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SHARP HADAMARD LOCAL WELL-POSEDNESS, ENHANCED UNIQUENESS AND

POINTWISE CONTINUATION CRITERION FOR THE INCOMPRESSIBLE FREE

BOUNDARY EULER EQUATIONS

MIHAELA IFRIM, BEN PINEAU, DANIEL TATARU, AND MITCHELL A. TAYLOR

Abstract. We provide a complete local well-posedness theory in Hs based Sobolev spaces for the free

boundary incompressible Euler equations with zero surface tension on a connected fluid domain. Our well-

posedness theory includes: (i) Local well-posedness in the Hadamard sense, i.e., local existence, uniqueness,

and the first proof of continuous dependence on the data, all in low regularity Sobolev spaces; (ii) Enhanced

uniqueness: Our uniqueness result holds at the level of the Lipschitz norm of the velocity and the C
1, 1

2

regularity of the free surface; (iii) Stability bounds: We construct a nonlinear functional which measures,

in a suitable sense, the distance between two solutions (even when defined on different domains) and we

show that this distance is propagated by the flow; (iv) Energy estimates: We prove refined, essentially scale

invariant energy estimates for solutions, relying on a newly constructed family of elliptic estimates; (v)

Continuation criterion: We give the first proof of a sharp continuation criterion in the physically relevant

pointwise norms, at the level of scaling. In essence, we show that solutions can be continued as long as the

velocity is in L1

T
W 1,∞ and the free surface is in L1

T
C

1, 1
2 , which is at the same level as the Beale-Kato-Majda

criterion for the boundaryless case; (vi) A novel proof of the construction of regular solutions.

Our entire approach is in the Eulerian framework and can be adapted to work in more general fluid

domains.
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1. Introduction

In this article, we study the dynamics of an inviscid fluid droplet in the absence of surface tension. At time

t, our fluid occupies a compact, connected, but not necessarily simply connected region Ωt ⊆ Rd, and its
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motion is governed by the incompressible Euler equations

(1.1)





∂tv + v · ∇v = −∇p− ged,

∇ · v = 0.

Here, v is the fluid velocity, p is the pressure, g ≥ 0 is the gravitational constant, and ed is the standard

vertical basis vector. In the local theory of the droplet problem, the gravity can be freely neglected. However,

it becomes important in the case of an unbounded fluid domain and in the case of a domain with a rigid

bottom, so we retain it in (1.1) for completeness.

An essential role in the analysis of the droplet problem is played by the vector field

Dt := ∂t + v · ∇,

which is called the material derivative and describes the particle trajectories. On the free boundary, we

require the kinematic boundary condition

(1.2) Dt is tangent to
⋃

t

{t} × ∂Ωt ⊆ R
d+1,

which says that the domain Ωt is transported along the material derivative (or equivalently, the particle

trajectories), and that the normal velocity of Γt := ∂Ωt is given by v · nΓt
. Additionally, we require the

dynamic boundary condition

(1.3) p|Γt
= 0,

which represents the balance of forces at the fluid interface in the absence of surface tension. Using the

above boundary conditions, it is easy to see that the energy

E :=

∫

Ωt

(
|v|2

2
+ gx · ed

)
dx

is formally conserved. Throughout the article, we will refer to the system (1.1)-(1.3) as the free boundary

(incompressible) Euler equations.

As is the case with all Euler flows, an important role in the above evolution is played by the vorticity, ω,

defined by

ωij = ∂ivj − ∂jvi.

By taking the curl of (1.1), the vorticity is easily seen to solve the following transport equation along the

flow:

(1.4) Dtω = −(∇v)∗ω − ω∇v.

If initially ω = 0, then (1.4) guarantees that this condition is propagated dynamically. Such velocity fields

are called irrotational, and the corresponding solutions to the free boundary incompressible Euler equations

are called water waves.

By taking the divergence of (1.1), we obtain the following Laplace equation for the pressure:

(1.5)





∆p = −tr(∇v)2 in Ωt,

p = 0 on Γt.
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For regular enough v on sufficiently regular Ωt, the equation (1.5) uniquely determines the pressure from the

velocity and domain. A key role in the study of the free boundary Euler equations is played by the Taylor

coefficient, a, which is defined on the boundary Γt by

(1.6) a := −∇p · nΓt
.

Indeed, a classical result of Ebin [21] asserts that the free boundary Euler equations are ill-posed unless

a ≥ 0. For this reason, we will always assume that the initial data for the free boundary Euler equations

verifies the following:

Taylor sign condition. There is a c0 > 0 such that a0 := −∇p0 · nΓ0 > c0 on Γ0.

For irrotational data on compact simply connected domains, the Taylor sign condition is automatic by the

strong maximum principle [33]. See also [26, 49] for similar results on unbounded domains when g > 0.

Geometrically, enforcing a0 > 0 ensures that the initial pressure p0 is a non-degenerate defining function for

the initial boundary hypersurface Γ0, and thus can be used to describe the regularity of the boundary. As

part of our well-posedness theorem below, we prove that the Taylor sign condition is propagated by the flow

on some non-trivial time interval.

Another important role in this paper is played by the material derivative of the Taylor coefficient, Dta,

which turns out to be closely related to (a derivative of) the normal component of the velocity v · nΓt
. We

will elaborate further on this relation shortly when we discuss our choice of control parameters and good

variables.

1.1. The Cauchy problem: scaling, Sobolev spaces and control parameters. A state for the free

boundary Euler equations consists of a domain Ω and a velocity field v on Ω. A bounded connected domain

Ω can be equally described by its boundary Γ. Hence, in the sequel, by a state we mean a pair (v,Γ).

Describing the time evolution of (v,Γ) along the free boundary incompressible Euler flow is most naturally

done in a functional setting described via appropriate Sobolev norms. To understand the proper setting,

it is very helpful to consider the scaling properties of our problem. The boundaryless incompressible Euler

flow admits a two parameter scaling group. However, when considering the free boundary flow there is an

additional constraint; namely, that the pointwise property a ≈ 1 rests unchanged. At a technical level, this

is reflected in the fact that the Taylor coefficient appears as a weight in the Sobolev norms which are used

on Γ. Imposing this constraint leaves us with a one parameter family of scaling laws, which have the form

vλ(t, x) = λ−
1
2 v

(
λ

1
2 t, λx

)
,

pλ(t, x) = λ−1p
(
λ

1
2 t, λx

)
,

(Γλ)t = {λ−1x : x ∈ Γ
λ

1
2 t
}.

As noted earlier, the above transformations have the property that the Taylor coefficient has the dimensionless

scaling,

aλ(t, x) = a
(
λ

1
2 t, λx

)
.

A first benefit we derive from the scaling law is to understand what are the matched Sobolev regularities for

v and Γ. This leads us to the following definition.
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Definition 1.1 (State space). The state space Hs is the set of all pairs (v,Γ) such that Γ is the boundary

of a bounded, connected domain Ω and such that the following properties are satisfied:

(i) (Regularity). v ∈ Hs
div(Ω) and Γ ∈ Hs, where Hs

div(Ω) denotes the space of divergence free vector

fields in Hs(Ω).

(ii) (Taylor sign condition). a := −∇p · nΓ > c0 > 0, where c0 may depend on the choice of (v,Γ), and

the pressure p is obtained from (v,Γ) by solving the elliptic equation (1.5) associated to (1.1) and

(1.3).

For states (v,Γ) as above, we define their size by

‖(v,Γ)‖2
Hs := ‖Γ‖2Hs + ‖v‖2Hs(Ω).

Note, however, that Hs is not a linear space, so ‖ · ‖Hs does not induce a norm topology in the usual sense.

Heuristically, the state space Hs may be thought of as an infinite dimensional manifold, though a precise

interpretation of this is beyond the scope of this paper. For our purposes, it suffices to define a consistent

notion of topology on Hs. Although we will not describe the precise topology in the introduction, this

topology will allow us to define the space C([0, T ];Hs) of continuous functions with values in Hs, as well as

an appropriate notion of Hs continuity of the data-to-solution map (v0,Γ0) 7→ (v(t),Γt). Armed with these

notions, it makes sense to talk about the Cauchy problem.

Problem 1.2 (Cauchy problem for the free boundary Euler equations). Given an initial state (v0,Γ0) ∈ Hs,

find the unique solution (v,Γ) ∈ C([0, T ];Hs) in some time interval [0, T ].

A natural question to ask is what are the exponents s for which the Cauchy problem is well-posed in Hs.

Our first clue in this direction comes from scaling, which leads us to the critical exponent

sc =
d+ 1

2
,

and implicitly the lower bound s ≥ sc. However, this does not tell the entire story, as even in the boundaryless

case a result of Bourgain-Li [11] shows that well-posedness holds only in the more restricted range

s >
d

2
+ 1,

which is heuristically connected to another scaling law of the boundaryless problem; namely,

v(t, x) 7→ λ−1v(t, λx).

This latter exponent range s > d
2 +1 is exactly what we consider in our work. Specifically, in this article we

solve the Cauchy problem for the free boundary incompressible Euler equations at the same regularity level

as the incompressible Euler equations on a fixed domain.

The reader who is more familiar with the boundaryless case may ask at this point why we confine ourselves

to L2 based Sobolev spaces, instead of using the full range of indices Lp as in the boundaryless case. The

reason for this is precisely the boundary, where a portion of the dynamics is concentrated. In particular, as

a subset of our problem we have the irrotational case ω = 0, when the flow may be fully interpreted as the

flow of the free boundary. This case, commonly identified as water waves, yields a dispersive flow, where Lp

based Sobolev spaces are disallowed if p 6= 2. This is not to say that exponents p 6= 2 do not play a central

role in our analysis. Instead, we use them, particularly the case p = ∞, in the definition of our control

parameters, which control the size and growth of our energy functionals. Precisely, our analysis involves two

such control parameters, which ideally should be appropriately scale invariant, as follows:



WELL-POSEDNESS FOR THE INCOMPRESSIBLE FREE BOUNDARY EULER EQUATIONS 5

(i) An “elliptic” control parameter A♯, used to control implicit constants in fixed time elliptic estimates,

given by

(1.7) A♯ = ‖v‖
Ċ

1
2 (Ω)

+ ‖Γ‖Lip,

which is exactly invariant under scaling.

(ii) A “dynamical” control parameter B♯, used to control the growth of energy in time, given by

(1.8) B♯ = ‖v‖Lip(Ω) + ‖Γ‖
Ċ

1,1
2
.

This latter control parameter is 1/2 derivatives above scaling, and instead the scale invariant quan-

tity is ‖B♯‖L1
t
, which is what will actually appear in our continuation criterion later on.

With these control parameters in hand, we would like to have energy estimates in the scale invariant form

(1.9)
d

dt
Ek(v,Γ) .A♯ B♯Ek(v,Γ),

where Ek denotes a suitable energy at the Hk regularity. As noted earlier, these are our ideal choices, but

for our results we need to make some small adjustments and relax them a bit, as follows:

a) Working with A♯ would require edge case elliptic estimates in Lipschitz domains, bringing forth a

broad host of issues which are less central to our problem, if even possible to overcome. So, instead,

we will simply add ǫ derivatives to the norms in A♯.

b) In the case of B♯, we do not want to lose the sharp scaling, which is exactly as in the Beale-Kato-

Majda criteria in the boundaryless case. Therefore, we do not want to add extra derivatives as

we did with A♯. However, as we shall soon see, the quantity ‖Dta‖L∞(Γ) appears as a control

parameter in the L2 estimate for the linearized equation. As it turns out, in order to propagate our

low regularity difference bounds, control of ‖Dta‖L∞(Γ) will be needed. However, for the energy

estimates, a careful analysis will show that the control parameter B♯ is sufficient, if we slightly

modify the form of the estimate (1.9). In both cases, maintaining the sharp top order control

parameter is non-trivial. In the difference estimates, it requires a careful analysis on intersections

of domains (and hence, in particular, performing elliptic theory on Lipschitz domains) and in the

energy estimates it requires (amongst several other things) finding a way to appropriately absorb

the logarithmic divergences occurring in the endpoint elliptic estimates when attempting to control

‖Dta‖L∞(Γ) by B♯. To deal with this latter issue, we will take some inspiration from the proof of

Beale-Kato-Majda [8].

The issues mentioned above have well-known counterparts in the boundaryless Euler flow. In fact, strong

ill-posedness of the boundaryless Euler equations has been recently proven in the “ideal” pointwise spaces

C1 and Lip [12, 22].

1.2. Historical comments. The local well-posedness problem for the free boundary Euler equations has a

long history. For irrotational flows, the first rigorous local existence result in Sobolev spaces was obtained

by Wu [49, 50], in the late 1990s. Since then, various methods have been introduced to shorten the proofs,

lower the regularity threshold and allow for more complicated geometries. For a small sample of such results

we cite Beyer and Günther in [9], Lannes in [32], Alazard, Burq and Zuily in [4, 5], Hunter, Ifrim and

Tataru in [26], Ai in [1, 2] and Ai, Ifrim and Tataru in [3]. Although physically restrictive, the irrotationality

assumption allows one to reduce the dynamics to a system of equations on the free boundary. Depending

on the choices made, this typically culminates in either the Zakharov-Craig-Sulem formulation of the water

waves problem used in [1, 2, 4, 5, 32], or the holomorphic coordinates formulation used in [3, 26]. In either
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case, the reduction to a system of equations on Rd−1 greatly simplifies the analysis.

For the free boundary Euler equations with non-trivial vorticity, certain generalized systems based on the

above irrotational reductions have been proposed [13, 51]. However, historically, the most successful ap-

proach has been to use Lagrangian coordinates to fix the domain. For an execution of this approach to

proving local existence, the reader may consult the papers of Christodoulou and Lindblad [14], Coutand and

Shkoller [15] and Lindblad [33]. One may also compare with the article [31] of Kukavica and Tuffaha, which

uses the so-called arbitrary Lagrangian-Eulerian change of variables, as well as the more recent advances in

the Lagrangian analysis presented in [7, 19].

In contrast to the above articles, we will utilize a fully Eulerian strategy to prove the local well-posedness

of the free boundary Euler equations. In other words, we will work directly with the physical equations

(1.1)-(1.3), and avoid the use of any non-trivial coordinates changes. On time-independent domains, both

the Lagrangian and Eulerian approaches have been widely successful in analyzing fluid equations. However,

for free boundary problems, the Eulerian approach has seen relatively little attention, due to the obvious

difficulty in having the domain of the fluid itself serve as a time-dependent unknown. Our aim in this article

is to directly confront this issue. Corollaries of our newly obtained insights include:

(i) The first proof of the continuity of the data-to-solution map for this problem.

(ii) An enhanced uniqueness result, requiring only pointwise norms of very limited regularity.

(iii) Refined low regularity energy estimates with geometrically natural pointwise control parameters.

(iv) A new, direct proof of existence for regular solutions.

(v) A method to obtain rough solutions as unique limits of regular solutions at a Sobolev regularity

that matches the optimal result for the Euler equations on Rd.

(vi) An essentially scale invariant continuation criterion akin to that of Beale-Kato-Majda for the in-

compressible Euler equations on the whole space.

We will elaborate further on the ideas for obtaining the above results in Section 1.3. For now, it is impor-

tant to note that we are not the first to utilize an Eulerian approach to analyze the well-posedness of fluid

equations in the free boundary setting. The pioneering work in this regard is the remarkable series of papers

by Shatah and Zeng [41, 42, 43]. However, Shatah and Zeng primarily consider the free boundary Euler

equations with surface tension. While they are able to produce a solution to the pure gravity problem in

the zero surface tension limit, it seems that their construction at least requires bounded curvature, which

corresponds to greater regularity assumptions on the data than we need here. For this reason, the overlap

between their analysis and ours tends to be on a more philosophical level, which we will elaborate on further

in Section 1.3. A more direct comparison is with the memoir [47] of Wang, Zhang, Zhao and Zheng. In [47],

the authors construct solutions to the free boundary Euler equations in an unbounded graph domain at the

same Sobolev regularity that we achieve here. That is, they prove existence and uniqueness of solutions in

Hs for s > d
2 +1. The approach in [47] is in the style of Alazard, Burq and Zuily [4, 5], though the addition

of vorticity makes the execution much more technical. Our approach is completely different to the one that

they follow and works well in more complicated fluid domains. Additionally, we prove properties (i)-(vi)

above. We also remark that all other fully Eulerian approaches (see, e.g., [37, 38, 39]) follow Shatah and

Zeng, and hence require the regularizing effect of surface tension and higher regularity. The one step towards

a fully Eulerian proof without surface tension is the work [17] of de Poyferré, who proves energy estimates

for the pure gravity shoreline problem. However, the energy estimates in [17] have Hs based control norms
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and no well-posedness proof is presented.

The goal of our paper is twofold. First, we intend to present a comprehensive, Hadamard style well-posedness

theory, with an aim towards proving sharp results. At the same time, we provide a novel, geometric analysis,

which we argue is more direct and streamlined than previous works. For instance, our proofs do not require

paralinearization or Chemin-Lerner spaces as in [47]. Moreover, our existence scheme is new and direct - it

does not use Nash-Moser, the approach in [47], or go through the zero surface tension limit as in [41, 42, 43].

For this reason, we believe that the techniques introduced in this paper will have a wide range of applicability.

Finally, we mention that the analysis we present here is for the case of a compact fluid domain. In the study

of the free boundary Euler equations, it is also common to consider the case of an infinite ocean of either

finite or infinite depth. The choice of compact fluid domain emphasizes the geometric nature of our problem,

and removes the temptation to flatten the domain into a strip or a half-space. Although some changes need

to be made, as with the analysis of the capillary problem [41, 42, 43] by Shatah and Zeng, the general

strategy we use here can be adapted to all three geometries. That being said, to streamline the exposition,

we do allow some of our estimates to depend on the domain volume, which is a conserved quantity for the

droplet problem.

1.3. An overview of the main results. In a nutshell, our main result asserts that the free boundary in-

compressible Euler equations are well-posed in Hs for s > d
2 +1. However, simply stating this fails to convey

the full strength of both the result and of its various aspects and consequences. Instead, it is more revealing

to divide the result in a modular way into four independently interesting parts; namely, (a) uniqueness and

stability, (b) well-posedness, (c) energy estimates and (d) the continuation criteria.

To set the stage for our results, let Ω∗ be a bounded, connected domain with smooth boundary Γ∗. Given

ǫ, δ > 0, consider the collar neighborhood Λ∗ := Λ(Γ∗, ǫ, δ) consisting of all hypersurfaces Γ which are δ-close

to Γ∗ in the C1,ǫ topology. As long as δ > 0 is small enough, hypersurfaces in Λ∗ can be written as graphs

over Γ∗. This permits us to define Sobolev and Hölder norms on these hypersurfaces in a consistent fashion.

To state our results, we will assume that a collar neighborhood Λ∗ has been fixed, and consider solutions with

initial data (v0,Γ0) having Γ0 ∈ Λ∗. A more precise description of the functional setting will be given later,

in Section 3. For now, we remark that, while the collar neighborhood is very useful in order to uniformly

define the Hs norms, it is not needed at all for the definition of our control parameters.

1.3.1. Uniqueness and stability. We start by stating our uniqueness result, which requires the least in terms

of notations and preliminaries. Here, of crucial importance are the control parameters

(1.10) A := Aǫ := ‖v‖
C

1
2
+ǫ

x (Ωt)
+ ‖Γt‖C1,ǫ

x
, ǫ > 0,

and

(1.11) Bdiff := ‖v‖W 1,∞
x (Ωt)

+ ‖Dtp‖W 1,∞
x (Ωt)

+ ‖Γt‖
C

1, 1
2

x

,

which represent slight adjustments of the ideal control parameters A♯ and B♯, as discussed earlier. Using

these control parameters, our main uniqueness result is as follows:

Theorem 1.3 (Uniqueness). Let ǫ, T > 0 and let Ω0 be a domain with boundary Γ0 of C1, 12 regularity. Then

for every divergence free initial data v0 ∈W 1,∞(Ω0), the free boundary Euler equations with the Taylor sign
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condition admit at most one solution (v,Γt) with Γt ∈ Λ∗ and

sup
0≤t≤T

Aǫ(t) +

∫ T

0

Bdiff(t) dt <∞.

To the best of our knowledge, Theorem 1.3 is the first uniqueness result for the free boundary Euler equa-

tions which involves only low regularity pointwise norms. Indeed, as far as we are aware, all other papers

on this subject are content to prove uniqueness in the same class of Hs spaces for which they prove existence.

While uniqueness is a fundamental property in its own right, in our work it can be seen as a corollary of a

far more useful stability result, which we now explain. Let (v,Γt) and (vh,Γt,h) be two solutions to the free

boundary Euler equations with corresponding domains Ωt and Ωt,h. An obvious objective is to show that if

(v,Γt) and (vh,Γt,h) are “close” at time zero, then they remain close on a suitable timescale. However, since

the domains Ωt and Ωt,h are evolving in time, we cannot compare the solutions (v,Γt) and (vh,Γt,h) in a

linear way. To resolve this issue, we construct a nonlinear functional which quantifies the distance between

solutions and is propagated by the flow.

To avoid comparing solutions whose corresponding domains are very different, we harmlessly restrict ourselves

to solutions (v,Γt) and (vh,Γt,h) evolving in the same collar neighborhood Λ∗. For such solutions we define

the nonlinear distance functional

D((v,Γ), (vh,Γh)) :=
1

2

∫

Ω̃t

|v − vh|
2dx+

1

2

∫

Γ̃t

b|p− ph|
2 dS.(1.12)

Here, p and ph are the pressures, Γ̃t is the boundary of Ω̃t := Ωt ∩ Ωt,h and b is a suitable weight function.

Morally speaking, the first term on the right-hand side of (1.12) measures the L2 distance between v and

vh. On the other hand, by the Taylor sign condition, p and ph are non-degenerate defining functions for Γt

and Γt,h, so the second term on the right-hand side of (1.12) gives a measure of the distance between Γt and

Γt,h. In Section 4, we prove that (1.12) does indeed act as a proper measure of distance between solutions.

More crucially, we prove that this distance is propagated by the flow, in the sense that

(1.13)
d

dt
D((v,Γ), (vh,Γh)) .A,Ah

(Bdiff +Bdiff,h)D((v,Γ), (vh,Γh)).

Here, Ah and Bdiff,h are the control parameters (1.10) and (1.11) corresponding to the solution (vh,Γt,h). An

immediate corollary of the stability estimate (1.13) is the aforementioned Theorem 1.3. However, (1.13) will

also prove to be useful in various other scenarios. For example, we will use it in our proof of the continuity

of the data-to-solution map, as well as in the construction of rough solutions as unique limits of regular

solutions.

1.3.2. Well-posedness. Our second main result is concerned with the well-posedness problem. To fix the

notations, we start with a collar neighborhood Λ∗ and s > d
2 +1. We then consider initial data (v0,Γ0) ∈ Hs

with Γ0 ∈ Λ∗. Viewing Γ0 as a graph over Γ∗, we may unambiguously define its Hs norm. With this setup,

we may state our well-posedness theorem as follows:

Theorem 1.4 (Hadamard local well-posedness). Fix s > d
2 + 1 and a collar Λ∗. For any (v0,Γ0) in Hs

with Γ0 ∈ Λ∗ there exists a time T > 0, depending only on ‖(v0,Γ0)‖Hs and the lower bound in the Taylor

sign condition, for which there exists a unique solution (v(t),Γt) ∈ C([0, T ];Hs) to the free boundary Euler

equations satisfying a proportional uniform lower bound in the Taylor sign condition. Moreover, the data-

to-solution map is continuous with respect to the Hs topology.
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The regularity of the velocity in Theorem 1.4 matches the optimal Sobolev regularity for the Euler equations

on Rd. Indeed, as shown by Bourgain and Li [11], the Euler equations are ill-posed in Hs(Rd) when s = d
2+1.

We note crucially that our article is not the first to reach the s > d
2 + 1 Sobolev threshold for the free

boundary Euler equations. Indeed, this threshold was achieved for the first time in the recent memoir [47],

in the case of an unbounded fluid domain with graph geometry. However, it is important to note that the

approach in [47] is very different from ours, as it passes through a paralinearization and utilizes properties of

strip-like domains and Chemin-Lerner spaces. In particular, the approach in [47] cannot be easily modified

to the droplet problem, whereas our approach applies equally well in unbounded domains. Moreover, there

is no mention of the continuity of the data-to-solution map in [47]. To the best of our knowledge, Theo-

rem 1.4 gives the first proof of this important property for the free boundary Euler equations. In addition,

our approach significantly refines the well-posedness theory by adding properties (ii)-(vi) above as well as

introduces an entirely new set of techniques that we believe will have broad applications.

When it comes to free boundary problems, the continuity of the data-to-solution map – if justified – is

usually proven by reformulating the problem on a fixed domain and then working with the standard notion

of continuous dependence on fixed domains. As far as we are aware, the only exception to this appears in the

work [41, 42, 43] of Shatah and Zeng, where continuous dependence is proven for the free boundary Euler

equations with surface tension directly in the Eulerian setting. The drawback of Shatah and Zeng’s proof,

however, is that it relies crucially on the regularizing effect of surface tension, so is not applicable to the

pure gravity problem. In particular, Shatah and Zeng do not construct a distance functional, as we do here.

For this reason, our robust proof which simultaneously avoids domain flattenings and works on a quasilinear

problem without regularizing effects can be seen as one of the main novelties of our paper.

1.3.3. Energy estimates. Controlling the growth of solutions to our boundary value problem is essential for

both local well-posedness and understanding potential blowup. This control is achieved via energy estimates.

Due to the complex geometry of our problem, the first challenge is to construct good energy functionals.

Fix an integer k ≥ 0. In light of Theorem 1.3 and the stability estimate (1.13), it is natural to try to

construct an energy functional Ek = Ek(v,Γ) satisfying Ek(v,Γ) ≈A ‖(v,Γ)‖2
Hk and the estimate

d

dt
Ek(v,Γ) .A BdiffE

k(v,Γ).

Indeed, by Grönwall’s inequality, this would yield the bound

‖(v,Γ)(t)‖2
Hk . exp

(∫ t

0

CABdiff(s) ds

)
‖(v,Γ)(0)‖2

Hk ,

for some constant CA depending only on A, the collar, and the verification of the Taylor sign condition.

Morally speaking, such an estimate would then allow one to conclude that solutions to the free boundary

Euler equations with the Taylor sign condition can be continued as long A remains bounded and Bdiff ∈ L1
t .

However, there is one issue with the above estimates. Note that the control parameter A in (1.10) depends

only on the Hölder norms of our main variables (the surface and the velocity) at (nearly) the correct scale.

