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Abstract

In this working paper, the conditional expectation of a random vector given a stochastic pro-
cess is characterised as the solution of some convex (semi-)infinite linear least squares problem.
This result is based on a functional monotone class argument involving the robust signature of
the conditioning process, and it enables the nonparametric and practically feasible computation
of conditional distributions for very general classes of jointly distributed stochastic processes.

Keywords: conditional expectation, conditional distribution, conditional probability, super-
vised learning, nonparametric regression, functional regression, function approximation.

1 Introduction

Knowing the conditional expectation of a random variable given another random variable is fun-
damental to a structured understanding of the statistical dependencies between these variables. In
formalising the concept of Śbest-approximationŠ of one variable based on the information given by
another, the general signiĄcance of conditional expectations extends far beyond theoretical nuances,
with their practical utility permeating areas as diverse as option pricing [39] or risk assessments
in Ąnancial markets and portfolios [2], stochastic Ąltering and the optimisation of control systems
in engineering [3, 31], computer vision [1] and molecular dynamics [24], survival analysis [22] and
causal models [33], time series analysis and forecasting [32, 34, 40] and Bayesian inversion and
inference [30, 37] broadly, to name just a very few classical examples. Recently, one of the most
spectacular domains of application for conditional expectation, in its role as the fundamental target
concept behind statistical regression, is the area of statistical machine learning [17] at large and
the subĄeld of natural language processing, most notably large language models [46], in particu-
lar, the latter seen essentially as statistical models to approximate conditional distributions1 [38, 43].

A particular challenge in computing conditional expectations and their derived statistics, also
present in most of the above-cited examples and especially in sequential or language-based ma-
chine learning, is to efficiently account for potential time-dependencies in the conditioning variable,
that is: to condition on stochastic processes. This problem was Ąrst systematically considered in
classical probability, where the traditional model classes of martingales and Markov processes were
conceived to elegantly circumvent subtler issues of time-dependent conditioning. Yet these classical
ŚevadingŠ assumptions have their clear limitations, e.g. [6, 26], and so it is worthwhile to revisit the
general problem of time-dependent conditioning with modern tools from stochastic analysis.

∗
rima.alaifari@math.ethz.ch

†
alexander.schell@math.ethz.ch

1 A conditional distribution, of course, amounts to a family of conditional expectations over indicator functions.
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This working paper2 addresses the following related questions, which the literature suggests to be of
signiĄcant relevance in practice: Given a random vector Z in R

m and two multiviariate stochastic
processes X and Y in (discrete- or) continuous time and not necessarily of the same dimension,

How can the quantities E[Z ♣X] and P(Y ∈ · ♣X) be efficiently computed? (1)

The approximation of conditional expectations has been well-addressed for time-independent X or
if the temporality of X = (Xt) conforms to certain parametric assumptions (e.g. [8, 5, 45] and the
references therein), but to the best of our knowledge there are currently no rigorous nonparametric
answers to (1) for general (jointly distributed) stochastic processes X = (Xt) and Y = (Yt).

The present work attempts to close this gap by using tools from rough path theory, and in particular
the concept of Şrobust signaturesŤ recently introduced in [10], to structure the conditional σ-algebra
generated by the process X: As described in Section 3, the robust signature, ϕ, is an algebraically
structured and Hilbert-valued global injection over the space of sufficiently continuous paths that are
the realisations of the process X. Since this injection is also bounded, a functional monotone class
argument shows that the span of (already some linear subset L of) all bounded linear functionals
composed with ϕ(X) is an L2-dense subset of all square-integrable X-measurable functions, see the
proof of Proposition 4.3. This then implies as our Ąrst answer to (1) the variational characterisation:

E[Z ♣X] = lim
k→∞

m∑

i=1

〈
αik, ϕ(X)

〉
· ei, for (αik)k any minimizing sequence of

inf
(α1,...,αm)∈Lm

m∑

i=1

E
∣∣Zi − ⟨αi, ϕ(X)⟩

∣∣2,
(2)

where the above convergence holds at least in L2 and also almost surely if (αik) is fast enough,
see Corollary 4.6. Noting that the optimization in (2) is convex, a similar Śconvex characterisationŠ
can be found if instead of Z given X we are interested in the conditional expectation given X of
the robust signature of Y itself, see Theorem 4.5. An according characterisation of the latter then
provides a variational identity of the conditional distribution of Y given X, namely, for any A Borel,

P(Y ∈ A ♣X) = lim
l→∞

lim
k→∞

〈
ψαk

(X), ℓA,l
〉
, (3)

which again holds in L2 and also almost surely under further conditions, and where both (ψαk
(X))k

and (ℓA,l)l ⊂ L are explicitly computable by solving well-structured convex optimisation problems
involving (observations of) (X,Y ), see Section 5.1. Both (2) and (3) are practical answers to (1).

As highlighted at the beginning of this introduction, both of the above representations (2) and
(3) are new algorithmic solutions to important statistical approximation problems. An identity of
type (3) for sequential conditioning, in particular, is the central target property of most current
machine learning architectures on sequential data, yet here achieved rigorously and on a much
simpler algorithmic premise thanks to the ŚlinearisingŠ quality of the signature (Propositions 4.3
and 5.1). Note further that the validity of equations (2) and (3) does not depend on assuming any
prior relations between the marginals of (Z,X) or (Y,X), such as continuity or speciĄc statistical
dependence structures.

2 While this document is technically complete and accurate to the best of our knowledge, we would like to emphasize
that it is currently only a working paper in the sense that the presented theory is currently being further developed
with a view towards adding, among others, complementary assertions on convergence rates, additional examples and
illustrating applications, see also Section 6.
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Closing with a note on existing literature, we remark that prior approximations in a manner similar
to (2) have been Ąrst explored in [25, 27], though the respective aspects of these works are mostly
empirical and based on rather strict assumptions on (Z,X). In a spirit related to ours but with no
mathematical connection, [11] study nowcasting using linear regression on signatures. Finally, we
note that the observation that the robust signature algebra is dense in Lp, which is crucial for (2),
was also made independently of us (and by other mathematical means) in the most recent preprint
[4], where this idea is taken to different consequences in the realm of optimal stopping.

This working paper is organised as follows. Section 2 presents the case for conditional distributions
and their data-driven approximation (3) as a statistical foundation for supervised machine learning,
to ensure that readers with no intrinsic probabilistic background or interest can appreciate the
paperŠs main question (1) and the results we obtained. It is essentially an amateurŠs perspective
on the role of conditioning in supervised learning and can be skipped by anyone interested only in
the paperŠs statistical main contents (1) and (2) and (3). The latter contents are developed from
Section 3 onward, where the signature transform is introduced as essentially a global coordinate
map on spaces of sufficiently continuous paths (Sections 3.1 and 3.2) and then examined for its
well-known but central ŚlinearisationŠ property, that even when the signature is ŚsquishedŠ into a
ball by tensor normalisation, continuous functions on paths still asymptotically factor through it
linearly (Section 3.3). The main contribution of this working paper is then made in Section 4,
where, based on a new result on the L2-density of normalised signature algebras (Proposition 4.3),
the conditional expectation of the normalised signature of a process Y given another process X is
characterised as the solution of a conveniently approximable, convex semi-inĄnite linear least squares
problem (Theorem 4.5). In addition to providing a convenient and computationally expedient
variational characterisation of conditional expectations of the form (2) as a corollary to its proof,
Theorem 4.5 is also seen to imply linearised asymptotic representations of the form (3) for the
conditional distribution of a process Y given X with essentially no prior assumption about their
joint distribution (Section 5.1). Following a brief remark on how the results of this paper are
applicable to common prediction tasks (Section 5.2), the working paper concludes with a brief
outlook on some of the ongoing extensions that are currently being added to it (Section 6).

2 Motivation: Conditioning to Learn Relations from Data

This section explains how the seemingly technical question (1) about conditioning and conditional
distributions is of direct interest to machine learning practitioners. Note for this that many of
todayŠs challenges in machine learning involve the Ćexible and Śdata-drivenŠ, i.e. statistical3, mod-
elling of input-response relationships over data from high or even inĄnite dimensional spaces. In
other words, one cares about the Śappropriately estimatedŠ description of (sets of) ordered pairs

R ⊂ X × Y ≡
{

(x, y)
∣∣x ∈ X , y ∈ Y

}
(4)

for certain sets X and Y, which are usually vector spaces of up to inĄnite dimension. Traditionally,
the focus has been on the data-based approximation of functional relations (Śregression analysisŠ),
i.e. on approximating from the data relations of the form

Rf =
{

(x, f(x))
∣∣x ∈ X

} ∼= f for f : X → Y some function. (5)

Often, these classical regression tasks rely on the a priori assumption that the ŚtrueŠ relation f is in
fact contained within a preparametrized family (fθ) of well-understood proxies, from which f must
then be (approximately) identiĄed, e.g. estimated variationally as the argmin of some appropriate
objective function.

3 That is, finding approximations of the true relations that are are computable functions of the data (‘estimators’).
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Remark 2.1. In formal terms, Rf ∈ ⋃
θ∈Θ Rf

θ ⊆ 2X ×Y for some parametrised relational base(
Rf
θ := ¶(x, fθ(x)) ♣ x ∈ X ♢ ♣ θ ∈ Θ), where ideally the parametrisation θ 7→ Rf

θ is injective,

so that Rf ∈ arg minθ∈Θ Φ(Rf
θ) for an objective Φ : X × Y → R such as, e.g., the square-loss

Φ(Rf
θ) :=

∫
X ∥f(x) − fθ(x)∥2 µ̂(dx) where µ̂ := ♣X♣−1

∑
x∈X δx is the data-dependent counting

measure over the data X ⊆ X with cardinality ♣X♣ < ∞.

Now, for many if not most real-world situations and related machine learning tasks, the desired
relations (4) do not admit a deĄnite functional relation of the form (5). This is because, in many
such cases, a given input x does not necessarily lead to a single (deterministic) output y = f(x)
only, but can instead be associated with a whole (i.e., generally non-singleton) set

Rx := ¶y ∈ Y ♣ (x, y) ∈ R♢ (6)

of possible outcomes. (Of course, this can also be seen as a (set-valued) functional relation X → 2Y

via x 7→ Rx, though this abstraction will not provide much gain for us here.) Often, however,
for such multivalued associations, not all of the elementary associations y in (6) are equally Śrelev-
antŠ given an input x, but some of the elements of Rx are more plausible in relation to x than others.

Mathematically, one way to formalise such a Śrelevance-based gradientŠ, or ŚevaluationŠ, of an x-
section Rx is by means of a probability measure

µx : B(Y) → [0, 1] with supp(µx) ⊆ Rx , (7)

where B(Y) is the Borel-σ-algebra on Y (or any other suitable σ-algebra to carry a measure on Rx).
Given an input datum x, it is now a measure µx, instead of a single value y = f(x) as in (5), that
is to be learned from the data. We call

(
R, (µx ♣ x ∈ X )

)
a relevance-graded association (RGA).

Example 2.2 (Machine Translation). Consider the task of machine translation, where x represents
a sentence in an input language X to be translated into a corresponding sentence y in an output
language Y: Since there is usually more than one plausible translation y for a given x, one is
interested in outputs of the form (6) for the relation (x, y) ∈ R :⇔ Şy is a valid translation of xŤ.
A plausible valuation (7) of responses (6) to x could then be a numerical validity ranking of different
admissible translations of x, as compiled by polling an expert panel of professional translators.

