φ, which is the number of nonzero components in the weight matrices Jℓ. Furthermore,
we call d and NL the input dimension and the output dimension.

In [23], for neuron i = 1, . . . , Nℓ in hidden layer ℓ = 1, . . . , L−1, the pulse is defined
in terms of the Dirac delta distribution as (Iℓ)i(t) = Rδ(t− tmax

ℓ ) for some sufficiently
large R > 0. Denoting by (Ṽℓ)i the voltage trajectory in case (Iℓ)i ≡ 0, it is sufficient
to set R = (ϑℓ)i − (Ṽℓ)i(t

max
ℓ ).
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Remark 6.2. For any 0 < η ≤ tmax
ℓ − tmin

ℓ we could equivalently consider the current
pulse

(Iℓ)i(t) =

{
0 for t ∈ (tmin

ℓ−1, t
max
ℓ − η),(

(ϑℓ)i − (Ṽℓ)i(t
max
ℓ )

)
/η for t ∈ (tmax

ℓ − η, tmax
ℓ ),

such that (Vℓ)i(t
max
ℓ ) = (ϑℓ)i. To ensure that the SNN does not fire earlier than at

time tmax
ℓ , it suffices to choose η small enough, e.g. such that

(
(ϑℓ)i−(Ṽℓ)i(t

max
ℓ )

)
/η >

maxt∈[tmax
ℓ −η,tmax

ℓ ] |(Ṽℓ)
′
i(t)|. From this we obtain that (Vℓ)

′
i(t) > 0 for all t ∈ (tmax

ℓ −
η, tmax

ℓ ), and thus that (Vℓ)i(t) < (Vℓ)i(t
max
ℓ ) for all such t. For all t < tmax

ℓ − η, the
pulse does not affect (Ṽℓ)i(t), hence also for such t the SNN does not spike.
Remark 6.3. Imposing (tℓ)i ≥ tmin

ℓ is important. Although the voltage trajectory
(Vℓ)i(t) may attain or exceed the threshold value (ϑℓ)i at an earlier time, we do not
want the neuron to fire earlier than tmin

ℓ . In [23], this is interpreted as using a time-
dependent threshold, which equals the previously specified value for t ≥ tmin

ℓ , and a
very large value for t < tmin

ℓ .

6.2 ReLU to Spiking Neural Network Conversion

Next, we state a version of [23, Algorithms 1 and 2] for transforming feedforward
ReLU networks. For each ReLU NN, the SNN produced by these algorithms has the
same input dimension, output dimension, depth and the same layer dimensions, see
Proposition 6.5. A large output value of a neuron from the ReLU NN corresponds to
early spiking of the corresponding SNN neuron.

We have slightly modified line 15 from [23, Algorithm 1] to define an exact mapping
from ReLU NNs to spiking NNs without making use of a training data set. See Remark
6.4 below.
Remark 6.4. In Line 4 of Algorithm 6.2, we slightly deviate from Line 15 in [23,
Algorithm 1]. Because the ReLU NN ((A1, b1), . . . , (Aℓ, bℓ), (INℓ×Nℓ

, 0Nℓ
)) realizes a

continuous function and we only consider inputs x from the compact set [0, 1]d, the
maximum in Line 4 exists and is finite. We will use this theoretical value of Xℓ.
We note that in [23], it is argued that computing the maximum over (a statistically
representative subset of) the training data is sufficient in practice. See part (iv) of [23,
Section 4.1]. By defining Xℓ to be the theoretical maximum, rather than an empirical
maximum, it is not necessary anymore to multiply it with a factor (1 + ζ) for ζ > 0
to obtain an upper bound that also holds for (practically) all inputs x ∈ [0, 1]d. This
multiplicative factor was used in part (iii) of [23, Section 4.2], we do not use it here.

Another difference and simplification with respect to [23] is that we are only inter-
ested in transforming feedforward neural networks without convolutional layers, batch
normalization and max pooling. See [23] for the transformation of such features.
Proposition 6.5 ([23, Theorem and Corollary in Section 2.1]). Let d, L ∈ N,
N1, . . . , NL ∈ N, xmin, xmax ∈ R, xmin < xmax, δ ∈ (0, 1), B > 0 and let
Φ = ((A1, b1), . . . , (AL, bL)) be a ReLU NN.

Then, the SNN S(Φ) which is the output of Algorithm 6.2 has input dimension d,
depth L and layer dimensions N1, . . . , NL and satisfies, for all inputs x ∈ [xmin, xmax]d,
with x = 1

xmax−xmin (x − xmin(1, . . . , 1)⊤) and t0 = (1, . . . , 1)⊤ − x, that R(Φ)(x) =
R(S(Φ))(t0). In addition, M(S(Φ)) ≤M(Φ).
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Algorithm 6.1 [23, Algorithm 1] The inputs are d, L ∈ N, N1, . . . , NL ∈ N, constants
δ ∈ (0, 1) and B > 0 and a ReLU NN Φ which takes inputs from [xmin, xmax]d. The
output is a ReLU NN Φ = ((A1, b1), . . . , (AL, bL)) with the same input dimension d,
depth L and layer dimensions N1, . . . , NL, which takes inputs from [0, 1]d such that
R(Φ)(x) = R(Φ)(x) for all x ∈ [xmin, xmax]d and x = 1

xmax−xmin (x− xmin(1, . . . , 1)⊤),

and such that for all ℓ = 1, . . . , L − 1 and i = 1, . . . , Nℓ holds
∑Nℓ−1

j=1 Aij ∈ [−B, δ].
To rescale the weights and biases of the given ReLU NN Φ without changing the
NN output, the algorithm exploits the positive homogeneity of the ReLU activation
function ρ(λx) = λρ(x) for all λ > 0 and x ∈ R.

Input: d, L ∈ N, N1, . . . , NL ∈ N, xmin, xmax ∈ R, xmin < xmax, δ ∈ (0, 1), B > 0 and
a ReLU NN Φ = ((A1, b1), . . . , (AL, bL))

Output: A ReLU NN Φ = ((A1, b1), . . . , (AL, bL))
1: for i = 1, . . . , N1 do

2: For j = 1, . . . , N0: (A1)ij ← (xmax − xmin)(A1)ij
3: (b1)i ← (b1)i + xmin

∑d
j=1(A1)ij

4: end for

5: For ℓ = 2, . . . , L: Aℓ ← Aℓ, bℓ ← bℓ,
6: for ℓ = 1, . . . , L− 1 do

7: for i = 1, . . . , Nℓ do

8: (cℓ)i ←
∑Nℓ−1

j=1 Aij

9: if (cℓ)i > 1− δ then

10: For j = 1, . . . , Nℓ−1: (Aℓ)ij ← 1−δ
(cℓ)i

(Aℓ)ij

11: (bℓ)i ← 1−δ
(cℓ)i

(bℓ)i

12: For k = 1, . . . , Nℓ+1: (Aℓ+1)ki ← (cℓ)i
1−δ (Aℓ+1)ki

13: else if (cℓ)i < −B then

14: For j = 1, . . . , Nℓ−1: (Aℓ)ij ← B
|(cℓ)i| (Aℓ)ij

15: (bℓ)i ← B
|(cℓ)i| (bℓ)i

16: For k = 1, . . . , Nℓ+1: (Aℓ+1)ki ← |(cℓ)i|
B (Aℓ+1)ki

17: end if

18: end for

19: end for

20: return Φ← ((A1, b1), . . . , (AL, bL))

Proof. The formula for the realization was proved in [23].
The fact that the ReLU NN Φ, which is the output of Algorithm 6.1 applied to a

ReLU NN Φ, has the same input dimension and layer dimensions as Φ can be observed
from the lines in the algorithm in which the weight matrices are initialized. These
are Lines 2 and 5. Other lines of the algorithm do not change the sizes of the weight
matrices. From Line 20 we see that the network Φ returned by the algorithm has the
same number of layers L as the input network Φ. The same ideas apply to Algorithm
6.2, where we see from Lines 7 and 11, where the weight matrices are computed, that
the input dimension and the layer dimensions of S(Φ) equal those of the output Φ
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Algorithm 6.2 [23, Algorithm 2] The inputs are d, L ∈ N, N1, . . . , NL ∈ N, constants
δ ∈ (0, 1), B > 0 and a ReLU NN Φ which takes inputs from [xmin, xmax]d. The output
is a spiking neural network S(Φ) with the same input dimension d, depth L and layer
dimensions N1, . . . , NL. First, the neural network weights are rescaled using Algorithm
6.1. Then, a spiking neural network is defined such that for all x ∈ [xmin, xmax]

d, with
x = 1

xmax−xmin (x− xmin(1, . . . , 1)⊤) and t0 = (1, . . . , 1)⊤ − x, for all ℓ = 1, . . . , L− 1,

the output (xℓ)i := R(((A1, b1), . . . , (Aℓ, bℓ), (INℓ×Nℓ
, 0Nℓ

)))(x) of neuron i in layer ℓ
of the rescaled ReLU NN after applying ReLU activation corresponds to a spiking
time (tℓ)i = tmax

ℓ − (xℓ)i, and such that R(Φ)(x) = R(S(Φ))(t0).

Input: d, L ∈ N, N1, . . . , NL ∈ N, xmin, xmax ∈ R, xmin < xmax, δ ∈ (0, 1), B > 0 and
a ReLU NN Φ = ((A1, b1), . . . , (AL, bL))

Output: An SNN S(Φ) = ((J1, ϑ1, α1, t
min
1 , tmax

1 ), . . . , (JL, αL, t
min
L , tmax

L ))
1: Compute Φ← ((A1, b1), . . . , (AL, bL)) with Algorithm 6.1
2: tmin

0 ← 0, tmax
0 ← 1

3: for ℓ = 1, . . . , L− 1 do

4: Xℓ ← maxx∈[0,1]d ‖R(((A1, b1), . . . , (Aℓ, bℓ), (INℓ×Nℓ
, 0Nℓ

)))(x)‖∞, where

INℓ×Nℓ
∈ R

Nℓ×Nℓ denotes the identity matrix, and 0Nℓ
∈ R

Nℓ the zero vector.
5: tmin

ℓ ← tmax
ℓ−1 , t

max
ℓ ← tmax

ℓ−1 +Xℓ, αℓ ← (1, . . . , 1)⊤ ∈ R
Nℓ

6: for i = 1, . . . , Nℓ do

7: For j = 1, . . . , Nℓ−1: (Jℓ)ij ← (αℓ)i(Aℓ)ij/
(
1−

∑Nℓ−1

j=1 (Aℓ)ij

)

8: (ϑℓ)i ← (αℓ)i(t
max
ℓ − tmin

ℓ−1) +
∑Nℓ−1

j=1 (Jℓ)ij(t
max
ℓ − tmin

ℓ )

−
(
(αℓ)i +

∑Nℓ−1

j=1 (Jℓ)ij

)
(bℓ)i

9: end for

10: end for

11: tmin
L ← tmax

L−1, t
max
L ← tmax

L−1, JL ← AL, αL ← bL/(t
max
L−1 − tmin

L−1)
12: return S(Φ)← ((J1, ϑ1, α1, t

min
1 , tmax

1 ), . . . , (JL, αL, t
min
L , tmax

L ))

of Algorithm 6.1, and thus those of Φ. From Line 12, we observe that the number of
layers of S(Φ) is L, which is the same as that of Φ and that of Φ.