However, the control parameter Bdiff in (1.11) depends also on the auxiliary variable Dtp. From the point

of view of the analysis of the free boundary Euler equations, this is completely natural. Indeed, even at the



10 MIHAELA IFRIM, BEN PINEAU, DANIEL TATARU, AND MITCHELL A. TAYLOR

level of the linearized equation, one sees that the uniform norm of ∇Dtp (or more specifically the uniform

norm of Dta, but these are essentially equivalent) appears as a control parameter for the L2 energy estimates

in Proposition 2.2. On the other hand, for the purpose of providing a clear and physical description of how

solutions to the free boundary Euler equations break down, we would ultimately like to use the control

parameter B := B♯ defined in (1.8), which depends only on the Hölder norms of Γ and v. To achieve this,

our key observation is that, as long as k > d
2 + 1, we can use a log of the energy to absorb endpoint losses,

and hence prove an estimate of the form

(1.14) ‖Dtp‖W 1,∞
x (Ωt)

.A log(1 + Ek)B.

An estimate akin to (1.14) is not to be expected in the difference estimates, as the distance functional is

too low of regularity to absorb the logarithmic divergences inevitably arising from C1 and W 1,∞ elliptic

estimates. With the above discussion in mind, the actual energy estimates we prove can be essentially stated

as follows.

Theorem 1.5 (Energy estimates). Fix a collar neighborhood Λ∗, let s ∈ R with s > d
2 +1 and let k > d

2 +1

be an integer. Then for Γ restricted to Λ∗ there exists an energy functional Hk ∋ (v,Γ) 7→ Ek(v,Γ) such

that

(i) (Energy coercivity).

(1.15) Ek(v,Γ) ≈A ‖(v,Γ)‖2
Hk .

(ii) (Energy propagation). If, in addition to the above, (v,Γ) = (v(t),Γt) is a solution to the free

boundary incompressible Euler equations, then Ek(t) := Ek(v(t),Γt) satisfies

(1.16)
d

dt
Ek .A B log(1 + ‖(v,Γ)‖Hs)Ek.

Here, A is as in (1.10) and B = B♯.

By Grönwall’s inequality, (1.15) and (1.16) yield the following single and double exponential bounds of the

type

‖(v(t),Γt)‖
2
Hk .A exp

(∫ t

0

CAB log(1 + ‖(v,Γ)‖Hs)ds

)
‖(v0,Γ0)‖

2
Hk ,

‖(v(t),Γt)‖
2
Hk .A exp

(
log(1 + CA‖(v0,Γ0)‖

2
Hk) exp

∫ t

0

CAB ds

)
,

(1.17)

for all integers k > d
2 + 1. We do not directly prove the analogue of Theorem 1.5 for noninteger exponents

k. Nevertheless, as a consequence of our analysis in the last section of the paper, we do obtain the bounds

(1.17) also for noninteger k. This is achieved by using frequency envelopes in order to combine the distance

functional and the energy estimates akin to a nonlinear Littlewood-Paley type theory. It is also worth noting

that a similar double exponential growth rate for the L1
TL

∞
x norm of the vorticity appears in the classical

Beale-Kato-Majda [8] criteria as a consequence of trying to weaken the natural control parameters of the

problem.

In order to understand the form of the energy functionals used in Theorem 1.5, a key step is to identify

Alinhac style good variables for the problem, which are as follows:

(i) The vorticity ω, which is measured in Hk−1(Ω).

(ii) The Taylor coefficient a, which is measured in Hk−1(Γ).
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(iii) The material derivative Dta of the Taylor coefficient, which is measured in Hk− 3
2 (Γ).

Our energy functionals are constructed as certain combinations of well-chosen norms of the above good

variables. The general strategy for constructing these norms is to apply appropriate vector fields and elliptic

operators to ω, a and Dta at the Hk regularity in such a way that the resulting variables solve the linearized

equation to leading order. After this, the nonlinear energy Ek may be essentially defined as the linear energy

evaluated at these good variables. As it turns out, after completing this process, we arrived at essentially

the same energy as [17], which was derived by different means. However, as can be immediately inferred

from our control norms, the way we treat the energy is very different from [17]. Indeed, without going into

details, we mention that the proof of Theorem 1.5 requires not only a delicate analysis of the fine structure

and cancellations present in the free boundary Euler equations, but also the use of a new family of refined

elliptic estimates. Although we refrain from stating them here in the introduction, these elliptic estimates

serve as an important part of the paper. Moreover, since they are quite general, we believe that they will

prove to be useful in other problems as well.

1.3.4. Low regularity continuation criterion. A very natural objective in the study of the Euler equations

is to find a geometric characterization of how solutions break down. For the Euler equations without free

boundary, this direction traces back to the famous paper of Beale, Kato and Majda [8]. In recent years,

interest in sharp blow up criterion for the free boundary Euler equations has risen, and progress has been

made by de Poyferré [16], Ginsberg [25], Wang and Zhang [46] and Wang, Zhang, Zhao and Zheng [47].

Here, we explain our rather definitive answer to this question, which is essentially a consequence of our local

well-posedness result in Theorem 1.4 and the energy estimates in Theorem 1.5. However, to avoid topological

issues, we must first introduce a notion of thickness for the fluid domain.

Definition 1.6. The fluid domain Ω has thickness at least R > 0 if for each x ∈ Γ, B(x,R)∩Γ is the graph

of a C1,ǫ function which separates B(x,R) into two connected components.

With this notion in hand, our continuation criterion reads as follows:

Theorem 1.7 (Continuation criterion). A solution (v,Γ) ∈ C(Hs), s > d
2 + 1, of the free boundary in-

compressible Euler equations with the Taylor sign condition can be continued for as long as the following

properties hold:

a) (Uniform bound from below for the Taylor coefficient). There is a c > 0 such that

a ≥ c > 0.

b) (Uniform thickness). There is an R > 0 such that Ωt has thickness at least R.

c) (Control parameter bounds). The control parameters satisfy

A ∈ L∞
t , B ∈ L1

t .

One may compare our continuation criteria for the free boundary problem with the classical Beale-Kato-

Majda criteria for the boundaryless problem and note that they are essentially at the same level, with the

natural addition of the C1, 12 boundary regularity bound. Another minor difference is that we use the Lips-

chitz bound on the velocity v rather than the uniform bound on the vorticity ω. One may ask whether it is

possible to further relax our criterion in order to use only the vorticity bound. The major obstruction is that

while in fixed domains the vorticity uniquely determines the velocity, in our case an appropriate boundary

condition is also needed, which is best described via the Dta good variable. So, a potential conjecture might
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be that in order to use only the vorticity bound in the interior, one might have to compensate by adding a

uniform bound on Dta, as seen in the linear control parameter Blin and in the difference estimates. That

being said, in this paper we have opted for a continuation criteria involving only the natural variables v and

Γ and no auxiliary pressure related terms.

As mentioned above, several recent articles [16, 25, 46, 47] have focused on obtaining improved continuation

criterion for the free boundary Euler equations. The most significant of these contributions is the memoir

[47], which proves that Hk solutions to the free boundary Euler equations with the Taylor sign condition

can be continued after t = T as long as properties a) and b) in Theorem 1.7 hold and

(1.18) sup
t∈[0,T ]

(
‖κ(t)‖(Lp∩L2)(Γt) + ‖v(t)‖W 1,∞(Ωt)

)
<∞ for some p > 2d− 2.

Here, κ denotes the mean curvature of the surface. To motivate their result, [47] recalls a question of Craig

and Wayne [30], which asks one to find (in the context of the irrotational water waves problem) the lowest

Hölder regularity of the surface and velocity potential whose boundedness on [0, T ] implies that one can

continue the solution past t = T . Although (1.18) makes significant progress on this question, it fails to

achieve purely pointwise norms and is far from scale invariant. Moreover, the criterion (1.18) only applies

to solutions which a priori live in integer based Sobolev spaces Hk. This limits the applicability of (1.18) to

solutions with at least a half derivative of excess regularity. In contrast, Theorem 1.7 replaces the criterion

v ∈ L∞
T W

1,∞
x by the sharp and scale invariant criterion v ∈ L1

TW
1,∞
x , and only requires control of Hölder

norms of the free surface at the correct scale. In particular, Theorem 1.7 gives a rather definitive answer to

Craig and Wayne’s question for the full free boundary Euler equations. For the state-of-the-art result for the

two-dimensional irrotational water waves problem, see [3]. Also, note that Theorem 1.7 applies to solutions

in all Sobolev spaces Hs with s > d
2 + 1, not just to those in integer spaces. This improvement is by no

means trivial; rather, it follows from a careful usage of our distance functional.

1.4. Outline of the paper. The article has a modular structure, where, for the essential part, only the

main results of each section are used later.

1.4.1. The linearized equations. The starting point for our analysis, in Section 2, is to derive the linearization

of our problem in Eulerian coordinates. The linearized system will serve as a guide to several of the choices

made in our nonlinear analysis. In particular, it will suggest the correct variables to use, as well as the form

of our distance functional. Moreover, when proving energy estimates, the Alinhac style good variables we

construct will be shown to solve the linearized equations to leading order. This is also where the control

parameters A and Blin (an enhanced version of B) make their first appearance.

1.4.2. Function spaces and the geometry of moving domains. Section 3 describes the appropriate functional

setting for our analysis. We begin by setting up a basic framework for our problem, including introducing low

regularity control neighborhoods which will allow us to establish uniform control over constants in Sobolev

and elliptic estimates in certain topologies for an appropriate family of domains. After defining the function

spaces and norms that we will be using, we define the state space Hs where we will seek solutions to the

free boundary Euler equations. Unlike in problems on fixed domains, the state space Hs will not be linear.

However, it will be equipped with an appropriate notion of convergence, allowing us to define continuity of

functions with values in Hs as well continuity of the data-to-solution map.
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1.4.3. Stability estimates and uniqueness. The aim of Section 4 is to construct a nonlinear distance func-

tional which will allow us to track the distance between two solutions at very low regularity. The general

scheme is akin to the difference bounds in a weaker topology which are common in the study of quasilinear

problems on fixed domains. However, here there are fundamental difficulties to overcome, as we are seeking

to not only compare functions on different domains, but also track the evolution in time of this distance.

These difficulties are embedded into the nonlinear character of our distance functional; both careful choices

and delicate estimates are required to propagate this distance forward in time. To the best of our knowl-

edge, this is only the second time difference estimates have been successfully proven in the free boundary

setting. The other successful execution, which conceptually inspired the present approach, was in the case

of a compressible gas [18, 27], which is very different from the incompressible liquid we consider here. In

particular, unlike in the gas case, the boundary of our fluid contains non-trivial energy, requiring interesting

geometric insights to understand.

As a consequence of our stability estimates, we deduce uniqueness of solutions at very low regularity. Also,

as we shall see in later sections, the low regularity distance bounds we prove will serve both as an essential

building block in our construction of rough solutions as unique limits of regular solutions as well as in the

proof of the continuity of the data-to-solution map.

1.4.4. Elliptic theory. The main goal of Section 5 is to introduce a new family of refined elliptic estimates

which will be crucial for obtaining the sharp pointwise control norms in the higher energy bounds. The

secondary objective of Section 5 is to define a relevant Littlewood-Paley theory, collect various “balanced”

product, Moser and Sobolev type estimates, and note several identities for operators and functions defined

on moving domains. For the most part, the material in Section 5 does not rely on any specific structure of the

Euler equations, so should be applicable to other free boundary problems as well. In Section 6, we construct

the regularization operators which we will need for our existence scheme and the frequency envelopes for

states (v,Γ) ∈ Hs that we will use to establish the refined properties of the data-to-solution map.

1.4.5. Energy estimates. In Section 7 we establish energy estimates within the Hk scale of spaces. As a

first step, we construct a coercive energy functional (v,Γ) 7→ Ek(v,Γ) associated to each integer k > d
2 + 1.

The scheme here is to identify Alinhac style “good variables” (wk, sk) which solve the linearized equation

modulo perturbative source terms. We then define our energy as the sum of the rotational energy and the

linearized energy evaluated at these good variables. To prove the energy estimates, we split the argument in

a modular fashion into two parts. First, we prove the coercivity of our energy functional; that is, we show

that Ek(v,Γ) ≈ ‖(v,Γ)‖2
Hk . After this, we track the time evolution of the energy, establishing control of

Ek(v,Γ) in terms of the initial data, with growth dictated by the pointwise control parameters A and B.

Both steps of this argument are delicate. In particular, the former makes extensive use of the refined elliptic

estimates from Section 5, and the latter requires us to identify and exploit various structural properties and

fine cancellations present in the Euler equations.

1.4.6. Construction of regular solutions. Section 8 is devoted to the construction of regular solutions to the

free boundary Euler equations. The overarching scheme we utilize is similar to [27], which analyzed the case

of a compressible gas. However, we stress that the main difficulties in the incompressible liquid case are

quite different than for the gas, especially near the free boundary, as the surface of a liquid carries a non-

trivial energy. As a general overview, the scheme we utilize is constructive, employing a time discretization

via an Euler type method together with a separate transport step to produce good approximate solutions.
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However, a näıve implementation of Euler’s method loses derivatives. To overcome this, we ameliorate the

derivative loss by an initial regularization of each iterate in our discretization. To ensure that the uniform

energy bounds survive, such a regularization needs to be chosen carefully. For this, we employ a modular

approach and try to decouple this process into two steps, where we regularize individually the domain and

the velocity. We believe that this modular approach will serve as a recipe for a new and relatively simple

method for constructing solutions to various free boundary problems. That being said, the execution of this

scheme is still quite subtle, requiring several novel ideas in addition to those coming from [27].

1.4.7. Rough solutions and continuous dependence. The last section of the paper aims to construct rough

solutions as strong limits of smooth solutions. This is achieved by considering a family of dyadic regular-

izations of the initial data, which generate corresponding smooth solutions. For these smooth solutions we

control on one hand higher Sobolev norms Hk, using our energy estimates, and on the other hand the L2

type distance between consecutive ones, from our difference estimates. Combining the high and the low

regularity bounds directly yields rapid convergence in all Hl spaces for l < k. To gain strong convergence in

Hk, we use frequency envelopes to more accurately control both the low and the high Sobolev norms above.

This allows us to bound differences in the strong Hk topology. Interpolation and a similar argument yields

local existence in fractional Sobolev spaces as well as continuous dependence of the solutions in terms of

the initial data in the strong topology. Finally, our main continuation result in Theorem 1.7 follows along

similar lines, given the careful treatment of our control norms in the energy and difference estimates.

For problems on Rd, the scheme outlined above for obtaining rough solutions from smooth solutions, good

energy estimates and difference estimates is more classical; see the expository article [28]. However, as we

shall see, the fact that solutions are all defined on different domains leads to some new subtleties in our free

boundary setting.
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2. The linearized equation

The first goal of this section is to formally derive the linearization of our problem, working entirely in Euler-

ian coordinates; this is the system of equations (2.6). Then, we prove Theorem 2.1, which asserts that the

linearized system is well-posed in L2, with energy bounds determined by our sharp control parameters. The

key elements here are the linearized energy (2.9) and the basic energy estimate (2.10).

Conceptually, the linearized system is an essential piece of the puzzle. On a practical level, however, it is not

immediately useful in proving well-posedness, as it is not clear that C1 one parameter families of solutions

exist in the first place. It is only a posteriori, after well-posedness is established, that the linearized energy

estimates may be used to derive bounds for differences of solutions. Instead, we will use our understanding

of the linearized system to guide us in our choice of distance functional in Section 4 and later in our choice
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of energy functionals in Section 7.

To derive the linearized system, we take a one parameter family of solutions (vh, ph) defined on domains

Ωt,h, with (v0, p0) := (v, p) and Ωt,0 := Ωt. We define w = ∂hvh|h=0 and q = ∂hph|h=0.

In Ωt, the linearized equation is rather standard:




∂tw + w · ∇v + v · ∇w = −∇q,

∇ · w = 0.

However, we also need to linearize the kinematic and dynamic boundary conditions on the surface Γt. For

this, let us denote by Γt,h the free surface at time t for the solution (vh, ph), so Γt,0 := Γt. Fix a one

parameter family of diffeomorphisms φh(t) : Γt → Γt,h, with φ0(t) = IdΓt
. The dynamic boundary condition

(1.3) asserts that for every point x ∈ Γt,

ph(t, φh(t)(x)) = 0.

Differentiating in h and evaluating at h = 0 gives

q|Γt
= −∇p|Γt

· ψ(t),

where ψ(t) := ∂
∂h
φh(t)|h=0. Using that ∇p|Γt

is normal to Γt we deduce that

(2.1) q|Γt
= −∇p|Γt

· nΓt
ψ(t) · nΓt

=: as.

Here, we define s := ψ(t) · nΓt
which we loosely interpret as the normal velocity in the parameter h of the

family Γt,h at h = 0. We will use this as one of our linearized variables. Note that since a > 0, s does not

depend on the choice of diffeomorphisms φh(t).

Next, we linearize the kinematic boundary condition. Analogously to v · nΓt
describing the normal velocity

of the free surface, we expect w ·nΓt
to describe the “normal velocity” of our linearized variable s. Therefore,

up to a perturbative error, Dts should agree with w · nΓt
. In fact, we obtain the relation

(2.2) Dts− w · nΓt
= s(nΓt

· ∇v) · nΓt
.

To derive (2.2), we note that (1.2) and (1.3) imply that

(2.3) Dtp = 0 on Γt.

This is the equation that we will linearize to obtain (2.2). As before, let φh(t) : Γt → Γt,h be a diffeomorphism.

We then have for x ∈ Γt,

[(∂t + vh · ∇)ph](t, φh(t)(x)) = 0.

Taking h derivative and evaluating at h = 0 yields,

(2.4) w · ∇p+Dtq +∇Dtp · ψ = 0 on Γt.

Using (2.1), and that ∇Dtp is normal to Γt by (2.3), we deduce (2.2) from (2.4) after some simple algebraic

manipulation. Indeed, we have ∇p|Γt
= −anΓt

. Then using the relation q|Γt
= as, we compute Dtq =

aDts+ sDta. This reduces (2.4) to

(2.5) −aw · nΓt
+ aDts+ sDta+ s∇Dtp · nΓt

= 0.
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After division by a, the first two terms in (2.5) evidently align with the left-hand side of (2.2). The right-

hand side of (2.2) appears by commuting the gradient with the material derivative in the last term of (2.5),

and by using the fact that ∇p ·DtnΓt
= 0 to rewrite sDta = −sDt(∇p · nΓt

) = −sDt∇p · nΓt
.

Putting everything together, the linearized system takes the form:

(2.6)





Dtw +∇q = −w · ∇v in Ωt,

∇ · w = 0 in Ωt,

Dts− w · nΓt
= s(nΓt

· ∇v) · nΓt
on Γt,

q = as on Γt,

where the terms on the right-hand side can be viewed as perturbative source terms.

In order to study the well-posedness of the linearized system (2.6), we introduce an enhanced version Blin

of the control parameter B♯:

Blin(t) := ‖a−1Dta‖L∞(Γt) + ‖∇v‖L∞(Ωt).(2.7)

Using this, we may state our main linearized well-posedness result as follows.

Theorem 2.1. Let (v,Γ) be a solution to the free boundary incompressible Euler equations in a time interval

[0, T ] so that a > 0, A♯ stays uniformly bounded and Blin ∈ L1
T . Then the linearized system (2.6) for (w, s)

is well-posed in L2(Ω)× L2(Γ) in [0, T ].

Here we recall that Ω and Γ are time dependent. The rest of this section is devoted to the proof of this

very simple theorem. The basic strategy is to construct a suitable energy functional and prove correspond-

ing energy estimates. Once this is done, well-posedness follows via a standard duality argument, which is

left for the reader. To execute this argument, one simply notes that the adjoint system is essentially iden-

tical to the direct system (2.6), modulo perturbative terms, and that the energy estimates are time reversible.

Below, we will work with a slightly more general system, since this is what will appear in the higher order

energy bounds later on. We define the generalized linearized system as follows:

(2.8)





Dtw +∇q = f in Ωt,

∇ · w = 0 in Ωt,

Dts− w · nΓt
= g on Γt,

q = as on Γt,

where we allow for arbitrary source terms f and g on the right-hand side of the first and third equation.

It remains to prove a suitable energy estimate for the system (2.8). The natural energy associated to

this system is

(2.9) Elin(w, s)(t) =
1

2

∫

Ωt

|w|2 dx+
1

2

∫

Γt

as2 dS.

Using (2.9), the main energy estimate for the generalized linear system is as follows:
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Proposition 2.2. Suppose a > 0. Then the system (2.8) satisfies the energy estimate

(2.10)
d

dt
Elin(w, s)(t) ≤ BlinElin(w, s)(t) + 〈as, g〉L2(Γt) + 〈w, f〉L2(Ωt).

We note that the energy functional (2.9) is also the energy functional for the linearized system (2.6), and

that this proposition yields energy estimates for (2.6), thereby concluding the proof of Theorem 2.1.

Proof. We will make use of the following standard Leibniz type formulas (see; for example, [20, Appendix

A]).

Proposition 2.3. (i) Assume that the time-dependent domain Ωt flows with Lipschitz velocity v. Then

the time derivative of the time-dependent volume integral is given by

d

dt

∫

Ωt

f(t, x) dx =

∫

Ωt

Dtf + f∇ · v dx.

(ii) Assume that the time-dependent hypersurface Γt flows with divergence free velocity v. Then the time

derivative of the time-dependent surface integral is given by

d

dt

∫

Γt

f(t, x) dS =

∫

Γt

Dtf − f(nΓt
· ∇v) · nΓt

dS.

Now, to prove the energy estimate (2.10), we apply Proposition 2.3 to obtain

d

dt
Elin(w, s)(t) =

∫

Ωt

Dtw · w dx+

∫

Γt

asDts dS +
1

2

∫

Γt

Dtas
2 dS −

1

2

∫

Γt

[nΓt
· ∇v · nΓt

]as2 dS

≤

∫

Ωt

Dtw · w dx+

∫

Γt

asDts dS +BlinElin(w, s)(t).

(2.11)

Integrating by parts, we obtain
∫

Ωt

Dtw · w dx +

∫

Γt

asDts dS =

∫

Ωt

w · f dx +

∫

Γt

asDts dS −

∫

Γt

qw · nΓt
dS

= 〈as, g〉L2(Γt) + 〈w, f〉L2(Ωt).

Combining this with (2.11) completes the proof. �

3. Analysis on moving domains

One difficulty when working directly on moving domains is that many of the standard Sobolev and elliptic

estimates have domain dependent constants. It is therefore necessary to work in a framework which allows

for uniform control of these constants in certain topologies. This section is devoted to dealing with this issue.

Our approach in this regard is somewhat analogous to that of Shatah and Zeng [41, 42, 43] and de Poyferré

[17, Section 3], but with the key difference being that our control neighborhoods will only be uniform in the

pointwise C1 or C1,ǫ topologies as opposed to the stronger L2 based topologies considered in those papers.

This will be essential for establishing the pointwise continuation criterion for solutions.

3.1. Function spaces. To begin, we precisely define the function spaces and norms that we will be using.

Throughout, Ω ⊆ Rd will denote a bounded, connected domain. We define Hs(Ω), s ≥ 0, as the set of all

f ∈ L2(Ω) such that

(3.1) ‖f‖Hs(Ω) := inf
{
‖F‖Hs(Rd) : F ∈ Hs(Rd), F |Ω = f

}

is finite. Here, ‖ ·‖Hs(Rd) is defined in the standard way, via the Fourier transform. We let Hs
0 (Ω) denote the

closure of C∞
0 (Ω) in Hs(Ω) and identify H−s(Ω) isometrically with the dual space (Hs

0 (Ω))
∗. Importantly,



18 MIHAELA IFRIM, BEN PINEAU, DANIEL TATARU, AND MITCHELL A. TAYLOR

with this definition of the Hs norm, the constants in Sobolev embedding theorems (either Hs → Lp or

Hs → Cα) are independent of Ω. For regular enough domains and integer s, the norm defined in (3.1) is

equivalent to the standard one. We will precisely quantify this equivalence later.

We next define the regularity of the boundary of a connected domain Ω, which is characterized in terms of

the regularity of local coordinate parameterizations of ∂Ω. Indeed, in general, an m-dimensional manifold

M ⊆ Rd is said to be of class Ck,α or Hs, s > d
2 , if, locally in linear frames, M can be represented by graphs

with the same regularity.

If s > d+1
2 , then given Ω as above with boundary of class Hs, we can define what it means to be an

Hr function on ∂Ω for s ≥ r ≥ −s. Indeed, these are simply the functions whose coordinate representatives

are locally in Hr(Rd−1). It is easy to see that the space of Hr functions on ∂Ω, s ≥ r ≥ −s, can be made into

a Banach space. Indeed, a norm can be chosen by taking a covering of ∂Ω by a finite number of coordinate

patches and an adapted partition of unity. However, there is one problem with this approach. Although

such a norm is well-defined up to equivalence, the precise value of the norm is dependent on the choice of

local coordinates. Since we will be dealing with a family of domains, we need to make sure that we define

norms on their boundaries in a consistent and uniform way.

3.2. Collar coordinates. As a first step towards resolving the above issue, we fix a bounded, connected

reference domain Ω∗ with smooth boundary Γ∗ := ∂Ω∗. We define Hs and Ck,α based norms on Γ∗ by

making an appropriate choice of local parameterizations of Γ∗. Letting δ > 0 be a small positive constant,

we define N(Γ∗, δ) to be the collection of all C1 hypersurfaces Γ such that there exists a C1 diffeomorphism

ΦΓ : Γ∗ → Γ with

‖ΦΓ − idΓ∗‖C1(Γ∗) < δ.

If δ > 0 is small enough, we can represent hypersurfaces Γ ∈ N(Γ∗, δ) as graphs over Γ∗. Indeed, we denote

the outward unit normal to Γ∗ by nΓ∗ . Following [43, Section 2.1], if we have a smooth unit vector field

ν : Γ∗ → S
d−1 which is suitably transversal to Γ∗ (that is, ν · nΓ∗ > 1 − c for some small c > 0), it follows

from the implicit function theorem that there exists a δ > 0, determined by Γ∗ and ν, such that the map

ϕ : Γ∗ × [−δ, δ] → R
d, ϕ(x, µ) = x+ µν(x)

is a C1 diffeomorphism from its domain to a collar neighborhood of Γ∗. If δ > 0 is small enough, the above

coordinate system associates each hypersurface Γ ∈ N(Γ∗, δ) with a unique function ηΓ : Γ∗ → R such that

(3.2) ΦΓ(x) := ϕ(x, ηΓ(x)) = x+ ηΓ(x)ν(x)

is a diffeomorphism in C1(Γ∗,Γ ⊆ Rd). We can think of the map ΦΓ as a way to represent Γ as a (global)

graph over Γ∗. With this notation in hand, we can now define what it means to be a Hs hypersurface which

is close to Γ∗.