Recognising that we usually donŠt know exactly how to explain the data, or how it was generated,
and also to account for its manifold versatility, we take a basic statistical perspective and model a
data point x ∈ X as being sampled from an underlying random variable X, i.e. we assume that

x = X(ω) for some ω ∈ Ω, where X : Ω → X is measurable4 (8)

and deĄned on some Ąxed probability space (Ω,F ,P) (i.e., a measure space with P(Ω) = 1).

To connect assumption (8) with the task of learning measure-valued functions (7) of the data, we
require that Śµx varies measurably in xŠ, which translates to the technical assumption that the map

κ : X × B(Y) → [0, 1], (x,A) 7→ µx(A),

is such that: x 7→ κ(x,B) ≡ µx(B) is
(
B(X ),B([0, 1])

)
-measurable, ∀B ∈ B(Y).

(9)

(Note that (9) is equivalent to stating that: the measure-valued map X ∋ x 7→ κ(x, ·) = µx ∈ M1 is
(B(X ),Σ)-measurable, where Σ := σ(evB ♣ B ∈ B(Y )) is the σ-algebra on M1 ≡ M1(B(Y)) (the set
of all Borel probability measures on Y) that is generated by the functions evB : M1 ∋ µ 7→ µ(B).)

A map of the form (9) is called a probability kernel, and we will use this concept for an analytically
clean description for the statistical learning of relevance-graded associative relations (4).

4 Naturally, as part of this perspective we assume that X can be endowed with an associated measurable structure.
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Definition 2.3. Let X and Y be Polish. We call regular RGA a pair (R, κ) for which R ∈ B(X ×Y)
is a Borel-measurable relation and κ ≡ (κ(x, ·)) is a prob. kernel with κ(x,Rx) = 1 for each x ∈ X .

The statistical base model (8) extends to a natural statistical framework for learning an RGA(
R, (µx ♣ x ∈ X )

)
[see (4) & (7)] via the assumption that related pairs (x, y) ∈ R can be lifted to

realisations of a random pair (X,Y ), with µx given by the conditional law of Y given ¶X = x♢:

there is a random pair (X,Y ) : Ω → X × Y such that ∀(x, y) ∈ X × Y :

(x, y) ∈ R ⇔ :
[
(x, y) = (X(ω), Y (ω)) for an ω ∈ Ω, and µx(·) = P(Y ∈ (·) ♣ X = x)

]
;

(10)
here as before, (Ω,F ,P) is some probab. space carrying the marginals X : Ω → X and Y : Ω → Y.

For regular RGAs, the lift (10) of a relevance-graded association to a pair of (X × Y)-valued pair
of random variables always exists and is essentially unique. Moreover, the converse holds as well,
establishing a one-to-one correspondence between pairs of random variables and regular RGAs.

Proposition 2.4. For each regular RGA (R, κ) and Borel prob. measure ξ on X with ξ(πX (R)) = 1,
there is a canonical pair (X,Y ) of jointly distributed rvs. X : Ω → X and Y : Ω → Y such that

κ(x, · ) = P(Y ∈ (·) ♣ X = x) for ξ-almost every x ∈ X . (11)

Conversely, each pair (X̃, Ỹ ) : Ω → X × Y of (jointly distributed) random variables is the lift of a
regular RGA (R̃, κ̃), i.e. there is a relation R̃ ∈ B(X × Y) and a probability kernel κ̃ such that (11)
holds for (R, κ,X, Y, ξ) := (R̃, κ̃, X̃, Ỹ,PX̃), and the associated random measure κ̃ : X → M1(B(Y))
is unique almost everywhere wrt PX̃ .

Proof. This is essentially just a quote of standard results in basic probability. Indeed:
DeĄne the measurable space (Ω,F ) := (X × Y,B(X × Y)) and endow it with the composition

P := ξ ⊗ κ : A 7→
∫

X

∫

Y

✶A(x, y)κ(x,dy) ξ(dx)
(
A ∈ B(X × Y)

)
.

Then P is a Borel probability measure on X × Y, cf. [19, Lemma 3.3], and the maps

X := πX and Y := πY

(
hence Z := (X,Y ) = idX × idY

)

are Borel-measurable random variables on (Ω,F ,P), with PX = ξ and joint law PZ = P. The
identity (11) then holds by the disintegration theorem, see for instance [19, Theorem 8.5].

For the converse statement, let Z̃ := (X̃, Ỹ ) and set R̃ := supp(PZ̃) and deĄne κ̃ as the disin-
tegration of PZ̃ wrt PX̃ , so that κ̃ is PX̃ -a.e. unique with the property PZ̃ = PX̃ ⊗ κ̃; see e.g. [19,
Theorem 3.4 (i) & (ii)]. Then R̃ is [closed and hence] Borel, and [✶R̃X̃

(Ỹ ) = ✶R̃(Z̃) a.s. and hence]

κ̃(X̃, R̃X̃) = P(Ỹ ∈ R̃X̃ ♣ X̃) = E[✶R̃(Z̃) ♣ X̃] = 1 a.s. [by [19, Theorem 8.5 (i)]] which implies that
κ̃(x, R̃x) = 1 for each x ∈ X \ N , for some N ⊂ X with PX̃(N ) = 0; restrict to R̃x and normalise
to κ̃(x, R̃x) = 1 for x ∈ N . The corresponding identity (11) holds by [19, Theorem 8.5 (i)].

In summary, the goal of supervised learning is to statistically recover binary relations (4) from
data, and these relations are typically sufficiently complex to pertain (to not simply the graph of
some deterministic function (5) of the input variable, as for classical curve Ątting tasks, but more
generally) to a random input-ouput pair (X,Y ) such that the given response (6) to an input x is
captured by the conditional distribution of Y given X = x, so that ŚlearningŠ the relation means
to learn this conditional distribution (so as to enable accurate predictions for new, unseen data).
Formally stated as Proposition 2.4, this connection highlights question (1) as essentially asking
how to do supervised learning efficiently on sequential data, and it interprets identity (3) as a
theoretically sound and practical signature-based answer to that question.

5



3 The Signature Representation of Sequential Data

While in Section 2 the relational data ¶(x, y)♢ ⊆ R was not speciĄed beyond belonging to some
abstract vector space X × Y, here we sharpen this assumption and operate on multidimensional
sequential data, that is, statistically drawn data (8) with a temporal order to it. Let d ∈ N be Ąxed.

3.1 Sequential Data from Stochastic Processes

Given as an [in]Ąnite tuple of vectors in R
d, we call sequential data any ordered family

x := (xt ♣ t ∈ I) ≡ (xt)t∈I with xt ≡ (x1
t , . . . , x

d
t ) ∈ R

d and I ⊂ R.

Denoting Z := R
d, we have x ∈ ZI and further assume this data to be ordered continuously, i.e.

x ∈
{
y ∈ ZI ♣ I ∋ t 7→ yt is continuous

}
=: C(I;Z) (12)

for signiĄcant technical convenience; note that there are many ways for discrete-time data to be
embedded into C(I;Z), e.g. using piecewise-linear interpolation. Adding to (8) the continuity
assumption (12), we understand the data-lift X in (8) to be continuous-time and Borel, that is

X : (Ω,F ) → (C(I;Z), ∥ · ∥∞) is Borel-measurable.

If I is compact, then usually I = [0, 1] wlog and we consider the Banach space

(
Cd := C([0, 1];Rd); ∥ · ∥∞

)
of all continuous paths x ≡ (xt) : [0, 1] → R

d.

For simplicity, we will usually operate on the Śsmooth coreŠ C1
d of absolutely continuous paths in Cd,

C1
d :=


x ∈ Cd

∣∣∣∣ ∃ ! ẋ ∈ L1([0, 1];Rd) : x· = x0 +

∫ ·

0

ẋs ds


, (13)

but, as usual, everything that follows admits canonical extensions to spaces of rougher paths as
well. The subspace C1

d of ŚsmoothŠ paths has the following convenient topological properties.

Lemma 3.1. The space C1
d is a Borel subset of (Cd, ∥ · ∥∞) and a separable Banach space wrt. the

1-variation norm ∥x∥1-var = ♣x0♣ + ∥ẋ∥L1 , and the spaces (C1
d , ∥ · ∥∞) and (C1

d , ∥ · ∥1-var) have the
same Borel σ-algebra.

Proof. The Ąrst part of the lemma is well-known and the second part is proved in Appendix B.1.

Set X :=
(
C1
dX
, ∥ · ∥1-var

)
and Y :=

(
C1
dY
, ∥ · ∥1-var

)
for some dX , dY ∈ N. Given (x, y) ∈ X × Y, let

∥(x, y)∥1-var := sup
D

∑

(tν )∈D

♣(xtν , ytν ) − (xtν−1 , ytν−1)♣ and ∥(x, y)∥∞ := sup
t∈[0,1]

♣(xt, yt)♣,

where the Ąrst supremum runs over the set D of all (Ąnite) dissections (tν) of [0, 1].
The next lemma ensures that fusing two jointly distributed processes X and Y to a joint process

(X,Y ) (Śinput-output relationŠ; cf. Section 2) bears no measure-theoretic complications.

Lemma 3.2. The space Z :=
(
X × Y, ∥ · ∥1-var) is Polish with Borel-σ-algebra B(Z) ≡ B(Z, ∥ ·

∥1-var) = B(Z, ∥ · ∥∞). For X : (Ω,F ) → X and Y : (Ω,F ) → Y, the joint process Z := (X,Y ) is(
F ,B(Z)

)
-measurable iff X and Y are Borel-measurable.

Proof. See Appendix B.2.
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3.2 The Signature Transform

After the general preparations of the previous subsection, we will now introduce the signature
transform of a path [7, 28]. This transformation can be thought of as a faithful compression that
sends a path to a hierarchically graded list of countably many coordinates that characterise the
path. To deĄne this transformation, we will Ąrst need to introduce some basic Śmultiindex notationŠ.

Notation 3.3. Let d ∈ N. To properly index the announced coordinates of the signature, let

[d]∗ := ¶∅, 1, 12, 21, d11, ddd1211d, . . .♢
be the free monoid over the alphabet [d] := ¶1, 2, . . . , d♢, i.e. the monoid of all Ąnite sequences of zero
or more elements from [d], where ∅ denotes the empty word. The set R[[d]] (∼= R[[x1, . . . , xd]]) is the
(free) algebra of all [multivariate] formal power series in the formal variables 1 (∼= x1), . . . , m (∼= xd).
The element 1 := 1 · ∅ is the multiplicative unit in R[[d]]. On a set-theoretic level

R[[d]] = ¶t : [d]∗ → R ♣ t is a map♢ ≡
{∑

w∈[m]∗ tw · w
∣∣ tw ∈ R

} ∼=
∏∞
ν=0(Rd)⊗ν , (14)

where the last identiĄcation is obtained by: identifying each word i1 · · · id ∈ [d]∗ with its associated
elementary tensor e1 ⊗ · · · ⊗ ed ∈ (Rd)⊗m, where (ei)i∈[d] is the standard basis in R

d.