To prove the bound on the network size, we first observe that in all lines which
affect the weights, which are Lines 2, 5, 10, 12, 14 and 16 of Algorithm 6.1 and Lines
7 and 11 of Algorithm 6.2, the sign of the weights is not changed. In particular, the
number of nonzero weights of the SNN equals that of the ReLU NN, which implies
the desired neural network size bound.

6.3 Spiking Neural Network Solution Approximation

As a direct consequence of Propositions 5.2 and 6.5 we obtain the expression rate
bounds for solutions of (2.1)–(2.2) with spiking NNs.
Theorem 6.6. Assume that (2.3) holds. For ε ∈ (0, 1] let uε be the solution of (3.1).
Recall from Proposition 5.2 the constant κ̃0 > 0 (depending only on b and f) and for
all κ ∈ (0, κ̃0) and p ∈ N the ReLU NN ΦFEM,κ,p

ε .
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Then, with the positive constants C and β from Proposition 5.2, independent of ε
and p, the SNN S(ΦFEM,κ,p

ε ) constructed by Algorithm 6.2 satisfies

{
ε1/2‖u′

ε − R(S(ΦFEM,κ,p
ε ))′‖L2(I) + ‖uε − R(S(ΦFEM,κ,p

ε ))‖L2(I)

}
≤Ce−βp, (6.2)

‖uε − R(S(ΦFEM,κ,p
ε ))‖L∞(I) ≤Ce−βp, (6.3)

and R(S(ΦFEM,κ,p
ε ))(±1) = 0.

For a constant C̃ = C̃(β) > 0 depending only on β, the SNN depth and size are
bounded as follows:

L
(
S(ΦFEM,κ,p

ε )
)
≤ C̃p(1 + log2(p)), M

(
S(ΦFEM,κ,p

ε )
)
≤ C̃p2. (6.4)

The weights in the hidden layers are independent of uε and depend only on κ, p, ε and
β.
Remark 6.7. The presently used reasoning to infer expression rate bounds for spiking
NN architectures from rates proved for ReLU NNs naturally also applies to other
results, e.g. those in [11, 15, 17] and also for so-called operator networks of strict
ReLU type in [12].

7 tanh Neural Network Approximations

In Section 2, we have seen in Remark 2.4 that when the reaction coefficient function
b(x) is constant, then the boundary layer functions are known explicitly and are given
by (2.11). Particularly simple NN approximations of these boundary layer functions
can be obtained with NNs which have one hidden layer and use as activation function

tanh(x) = 1−exp(−2x)
1+exp(−2x) , x ∈ R.

This is the topic of Section 7.1, and is of independent interest. In Section 7.2, we state
the principal result of this section: exponential DNN expression rate bounds in Sobolev
norms on the set of solutions to (2.1)–(2.2) which are uniform in the singular pertur-
bation parameter ε ∈ (0, 1]. Based on expression rate bounds in Sections 7.3–7.4 and
Appendix A, in Section 7.5 we construct deep tanh-activated NN approximations of
analytic functions, and in particular of the smooth term in (2.11), sharpening previous
results in [4].

In Section 7.6, we prove the main result of Section 7 by combining the tanh-NN
approximation of the smooth term with a tanh-NN approximation of the boundary
layer components of the solution uε developed in Section 7.1.

Throughout Section 7, we will use the convention that for a function F ∈W 1,∞(D)
for a domain D ⊂ R

d, d ∈ N, the W 1,∞(D)-norm is defined as ‖F‖W 1,∞(D) =

max{‖F‖L∞(D),maxdj=1 ‖ ∂
∂xj

F‖L∞(D)}.
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7.1 tanh Emulation of the Exponential Function

We analyze tanh NN approximations of the exponential function in Lemma 7.2 below,
based on the following observation.
Lemma 7.1. For all x0 ≥ 0 and all x ≥ 0 there holds

E(x) :=
∣∣exp(−x)− exp(x0)

1
2 (1− tanh( 12x+ 1

2x0))
∣∣ ≤ exp(−x0),

|E′(x)| :=
∣∣∂E
∂x (x)

∣∣ ≤ 2 exp(−x0).

Proof. We start by noting that for all x ∈ R

(1− tanh(x)) = 2 exp(−2x)
1+exp(−2x) ,

1
2 (1− tanh( 12x)) =

exp(−x)
1+exp(−x) ,

∣∣exp(−x)− 1
2 (1− tanh( 12x))

∣∣ =
∣∣∣exp(−x)− exp(−x)

1+exp(−x)

∣∣∣ = 1
1+exp(−x) exp(−2x).

Using this result in the fourth step below, we obtain that for all x0 ≥ 0 and all x ≥ 0

E(x) :=
∣∣exp(−x)− exp(x0)

1
2 (1− tanh( 12x+ 1

2x0))
∣∣

=
∣∣∣exp(−x)− exp(x0)

exp(−x−x0)
1+exp(−x−x0)

∣∣∣

= exp(x0)
∣∣∣exp(−x− x0)− exp(−x−x0)

1+exp(−x−x0)

∣∣∣

= exp(x0)
1

1+exp(−x−x0)
exp(−2x− 2x0)

= 1
1+exp(−x−x0)

exp(−2x− x0)

≤ exp(−2x− x0) ≤ exp(−x0).

In addition, we obtain

E′(x) = 1
1+exp(−x−x0)

· −2 exp(−2x− x0)

+ −1
(1+exp(−x−x0))2

· − exp(−x− x0) exp(−2x− x0)

=
(
− 2

1+exp(−x−x0)
+ 1

(1+exp(−x−x0))2
exp(−x− x0)

)
exp(−2x− x0),

|E′(x)| ≤ 2 exp(−2x− x0) ≤ 2 exp(−x0).

We used that the absolute value of the negative term is larger than that of the positive
term, hence |E′(x)| is bounded from above by the absolute value of the negative
term.

As a result, we have the following shallow tanh NN approximation rate bound of
the exponential function exp(−·). This result is of independent interest, as exponential
boundary layer functions appear in a wide range of multivariate, singular perturbation
problems (see e.g. [2] and the references there).
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Lemma 7.2. For all τ ∈ (0, 1] there exists a tanh NN Φexp
τ such that for all x ≥ 0

there holds

| exp(−x)− R(Φexp
τ )(x)| ≤ exp(−τ), (7.1a)

| − exp(−x)− R(Φexp
τ )′(x)| ≤ exp(−τ), (7.1b)

and such that L(Φexp
τ ) = 2 and M(Φexp

τ ) = 4.

Proof. We set x0 = log(2/τ), such that exp(x0) =
2
τ , and define the tanh NN

Φexp
τ :=

((
1
2 ,

1
2x0

)
,
(
− 1

2 exp(x0),
1
2 exp(x0)

))

=
((

1
2 ,

1
2 log(2/τ)

)
,
(
− 1

τ ,
1
τ

))
,

which implies that

R(Φexp
τ )(x) = exp(x0)

1
2 (1− tanh( 12x+ 1

2x0)), for all x ≥ 0.

Using Lemma 7.1, we obtain the error bounds

| exp(−x)− R(Φexp
τ )(x)| ≤ exp(−x0) =

τ
2 , for all x ≥ 0,

| − exp(−x)− R(Φexp
τ )′(x)| ≤ 2 exp(−x0) = τ, for all x ≥ 0.

From the definition of Φexp
τ , we observe that L(Φexp

τ ) = 2 and M(Φexp
τ ) = 4.

Remark 7.3. We can apply the above analysis also to the sigmoid activation

σ(x) = exp(x)
1+exp(x) =

1
1+exp(−x) , x ∈ R.

We observe that for all x ∈ R holds σ(−x) = exp(−x)
1+exp(−x) =

1
2 (1− tanh( 12x)). Thus, the

σ-NN
Φσ,exp

τ :=
((
−1,−x0

)
,
(
exp(x0), 0

))
=
((
−1,− log(2/τ)

)
,
(
2
τ , 0
))

satisfies

L(Φσ,exp
τ ) = 2, M(Φσ,exp

τ ) = 3, and R(Φσ,exp
τ ) = exp(x0)σ(− · −x0) = R(Φexp

τ ).

Here Φexp
τ is the tanh NN from Lemma 7.2. In particular, Φσ,exp

τ satisfies (7.1).

7.2 tanh NN Solution Approximation

We state the main result of this section, namely ε-robust approximation rates for
strict tanh-activated deep NN approximations of solution families {uε : 0 < ε ≤ 1} ⊂
H1

0 (I) to the singularly perturbed, reaction-diffusion BVP (2.1)–(2.2). To leverage
the Lemma 7.2, we consider again (2.1)–(2.2) in the special case that the reaction
coefficient b(x) is constant, and equals b ∈ R. Without loss of generality, we assume
that b = 1. The solutions for general b > 0 can be found by solving the BVP with ε2

replaced by ε2/b and f replaced by f/b.
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Theorem 7.4. Assume that (2.3) holds and that the reaction coefficient function is
constant and satisfies b(x) = 1 for all x ∈ I = (−1, 1). For ε ∈ (0, 1], let uε be the
solution of (3.1).

Then, for all p ∈ N there exists a tanh NN Φuε,p
ε such that, with positive constants

C, β, independent of ε ∈ (0, 1] and of p ≥ 1, it holds that ‖uε − R(Φuε,p
ε )‖W 1,∞(I) ≤

Ce−βp, which implies that

{
ε1/2‖u′

ε − R(Φuε,p
ε )′‖L2(I) + ‖uε − R(Φuε,p

ε )‖L2(I)

}
≤Ce−βp, (7.2)

‖uε − R(Φuε,p
ε )‖L∞(I) ≤Ce−βp. (7.3)

For a constant C̃ > 0 independent of f , p, ε, C and β, the network depth and size
are bounded as follows:

L(Φuε,p
ε ) = ⌈log2(p)⌉+ 1, M(Φuε,p

ε ) ≤ C̃p. (7.4)

The weights and biases in the hidden layers are independent of uε and depend only on
p, ε and β.