Definition 3.1. For δ > 0 small enough and α ∈ [0, 1), define the control neighborhood Λ(Γ∗, α, δ) as the

collection of all hypersurfaces Γ ∈ N(Γ∗, δ) such that the associated map ηΓ : Γ∗ → R satisfies

‖ηΓ‖C1,α(Γ∗) < δ.

Definition 3.2. Suppose s ≥ 0, Γ ∈ N(Γ∗, δ) for δ > 0 small enough, and the associated map ηΓ : Γ∗ → R

satisfies ηΓ ∈ Hs(Γ∗). We then define the Hs norm of Γ by

‖Γ‖Hs := ‖ηΓ‖Hs(Γ∗).
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In the above definitions, ‖ηΓ‖C1,α(Γ∗) and ‖ηΓ‖Hs(Γ∗) are computed with respect to fixed, independent of Γ,

local coordinates on Γ∗. In an analogous way, we define for γ ∈ [0, 1) and integers k ≥ 0, the Ck,γ norm,

‖Γ‖Ck,γ . As was essentially noted in [43, Section 2.1], when 0 < δ ≪ 1, each Γ ∈ Λ(Γ∗, α, δ) is associated to

a well-defined domain Ω.

Remark 3.3. One key point in Definition 3.1 is that we only require Γ be close to Γ∗ in the C1,α topology,

as opposed to the stronger L2 based topologies used in [17, 41, 42, 43]. In practice, we will want the control

topology to be as weak as possible. For our purposes, we will typically take α = ǫ > 0 for some arbitrarily

small (but fixed) constant ǫ > 0.

Remark 3.4. A second key point in Definition 3.1 concerns the choice of the small parameter δ. This will

not be arbitrarily small, but instead its size may also be chosen to depend on weaker topologies; namely, (i)

the C1,ǫ norm of Γ∗ and (ii) the thickness (see Definition 1.6) of the domain Ω. This will serve two purposes:

• To allow us to place any rough Hs boundary Γ within a suitable control neighborhood Λ(Γ∗, ǫ, δ).

• To allow us to obtain the robust continuation result in Theorem 1.7, which does not require any

reference to control neighborhoods.

Following the discussion in the above two remarks, throughout the article we will often abbreviate Λ(Γ∗, ǫ, δ)

by Λ∗, where the suppressed parameters ε > 0 and δ > 0 are understood to be small but fixed universal

parameters, which depend only on s and on the thickness of Ω.

3.3. State space. Fix a collar neighborhood Λ∗ and s > d
2 + 1. We define Hs as the set of all pairs (v,Γ)

such that Γ ∈ Λ∗ is the boundary of a bounded, connected domain Ω and such that the following properties

are satisfied:

(i) (Regularity). v ∈ Hs
div(Ω) and Γ ∈ Hs, where Hs

div(Ω) denotes the space of divergence free vector

fields in Hs(Ω).

(ii) (Taylor sign condition). a := −∇p · nΓ > c0 > 0, where c0 may depend on the choice of (v,Γ), and

the pressure p is obtained from (v,Γ) by solving the standard elliptic equation (1.5) associated to

(1.1) and (1.3).

Given initial data (v0,Γ0) in the state space Hs, our eventual goal will be to construct local solutions

(v(t),Γt) that evolve continuously in Hs. To accomplish this, we must define a suitable notion of topology

on our state space. This will enable us to establish two key properties of our flow; namely,

(i) Continuity of solutions with values in Hs.

(ii) Continuous dependence of solutions (v(t),Γt) as functions of the initial data (v0,Γ0).

Note that since Hs is not a linear space, the above two continuity properties require some explanation. To

measure the size of individual states (v,Γ) ∈ Hs, we define ‖(v,Γ)‖2
Hs := ‖Γ‖2Hs + ‖v‖2Hs(Ω). However, since

Hs is not a linear space, ‖ · ‖Hs does not induce a norm topology in the usual sense. Hence, we still need an

appropriate way of comparing different states. Motivated by [18, 27], we define convergence in Hs as follows.

Definition 3.5. We say that a sequence (vn,Γn) ∈ Hs converges to (v,Γ) ∈ Hs if

(i) (Uniform Taylor sign condition). For some c0 > 0 independent of n, we have

an, a > c0 > 0.

(ii) (Domain convergence). Γn → Γ in Hs. That is, ηΓn
→ ηΓ in Hs(Γ∗) where ηΓn

and ηΓ correspond

to the collar coordinate representations of Γn and Γ, respectively.
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(iii) (Norm convergence). For every ǫ > 0 there exists a smooth divergence free function ṽ defined on a

neighborhood Ω̃ of Ω with ‖ṽ‖Hs(Ω̃) <∞ and satisfying

‖v − ṽ‖Hs(Ω) ≤ ǫ

and

lim sup
n→∞

‖vn − ṽ‖Hs(Ωn) ≤ ǫ.

With the above notion of convergence, it makes sense to define C([0, T ];Hs). We remark, however, that

in [17, 41, 42, 43], C([0, T ];Hs) is defined in a slightly different way, via the existence of an extension to a

continuous function with values in Hs(Rd). In Section 5.3.4, we construct a family of extension operators

which depend continuously in a suitable sense on the domain, making the above two notions of continuity

essentially interchangeable.

4. Difference estimates and uniqueness

Comparing different solutions is key to any well-posedness result. Since our problem is quasilinear, such a

comparison cannot be achieved uniformly in the leading Hs topology, but instead only in weaker topologies.

The main result of this section provides a Lipschitz bound for the distance between two solutions in the

L2 topology, akin to our bounds for the linearized equation. Notably, our distance bounds propagate at

the level of our control parameters, which require for instance a Lipschitz bound on the velocity but no

higher regularity. This is what will allow us to establish uniqueness of solutions under very weak regularity

assumptions. Moreover, as we shall see shortly, these low regularity distance bounds also serve as an essential

building block in our construction of rough solutions as unique limits of smooth solutions, as well as in our

proof of the continuity of the data-to-solution map.

The fundamental difficulty in achieving our distance bounds is the need to compare states which live on

different domains. To overcome this difficulty, we construct a “distance functional” which simultaneously

captures the distance between (functions on) different domains and admits a time evolution that we are able

to track. To the best of our knowledge, no such low regularity difference bounds or even uniqueness results

were previously known for any incompressible free boundary Euler model. Instead, we take our cue from

the work [27] of the first and the third authors, which considers a similar free boundary problem but for a

compressible Euler model. We note, however, that the similarity between the uniqueness argument here and

its counterpart in [27] is only at the conceptual level, as the two flows have very different behaviors both

inside the domain and near the free boundary.

4.1. The distance functional. Our first objective is to use the linearized energy as a guide to construct

a distance functional which will be suitable for comparing nearby solutions. We begin by fixing a collar

neighborhood Λ(Γ∗, ǫ, δ), where ǫ > 0 and δ > 0 are small. We then suppose that we have two states (v,Γ),

(vh,Γh) with respective domains Ω, Ωh. We let ηΓ and ηΓh
be the corresponding representations of Γ and

Γh as graphs over Γ∗. Following the linearized energy estimate, we aim to define analogues of the linearized

variables w and s, which heuristically should measure the L2 distance between v and vh and the distance

between Γ and Γh, respectively. One technical caveat is that v and vh are not defined on the same domain.

For this reason, we define Ω̃ = Ω ∩ Ωh. We can represent the free boundary Γ̃ for Ω̃ as a graph over Γ∗

via the function ηΓ̃ = ηΓ ∧ ηΓh
. Note that although the graph representation ηΓ̃ is well-defined, Γ̃ is only

Lipschitz in general, so will not be in Λ(Γ∗, ǫ, δ).
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To measure the (signed) distance between Γ and Γh, we define s∗h : Γ∗ → R by

(4.1) s∗h(x) = ηΓh
(x)− ηΓ(x).

As will become evident below, although s∗h correctly measures the distance between the free hypersurfaces,

it has the “wrong” domain. To fix this, we define the variable sh : Γ̃ → R by pushing s∗h forward to the

hypersurface Γ̃. In other words, for x ∈ Γ̃, we define sh(x) = s∗h(π(x)), where π denotes the canonical

projection, mapping the image of Γ∗ × [−δ, δ] under ϕ back to Γ∗. For convenience, we also extend ν to

a vector field X defined on the image of ϕ via X(x) = ν(π(x)). We will not actually use the displacement

function sh directly in the difference estimates below. In particular, it will not act as our desired analogue of

the linearized variable s. This is because its dynamics are somewhat awkward to work with. Instead of using

sh, it is far more convenient (and geometrically natural) to use the the pressure difference p−ph (along with

a suitable weight to be defined below) to measure the distance between Γ and Γh. To motivate this, recall

that for solutions to the free boundary Euler equations, the Taylor sign condition implies that p and ph are

non-degenerate defining functions for Γt and Γt,h within a suitable collar neighborhood. Therefore, on the

boundary of Ω̃t = Ωt ∩ Ωt,h, p− ph should be proportional to the displacement function sh. The dynamics

of p − ph turn out to be much easier to work with than those of sh, as terms involving p − ph will appear

naturally when we use the free boundary Euler equations to compare solutions.

With the above motivation in mind and using the linearized equation as a guide, we define our distance

functional as follows:

D((v,Γ), (vh,Γh)) := D(v, vh) :=
1

2

∫

Ω̃

|v − vh|
2 dx+

1

2

∫

Γ̃

b|p− ph|
2 dS,(4.2)

where the weight function b is defined by

b := a−11Γ̃∩Γ + a−1
h 1Γ̃∩Γh

.

As p− ph vanishes on Γ ∩ Γh, we may rewrite the distance functional in the slightly more convenient form

D(v, vh) =
1

2

∫

Ω̃

|v − vh|
2 dx+

1

2

∫

A

a−1|p− ph|
2 dS +

1

2

∫

Ah

a−1
h |p− ph|

2 dS,

where A := Γ̃ ∩ Γ− Γ ∩ Γh and Ah := Γ̃ ∩ Γh − Γ ∩ Γh.

Letting F denote the average of F along the flow ϕ between the free surfaces, the fundamental theorem of

calculus implies that for x ∈ Γ̃,

(4.3) ph(x)− p(x) =





−∇ph ·Xsh(x) if x ∈ A,

−∇p ·Xsh(x) if x ∈ Ah.

Therefore, thanks to the Taylor sign condition and assuming the regularity p, ph ∈ C1,ǫ, we should have

|p − ph| ≈ |sh| on Γ̃ within a tight enough collar neighborhood. The precise manner in which we have

this proportionality will be made clear shortly. Finally, note that, for solutions to the free boundary Euler

equations, a simple computation yields the following equation for v − vh in Ω̃t:

(4.4)





Dt(v − vh) +∇(p− ph) = (vh − v) · ∇vh,

∇ · (v − vh) = 0.
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Remark 4.1. Although it is not particularly important for the difference estimates, we note that the distance

functional (4.2) makes sense for general (not necessarily dynamical) states (v,Γ) and (vh,Γh). Indeed, given

suitable states (v,Γ) and (vh,Γh), we can always associate pressures p and ph by solving the standard

elliptic equation associated to (1.1) and (1.3). As we will see in Section 7, it is very important that our

energy functional for the Hk energy bounds be defined for general states (v,Γ) ∈ Hk.

4.2. Difference estimates. We are now ready to propagate difference bounds for two solutions to the free

boundary Euler equations.

Theorem 4.2 (Difference Bounds). Let 0 < ǫ, δ ≪ 1 and let Λ∗ = Λ(Γ∗, ǫ, δ) be a collar neighborhood.

Suppose that (v,Γt) and (vh,Γt,h) are solutions to the free boundary Euler equations that evolve in the collar

in a time interval [0, T ] and satisfy a,ah > c0 > 0. Then we have the estimate

d

dt
D(v, vh) .A,Ah

(B +Bh)D(v, vh)

where

B := ‖v‖W 1,∞(Ωt) + ‖Γt‖
C

1, 1
2
+ ‖Dtp‖W 1,∞(Ωt), A := ‖v‖

C
1
2
+ǫ(Ωt)

+ ‖Γt‖C1,ǫ ,

Bh and Ah are the analogous quantities corresponding to vh, ph, D
h
t ph and Γt,h and we have implicitly

assumed that our solutions have regularity B,Bh ∈ L1
T and A,Ah ∈ L∞

T .

Remark 4.3. It is worth remarking that all of the results in this section hold equally well if the control

parameter B is replaced by

Bǫ = ‖v‖C1,ǫ(Ωt) + ‖Γt‖
C

1, 1
2
,

which depends solely on the regularity of v and Γt. This is because we will later prove an elliptic estimate

of the form

‖Dtp‖W 1,∞(Ωt) .A Bǫ.

See Lemma 7.9 and Remark 7.10 for details. We prefer, however, to work with the control parameter B

defined above as its L1
T norm is scale invariant.

Proof. For simplicity of notation, we drop the t subscript for domains below. We also use .A as a shorthand

for .A,Ah
. To ensure that we can estimate expressions involving the pressure in terms of the control

parameters A and B above, we need the bounds

(4.5) ‖p‖C1,ǫ(Ω) .A 1, ‖p‖
C

1, 1
2 (Ω)

.A B,

as well as the analogous bounds for ph. The proof that these bounds hold will be postponed until later when

the requisite elliptic estimates are developed. See Lemma 7.5 and Lemma 7.9 for details. Now, to proceed

with the difference estimate, we recall the identity

d

dt
D(v, vh) =

1

2

d

dt

∫

Ω̃

|v − vh|
2 dx+

1

2

d

dt

∫

A

a−1|p− ph|
2 dS +

1

2

d

dt

∫

Ah

a−1
h |p− ph|

2 dS.(4.6)

To compute the first term, we would like to use Reynolds’ transport theorem, as in Proposition 2.3. However,

here we do not have a good velocity field ṽ so that Ω̃ flows with velocity ṽ. Constructing such a field seems to

be at the very least impractical, so we will instead allow for a correction term which is a boundary integral.

For this purpose, suppose that D(t) is a time-dependent domain for which we may define at almost every

point of the boundary a normal velocity vb for the boundary. Note that if D(t) were flowing with velocity

v, then vb = v · n∂D(t), where n∂D(t) is the outward unit normal. For more general velocity fields v on D(t),

we have the following proposition.
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Proposition 4.4. Given a velocity field v defined on a time-dependent domain D(t) with Lipschitz boundary

flowing with normal velocity vb, we have

d

dt

∫

D(t)

f dx =

∫

D(t)

Dtf +∇ · vf dx+

∫

∂D(t)

f(vb − v · n∂D(t)) dS.

The proof is a straightforward application of the divergence theorem.

In our setting, we need to make a vector field choice on Ω̃t; this will simply be the velocity v, though we

could have equally chosen vh. We remark that in the corresponding argument in [27] the average of the two

was used, in order to better symmetrize the problem. However, the argument here is slightly more robust,

and such a choice is not needed.

For this choice of v, we examine the boundary weight v · n∂D(t) − vb appearing in the above formula. For

this we use the disjoint boundary decomposition

Γ̃ = A∪Ah ∪ (Γ ∩ Γh),

where the normal nΓ̃ is given a.e. by

nΓ̃ =

{
nΓ in A ∪ (Γ ∩ Γh),

nΓh
in Ah ∪ (Γ ∩ Γh),

with the two normals agreeing a.e. on Γ ∩ Γh. Correspondingly, for almost every point on Γ̃ we have

|vb − v · nΓ̃| ≤ |v − vh|, as can be seen by working with the collar parameterization ηΓ ∧ ηΓh
for Γ̃ and the

kinematic boundary conditions for Γ and Γh.

We now use Proposition 4.4 and the incompressibility of v for each of the three terms in (4.6). We begin by

studying the first term, where we obtain

1

2

d

dt

∫

Ω̃

|v − vh|
2 dx ≤

1

2

∫

Ω̃

Dt|v − vh|
2 dx+

1

2

∫

Γ̃

|v − vh|
3 dS.(4.7)

We note that, unlike in the case of the linearized equation, here we obtain a nonzero boundary term. However,

this term has the redeeming feature that it is cubic in the difference v − vh. To estimate it, we use a simple

variant of the trace theorem. Indeed, as Γ,Γh ∈ Λ∗, we may find a smooth vector field X defined on Rd with

Ck bounds uniform in Λ∗ which is also uniformly transverse to Γ̃. By the divergence theorem, we then have

1

2

∫

Γ̃

|v − vh|
3 dS .

∫

Γ̃

X · nΓ̃|v − vh|
3 dS . (B +Bh)‖v − vh‖

2
L2(Ω̃)

. (B +Bh)D(v, vh).

(4.8)

Now, for the remaining term in (4.7), we use (4.4) and integrate by parts to obtain

1

2

∫

Ω̃

Dt|v − vh|
2 dx =

∫

Ω̃

(v − vh)Dt(v − vh) dx

= −

∫

Γ̃

(p− ph)(v − vh) · nΓ̃ dS +

∫

Ω̃

(v − vh) · [(vh − v) · ∇vh] dx

≤ −

∫

Γ̃

(p− ph)(v − vh) · nΓ̃ dS + (B +Bh)D(v, vh).

(4.9)
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Using the decomposition Γ̃ = A∪Ah∪(Γ∩Γh) and using that p−ph = 0 on Γ∩Γh by the dynamic boundary

condition (1.3), we can write

−

∫

Γ̃

(p− ph)(v − vh) · nΓ̃ dS = −

∫

A

(p− ph)(v − vh) · nΓ dS −

∫

Ah

(p− ph)(v − vh) · nΓh
dS

=

∫

A

a−1(p− ph)(v − vh) · ∇p dS +

∫

Ah

a−1
h (p− ph)(v − vh) · ∇ph dS.

Now, define

J :=

∫

A

a−1(p− ph)(v − vh) · ∇p dS +
1

2

d

dt

∫

A

a−1|p− ph|
2 dS,

and

Jh :=

∫

Ah

a−1
h (p− ph)(v − vh) · ∇ph dS +

1

2

d

dt

∫

Ah

a−1
h |p− ph|

2 dS.

Combining (4.8) and (4.9), we obtain

d

dt
D(v, vh) . (B +Bh)D(v, vh) + J + Jh.

It remains to show that

J + Jh .A (B +Bh)D(v, vh).

We show the details for J . The treatment of Jh will be virtually identical. We begin by using Proposition 2.3

to expand

1

2

d

dt

∫

A

a−1|p− ph|
2 dS = −

1

2

∫

A

a−2Dta|p− ph|
2 dS −

1

2

∫

A

a−1|p− ph|
2[nΓ · ∇v · nΓ] dS

+

∫

A

a−1(p− ph)Dt(p− ph) dS.

(4.10)

The validity of the identity (4.10) is justified by noting that |p − ph|
2 vanishes to second order on Γ ∩ Γh,

so one can extend by zero to write the integral on the left-hand side as an integral over Γ, apply standard

identities there, and then return to an integral over A. From (4.10) and adding the first term in the definition

of J , we obtain (noting that by the kinematic and dynamic boundary conditions, we have Dtp = 0 on A),

J .A −

∫

A

a−1(p− ph)D
h
t phdS +

∫

A

a−1(p− ph)(v − vh) · ∇(p− ph)dS +BD(v, vh).

In the above, we used the standard identity (5.35) to control Dta. For the first term on the right-hand side

we use that Dh
t ph vanishes on Γh, (4.3), the fundamental theorem of calculus, the Taylor sign condition and

(4.5), to estimate

|Dh
t ph| .A ‖∇Dh

t ph‖L∞|sh| ≈A ‖∇Dh
t ph‖L∞ |p− ph| .A (B +Bh)|p− ph|.

Hence, ∫

A

a−1(p− ph)D
h
t phdS .A (B +Bh)D(v, vh).

It remains to estimate the cubic term, and show that
∣∣∣∣
∫

A

a−1(p− ph)(v − vh) · ∇(p− ph) dS

∣∣∣∣ .A (B +Bh)D(v, vh).(4.11)

We will need to perform a more careful analysis here, so that only the pointwise control terms appear in

the estimate. Note that if we had instead settled for L2 based control parameters, this cubic term could be

handled relatively easily.



WELL-POSEDNESS FOR THE INCOMPRESSIBLE FREE BOUNDARY EULER EQUATIONS 25

We recall that A ⊆ Γ. Given a point x ∈ A, its distance to Γh is proportional to |(p− ph)(x)|. We consider

a locally finite Vitali type covering of the set A with countably many balls Bj = B(xj , rj) of radius rj

proportional to |(p − ph)(xj)|, so that in particular we have Bj ⊆ Ωh. We denote by Dj the energy of the

difference in the region Bj , i.e., the integral in (4.2) restricted to Bj . Then
∑

j

Dj . D((v,Γ), (vh,Γh)).

Hence, by the uniform bound on a−1, it would suffice to show that

(4.12)

∫

A∩Bj

|(p− ph)(v − vh) · ∇(p− ph)| dS .A (B +Bh)Dj .

We will indeed show that this bound holds for the bulk of the expression on the left. However, for the

remaining part we will return to a global argument. For A we just use the uniform Lipschitz bound in this

analysis. We first note that in Ω̃ ∩Bj we have

|p− ph| ≈A rj ,

which after integration yields a good bound for rj within Bj :

(4.13)

∫

A∩Bj

|p− ph|
2 dS ≈A r

d+1
j .A Dj .

Next we consider v − vh, for which we use the C
1
2 norm, which is part of our control norm A, in order to

estimate the surface integral by the ball integral. This yields

(4.14)

∫

A∩Bj

|v − vh|
2 dS .A r

−1
j

∫

Ω̃∩Bj

|v − vh|
2 dx+ rdjA

2 .A r
−1
j Dj + rdjA

2 .A r
−1
j Dj .

It remains to consider ∇(p− ph). Our starting point is the global bound

(4.15) ‖∇p‖
C

1
2 (Ω)

+ ‖∇ph‖
C

1
2 (Ωh)

.A B +Bh,

which is noted in (4.5). This allows us to replace ∇(p− ph) with its average ∇(p− ph)j in any smaller ball

B̃j ⊆ Ω̃ ∩Bj of comparable size, because

‖∇(p− ph)−∇(p− ph)j‖L∞(Ω̃∩Bj)
.A r

1
2

j (B +Bh).

Putting everything together we arrive at
∫

A∩Bj

|(p− ph)(v − vh) · (∇(p− ph)−∇(p− ph)j)| dS .A (B +Bh)Dj ,

which represents the bulk of (4.12).

It remains to estimate the contribution of the local average of ∇(p− ph). Here we view p− ph as a solution

to the following Laplace equation in Ω̃:
{
∆(p− ph) = −tr(∇v)2 + tr(∇vh)

2,

p− ph|Γ̃ = g̃ := p1Ah
− ph1A.

We split the problem for p − ph into an inhomogeneous one with homogeneous boundary condition, and a

homogeneous one with inhomogeneous boundary condition,

p− ph = (p− ph)inh + (p− ph)hom.
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For the inhomogeneous problem we can write the source term in divergence form to estimate

‖tr(∇v)2 − tr(∇vh)
2‖H−1(Ω̃) . (B +Bh)D

1
2 ,

which by a simple energy estimate gives a global L2 bound

‖∇(p− ph)inh‖L2(Ω̃) .A (B +Bh)D
1
2 .

This in turn yields a bound for the corresponding averages by Hölder’s inequality,
∑

j

rdj |∇(p− ph)inh,j |
2 .A (B +Bh)

2D.

The contribution of this into (4.11) is then estimated using (4.13) and (4.14) as follows:

Jinh :=
∑

j

∫

A∩Bj

|p− ph||v − vh||∇(p− ph)inh,j | dS

.A
∑

j

r
d+1
2

j ‖v − vh‖L2(A∩Bj)|∇(p− ph)inh,j |

.A
∑

j

D
1
2
j r

d
2
j |∇(p− ph)inh,j |

.A (B + Bh)D,

where in the last step we have used Cauchy-Schwarz with respect to j.

For the homogeneous term, on the other hand, we need to carefully examine the regularity of the Dirichlet

data g̃. On one hand, by the definition of the distance D we have the L2 bound

(4.16) ‖g̃‖2
L2(Γ̃)

.A D.

On the other hand, by (4.15), on each of the two regions Ah respectively A, we have formally

(4.17) ‖g̃‖
C

1, 1
2 (Ah)

+ ‖g̃‖
C

1, 1
2 (A)

.A B +Bh.

This bound has to be carefully interpreted, which we do within the proof of Lemma 4.5 below.

A formal interpolation between (4.16) and (4.17) would yield a W 1,6(Γ̃) bound for g̃. We make this bound

rigorous in the following.

Lemma 4.5. The function g̃ above satisfies the bound

(4.18) ‖g̃‖W 1,6(Γ̃) . (B +Bh)
2
3D

1
6 .

Proof. We begin by noting that the two components g := p1Ah
and gh := −ph1A of g̃ are nonzero on disjoint

sets Ah respectively A, and vanish on the corresponding boundaries ∂Ah, respectively ∂A. Hence, we can

prove the bound (4.18) separately for the two components. We consider g, which lives on Ah ⊆ Γh. Here

not only is Γh a Lipschitz surface, but it also has a C1, 12 bound of Bh (which is not the case for Γ̃).

Using a standard partition of unity we can reduce the problem to the case when Γh is a graph,

Γh = {xd = φ(x′)},

where

(4.19) ‖φ‖Lip .A 1, ‖φ‖
C

1, 1
2
. Bh.
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We denote the Lipschitz projection of Ah by PAh ⊆ Rd−1. We can equivalently consider g as a function on

PAh, in which case the bound (4.18) becomes

(4.20) ‖∇g‖L6(PAh) .A (B +Bh)
2
3D

1
6 .

We now summarize the information that we have on g as a function on PAh:

(i) (L2 control).

‖g‖2L2(PAh)
.A D,

which comes from (4.16).

(ii) (Hölder control).

‖∇g‖
C

1
2 (PAh)

.A B +Bh,

which is a consequence of (4.15), (4.19) and chain rule.

(iii) (Zero boundary data).

g = 0 on ∂PAh.

We will prove that these three properties imply the desired bound (4.20). The difficulty here is that we

do not know that ∇g = 0 on ∂PAh; else we could simply extend g by 0 outside PAh and this becomes a

standard interpolation bound. Further, we do not a priori control the regularity of the boundary ∂PAh.