On a geometrical note, let us for any path z ≡ (z1, · · · , zd) ∈ C1-var
d

(of bounded 1-variation)5

with components z1, . . . , zd ∈ C1-var
1 and any word w ≡ i1i2 · · · ik ∈ [d]∗ (k ∈ N) denote by

dzw ≡ dzi1i2···ik := dzi1 ∧ dzi2 ∧ · · · ∧ dzik

the w-indexed differential k-form deĄned via Lebesgue-Stieltjes differentials against the components
(zi) of z. Finally, let ∆k := ¶(tν) ∈ [0, 1]k ♣ 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ 1♢ be the k-dimensional
standard simplex, and deĄne the length of a word w, denoted by ♣w♣, as the number of its letters.

The following map is (essentially) a global coordinate chart that elucidates the space (13) of
sequential data by injecting its elements to vectors in a Hilbert space which are easier to analyse.

Definition 3.4 (Signature). The map sig : C1-var
d

→ R[[d]] that sends a path z to the formal series

sig(z) :=
∑

w∈[d]∗

∫

∆|w|

dzw · w ∼=
(∫

∆|w|

dzw

∣∣∣∣∣ w ∈
[
d
]∗
)

(15)

is called the signature. More explicitly, its w-th coefficient for a path z = (z1
t , · · · , zdt )t∈[0,1] reads

∫

∆|w|

dzw ≡
∫ 1

0

∫ tk−1

0

∫ tk−2

0

· · ·
∫ t2

0

∫ t1

0

dzi1t0 dzi2t1 · · · dz
ik−2

tk−3
dz

ik−1

tk−2
dziktk−1

(16)

for the length-k (= ♣w♣) word w = i1i2 · · · ik−2ik−1ik ∈ [d]∗ (so iν ∈ ¶1, . . . , d♢ for each ν ∈ [k]).

Given a path x ∈ Cd, we denote its canonical monotone augmentation by

x̄ := (t, xt)t∈[0,1] ≡
(
x0
t , x

1
t , · · · , xdt

)
t∈[0,1]

∈ Cd+1 and set ῑ : Cd →֒ Cd+1, x 7→ ῑ(x) := x̄, (17)

for notational ease later on. The map (15) gives an embedding of paths into formal power series.

Theorem 3.5 ([16]). The augmented signature map

sig := sig ◦ ῑ : C1
d −→ R[[d0]] ≡ R[[¶0, 1, . . . , d♢]] is injective. (18)

Proof. Immediate by [16, Theorem 4] and the fact that, for any x, y ∈ C1
d , due to the strict mono-

tonicity of their Ąrst component the augmented paths x̄ and ȳ are treelike equivalent iff x = y.

Geometrically, the (augmented) signature (18) is a global chart for the Hilbert manifold C1
d (Lemma

3.6). To exploit the transform (15) for our purposes, it will be convenient to endow its co-domain
with some additional structure; more speciĄcally, R[[d]] can be made into a Hilbert space.

5 Here, we denote by C1-var
d

the space of all the paths in Cd that are of finite 1-variation.
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3.2.1 Gradation and Inner Product (Of and Between Signature Vectors)

Any inĄnite [d]∗-indexed tuple a ≡ (aw)w∈[d]∗ ⊂ R, such as (15), can be embedded into the algebra
(14) via a =

∑
w∈[d]∗ ta(w) ·w ∈ R[[d]] with ta(i1 · · · im) := ai1···im . Upon grouping the summands

in (14) by their wordlength, we get

V ≡ R[[d]] =

∞∏

m=0

Vm for Vm :=
⊕

w∈[d]∗ : ♣w♣=m

Rw , (19)

where the length ♣w♣ ∈ N0 of a word w ∈ [d]∗ is deĄned as the number of its letters. The gradation
(19) comes with the canonical projections πm : V → Vm, πm(a) := am ≡ ∑

♣w♣=m aw · w, for each

m ≥ 0, and we set π[m] ≡ ∑m
ν=1 πν : V −→ V[m] :=

⊕m
j=0 Vj . Finally, we deĄne the inner product

⟨· , ·⟩ : V × V → R, (a, b) 7→
∑

w∈[d]∗
⟨a, w⟩ · ⟨b, w⟩ =: ⟨a, b⟩, (20)

as the (inĄnite) bilinear extension of ⟨u, v⟩ := δuv, u, v ∈ [d]∗. In other words, [d]∗ is an ONS wrt.
⟨·, ·⟩, and we note that ⟨·, ·⟩ =

∑
m≥0⟨πm(·), πm(·)⟩ pointwise on V × V .

Under convergence constraints, the above structure allows us to make V into a Hilbert space:

Lemma 3.6 (Hilbert Codomain of (15)). For (V, ⟨·, ·⟩) the power series algebra from above, let

H :=
{

t ∈ V
∣∣∣ ∥t∥ :=

√∑
m≥0∥πm(t)∥2

m < ∞
}

with ∥ · ∥m :=
√

⟨·, ·⟩m , (21)

where ⟨·, ·⟩m := ⟨πm(·), πm(·)⟩ for each m ≥ 0. Then (H, ⟨·, ·⟩) is a separable Hilbert space with
ONB (w ♣ w ∈ [d]∗), which contains the image sig(C1

d
). Moreover, the maps

sig : C1
d

→ H and sig : C1
d−1 → H (22)

are both continuous wrt. the p-variation topology (on C1
m) for any p ≥ 1.

Proof. The observations in this lemma are all well-known, see Appendix B.3.

Writing ξw : C1
d̃

∋ x 7→
∫

∆|w|
dxw ∈ R for w ∈ [d̃]∗, where dxi1···im := dxi1 ∧ · · · ∧ dxim , we have

sig =
∑

w∈[d̃]∗
ξw · w

and this series ∥ · ∥-converges pointwise on C1
d̃

and uniformly over compact subsets of C1
d̃
.

If desired, we can of course generalise (21) to a whole family of sig-containing Hilbert codomains:

Remark 3.7 (Alternative Hilbert Codomains). Let γ ≡ (γm)m≥0 > 0 with 0 < γm ≤ λm (all
m ∈ N) for some λ > 0. Given the gradation (19) of V together with the ŚEuclidean identiĄcationŠ
of its components Vm ∼= (V ⊗m

1 , ⟨·, ·⟩m) seen above [right after (14)], with V1
∼= (Rd, ⟨·, ·⟩2) and

⟨·, ·⟩m ≡ ∏[m]⟨·, ·⟩2 and ∥ · ∥m =
√

⟨·, ·⟩2
m, another natural Hilbert space structure on V is given by

Hγ :=
{

t ∈ V
∣∣∣ ∥t∥γ :=

√∑
m≥0 γm∥πm(t)∥2

m < ∞
}

(23)

together with the inner product ⟨s, t⟩γ :=
∑
m≥0 γm⟨πm(s), πm(t)⟩m. It is clear that (Hγ , ⟨·, ·⟩) is a

Hilbert space (as the ℓ2-direct sum of the Hilbert spaces (Vm, γm⟨·, ·⟩m), m ≥ 0), see e.g. [12, Prop.
I.6.2]), and we denote its topology by τγ . Clearly τγ̃ ⊆ τγ if γ̃ ≤ γ, as then ∥ · ∥γ̃ ≤ ∥ · ∥γ .
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3.3 The Signature as a ‘Universal Nonlinearity’

C1
d R[[d0]] ℓ∞

R

sig
(
⟨f̃k, · ⟩

)

f L⃗

Figure 1: The signature lift as a
Śuniversal nonlinearityŠ: For every
bounded continuous function f from
C1
d to R, there exists a sequence

(f̃k) ⊂ R[d0] such that f =
limk→∞⟨f̃k, sig⟩ in the strict topology
of DeĄnition 3.8.

(Here, L⃗ : ℓ∞ → R is the (unique, by
Hahn-Banach) extensionŮfrom the
[closed] subspace c of convergent se-
quences to ℓ∞Ůof the limit operator
L⃗ : (αk) 7→ limk→∞ αk.)

A central property of the (augmented) signature trans-
form (18) is that any bounded continuous function f :
(C1
d , ∥ · ∥1-var) → R decomposes into a linear functional of

the signature, or precisely: the diagram on the right com-
mutes.

Henceforth we employ the notational convention (cf. (18))

[d0] := ¶0, 1, 2, . . . , d♢ and ῑ(x) =: (x0
t , x

1
t , · · · , xdt )t∈I ,

thus ⟨10230, sig(x)⟩ =
∫

∆5
dx1 ∧ ds ∧ dx2 ∧ dx3 ∧ dt etc.

Let further R[d0] :=
⊕∞

m=0 Vm ⊂ H be the subspace
of R[[d0]] of all polynomials in the formal variables [d0].

The announced feature that nonlinear maps factor linearly
through the signature is asymptotic, so we need to Ąx an
appropriate topology for which convergence holds. Here, we
follow [10] in using GilesŠ strict topology [15].

3.3.1 Some Topological Preparations

Let X := (C1
d , ∥ · ∥1-var), write Cb(X ) for the set of all

bounded continuous functions on X , and write

B0(X ) := ¶ψ : X → R bounded ♣ ∀ ε > 0 : ∃ K ⊂ X compact : supx∈X \K ♣ψ(x)♣ < ε♢

for the set of all bounded functions on X that vanish at inĄnity.

Definition 3.8 (Strict Topology [15]). The strict topology on Cb(X ), denoted by τX
str, is the topology

induced by the family of seminorms

pψ(f) := sup
x∈X

∣∣f(x)ψ(x)
∣∣, ψ ∈ B0(X ).

Note that the strict topology is weaker than the uniform topology on Cb(X ) but stronger than
the topology of compact (and thus also pointwise) convergence on Cb(X ), see [15, Theorem 2.4 (i)].

Lemma 3.9 ([15, Thm. 4.6]; Duality for τX
str). The topological dual of

(
Cb(X ), τX

str

)
is the space

of all Ąnite signed regular Borel (fsrB) measures on (X , ∥ · ∥∞). More speciĄcally: Given an fsrB
measure µ on B(X ), the linear functional Lµ : Cb(X ) ∋ f 7→

∫
X f dµ ∈ R is τX

str-continuous, and
for each τX

str-continuous linear functional ϕ on Cb(X ) there exists a unique fsrB measure µϕ such
that ϕ = Lµϕ

.

Proof. This is simply [15, Theorem 4.6; see also Lemmas 4.2 and 4.5] combined with the identity
σ(X , ∥ · ∥1-var) = σ(X , ∥ · ∥∞) from Lemma 3.1.

As a further aid, we will build on the [10]-introduced concept of tensor normalisation to main-
tain the Śuniversal nonlinearityŠ property of the signature transform over unbounded path spaces,
see DeĄnition 3.14 below. To this end, we would like to make some preliminary observations.

Given λ ∈ R, the λ-dilation is the map δλ : V ∋ t 7→ ∑∞
m=0 λ

mπm(t) ∈ V (thus, δ1 = idV ).

9



Remark 3.10 (Signature Decay). Let us recall from [29, Theorem 3.7 (case p = 1)] that

∥∥πm(sig(x))
∥∥
m

≤ ∥x∥m1-var/(m!β), for each (x,m) ∈ X × N0 (24)

(for some [(x,m)-independent] constant β > 1), i.e. the signature decays factorially. In particular,

sig(X ) ⊂
{

t ∈ V
∣∣∣
∑

m≥0

∥πm(t)∥mλm < ∞, ∀λ > 0
}

=: H↓ ⊆ H,

and consequently δλ(sig(X )) ⊂ H↓ for each λ > 0, since clearly δλ : H↓ → H↓ for each λ > 0.