A result corresponding to this theorem also holds for sigmoid-activated NNs. We
show this in Appendix B.

The rest of this section is devoted to the proof of Theorem 7.4. In Section 7.3,
we review results (in principle known) on a calculus of tanh-activated deep NNs,
in particular in Section 7.4 tanh-activated deep NN emulation of the identity and
of products of real numbers. Section 7.5 addresses the tanh-emulation of analytic
functions, which are based on the novel emulations bounds of Chebyšev polynomials
by deep tanh-activated NNs, which are proved in Appendix A.

7.3 Calculus of NNs

In the following sections, we will construct NNs from smaller networks using a calculus
of NNs, which we now recall from [18]. The results cited from [18] were derived for
NNs which only use the ReLU activation function, but they also hold for networks
with different activation functions without modification.
Proposition 7.5 (Parallelization of NNs [18, Definition 2.7]). For

d, L ∈ N let Φ1 =
(
(A

(1)
1 , b

(1)
1 ), . . . , (A

(1)
L , b

(1)
L )
)

and Φ2 =
(
(A

(2)
1 , b

(2)
1 ), . . . ,

(A
(2)
L , b

(2)
L )
)
be two NNs with input dimension d and depth L. Let the parallelization

P(Φ1,Φ2) of Φ1 and Φ2 be defined by

P(Φ1,Φ2) := ((A1, b1), . . . , (AL, bL)),

A1 =

(
A

(1)
1

A
(2)
1

)
, Aℓ =

(
A

(1)
ℓ 0

0 A
(2)
ℓ

)
, for ℓ = 2, . . . L,

bℓ =

(
b
(1)
ℓ

b
(2)
ℓ

)
, for ℓ = 1, . . . L.
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Then,

R(P(Φ1,Φ2))(x) = (R(Φ1)(x),R(Φ2)(x)), for all x ∈ R
d,

L(P(Φ1,Φ2)) = L, M(P(Φ1,Φ2)) = M(Φ1) +M(Φ2).

The parallelization of more than two NNs is handled by repeated application of
Proposition 7.5.

Similarly, we can also construct a NN emulating the sum of the realizations of two
NNs.
Proposition 7.6 (Sum of NNs). For d,N,L ∈ N let Φ1 =

(
(A

(1)
1 , b

(1)
1 ), . . . ,

(A
(1)
L , b

(1)
L )
)
and Φ2 =

(
(A

(2)
1 , b

(2)
1 ), . . . , (A

(2)
L , b

(2)
L )
)
be two NNs with input dimension

d, output dimension N and depth L. Let the sum Φ1 +Φ2 of Φ1 and Φ2 be defined by

Φ1 +Φ2 := ((A1, b1), . . . , (AL, bL)),

A1 =

(
A

(1)
1

A
(2)
1

)
, b1 =

(
b
(1)
1

b
(2)
1

)
,

Aℓ =

(
A

(1)
ℓ 0

0 A
(2)
ℓ

)
, bℓ =

(
b
(1)
ℓ

b
(2)
ℓ

)
, for ℓ = 2, . . . L− 1.

AL =
(
A

(1)
L A

(2)
L

)
, bL = b

(1)
L + b

(2)
L .

Then,

R(Φ1 +Φ2)(x) =R(Φ1)(x) + R(Φ2)(x), for all x ∈ R
d,

L(Φ1 +Φ2) =L, M(Φ1 +Φ2) ≤M(Φ1) +M(Φ2).

We will sometimes use the parallelization of networks which do not have the same
inputs.
Proposition 7.7 (Full parallelization of NNs [5, Setting 5.2]). For

L ∈ N let Φ1 =
(
(A

(1)
1 , b

(1)
1 ), . . . , (A

(1)
L , b

(1)
L )
)

and Φ2 =
(
(A

(2)
1 , b

(2)
1 ),

. . . , (A
(2)
L , b

(2)
L )
)
be two NNs with the same depth L, with input dimensions N1

0 = d1

and N2
0 = d2, respectively.

Then, the NN defined by

FP(Φ1,Φ2) := ((A1, b1), . . . , (AL, bL)),

Aℓ =

(
A

(1)
ℓ 0

0 A
(2)
ℓ

)
, bℓ =

(
b
(1)
ℓ

b
(2)
ℓ

)
, for ℓ = 1, . . . L,
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with d = d1 + d2-dimensional input and depth L, called full parallelization of Φ1 and
Φ2, satisfies that for all x = (x1, x2) ∈ R

d with xi ∈ R
di , i = 1, 2

R(FP(Φ1,Φ2))(x1, x2) =
(
R(Φ1)(x1),R(Φ

2)(x2)
)

and M(FP(Φ1,Φ2)) = M(Φ1) +M(Φ2).
Finally, we recall the concatenation of two NNs.

Definition 7.8 (Concatenation of NNs [18, Definition 2.2]). For L(1), L(2) ∈
N, let Φ1 =

(
(A

(1)
1 , b

(1)
1 ), . . . , (A

(1)

L(1) , b
(1)

L(1))
)

and Φ2 =
(
(A

(2)
1 , b

(2)
1 ),

. . . , (A
(2)

L(2) , b
(2)

L(2))
)

be two NNs such that the input dimension of Φ1, which we will

denote by k, equals the output dimension of Φ2. Then, the concatenation of Φ1 and
Φ2 is the NN of depth L := L(1) + L(2) − 1 defined as

Φ1 • Φ2 := ((A1, b1), . . . , (AL, bL)),

(Aℓ, bℓ) = (A
(2)
ℓ , b

(2)
ℓ ), for ℓ = 1, . . . , L(2) − 1,

AL(2) =A
(1)
1 A

(2)

L(2) , bL(2) = A
(1)
1 b

(2)

L(2) + b
(1)
1 ,

(Aℓ, bℓ) = (A
(1)

ℓ−L(2)+1
, b

(1)

ℓ−L(2)+1
), for ℓ = L(2) + 1, . . . , L(1) + L(2) − 1.

It follows immediately from this definition that R(Φ1 • Φ2) = R(Φ1) ◦ R(Φ2).

7.4 tanh Emulation of Identity and Products

Unlike ReLU NNs, tanh-activated NNs can not represent the identity exactly. As
various constructions require identity maps, we provide a corresponding tanh NN
emulation of the identity. We also recall the tanh NN emulation of products from [4].
Lemma 7.9 (See [4, Lemma 3.1] and [4, Corollary 3.7]). For all τ,M > 0 and all
L ∈ N, L ≥ 2 there exists a tanh-activated NN ΦId

1,L,τ,M of depth L, with input
dimension one and output dimension one, such that

∥∥IdR−R(ΦId
1,L,τ,M )

∥∥
W 1,∞((−M,M))

≤ τ. (7.5)

There exists C > 0 such that for all L ∈ N, L ≥ 2 there holds M(ΦId
1,L,τ,M ) ≤ CL for

a constant C independent of τ,M and L, and also the layer dimensions of the hidden
layers (denoted by N1, . . . , NL−1 in the notation of Definition 4.1) are at most C.

For all τ,M > 0 there exists a tanh NN ΦProd
τ,M of depth 2, with input dimension

two and output dimension one such that

∥∥∥∥∥

2∏

i=1

xi − R(ΦProd
τ,M )(x1, x2)

∥∥∥∥∥
W 1,∞((−M,M)2)

≤ τ.

There exists C > 0 such that M(ΦProd
τ,M ) ≤ C for a constant C independent of τ,M .
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Proof. We first prove the statements regarding identity networks. Without loss of
generality, assume that τ ≤ 1 (if τ > 1, we can use the identity network defined below
with 1 instead of τ).

By [4, Lemma 3.1] there exists a tanh NN ΦId
1,2,τ,M of depth 2 with input dimension

one and output dimension one and with a fixed size independent of τ,M , such that
(7.5) holds.

For L > 2 we use Definition 7.8 to define ΦId
1,L,τ,M := ΦId

1,2,τ/3,M+τ/3•ΦId
1,L−1,τ/3,M .

In this proof, we will use the shorthand notation Φ1 := ΦId
1,2,τ/3,M+τ/3 and Φ2 :=

ΦId
1,L−1,τ/3,M . We can estimate the error by

‖ IdR−R(Φ1 • Φ2)‖L∞((−M,M))

≤‖ IdR−R(Φ2)‖L∞((−M,M)) + ‖(IdR−R(Φ1)) ◦ R(Φ2)‖L∞((−M,M))

≤ τ/3 + τ/3 ≤ τ,

‖ Id′R−R(Φ1 • Φ2)′‖L∞((−M,M))

≤‖ Id′R−R(Φ2)′‖L∞((−M,M)) +
∥∥∥
(
(IdR−R(Φ1)) ◦ R(Φ2)

)′∥∥∥
L∞((−M,M))

≤‖ Id′R−R(Φ2)′‖L∞((−M,M))

+ ‖ Id′R−R(Φ1)′‖L∞((−M−τ/3,M+τ/3))‖R(Φ2)′‖L∞((−M,M))

≤ τ/3 + τ/3(1 + τ/3) ≤ τ/3 + 2τ/3 ≤ τ.

In terms of the constant C, which is independent of τ,M > 0, for which
M(ΦId

1,2,τ,M ) ≤ C (its existence follows from [4, Lemma 3.1]), it follows that the num-

ber of neurons in each hidden layer of ΦId
1,L,τ,M (which are denoted by N1, . . . , NL−1

in the notation of Definition 4.1) are all at most C.4 Therefore, the number of nonzero
weights in each layer is at most C2 and the number of nonzero biases in each layer
is at most C, giving a total network size of at most LC(C + 1), which is the desired
bound (when we write C instead of the constant C(C + 1)).

The statements for product networks correspond to [4, Corollary 3.7].

Identity networks with multiple inputs are obtained as the full parallelization of
identity networks with one input.
Definition 7.10. For all d ∈ N, we define ΦId

d,L,τ,M := FP(ΦId
1,L,τ,M , . . . ,ΦId

1,L,τ,M ) as
the full parallelization of d identity networks from Lemma 7.9.

7.5 tanh Emulation of Analytic Functions

Exponential convergence of tanh NNs for the approximation of analytic functions is
obtained by combining the result from Appendix A with the following classical result
on polynomial approximation. See e.g. [3, Section 12.4]. We use the formulation from
[13, Lemma 9].