Without any loss of generality we assume that g > 0 on PAh; else we split this set into connected components

where g has constant sign, modulo a set where ∇g = 0 a.e. To prove the desired bound we will use a well-

chosen Vitali covering of the set S = PAh \ {∇g = 0} with balls. This choice is as follows: For each x ∈ S

we consider a ball Bx = B(x, rx) with radius rx = c2(B + Bh)
−2|∇g(x)|2 where c > 0 is a small universal

constant, chosen so that |∇g| is nearly constant on Bx, i.e.,

|∇g(y)−∇g(x)| . c|∇g(x)| ≪ |∇g(x)|, y ∈ Bx.

The union of the balls Bx with x ∈ S clearly covers S, so Vitali’s lemma allows us to extract a countable

disjoint subfamily of such balls Bj = Bxj
so that

S ⊆
⋃

5Bj.

Since ∇g is almost constant on Bx and g(x) > 0, a key observation is that there must exist a nontrivial

sector Cx ⊆ Bx where

g > 0 in Cx, |Cx| ≈ |Bx|.

Since g = 0 on ∂PAh, it follows that we must have Cx ⊆ S; this is what allows us to bypass the lack of

geometric information on the set PAh.

On Cx, the function g is almost linear with slope approximately |∇g(x)|. Therefore, we must have

‖g‖2L2(Cx)
& rd+1

x |∇g(x)|2.

We will use this bound to estimate from above the L6 norm of ∇g in each 5Bj as follows:

‖∇g‖6L6(5Bj)
. rd−1

xj
|∇g(xj)|

6

. ‖g‖2L2(Cj)
r−2
xj

|∇g(xj)|
4

≈ ‖g‖2L2(Cj)
(B +Bh)

4.
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Now, we sum over j, using the disjointness of the balls Bj and thus of Cj . This gives
∑

j

‖∇g‖6L6(5Bj)
. ‖g‖2L2(S)(B +Bh)

4 .A D(B +Bh)
4,

which concludes the proof of the lemma.

�

Now we use the bound in Lemma 4.5 to solve the homogeneous Dirichlet problem in Ω̃ and to obtain the

estimate

‖∇(p− ph)
∗
hom‖L6(Γ̃) . (B +Bh)

2
3D

1
6 ,

where ∗ stands for the nontangential maximal function. This bound is due to Verchota [45], but see also the

further discussion by Jerison-Kenig [29, Theorem 5.6] as well as the case of C1 boundaries considered earlier

by Fabes-Jodeit-Rivière [23].

The exponent 6 is allowed above provided that the Lipschitz norm of the boundary is sufficiently small.

Precisely, the upper limit of the allowed exponents goes to infinity as the corner size decreases to 0. The

smallness of the intersection angle between Γ and Γh is a consequence of the C1,ǫ common regularity bound

together with the use of a sufficiently refined collar region.

To use the nontangential maximal function bound, within the ball Bj = B(xj , rj) we consider a smaller ball

B̃j = B(xj −
1

2
rjnj ,

1

4
rj).

For y ∈ B̃j we have

|∇(p− ph)hom(y)| . |∇(p− ph)
∗
hom(z)|, z ∈ Γ̃ ∩

1

4
Bj .

Taking averages on the left and integrating on the right, we arrive at

rd−1
j |∇(p− ph)hom,j |

6 .A ‖∇(p− ph)
∗
hom‖6

L6(Γ̃∩ 1
4Bj)

.

Since the balls Bj are disjoint, summation in j yields

(4.21)
∑

j

rd−1
j |∇(p− ph)hom,j |

6 . (B +Bh)
4D.

On the other hand, for v − vh we use the interpolation bound (4.8), which gives

(4.22) ‖v − vh‖L3(Γ̃) . (B +Bh)
1
3D

1
3 .

We are now ready to estimate the corresponding contribution to (4.11) using also (4.13) and (4.14) as follows:

Jhom :=
∑

j

∫

A∩Bj

|p− ph||v − vh||∇(p− ph)hom,j| dS

.A
∑

j

rj(r
2(d−1)

3

j ‖v − vh‖L3(A∩Bj))|∇(p− ph)hom,j |

.A
∑

j

r
d+1
2

j ‖v − vh‖L3(A∩Bj)(r
d−1
6

j |∇(p− ph)hom,j|)

.A (B +Bh)D.

At the last step we have applied Hölder’s inequality in j with exponents 2, 3 and 6, using (4.13), (4.22) and

(4.21). This completes the proof of (4.12) and therefore the proof of Theorem 4.2.
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�

One consequence of the difference bounds is the following uniqueness result.

Theorem 4.6 (Uniqueness). Let ǫ > 0 and let Ω0 be a bounded domain with boundary Γ0 ∈ Λ(Γ∗, ǫ, δ). Then

for Γ0 ∈ C1, 12 and divergence free v0 ∈ W 1,∞(Ω0) satisfying the Taylor sign condition, the free boundary

Euler equations admit at most one solution (v,Γt) on a time interval [0, T ] with Γt ∈ Λ(Γ∗, ǫ, δ) and

sup
0≤t≤T

‖v‖
C

1
2
+ǫ

x (Ωt)
+

∫ T

0

‖v‖W 1,∞
x (Ωt)

+ ‖Dtp‖W 1,∞
x (Ωt)

+ ‖Γt‖
C

1, 1
2

x

dt <∞.

Proof. Suppose (v,Ωt) and (vh,Ωt,h) are a pair of solutions satisfying the conditions of the theorem with the

same initial data. From the differences estimates, we immediately obtain v = vh on Ωt∩Ωt,h. Next, we argue

that the domain Ωt coincides with Ωt,h. First, we note that the intersection is non-empty if δ > 0 is small

enough. We now show Ωt ⊆ Ωt,h. It suffices to show Ωt ⊆ Ωt,h. If this is not true, then there is x ∈ Γt,h such

that x ∈ Ωt. Such a point must lie on ∂(Ωt ∩Ωt,h). Therefore, from the estimate for the distance functional,

we have p(x) = 0. However, within a small enough collar neighborhood, the Taylor sign condition tells us

that the level set {p = 0} corresponds exactly to the free surface Γt. This is a contradiction to x being an

interior point of Ωt. Therefore Ωt ⊆ Ωt,h. The reverse inclusion follows by an identical argument. �

5. Balanced elliptic estimates

In this section, we prove a collection of refined elliptic estimates which will be crucial for obtaining the sharp

pointwise control norms in the higher energy bounds. These estimates will turn out to be quite general and

should be applicable to other free boundary problems. In a sense, they can be seen as significant refinements

of the so-called tame estimates which have been fundamental in the analysis of many water waves problems

(see the discussion in [6, 32]), but are not nearly sufficient for our purposes. Indeed, as we will soon see,

our proofs of the higher energy bounds require estimates for various elliptic operators which more precisely

balance the contributions of the input function and the domain regularity, simultaneously, in both pointwise

and L2 based norms. This simultaneous balance cannot be achieved with the known tame estimates, which

often only seem to balance the contributions in L2 based norms or involve domain dependent constants in

pointwise norms which are significantly off scale. The technical utility of our balanced estimates will become

readily apparent in Section 7, where they will be used to efficiently dispatch with expressions involving

relatively complicated iterated applications of the Dirichlet-to-Neumann operator and various other elliptic

operators.

In the following, we will always assume that Ω is a bounded domain with boundary Γ ∈ Λ∗ := Λ(Γ∗, ǫ0, δ)

for suitably small (but fixed) constants ǫ0, δ > 0. Most of the bounds in this section do not make reference

to a particular velocity function, and so, the implicit constants in many of the estimates will only depend

on the surface component of the control parameter A; namely, AΓ := ‖Γ‖C1,ǫ0 . Hence, for this section, by

the relation X .A Y , we mean X ≤ C(AΓ)Y for some constant C depending exclusively on AΓ. The only

exception to this rule (which we will make note of explicitly) will be in Section 5.6, where we will use the

full control parameter A to establish estimates for commutators of various elliptic operators with Dt. We

will also harmlessly let A depend on the domain volume throughout, as the volume of the domain will be

conserved in the dynamic problem.
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Throughout the section, by a slight abuse of notation, we will follow the convention that a parameter ǫ may

vary from line to line by a fixed scalar factor. Generally speaking, we will take ǫ > 0 to be any positive

constant with ǫ≪ ǫ0.

5.1. Extension operators in Λ∗ and product type estimates on Ω. To establish the desired elliptic

estimates, it will be convenient to have an extension operator which is bounded from Hs(Ω) → Hs(Rd) for

s ≥ 0, and Ck,α(Ω) → Ck,α(Rd) for a suitable range of k and α with bounds depending only on the implicit

constant A. Among other things, this will enable us to recover many of the standard product type estimates

which are well-known on Rd. To this end, let ϕ : Rd−1 → R be a Lipschitz function with Lipschitz constant

M . Let Ω = {(x, y) ∈ Rd : y > ϕ(x)}. Moreover, for 1 ≤ p ≤ ∞ and an integer k ≥ 0, let W k,p(Ω) denote

the usual Sobolev space consisting of distributions whose derivatives up to order k belong to Lp(Ω). It is a

classical result of Stein [44, Theorem 5’, p. 181] that there exists a linear operator E mapping functions on

Ω to functions on Rd with the property that E :W k,p(Ω) →W k,p(Rd) is well-defined and continuous for all

1 ≤ p ≤ ∞ and integers k. Moreover, the norm of E :W k,p(Ω) →W k,p(Rd) depends only on the dimension

d, the order of differentiability k and the Lipschitz constant M . The operator E is called Stein’s extension

operator. As one can see directly from its definition [44, Equation (24), p. 182], E also maps C1(Ω) → C1(Rd).

As explained in Section 3.3 of [44], a partition of unity argument allows one to construct an extension op-

erator E = EΩ on all Lipschitz domains Ω, with constant depending only on d, k, p, the number and size of

the balls needed to cover the boundary, and the Lipschitz constant of the defining function on each ball.

Since for a tight enough collar Λ∗ one can use the same balls to cover all elements of Λ∗ with control of

the Lipschitz constant on each ball, this shows that Stein’s extension operator has norm bounds that are

uniform for domains with boundary in Λ∗.

In the above discussion, the definition of the W k,p norm was the usual one, defined by requiring the first k

weak-derivatives to be in Lp. However, as noted earlier, we also define the Hs norm of a function f as the

infimum of the Hs norms of all possible extensions of f to Rd. Clearly, ‖ · ‖Wk,2 . ‖ · ‖Hk with constant

independent of the domain. However, by the above, for domains with boundary in Λ∗, the reverse inequality

also holds, with implicit constant depending on AΓ.

From [35, Theorem B.8] we know that for any non-empty open subset Ω of Rd and any s0, s1 ∈ R we have

the identification

(Hs0(Ω), Hs1(Ω))θ,2 = Hs(Ω), where s = (1− θ)s0 + θs1 and 0 < θ < 1,

with equivalent norms uniform in the collar. Thus, by interpolation, we have the following result.

Proposition 5.1. Let Ω be a bounded domain with boundary Γ ∈ Λ∗. Then for every s ≥ 0 and 0 ≤ α ≤

1 + ǫ0, Stein’s extension operator E satisfies

‖E‖Cα(Ω)→Cα(Rd), ‖E‖Hs(Ω)→Hs(Rd) .A 1

uniformly in Λ∗.

Proof. The Hs case follows from interpolation between integer powers. For Cα, we first note from [35,

Theorem A.1] (and higher order variants, c.f. [24, Lemma 6.37]) that there are extension operators with

the above Cα → Cα bound. That Stein’s operator has this property then follows by making use of such

extensions and interpolating, similar to [34, p. 11-12]. �
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Remark 5.2. As mentioned in [29, Proposition 2.17], by an interpolation argument, one can also prove

that Stein’s extension operator maps the Besov space Bp,qα (Ω) to Bp,qα (Rd) for all α > 0, 1 ≤ p, q ≤ ∞ and

Lipschitz domains Ω. However, we will not require anything this precise.

5.2. Littlewood-Paley decomposition and paraproducts on Ω. Using the Stein extension operator,

many of the standard paraproduct estimates on Rd pass over to Ω.

5.2.1. Littlewood-Paley decomposition. For a distribution u onR
d, we will make use of the standard Littlewood-

Paley decomposition

u =
∑

k≥0

Pku,

where for k > 0, Pk corresponds to a Fourier multiplier with smooth symbol supported in the dyadic

frequency region |ξ| ≈ 2k and P0 corresponds to a multiplier localized to the unit ball. The notation P<k,

P≤k, P≥k and P>k will have the usual meaning. Using the Stein extension operator, we may also consider

Littlewood-Paley projections when u is defined only on Ω. In this case, we abuse notation, and write Pku

instead of PkEu, with corresponding definitions for P<k, P≤k, etc. We will also often write uk, u<k, etc. as

shorthand for the above operators applied to u.

5.2.2. Paraproducts on Ω. The above decomposition allows us to make use of some of the standard tools

of paradifferential calculus (see e.g. [10] and [36]) on Rd and apply them to functions defined on Ω. For

bilinear expressions, we will make heavy use of the Littlewood-Paley trichotomy (now defined for functions

on Ω with suitable regularity),

f · g = Tfg + Tgf +Π(f, g),

where the above three terms correspond to the respective “low-high”, “high-low” and “high-high” frequency

interactions between f and g. More specifically, Tfg is defined as

Tfg :=
∑

k

f<k−k0gk,

where k0 is some universal parameter independent of k. We will be able to take, e.g., k0 = 4 for most

purposes.

5.2.3. Bilinear estimates on Ω. One important consequence of the bounds for E and the corresponding

inequality on Rd is the following algebra property for Hs(Ω), s ≥ 0,

(5.1) ‖fg‖Hs(Ω) .A ‖f‖Hs(Ω)‖g‖L∞(Ω) + ‖g‖Hs(Ω)‖f‖L∞(Ω).

In our estimates for the elliptic problems below, the bilinear terms above will frequently appear in the form

∂if∂jg where f is some function defined on Rd encoding the regularity of the domain and the desired uniform

bound for g is below C1. For this reason, in order to avoid negative Hölder norms inside a domain, we will

need the following paraproduct type estimate, which we will use in the sequel.

Proposition 5.3 (Bilinear paraproduct type estimate on Ω). Let either i) s > 0 and α1, α2, β ∈ [0, 1] or ii)

s = 0, α1 = α2 = 1 and β ∈ [0, 1]. Then we have for any r ≥ 0,

‖∂if∂jg‖Hs(Ω) .A ‖g‖Hs+2−α1(Ω)‖f‖Cα1(Ω) + ‖f‖Hs+r+1(Ω) sup
k>0

2−k(r+α2−1)‖g1k‖Cα2(Ω)

+ ‖f‖C1,2ǫ(Ω) sup
k>0

2k(s+β−ǫ)‖g2k‖H1−β(Ω),

where g = g1k + g2k is any sequence of partitions of g in Cα2(Ω) +H1−β(Ω).
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Proof. By Proposition 5.1, it suffices to prove these estimates for f, g defined on Rd. We prove the estimate

for 0 < α1, α2 < 1 and s > 0 as the other cases are more easily dealt with. We recall that for 0 < α < 1, the

Cα norm on Rd can be characterized by the equivalent Besov norm,

(5.2) ‖u‖Cα(Rd) ≈ ‖P≤0u‖L∞(Rd) + sup
j>0

2αj‖Pju‖L∞(Rd).

We now decompose ∂if∂jg into paraproducts,

(5.3) ∂if∂jg = T∂if∂jg + T∂jg∂if +Π(∂if, ∂jg).

We then have the standard estimate

‖T∂if∂jg‖Hs(Rd) . ‖f‖Cα1(Rd)‖∂jg‖Hs+1−α1(Rd),

which follows by shifting 1−α1 derivatives off of the low frequency factor and onto the high frequency factor

in each term. Using the hypothesis s > 0, the high-high paraproduct may be estimated by the same term.

For the remaining low-high interaction, we write

T∂jg∂if =
∑

k

P<k−4∂jgPk∂if =
∑

k

P<k−4∂j(g
1
k)Pk∂if +

∑

k

P<k−4∂j(g
2
k)Pk∂if.

Using standard Bernstein type inequalities and square summing, the first term on the right can be easily

controlled by

‖∂if‖Hs+r(Rd) sup
k>0

2−k(r+α2−1)‖g1k‖Cα2(Rd),

while the latter can be controlled by

‖f‖C1,2ǫ(Rd) sup
k>0

2k(s+β−ǫ)‖g2k‖H1−β(Rd).

�

The following corollary of the above proposition will be used heavily in the higher energy bounds to control

product terms on Ω with suitable pointwise control norms.

Corollary 5.4. Let s and α1, α2 be as in Proposition 5.3. Assume that f ∈ Hs+2−α2(Ω) ∩ Cα1(Ω) and

g ∈ Hs+2−α1(Ω) ∩ Cα2(Ω). Then we have

‖∂if∂jg‖Hs(Ω) .A ‖g‖Hs+2−α1(Ω)‖f‖Cα1(Ω) + ‖f‖Hs+2−α2(Ω)‖g‖Cα2(Ω).

Proof. This follows immediately from Proposition 5.3 by taking g2j = 0 and r = 1− α2. �

5.2.4. Generalized Moser type estimate. Next, we prove a Moser type estimate with the same flavor as

the above bilinear estimate. The main purpose of this estimate will be to suitably control (extensions of)

compositions of functions on Ω with diffeomorphisms of Rd. This will be important for obtaining more

refined elliptic estimates where we need to use such diffeomorphisms to flatten the boundary.

Proposition 5.5 (Balanced Moser estimate). Let d ≥ 1 be an integer and let G : Rd → Rd be a diffeomor-

phism with ‖DG‖Cǫ , ‖DG−1‖Cǫ .A 1. Let s ≥ 0, r ≥ 0 and α, β ∈ [0, 1]. Then for every F ∈ Hs(Rd) and

partition F = F 1
j + F 2

j ∈ Cα(Rd) +H1−β(Rd), we have

‖F (G)‖Hs(Rd) .A ‖F‖Hs(Rd) + ‖G− Id‖Hs+r sup
j>0

2−j(α+r−1)‖F 1
j ‖Cα(Rd) + sup

j>0
2j(s+β−1−ǫ)‖F 2

j ‖H1−β(Rd).

Remark 5.6. The same estimate holds for F ∈ Hs(Ω) by replacing F with its Stein extension.

Proof. The case 0 ≤ s ≤ 1 is a consequence of the following standard fact.
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Proposition 5.7 (Theorem 3.23 of [35]). Let 0 ≤ s ≤ 1 and let G : Rd → Rd be a diffeomorphism with

‖DG‖L∞ .A 1 and ‖DG−1‖L∞ .A 1. Then for every F ∈ Hs(Rd), we have

‖F (G)‖Hs(Rd) ≈A ‖F‖Hs(Rd).

Now, assume s > 1. We begin by performing a Littlewood-Paley decomposition,

‖F (G)‖2Hs(Rd) .j0 ‖F (G)‖2L2(Rd) +
∑

j>j0

22js‖Pj(F (G))‖
2
L2(Rd),

where j0 > 0 is some fixed constant depending only on A, to be chosen later. We have

2js‖Pj(F (G))‖L2(Rd) . 2js‖Pj(F<j′ (G))‖L2(Rd) + 2js‖Pj(F≥j′ (G))‖L2(Rd),

where F<j′ := P<j′F , F≥j′ := F − F<j′ and j
′ := j − j1 with j1 being some parameter depending only on s

which will also be chosen later. For the latter term, by a change of variables and since s > 0, we have
∑

j>j0

22js‖Pj(F≥j′ (G))‖
2
L2(Rd) .A

∑

j>j0

∑

k≥j′

22(j−k)s22ks‖PkF‖
2
L2(Rd) .A ‖F‖2Hs(Rd).

On the other hand, using the fundamental theorem of calculus, we obtain

2js‖Pj(F<j′ (G))‖L2(Rd) . 2js sup
τ∈[0,1]

‖Pj (DF<j′(Gτ )P≥j′G) ‖L2(Rd) + 2js‖Pj (F<j′ (P<j′G)) ‖L2(Rd),(5.4)

where

Gτ = τP<j′G+ (1− τ)G.

Now, as ‖DG‖Ċǫ , ‖DG−1‖Ċǫ .A 1, it follows that P<j′G and Gτ (for τ ∈ [0, 1]) are invertible with

‖P<j′DG‖L∞ , ‖DGτ‖L∞ .A 1 as long as j0 is large enough (depending only on A and the collar). Now, to

control the first term on the right-hand side of (5.4), we split F<j′ = (F 1
j )<j′ + (F 2

j )<j′ and estimate (using

the estimate for G−1
τ ),

2js sup
τ∈[0,1]

‖Pj (DF<j′(Gτ )P≥j′G) ‖L2(Rd) .A 2−j(r+α−1)‖F 1
j ‖Cα(Rd)2

j(s+r)‖P≥j′G‖L2(Rd)

+ 2j(s−1+β−ǫ)‖F 2
j ‖H1−β(Rd).

(5.5)

Square summing (and possibly relabelling ǫ) gives


∑

j>j0

22js sup
τ∈[0,1]

‖Pj (DF<j′ (Gτ )P≥j′G) ‖
2
L2(Rd)




1
2

.A sup
j>0

2−j(r+α−1)‖F 1
j ‖Cα(Rd)‖G− Id‖Hs+r

+ sup
j>0

2j(s−1+β−ǫ)‖F 2
j ‖H1−β(Rd).

Next, we control the second term on the right-hand side of (5.4), which is a bit easier. Let k be the largest

integer strictly less than s so that 0 < s− k ≤ 1. If j1 := j − j′ is large enough (depending only on k), we

have by the chain rule and straightforward paraproduct analysis,

2js‖PjF<j′(P<j′G)‖L2(Rd) .A 2j(s−k)‖P̃j(D
kF<j′ (P<j′G))‖L2(Rd),

where P̃j is a slightly fattened Littlewood-Paley projection. We then use the fundamental theorem of calculus

to obtain

2j(s−k)‖P̃j(D
kF<j′ (P<j′G))‖L2(Rd) .A 2j(s−k) sup

τ∈[0,1]

‖P̃j(D
k+1F<j′(Gτ )P≥j′G)‖L2(Rd)

+ 2j(s−k)‖P̃j(D
kF<j′ (G))‖L2(Rd).
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For the first term, we have simply

2j(s−k) sup
τ∈[0,1]

‖P̃j(D
k+1F<j′ (Gτ )P≥j′G)‖L2(Rd) .A 2j(s−k−1−ǫ)‖Dk+1F<j′‖L2(Rd) . 2−jǫ‖F‖Hs(Rd).

For the second term, we have

2j(s−k)‖P̃j(D
kF<j′ (G))‖L2(Rd) .A 2j(s−k)‖DkF≥j′‖L2(Rd) + ‖P̃j((D

kF )(G))‖Hs−k(Rd).

Since 0 < s− k ≤ 1, we obtain from Proposition 5.7,


∑

j>j0

22j(s−k)‖P̃j(D
kF<j′(P<j′G))‖

2
L2(Rd)




1
2

.A ‖F‖Hs(Rd),

where we used that s − k ≤ 1 to control ‖(DkF )(G)‖Hs−k(Rd) and that s − k > 0 to control the l2 sum of

2j(s−k)‖DkF≥j′‖L2(Rd). Combining everything together completes the proof. �

We also note a much cruder variant of the above proposition where we measure G only in pointwise norms

and F in Sobolev based norms. This will only be needed in our construction of regularization operators later

on.

Proposition 5.8 (Crude Moser estimate). Under the assumptions of Proposition 5.5, the following bound

holds for every F ∈ Hs(Rd),

‖F (G)‖Hs(Rd) .A ‖F‖Hs(Rd) + ‖G− Id‖Cs+r+ǫ(Rd)‖F‖H1−r(Rd).

Proof. The proof follows almost identical reasoning to Proposition 5.5. The only difference is that we do not

partition F in (5.5) and instead estimate

‖(DF<j′ )(Gτ )‖L2(Rd) .A ‖DF<j′‖L2(Rd) . 2jr‖F‖H1−r(Rd).

We then invoke Bernstein’s inequality to obtain

2j(r+s)‖P≥jG‖L∞(Rd) . 2−jǫ‖G− Id‖Cs+r+ǫ ,

and conclude by summing in j. �

5.3. Local coordinate parameterizations and Sobolev norms in Λ∗. With the above estimates in

hand, we can begin the process of proving refined versions of the various elliptic, trace and product type

estimates on Γ that will be important for establishing our higher energy estimates. Our goal in this subsection

is to construct a family of coordinate neighborhoods for Γ∗ which will act as a “universal” set of coordinate

neighborhoods which we can use to flatten the boundary of nearby hypersurfaces Γ ∈ Λ∗. We will also use

these local coordinates to define Sobolev type norms on Γ which are suitable for proving uniform estimates

later in this section. To achieve this, we slightly modify the construction from [41, Appendix A] (but note

the difference in our definitions of Λ∗).

5.3.1. Local coordinates and partition of unity. As in [41, Appendix A], since Γ∗ is compact, for any σ > 0

we can choose xi ∈ Rd and r, ri ∈ (0, 12 ], i = 1, . . . ,m, such that we have the following two properties:

(i) B(Γ∗, r) ⊆ ∪mi=1Ri(ri), where B(S, ǫ) denotes the ǫ neighborhood of S and Ri(·) := R̃i(·)×Ii(·) ⊆ Rd

is a rotated cylinder with perpendicular vertical segment centered at xi with the given equal radius

and length.
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(ii) For each i, z = (z̃, zd) being the natural Euclidean coordinates on Ri, there exists a function

f∗i : R̃i(2ri) → Ii such that

(5.6) ‖f∗i‖C0 < σri, ‖Df∗i‖C0 < σ and Ω∗ ∩Ri(2ri) = {zd > f∗i(z̃)}.

When δ > 0 is small enough, for every Γ ∈ Λ∗ with corresponding bounded domain Ω, (i) holds with Γ∗

replaced by Γ. Moreover, there exist functions fi : R̃i(2ri) → Ii satisfying (ii) with Ω∗ replaced by Ω such

that we can control the Sobolev and Hölder type norms of fi by the corresponding norms of Γ. Specifically,

we have

‖fi‖Hs .A 1 + ‖Γ‖Hs , ‖fi‖Ck,α .A 1 + ‖Γ‖Ck,α

for s ≥ 0, integer k ≥ 0 and α ∈ [0, 1). Indeed, by performing a computation in local coordinates, the

above Sobolev bound follows from the Moser estimate in Proposition 5.5 and the pointwise bound can be

verified directly from the chain rule and interpolation. Using these coordinate representations, we intend to

construct local coordinate maps on each R̃i(2ri) for Ω which flatten Γ and have uniform estimates in Λ∗.