Lemma 3.11 (ŚStrong ContinuityŠ). Endow the subspace H↓ with the locally convex topology τ↓

which is induced by the family of norms

♣♣♣·♣♣♣λ : H↓ → R, t 7→ ♣♣♣t♣♣♣λ :=
∑

m≥0

∥πm(t)∥λm, λ > 0.

Then (H↓, τ↓) is separable and metrizable Hausdorff and, for each p ≥ 1, the signature transform

sig :
(
X , ∥ · ∥p-var

)
→ (H↓, τ↓) is continuous. (25)

Proof. The topological qualities of (H↓, τ↓) are due to [9, Corollary 2.4], while the continuity asser-
tion about the signature is [9, Corollary 5.5].

Remark 3.12 (Comparison of Topologies). Clearly, for any topological space T , a map φ : H↓ → T
is τ↓-continuous if φ is ♣♣♣·♣♣♣λ-continuous for at least one λ > 0. Moreover, note that H↓ is a subspace
of Hγ , and that the above locally convex topology τ↓ on H↓ is Ąner than the (23)-induced subspace
topology τγ on H↓. Indeed: Since τ↓ is metrizable (Lemma 3.11), the space (H↓, τ↓) is sequential,
whence τγ ⊆ τ↓ (iff idH↓

: (H↓, τ↓) → (H↓, τγ), v 7→ v, is continuous) iff every τ↓-convergent
sequence in H↓ is τγ-convergent. This clearly holds, however, since for every null-sequence (vk) in
(H↓, τ↓) there is k0 ∈ N with supk≥k0

♣♣♣vk♣♣♣λ < 1 and hence, for each k ≥ k0,

∥vk∥2
γ =

∑
m≥0 γm∥πm(vk)∥2

m ≤ ♣♣♣vk♣♣♣λ −→ 0 as k → ∞.

As one consequence of the inclusion τγ ⊆ τ↓, notice that (25) also holds for H↓ replaced by Hγ .

Lemma 3.13. If λ· : (H↓, τ↓) → R>0 is a continuous positive scalar Ąeld, then the map

Λ : (H↓, τ↓) → (H↓, ∥ · ∥), t 7→ δλt
t, is continuous. (26)

Consequently and for any Ąxed p ≥ 1, the Λ-scaled signature transform

Λ ◦ sig : (X , ∥ · ∥p-var) → (H↓, ∥ · ∥), x 7→ δλsig(x)
(sig(x)), is continuous. (27)

Proof. Since the augmentation map ῑ = (θ, idX ) : C1
d → C1

d0
from (17), with θ(x) := (t)t∈[0,1], is

(∥·∥p-var, ∥·∥p-var)-continuous, the continuity (27) follows immediately from (25) and assertion (26).
Let us now prove (26). Recall for this that Λ(t) =

∑
m≥0 λ

m
t
πm(t) by deĄnition, and that, since

(H↓, τ↓) is Ąrst-countable by Lemma 3.11, the map Λ is continuous if it is sequentially continuous.
Let hence t, (tk) ⊂ H↓ with limk→∞ tk = t in τ↓, i.e. limk→∞ ♣♣♣tk − t♣♣♣λ̃ = 0 for all λ̃ > 0. Then

∥Λ(tk) − Λ(t)∥2 ≤ 2
∑

m≥0

(
∥λm

tk
πm(tk) − λm

tk
πm(t)∥2

m + ∥λm
tk
πm(t) − λm

t
πm(t)∥2

m

)
. (28)
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With λ· : t 7→ λt τ↓-continuous, we have limk→∞ ♣λtk
− λt♣ = 0 and thus c := max¶supk λtk

, λt♢ <
∞. As noted above, limk→∞ ♣♣♣tk − t♣♣♣c = 0 and ♣♣♣t♣♣♣c < ∞. The summands αm,k := ∥λm

tk
πm(tk −

t)∥2
m and βm,k := ∥(λm

tk
− λm

t
)πm(t)∥2

m on the right-hand side of (28) compare to

αm,k ≤ am,k := cm∥πm(qk − q)∥m and βm,k ≤ bm := 4cm∥πm(q)∥m, (29)

for all k ∈ N and each m ≥ m0, for some sufficiently large m0 ∈ N0. Hence and from (28) we Ąnd

lim
k→∞

∥Λ(tk) − Λ(t)∥2 ≤ 2 lim
k→∞

♣♣♣tk − t♣♣♣c +
∑

m≥0

lim
k→∞

βm,k = 0 , (30)

where interchanging limit and summation for the second summand in (30) is permissible by domin-
ated convergence, which in turn is applicable thanks to the (βm,k)-domination in (29) and the fact
that

∑
m≥0 ♣bm♣ = 4♣♣♣q♣♣♣c < ∞. This proves (26), as desired.

3.3.2 Universality of the Normalised Signature Transform

We can now recall the desired universality of Ćexibly scaled versions of the signature transform.

Definition 3.14 ([10]). We call feature normalisation (fN) any injective map of the form

Λ : H↓ → HR := ¶t ∈ H ♣ ∥t∥ ≤ R♢, t 7→ δλt
t, (31)

where R > 0 is a Ąxed constant and λ : (H↓, τ↓) ∋ t 7→ λt ∈ R>0 is continuous.

ItŠs shown in [10, Sec. 3.2] that feature normalisations exist and can be conveniently constructed.
As is also shown in [10], we can use (31) to ŚsqueezeŠ the signatureŠs original coefficient functions
(ξw) into Cb(X ) in such a way that most of the original signatureŠs desirable structure is preserved.

Proposition 3.15 (Stone-Weierstrass for Bounded Signatures). Let Λ = δλ(·)
be a feature normal-

isation, for λ· : (H↓, τ↓) → R>0 continuous, and set λ(·) := λ·◦ sig(·). Then the family of signature
coefficients

AΛ := spanR

{
ξλ
w

: X ∋ x 7→ λ♣w♣
x

∫

∆|w|

dx̄w
∣∣∣ w ∈ [d0]∗

}
, with sig

Λ
:=

∑

w∈[d0]∗

ξλ
w

· w, (32)

is a point-separating and non-vanishing6 subalgebra of Cb(X ). Moreover, the algebra AΛ is in fact
dense in

(
Cb(X ), τX

str

)
, which implies that

∀ f ∈ Cb(X ) : ∃ (f̃k)k∈N ⊂ R[d0] such that f = lim
k→∞

〈
f̃k, Λ ◦ sig

〉
in τX

str. (33)

If the domain X is in fact a bounded subset of C1
d, then all of the above holds for Λ = idH↓

.

Proof. This follows from [15, Theorem 3.1] via Theorem 3.5 and the fact that the span of all iterated
integrals (16) is closed under multiplication, cf. also [10, Theorem 21] or see Appendix B.4 for a
detailed proof.

Their global boundedness and simultaneous universality, which come to fruition in Section 4.1
below, make the normalised signatures sig

Λ
= Λ ◦ sig from (32) (also called Śrobust signaturesŠ in

[10]) our transformations of choice to derive the desired representations (2) and (3).

6 A family A ⊆ C(X ) will be called non-vanishing if: ∀ x ∈ X there exists ϕ ∈ A such that ϕ(x) ̸= 0.
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4 Computing Conditional Expectations via Signatures

Let us return to the stochastic setting (10) where we consider a pair (X,Y ) of (X × Y)-valued
random variables to make the learning of relations accessible, via lifting, to a rigorous probabilistic
description. Suppose for the following that the data of interest is sequential as in Section 3.1, and
speciĄcally that

X :=
(
C1
dX
, ∥ · ∥1-var

)
and Y :=

(
C1
dY
, ∥ · ∥1-var

)
for some dX , dY ∈ N.

In this case, the random variables, supported on the same (complete) probability space (Ω,F ,P),

X : Ω → X and Y : Ω → Y, (34)

are continuous-time stochastic processes. Remark A.1 collects some useful technical details on (34).

The random variable X in (34) induces a sub-σ-algebra ΣX := σ(X) of F that serves us as the
Śinformational basisŠ for an X-informed [L2-] best-approximation YX of the process Y . SpeciĄcally,

YX = E[Y ♣X] : Ω → Y, (35)

i.e., the X-based [L2-]optimal proxy YX of Y is given as the conditional expectation of Y wrt. ΣX .7

Now an approximation YX of the full process Y is generally difficult to come by, especially
because of the Śanalytical intractabilityŠ of the path space Y, but often also not directly required
for applications. Instead, one is usually more interested in the conditional distribution

B(Y) ∋ A 7−→ P(Y ∈ A ♣X) := E[✶A(Y ) ♣ ΣX ] (36)

of Y given X, and in associated derived statistics of Y , as we have seen in Sections 1 and 2.

Delivering on the initial announcement (2), this section presents a new approach to Ąrst com-
pute (35) efficiently and with controllable precision (Theorem 4.5 and Corollary 4.6). According
representations for (36) then follow in Section 5.1 (Proposition 5.1 and Corollary 5.2).

4.1 The Conditional Expected Signature of Y given X

The processes X and Y , given as the Banach-space-valued random variables (34) per default, can
be analysed more proĄtably in the Śtime-globalŠ coordinates (16) provided by the Hilbert-charts (22).

So we transition from the default description (34) to the Hilbert setting (22) and abbreviate

❳ := sig(X) and ❨ := sig(Y ). (37)

We know from Lemma 3.6 that ❳ and ❨ are Hilbert-space-valued random variables8, speciĄcally:

❳ ∈ L(P,HX ) := L(Ω,F ,P ; HdX
) and ❨ ∈ L(P,HY),

where Hd (d ∈ N) is the Hilbert subset of R[[d]] of square-summable power series as deĄned in (21).

Differentiating degrees 1 ≤ p < ∞ of integrability, we also introduce the spaces and norms

Lp(P,H) :=
{
❩ ∈ L(P,H)

∣∣ E∥❩∥p < ∞
}

and
∥∥❩
∥∥
Lp(H)

:=

∫

Ω

∥∥❩(ω)
∥∥pdP

1/p

= E
[
∥❩∥p

] 1
p .

(38)

7 Recall that the conditional expectation (35) exists if Y is Bochner-integrable [which we don’t need to assume
for our actual purposes], and it is unique up to P-almost sure equality; see e.g. [36, Theorem II.2.1]. 8 Here as

throughout, any random variable is understood to be Borel: ❩ ∈ L(P, H) :⇔ ❩ is
(
F , σ(∥ · ∥H)

)
-measurable (⇔ ❩

is Bochner-measurable, since the H are separable [Lemma 3.6]; see e.g. [42, Proposition 1.8]).
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Recall that (Lp(P,H), ∥ · ∥Lp(H)) is Banach for 1 ≤ p < ∞ and Hilbert for p = 2 with inner product

〈
❩1,❩2

〉
L2(H)

:=

∫

Ω

⟨❩1(ω),❩2(ω)⟩ dP = E
[
⟨❩1,❩2⟩

]
. (39)

To avoid any integrability concerns on side of the coordinate representation ❨ of Y , consider

❨
Λ := Λ(❨) for Λ : H↓

Y → HY some Ąxed feature normalisation; (40)

❳
Ξ := Ξ(❳) for Ξ : H↓

X → HX some Ąxed feature normalisation. (41)

Let us make a few simple but far-reaching observations.