4 If the number of neurons in a layer is larger than the number of nonzero weights and biases in that layer,
any neurons for which all associated weights and biases vanish, can be removed. If in a layer all weights and
biases vanish, the network realizes a constant function, which means that the network can be replaced by a
network of depth and size at most 1 which exactly emulates the constant function. These facts are proved
in [18, Lemma G.1].
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Lemma 7.11. Let I = (−1, 1) and assume that u : I → R is analytic on I = [−1, 1],
i.e. there exist Cu,Ku > 0 such that for all n ∈ N0 holds

‖u(n)‖L∞(I) ≤ CuK
n
un!. (7.6)

Then, there exist constants C, β > 0 such that for all p ∈ N there exists a
polynomial v ∈ Pp such that ‖u− v‖W 1,∞(I) ≤ Ce−βp.

For example, such a polynomial v can be obtained from u by polynomial interpola-
tion in the Gauß–Lobatto points, see [13, Lemma 11], or in the Clenshaw–Curtis points,
see [25, Theorem 8.2] (the Clenshaw–Curtis points are introduced in [25, Chapter 2]
and referred to as “Chebyshev points”).
Proposition 7.12. Assume that u satisfies (7.6).

Then, there exist constants C, β > 0 such that for all p ∈ N there exists a tanh NN
Φu,p such that

‖u− R(Φu,p)‖W 1,∞(I) ≤ Ce−βp

with
L(Φu,p) = ⌈log2(p)⌉+ 1, and M(Φu,p) ≤ C̃p

for a constant C̃ > 0 independent of p, u, C and β.
The weights and biases in the hidden layers are independent of u. The weights and

biases in the output layer are linear combinations of the function values of u in the
Clenshaw–Curtis points.

Proof. For all p ∈ N, let v ∈ Pp and β > 0 be as given by Lemma 7.11, let δ =
exp(−βp) and let Φu,p := Φv,p

δ be the network constructed in Corollary A.3. Then, for
a constant C > 0 independent of p,

‖u− R(Φu,p)‖W 1,∞(I) ≤‖u− v‖W 1,∞(I) + ‖v − R(Φv,p
δ )‖W 1,∞(I)

≤C exp(−βp) + exp(−βp)
p∑

ℓ=1

|vℓ| ≤ C exp(−βp).

In addition, we recall from Corollary A.3 that L(Φu,p) = L(Φv,p
δ ) = ⌈log2(p)⌉+ 1 and

M(Φu,p) = M(Φv,p
δ ) ≤ C̃p for a constant C̃ > 0 independent of p, u, C and β.

We observe from the proof of Corollary A.3 that the hidden layer weights are
independent of u, and that the output layer weights are linear combinations of the
Chebyšev coefficients of v. As mentioned in the text after Lemma 7.11, we may take v
to be the interpolant of u in the Clenshaw–Curtis points, as in [25, Theorem 8.2]. Then,
the Chebyšev coefficients of v can be computed from the function values of v in the
Clenshaw–Curtis points, which equal those of u (v interpolates u in those points).

Proposition 7.12 also holds for NNs with more general activation functions. In
Appendix B, we prove that it holds for NNs whose activation function is in C2(U)\P1

for a nonempty, connected open subset U ⊂ R.
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7.6 Proof of Theorem 7.4

Proof. As in the proof of [13, Theorem 16], which we recalled in Proposition 3.2,
for κ0 > 0 and κ ∈ (0, κ0) as in that proposition we distinguish two cases. In the
first, asymptotic case, the polynomial degree is so large with respect to ε that uε

can be approximated directly, without treating the boundary layers separately. In
the second, pre-asymptotic case, we treat the boundary layers separately according to
(2.10)–(2.11).

If κpε ≥ 1
2 , then the first part of the proof of [13, Theorem 16] shows that for

all p ∈ N there exists a polynomial5 v ∈ Pp such that ‖u − v‖W 1,∞(I) ≤ Ce−βp for
constants C, β > 0 independent of p and ε. This polynomial can be approximated by
a tanh NN by Corollary A.3. Defining δ = exp(−βp) and Φuε,p

ε := Φv,p
δ , there exists a

constant C > 0 independent of p and ε such that

‖u− R(Φuε,p
ε )‖W 1,∞(I) ≤‖u− v‖W 1,∞(I) + ‖v − R(Φv,p

δ )‖W 1,∞(I)

≤C exp(−βp) + exp(−βp)
p∑

ℓ=1

|vℓ| ≤ C exp(−βp),

where (vℓ)
p
ℓ=0 are the Chebyšev coefficients of v. In addition, we recall from Corollary

A.3 that L(Φuε,p
ε ) = L(Φv,p

δ ) = ⌈log2(p)⌉ + 1 and M(Φuε,p
ε ) = M(Φv,p

δ ) ≤ C̃p for a

constant C̃ > 0 independent of f , p, ε, C and β. In Corollary A.3, the hidden layer
weights depend only on p.

If κpε < 1
2 , we use the decomposition (2.5) and separately approximate the ε-

independent smooth part uS
ε and the boundary layer functions, which equal ũ±

ε (x) =
C±e−(1∓x)/ε by Remark 2.4, for some constants C± > 0 which are bounded
independently of ε.

We approximate uS
ε by the tanh NN ΦuS

ε ,p from Proposition 7.12. There exist
constants C, β > 0 independent of p and ε, and C̃ > 0 independent of f , p, ε, C and
β, such that it satisfies ‖uS

ε − R(ΦuS
ε ,p)‖W 1,∞(I) ≤ Ce−βp, L(ΦuS

ε ,p) = ⌈log2(p)⌉ + 1

and M(ΦuS
ε ,p) ≤ C̃p.

For the approximation of u±
ε , we use the approximation of the exponential function

from Proposition 7.2, the concatenation from Definition 7.8 and the identity network
from Lemma 7.9 to define

Φ±
ε := ((A±

1 , b
±
1 , IdR)) • Φexp

τ • ΦId
1,L−1,δ,M • ((A±

2 , b
±
2 , IdR)), (7.7)

for A±
1 = C± exp(1) ∈ R

1×1, b±1 = 0 ∈ R
1, A±

2 = ∓1/ε ∈ R
1×1, b±2 = 1/ε + 1 ∈ R

1,

τ := exp(−βp)ε, δ := exp(−βp)ε, M := 2/ε+ 1 and L := L(ΦuS
ε ,p) = ⌈log2(p)⌉+ 1.

For p = 1, we have L = 1 and omit “•ΦId
1,L−1,δ,M” from the definition (because

identity networks of depth 0 have not been defined). This will allow minor simplifi-
cations in the error bounds and the bounds on the network size for the case p = 1,
which we will not consider explicitly.

5 In [13], v ∈ Pp is taken to be the interpolant of uε in the p + 1 Gauß–Lobatto points.
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Denoting by P the affine transformation P : x 7→ A±
2 x + b±2 = (1 ∓ x)/ε + 1, the

networks Φ±
ε realize

R(Φ±
ε ) =C± exp(1)R(Φexp

τ ) ◦ R(ΦId
1,L−1,δ,M ) ◦ P. (7.8)

We note that for x ∈ [−1, 1] holds P (x) = (1∓ x)/ε+1 ∈ [1, 1+ 2/ε], and that δ < 1,
from which it follows that R(ΦId

1,L−1,δ,M ) ◦ P (x) ∈ [1− δ, 1 + δ + 2/ε] ⊂ [0, 2 + 2/ε]. It
is necessary to add a positive number to the input (or output) of the identity network
in order to guarantee that the input of Φexp

τ is nonnegative. This is necessary in order
to apply the error bound for Φexp

τ on [0,∞). Specifically, we added +1 in the input
layer, which is compensated for by the factor exp(1) in the output layer. Also, we
see that the inputs of the identity network are indeed bounded in absolute value by
M = 2/ε+ 1. The error can be bounded as follows:

‖ũ±
ε − R(Φ±

ε )‖L∞(I)

=C± exp(1)‖ exp(−·) ◦ IdR ◦P − R(Φexp
τ ) ◦ R(ΦId

1,L−1,δ,M ) ◦ P‖L∞(I)

≤C± exp(1)
∥∥( exp(−·) ◦ IdR− exp(−·) ◦ R(ΦId

1,L−1,δ,M )
)
◦ P
∥∥
L∞(I)

+ C± exp(1)
∥∥( exp(−·)− R(Φexp

τ )
)
◦ R(ΦId

1,L−1,δ,M ) ◦ P
∥∥
L∞(I)

≤C± exp(1) ‖− exp(−·)‖L∞((0,2+2/ε))

∥∥IdR−R(ΦId
1,L−1,δ,M )

∥∥
L∞((1,1+2/ε))

+ C± exp(1) ‖exp(−·)− R(Φexp
τ )‖L∞((0,2+2/ε))

≤C± exp(1)(δ + τ) ≤ C exp(−βp),

for a constant C independent of ε and p. To obtain bounds on the error in the
derivative, we first estimate

∥∥∥
(
exp(−·) ◦ IdR−R(Φexp

τ ) ◦ R(ΦId
1,L−1,δ,M )

)′∥∥∥
L∞((1,1+2/ε))

≤
∥∥((− exp(−·)) ◦ IdR−(− exp(−·)) ◦ R(ΦId

1,L−1,δ,M )
)
· Id′R

∥∥
L∞((1,1+2/ε))

+
∥∥((− exp(−·)) ◦ R(ΦId

1,L−1,δ,M )
)
·
(
Id′R−R(ΦId

1,L−1,δ,M )′
)∥∥

L∞((1,1+2/ε))

+
∥∥((− exp(−·))− R(Φexp

τ )′
)
◦ R(ΦId

1,L−1,δ,M ) · R(ΦId
1,L−1,δ,M )′

∥∥
L∞((1,1+2/ε))

≤ ‖exp(−·)‖L∞((0,2+2/ε))

∥∥IdR−R(ΦId
1,L−1,δ,M )

∥∥
L∞((1,1+2/ε))

∥∥Id′R
∥∥
L∞((1,1+2/ε))

+ ‖− exp(−·)‖L∞((0,2+2/ε))

∥∥Id′R−R(ΦId
1,L−1,δ,M )′

∥∥
L∞((1,1+2/ε))

+ ‖(− exp(−·))− R(Φexp
τ )′‖L∞((0,2+2/ε))

∥∥R(ΦId
1,L−1,δ,M )′

∥∥
L∞((1,1+2/ε))

≤ δ + δ + τ(1 + δ) ≤ 2δ + 2τ,

and get

‖(ũ±
ε )

′ − R(Φ±
ε )

′‖L∞(I)
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=C± exp(1)
∥∥∥
(
exp(−·) ◦ IdR−R(Φexp

τ ) ◦ R(ΦId
1,L−1,δ,M )

)′ ◦ P · P ′
∥∥∥
L∞(I)

≤C± exp(1)
∥∥∥
(
exp(−·) ◦ IdR−R(Φexp

τ ) ◦ R(ΦId
1,L−1,δ,M )

)′∥∥∥
L∞((1,1+2/ε))

‖P ′‖L∞(I)

≤C± exp(1)(2δ + 2τ)/ε ≤ C exp(−βp),

where C > 0 again denotes a constant independent of ε and p. The depth indeed equals

L(Φ±
ε ) = L(Φexp

τ )− 1 + L(ΦId
1,L−1,δ,M ) = 2− 1 + (L− 1) = L.