In some of the estimates in this section, by a slight abuse of notation, we write ‖Γ‖ when we really mean

1+ ‖Γ‖ in order to declutter the notation. This will not affect any of the analysis for the dynamic problem.

On each R̃i(2ri), let φi = γifi, where γi(z̃) = γ
(

|z̃|
ri

)
and γ : [0,∞) → [0, 1] is a smooth cutoff sup-

ported on [0, 32 ] and equal to 1 on [0, 54 ]. We can extend φi to a function on Rd which gains half a degree of

regularity in Hs norms and is bounded in suitable pointwise norms. Indeed, let z̃ ∈ Rd−1 and s ≥ 1
2 . We

define an extension Φi of φi by

Φi(z) =

∫

Rd−1

φ̂i(ξ
′)e−(1+|ξ′|2)z2de2πiξ

′·z̃dξ′ for z = (z̃, zd) ∈ R
d.

We first observe that for each integer k ≥ 0 and α ∈ [0, 1), ‖Φi‖Ck,α(Rd) .k,α ‖φi‖Ck,α(Rd−1). One also

has the same bounds for W k,∞ for each k ≥ 0. To see this, we observe that Φi can be rewritten as the

convolution

Φi(z) = cde
−z2d

∫

Rd−1

φi(z̃ + zdy)e
−|y|2dy,

where cd is a dimensional constant. In this form, the above bounds are easily checked. We also have

‖Φi‖
H

s+1
2 (Rd)

≈s ‖φi‖Hs(Rd−1) for every s ≥ 0, which follows from inspecting the Fourier transform of Φi, in

a similar fashion as [35, Lemma 3.36].

From the above, we see that if σ > 0 from (5.6) is small enough, then the map

Hi(z̃, zd) := (z̃, zd +Φi(z̃, zd))

is a diffeomorphism from Rd → Rd with ‖Hi− Id‖Ck,α .A ‖Γ‖Ck,α and ‖Hi− Id‖
H

s+1
2
.A ‖Γ‖Hs for s ≥ 0,

integer k ≥ 0 and α ∈ [0, 1). Moreover, for the inverse function Gi := H−1
i , the same bounds hold for Gi−Id

and its d′th component gi satisfies the bounds |∂zdgi| + |(∂zdgi)
−1| .A 1. Finally, if σ > 0 is small enough

and Λ∗ is a tight enough collar neighborhood we have, in the C1 topology,

‖Hi − Id‖C1 + ‖Gi − Id‖C1 .A ρ,

where ρ > 0 is some positive constant which can be made as small as we like (depending on σ and Λ∗). We

then have for some uniform δ∗ > 0,
(
R̃i

(
5

4
ri

)
× Ii

(
5

4
δ∗ri

))
∩ Ω =

(
R̃i

(
5

4
ri

)
× Ii

(
5

4
δ∗ri

))
∩ {gi > 0}.
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Partition of unity. Here, we construct a partition of unity for Ω with bounds uniform in Λ∗. We follow

essentially the procedure from [41, Appendix A]. Let γ be a smooth cutoff defined on [0,∞) satisfying

0 ≤ γ ≤ 1 with γ supported in [0, 54 ) and equal to 1 on [0, 98 ]. Moreover, let ζ be a smooth function defined

on [0,∞) taking values in [ 13 ,∞) with ζ = 1
3 on [0, 13 ] and ζ(x) = x for x ≥ 2

3 . Define

γ̃∗i(z) := γ(
|z̃|

ri
)γ(

|zd|

δ∗ri
), η = ζ ◦

∑

i

(γ̃∗i ◦Gi).

We then define a partition of unity via

(5.7) γ∗i :=
γ̃∗i(Gi)

η
, γ∗0 := (1−

∑

i

γ∗i)1Ω.

We see that
∑
i≥0 γ∗i = 1 on Ω and 0 ≤ γ∗i ≤ 1 for each i ≥ 0. Moreover, by the Moser and Sobolev product

estimates, we have

‖γ∗i‖
H

s+1
2
.A ‖Γ‖Hs

for s ≥ 0.

5.3.2. Sobolev spaces on hypersurfaces in Λ∗. We can use the above partition of unity to define Ck,α and Hs

spaces on hypersurfaces Γ ∈ Λ∗. Indeed, if Γ is C1 and in Hs, we may define what it means to be in Hr(Γ)

for 0 ≤ r ≤ s through the inner product,

〈f, g〉Hr(Γ) :=
∑

i≥1

〈φifi, φigi〉Hr(Rd−1),

where φi := γ∗i ◦Hi(z̃, 0) (note that this is not the same φi as in the previous subsection), fi := f ◦Hi(z̃, 0)

and gi := g ◦Hi(z̃, 0). If Γ is Ck,α we may also define

‖f‖Ck,α(Γ) := sup
i≥1

‖φifi‖Ck,α(Rd−1).

Finally, for a function v defined on Ω, we write vi = γ∗iv and ui = vi(Hi).

Using the above and the full generality afforded by Proposition 5.5, we prove a refined product type estimate

on the boundary Γ. Precisely, we have the following.

Proposition 5.9 (Product estimates on the boundary). Let Ω be a bounded domain with boundary Γ ∈ Λ∗.

If f, g are functions on Γ and g = g1j + g2j is any sequence of partitions, then for s ≥ 0 and r ≥ 1 we have

‖fg‖Hs(Γ) .A ‖f‖L∞(Γ)‖g‖Hs(Γ) + (‖f‖Hs+r−1(Γ) + ‖f‖L∞(Γ)‖Γ‖Hs+r) sup
j>0

2−j(r−1)‖g1j‖L∞(Γ)

+ (1 + ‖f‖C2ǫ(Γ)) sup
j>0

2j(s−ǫ)‖g2j‖L2(Γ).

Remark 5.10. If we take r = 1 and g1j = g, we recover something resembling the standard algebra property,

(5.8) ‖fg‖Hs(Γ) .A ‖f‖L∞(Γ)‖g‖L∞(Γ)‖Γ‖Hs+1 + ‖f‖Hs(Γ)‖g‖L∞(Γ) + ‖g‖Hs(Γ)‖f‖L∞(Γ),

but with the twist being the additional explicit presence of the Hs+1 norm of the surface on the right-hand

side. We also remark that the proof below will allow for the first term on the right of (5.8) to be replaced

by (‖f‖W 1,∞(Γ)‖g‖L∞(Γ) + ‖f‖L∞(Γ)‖g‖W 1,∞(Γ))‖Γ‖Hs , which is perhaps more natural, but we will never

actually need this.
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Proof. Let (γ∗i)i be the partition of unity for Ω defined in (5.7). As before, we write φi(z̃) := γ∗i(Hi(z̃, 0)),

which is smooth with domain independent bounds since Gi and Hi are inverse. Similarly, we write fi =

f(Hi(z̃, 0)) and gi = g(Hi(z̃, 0)), which are functions defined on the support of φi. By definition, it suffices

to control ‖φifigi‖Hs(Rd−1) for each i ≥ 1. To begin with, let j′ = j − 4 and let Pj and P<j′ denote

Littlewood-Paley projections on Rd−1. Moreover, define φ̃i to be a smooth compactly supported function

equal to 1 on the support of γ∗i with support properties chosen so that φ̃i is supported in the region where

fi is well-defined. Then a simple paraproduct estimate using the Littlewood-Paley trichotomy gives

‖φifigi‖Hs(Rd−1) .A ‖f‖L∞(Γ)‖φigi‖Hs(Rd−1) +


∑

j>0

22js‖P<j′ (φigi)Pj(fiφ̃i)‖
2
L2(Rd−1)




1
2

.

For the latter term in the above, we estimate



∑

j>0

22js‖P<j′ (φigi)Pj(fiφ̃i)‖
2
L2(Rd−1)




1
2

.A ‖fiφ̃i‖Hs+r−1(Rd−1) sup
j>0

2−j(r−1)‖g1j‖L∞(Γ)

+ (1 + ‖f‖C2ǫ(Γ)) sup
j>0

2j(s−ǫ)‖g2j ‖L2(Γ).

We are then reduced to showing

‖fiφ̃i‖Hs+r−1(Rd−1) .A ‖f‖Hs+r−1(Γ) + ‖f‖L∞(Γ)‖Γ‖Hs+r .

For this, we note that

‖fiφ̃i‖Hs+r−1(Rd−1) ≤
∑

j≥1

‖φ̃iγ∗j(Hi(z̃, 0))fi‖Hs+r−1(Rd−1).

Let us write ϕij := Gj ◦Hi. Then we have

‖φ̃iγ∗j(Hi(z̃, 0))fi‖Hs+r−1(Rd−1) = ‖(φjfj)(ϕij(z̃, 0))φ̃i‖Hs+r−1(Rd−1).

We note that ϕij is a diffeomorphism having the same bounds as Gj and Hi. By using the extension

Φ from earlier, we may assume that φjfj is defined on Rd with ‖φjfj‖
H

s+r− 1
2 (Rd)

. ‖φjfj‖Hs+r−1(Rd−1)

and ‖φjfj‖L∞(Rd) . ‖φjfj‖L∞(Rd−1). Therefore, by the trace estimate on Rd−1, the fact that ϕij is a

diffeomorphism and the balanced Moser estimate, we have

‖φ̃i(φjfj)(ϕij(z̃, 0))‖Hs+r−1(Rd−1) .A ‖(φjfj) ◦ ϕij‖
H

s+r− 1
2 (Rd)

.A ‖φjfj‖Hs+r−1(Rd−1) + ‖Γ‖Hs+r‖f‖L∞(Γ).

Since, by definition, we have

‖φjfj‖Hs+r−1(Rd−1) ≤ ‖f‖Hs+r−1(Γ),

the proof is complete. �

5.3.3. Trace estimates. Now, we prove a refined version of the trace theorem for Γ.

Proposition 5.11 (Balanced trace estimate). Let Ω be a bounded domain with boundary Γ ∈ Λ∗. For every

s > 1
2 , r ≥ 0, α, β ∈ [0, 1] and every sequence of partitions v = v1j + v2j , we have

‖v|Γ‖
H

s− 1
2 (Γ)

.A ‖v‖Hs(Ω) + ‖Γ‖
H

s+r− 1
2
sup
j>0

2−j(r+α−1)‖v1j ‖Cα(Ω) + sup
j>0

2j(s−1+β−ǫ)‖v2j ‖H1−β(Ω).
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Proof. For i ≥ 1, define ṽi = γ∗iEv where E is the Stein extension operator for Ω. It suffices to prove the

estimate with the left-hand side replaced by ‖ṽi(Hi(z̃, 0))‖
H

s− 1
2 (Rd−1)

. Using the trace theorem on Rd−1, we

have

‖ṽi(Hi(z̃, 0))‖
H

s− 1
2 (Rd−1)

. ‖ũi‖Hs(Rd),

where ũi := ṽi ◦ Hi. We then use Proposition 5.5 and the operator bounds for E in Proposition 5.1 to

conclude. �

5.3.4. An extension operator depending continuously on the domain. Another use of the above local coor-

dinates is to construct a family of extension operators which depend continuously in a suitable sense on

the domain. This will be important for establishing our continuous dependence result later on. Poten-

tially, something akin to the Stein extension operator could work here, but we opt for the following simpler

construction where the dependence on the domain is more transparent.

Proposition 5.12. Fix a collar neighborhood Λ∗ and let s > d
2 + 1. For each bounded domain Ω with Hs

boundary Γ ∈ Λ∗ there exists an extension operator EΩ : Hs(Ω) → Hs(Rd) such that for all v ∈ Hs(Ω),

(5.9) ‖EΩv‖Hs(Rd) + ‖Γ‖Hs ≈A,‖v‖
C

1
2 (Ω)

‖(v,Γ)‖Hs , ‖EΩv‖Hs(Rd) .A ‖Γ‖
H

s− 1
2
‖v‖Hs(Ω),

where the dependence on ‖v‖
C

1
2 (Ω)

is polynomial. Moreover, if Ωn is a sequence of domains with Γn → Γ in

Hs, then for every v ∈ Hs(Rd), there holds

(5.10) ‖EΩn
v|Ωn

− EΩv|Ω‖Hs(Rd) → 0.

Remark 5.13. One can loosely think of (5.10) as a strong operator topology convergence for this family of

extensions.

Proof. Given a family of domains Ωn and Ω with boundaries Γn,Γ ∈ Λ∗, denote by γn∗i and γ∗i the corre-

sponding partitions of unity, so that

v =
∑

i

γn∗iv on Ωn and v =
∑

i

γ∗iv on Ω.

Define uni = (γn∗iv)◦H
n
i on Rd+. Let k be the largest integer less than or equal to s, and define the half-space

extension 



ũni (z̃, zd) =
∑k+1
j=1 cju

n
i (z̃,−

zd
j
) if zd < 0,

ũni (z̃, zd) = uni (z̃, zd) if zd ≥ 0,

where c1, . . . , ck+1 are gotten as in [24, Lemma 6.37] by solving an appropriate Vandermonde system. It is

standard to verify that we have ũni ∈ Hs(Rd).

We define the Ωn extension of v by

ṽn =
∑

i

ũni ◦Gni ,

and similarly let ṽ by the Ω extension of v. To verify the continuous dependence property, we want to verify

that if Γn → Γ in Hs, then ṽn → ṽ in Hs(Rd). For this, it suffices to prove that ũni ◦G
n
i → ũi ◦Gi in Hs(Rd)

for each i. We note that

(5.11) ‖ũni ◦G
n
i − ũi ◦Gi‖Hs(Rd) ≤ ‖(ũni − ũi) ◦G

n
i ‖Hs(Rd) + ‖ũi ◦G

n
i − ũi ◦Gi‖Hs(Rd).

The first term on the right-hand side of (5.11) can be shown to go to zero by using standard Moser estimates.

The latter term goes to zero by arguing similarly to the proof that translation is continuous in Lp spaces
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(using a simple density argument to replace ũi by a smooth function).

Finally, the bounds (5.9) follow from the definition of the extension and Proposition 5.5.

�

5.4. Pointwise elliptic estimates. Here we establish variants of the C2,α and C1,α estimates for the

Dirichlet problem which adequately track the dependence on the domain regularity. In our analysis later,

we will mostly use the C1,α estimates with α = 1
2 or α = ǫ. However, the C2,α estimates will be relevant for

proving bounds for our regularization operators, which are defined in Section 6.

As will become apparent later, to obtain the desired pointwise elliptic estimates, it is crucial to use a domain

flattening map whose Jacobian has determinant 1. This will be especially necessary for the C1,α estimate,

as we must preserve the divergence form of the equation. For this reason, instead of the map Hi, we will use

the more familiar domain flattening map

(5.12) Fi(z) = (z̃, zd + φi(z̃)),

whose Jacobian has determinant 1. The tradeoff when using the flattening Fi is that it does not exhibit a
1
2 gain in regularity for the Hs norm on the interior compared to the boundary, but this will not matter for

this section because all domain dependent coefficients will be placed in L∞ based norms. We let Ψi := F−1
i ,

and begin with the C2,α estimates.

Proposition 5.14 (C2,α estimates for the inhomogeneous Dirichlet problem). Let 0 < α < 1 and let Ω be

a bounded domain with boundary Γ ∈ Λ∗ having C2,α regularity. Consider the boundary value problem




∆v = g in Ω,

v = ψ on Γ.

Then v satisfies the estimate

‖v‖C2,α(Ω) .A ‖Γ‖C2,α‖v‖W 1,∞(Ω) + ‖g‖Cα(Ω) + ‖ψ‖C2,α(Γ).

Proof. We write vi = γ∗iv, hi = ∆vi, fi = hi ◦ Fi and vi = ui ◦ Ψi. Omitting some of the subscripts for

notational convenience, we see that u := ui satisfies the equation

(5.13)





∆u = ∂k((δ
jk − ajk)∂ju) + f,

u|zd=0
= (γ∗iψ)(Hi(z̃, 0)),

where ajk = (Ψjxl
Ψkxl

)(Fi) with repeated indices summed over. Note that to compute the boundary term in

(5.13) we used that Fi(z̃, 0) = Hi(z̃, 0). By the well-known Schauder estimates for the half-space, we obtain

(5.14) ‖u‖C2,α .A ‖(δjk − ajk)∂ju‖C1,α + ‖f‖Cα + ‖(γ∗iψ)(Hi(z̃, 0))‖C2,α .

Using the Besov characterization (5.2) and the paradifferential expansion (5.3), it is straightforward to

estimate

‖(δjk − ajk)∂ju‖C1,α . ‖δjk − ajk‖Cǫ‖u‖C2,α + ‖Γ‖C2,α‖v‖W 1,∞(Ω).(5.15)

As aij is close to the identity in Cǫ, this simplifies the estimate (5.14) to

(5.16) ‖u‖C2,α .A ‖Γ‖C2,α‖v‖W 1,∞(Ω) + ‖f‖Cα + ‖(γ∗iψ)(Hi(z̃, 0))‖C2,α .
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Clearly, we have ‖f‖Cα .A ‖h‖Cα(Ω). On the other hand, we have

(5.17) ‖u(Ψi)‖Ċ2,α .A ‖(DΨi)
∗(D2u)(Ψi)DΨi‖Ċα + ‖(Du)(Ψi)D

2Ψi‖Ċα .

We can estimate both terms above by the right-hand side of (5.16). We show how to do this for the first

term, as the second term is similar. For this, we may assume that u is defined on all of Rd by using a suitable

extension operator from the half-space to Rd. Then we write as usual u<j to mean P<ju and u≥j := u−u<j.

By the Besov characterization of Cα, we need to estimate

sup
j>0

2jα‖Pj((DΨi)
∗(D2u)(Ψi)DΨi)‖L∞ .

By the standard Littlewood-Paley trichotomy, we first obtain,

2jα‖Pj((DΨi)
∗(D2u)(Ψi)DΨi)‖L∞ .A ‖u‖C2,α + 2jα‖D2u‖L∞‖P̃jB(DΨi, DΨi)‖L∞ ,

where B is a suitable bilinear form. For the latter term, we split u = u<j+u≥j and estimate using Bernstein’s

inequality,

2jα‖D2u‖L∞‖P̃jB(DΨi, DΨi)‖L∞ .A ‖v‖W 1,∞(Ω)2
j(1+α)‖P̃jB(DΨi, DΨi)‖L∞ + ‖u‖C2,α

.A ‖Γ‖C2,α‖v‖W 1,∞(Ω) + ‖u‖C2,α .

The other term in (5.17) is similarly handled. Combining the above, we obtain

‖vi‖C2,α(Ω) .A ‖Γ‖C2,α‖v‖W 1,∞(Ω) + ‖h‖Cα(Ω) + ‖(γ∗iψ)(Hi(z̃, 0))‖C2,α .

Expanding

h = ∆(γ∗iv) = ∆γ∗iv + 2∇γ∗i · ∇v + γ∗i∆v

we obtain

‖h‖Cα(Ω) .A ‖Γ‖C2,α‖v‖W 1,∞(Ω) + ‖∇γ∗i · ∇v‖Cα(Ω) + ‖g‖Cα(Ω).

The second term on the right-hand side can be estimated crudely by

‖∇γ∗i · ∇v‖Cα(Ω) .A ‖v‖C1,α(Ω) + ‖Γ‖C2,α‖v‖W 1,∞(Ω).

Finally, by estimating the term ‖v‖C1,α(Ω) . δ0‖v‖C2,α(Ω)+C(δ0)‖v‖C0(Ω) for some δ0 sufficiently small and

absorbing the first term into the left-hand side of the estimate, we conclude the proof. �

By very similar reasoning and the corresponding estimate in the half-space (see Theorem 8.33 in [24]) we

also have a C1,α variant if the source term g is replaced by ∇ · g. More precisely, we have the following.

Proposition 5.15 (C1,α estimates for the Dirichlet problem). Let Ω be a bounded C1,α domain with 0 <

α < 1 and with boundary Γ ∈ Λ∗. Consider the boundary value problem




∆v = ∇ · g1 + g2 in Ω,

v = ψ on ∂Ω.

Then v satisfies the estimate

‖v‖C1,α(Ω) .A ‖Γ‖C1,α(‖v‖W 1,∞(Ω) + ‖g1‖L∞(Ω)) + ‖g1‖Cα(Ω) + ‖g2‖L∞(Ω) + ‖ψ‖C1,α(Γ).

Interpolating and using the straightforward estimate

‖v‖L∞(Ω) .A ‖g1‖L∞(Ω) + ‖g2‖L∞(Ω) + ‖ψ‖L∞(Γ),

we deduce also

(5.18) ‖v‖C1,ǫ(Ω) .A ‖g1‖Cǫ(Ω) + ‖g2‖L∞(Ω) + ‖ψ‖C1,ǫ(Γ)
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and

‖v‖C1,α(Ω) .A ‖Γ‖C1,α(‖g1‖Cǫ(Ω) + ‖g2‖L∞(Ω) + ‖ψ‖C1,ǫ(Γ)) + ‖g1‖Cα(Ω) + ‖g2‖L∞(Ω) + ‖ψ‖C1,α(Γ).

Proof. Much of the proof is similar to the C2,α estimate. We only outline the slight changes. First, we note

that

∆vi = ∂j(∂jγ∗iv) + ∂jγ∗i∂jv + γ∗i∇ · g1 + γ∗ig2

= ∂j(∂jγ∗iv) +∇ · (γ∗ig1) + ∂jγ∗i∂jv −∇γ∗i · g1 + γ∗ig2 =: ∇ · h1 + h2.

Hence, localizing with γ∗i preserves the divergence source term to leading order. More precisely, h2 will

be suitable for estimating in L∞ in the sense that ‖h2‖L∞ .A ‖v‖W 1,∞(Ω) + ‖g1‖L∞(Ω) + ‖g2‖L∞(Ω). The

next step is to perform the domain flattening procedure. The most important point here is that since the

Jacobian determinant of Fi is 1, the corresponding equation for u (using the notation from the proof of

Proposition 5.14) becomes 



∂k(a
jk∂ju) = ∇ · h̃1 + h̃2 in Ω,

u|zd=0 = (γ∗iψ)(Hi(z̃, 0)) on ∂Ω,

where

h̃1 := (h1 ·DΨi)(Fi), h̃2 := h2(Fi).

In other words, the divergence structure of the equation is preserved. From this point, the proof follows the

same line of reasoning as the C2,α estimates by writing an equation for ∆u. The difference is that we use

the C1,α norm and the corresponding estimate for the Laplace equation in the half-space when the equation

has the above divergence form. �

When g1 and g2 are zero in the above proposition, we can interpolate using the maximum principle for H

and the C1,ǫ bound above to obtain Cα bounds for the harmonic extension with constant depending only

on AΓ.

Corollary 5.16. Let 0 ≤ α < 1. The following low regularity bound for H holds uniformly for domains Ω

with boundary Γ ∈ Λ∗,

‖Hg‖Cα(Ω) .A ‖g‖Cα(Γ).

Proof. By the above and the maximum principle, we have C1,ǫ(Γ) → C1,ǫ(Ω) and C0(Γ) → C0(Ω) bounds

for H that are uniform in Λ∗. By [34, Example 5.15] we also know that (C0(Rn), C1,ǫ(Rn))θ,∞ = Cα(Rn)

for an appropriate choice of θ. Therefore, we just have to transfer the interpolation properties on Rn for

n = d and n = d − 1 to Ω and Γ, respectively, with constants uniform in the collar. For Ω, we argue as

in Proposition 5.1, and on Γ we simply unravel the definition of our function spaces via the partition of

unity. �

Remark 5.17. Of course, we note that Corollary 5.16 avoids C1 and Lipschitz regularity, as these do not

fall into the interpolation scale.

5.5. L2 based balanced elliptic estimates. In this subsection, we will prove Hs type estimates for

various elliptic problems. In the following analysis, we will always be using the coordinate maps Hi and Gi

(as opposed to Fi and Ψi from the pointwise estimates) to flatten the boundary since we will now need the
1
2 gain of regularity on Ω in Hs based norms given by this flattening.
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5.5.1. The Dirichlet problem. We begin our analysis by proving estimates for the inhomogeneous Dirichlet

problem 



∆v = g in Ω,

v = ψ on Γ.

We first recall two baseline estimates which will be used heavily in the derivation of the higher regularity

bounds below. The first is when ψ = 0, in which case v satisfies the H1 estimate

(5.19) ‖v‖H1(Ω) .A ‖g‖H−1(Ω).

On the other hand, for 1
2 < s ≤ 1 and g = 0, we have

(5.20) ‖v‖Hs(Ω) .A ‖ψ‖
H

s− 1
2 (Γ)

.

The bound (5.19) is completely standard. The bound (5.20) was established by Jerison and Kenig in [29],

and even holds, in an appropriate sense, at the endpoint s = 1
2 . For our purposes, we will only need the

range 1
2 < s ≤ 1, but we do need to quantify the dependence of the implicit constant in [29] on the domain.

As noted in [48], the implicit domain dependent constant is, as expected, solely dependent on the Lipschitz

character of Ω, so is controlled uniformly in the collar. Formally, [48] only quantifies the domain dependence

for the inhomogeneous problem g 6= 0, ψ = 0, but the analogous homogeneous estimate follows immediately

from this and the existence of an extension operator E : Hs− 1
2 (Γ) → Hs(Ω) for 1

2 < s ≤ 1 with norm

uniform in Λ∗. In this low regularity range of s, such an operator can be constructed by using the partition

of unity for Ω and the construction in [41]. We omit the details.

In a small number of places in the higher energy bounds, the following elliptic estimates which hold on C1,ǫ0

(but not quite Lipschitz) domains will be convenient for simplifying the analysis.

Proposition 5.18. For every 0 < s < 1
2 + ǫ0, there holds

‖∆−1g‖Hs+1(Ω) .A ‖g‖Hs−1(Ω), ‖Hψ‖Hs+1(Ω) .A ‖ψ‖
H

s+1
2 (Γ)

.

Proposition 5.18 is well-known to specialists; see, e.g., [40]. We remark that bounds of this type hold in

the range s < 1
2 when the domain is Lipschitz; the excess regularity given by a C1,ǫ0 domain is required to

extend the range to s < 1
2 + ǫ0.

Next, we move to the higher regularity estimates for the Dirichlet problem.