Lemma 4.1. We have that ❨Λ ∈ Lp(P,HY) for each p ≥ 1.

Proof. The fact that ❨Λ ∈ L(P,HY) is due to (27) and the fact that in our setting, Bochner- and
Borel-measurability coincide thanks to the separability of HY (e.g. [42, Prop. 1.8]). The unrestricted
integrability of ❨Λ is clear since Λ is bounded by deĄnition (31) of an fN.

Lemma 4.2. Adopting the setting and notation of Proposition 3.15, we have that

ΣX = σ
(
sig

Λ
(X)

)
= σ

(
ξλ
w
(X)

∣∣∣ w ∈ [d0]∗

. (42)

Proof. Let us abbreviate φ := sig
Λ

and ϕw := ξλ
w

(X) for each w ∈ [d0]∗. We Ąrst prove that
σ(X) = σ(φ(X)): The inclusion σ(φ(X)) ⊆ σ(X) is immediate since φ : X → Hd0 is continuous
(and hence Borel-measurable), see Lemma 3.13. For the converse, note that since φ is also an
injection, we have that Aφ := φ(A) ∈ B(Hd0

) ∩ φ(X ) for any Ąxed ∥ · ∥1-var-open set A ⊆ X .
Indeed, the set Aφ is analytic (as the continuous image of a Borel subset of a Polish space) and so
is its complement Acφ ≡ φ(X ) \ Aφ = φ(Ac), where the last identity holds since φ is injective; this
implies that Aφ ∈ B(Hd0

∩φ(X )) by a theorem of Souslin [23, Corollary 3.1 (p. 486)]. Consequently,
X−1(A) = (φ(X))−1(Aφ) ∈ σ(φ(X)) and hence σ(X) ⊆ σ(φ(X)), as desired. Let us next prove
the second identity in (42).

The inclusion σ(ϕw ♣ w ∈ [d0]∗) ⊆ σ(φ(X)) is immediate since ϕw = ⟨w,φ(X)⟩ for each w ∈ [d0]∗

(cf. (20)) and each ⟨w, ·⟩ : Hd0
→ R is continuous. The converse inclusion holds as, pointwise on Ω,

∥φ(X) − ψn∥ ≤
∞∑

m=n+1

∥πm(φ(X))∥m m→∞−→ 0, for ψn :=
∑

♣w♣≤n ϕw · w

(cf. (32) and (27)), i.e. φ(X) is the pointwise limit of σ(ϕw♣w)-measurable functions and thus
σ(ϕw♣w)-measurable itself.

Setting (d, d̃) :=
(
(dX )0, (dY)0

)
and for any Ąxed fN Ξ on HX , let us introduce the coefficient space

L2
X :=

{
α :
[
d̃
]∗ → R[d], w 7→ αw

∣∣ ∥α∥2
L :=

∑
w∈[d̃]∗E

[
⟨αw, ❳Ξ⟩2

]
< ∞

}

(cf. (41) for notation), as well as the space

L2
X(HY) := L2(P,ΣX ; HY) ≡ ¶❩ ∈ L2(P,HY) ♣ ❩ ∼L2 ❩̃ : ❩̃−1(B(HY)) ⊆ ΣX♢ (43)

of all ΣX -measurable mean-square integrable HY -valued random variables.

The following result provides us with a large family of easily adjustable model functions that
will allow us to compute the conditional expectation E[❨Λ ♣X] as the unique solution of a convex
and feasibly implementable Śleast-squares typeŠ optimisation problem.
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Proposition 4.3. For Ξ as above, consider the family of L2
X-parametrised ŚsimpleŠ functions

Ψ :=
{
ψα : X → HdY

∪ ¶∞♢
∣∣ α ≡ (αw) ∈ L2

X♢ given by ψα :=
∑

w∈[d̃]∗

〈
αw, sigΞ

( · )
〉

· w. (44)

Then, the family of ŚsimpleŠ random variables

Ψ(X) := ¶ψ(X) ♣ ψ ∈ Ψ♢ is an ∥ · ∥L2(HY )-dense subset of L2
X(HY). (45)

Proof. We Ąrst show that Ψ(X) ⊆ L2
X(HY). Let for this α ∈ L2

X be Ąxed. By monotone conver-
gence,

∥ψα(X)∥2
L2(HY ) =

∑
w∈[d̃]∗E

[
♣⟨αw, sigΞ

(X)⟩♣2
]

= ∥α∥2
L < ∞.

In particular, ∥ψα(X)∥ < ∞ almost surely, whence the (ΣX ,B(HY))-measurability of ψα(X) follows
via Pettis measurability theorem (e.g. [42, Theorem 1.11], applicable by Remark A.1 (iv)) from
the facts that the compositions ⟨w,ψα(X)⟩ = ⟨αw, sigΞ

(X)⟩ are each ΣX -measurable by Lemmas

3.13 & 4.2 and (⟨w, ·⟩ ♣ w ∈ [d̃]) is a (Schauder) basis of the [topological] dual of Hd̃. (In our setting
the notions Bochner- and Borel-measurability coincide thanks to the separability of Hd̃, see e.g.
[42, Prop. 1.8].)

Next we show the density assertion (44). Our proof uses the following classical result:

Lemma 4.4 (Functional Monotone Class). Suppose that H is a vector space
of bounded real-valued functions on a measurable space X such that H contains
the constants and is closed under bounded monotone convergence (that is, for any
increasing sequence (φk) ⊂ H of positive, uniformly bounded functions, the (point-
wise) limit φ := limk→∞ φk lies in H). Let C be a subset of H which is closed under
pointwise multiplication, then H contains all σ(C)-measurable bounded functions.

Proof of Lemma 4.4. See for instance [18, Theorem A.1].

For arbitrary ❩ ∈ L2
X(HY) =: G and w ∈ [d̃]∗ Ąxed, note that ❩w := ⟨w,❩⟩ ∈ L2(Ω,ΣX ,P) =: G1.

(Indeed, E
[
♣❩w♣2

]
≤ ∑w∈[d̃]∗ E

[
♣❩w♣2

]
= E

[∑
w∈[d̃]∗ ❩

2
w

]
= E

[
∥❩∥2

]
= ∥❩∥2

L2(HY ) < ∞.) Now let

H := AΞ(X)
L2

∩ L∞ and C := AΞ(X), where AΞ(X) := ¶ξ(X) ♣ ξ ∈ AΞ♢ (cf. (32)). (46)

In other words, C is the vector space of images of X under the maps from AΞ, where AΞ the
space of all Ξ-scaled signature polynomials as deĄned by (32)♣Λ=Ξ, and H is the set of all bounded
ΣX -measurable random variables which are in the G1-closure of C. From Proposition 3.15 we know
that AΞ is a subalgebra of Cb(X ), and consequently C is a subset of H which is closed under
pointwise multiplication. Next, let us show that H satisĄes the hypotheses of Lemma 4.4: First, it
is clear that H is a vector space (as the intersection of two vector spaces) which also contains the
constants since C contains the constants. To check for the appropriate closedness of H, note that
for any monotone sequence (③k) ⊂ H such that supk ♣③k♣ ≤ C for some C > 0 and ③ := limk→∞ ③k

pointwise, we have ③k → ③ in L2 by dominated convergence, implying ③ ∈ H as required.
The above pair (H,C) thus qualiĄes for the application of Lemma 4.4, which yields that H

contains all bounded σ(C)-measurable functions. But since C = spanR

{
ξΞ

w
(X)

∣∣ w ∈ [d̃]
}

and hence

σ(C) = σ(ξΞ

w
(X)

∣∣ w ∈ [d̃]), Lemma 4.2 implies σ(C) = ΣX , which shows that in fact we have
proved

G1 ∩ L∞ ⊆ H ⊆ C
L2

. (47)

Before using this observation to prove (45), note that for the above w-coordinate ❩w we have

❩w = L2- lim
n→∞

❩
⟨n⟩
w for the truncations ❩

⟨n⟩
w := max

(
− n, min(❩w, n)

)
∈ G1 ∩ L∞
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(the above L2-convergence holds by dominated convergence). But since (❩
⟨n⟩
w ) ⊂ C

L2

by (47), we
Ąnd

❩w ∈ C
L2

, that is: ❩w = L2- lim
j→∞

⟨αw,j , sigΞ
(X)⟩ for some (αw,j)j ⊂ R[d]. (48)

Since (48) holds for all w ∈ [d̃]∗, the desired conclusion (45) is now within very close reach:
Fix any ε > 0. Abbreviating φp := ⟨p, sig

Ξ
(X)⟩ for p ∈ R[d], choose some

α⋆w ∈ R[d] such that ∥❩w − φα⋆
w

∥2
G1

≤ ε2(2d̃)−♣w♣/2
(
w ∈ [d̃]∗

)
.

Then for the coefficient vector α⋆ := (α⋆w)w∈[d̃]∗ we get that

∥α⋆∥2
L =

∑

w∈[d̃]∗

E
[
φ2
α⋆

w

]
≤ 2

∞∑

m=0

∑

♣w♣=m

∥❩w −φα⋆
w

∥2
G1

+ ∥❩w∥2
G1

≤ ε2
∞∑

m=0

2−m + 2∥❩∥2
G < ∞, (49)

where the penultimate inequality is due to there being ♯¶w ∈ [d̃]∗ ♣ ♣w♣ = m♢ = d̃m many words of
length m in the index-monoid [d̃]∗. Hence α⋆ ∈ L2

X and thus ψα⋆ ∈ Ψ(X), and from (49) we read
off

∥❩− ψα⋆∥2
L2(HY ) =

∞∑

m=0

∑

♣w♣=m

∥❩w − φα⋆
w

∥2
G1

≤ ε2.

Since both ❩ ∈ L2
X(HY) and ε > 0 were arbitrary, the claim (45) is established.

Combining Proposition 4.3 with the classical perspective on conditional expectation as an L2-
projection then yields the following variational characterisation of E[❨Λ ♣X].

Theorem 4.5. Adopting the setting and notation of Proposition 4.3, we have that

E
[
❨

Λ
∣∣X
]

= lim
k→∞

ψαk
(X) in L2

X(HY) (50)

for any minimizing sequence (αk) ⊂ L2
X of the (convex) inĄnite linear least squares problem

inf
α∈L2

X

E
[
∥❨Λ − ψα(X)∥2

]
. (51)

The convergence (50) holds P-almost surely if (αk) is such that
∑∞
k=0(Φ(ψαk

(X)) − γ)1/2 < ∞,
where Φ(❩) := E[∥❨Λ − ❩∥2] and γ := infα∈L2

X
Φ(ψα(X)).

Proof. We begin with the well-known observation that the space L2
X(HY) from (43) is a closed

linear subspace of
(
L2(P,HY), ∥ · ∥L2(HY )

)
, which entails the ⟨·, ·⟩L2(HY )-orthogonal decomposition

L2(P,HY) = L2
X(HY) ⊕ L2

X(HY)⊥.