The NN size can be estimated by arguments similar to those used in the proof of
Lemma 7.9, as follows. The first L − 2 hidden layer dimensions of Φ±

ε equal those of
ΦId

1,L−1,δ,M , which are bounded by C∗ because of Lemma 7.9. The dimension of the

last hidden layer of Φ±
ε equals the dimension of the one hidden layer of Φexp

τ , which
is 1. As a result, all layer dimensions of Φ±

ε are bounded by C∗, and the network size
is bounded by LC∗(C∗ +1) ≤ C̃(log2(p) + 1) for some constant C̃ > 0 independent of
f , p, ε, C and β.

The last term uR
ε in (2.10) is small and can be neglected. As shown in the last step

in the proof of [13, Theorem 16], there exist constants C, β > 0, independent of p and
ε, such that

‖uR
ε ‖W 1,∞(I) ≤ C exp(−βp).

Finally, we use Proposition 7.6 to add the subnetworks and define

Φuε,p
ε := ΦuS

ε ,p +Φ+
ε +Φ−

ε .

It satisfies the error bound

‖uε − R(Φuε,p
ε )‖W 1,∞(I)

≤‖uS
ε − R(ΦuS

ε ,p)‖W 1,∞(I) + ‖ũ+
ε − R(Φ+

ε )‖W 1,∞(I) + ‖ũ−
ε − R(Φ−

ε )‖W 1,∞(I)

+ ‖uR
ε ‖W 1,∞(I)

≤Ce−βp.

Moreover, L(Φuε,p
ε ) = ⌈log2(p)⌉+ 1 and

M(Φuε,p
ε ) ≤M(ΦuS

ε ,p) +M(Φ+
ε ) +M(Φ−

ε )

≤ C̃p+ C̃(log2(p) + 1) + C̃(log2(p) + 1) ≤ C̃p,

for a constant C̃ > 0 independent of f , p, ε, C and β.
The hidden layer weights and biases of ΦuS

ε ,p from Proposition 7.12 are independent
of uS

ε and depend only on p. The hidden layer weights and biases of Φ±
ε only depend

on ε, p and β.
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Remark 7.13. Exact boundary conditions can be imposed by slightly adjusting the
constants C± in the formula for the boundary layers. As the approximation error is
exponentially small in L∞(I), also the necessary change in C± is exponentially small,
and so is the additional error in ε−1/2‖ ◦ ‖L2(I), ‖ ◦ ‖L∞(I) and ε1/2‖ ◦ ‖H1(I).

8 Conclusions and Generalizations

We summarize the principal findings of the present paper, i.e., robust expression rate
bounds for solutions uε of the model singular perturbation problem in Section 2 by
several classes of DNNs, with either ReLU, tanh or sigmoid activation, or of spiking
type.

For the model singular perturbation problem in Section 2 we established robust
w.r. to ε exponential expression rate bounds for the solution uε of (2.1)–(2.2) by deep
neural networks. We considered in detail several types and architectures of DNNs, and
the impact of architecture and activation on the approximation rates.

The robust, exponential expression rate bounds proved in Section 5 for strict ReLU
NNs in Propositions 5.2 and 5.3 implied, with a ReLU NN-to-spiking NN conversion
algorithm from [23], corresponding expression rate bounds also for so-called spiking
NNs, in Section 6.

We also proved in a particular case of (2.1)–(2.2) with exponential boundary
layer functions in Section 7 that tanh()-activated NNs provide better (still robust,
exponential) expression rates. In Section B, we show the same result for sigmoid NNs.

These results indicate that in order to resolve multivariate exponential boundary
layers, deep NNs with tanh or sigmoid activations afford expression rates which are
uniform w.r. to the length-scale parameter. With these activations in particular, bound-
ary layer resolution in deep NN approximations of PDE solutions does not require
“augmentation” of the DNN feature space with analytic boundary layers as proposed
e.g. in the recent [2] and in the references there. See e.g. [1] for a recent computational
approach which does not rely on such augmentations.

In the proofs in Section 7, use was made of novel tanh-NN emulation rate bounds
for Chebyšev polynomials, which are of independent interest, with their lengthy proofs
relegated to Appendix A.

Appendix A tanh Emulation of Univariate
Chebyšev Polynomials

A key step in the expression rate analysis is the analysis of tanh-expression rates of
Chebyšev polynomials. As these rates are, due to the wide use of Chebyšev polynomials
in spectral methods and regression (e.g. [17, 19]), of independent interest, we provide
a detailed analysis. We also recall that corresponding results for strict ReLU NNs have
been obtained in [17]. In this appendix, we maintain all notations from the main text.

For m ∈ N, m ≥ 2, we construct in Definition A.1 below a tanh NN
ΨCheb,m

δ approximating all univariate Chebyšev polynomials of degree 1, . . . ,m with
W 1,∞((−1, 1))-error at most δ ∈ (0, 1). We denote by Tk, k ∈ N0 the Chebyšev poly-
nomial of degree k (of the first kind), normalized such that Tk(1) = 1 for all k ∈ N0.
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As in [15, Proposition 7.2.2] (see also [8, Appendix A]), the network has a binary tree
structure, similar to the one in [16, Proposition 4.2]. It is based on the recursion

Tm+n = 2TmTn − T|m−n| , T0(x) = 1, T1(x) = x, for all x ∈ R

and m,n ∈ N0.

This recursion is related to the addition rule for cosines and was first used for NN
construction in [24].

The construction uses the identity and product networks from Lemma 7.9. In
Lemma 7.9, the size of product networks and identity networks is independent of the
desired accuracy. This allows us to make minor simplifications to the construction that
was used in the context of ReLU NNs in [15, 16].
Definition A.1. For all δ ∈ (0, 1) we define

ΨCheb,2
δ := ((ACheb,2

δ,2 , bCheb,2
δ,2 , IdR2)) • FP(ΦId

1,2,δ,1,Φ
Prod
δ/4,1) • ((A

Cheb,2
δ,1 , bCheb,2

δ,1 , IdR3))

where ACheb,2
δ,2 := diag(1, 2) ∈ R

2×2 is a diagonal matrix with diagonal entries 1 and

2, bCheb,2
δ,2 := (0,−1)⊤ ∈ R

2, ACheb,2
δ,1 := (1, 1, 1)⊤ ∈ R

3×1 and bCheb,2
δ,1 := 0 ∈ R

3. Its
realization is

R(ΨCheb,2
δ ) : R→ R

2 : x 7→
(
R(ΦId

1,2,δ,1)(x), 2R(Φ
Prod
δ/4,1)(x, x)− 1

)
.

To define ΨCheb,m
δ , for m ∈ N satisfying m > 2, let m̃ := min{2k : 2k ≥ m, k ∈ N} <

2m. This means that there exists k ∈ N such that m̃ = 2k. Then 2k−1 = m̃/2 ≥ 2
implies that k ≥ 2, which implies that m̃/2 = 2k−1 is an even number.

Let θ := δ/(4m2) and note that 4m2 ≥ 36. We use the following auxiliary matrices

and vectors. Let ACheb,m
δ,1 ∈ R

(2m−m̃/2)×(m̃/2) be defined by

(ACheb,m
δ,1 )ij :=





1 if i = j ≤ m̃/2,

1 if i > m̃/2 and j = m̃/4 + ⌈ i−1−m̃/2
4 ⌉,

0 else,

and let bCheb,m
δ,1 := 0 ∈ R

2m−m̃/2. In addition, let ACheb,m
δ,2 ∈ R

m×m and bCheb,m
δ,2 ∈ R

m

be defined by

(ACheb,m
δ,2 )ij :=





1 if i = j ≤ m̃/2,

2 if i = j > m̃/2,

−1 if i > m̃/2 is odd and j = 1,

0 else.

(bCheb,m
δ,2 )i :=

{
−1 if i > m̃/2 is even,

0 else.
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Then, we recursively define

ΨCheb,m
δ := ((ACheb,m

δ,2 , bCheb,m
δ,2 , IdRm)) • FP(ΦId

m̃/2,2,θ,2,Φ
Prod
θ,2 , . . . ,ΦProd

θ,2 )

• ((ACheb,m
δ,1 , bCheb,m

δ,1 , IdR2m−m̃/2)) •ΨCheb,m̃/2
θ , (A1)

where the full parallelization contains m − m̃/2 product networks. In the remainder

of this definition, we will abbreviate Ψm
δ := ΨCheb,m

δ and Ψ
m̃/2
θ := Ψ

Cheb,m̃/2
θ . By

construction, the realization R(Ψm
δ ) : R→ R

m satisfies

R(Ψm
δ )j =R(ΦId

1,2,θ,2) ◦ R(Ψ
m̃/2
θ )j , if j ≤ m̃/2,

R(Ψm
δ )j =2R(ΦProd

θ,2 )(R(Ψ
m̃/2
θ )⌊j/2⌋,R(Ψ

m̃/2
θ )⌈j/2⌉)− 1, if j > m̃/2 is even,

R(Ψm
δ )j =2R(ΦProd

θ,2 )(R(Ψ
m̃/2
θ )⌊j/2⌋,R(Ψ

m̃/2
θ )⌈j/2⌉)− R(ΦId

1,2,θ,2) ◦ R(Ψ
m̃/2
θ )1,

if j > m̃/2 is odd.

We used that by Definition 7.10 the subnetwork ΦId
m̃/2,2,θ,2 is the full parallelization of

m̃/2 networks ΦId
1,2,θ,2, thus R(ΦId

m̃/2,2,θ,2)(x)j = R(ΦId
1,2,θ,2)(xj).

Properties of the NNs in Definition A.1 are as follows.
Proposition A.2. For all m ∈ N, m ≥ 2 and for every δ ∈ (0, 1) the NN ΨCheb,m

δ in
Definition A.1 satisfies

‖Tk − R(ΨCheb,m
δ )k‖W 1,∞((−1,1)) ≤ δ, for all k = 1, . . . ,m,

and, for some constant C which is independent of m and δ,

L(ΨCheb,m
δ ) = ⌈log2(m)⌉+ 1 , and M(ΨCheb,m

δ ) ≤ Cm.