Proposition 5.19 (Higher regularity bounds for the inhomogeneous Dirichlet problem). Let Ω be a bounded

domain with boundary Γ ∈ Λ∗. Suppose that v solves the Dirichlet problem




∆v = g in Ω,

v = ψ on ∂Ω,

and let s ≥ 2. Then for r ≥ 0, α ∈ [0, 1], β ∈ [0, 1] and any sequence of partitions v := v1j + v2j , we have

‖v‖Hs(Ω) .A ‖g‖Hs−2(Ω) + ‖ψ‖
H

s− 1
2 (Γ)

+ ‖Γ‖
H

s+r− 1
2
sup
j>0

2−j(α−1+r)‖v1j ‖Cα(Ω) + sup
j>0

2j(s−1+β−ǫ)‖v2j ‖H1−β(Ω).

Proof. Using the partition of unity, it suffices to estimate vi := γ∗iv for each i ≥ 0. Since the case i = 0 is

essentially an interior regularity estimate, we focus on the case i ≥ 1. We define

h := ∆vi = gγ∗i + v∆γ∗i + 2∇v · ∇γ∗i.
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Using the map Hi = G−1
i , we can write a variable coefficient equation for u := vi ◦Hi,





−∆u = (aij − δij)∂i∂ju+ bj∂ju− f,

u|{zd=0} = (γ∗iψ)(Hi(z̃, 0)).

Here (dropping the i index from the partition and now using it as a dummy index), we wrote alm :=

(Glxk
Gmxk

) ◦ H (where k is summed over), bj := (∆Gj) ◦ H and f = h ◦ H. As a first step, we prove the

following estimate for u:

‖u‖Hs .A ‖f‖Hs−2 + ‖ψ‖
H

s− 1
2 (Γ)

+ ‖Γ‖
H

s+r− 1
2
sup
j>0

2−j(α−1+r)‖v1j ‖Cα(Ω) + sup
j>0

2j(s−1+β−ǫ)‖v2j ‖H1−β(Ω).

(5.21)

For this, we use the standard elliptic regularity for the half-space to obtain

(5.22) ‖u‖Hs .A ‖u‖L2 + ‖f‖Hs−2 + ‖bi∂iu‖Hs−2 + ‖(aij − δij)∂i∂ju‖Hs−2 + ‖(γ∗iψ)(Hi(z̃, 0))‖
H

s− 1
2 (Rd−1)

.

By definition, the last term on the right-hand side is controlled by ‖ψ‖
H

s− 1
2 (Γ)

. Moreover, by a change of

variables and the baseline estimates (5.19) and (5.20), we can control, crudely,

(5.23) ‖u‖L2 .A ‖vi‖L2(Ω) .A ‖h‖L2(Ω) + ‖ψ‖
H

1
2 (Γ)

.A ‖f‖L2 + ‖ψ‖
H

1
2 (Γ)

.A ‖f‖Hs−2 + ‖ψ‖
H

s− 1
2 (Γ)

.

For the purpose of estimating the third and fourth terms on the right-hand side, we may assume that

u ∈ Hs(Rd) with compact support instead of just u ∈ Hs(Rd+) by using any suitable extension for the

half-space. We then recall that in a suitably refined collar, we have

‖aij − δij‖L∞ + ‖DG− I‖L∞ ≪A 1.

Next, we define a partition of u as follows: First write vi = γ∗iv
1
j + γ∗iv

2
j and then u = vi ◦Hi = (γ∗iv

1
j ) ◦

Hi + (γ∗iv
2
j ) ◦Hi =: u1j + u2j . To prove (5.21), it suffices now by interpolation and the above estimates to

prove the estimate

(5.24) ‖bi∂iu‖Hs−2 + ‖(aij − δij)∂i∂ju‖Hs−2 .A ‖u‖Hs−ǫ + ‖DG− I‖L∞‖u‖Hs +RHS(5.21).

We show the details for bi∂iu since it is the more difficult of the two terms to deal with (as it involves two

derivatives applied to the domain flattening map) and because the estimate for (aij − δij)∂j∂iu follows from

a similar analysis. Our first aim is to establish the bound

(5.25) ‖bi∂iu‖Hs−2 .A ‖(∇u)(G) ·∆G‖Hs−2 +RHS(5.24),

which, to leading order, is essentially like doing an Hs−2 “change of variables”. This bound follows imme-

diately from Proposition 5.7 for 2 ≤ s ≤ 3, so we restrict to s ≥ 3. To simplify notation a bit, we write

w := bi∂iu. We begin by applying Proposition 5.5 to obtain

(5.26) ‖w‖Hs−2 .A ‖(∇u)(G) ·∆G‖Hs−2 + ‖Γ‖
H

s+r− 1
2
sup
j>0

2−j(1+r)‖w1
j‖L∞ + sup

j>0
2j(s−2−ǫ)‖w2

j‖L2 ,

where w = w1
j + w2

j is a well-chosen partition which needs to be picked so that we can estimate the latter

two terms above by RHS(5.24). We take

w1
j := (∆P<jG · (∇P<ju

1
j)(G))(H),

w2
j := (∆P<jG · (∇P<ju

2
j)(G) + ∆P<jG · (∇P≥ju)(G) + ∆P≥jG · (∇u)(G))(H).

It is then easily verified using the above and (5.26) that we have

‖w‖Hs−2 .A ‖(∇u)(G) ·∆G‖Hs−2 + sup
j>0

2j(s−2−ǫ)‖∆P≥jG · (∇u)(G)‖L2 +RHS(5.24).
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To estimate the latter term on the right, we use that s− 2− ǫ > 0 to estimate

2j(s−2−ǫ)‖∆P≥jG · (∇u)(G)‖L2 ≤ sup
l≥0

2l(s−2−ǫ)‖∆PlG · (∇u)(G)‖L2 .

Then splitting u = P<lu
1
l +

(
P<lu

2
l + P≥lu

)
, a change of variables and a simple application of the Bernstein

inequalities allows us to control the above term by the right-hand side of (5.24). This establishes (5.25) for

s ≥ 3. Finally, for each s ≥ 2, it remains to estimate ‖(∇u)(G)∆G‖Hs−2 by the right-hand side of (5.24).

From a simple paradifferential analysis as in Proposition 5.3, we have

‖(∇u)(G) ·∆G‖Hs−2 .A ‖(∇u)(G)‖Hs−1−ǫ + ‖T(∇u)(G)∆G‖Hs−2

.A ‖(∇u)(G)‖Hs−1−ǫ +RHS(5.24),

where, above, to estimate the latter term in the first line, we estimated each summand P<j−4(∇u(G))Pj∆G

in the paradifferential expansion of T(∇u)(G)∆G using the partition u = P<ju
1
j +

(
P<ju

2
j + P≥ju

)
and

Bernstein’s inequality. Then, using Proposition 5.5 and this same partition, we have easily

‖(∇u)(G)‖Hs−1−ǫ .A RHS(5.24).

This establishes the bound (5.24) for bi∂iu. The bound for (aij − δij)∂i∂ju follows similar reasoning, but is

easier because it involves only one derivative applied to the domain flattening map, and therefore the initial

change of variables performed above is not needed. This concludes the estimate (5.21). Our next step is

replace u on the left-hand side of (5.21) with vi and replace f on the right-hand side with g. Recall first

that vi = u ◦Gi and f = h ◦Hi. We may assume that vi and u are defined on Rd using Stein’s extension or

a suitable half-space extension in the case of u. Therefore, using the partition u = u1j + u2j as defined earlier

and Proposition 5.5 we obtain

‖vi‖Hs(Ω) .A ‖u‖Hs + ‖Γ‖
H

s+r− 1
2
sup
j>0

2−j(α−1+r)‖v1j ‖Cα(Ω) + sup
j>0

2j(s+β−1−ǫ)‖v2j ‖H1−β(Ω),

where we used that ‖G− Id‖Hs+r .A ‖Γ‖
H

s+r− 1
2
.

To conclude we now need only show that

(5.27)

‖f‖Hs−2 .A ‖g‖Hs−2(Ω)+‖Γ‖
H

s+r− 1
2
sup
j>0

2−j(α−1+r)‖v1j ‖Cα(Ω)+sup
j>0

2j(s+β−1−ǫ)‖v2j ‖H1−β(Ω)+sup
i

‖vi‖Hs−ǫ(Ω).

Expanding out h = ∆(vγ∗i) and using again a paradifferential expansion similar to Proposition 5.3, the

identity g := ∆v and the splitting v = v1j + v2j we observe first that

‖h‖Hs−2(Ω) .A ‖g‖Hs−2(Ω)+‖Γ‖
H

s+r− 1
2
sup
j>0

2−j(α−1+r)‖v1j ‖Cα(Ω)+sup
j>0

2j(s+β−1−ǫ)‖v2j ‖H1−β(Ω)+sup
i

‖vi‖Hs−ǫ(Ω).

Therefore, we need to only show (5.27) with g replaced by h. For this, we first extend h to a function

h̃ := E∆(γ∗iv) on Rd using Stein’s extension. Then, using the partition h̃ = h1j +h
2
j with h

1
j = E∆P<j(v1j γ∗i)

and h2j = E∆P<j(v2j γ∗i) + E∆P≥j(vγ∗i) together with Proposition 5.5, we obtain (5.27) and conclude the

proof. �

We also note a much cruder variant of the above estimate which will be useful for constructing regularization

operators later on. As with the corresponding Moser bound in Proposition 5.8, the proposition below could

be optimized considerably, but such optimizations will not be needed in this article.
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Proposition 5.20 (Cruder variant of the Dirichlet estimates). Let Γ, v, ψ, g and s ≥ 2 be as in Proposi-

tion 5.19, and assume that ψ = 0. Then for every δ > 0, we have the estimate

‖v‖Hs(Ω) .A,δ ‖g‖Hs−2(Ω) + ‖Γ‖Cs+δ‖v‖H1(Ω).

Proof. We only give a sketch of the proof since it is essentially a much simpler version of Proposition 5.19. One

starts by using the cruder flattening (5.12) as in the pointwise elliptic estimates and writing the corresponding

equation for u (using the notation in (5.13)). This flattening is a bit more convenient for this estimate because

the source terms in (5.13) are simpler. Moreover, we will only need to measure Γ in pointwise norms, and

therefore will not need the 1
2 gain of regularity from the flattening in Proposition 5.19. As in the proof of

Proposition 5.19, we then obtain the preliminary bound

‖u‖Hs .A ‖f‖Hs−2 + ‖(δjk − ajk)∂ju‖Hs−1 .

Using simple paraproduct type estimates and a change of variables, it is straightforward to then estimate

(5.28) ‖u‖Hs .A,δ ‖f‖Hs−2 + ‖Γ‖Cs+δ‖v‖H1(Ω).

Then, to conclude, one estimates using Proposition 5.8 with r = 0 and r = 2,

‖vi‖Hs .A,δ ‖u‖Hs + ‖Γ‖Cs+δ‖v‖H1(Ω), ‖f‖Hs−2 .A ‖h‖Hs−2(Ω) + ‖Γ‖Cs+δ‖v‖H1(Ω),

and then performs a simple paraproduct analysis to finally estimate

‖h‖Hs−2(Ω) .A ‖g‖Hs−2(Ω) + ‖Γ‖Cs+δ‖v‖H1(Ω) + ‖v‖Hs−ǫ(Ω).

Combining the above and interpolating finishes the proof. �

5.5.2. Harmonic extension bounds. By taking g = 0 in Proposition 5.19, we obtain the following corollary

for the harmonic extension operator H.

Proposition 5.21 (Harmonic extension bounds). Let Ω be a bounded domain with boundary Γ ∈ Λ∗. Then

the following bound holds for the harmonic extension operator H when s ≥ 2, r ≥ 0, β ∈ [0, 12 ) and α ∈ [0, 1),

‖Hψ‖Hs(Ω) .A ‖ψ‖
H

s− 1
2 (Γ)

+ ‖Γ‖
H

s+r− 1
2
sup
j>0

2−j(α−1+r)‖ψ1
j ‖Cα(Γ) + sup

j>0
2j(s−1+β−ǫ)‖ψ2

j‖H
1
2
−β(Γ)

.

Here, ψ = ψ1
j + ψ2

j is any sequence of partitions.

Proof. First, Proposition 5.19 yields the estimate

‖Hψ‖Hs(Ω) .A ‖ψ‖
H

s− 1
2 (Γ)

+ ‖Γ‖
H

s+r− 1
2
sup
j>0

2−j(α−1+r)‖φ1j‖Cα(Ω) + sup
j>0

2j(s−1−ǫ)‖φ2j‖H1(Ω),

where φ1j = P<jHψ1
j and φ2j = P<jHψ2

j +P≥jHψ. From the Cα bounds for H in Corollary 5.16 (which hold

only for α ∈ [0, 1)), we have ‖φ1j‖Cα(Ω) . ‖ψ1
j ‖Cα(Γ). On the other hand, from (5.20), we obtain

sup
j>0

2j(s−1−ǫ)‖φ2j‖H1(Ω) .A ‖Hψ‖Hs−ǫ(Ω) + sup
j>0

2j(s−1+β−ǫ)‖ψ2
j ‖H

1
2
−β(Γ)

.

The proof then concludes by interpolation and again (5.20). �
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5.5.3. Curvature estimate. With the above local coordinates, we can control the surface regularity in terms

of the mean curvature. The following estimate is a slight refinement of Lemma 4.7 as well as Propositions

A.2 and A.3 in [41].

Proposition 5.22 (Curvature estimate). Let s ≥ 2. The following estimates for ‖Γ‖Hs and the normal nΓ

hold:

‖Γ‖Hs + ‖nΓ‖Hs−1(Γ) .A 1 + ‖κ‖Hs−2(Γ).

Proof. We only sketch the details as the proof is similar to [41]. As in their proof, let {fi ∈ Hs(R̃i(2ri))}

be the local coordinate functions associated to Γ defined earlier. Let γ : [0,∞) → [0, 1] be a smooth cutoff

function supported on [0, 32 ] with γ = 1 on [0, 54 ]. On each R̃i(2ri), we let

γi(z̃) = γ(
|z̃|

ri
), κi(z̃) = γi(z̃)κ(z̃, fi(z̃)), gi = γifi.

Using the mean curvature formula

κ(z̃, f(z̃)) = −∂j(
∂jf√

1 + |∇f |2
) = −

∆f

(1 + |∇f |2)
1
2

+
∂jf∂kf∂jkf

(1 + |∇f |2)
3
2

,

we obtain the following elliptic equation for gi:

−∆gi = −
∂j1fi∂j2fi
(1 + |∇fi|2)

∂j1j2gi + (1 + |∇fi|
2)

1
2κi −∆γifi − 2Dγi ·Dfi

+
∂j1fi∂j2fi
1 + |∇fi|2

(∂j1j2γifi + ∂j1γi∂j2fi + ∂j2γi∂j1fi).

As ‖Dfi‖L∞ ≪ 1 the first term on the right-hand side can be viewed perturbatively. A paradifferential type

analysis similar to the estimate for u in Proposition 5.19 together with standard Moser and product type

estimates then gives

‖gi‖Hs .A δ‖gi‖Hs + ‖fi‖Hs−ǫ + ‖κ‖Hs−2(Γ)

for some δ > 0 small enough (depending on Λ∗). We then obtain

‖gi‖Hs .A ‖fi‖Hs−ǫ + ‖κ‖Hs−2(Γ),

and so, we obtain,

sup
i

‖fi‖Hs .A 1 + ‖κ‖Hs−2(Γ),

which completes the proof. �

5.5.4. Estimates for the Dirichlet-to-Neumann operator. Here, we use the above estimates to prove refined

bounds for the Dirichlet-to-Neumann operator which is defined by N := nΓ · (∇H)|Γ. We begin with the

following baseline ellipticity estimate.

Lemma 5.23. The Dirichlet-to-Neumann map on Γ satisfies

‖ψ‖H1(Γ) .A ‖Nψ‖L2(Γ) + ‖ψ‖L2(Γ).

Proof. Let v = Hψ. We begin by proving the standard estimate

(5.29)

∫

Γ

|∇v|2dS .A ‖Nψ‖2L2(Γ) + ‖ψ‖L2(Γ)‖ψ‖H1(Γ).
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Let X be a smooth vector field on Rd which is uniformly transversal to all hypersurfaces in Λ∗. That is,

X · nΓ &A 1 and |DX | .A 1. Integration by parts then gives
∫

Γ

|∇v|2 dS .A

∫

Γ

nΓ ·X |∇v|2 dS

.A ‖∇v‖2L2(Ω) + 2

∫

Ω

Xj∂j∇v · ∇v dx

.A ‖∇v‖2L2(Ω) + 2

∫

Γ

(X · ∇v)Nψ dS.

For the first term, we have from the H
1
2 → H1 harmonic extension bound and straightforward interpolation,

‖v‖2H1(Ω) .A ‖ψ‖2
H

1
2 (Γ)

.A ‖ψ‖L2(Γ)‖ψ‖H1(Γ).

Combining this with the Cauchy Schwarz inequality for the second term, we obtain (5.29). Using the partition

of unity (γ∗i)i, it straightforward to then estimate

‖ψ‖H1(Γ) .A ‖ψ‖L2(Γ) + ‖∇⊤v‖L2(Γ) .A ‖ψ‖L2(Γ) + ‖∇v‖L2(Γ),

where ∇⊤ denotes the projection of ∇ onto the tangent space of Γ. Combining this with (5.29) and Cauchy

Schwarz concludes the proof. �

We will also need the reverse inequality.

Lemma 5.24. The Dirichlet-to-Neumann map on Γ satisfies

‖Nψ‖L2(Γ) .A ‖ψ‖H1(Γ).

Proof. Using the same notation as in the above lemma and essentially the same argument, we have the

estimate ∫

Γ

(X · nΓ)|∇
⊤ψ|2 dS +

∫

Γ

(X · nΓ)|Nψ|2 dS =

∫

Γ

(X · nΓ)|∇v|
2 dS

≥ −C‖ψ‖2H1(Γ) + 2

∫

Γ

(X · ∇v)Nψ dS

for some constant C depending only on A. Writing X⊤ := X − (X · nΓ)nΓ, we obtain
∫

Γ

(X · nΓ)|Nψ|2 dS ≤ C‖ψ‖2H1(Γ) +

∫

Γ

(X · nΓ)|∇
⊤ψ|2 dS − 2

∫

Γ

X⊤ · ∇vNψ dS,

which by Cauchy Schwarz completes the proof. �

Next, we prove higher regularity versions of these bounds. The first bound below amounts essentially to

elliptic regularity estimates for the Neumann boundary value problem.

Proposition 5.25 (Ellipticity for the Dirichlet-to-Neumann operator I). Let s ≥ 3
2 , α ∈ [0, 1) and β ∈ [0, 12 ).

Then we have

(5.30)

‖ψ‖Hs(Γ) .A ‖ψ‖L2(Γ) + ‖Nψ‖Hs−1(Γ) + ‖Γ‖Hs+r sup
j>0

2−j(r+α−1)‖ψ1
j ‖Cα(Γ) + sup

j>0
2j(s+β−

1
2−ǫ)‖ψ2

j ‖H
1
2
−β(Γ)

.

Proof. The proof of this is very similar to the Dirichlet problem, so we only sketch the details. Indeed, write

v := Hψ. By Proposition 5.11, (5.20) and the Cα → Cα bound for H, it suffices to control v in Hs+ 1
2 (Ω) by

the right-hand side of (5.30). As with the Dirichlet problem, the procedure is to write the Laplace equation

for u = vi ◦Hi and to reduce matters to the standard estimate for the Neumann problem on the half-space
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(which is available since s > 1). The only added technicality is that there are extra source terms coming from

the Neumann data (in contrast to the source terms which do not appear for the Dirichlet problem with zero

boundary data). By using Proposition 5.11 and an analysis similar to Proposition 5.19, it is straightforward

to obtain the preliminary estimate

‖ψ‖Hs(Γ) .A ‖v‖H1(Ω) + ‖Nψ‖Hs−1(Γ) + ‖Γ‖Hs+r sup
j>0

2−j(r+α−1)‖v1j ‖Cα(Ω) + sup
j>0

2j(s+β−
1
2−ǫ)‖v2j ‖H1−β(Ω),

where v := v1j + v2j is any partition of v. The first term ‖v‖H1(Ω) is harmless and can be controlled by

‖ψ‖L2(Γ) + ‖Nψ‖L2(Γ) using the H
1
2 → H1 bound for H and Lemma 5.23. We then take v1j = Hψ1

j and

v2j = Hψ2
j and use again the Cα → Cα bounds for H and (5.20) to conclude. �

We will also need the following iterated version of the ellipticity bound above.

Proposition 5.26 (Ellipticity for the Dirichlet-to-Neumann operator II). Let s ≥ 1
2 and let k ≥ 1 be an

integer. Then using the same notation as the previous proposition, we have the bound

‖ψ‖Hs+k(Γ) .A ‖ψ‖L2(Γ)+‖N kψ‖Hs(Γ)+‖Γ‖Hs+k+r sup
j>0

2−j(α−1+r)‖ψ1
j ‖Cα(Γ)+sup

j>0
2j(s+k−

1
2+β−ǫ)‖ψ2

j ‖H
1
2
−β(Γ)

.

Proof. Lemma 5.23 and Proposition 5.25 give us this bound for k = 1. For k ≥ 2, we may assume inductively

that the corresponding estimate holds for all 1 ≤ m ≤ k − 1. We begin by applying Proposition 5.25 to

obtain

(5.31)

‖ψ‖Hs+k(Γ) .A ‖ψ‖L2(Γ)+‖Nψ‖Hs+k−1(Γ)+‖Γ‖Hs+k+r sup
j>0

2−j(α−1+r)‖ψ1
j ‖Cα(Γ)+sup

j>0
2j(s+k−

1
2+β−ǫ)‖ψ2

j ‖H
1
2
−β(Γ)

.

Using the inductive hypothesis, we have

‖Nψ‖Hs+k−1(Γ) .A ‖Nψ‖L2(Γ) + ‖N kψ‖Hs(Γ) + ‖Γ‖Hs+k+r sup
j>0

2−jr‖φ1j‖L∞(Γ) + sup
j>0

2j(s+k−1−2ǫ)‖φ2j‖Hǫ(Γ),

where Nψ := φ1j + φ2j is any partition of Nψ. By Lemma 5.24, the first term on the right can be controlled

by ‖ψ‖H1(Γ) which can be dispensed with by interpolation (between L2 and H1+ǫ to ensure the domain

dependent contributions in the estimate are harmless). Therefore, to conclude, we need to choose φ1j and φ2j
so that the latter two terms on the right-hand side of the above are controlled by the right-hand side of (5.31).

Using v, v1j and v2j from the previous proposition, we can take φ1j = ∇nP<jv
1
j and φ2j = ∇nP<jv

2
j +∇nP≥jv.

The proof then concludes in a similar way to Proposition 5.25. We omit the details. �

For our energy estimates, we will also need good bounds for the following div-curl system.

Proposition 5.27 (div-curl estimate with Neumann type data). Let v ∈ Hs(Ω) be a vector field defined on

Ω and let s > 3
2 , α, β ∈ [0, 1]. Let v := v1j + v2j be any partition of v. Moreover, let Bv denote either the

Neumann trace of v, nΓ · ∇v or the boundary value ∇⊤v · nΓ. Then if v solves the div-curl system,




∇ · v = f,

∇× v = ω,

Bv = g,

then v satisfies the estimate,

‖v‖Hs(Ω) .A ‖f‖Hs−1(Ω) + ‖ω‖Hs−1(Ω) + ‖g‖
H

s− 3
2 (Γ)

+ ‖v‖L2(Ω) + ‖Γ‖
H

s+r− 1
2
sup
j>0

2−j(r+α−1)‖v1j ‖Cα(Ω)

+ sup
j>0

2j(s−1+β−ǫ)‖v2j ‖H1−β(Ω).
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Proof. The proof is very similar to the Dirichlet and Neumann problems in that one flattens the boundary

and reduces to the corresponding estimate on the half-space with source terms depending on essentially f , ω,

g and the domain regularity. We omit the details of the domain flattening as it is similar to Proposition 5.19.

However, for the sake of clarity, it is instructive to explain the div-curl estimate in the case when Ω is the

half-space {zd < 0} (particularly in the case of the latter boundary condition involving ∇⊤v · nΓ). We show

that it is in essence a statement about elliptic regularity for the Neumann problem. In such a setting, nΓ

takes the form ed. We compute for each (Euclidean) component vj of a vector field v on Ω,

∆vj = ∂iωij + ∂jf.

Therefore, in the case of boundary data given by Bv = nΓ · ∇v, the div-curl estimate is simply given by

elliptic regularity for the Neumann problem. To understand the case of the other boundary value ∇⊤v · nΓ,

we note that the full Neumann data for v is determined by this boundary value and the curl and divergence

of v. If j 6= d, this is seen from the identity

∂dvj = ∂jvd + ωdj.

So, by the trace theorem and elliptic regularity for the Neumann problem, we have the desired control of vj

for j 6= d. If j = d, we have

∂dvd = f −
d−1∑

i=1

∂ivi,

which by the trace theorem and the estimate for vi with i 6= d gives us the estimate for vd. �

We importantly do not claim that the above div-curl system is well-posed. In fact, the problem is generally

over-determined (as, for instance, the curl and divergence fix ∆v, which forbids certain choices of Neumann

data). Fortunately, we will only need the above estimate in our analysis later when we prove energy estimates

and to a lesser extent in our construction of regular solutions. We will not need any existence type statement

for the above system, however.

Next, to complement the ellipticity estimates for N , we will also need the reverse estimates which control

powers of N applied to a function in terms of the corresponding Sobolev norms of that function. As a

preliminary step, we state the following proposition.

Proposition 5.28 (Normal derivative trace bound). Let s > 0, r ≥ 0 and α, β ∈ [0, 1]. The normal trace

operator ∇n := nΓ · (∇)|Γ satisfies the bound

‖∇nv‖Hs(Γ) .A ‖v‖
H

s+3
2 (Ω)

+ ‖Γ‖Hs+r+1 sup
j>0

2−j(r−1+α)‖v1j ‖Cα(Ω) + sup
j>0

2j(s+β+
1
2−ǫ)‖v2j ‖H1−β(Ω).

Proof. Using the partition ∇v = w1
j + w2

j where w1
j := ∇P<jv1j and w2

j = ∇P<jv2j + ∇P≥jv together

with the inequalities ‖nΓ‖Hs+r(Γ) .A ‖Γ‖Hs+r+1 and ‖nΓ‖Cǫ(Γ) .A 1, we obtain from Proposition 5.9 and

Proposition 5.11 (after possibly relabelling ǫ),

‖∇nv‖Hs(Γ) .A ‖(∇v)|Γ‖Hs(Γ) + ‖Γ‖Hs+r+1 sup
j>0

2−jr‖w1
j‖L∞(Ω) + sup

j>0
2j(s−2ǫ)‖w2

j|Γ‖L2(Γ)

.A ‖v‖
H

s+3
2 (Ω)

+ ‖Γ‖Hs+r+1 sup
j>0

2−jr‖w1
j ‖L∞(Ω) + sup

j>0
2j(s−2ǫ)‖w2

j‖H
1
2
+ǫ(Ω)

.