(The closedness of L2
X(HY) follows from the well-known fact (which persists for Hilbert-valued

random variables [42, Proposition 2.11]) that L2-convergence implies almost sure convergence on
a subsequence.) Denoting E := L2(P,HY) and G := L2

X(HY) for brevity, we then adopt (from
the scalar-valued setting, e.g. [42, Section 11.1]) the classical perspective that the (vector-valued)
conditional expectation ❨Λ

X := E
[
❨

Λ
∣∣X
]

∈ G is the orthogonal projection of ❨Λ onto G along G⊥,
in symbols:

❨
Λ
X = PG❨

Λ for the orthogonal projector PG : E → E on G = im(PG). (52)
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To see that this perspective (52) is true in the present vector-valued setting (38) & (39), denote
❨G := PG❨

Λ and notice that then ∆ := ❨
Λ −❨G ∈ G⊥, that is ⟨∆, χ⟩L2(HY ) = 0 for all χ ∈ G. In

particular,

0 = ⟨∆, w✶A⟩L2(HY ) = ⟨∆✶A, w⟩L2(HY ) = ⟨
∫

A

❨
Λ dP, w⟩ − ⟨

∫

A

❨G dP, w⟩
(
A ∈ ΣX , w ∈ [d̃]∗

)
,

where the last identity is due to Bochner integrals commuting with bounded linear functionals, cf.
[42, Sec. 1.3.1]; note that each element of E is Bochner-integrable by deĄnition (38) and [42, Prop.
1.16]. Since [d̃]∗ is an orthonormal basis of HY , the above implies that:

∫
A
❨

Λ dP =
∫
A
❨G dP, for all

A ∈ ΣX . But the latter property is characteristic also of the vector-valued conditional expectation
E[❨Λ ♣ ΣX ], see e.g. [42, Theorem 11.10], which implies that ❨G = ❨

Λ
X as claimed in (52).

The above characterisation (52) of ❨Λ
X as the orthogonal projection of ❨Λ onto G implies that

∥∥❨Λ −❨
Λ
X

∥∥
L2(HY )

≤
∥∥❨Λ − ❩

∥∥
L2(HY )

for all ❩ ∈ G. (53)

Moreover, the Hilbert projection theorem guarantees that the arg min in (53) is unique, so that in
fact

❨
Λ
X = arg min

❩∈G
E
∥∥❨Λ − ❩

∥∥2
. (54)

Now in order to make the variational identity (54) more operational, recall from Prop. 4.3 that

the set G := Ψ(X) =
{
ψα(X)

∣∣ α ∈ L2
X

}
from (45) is ∥ · ∥L2(HY )-dense in G. (55)

Let us observe how (55) and (54) imply (50): Abbreviating Φ(❩) := ∥❨Λ −❩∥2
L2(HY ), which deĄnes

a function Φ : G → R+ that is clearly ∥ · ∥L2(HY )-continuous and strictly convex, we Ąnd that

Φ(❨Λ
X)

(54)
= inf

❩∈G
Φ(❩)

(55)
= inf

❩∈G
Φ(❩) = inf

α∈L2
X

Φ(ψα(X)) =: γ.

Hence for any minimizing sequence of (51), i.e. any sequence (αk) in L2
X with limk→∞ Φ(ψαk

(X)) =
γ, the functions (❩k) := (ψαk

(X)) ⊂ G are a minimizing sequence for inf❩∈G Φ(❩). Upon recalling
that ∥·∥L2(HY ) satisĄes the parallelogram identity and that G is convex, a quick computation shows

∥❩n − ❩m∥2
L2(HY ) ≤ 2Φ(❩n) + 2Φ(❩m) − 4Φ(❨Λ

X) −→ 0 (for n,m → ∞), (56)

which implies that (❩k)k∈N is Cauchy. Hence, and since G is complete, there is ❩⋆ ∈ G such that
❩⋆ = limk→∞ ❩k in ∥ · ∥L2(HY ), whence we have Φ(❩⋆) = limk→∞ Φ(❩k) = α and thus

❩⋆ ∈ arg min
❩∈G

Φ(❩), which, by (54), implies ❩⋆ = ❨
Λ
X

(as noted in the lead-up to (53), the above arg min contains exactly one element only). This
proves (50). Regarding the Ąnal claim on almost sure convergence, note ∥❩k − ❩⋆∥2

L1(HY ) ≤ ∥❩k −
❩⋆∥2

L2(HY ) ≤ 2(Φ(❩k) − α) =: 2βk by (56) [and since ∥ · ∥L1 ≤ ∥ · ∥L2 ], whence if
∑∞
k=0

√
βk < ∞

then, by monotone convergence,
∫

Ω

∑∞
k=0 ∥❩k − ❩⋆∥ dP =

∑∞
k=0 ∥❩k − ❩⋆∥L1(HY ) < ∞, thus∑∞

k=0 ∥❩k − ❩⋆∥ < ∞ P-a.s. and hence limk→∞ ∥❩k − ❩⋆∥ = 0 a.s., as claimed.

For the next corollary to [the proof of] Theorem 4.5, let (ei)
m
i=1 be the standard basis of Rm and

L2
X(Rm) :=

{
(ℓ1, . . . , ℓm) ∈

(
R[d]

)×m}
and ψ[m]

α :=

m∑

i=1

⟨αi, sigΞ
(·)⟩ · ei for α ∈ L2

X(Rm).

The following is the Ąrst of the announced representations (2) and (3) from Section 1.
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Corollary 4.6. For any Z ∈ L2(Ω,F ,P;Rm) ≡ L2(Rm), we have that

E
[
Z
∣∣X
]

= lim
k→∞

ψ[m]
αk

(X) in L2
X(Rm) (57)

for any minimizing sequence (αk) ⊂ L2
X(Rm) of the (convex) semi-inĄnite linear least-squares

problem

inf
α∈L2

X
(Rm)

E
[∣∣Z − ψ[m]

α (X)
∣∣2]. (58)

The convergence (57) holds P-a.s. if the minimizing sequence (αk) is such that
∑∞
k=0(Φm(ψ

[m]
αk (X))−

η)1/2 < ∞, where Φm(W) := E[∥Z − W∥2] and η := infα∈L2
X

(Rm) Φm(ψ
[m]
α (X)).

Proof. The proof of Theorem 4.5 remains valid as stated up to display (54) if we replace (❨Λ, G) with(
Z,L2

X(Rm)
)
, where L2

X(Rm) ≡ ¶W ∈ L2(Rm) ♣ W is (ΣX ,B(Rm))-measurable♢. In particular

E
[
Z
∣∣X
]

= arg min
W∈L2

X
(Rm)

E
∣∣Z − W

∣∣2, (59)

and since the proof of Proposition 4.3 (cf. (48)) shows that H := ¶ψ[m]
α (X) ♣ α ∈ L2

X(Rm)♢ is an
∥ · ∥L2

X
(Rm)-dense subset of L2

X(Rm), the corollary follows from (59) in the same way as Theorem

4.5 follows from (54).

Remark 4.7. In many applications, the objectives in (51) and (58) can be approximated with a
standard Monte Carlo average, that is with a empirical mean squared distances of the form

Φ̂N (α) :=
1

N

N∑

j=1

(
sig

Λ
(yj) − ψ̃α(xj)

)2
, ψ̃ ∈ ¶ψ,ψ[m]♢,

based on realisations (xj , yj) of (X,Y ) that exhibit sufficiently weak internal statistical dependence.
Associated questions of statistical consistency, along with how to handle necessary truncations of
the [countably-inĄnite vectors which are the] appearing signatures, are to be expanded on in the
full paper, cf. Section 6.

5 Mathematical and Statistical Applications

We have introduced a way to variationally characterise the conditional expectation (50) of the
signature cooredinates of a process (37) given the information (42) of another process. In this sec-
tion, we apply this computationally feasible representation of conditional expectation to efficiently
compute probabilistic quantities that are of interest in a variety of statistical and machine learning
applications.

5.1 Computing Conditional Distributions

We start by showing how the conditional expectation E[❨Λ ♣X] and its estimates of (50) can be
used to learn the conditional distribution (36). This states and shows the announced identity (3)
for the conditional distributions of two stochastic processes.

Proposition 5.1. For stochastic processes X and Y as in (34) and any Borel-set A ⊆ Y, we have

P(Y ∈ A ♣ X) = lim
l→∞

〈
E
[
❨

Λ
∣∣X
]
, ℓ

(l)
A

〉
in L2

X(R) (60)
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for any minimizing sequence
(
ℓ

(l)
A ♣ l ∈ N

)
of the convex optimization problem

inf
ℓ∈R[d̃]

∫

Y

(
✶A(y) − ⟨ℓ, sig

Λ
(y)⟩

2

PY (dy). (61)

In particular, for (ℓ
(l)
A ) as above and any sequence (ψαk

(X)) as in (50),

P(Y ∈ A ♣ X) = lim
l→∞

lim
k→∞

〈
ψαk

(X), ℓ
(l)
A

〉
in L2

X(R). (62)

Proof. Fix any A ∈ B(Y). Due to (47) [replacing (X,Ξ) by (Y,Λ) in (46)] there is a sequence
(ℓl) ⊂ R[d̃] such that

∫
Y(✶A(y) − ⟨ℓl, sigΛ

(y)⟩)2
PY (dy) = ∥✶A(Y ) − ⟨ℓl, sigΛ

(Y )⟩∥2
L2(ΣY ) → 0 as

l → ∞, so the inĄmum (61) is zero. Hence for any Ąxed minimizing sequence (ℓ
(l)
A ) ⊂ R[d̃] of (61)

we have
∥∥P(Y ∈ A ♣ X) − E[⟨ℓ(l)

A ,❨
Λ⟩ ♣X]

∥∥
L2(ΣX )

=
∥∥E[✶A(Y ) − ⟨ℓ(l)

A ,❨
Λ⟩ ♣X]

∥∥
L2(ΣX )

≤
∥∥✶A(Y ) − ⟨ℓ(l)

A ,❨
Λ⟩
∥∥
L2(ΣY )

−→ 0 as l → ∞,
(63)

where the last line is due to the JensenŠs inequality (and the tower property of conditional expect-
ations).

Now inherited from the analogous ŚcommutingŠ property of Bochner integrals, we have that

E[⟨ℓ(l)
A ,❨

Λ⟩ ♣X] =
〈
ℓ

(l)
A , E[❨Λ ♣X]

〉
(∀ l ∈ N) (64)

with probability one, see for instance [36, Theorem II.2.3]. Combining (63) and (64) proves (60).
The convergence (62) is clear from (60) and (50). (Indeed: Since ηk(ℓ) := ⟨ψαk

(X), ℓ⟩ ∈ L2
X(R)

is merely a (Ąnite) linear combination of [L2
X(R)-valued] ψαk

(X)-coefficients for any given ℓ ∈ R[d̃],
the L2

X(R)-convergence ⟨E[❨Λ ♣X], ℓ⟩ = limk→∞ ηk(ℓ) is readily implied by (50) [cf. (38)].)