Proof. This proof is by induction with respect to the number of hidden layers, which
equals ⌈log2(m)⌉. In Step 1, we treat the case m = 2, for which we will use one hidden
layer. Then, for m > 2 and m̃ := min{2k : 2k ≥ m, k ∈ N}, assuming that the result
has been shown for m̃/2 < m, we prove the statements for m, increasing the number
of hidden layers by one. In Step 2, we give the error estimates, and in Step 3, we
analyze the network depth and size.

Step 1. For m = 2, we have

‖T1 − R(ΨCheb,2
δ )1‖W 1,∞((−1,1)) = ‖ IdR−R(ΦId

1,2,δ,1)‖W 1,∞((−1,1)) ≤ δ,

as well as

‖T2 − R(ΨCheb,2
δ )2‖L∞((−1,1)) = ‖(2x2 − 1)−

(
2R(ΦProd

δ/4,1)(x, x)− 1
)
‖L∞((−1,1))

=2‖x2 − R(ΦProd
δ/4,1)(x, x)‖L∞((−1,1)) ≤ 2δ/4 ≤ δ

29



and

‖T ′
2 − R(ΨCheb,2

δ )′2‖L∞((−1,1))

= ‖(2x2 − 1)′ −
(
2R(ΦProd

δ/4,1)(x, x)− 1
)′‖L∞((−1,1))

≤‖4x− 2[DR(ΦProd
δ/4,1)]1(x, x)− 2[DR(ΦProd

δ/4,1)]2(x, x)‖L∞((−1,1))

≤ 2δ/4 + 2δ/4 ≤ δ,

where [DR(ΦProd
δ/4,1)]j denotes the derivative with respect to the j-th argument. For the

depth we obtain with repeated application of the formula for the depth from Definition
7.8 that L(ΨCheb,2

δ ) = 1− 1 + 2− 1 + 1 = 2. To estimate the network size, let C∗ > 0
be as in Lemma 7.9, such that M(ΦId

1,2,δ,1) ≤ 2C∗ and M(ΦProd
δ/4,1) ≤ 2C∗. The number

of neurons in the hidden layer of ΨCheb,2
δ equals that of FP(ΦId

1,2,δ,1,Φ
Prod
δ/4,1), which is

at most 2 ·2C∗. Thus, in the notation of Definition 4.1 we have N0 = 1, N1 ≤ 4C∗ and
N2 = 2, which gives M(ΨCheb,2

δ ) ≤ N1(N0 + 1) +N2(N1 + 1) ≤ 4C∗ · 2 + 2(4C∗ + 1),
which is a constant independent of δ. Below, we will use that for m = 2 the number
of nonzero weights and biases in the last layer is bounded by 5C∗m. This follows
from N2(N1 + 1) = 2(4C∗ + 1) ≤ 10C∗, using that w.l.o.g. C∗ ≥ 1 (recall that C∗
is an upper bound on the size of identity networks and product networks). Similarly,

M(ΨCheb,2
δ ) ≤ 4C∗ · 2 + 2(4C∗ + 1) ≤ 18C∗ ≤ 9C∗m.

Step 2. Let now m ∈ N, m > 2.
Step 2a. We first estimate the emulation error in the L∞(−1, 1)-norm. The argu-

ments which we use closely follow the proof of [15, Proposition 7.2.2]. We use the

shorthand notation Ψm
δ := ΨCheb,m

δ and Ψ
m̃/2
θ := Ψ

Cheb,m̃/2
θ already used in Defini-

tion A.1. From ‖Tk‖L∞((−1,1)) = 1 and ‖Tk−R(Ψ
m̃/2
θ )k‖L∞((−1,1)) ≤ θ we obtain that

‖R(Ψm̃/2
θ )k‖L∞((−1,1)) ≤ 1 + θ ≤ 2, which means that the inputs of the identity net-

works and product networks in (A1) are indeed bounded in absolute value by 2, as is
necessary in order to apply the error bounds from Lemma 7.9. Also, we will use that
each component of R(ΦId

m̃/2,2,θ,2) equals R(Φ
Id
1,2,θ,2), see Definition 7.10. To simplify the

notation, for all k = 1, . . . , m̃/2 within this proof we will abbreviate T̃k = R(Ψ
m̃/2
θ )k.

Now, for j ≤ m̃/2,

‖Tj − R(Ψm
δ )j‖L∞((−1,1)) = ‖Tj − R(ΦId

1,2,θ,2) ◦ T̃j‖L∞((−1,1))

≤‖Tj − T̃j‖L∞((−1,1)) + ‖(IdR−R(ΦId
1,2,θ,2)) ◦ T̃j‖L∞((−1,1))

≤‖Tj − T̃j‖L∞((−1,1)) + ‖ IdR−R(ΦId
1,2,θ,2)‖L∞((−2,2))

≤ θ + θ = 2θ ≤ δ.

For even j > m̃/2, we note that the terms −1 in Tj and R(Ψm
δ )j cancel, and obtain

‖Tj − R(Ψm
δ )j‖L∞((−1,1)) ≤‖2T⌊j/2⌋T⌈j/2⌉ − 2T̃⌊j/2⌋T̃⌈j/2⌉‖L∞((−1,1))

+ ‖2T̃⌊j/2⌋T̃⌈j/2⌉ − 2R(ΦProd
θ,2 )(T̃⌊j/2⌋, T̃⌈j/2⌉)‖L∞((−1,1))

≤ 2‖T⌊j/2⌋ − T̃⌊j/2⌋‖L∞((−1,1))‖T⌈j/2⌉‖L∞((−1,1))
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+ 2‖T̃⌊j/2⌋‖L∞((−1,1))‖T⌈j/2⌉ − T̃⌈j/2⌉‖L∞((−1,1))

+ 2θ

≤ 2 · θ · 1 + 2 · 2 · θ + 2 · θ = 8θ ≤ δ.

For odd j > m̃/2

‖Tj − R(Ψm
δ )j‖L∞((−1,1)) ≤‖T1 − R(ΦId

1,2,θ,2) ◦ T̃1‖L∞((−1,1))

+ ‖2T⌊j/2⌋T⌈j/2⌉ − 2T̃⌊j/2⌋T̃⌈j/2⌉‖L∞((−1,1))

+ ‖2T̃⌊j/2⌋T̃⌈j/2⌉ − 2R(ΦProd
θ,2 )(T̃⌊j/2⌋, T̃⌈j/2⌉)‖L∞((−1,1))

≤ 2θ + 8θ = 10θ ≤ δ.

Step 2b. We use the same notation as in Step 2a. To derive W 1,∞((−1, 1))-
bounds, we first recall that ‖T ′

k‖L∞((−1,1)) = k2 for all k ∈ N. The fact that
‖T ′

k‖L∞((−1,1)) ≥ k2 follows from T ′
m = mUm−1, which is the Chebyšev polynomial

of the second kind of degree m − 1, and Um−1(1) = m, which is [6, Section 1.5.1].
The opposite inequality ‖T ′

k‖L∞((−1,1)) ≤ k2 is Markov’s inequality, which holds for
all polynomials of degree at most k. It follows that for all k = 1, . . . , m̃/2 there holds

‖T̃ ′
k‖L∞((−1,1)) ≤ ‖T ′

k‖L∞((−1,1)) + ‖T ′
k − T̃ ′

k‖L∞((−1,1)) ≤ k2 + θ ≤ k2 + 1. Now, for
j ≤ m̃/2,

‖T ′
j − R(Ψm

δ )′j‖L∞((−1,1))

≤‖T ′
j − T̃ ′

j‖L∞((−1,1)) +
∥∥∥
(
(IdR−R(ΦId

1,2,θ,2)) ◦ T̃j

)′∥∥∥
L∞((−1,1))

≤‖T ′
j − T̃ ′

j‖L∞((−1,1)) + ‖ Id′R−R(ΦId
1,2,θ,2)

′‖L∞((−2,2))‖T̃ ′
j‖L∞((−1,1))

≤ θ + θ · (j2 + 1) = (j2 + 2)θ ≤ 3j2θ ≤ δ.

For even j > m̃/2, the terms −1 in Tj and R(Ψm
δ )j cancel, and we obtain

‖T ′
j − R(Ψm

δ )′j‖L∞((−1,1))

≤
∥∥∥2T ′

⌊j/2⌋T⌈j/2⌉ − 2[DR(ΦProd
θ,2 )]1(T̃⌊j/2⌋, T̃⌈j/2⌉)T̃

′
⌊j/2⌋

∥∥∥
L∞((−1,1))

+
∥∥∥2T⌊j/2⌋T

′
⌈j/2⌉ − 2[DR(ΦProd

θ,2 )]2(T̃⌊j/2⌋, T̃⌈j/2⌉)T̃
′
⌈j/2⌉

∥∥∥
L∞((−1,1))

≤
∥∥∥2T ′

⌊j/2⌋(T⌈j/2⌉ − T̃⌈j/2⌉)
∥∥∥
L∞((−1,1))

+
∥∥∥2T ′

⌊j/2⌋ − T̃ ′
⌊j/2⌋)T̃⌈j/2⌉

∥∥∥
L∞((−1,1))

+
∥∥∥2
(
T̃⌈j/2⌉ − [DR(ΦProd

θ,2 )]1(T̃⌊j/2⌋, T̃⌈j/2⌉)
)
T̃ ′
⌊j/2⌋

∥∥∥
L∞((−1,1))

+
∥∥∥2(T⌊j/2⌋ − T̃⌊j/2⌋)T

′
⌈j/2⌉

∥∥∥
L∞((−1,1))

+
∥∥∥2T̃⌊j/2⌋(T

′
⌈j/2⌉ − T̃ ′

⌈j/2⌉)
∥∥∥
L∞((−1,1))
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+
∥∥∥2
(
T̃⌊j/2⌋ − [DR(ΦProd

θ,2 )]2(T̃⌊j/2⌋, T̃⌈j/2⌉)
)
T̃ ′
⌈j/2⌉

∥∥∥
L∞((−1,1))

≤ 2⌊j/2⌋2 · θ + 2θ · 2 + 2θ · (⌊j/2⌋2 + 1) + 2θ · ⌈j/2⌉2 + 2 · 2 · θ + 2θ · (⌈j/2⌉2 + 1)

= (4⌊j/2⌋2 + 4⌈j/2⌉2 + 12)θ = (4(⌊j/2⌋+ ⌈j/2⌉)2 − 8⌊j/2⌋⌈j/2⌉+ 12)θ

=(4j2 − 8⌊j/2⌋⌈j/2⌉+ 12)θ

≤ 4j2θ ≤ δ,

where [DR(ΦProd
θ,2 )]ℓ denotes the derivative with respect to the ℓ-th argument. We used

that j > m̃/2 ≥ 2 and thus ⌊j/2⌋ ≥ 1 and ⌈j/2⌉ ≥ 2, such that 8⌊j/2⌋⌈j/2⌉ ≥ 16. For
odd j > m̃/2

‖T ′
j − R(Ψm

δ )′j‖L∞((−1,1))

≤
∥∥∥T ′

1 −
(
R(ΦId

1,2,θ,2) ◦ T̃1

)′∥∥∥
L∞((−1,1))

+
∥∥∥2T ′

⌊j/2⌋T⌈j/2⌉ − 2[DR(ΦProd
θ,2 )]1(T̃⌊j/2⌋, T̃⌈j/2⌉)T̃

′
⌊j/2⌋

∥∥∥
L∞((−1,1))

+
∥∥∥2T⌊j/2⌋T

′
⌈j/2⌉ − 2[DR(ΦProd

θ,2 )]2(T̃⌊j/2⌋, T̃⌈j/2⌉)T̃
′
⌈j/2⌉

∥∥∥
L∞((−1,1))

≤ (12 + 2)θ + (4j2 − 8⌊j/2⌋⌈j/2⌉+ 12)θ = (4j2 − 8⌊j/2⌋⌈j/2⌉+ 15)θ

≤ 4j2θ ≤ δ.