By estimating

‖w1
j‖L∞(Ω) .A 2j(1−α)‖v1j ‖Cα(Ω)
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and

2j(s−2ǫ)‖w2
j ‖H

1
2
+ǫ(Ω)

.A ‖v‖
H

s+3
2 (Ω)

+ 2j(s+
1
2+β−ǫ)‖v2j ‖H1−β(Ω),

we complete the proof. �

We can use Proposition 5.28 and the balanced bounds for H to prove a refined version of the Hs+1(Γ) →

Hs(Γ) bound for N .

Proposition 5.29 (Dirichlet-to-Neumann operator bound I). Let s ≥ 1
2 , r ≥ 0, α ∈ [0, 1) and β ∈ [0, 12 ).

Then

‖Nψ‖Hs(Γ) .A ‖ψ‖Hs+1(Γ) + ‖Γ‖Hs+1+r sup
j>0

2−j(r−1+α)‖ψ1
j ‖Cα(Γ) + sup

j>0
2j(s+

1
2+β−ǫ)‖ψ2

j‖H
1
2
−β(Γ)

for any sequence of partitions ψ = ψ1
j + ψ2

j .

Proof. The proof begins by writing N = ∇nH and applying Proposition 5.28 to obtain

‖Nψ‖Hs(Γ) .A ‖Hψ‖
H

s+3
2 (Ω)

+ ‖Γ‖Hs+1+r sup
j>0

2−j(r−1+α)‖Hψ1
j ‖Cα(Ω) + sup

j>0
2j(s+

1
2+β−ǫ)‖Hψ2

j‖H1−β(Ω).

Using the Cα → Cα bounds for H, (5.20) and Proposition 5.21, we conclude the proof. �

Similarly to the ellipticity estimate for N , we will need a higher order version of the above estimate as well.

Proposition 5.30 (Dirichlet-to-Neumann operator bound II). Let m ≥ 1 be an integer, let s ≥ 1
2 and let

r ≥ 0, α ∈ [0, 1) and β ∈ [0, 12 ). Then we have the bound

‖Nmψ‖Hs(Γ) .A ‖ψ‖Hs+m(Γ) + ‖Γ‖Hs+r+m sup
j>0

2−j(r+α−1)‖ψ1
j ‖Cα(Γ) + sup

j>0
2j(s−

1
2+m+β−ǫ)‖ψ2

j ‖H
1
2
−β(Γ)

and the closely related bound when s ≥ 3
2 ,

(5.32)

‖HNmψ‖
H

s+1
2 (Ω)

.A ‖ψ‖Hs+m(Γ) + ‖Γ‖Hs+r+m sup
j>0

2−j(r+α−1)‖ψ1
j ‖Cα(Γ) + sup

j>0
2j(s−

1
2+m+β−ǫ)‖ψ2

j ‖H
1
2
−β(Γ)

for any partition ψ = ψ1
j + ψ2

j .

Proof. We begin with the first bound. The previous proposition handles the case m = 1. Suppose m > 1

and let us suppose inductively that the bound holds for all integers greater than or equal to 1 and strictly

less than m. Then we have from the inductive hypothesis,

(5.33) ‖Nmψ‖Hs(Γ) .A ‖Nψ‖Hs+m−1(Γ) + ‖Γ‖Hs+m+r sup
j>0

2−jr‖φ1j‖L∞(Γ) + sup
j>0

2j(s−1+m−ǫ)‖φ2j‖Hǫ(Γ),

where Nψ := φ1j +φ
2
j is the same partition of Nψ as in the proof of Proposition 5.26. Applying the inductive

hypothesis again to the first term on the right and arguing the same way as in Proposition 5.26 to control

the latter two terms in favour of ψ, ψ1
j and ψ2

j concludes the proof of the first estimate. To obtain the latter

estimate, we proceed in a similar way as above. For the case m = 1, we can use Proposition 5.21 to control

‖HNψ‖
H

s+1
2 (Ω)

by the right-hand side of (5.33). Then one concludes the bound for all m ≥ 1 by induction

as above. �

Next, we note a bound for the operator ∇⊤ which follows from similar reasoning to the above.
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Proposition 5.31. Let s ≥ 1
2 , r ≥ 0, α ∈ [0, 1) and β ∈ [0, 12 ). Then

(5.34) ‖∇⊤ψ‖Hs(Γ) .A ‖ψ‖Hs+1(Γ) + ‖Γ‖Hs+1+r sup
j>0

2−j(r−1+α)‖ψ1
j‖Cα(Γ) + sup

j>0
2j(s+

1
2+β−ǫ)‖ψ2

j ‖H
1
2
−β(Γ)

for any sequence of partitions ψ = ψ1
j + ψ2

j .

Proof. By writing

∇⊤ψ = ∇Hψ − nΓNψ,

the proof follows essentially the same line of reasoning as the proofs of Proposition 5.28 and Proposition 5.29.

We omit the details. �

Finally, we note a bound for Nm∇n which will be needed frequently in the higher energy bounds.

Corollary 5.32. Let α, β ∈ [0, 1], s ≥ 1
2 and r ≥ 0. We have

‖Nm∇nv‖Hs(Γ) .A ‖v‖
H

s+m+3
2 (Ω)

+‖Γ‖Hs+1+m+r sup
j>0

2−j(r+α−1)‖v1j ‖Cα(Ω)+sup
j>0

2j(s+β+
1
2+m−ǫ)‖v2j ‖H1−β(Ω)

where v = v1j + v2j is any sequence of partitions of v.

Proof. We omit most of the details. The proof proceeds by first using Proposition 5.30 with the partition

∇nv = nΓ · w1
j|Γ + nΓ ·w2

j|Γ in L∞(Γ) +Hǫ(Γ) where w1
j and w2

j are as in the proof of Proposition 5.28 and

then using Proposition 5.28 to estimate ∇nv in Hs+m. �

5.6. Moving surface identities. In this section, we suppose that Ωt is a one parameter family of domains

with boundaries Γt ∈ Λ∗ which flow with a velocity vector field v that is not necessarily divergence free.

Our purpose is to collect various identities and commutator estimates involving the material derivative

Dt := ∂t + v · ∇ and functions on Γt. We begin by recalling several algebraic identities, many of which were

proven in [41].

(i) (Material derivative of the normal).

(5.35) DtnΓt
= − ((∇v)∗(nΓt

))
⊤
.

(ii) (Leibniz rule for N ).

(5.36) N (fg) = fN g + gNf − 2∇n∆
−1(∇Hf · ∇Hg).

(iii) (Commutator with ∇).

(5.37) [Dt,∇]g = −(∇v)∗(∇g).

(iv) (Commutator with ∆−1).

(5.38) [Dt,∆
−1]g = ∆−1

(
2∇v · ∇2∆−1g +∆v · ∇∆−1g

)
.

(v) (Commutator with H).

S0f := [Dt,H]f = ∆−1(2∇v · ∇2Hf +∇Hf ·∆v).(5.39)

(vi) (Commutator with N ).

S1f := [Dt,N ]f = DtnΓt
· ∇Hf − nΓt

· ((∇v)∗(∇Hf)) + nΓt
· ∇([Dt,H]f).(5.40)
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We also have the general Leibniz type formula,

(5.41)
d

dt

∫

Γt

fdS =

∫

Γt

Dtf + f(D · v⊤ − κv⊥) dS,

where D is the covariant derivative.

5.6.1. Balanced commutator estimates. Using the above identities, we now establish refined estimates for

commutators involving Dt and the Dirichlet-to-Neumann operator. If we assume that v is divergence free,

it is a straightforward calculation to verify that S0ψ can be rewritten in the form

(5.42) S0ψ = ∆−1∇ · B(∇v,∇Hψ),

where B is an Rd-valued bilinear form. Using (5.40), we can write the commutator [Dt,N ] as follows:

S1ψ := [Dt,N ]ψ = ∇nS0ψ −∇Hψ · (∇nv)−∇⊤ψ · ∇v · nΓt
.

In the higher energy bounds, we will need an estimate for higher order commutators Sk, given by

(5.43) Skψ := [Dt,N
k]ψ =

∑

l+m=k−1

N l[Dt,N ]Nmψ,

where l,m are non-negative integers and k ∈ N. From now on, let us write A = ‖v‖
C

1
2
+ǫ(Ω)

+ ‖Γ‖C1,ǫ . For

s ≥ 1
2 , we have the following refined estimates for Sk when v is divergence free, which will be useful for

estimating SkDta and Ska, respectively, in the higher energy bounds.

Proposition 5.33. Suppose that the flow velocity v is divergence free and let s ≥ 1
2 , k ≥ 1. Then we have

the following bounds for Sk.

(i) (Variant 1). For any sequence of partitions ψ = ψ1
j + ψ2

j , there holds

‖Skψ‖Hs(Γ) .A‖v‖W 1,∞(Ω)‖ψ‖Hs+k(Γ) + ‖v‖
H

s+3
2
+k(Ω)

‖ψ‖L∞(Γ) + ‖Γ‖
H

s+3
2
+k‖ψ‖L∞(Γ)

+‖v‖W 1,∞(Ω)‖Γ‖
H

s+k+3
2
sup
j>0

2−
j
2 ‖ψ1

j ‖L∞(Γ) + ‖v‖W 1,∞(Ω) sup
j>0

2j(s+k−ǫ)‖ψ2
j ‖Hǫ(Γ).

(ii) (Variant 2).

‖Skψ‖Hs(Γ) .A‖v‖W 1,∞(Ω)‖ψ‖Hs+k(Γ) + ‖Γ‖Hs+k+1(‖ψ‖
C

1
2 (Γ)

+ ‖v‖W 1,∞(Ω)‖ψ‖L∞(Γ))

+‖v‖Hs+k+1(Ω)‖ψ‖C
1
2 (Γ)

.

Proof. We will focus on the first estimate as the second one is similar. From (5.43), we need to prove the

estimate in (i) with the left-hand side replaced with N l[Dt,N ]Nmψ where l+m = k− 1. We will focus first

on the term N l(∇nS0N
mψ) which is the most difficult to deal with. Let us write G := B(∇v,∇HNmψ) for

notational convenience. We begin by applying Corollary 5.32 and then Proposition 5.19 to obtain (using the

identity (5.42)),

‖N l(∇nS0N
mψ)‖Hs(Γ) .A ‖G‖

H
s+l+1

2 (Ω)
+ ‖Γ‖

H
s+3

2
+k sup

j>0
2−j(m+ 3

2 )‖∆−1∇ ·G1
j‖W 1,∞(Ω)

+ sup
j>0

2j(s+l+
1
2−ǫ)‖∆−1∇ ·G2

j‖H1(Ω),

where G = G1
j + G2

j is a partition of G defined by taking G1
j = B(∇P<jv,∇P<jHNm

<jψ), where N<j :=

∇nP<jH. Using the C1,ǫ estimate for ∆−1 and the maximum principle for H, it is straightforward to control

2−j(m+ 3
2 )‖∆−1∇ ·G1

j‖W 1,∞(Ω) .A ‖v‖
C

1
2
+ǫ(Ω)

‖ψ‖L∞(Γ) .A ‖ψ‖L∞(Γ).
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Moreover, using the H−1 → H1
0 estimate for ∆−1, we can control the other term by

2j(s+l+
1
2−ǫ)‖∆−1∇ ·G2

j‖H1(Ω) .A 2j(s+l+
1
2−ǫ)‖v‖W 1,∞(Ω)‖∇P<jHNm

<jψ −∇HNmψ‖L2(Ω)

+‖v‖
H

s+3
2
+k(Ω)

‖ψ‖L∞(Γ).

Finally, it is straightforward (albeit somewhat technical) to verify that the terms on the right-hand side

above can be controlled by the right-hand side of (i) using the Hǫ → H
1
2+ǫ bound (5.20), Proposition 5.30,

Proposition 5.9 with g2j = g (and the fact that ‖nΓ‖Cǫ(Γ) .A 1) as well as the H
1
2+ǫ → Hǫ trace estimates.

Now, we turn to estimating ‖G‖
H

s+l+1
2 (Ω)

. By performing a paradifferential expansion as in Proposition 5.3,

it is easy to see that

‖G‖
H

s+1+ 1
2 (Ω)

.A ‖v‖W 1,∞(Ω)‖HNmψ‖
H

s+l+3
2 (Ω)

+ ‖T∇HNmψ∇v‖
H

s+l+1
2 (Ω)

.

Using Proposition 5.21 and Proposition 5.30, the first term on the right can be controlled by the right-hand

side of (i). For the latter term, we need to control the l2 sum of

2j(s+l+
1
2 )‖Pj∇vP<j−4∇HNmψ‖L2(Ω).

For this, we estimate

2j(s+l+
1
2 )‖Pj∇vP<j−4∇HNmψ‖L2(Ω) .A 2j(s+k+

1
2 )‖Pj∇v‖L2(Ω)‖ψ‖L∞(Γ)

+ 2j(s+l+
1
2 )‖v‖W 1,∞(Ω)‖P<j−4∇H(Nm −Nm

<j)ψ‖L2(Ω).

The first term on the right when summed in l2 is controlled by the right-hand side of (i). The same is true

for the latter term after making use of (5.20) and Proposition 5.30. This concludes the full estimate for

N l(∇nS0N
mψ). The other terms in N l[Dt,N ]Nmψ are dealt with similarly. �

6. Regularization operators

Let Ω∗ be a smooth, bounded domain with boundary Γ∗. In the following, we let Ω be a bounded domain

with boundary Γ ∈ Λ(Γ∗, ǫ, δ) where ǫ > 0 and δ > 0 are small positive constants. As usual, we will

abbreviate the above set of hypersurfaces by Λ∗ and consider the volume of the associated domains as part

of our implicit constants. We recall from (3.2) that we have the diffeomorphism from Γ∗ to Γ given by

ΦΓ(x) = x+ ηΓ(x)ν(x)

which parameterizes Γ as a graph over Γ∗. When constructing solutions to the free boundary Euler equa-

tions (and also when proving refined energy estimates), it will be important to have a good regularization

operator at each dyadic scale which preserves divergence free functions. More precisely, beyond the obvious

regularization properties (to be outlined below in more detail), our operators will need to have the following

properties.

(i) (Extension property). There is a δ0 > 0 such that the following holds: If Ωj is a domain contain-

ing Ω with boundary Γj ∈ Λ∗ such that ‖dist(x,Ω)‖L∞(Ωj) < δ02
−j then there is an associated

regularization Ψ≤jv at the dyadic scale 2j , defined on Ωj .

(ii) (Regularization is divergence free). Given Ωj as above, the regularization Ψ≤jv satisfies∇·Ψ≤jv = 0

on Ωj . Here, v is a divergence free function on Ω.

Remark 6.1. The first point will be convenient later for comparing velocities defined on different domains,

which are sufficiently close. The second point is important as our regularization operators will not necessarily

commute with derivatives (but will commute with derivatives up to lower order terms).
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A more precise description of the above regularization operators is given by the following proposition.

Proposition 6.2. Fix α0, let v, Ω and Ωj be as above and let A = ‖Γ‖C1,ǫ. Then there exists a regularization

operator Ψ≤j which is bounded from Hs
div(Ω) → Hs

div(Ωj) for every s ≥ 0 with the following properties.

(i) (Regularization bounds).

‖Ψ≤jv‖Hs+α(Ωj) .A 2jα‖v‖Hs(Ω), 0 ≤ α.

(ii) (Difference bounds).

‖(Ψ≤j+1 −Ψ≤j)v‖Hs−α(Ωj+1) .A 2−jα‖v‖Hs(Ω), 0 ≤ α ≤ min{s, α0}.

(iii) (Error bounds).

‖(I −Ψ≤j)v‖Hs−α(Ω) .A 2−jα‖v‖Hs(Ω), 0 ≤ α ≤ min{s, α0}.

Proof. We begin with a preliminary step of constructing a regularization operator Φ≤j with the above three

properties which maps Hs(Ω) to Hs(Ω̃j) where Ω̃j is a neighborhood of Ωj , but does not necessarily preserve

divergence free functions. To do this, we aim to construct a suitable kernel Kj such that

Φ≤jv(x) =

∫

Ω

Kj(x, y)v(y) dy.

Here, the kernel Kj(x, y) is of the form

Kj(x, y) =

n∑

k=0

Kj
k(x, y)χk(x),

where (χk)
n
k=0 is a partition of unity of a neighborhood of Ω, obtained by selecting an open cover {Uk}nk=0

so that there are vectors (ek)
n
k=1 all of the same length with ek outward oriented and uniformly transversal

to Γ ∩ Uk. The remaining set U0 is then chosen to cover the portion of Ω away from the boundary. Let

e0 = 0 and take ek with k ∈ {1, . . . , n} as above. Such a smooth partition of unity can be constructed with

bounds depending only on the properties of Λ∗. To construct Kj we consider a smooth bump function φk

with the following properties:

(i) The support of φk satisfies suppφk ⊆ B(ek, δ1), δ1 ≪ 1.

(ii) The average of φk is 1, i.e.,
∫
Rd φk(z) dz = 1.

(iii) φk has zero moments up to some sufficiently large order N , i.e.,
∫
Rd z

αφk(z)dz = 0, 1 ≤ |α| ≤ N.

Then, for each j > 0, we consider a regularizing kernel

Kj
0,k(z) := 2jdφk(2

jz).

We then define Kj
k(x, y) := Kj

0,k(x − y) for y ∈ Ω. Note that for fixed x ∈ Uk, K
j
k(x, y) is non-zero only if

2j(x − y) ∈ B(ek, δ1), i.e., y is within distance 2−jδ1 of x − 2−jek. This is what will allow us to view our

kernel Kj not only for x ∈ Ω but also for x in a O(2−j) enlargement of Ω. With this in mind, one can check

that the family of kernels Kj satisfy the following:

(i) Kj : Ω̃j × Ω → R, where Ω̃j := {x ∈ Rd : d(x,Ω) ≤ c2−j} with a small universal constant c.

(ii) |∂αx ∂
β
yK

j(x, y)| . 2j(d+|α|+|β|), for multi-indices α, β.

(iii)
∫
ΩK

j(x, y) dy = 1.

(iv)
∫
Ω
Kj(x, y)(x − y)α dy = 0, 1 ≤ |α| ≤ N.
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From the definition of Kj, we see that Φ≤jv is defined on a neighborhood of Ωj if δ0 from property (i) above

is small enough. It is then a straightforward matter to verify that Φ≤j satisfies the regularization, difference

and error bounds in Proposition 6.2 when s and α are integers (the latter two bounds requiring the moment

conditions, with N = N(α0)). The general bound follows by interpolation.

It remains to construct the regularization operator Ψ≤j which preserves divergence free functions. We first

note that without loss of generality we may assume that Γj ∈ Λ∗ with the regularization bound

(6.1) ‖Γj‖Ck,β .A,k,β 2j(β+k−1−ǫ)

for each integer k ≥ 1 and real number 0 ≤ β < 1. Indeed, for large enough j, by working in local coordi-

nates and using standard mollification techniques we can use the uniform C1,ǫ regularity of ηΓ to construct

a surface Γ̃j ∈ Λ∗ with the bounds (6.1) such that Γ̃j is within distance .A 2−j(1+ǫ) of Γ. For some small

c > 0, we can then define a surface Γj via the parameterization ηΓj
:= ηΓ̃j

+ c2−j . This defines a domain

whose boundary has the required regularization bound and which, if δ0 is small enough, contains all domains

within a δ02
−j neighborhood of Ω. Therefore, it suffices to construct Ψ≤j in the case when Γj satisfies (6.1).

We make this assumption for the remainder of the construction.

Next, we correct Φ≤jv by a gradient potential. We define for v ∈ Hs
div(Ω),

Ψ≤jv := Φ≤jv −∇∆−1
Ωj

(∇ · Φ≤jv),

where ∆−1
Ωj

is the solution operator for the Dirichlet problem with zero boundary data associated to the

domain Ωj .

To prove the regularization bounds for Ψ≤j, we note that because v is divergence free, we have

∇ · Φ≤jv(x) =

n∑

k=0

∫
φk(y)∇χk(x) · (v(x− 2−jy)− v(x)) dy.(6.2)

In other words, no derivatives fall on v or the kernel when taking the divergence. From the above formula,

one can easily verify the following bounds for ∇ · Φ≤jv for every s1, s2 ≥ 0:

‖∇ · Φ≤jv‖Hs1 (Ωj) .A 2−js2‖v‖Hs1+s2(Ω).

To establish the regularization property of Ψ≤j , we use this and (6.1) together with the balanced Dirichlet

estimate Proposition 5.20 to obtain

‖∇∆−1
Ωj

(∇ · Φ≤jv)‖Hs+α(Ωj) .A 2jα‖v‖Hs(Ω).

Therefore, the regularization bound ‖Ψ≤jv‖Hs+α(Ωj) .A 2jα‖v‖Hs(Ω) follows immediately. The bounds for

Ψ≤j+1v −Ψ≤jv and I −Ψ≤jv are analogous. �

Finally, we note the pointwise analogues of the above estimates.

Proposition 6.3. Given the assumptions of Proposition 6.2, the regularization operator Ψ≤j satisfies the

following pointwise bounds for 0 ≤ α < 2:

‖Ψ≤jv‖Cα(Ωj) .A 2jβ‖v‖Cα−β(Ω),

for 0 ≤ β ≤ α, and

‖(I −Ψ≤j)v‖Cα(Ω) + ‖(Ψ≤j+1 −Ψ≤j)v‖Cα(Ωj+1) .A 2−jβ‖v‖Cα+β(Ω),
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for β ≥ 0.

Proof. The corresponding bounds for Φ≤j are straightforward to directly verify. To estimate the gradient

correction, we again may assume without loss of generality the bound (6.1) and then use the pointwise

estimates from Proposition 5.14 and Proposition 5.15. �

6.1. Frequency envelopes. Let Γ ∈ Λ∗ and let s > d
2+1. Suppose that v ∈ Hs(Ω) and suppose that Γ ∈ Hs

is parameterized in collar coordinates by x 7→ x+ηΓ(x)ν(x). At this point, we define A := ‖Γ‖C1,ǫ+‖v‖
C

1
2 (Ω)

.

Using the extension operator from Proposition 5.12, we have the following Littlewood-Paley decomposition

for a function v defined on Ω:

v =
∑

j≥0

Pjv,

where by abuse of notation Pjv is interpreted to mean PjEΩv where EΩ is as in Proposition 5.12 and

P0 is to be interpreted as P≤0. We also have a corresponding Littlewood-Paley type decomposition for

functions on Γ∗. Indeed, denote by 〈D〉∗ := (I − ∆Γ∗)
1
2 . For functions on Γ∗, we then write for j > 0,

Pj := ϕ(2−j〈D〉∗) − ϕ(2−j+1〈D〉∗) and P0 := ϕ(〈D〉∗) where ϕ : R → R with ϕ = 1 on the unit ball and

with support in B2(0). We then have from Proposition 5.12 the almost orthogonality

‖(v,Γ)‖2
Hs ≈A

∑

j≥0

22js
(
‖Pjv‖

2
L2(Rd) + ‖PjηΓ‖

2
L2(Γ∗)

)
.

The above equivalence will allow us to define Hs frequency envelopes for states (v,Γ) ∈ Hs with the l2 decay

required to establish our continuous dependence result as well as the continuity of solutions with values in

Hs later on.

Remark 6.4. To define the Littlewood-Paley decomposition above, we use the extension EΩ from Proposi-

tion 5.12 (as opposed to, e.g., the Stein extension) because of its transparent continuous dependence on the

domain. This will be important for establishing continuous dependence of solutions to the free boundary

Euler equations with respect to the data when we have to compare frequency envelopes for different initial

data.

Definition 6.5 (Frequency envelopes). Let s > d
2 + 1, Γ ∈ Λ∗ and (v,Γ) ∈ Hs. An Hs frequency envelope

for the pair (v,Γ) is a positive sequence cj such that for each j ≥ 0,

‖Pjv‖Hs(Rd) + ‖PjηΓ‖Hs(Γ∗) .A cj‖(v,Γ)‖Hs , ‖cj‖l2 .A 1.

We say that the sequence (cj)j is admissible if c0 ≈A 1 and it is slowly varying,

cj ≤ 2δ|j−k|ck, j, k ≥ 0, 0 < δ ≪ 1.

We can always define an admissible frequency envelope by the formula

(6.3) cj = 2−δj + (1 + ‖(v,Γ)‖Hs)−1 max
k

2−δ|j−k|
(
‖Pkv‖Hs(Rd) + ‖PkηΓ‖Hs(Γ∗)

)
.

Unless otherwise stated, we will take this as our formula for cj . The following proposition will be useful in

our construction of rough solutions later on as well as for proving continuity of the data-to-solution map.

Proposition 6.6. Let Γ ∈ Λ∗ and let s > d
2 + 1. Suppose that (v,Γ) ∈ Hs and let (cj)j be its associated

admissible frequency envelope. Then there exists a family of regularized domains Ωj with boundaries Γj ∈ Λ∗

and Γj ∈ Hs along with associated divergence free regularizations vj := Ψ≤jv defined on a 2−j enlargement

of Ωj ∪Ω such that the following holds.
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(i) (Good pointwise approximation).

(vj ,Γj) → (v,Γ) in C1 × C1, 12 as j → ∞.

(ii) (Uniform bound).

‖(vj ,Γj)‖Hs .A ‖(v,Γ)‖Hs .

(iii) (Higher regularity).

‖(vj ,Γj)‖Hs+α .A 2jαcj‖(v,Γ)‖Hs , α > 1.

(iv) (Low frequency difference bounds). On a 2−j enlarged neighborhood of Ωj ∪Ωj+1, there holds

‖(vj , ηΓj
)− (vj+1, ηΓj+1)‖L2×L2 .A 2−jscj‖(v,Γ)‖Hs .

Proof. We define Γj by the graph parameterization ηΓj
= P≤jηΓ (using the projections defined above). By

Sobolev embedding, we have |ηΓj
− ηΓ| . 2−

3
2 j , and so the existence of the required divergence free regular-

ization vj := Ψ≤jv comes from Proposition 6.2.