Approximations similar to (60) and (62) hold P-a.s. if the law of Y is compactly supported.
To prepare for this result, note that for A ⊂ Y open9 the indicator ✶A admits a monotone point-
wise approximation by a sequence of nonnegative uniformly bounded functions in Cb(Y); more
speciĄcally:

✶A ↑ h
(ν)
A (ν → ∞) pointwise, e.g. h

(ν)
A : y 7→ d(y,Y\A)

d(y,Y\A) + d(y, Fν(A))
∈ Cb(Y), (65)

where d(y, C) := infz∈C ♣♣y − z♣♣1-var (for C ⊂ Y) and Fν(A) := ¶y ∈ Y ♣ d(y,Y \A) ≥ ν−1♢. From

Proposition 3.15, eq. (33), we know that the continuous approximants h
(ν)
A can each be written as

h
(ν)
A = lim

µ→∞

〈
ℓ

(µ)
Aν
, sig

Λ
( · )
〉

wrt. τY
str, for some

(
ℓ

(µ)
Aν

)
µ∈N

⊂ R[d̃]. (66)

Corollary 5.2. Let X and Y be as in (34) but with supp(PY ) compact. Then for A ⊆ Y open or
closed,

P(Y ∈ A ♣ X) = lim
ν→∞

lim
µ→∞

〈
E
[
❨

Λ
∣∣X
]
, ℓ

(µ)
Aν

〉
P-a.s. (67)

for any
(
ℓ

(µ)
Aν

)
µ,ν

as in (66). Moreover, for any sequence (ψαk
(X)) as in (50) we have

P(Y ∈ A ♣ X) = lim
ν→∞

lim
µ→∞

lim
k→∞

〈
ψαk

(X), ℓ
(µ)
Aν

〉
in L2

X(R) (68)

and the convergence in (68) holds P-a.s. if (ψαk
(X)) is chosen such that (50) converges almost surely.

9 Since ✶A = 1 − ✶Ac , an analogous approximation of ✶A can be found if the set A is closed.
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Proof. Fix any open A ⊆ Y. (Since P(Y ∈ A ♣ X) = 1 − P(Y ∈ Ac ♣ X), the case for closed A
is contained herein.) From the preliminary observations (65) and (66) and the deĄnition of cond.
probab., cf. (36),

P(Y ∈ A ♣ X) = E
[
✶A(Y )

∣∣X
]

= lim
ν→∞

E
[
h

(ν)
A (Y )

∣∣X
]

P-a.s. (69)

via the conditional monotone convergence theorem. Now since DY := supp(PY ) is assumed com-
pact,

∀ ν ∈ N : ∃
(
ℓ(µ)
ν

)
µ

s.t. lim
µ→∞

∥∥h(ν)
A − ⟨ℓ(µ)

ν , sig
Λ

⟩
∥∥

∞;DY
= 0 (70)

by (66). Now for ν ∈ N Ąxed, take any (ℓ
(µ)
ν )µ as in (70) and denote ςµ(y) := h

(ν)
A (y)−⟨ℓ(µ)

ν , sig
Λ
(y)⟩.

Since P(Y ∈ DY ) = 1, or even Y (Ω) ⊆ DY wlog (Remark A.1 (iii)), we have

C := sup
µ∈N

sup
ω∈Ω

∣∣ςµ(Y (ω))
∣∣ < ∞.

Indeed, given ϵ > 0 there is µ0 ∈ N with supµ≥µ0,ω ♣ςµ(Y (ω))♣ ≤ supµ≥µ0
∥ςµ∥∞;DY

≤ ϵ by (70),

and hence C ≤ maxµ≤µ0
∥ςµ∥∞;DY

+ ϵ ≤ 1 + ∥Λ∥∞;H · maxµ≤µ0
∥ℓ(µ)
ν ∥ + ϵ < ∞.

Now clearly supµ ♣ςµ(Y )♣ ≤ C a.s. as well as ♣ςµ(Y )♣ ≤ ∥ςµ∥∞;DY
→ 0 (µ → ∞) a.s., and hence

∣∣∣E
[
h

(ν)
A (Y )

∣∣X
]

− E
[
⟨ℓ(µ)
ν , sig

Λ
(Y )⟩

∣∣X
]∣∣∣ =

∣∣E[ςµ(Y ) ♣X]
∣∣ µ→∞−→ 0 P-a.s. (71)

via the conditional dominated convergence theorem. Combining (69) and (71) and (64) yields (67).
The convergence (68) follows as in (62), while the corollaryŠs last assertion is an immediate

consequence of (67) and (50) and the continuous mapping theorem.

Remark 5.3. Suitable sig
Λ

-discretizations (ℓ
(µ)
A ) of an indicator ✶A as in (66) can be found ap-

proximately by solving (for u, given S, bA) the (semi-inĄnite) linear least squares problem [41]

∥Su − bA∥2
!
= min for S :=



sig

Λ
(y1)
...

sig
Λ
(yn)


 and bA :=



✶A(y1)

...
✶A(yn)


 ,

were (yj)
n
j=1, n ∈ N, are some observations of Y . (Of course, in practice the matrix S will be

replaced by a truncation Sm :=
(
π[m](sigΛ

(y1))♣ · · · ♣π[m](sigΛ
(yn))

)⊺
at some cutoff-level m ∈ N.)

5.2 Stochastic Process Prediction

Another application of common interest is to predict the future evolution of a stochastic process
given information on its past. As a potential scenario for this, we may specialise our general setting
(34) to

Y :=
(
Xt∧tf

)
t∈[0,1]

and X :=
(
Xt∧tp

)
t∈[0,1]

for some 0 < tp < tf < 1.

The X-generated Borel σ-algebra ΣX = σ(X) then reads (cf. [20, Problem 2.4.4.2, p. 60])

ΣX = σ(Xs ♣ 0 ≤ s ≤ tp),

and the ultimate goal is to Ąnd the Ś(L2-)best-predictionŠ of the Śfull-scaleŠ process X♣[0,tf ] (evolving

up to some time-horizon tf in the future) given the knowledge X♣[0,tp] of said process over a his-

torical time-window [0, tp]. This goal is uniquely achieved by the conditional expectation E[Y ♣X].
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While not providing a construction for the path-valued object E[Y ♣X] directly, Theorem 4.5
gives us an algorithm to compute the L2-projection E[❨Λ ♣X] of the (normalised) Hilbert coordinates
(40) of Y given X. As stated in Proposition 5.1 and Corollary 5.2, this construction allows us to
compute the conditional distribution of the full process Y given our knowledge of its history X.
If instead of its full trajectories we are only interested in the values of Y at Ąnitely many time-
points, say at (tj)

N
j=1 ⊂ (tp , tf ], then these can be Śbest-predictedŠ with Corollary 4.6 applied to

Z := (Yt1 , · · · , YtN ).

6 Outlook

As mentioned in the introduction, this document is only a working paper to present some mathem-
atical core ideas on how to condition on and between stochastic processes using their signatures.
The full version of this paper, which is currently still work in progress, is intended to contain
mathematical extensions of the present core results (that is, of Theorem 4.5, Corollary 4.6, and
Proposition 5.1), ideally including complementary statements on statistical consistency and con-
vergence rates, as well as numerical examples and the incorporation of a detailed application to
illustrate the practical relevance of the presented conditioning theory more fully.

Appendix A Some Remarks on Stochastic Processes

Remark A.1. Writing PX := P ◦ X−1 and X(ω) ≡ (Xt(ω))t∈[0,1] for each ω ∈ Ω, let us note the
following facts on the conditioning process X from (34).

(i) The rv X is
(
F ,B(∥ · ∥1-var)

)
-measurable by def. Now B(∥ · ∥1-var) = B(∥ · ∥∞) by Lemma

3.1, where B(∥ · ∥∞) = σ(πt ♣ t ∈ [0, 1]) =: B(C1
dX

) = B(CdX
) ∩ C1

dX
is the Borel σ-algebra on

(C1
d , ∥ · ∥∞). (Here, πt : (xt)t∈[0,1] 7→ xt is the t-projection from CdX

onto R
dX .) Consequently,

PX ∈ M1

(
C1
dX
, ∥ ·∥∞

)
and Xt : Ω ∋ ω 7→ Xt(ω) ∈ R

dX is
(
F ,B(RdX )

)
-measurable

for each t ∈ [0, 1]. Hence, we can equivalently deĄne the stochastic process X : Ω → X as an
[0, 1]-indexed family (Xt)t∈[0,1] of (Borel) random vectors Xt : Ω → R

dX such that t 7→ Xt(ω)
is continuous for each ω ∈ Ω, see e.g. [35, Section II.27].

(ii) In stricter terminology, a stochastic process X ≡ (Xt(ω)) : [0, 1] × Ω → R
d deĄned as a

(F ,B(C1
dX

)-measurable map X : Ω → CdX
, as we did above, is called jointly measurable.

If (Ω,F ,P) is Ąltered then it can carry stronger measurability notions (such as progressive
measurability or predictability, see e.g. [44, Proposition 2.23]), but for our purposes the weak
notion of joint measurability will suffice.

(iii) It will be no loss of generality for us to assume (if convenient) that in fact

X : Ω → DX , where DX := supp(PX)

is the support of X. Indeed: By its deĄnition, the support DX is the smallest closed subset
C ⊆ X for which PX(C) = 1, see e.g. [19, Lemma 1.19]. Hence Ω̃ := X−1(DX) ∈ F is a
P-full set, which implies that X and its DX -valued twin X̃ := ✶Ω̃ · X + ✶Ω\Ω̃ · x0 : Ω → DX

(any x0 ∈ DX Ąxed) are indistinguishable.

(iv) We will further assume that the X-induced sub-σ-algebra ΣX := σ(X) ⊆ F is P-complete.
Recall that this assumption entails no loss of generality: If (Ω,ΣX ,P) is not complete, we
can immediately and ŚminimallyŠ complete it as follows. Writing N P := ¶N ⊆ Ω ♣ ∃A ∈
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F : N ⊆ A and P(A) = 0♢ for the system of all subsets of P-nullsets [in F ], deĄne ΣP

X :=
¶A ∪N ♣ A ∈ ΣX , N ∈ N P♢ and F P := ¶A ∪N ♣ A ∈ F , N ∈ N P♢ and P̄ : F P → [0, 1] by
P̄(A ∪N) := P(A) for all A,∈ F , N ∈ N P. Then ΣP

X ⊆ F P, both (Ω,ΣP

X , P̄) and (Ω,F P, P̄)
are complete probability spaces, and each complete extension µ of P is an extension of P̄, e.g.
[13, Satz 6.3]. All our objects of interest stay the same when passing to this completion, that is
(trivially) E[Y ♣ ΣX ] = E[Y ♣ ΣP

X ] P̄-a.s. and Lp(Ω,ΣX ,P; H) ∼= Lp(Ω,ΣP

X , P̄; H) (canonically).

Appendix B Additional Proofs

B.1 Proof of Lemma 3.1

Proof. The Ąrst assertion holds by [14, Propositions 1.31 & 1.32]. In fact, [14, Prop. 1.31] asserts
that for X := R

d × L1([0, 1];Rd) and Y := Cd, the map f : X → Y given by f(c, v) := c+
∫ ·

0
vs ds is

a Banach space isomorphism (which also proves the norm identity ∥x∥1-var = ♣x0♣ + ∥ẋ∥L1 on C1
d).

From this, [21, Theorem 15.1] implies that the image f(X) = C1 is a Borel subset of (C1, ∥ · ∥∞),
i.e. that C1 ∈ B(Cd). That (C1, ∥ · ∥-var) is separable and Banach is stated as [14, Corollary 1.35].