Step 3. We again consider m ∈ N, m > 2.
Step 3a. To determine the depth, we obtain by repeated use of the formula for

the depth from Definition 7.8 that for all m ∈ N, m > 2 holds L(ΨCheb,m
δ ) = 1− 1 +

2− 1 + 1− 1 +L(Ψ
Cheb,m̃/2
θ ) = 1+L(Ψ

Cheb,m̃/2
θ ). Together with L(ΨCheb,2

δ ) = 2, this

implies that for all m ∈ 2N we have L(ΨCheb,m
δ ) = log2(m) + 1, because m̃ = m for all

m ∈ 2N. For general m ∈ N, m ≥ 2 we obtain L(ΨCheb,m
δ ) = 1 + (log2(m̃/2) + 1) =

log2(m̃) + 1 = ⌈log2(m)⌉+ 1.
Step 3b. To estimate the network size, again let C∗ > 0 be as in Lemma 7.9, such

that M(ΦId
1,2,θ,2) ≤ 2C∗ and M(ΦProd

θ,2 ) ≤ 2C∗. By Definition 7.10, it holds that

FP(ΦId
m̃/2,2,θ,2,Φ

Prod
θ,2 , . . . ,ΦProd

θ,2 ) = FP(ΦId
1,2,θ,2, . . . ,Φ

Id
1,2,θ,2,Φ

Prod
θ,2 , . . . ,ΦProd

θ,2 ),

which has depth 2 and contains m̃/2 identity networks and m − m̃/2 product net-
works. This full parallelization is defined by repeated application of Proposition 7.7,
from which we see that its weight matrices are block diagonal matrices. The num-
ber of nonzero coefficients in each submatrix is bounded from above by the size
of the subnetwork of which it is part, which is at most 2C∗. In particular, each
row and each column contain at most 2C∗ nonzero coefficients. From the definition
of ACheb,m

δ,2 , we see that ‖ACheb,m
δ,2 ‖0 ≤ 2m. Denoting the last layer weight matrix

and bias vector of FP(ΦId
m̃/2,2,θ,2,Φ

Prod
θ,2 , . . . ,ΦProd

θ,2 ) by A2 and b2, respectively, those

of ((ACheb,m
δ,2 , bCheb,m

δ,2 , IdRm)) • FP(ΦId
m̃/2,2,θ,2,Φ

Prod
θ,2 , . . . ,ΦProd

θ,2 ) equal ACheb,m
δ,2 A2 and
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ACheb,m
δ,2 b2 + bCheb,m

δ,2 . Because in the matrix multiplication ACheb,m
δ,2 A2 each element

of ACheb,m
δ,2 gets multiplied with all elements of a row of A2, of which at most 2C∗

are nonzero, we obtain that ‖ACheb,m
δ,2 A2‖0 ≤ ‖ACheb,m

δ,2 ‖02C∗ ≤ 2m2C∗ = 4C∗m.

Also, ‖ACheb,m
δ,2 b2 + bCheb,m

δ,2 ‖0 ≤ m because this is a vector in R
m, so the total

number of nonzero coefficients in the last layer is bounded by (4C∗ + 1)m ≤
5C∗m (w.l.o.g. C∗ ≥ 1). Denoting the first layer weight matrix and bias vector of
FP(ΦId

m̃/2,2,θ,2,Φ
Prod
θ,2 , . . . ,ΦProd

θ,2 ) by A1 and b1, respectively, recall that each row and
each column of A1 contain at most 2C∗ nonzero coefficients. From the definition of
ACheb,m

δ,1 , we see that each column has at most 5 nonzero coefficients, namely one for

which i = j and at most four for which i > m̃/2 and j = m̃/4 + ⌈ i−1−m̃/2
4 ⌉. The

j-th column of A1A
Cheb,m
δ,1 is the sum of columns of A1 multiplied with elements of

the j-th column of ACheb,m
δ,1 . Each column of A1 contains at most 2C∗ nonzero coef-

ficients and each column of ACheb,m
δ,1 at most 5, thus each column of A1A

Cheb,m
δ,1 at

most 10C∗. Now, the weight matrix in the second to last layer of Ψm
δ is the product

of A1A
Cheb,m
δ,1 with the weight matrix of the last layer of Ψ

m̃/2
θ . Each element of that

matrix is multiplied with all coefficients in one column of A1A
Cheb,m
δ,1 , of which at most

10C∗ are nonzero. As shown above, the number of nonzero weights and biases in the

last layer of Ψ
m̃/2
θ is at most 5C∗m̃/2 ≤ 5C∗m, which means that the total number of

nonzero weights in the second to last layer of Ψm
δ is at most 50C2

∗m. The bias vector
in that layer has 2m − m̃/2 ≤ 2m entries, thus the total number of nonzero weights
and biases in the second to last layer of Ψm

δ is at most 52C2
∗m (w.l.o.g. C∗ ≥ 1).

All layers of Ψm
δ except the last two are identical to those of Ψ

m̃/2
θ . Thus, we find

that M(Ψm
δ ) ≤ 5C∗m + 52C2

∗m + M(Ψ
m̃/2
θ ) ≤ 57C2

∗m + M(Ψ
m̃/2
θ ). For all m ∈ 2N,

it holds that m̃ = m and we find by induction that M(Ψm
δ ) ≤ 114C2

∗m, because
M(Ψm

δ ) ≤ 57C2
∗m + 114C2

∗(m̃/2) = 114C2
∗m. For general m ∈ N, m > 2, we obtain

M(Ψm
δ ) ≤ 57C2

∗m+ 114C2
∗(m̃/2) ≤ 57C2

∗m+ 114C2
∗m = 171C2

∗m and we recall that
for m = 2 holds M(Ψ2

δ) ≤ 9C∗m.

In [4, Lemma 3.2], a shallow tanh network is constructed which approximates all
univariate monomials of degree 1, . . . ,m and has width bounded by Cm for some
constant C > 0. This implies that the size of the NN constructed in [4, Lemma 3.2] is
O(m2). It does not imply that the size of that network can be bounded by a constant
times m.
Corollary A.3. For all p ∈ N and v ∈ Pp, let v =

∑p
ℓ=0 vℓTℓ denote the Chebyšev

expansion of v.
Then, for all δ ∈ (0, 1), there exists a tanh NN Φv,p

δ which satisfies

‖v − R(Φv,p
δ )‖W 1,∞((−1,1)) ≤ δ

p∑

ℓ=1

|vℓ|,

and, for some constant C > 0 which is independent of p, δ and of v,

L(Φv,p
δ ) = ⌈log2(p)⌉+ 1 , M(Φv,p

δ ) ≤ Cp.
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The hidden layer weights and biases only depend on p and δ and are independent of
v. Those in the output layer are linear combinations of (vℓ)

p
ℓ=0.

Proof. For p = 1, v is an affine function, which can be realized exactly by a NN of
depth 1 and size at most 2.

For p ≥ 2, we use the NN ΨCheb,p
δ from Definition A.1 and Proposition A.2 and

define

Φv,p
δ := ((Av,p

δ , bv,pδ , IdR)) •ΨCheb,p
δ ,

where Av,p
δ = (v1, . . . , vp) ∈ R

1×p and bv,pδ = v0 ∈ R. Its realization satisfies

R(Φv,p
δ )(x) = v0 +

p∑

ℓ=1

vℓR(Ψ
Cheb,p
δ )ℓ(x), x ∈ R,

‖v − R(Φv,p
δ )‖W 1,∞(I) ≤

p∑

ℓ=1

vℓ‖Tℓ − R(ΨCheb,p
δ )ℓ‖W 1,∞(I) ≤

p∑

ℓ=1

|vℓ|δ.

For the formula for the NN depth, we compute

L(Φv,p
δ ) = L(((Av,p

δ , bv,pδ , IdR)))− 1 + L(ΨCheb,p
δ ) = L(ΨCheb,p

δ ) = ⌈log2(p)⌉+ 1.

To estimate the NN size, we observe from the Definition 7.8 of concatenation that all
layers of Φv,p

δ except for the last layer equal those of ΨCheb,p
δ . Denoting the weights

and biases in the last layer of ΨCheb,p
δ by ACheb,p

δ and bCheb,p
δ , respectively, those in

the last layer of Φv,p
δ are A := Av,p

δ ACheb,p
δ and b := Av,p

δ bCheb,p
δ + bv,pδ , respectively.

Denoting by N the dimension of the second to last layer of ΨCheb,p
δ , A ∈ R

1×N , and
each element of this matrix is the matrix product of the matrix Av,p

δ ∈ R
1×p with

a column of ACheb,p
δ . Hence ‖A‖0 ≤ ‖ACheb,p

δ ‖0. In addition, b ∈ R
1, thus ‖b‖0 ≤ 1.

Finally, we obtain that

M(Φv,p
δ ) ≤M(ΨCheb,p

δ ) + 1 ≤ Cp+ 1 ≤ Cp,

for a constant C > 0 independent of p, δ and v. The statement on the NN weights
follows directly from the definition of Φv,p

δ .