For the lemmaŠs second assertion, note Ąrst that since ♣♣ · ♣♣1-var ≥ ∥·∥∞ (which is easy to see), we
Ąnd that the 1-variation topology on C1 is Ąner than the uniform topology on C1, which of course
implies that B1-var := σ(C1, ♣♣ · ♣♣1-var) ⊇ σ(C1, ∥ · ∥∞) =: B∞. Since the separability of (C1, ♣♣ · ♣♣1-var)
guarantees that the σ-algebra B1-var is generated by the closed ♣♣ · ♣♣1-var-balls, the converse inclusion
B1-var ⊆ B∞ follows if we can show that

B1
r (x) := ¶y ∈ C1 ♣ ♣♣y − x♣♣1-var ≤ r♢ ∈ B∞ for every x ∈ C1 and any r ≥ 0. (72)

To see that this holds, Ąx any x ∈ C1 and r ≥ 0 and recall that, by deĄnition of the 1-variation
norm,

♣♣z♣♣1-var = sup
I∈I

VI(z) with V(tν )(z) := ♣z0♣ +
∑

ν

∣∣ztν+1
− ztν

∣∣

and where I := ¶I = (tν) ♣ I is a (Ąnite) dissection of [0, 1]♢. Given any I ∈ I it is clear that the
function QI : C1 ∋ y 7→ VI(y − x) is continuous wrt. ∥ · ∥∞, whence the level set CI := ¶y ∈ C1 ♣
QI(y) ≤ r♢ is ∥ · ∥∞-closed. Combined with this, the immediate identity

B1
r (x) =

⋂
I∈I

CI implies that B1
r (x) is closed wrt. ∥ · ∥∞ ,

which shows that (72) holds as desired.

B.2 Proof of Lemma 3.2

Proof. Note that since both (X , ∥ · ∥1-var) and (Y, ∥ · ∥1-var) are Polish by Lemma 3.1, so is the
product space (X × Y, ∥ · ∥α) with ∥(x, y)∥α := max¶∥x∥1-var, ∥y∥1-var♢, as the norm ∥ · ∥α induces
the product topology on (X , ∥ · ∥1-var) × (Y, ∥ · ∥1-var). This implies that Z itself is Polish, since the
norms ∥ · ∥α and ∥ · ∥1-var are equivalent on X × Y. The latter equivalence of norms also gives that

B(Z, ∥ · ∥1-var) = B(Z, ∥ · ∥α), (73)

and since further B(Z, ∥ · ∥α) = B(X , ∥ · ∥∞) ⊗ B(Y, ∥ · ∥∞) = B(Z, ∥ · ∥β) for the norm ∥z∥β :=
max¶∥πX (z)∥∞, ∥πY(z)∥∞♢ by Lemma 3.1 (recalling that: (a) the Borel σ-algebra of the product
of two (second countable) topological spaces equals the product of their Borel σ-algebras, and (b)
the norm ∥ · ∥β induces the product topology on (X , ∥ · ∥∞) × (Y, ∥ · ∥∞)) and with the norms ∥ · ∥∞

and ∥ · ∥β being equivalent on X × Y, we Ąnd that B(Z, ∥ · ∥1-var) = B(Z, ∥ · ∥∞) as desired.
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The claimed characterisation of measurability holds by (73) (upon recalling that B(Z, ∥ · ∥α) =
B(X , ∥ · ∥1-var) ⊗ B(Y, ∥ · ∥1-var)) and the fact that a product-space-valued function (here: Z) is
product-measurable iff all of its factor components (here: X and Y ) are measurable.

B.3 Proof of Lemma 3.6

Proof. Each of the spaces (Vm, ⟨·, ·⟩m) from (19) is Hilbert and separable (with ONB [d]∗m := ¶w ∈
[d]∗ ♣ ♣w♣ = m♢). Thus the space H is Hilbert and separable — with ONB [d]∗ — as the Hilbert
direct sum of the family ¶(Vm, ⟨·, ·⟩m) ♣ m ∈ N0♢, see e.g. [12, Proposition I.6.2]. The inclusion
sig(C1

d
) ⊂ H follows from the factorial decay of the signature coefficients, cf. [9, Corollary 5.5].

The last assertion follows from the usual p-variation continuity of sig, see e.g. [9, Corollary 5.5],
and the fact that the locally convex topology from [9, Section 2] (defined by the (fundamental)
family of semi-norms Ψ := (♣♣♣·♣♣♣λ ♣ λ > 0) on V , where ♣♣♣t♣♣♣λ :=

∑
m≥0 ∥πm(t)∥m · λm; denote the

associated locally m-convex topology by τlc) is finer than the [canonical, i.e. ∥ · ∥-induced] topology
on H (denote this topology by τH). To prove the asserted inclusion of topologies: Since τlc is
metrizable, see e.g. [9, Corollary 2.4], the topological space (V, τlc) is sequential, whence τH ⊆ τlc

iff every τlc-convergent sequence in V is τH convergent. This clearly holds, however, since for every
null-sequence (vk) in (V, τlc) there is k0 ∈ N with supk≥k0

♣♣♣vk♣♣♣λ < 1 (for some λ > 1), whence for
k ≥ k0 we find that ∥vk∥2 =

∑
m≥0∥πm(vk)∥2

m ≤ ♣♣♣vk♣♣♣λ goes to zero as k → ∞.

B.4 Proof of Proposition 3.15

Proof. Let us first note that, clearly,
sig

Λ
= Λ ◦ sig. (74)

Indeed, πm(sig
Λ
(x)) = λmx

∑
♣w♣=m ξw(x̄) = λm

sig(x)

[(∑
♣w♣=m ξw

)
◦ ῑ
]
(x) = λm

sig(x)

[
πm ◦ sig

]
(x) =

πm
(
λm
sig(x) · πm(sig(x))

)
= πm

(
δλsig(x)

(sig(x))
)

= πm
(
(Λ ◦ sig)(x)

)
for each (x,m) ∈ X × N0.

To see that AΛ ⊂ C(X ), note [from (32)] that since each function φ ∈ AΛ can be represented as

φ = ⟨ℓφ, sigΛ
⟩ for some ℓφ ∈ R[d0],

the desired ∥ ·∥1-var-continuity of φ follows from (74) and the continuity assertion (27) of Lem. 3.13.
Since for 1 = 1 · ∅ ∈ R[d0] we have ξλ

∅
= ⟨1, sig

Λ
⟩ = λ0

1
· ⟨∅, sig⟩ ≡ 1 on X , clearly AΛ

is non-vanishing. For AΛ being point-separating, note that for any x, y ∈ X with x ̸= y we have
sig(x) ̸= sig(y) by Lemma 18, and hence also sig

Λ
(x) ̸= sig

Λ
(y) by (74) and the injectivity of Λ. This

implies that there is w0 ∈ [d0]∗ such that ⟨w0, sigΛ
(x)⟩ ≠ ⟨w0, sigΛ

(y)⟩, whence for φ := ξλ
w0

∈ AΛ

we find φ(x) ̸= φ(y).
To prove that AΛ is an algebra, we need to show φ ·ψ ∈ AΛ for any two φ,ψ ∈ AΛ. And indeed,

φ · ψ =
∑

w,w̃∈[d0]∗

⟨ℓφ, w⟩⟨ℓψ, w̃⟩λ♣w♣
· λ♣w̃♣

· ⟨w, sig⟩⟨w̃, sig⟩ (75)

=
∑

w,w̃∈[d0]∗

λ♣w♣+♣w̃♣
· ⟨ℓφ, w⟩⟨ℓψ, w̃⟩⟨w w̃, sig⟩ (76)

=
∑

m≥0

λm·
∑

w,w̃ : ♣w w̃♣=m

⟨ℓφ, w⟩⟨ℓψ, w̃⟩⟨w w̃, sig⟩ (77)

=
∑

m≥0

λm· ⟨πm(ℓφψ), sig⟩ (78)

= ⟨ℓφψ, Λ ◦ sig⟩ , for ℓφψ :=
∑

w,w̃∈[d0]∗
⟨ℓφ, w⟩⟨ℓψ, w̃⟩ · w w̃. (79)
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Since both ℓφ, ℓψ ∈ R[d0] (and thus ⟨ℓφ, w⟩ = 0 and ⟨ℓψ, w⟩ = 0 for almost all w ∈ [d0]∗), we get
that also ℓφψ ∈ R[d0] and hence φ · ψ ∈ AΛ as desired. A few remarks on this are in order:

While (75) holds simply by linearity of (20), equation (76) involved the character identity

⟨ℓ1, sig⟩ · ⟨ℓ2, sig⟩ = ⟨ℓ1 ℓ2, sig⟩, for any ℓ1, ℓ2 ∈ R[d0]

(see e.g. [29, proof of Thm. 2.15]), where : R[d0]×2 → R[d0] is the so-called shuffle product,
deĄned e.g. in [29, eq. (2.5) (p. 35)]. Denoting by ♣ℓ♣ := max¶♣w♣ ♣ w ∈ [d0]∗ : w ∈ ℓ♢ the
maximal length of any word contained (as a summand) in a given polynomial ℓ ∈ R[d0], it holds
that ♣ℓ1 ℓ2♣ = ♣ℓ1♣ + ♣ℓ2♣. This justiĄes equation (77), where we also used that [d0]∗ × [d0]∗ =⊔
m≥0¶(w, w̃) ∈ [d0]∗ × [d0]∗ ♣ ♣w w̃♣ = m♢ deĄnes a (disjoint) partition. For equation (78) we

used that πm(ℓφψ) =
∑

♣w w̃♣=m⟨ℓφ, w⟩⟨ℓψ, w̃⟩w w̃, and the concluding identity (79) follows from

⟨ℓφψ, Λ ◦ sig⟩ =
∑
m≥0 λ

m
· ⟨ℓφψ, πm(sig)⟩ upon noting that ⟨ℓφψ, πm(sig)⟩ = ⟨πm(ℓφψ), πm(sig)⟩ =

⟨πm(ℓφψ), sig⟩ for each m ≥ 0 (which is a trivial consequence of the deĄnition (20) of ⟨·, ·⟩).
We thus saw that AΛ is a subalgebra of C(X ). Now if Λ is in fact an fN of the form (31), then

∥φ∥∞ := sup
x∈X

∣∣⟨ℓφ, sigΛ
(x)⟩

∣∣ ≤ ∥ℓφ∥ sup ∥Λ(sig(X ))∥ ≤ ∥ℓφ∥R < ∞

by Cauchy-Schwarz, which shows that in this case even AΛ ⊂ Cb(X ) as claimed.
The asserted denseness of AΛ in (Cb(X ), τX

str) is then guaranteed by [15, Theorem 3.1], which
generalises the theorem of Stone-Weierstrass to the τX

str-modulated non-compact setting.
If Ąnally we are in the (unnormalised) special case Λ = idH↓

, that is if λ· ≡ 1, then the above
arguments show that A := AidH↓

is a subalgebra of C(X ), while the bounds (24) yield that, for

each φ ∈ A,

∥φ∥∞;X =
∥∥⟨ℓφ, sig⟩

∥∥
∞;X

≤ ∥ℓφ∥ supx∈X ∥sig(x)∥ ≤ ∥ℓφ∥ sup
x∈X

∑

m≥0

∥x̄∥m1-var

m!
≤ ∥ℓφ∥eκX +1 < ∞

if κX := supx∈X ∥x∥1-var is assumed Ąnite, and then A ⊂ Cb(X ) as desired.
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