Remark A.4. By [20, Theorem 3.13], one can efficiently compute numerically the
Chebyšev coefficients (vℓ)

p
ℓ=0 using the inverse fast Fourier transform. The sum of

their absolute values grows at most algebraically with p as we have the upper bound∑p
ℓ=2 |vℓ| ≤ p4‖v‖L∞(I). For more details, see [17, Section 2].

Appendix B General Activation Functions

The results in the present paper considered specifically ε-uniform DNN emulation rates
for the solution set {uε : 0 < ε ≤ 1} ⊂ H1

0 (I) of (2.1)–(2.2) by strict ReLU, spiking,
and tanh-activated deep NNs. Lemma 7.9, the key result in the proofs of expression
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rate bounds for tanh-DNNs, holds more generally, as we state in Lemma B.3 below.
Based on this, a result similar to Theorem 7.4 follows also for more general activations,
such as the sigmoid introduced in Remark 7.3.

We prepare the proof of the extension of Lemma 7.9 with two auxiliary lemmas.
Throughout this section, we will use the calculus of NNs from Section 7.3. Those
results hold regardless of the used activation function.
Lemma B.1. For a nonempty, connected, open subset U ⊂ R, consider an activation
function ̺ ∈ C1(U) \ P0.

For all M ≥ 1 and τ > 0, there exists a depth 2 ̺-network ΦId,̺
τ,M satisfying

R(ΦId,̺
τ,M )(0) = 0 and ‖ Id−R(ΦId,̺

τ,M )‖W 1,∞((−M,M)) ≤ τ . Its number of neurons and
network size are bounded independently of τ and M . The dimension of the hidden
layer is 1.

Proof. Let t0 ∈ U be such that ̺′(t0) 6= 0. There exists δ > 0 such that [t0−δ, t0+δ] ⊂
U and maxt∈[t0−δ,t0+δ] |1− ̺′(t)/̺′(t0)| ≤ τ/M .

Now, let

ΦId,̺
τ,M :=

((
δ
M , t0

)
,
(

M
δ̺′(t0)

,−M̺(t0)
δ̺′(t0)

))
,

which has depth 2, size 4, hidden layer width 1, and realization

R(ΦId,̺
τ,M )(x) = M

δ̺′(t0)

(
̺(t0 +

δ
M x)− ̺(t0)

)
, x ∈ [−M,M ].

It follows that R(ΦId,̺
τ,M )(0) = 0 and that for all x ∈ [−M,M ] there holds

|1− R(ΦId,̺
τ,M )′(x)| = |1− ̺(t0 +

δ
M x)/̺′(t0)| ≤ τ/M ≤ τ,

|x− R(ΦId,̺
τ,M )(x)| ≤Mτ/M = τ.

The latter estimate follows from integrating the former one, using exactness in 0 of
the identity network.

Lemma B.2. For a nonempty, connected, open subset U ⊂ R, consider the function
f : R→ R : x 7→ x2 and an activation function ̺ ∈ C2(U) \ P1.

For all M ≥ 1 and τ > 0, there exists a depth 2 ̺-network Φf
τ,M satisfying

R(Φf
τ,M )(0) = 0 and ‖f − R(Φf

τ,M )‖W 1,∞((−M,M)) ≤ τ . Its number of neurons and
network size are bounded independently of τ and M .

Proof. Let ΦId,̺′

τ/(4M),M be the identity network from Lemma B.1 with activation func-

tion ̺′. Because its hidden layer dimension is 1, all its weight matrices are of dimension
1 × 1 and its bias vectors are of dimension 1. We identify them with real num-

bers. We write ΦId,̺′

τ/(4M),M = ((a
(1)
1 , b

(1)
1 ), (a

(1)
2 , b

(1)
2 )), such that R(ΦId,̺′

τ/(4M),M )(x) =

a
(1)
2 ̺′(a(1)1 x+ b

(1)
1 ) + b

(1)
2 for all x ∈ [−M,M ].

The idea of this proof is to construct a ̺-NN which approximates the antideriva-

tive of R(ΦId,̺′

τ/(4M),M ), multiplied by 2. To approximate the antiderivative of the

constant term, we use an identity network with activation function ̺. Let ΦId,̺
τ ′,M be

35



the identity network from Lemma B.1 with accuracy τ ′ = τ/(4Mb
(1)
2 ). We write

ΦId,̺
τ ′,M = ((a

(0)
1 , b

(0)
1 ), (a

(0)
2 , b

(0)
2 )).

Now, define Φf
τ,M := ((A1, b1), (A2, b2)), where

A1 = (a
(1)
1 , a

(0)
1 )⊤, b1 = (b

(1)
1 , b

(0)
1 )⊤, A2 = (

2a
(1)
2

a
(1)
1

, 2b
(1)
2 a

(0)
2 ),

b2 = 2b
(1)
2 b

(0)
2 −

(
2a

(1)
2

a
(1)
1

̺(b
(1)
1 ) + 2b

(1)
2

(
a
(0)
2 ̺(b

(0)
1 ) + b

(0)
2

))
,

so that for all x ∈ [−M,M ] there holds

R(Φf
τ,M )(x) =

2a
(1)
2

a
(1)
1

̺(a
(1)
1 x+ b

(1)
1 ) + 2b

(1)
2 R(ΦId,̺

τ ′,M )(x)

−
(

2a
(1)
2

a
(1)
1

̺(b
(1)
1 ) + 2b

(1)
2 R(ΦId,̺

τ ′,M )(0)
)
.

We see that R(Φf
τ,M )(0) = 0 and that

R(Φf
τ,M )′(x) = 2a

(1)
2 ̺(a

(1)
1 x+ b

(1)
1 ) + 2b

(1)
2 R(ΦId,̺

τ ′,M )′(x)

= 2R(ΦId,̺′

τ/(4M),M )(x) + 2b
(1)
2 (R(ΦId,̺

τ ′,M )′(x)− 1),

|2x− R(Φf
τ,M )′(x)| ≤ |2x− 2R(ΦId,̺′

τ/(4M),M )(x)| + 2b
(1)
2 |R(ΦId,̺

τ ′,M )′(x)− 1|

≤ 2 τ
4M + 2b

(1)
2 τ ′ = τ

2M + τ
2M = τ/M.

Integrating this error bound gives |x2−R(Φf
τ,M )(x)| ≤ τ for all x ∈ [−M,M ]. The net-

work has depth 2, one hidden layer comprising two neurons, and size 7, independently
of τ and M .

Lemma B.3. Lemma 7.9 also holds if tanh is replaced by any activation function
̺ ∈ C2(U) \ P1 for a nonempty, connected, open subset U ⊂ R.

In addition, it holds that R(ΦId
1,L,τ,M )(0) = 0 and that x1x2 = 0 implies

R(ΦProd
τ,M )(x1, x2) = 0.

Proof. Throughout this proof, we assume that M ≥ 1. If M < 1, then we consider the
networks constructed for M = 1, which also satisfy the statements in the lemma for
M < 1.

For L = 2, the network ΦId
1,2,τ,M := ΦId,̺

τ,M from Lemma B.1 satisfies all the desired
properties.

The definition and the analysis of identity networks of depth L > 2 are identical
to those in the proof of Lemma 7.9. From the definition ΦId

1,L,τ,M := ΦId
1,2,τ/3,M+τ/3 •

ΦId
1,L−1,τ/3,M we inductively obtain that R(ΦId

1,L,τ,M )(0) = 0.

To construct product networks, for all τ > 0, M ≥ 1, let Φf
τ,M be the ̺-NN from

Lemma B.2 approximating f : [−M,M ]→ R : x 7→ x2.
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Now, let A1 ∈ R
3×2 be such that for all x = (x1, x2) ∈ R

2 there holds A1x = ( 12x1+
1
2x2,

1
2x1,

1
2x2), let b1 := 0 ∈ R

3, A2 := (2,−2,−2) ∈ R
1×3 and b2 := 0 ∈ R. Then,

the NN ΦProd
τ,M := ((A2, b2)) • P(Φf

τ/6,M ,Φf
τ/6,M ,Φf

τ/6,M ) • ((A1, b1)) has realization

R(ΦProd
τ,M )(x1, x2) = 2R(Φf

τ/6,M )( 12x1 + 1
2x2) − 2R(Φf

τ/6,M )( 12x1) − 2R(Φf
τ/6,M )( 12x2)

for all (x1, x2) ∈ R
2. With R(Φf

τ/6,M )(0) = 0 we obtain that R(ΦProd
τ,M )(x1, 0) = 0 =

R(ΦProd
τ,M )(0, x2) for all x1, x2 ∈ [−M,M ]. To estimate the L∞((−M,M)2) error, for

all (x1, x2) ∈ [−M,M ]2 there holds

|x1x2 − R(ΦProd
τ,M )(x1, x2)| ≤ 2|( 12x1 +

1
2x2)

2 − R(Φf
τ/6,M )( 12x1 +

1
2x2)|

+ 2|( 12x1)
2 − R(Φf

τ/6,M )( 12x1)|

+ 2|( 12x2)
2 − R(Φf

τ/6,M )( 12x2)|
≤ 6τ/6 = τ.

For the error in the derivative with respect to x1, we find that for all (x1, x2) ∈
[−M,M ]2 there holds

|x2 − ∂
∂x1

R(ΦProd
τ,M )(x1, x2)| ≤

∣∣∣(x1 + x2)− 2R(Φf
τ/6,M )′( 12x1 +

1
2x2) · 12

∣∣∣

+
∣∣∣x1 − 2R(Φf

τ/6,M )′( 12x1) · 12
∣∣∣ + 0

≤ 2τ/6 ≤ τ,

where the factors 1
2 are due to the chain rule. The analogous bounds for differentiation

with respect to x2 also hold.
Because the number of neurons of Φf

τ/6,M is bounded independently of M and τ , so

is that of ΦProd
τ,M . Denoting by N1 the number of neurons in the hidden layer of ΦProd

τ,M ,
because the input dimension is N0 = 2 and the output dimension is N2 = 1, the total
number of nonzero weights and biases is at most

∑2
ℓ=1 Nℓ(Nℓ−1+1) = 4N1+1, which

is independent of M and τ .

Remark B.4. As a result of Lemma B.3, all constructions and results in Section 7.4,
Appendix A and Section 7.5 also hold for NNs whose activation function satisfies the
conditions of Lemma B.3, which includes ReLU2 and the sigmoid defined in Remark
7.3.

With the approximation of the exponential boundary layer functions by sigmoid
NNs in Remark 7.3, the main result of Section 7 also holds for sigmoid NNs.
Theorem B.5. Theorem 7.4 also holds for sigmoid NNs.
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