Next, we turn to verifying the above four properties. We focus on the bounds for vj as the bounds for Γj are

similar (and simpler). Properties (i) and (ii) are clear from Sobolev embedding and Proposition 6.2. Next,

we turn to property (iii). We begin by establishing this property for Φ≤jv and then we will upgrade to the

full divergence free regularization vj = Ψ≤jv. We write wl as shorthand for Plw and begin by splitting

‖Φ≤jv‖Hs+α ≤
∑

l≤j

‖Φ≤jv
l‖Hs+α +

∑

l>j

‖Φ≤jv
l‖Hs+α .

For l ≤ j, we estimate

‖Φ≤jv
l‖Hs+α .A ‖vl‖Hs+α .A 2lαcl‖(v,Γ)‖Hs .A 2jαcj2

(α−δ)(l−j)‖(v,Γ)‖Hs .

For l > j, we estimate

‖Φ≤jv
l‖Hs+α .A 2j(α+s)‖vl‖L2 .A 2jαcj2

(j−l)(s−δ)‖(v,Γ)‖Hs .

Summing up each contribution gives

‖Φ≤jv‖Hs+α .A 2jαcj‖(v,Γ)‖Hs .

To obtain the corresponding bound for Ψ≤j, we simply note that by Proposition 5.20,

‖∇∆−1∇ · Φ≤jv‖Hs+α .A ‖Φ≤jv‖Hs+α + 2j(s+α−ǫ)‖∇ · Φ≤jv‖L2 .

By (6.2), we have 2j(s+α)‖∇ ·Φ≤jv‖L2 .A 2jα‖v‖Hs . Therefore, if we choose δ in the definition of cj so that

2−jǫ ≤ cj , we have

‖Ψ≤jv‖Hs+α .A 2jαcj‖(v,Γ)‖Hs .

This establishes property (iii) for Ψ≤jv. The proof of property (iv) is similar except now one can use the

difference and error bounds in Proposition 6.2. We omit the details. �
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7. Higher energy bounds

Let k > d
2 + 1 be an integer. Our aim in this section is to establish control of the Hk norm of (v,Γ) in

terms of the initial data where the growth of these norms is dictated by the pointwise control parameters

A and B below. To accomplish this, we will first construct a coercive energy functional (v,Γ) 7→ Ek(v,Γ)

associated to each integer k > d
2 +1 and then we will prove energy estimates for Ek(v,Γ) to obtain estimates

for ‖(v,Γ)‖Hk when (v,Γ) is a solution to the free boundary Euler equations. More precisely, we prove the

following theorem.

Theorem 7.1. Let s ∈ R with s > d
2 +1 and let k > d

2 +1 be an integer. Fix a collar neighborhood Λ(Γ∗, ǫ, δ)

with δ > 0 sufficiently small. Then for Γ restricted to Λ∗ there exists an energy functional (v,Γ) 7→ Ek(v,Γ)

such that

(i) (Energy coercivity).

(7.1) Ek(v,Γ) ≈A 1 + ‖(v,Γ)‖2
Hk .

(ii) (Energy propagation). If, in addition to the above, (v,Γ) = (v(t),Γt) is a solution to the free

boundary Euler equations, then Ek(t) := Ek(v(t),Γt) satisfies

d

dt
Ek .A B log(1 + ‖(v,Γ)‖Hs)Ek.

Here, A := 1 + |Ω|+ ‖v‖
C

1
2
+ǫ(Ω)

+ ‖Γ‖C1,ǫ and B := 1 + ‖v‖W 1,∞(Ω) + ‖Γ‖
C

1, 1
2
.

By Grönwall’s inequality, this gives the single and double exponential bounds

‖(v(t),Γt)‖
2
Hk .A exp

(∫ t

0

CAB(s) log(1 + ‖(v,Γ)‖Hs)ds

)
(1 + ‖(v0,Γ0)‖

2
Hk).

‖(v(t),Γt)‖
2
Hk .A exp

(
log(CA(1 + ‖(v0,Γ0)‖

2
Hk)) exp

∫ t

0

CAB(s) ds

)

for all integers k > d
2 + 1.

Remark 7.2. It is important to note that the first part of Theorem 7.1 does not make any reference to the

dynamical problem.

7.1. Constructing the energy functional. Before establishing the above theorem, we motivate our choice

of energy. At this point, the discussion will be heuristic only. There are two quantities to control; namely,

the Hk norms of v and Γ. However, these are coupled via the nonlinear evolution, so they must be measured

in tandem. We achieve this by working instead with well-chosen good variables, which are selected as follows:

i) The vorticity ω. If v is a divergence free vector field on Ω, then in Euclidean coordinates, we have

the following relation for ∆vi:

∆vi = −∂jωij ,

where ω denotes the curl of v. Therefore, v is controlled by ω and a suitable boundary value.

However, it turns out to be simpler to view v as the solution to a div-curl system, again with a

boundary condition whose choice will be addressed shortly.

ii) The Taylor coefficient a. This variable is used to describe the regularity of the boundary. Precisely,

as we will see later, we have the approximate relation

Na ≈ aκ
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where κ represents the mean curvature of Γ. Thus, as long as the Taylor sign condition remains

satisfied, the Hk norm of Γ should be comparable at leading order to the Hk−1 norm of a.

iii) The material derivative of the Taylor coefficient, Dta. At leading order this provides information

about v via the approximate paradifferential relation

Dta ≈ NTnv,

for a suitable representation of the paraproduct above. This will provide the needed boundary

condition for the div-curl system for v.

Thus, at the principal level we have the correspondence

v ↔ (ω,Dta), Γ ↔ a,

which will be the basis for our coercivity property. For the first part, it is better to think of v as solving a

div-curl system. One might try to think of a rotational/irrotational decomposition v = vrot+ vir , where the

two components solve div-curl systems as follows:




curl vrot = ω,

∇ · vrot = 0,

vrot · nΓ = 0 on Γ,





curl vir = 0,

∇ · vir = 0,

vir · nΓ = v · nΓ on Γ.

Unfortunately, such a decomposition is not well-suited for our present problem, essentially due to the fact

that in our setting nΓ has less regularity than v on the free boundary; namely, Hk−1 versus Hk− 1
2 . Hence,

we cannot use such a decomposition directly, though a paradifferential form of it will appear later in our

existence proof. Instead, we will bypass this difficulty by associating the Dta variable with ∇⊤v · nΓ, the

normal component of the tangential derivatives on the boundary, which will then play the role of the bound-

ary condition in the div-curl system for v. This, in turn, yields the v part of the coercivity bound.

Now we turn our attention to the dynamical side, which ultimately determines the choice of the good

variables. There we separate the good variables differently, into the vorticity ω ∈ Hk−1(Ω) on one hand,

which will provide the interior component of the energy, and the pair (a,Dta) in H
k−1(Γ)×Hk− 3

2 (Γ), which

carries the boundary component of the energy. For the vorticity, this is immediately clear from the equation

(7.2) Dtωij = −ωik∂jvk + ωjk∂ivk,

which results from taking curl of (1.1). Based on the transport structure of the vorticity, it is natural

to include the quantity ‖ω‖2
Hk−1(Ω) as a component of the energy. On the other hand, it turns out that

‖(a,Dta)‖2
Hk−1(Γ)×Hk− 3

2 (Γ)
can be controlled by the linearized energy Elin(wk, sk), where sk and wk solve

the linearized equation to leading order with




wk = ∇HN k−2Dta,

sk = N k−1a.

The derivation for this is a bit more involved than for the vorticity and will be handled later.

With the above discussion in mind, we define our energy as follows:

(7.3) Ek(v,Γ) := 1 + ‖v‖2L2(Ω) + ‖ω‖2Hk−1(Ω) + Elin(wk, sk).
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In the sequel, we will sometimes refer to ‖ω‖2
Hk−1(Ω) as the rotational part of the energy, denoted by Ekr (v,Γ),

and Elin(wk, sk) as the irrotational part of the energy, denoted by Eki (v,Γ).

Remark 7.3. This definition of the energy has to be interpreted in a suitable way when v and Γ do not

solve the free boundary Euler equations. Indeed, it is important that, a priori, the definition of the energy

functional does not depend on the dynamics of the problem. Therefore, for a bounded connected domain Ω

with (v,Γ) ∈ Hk, we define p through the boundary condition p|Γ = 0 and the Laplace equation

∆p = −tr(∇v)2.

The Taylor sign term is then defined via

a := −nΓ · ∇p|Γ.

Moreover, we define Dtp through the Dirichlet boundary condition Dtp|Γ = 0 and ∆Dtp given by

(7.4) ∆Dtp = 4tr(∇2p · ∇v) + 2tr((∇v)3) + ∆v · ∇p =: F.

In other words, Dtp = ∆−1F . This is the definition of Dtp which is compatible with the dynamical problem.

We then define Dt∇p by

Dt∇p := −∇v · ∇p+∇Dtp

and then Dta by

Dta := −nΓ ·Dt∇p|Γ.

With these definitions, the energy functional (7.3) is well-defined, irrespective of whether the state (v,Γ)

evolves dynamically.

Remark 7.4. We note that the energy functional (7.3) is essentially the same as that from [17]. The main

difference, so far, is in the derivation of this energy. Indeed, our approach was to identify Alinhac style good

unknowns, whereas [17] first derives a wave-type equation for a and then applies powers of the Dirichlet-to-

Neumann operator to this equation, as if it were a vector field. However, as can be immediately inferred

from the low regularity of our control norms, the way we treat the energy is very different from [17].

7.2. Coercivity of the energy functional. We begin by establishing the coercivity part of Theorem 7.1.

That is, we want to show that

Ek(v,Γ) ≈A 1 + ‖(v,Γ)‖2
Hk .

We begin by collecting some preliminary estimates for the various quantities that will appear in our analysis.

7.3. L∞ estimates for coercivity. Here we will establish some L∞ based estimates for p and Dtp in terms

of the control parameter A. The A control parameter involves only the physical variables v and Γ. The

variables p and Dtp are related to these variables through solving a suitable Laplace equation. We will

therefore need to make use of the Schauder type estimates in Proposition 5.15 to control these terms (in

suitable pointwise norms) by A. For this, we have the following lemma.

Lemma 7.5. Given the assumptions of Theorem 7.1, the following pointwise estimates for p and Dtp hold.

(i) (C1,ǫ estimate for p).

‖p‖C1,ǫ(Ω) .A 1.

(ii) (Partition bound for Dtp). There exists a sequence of partitions Dtp =: F 1
j + F 2

j such that

‖F 1
j ‖W 1,∞(Ω) .A 2j(

1
2−ǫ), ‖F 2

j ‖H1(Ω) .A 2−j(k−1−ǫ)(‖v‖Hk−ǫ(Ω) + ‖p‖
H

k+1
2
−ǫ(Ω)

).
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One can loosely think of the partition of Dtp in the second part of Lemma 7.5 as a splitting of Dtp into low

and high frequency parts at a dyadic scale 2j. The high frequency part will typically be best estimated in L2

based norms, and the low frequency part in L∞ based norms. In particular, one can think of the estimate

for F 1
j as an estimate for the “low frequency part” of Dtp in C

1
2+ǫ. This will serve as a substitute for what

would be a C
1
2+ǫ estimate for the inhomogenenous Dirichlet problem, which is not available to us (except

for harmonic functions). The usefulness of this will be made more transparent later.

Proof. We begin with some notation. For any integer l > 0, we write Φl := Φ≤l+1 − Φ≤l and Ψl :=

Ψ≤l+1 − Ψ≤l. We also write Φ0 and Ψ0 to mean Φ≤0 and Ψ≤0, respectively. For a vector or scalar valued

function f defined on Ω, we write f l and f≤l as shorthand for Φlf and Φ≤lf , respectively. If in addition, f

is a divergence free vector field, we instead use f l and f≤l to mean Ψlf and Ψ≤lf , respectively. This will

ensure that the divergence free structure of f is preserved. We abuse notation and write f lg≤l to mean

f lg≤l :=
∑

l≥0

∑

0≤m≤l

f lgm −
1

2

∑

l≥0

f lgl.

This definition ensures (with the convention that Φ0 = Φ≤0 and Ψ0 = Ψ≤0) that we have the decomposition

(7.5) fg = f lg≤l + f≤lgl,

which can be thought of as a kind of crude bilinear paraproduct decomposition where f lg≤l selects the

portion of fg where f is at higher or comparable frequency compared to g. Likewise, we can define trilinear

expressions of the form f lg≤lh≤l in such a way that we have fgh = f lg≤lh≤l + f≤lglh≤l + f≤lg≤lhl, and

similarly for quadrilinear expressions. Now, we begin with the first part of the lemma. Expanding using

(7.5) we see that

p = −∆−1tr(∇v)2 = −2∆−1∂j(v
l
i∂iv

≤l
j ).(7.6)

Importantly, because vl is divergence free, we were able to write tr(∇v)2 as the divergence of a bilinear

expression in v and ∇v, where the high frequency factor is undifferentiated. This will allow us to make use

of the lower regularity C1,α estimates in Proposition 5.15 and simultaneously allow us to rebalance derivatives

in the bilinear expression for v. This theme of writing multilinear expressions in divergence form with the

highest frequency factor undifferentiated will appear several times in the sequel in more complicated forms.

In this case, we have from Proposition 5.15,

‖p‖C1,ǫ(Ω) .A ‖vli∂iv
≤l
j ‖Cǫ(Ω) .A ‖v‖2

C
1
2
+ǫ(Ω)

.A 1.

Next, we turn to the estimate for Dtp, which is the more difficult part. From (7.4), we can write in Euclidean

coordinates,

(7.7) Dtp = 4∆−1(∂i∂jp∂ivj) + 2∆−1(∂jvk∂kvi∂ivj) + ∆−1(∂i∂ivj∂jp).

In order to make full use of Proposition 5.15, we will again need to write Dtp in the form ∆−1∇ · f for some

vector field f in a way which allows us to also rebalance derivatives, as we did in the estimate for p. We

start by estimating the first term in (7.7). We first write ∂i∂jp∂ivj = ∇ · (∂ip∂iv) and use the partition

∆−1∇ · (∂ip∂iv) = T 1
j + T 2

j ,

where T 1
j = ∆−1∇ · (∂ip∂iΦ<jv). From Proposition 5.15 and the C1,ǫ estimate for p above, we have

‖T 1
j ‖W 1,∞(Ω) .A ‖∇p‖Cǫ(Ω)‖∇Φ<jv‖L∞(Ω) + ‖∇p‖L∞(Ω)‖∇Φ<jv‖Cǫ(Ω) .A 2j(

1
2−ǫ).
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We also see from (5.19),

‖T 2
j ‖H1(Ω) .A 2−j(k−1−ǫ)‖∇p‖L∞(Ω)‖v‖Hk−ǫ(Ω) .A 2−j(k−1−ǫ)‖v‖Hk−ǫ(Ω).

Next, we turn to the second term in (7.7). We start by performing a trilinear frequency decomposition.

Using the symmetry of the indices, we have

∂jvk∂kvi∂ivj = 3∂jv
l
k∂kv

≤l
i ∂iv

≤l
j .(7.8)

To best balance derivatives, we would like to write this in the form ∇ · T (vl,∇v≤l,∇v≤l) where T is an

appropriate trilinear expression. To do this, we can use the symmetry of the expression and the fact that v

is divergence free to write

∂jv
l
k∂kv

≤l
i ∂iv

≤l
j = ∂j(v

l
k∂kv

≤l
i ∂iv

≤l
j )− vlk∂k∂jv

≤l
i ∂iv

≤l
j

= ∂j(v
l
k∂kv

≤l
i ∂iv

≤l
j )−

1

2
vlk∂k(∂jv

≤l
i ∂iv

≤l
j )

= ∂j(v
l
k∂kv

≤l
i ∂iv

≤l
j )−

1

2
∂k(v

l
k∂jv

≤l
i ∂iv

≤l
j ).

(7.9)

We partition the last line above into Q1
j +Q2

j where

Q1
j := ∂m(vlk∂kΦ<jv

≤l
i ∂iv

≤l
m )−

1

2
∂k(v

l
k∂mΦ<jv

≤l
i ∂iv

≤l
m ).

We then obtain in a straightforward way using Proposition 5.15 and summing in l,

‖∆−1Q1
j‖W 1,∞(Ω) .A 2j(

1
2−ǫ)‖v‖3

C
1
2
+ǫ(Ω)

.A 2j(
1
2−ǫ),

and from the H−1 → H1 estimate for the Dirichlet problem and Proposition 6.2,

‖∆−1Q2
j‖H1(Ω) .A 2−j(k−1−ǫ)‖v‖Hk−ǫ(Ω).

Finally, the last term in (7.7) can be handled by writing

∂i∂ivj∂jp = ∂i(∂ivj∂jp)− ∂ivj∂i∂jp

and partitioning each term similarly to the first term in (7.7). Collecting all of the above partitions together

completes the proof of the lemma. �

The following simple consequence of the above lemma will be useful for estimating Dta in pointwise norms.

Corollary 7.6. Given the assumptions of Lemma 7.5, there exists a sequence of partitions Dt∇p = G1
j +G

2
j

such that

‖G1
j‖L∞(Ω) .A 2j(

1
2−ǫ), ‖G2

j‖H
1
2
+ǫ(Ω)

.A 2−j(k−
3
2−2ǫ)(‖v‖Hk−ǫ(Ω) + ‖p‖

H
k+1

2
−ǫ(Ω)

+ ‖Dt∇p‖Hk−1−ǫ(Ω)).

Proof. This follows from Lemma 7.5 by taking

G1
j = Φ<j(−∇Φ<jv · ∇p+∇F 1

j ), G2
j = Φ<j(−∇Φ≥jv · ∇p) + Φ<j∇F

2
j +Φ≥jDt∇p.

�
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7.4. L2 based estimates for a and Dta. Our next step will be to control (a,Dta) in H
k−1(Γ)×Hk− 3

2 (Γ)

by the energy plus some lower order terms. Let us define for the rest of this section the lower order quantity

Λk−ǫ := ‖Γ‖Hk−ǫ + ‖v‖Hk−ǫ(Ω) + ‖p‖
H

k+1
2
−ǫ(Ω)

+ ‖Dt∇p‖Hk−1−ǫ(Ω),

where ǫ > 0 is any small, but fixed, positive constant.

Lemma 7.7. We have

‖a‖Hk−1(Γ) + ‖Dta‖
H

k− 3
2 (Γ)

.A (Ek)
1
2 + Λk−ǫ.

Proof. To control a in Hk−1(Γ), we use the ellipticity estimate for the Dirichlet-to-Neumann operator from

Proposition 5.26 to obtain

‖a‖Hk−1(Γ) .A ‖a‖L2(Γ) + ‖N k−1a‖L2(Γ) + ‖Γ‖Hk−ǫ‖a‖Cǫ(Γ) .A (Ek)
1
2 + Λk−ǫ.

To estimate Dta in Hk− 3
2 (Γ), we consider the partition Dt∇p := G1

j +G2
j from Corollary 7.6 and estimate

using Proposition 5.26,

‖Dta‖
H

k− 3
2 (Γ)

.A ‖N k−2Dta‖
H

1
2 (Γ)

+‖Γ‖Hk−ǫ sup
j>0

2−j(
1
2−ǫ)‖nΓ·G

1
j‖L∞(Γ)+sup

j>0
2j(k−2ǫ− 3

2 )‖nΓ·G
2
j‖Hǫ(Γ)+Λk−ǫ.

From the trace theorem,

‖N k−2Dta‖
H

1
2 (Γ)

.A ‖HN k−2Dta‖H1(Ω).

Since k ≥ 3 and ∫

Γ

N k−2Dta dS =

∫

Γ

nΓ · ∇HN k−3Dta dS = 0,

we conclude by a Poincare type inequality that

‖HN k−2Dta‖H1(Ω) .A ‖∇HN k−2Dta‖L2(Ω) .A (Ek)
1
2 .

From Corollary 7.6, we have

sup
j>0

2−j(
1
2−ǫ)‖nΓ ·G1

j‖L∞(Γ) .A 1.

On the other hand, from the trace theorem and Corollary 7.6,

2j(k−
3
2−2ǫ)‖nΓ ·G2

j‖Hǫ(Γ) .A Λk−ǫ,

which completes the proof. �

With our preliminary estimates in hand, let us proceed with the proof of the first (and harder) half of the

coercivity estimate; namely,

‖(v,Γ)‖Hk .A (Ek)
1
2 .

Let us begin by proving the estimate

(7.10) ‖p‖
H

k+1
2 (Ω)

+ ‖Γ‖Hk .A (Ek)
1
2 + Λk−ǫ.

We start by recalling from Proposition 5.22 that we have

‖Γ‖Hk + ‖nΓ‖Hk−1(Γ) .A 1 + ‖κ‖Hk−2(Γ),

where κ is the mean curvature of Γ. Therefore, to establish (7.10), it suffices to establish the same estimate

except with ‖p‖
H

k+1
2 (Ω)

+ ‖κ‖Hk−2(Γ) on the left-hand side. To do this, we begin by relating the curvature

to the pressure via the formula

(7.11) κ = a−1∆p− a−1D2p(nΓ, nΓ).
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Here, we used the fact that ∆Γp = 0 on Γ. We now estimate each term on the right-hand side of (7.11). For

the first term, we use the Laplace equation for p and the bilinear frequency decomposition for ∆p = −tr(∇v)2

as in Lemma 7.5 together with Proposition 5.9 to obtain

‖a−1∆p‖Hk−2(Γ) .A ‖tr(∇v)2‖Hk−2(Γ) + (‖a−1‖Hk−1−ǫ(Γ) + ‖Γ‖Hk−ǫ) sup
j>0

2−j(1−ǫ)‖Φ<j∂k(v
l
i∂iv

≤l
k )‖L∞(Ω)

+ sup
j>0

2j(k−2−ǫ)‖Φ≥jtr(∇v)
2‖L2(Γ).

Using the trace theorem, the product estimates Proposition 5.9 and Corollary 5.4, the latter two terms can

be controlled by CAΛk−ǫ where CA is a constant depending polynomially on A only. On the other hand,

‖tr(∇v)2‖Hk−2(Γ) can be controlled using the balanced trace estimate Proposition 5.11 as well as Corollary 5.4

as follows:

‖tr(∇v)2‖Hk−2(Γ) .A ‖tr(∇v)2‖
H

k− 3
2 (Ω)

+ ‖Γ‖Hk−ǫ sup
j>0

2−j(1−ǫ)‖Φ<j∂k(v
l
i∂iv

≤l
k )‖L∞(Ω)

+ sup
j>0

2j(k−
3
2−ǫ)‖Φ≥jtr(∇v)

2‖L2(Ω)

.A Λk−ǫ.

To estimate a−1D2p(nΓ, nΓ) inH
k−2(Γ), we proceed similarly by starting with Proposition 5.9 and Lemma 7.5

to obtain

‖a−1D2p(nΓ, nΓ)‖Hk−2(Γ) .A ‖D2p(nΓ, nΓ)‖Hk−2(Γ) + sup
j>0

2j(k−2−ǫ)‖Φ≥jD
2p‖L2(Γ)

+ (‖a−1‖Hk−1−ǫ(Γ) + ‖Γ‖Hk−ǫ) sup
j>0

2−j(1−ǫ)‖Φ<jD
2p‖L∞(Ω).

Similarly to the previous estimate, the latter two terms are controlled by CAΛk−ǫ. For the term involving

D2p(nΓ, nΓ), we use Proposition 5.9 again, combined with the estimates ‖nΓ‖Hk−1−ǫ(Γ) .A ‖Γ‖Hk−ǫ and

‖nΓ‖Cǫ(Γ) .A 1 to obtain (similarly to the above estimate but with a−1 replaced by nΓ)

‖D2p(nΓ, nΓ)‖Hk−2(Γ) .A ‖D2p‖Hk−2(Γ) + Λk−ǫ.

Proposition 5.11 and the same partition of D2p above then yields

‖D2p‖Hk−2(Γ) .A ‖∇p‖
H

k− 1
2 (Ω)

+ Λk−ǫ.

To complete the proof of (7.10), we now only need to control ∇p in Hk− 1
2 . For this, we use the div-curl

estimate Proposition 5.27 for ∇p as well as Corollary 5.4, Proposition 5.9 and Proposition 5.31 to obtain

‖∇p‖
H

k− 1
2 (Ω)

.A ‖∇p‖L2(Ω) + ‖∇⊤a‖Hk−2(Γ) + ‖tr(∇v)2‖
H

k− 3
2 (Ω)

+ ‖Γ‖Hk−ǫ‖∇p‖Cǫ(Ω)

.A (Ek)
1
2 + ‖a‖Hk−1(Γ) + Λk−ǫ

.A (Ek)
1
2 + Λk−ǫ,

(7.12)

where we used Lemma 7.7 to go from the second to third line. From this, we finally obtain the estimate

(7.10). To close the coercivity estimate, it remains to control v in Hk(Ω) and Dt∇p in Hk−1(Ω) by the

energy. We first reduce to the estimate

‖v‖Hk(Ω) .A (Ek)
1
2 + ‖Dt∇p‖Hk−1(Ω) + Λk−ǫ.

For this, we start by relating the boundary term ∇⊤v · nΓ to Dt∇p. Indeed, we have

Dt∇p = ∇Dtp−∇v · ∇p.
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Since ∇p = −anΓ and Dtp = 0 on Γ, we obtain

∇⊤v · nΓ = a−1(Dt∇p)
⊤,

and so, since v is divergence free, we have from the div-curl estimate in Proposition 5.27,

‖v‖Hk(Ω) .A ‖v‖L2(Ω) + ‖ω‖Hk−1(Ω) + ‖a−1(Dt∇p)
⊤‖

H
k− 3

2 (Γ)
+ ‖Γ‖Hk−ǫ‖v‖

C
1
2
+ǫ(Ω)

.A ‖a−1(Dt∇p)
⊤‖

H
k− 3

2 (Γ)
+ (Ek)

1
2 + Λk−ǫ.

(7.13)

To estimate the first term on the right-hand side of (7.13), we use the decomposition Dt∇p = G1
j + G2

j

from Corollary 7.6. By the balanced product and trace estimates Proposition 5.9 and Proposition 5.11 and

a similar analysis to the estimate for ‖κ‖Hk−2(Γ), we obtain

‖a−1(Dt∇p)
⊤‖

H
k− 3

2 (Γ)
.A ‖Dt∇p‖Hk−1(Ω) + (‖a−1‖Hk−1−ǫ(Γ) + ‖Γ‖Hk−ǫ) sup

j>0
2−j(

1
2−ǫ)‖G1

j‖L∞(Ω)

+ sup
j>0

2j(k−
3
2−2ǫ)‖G2

j‖H
1
2
+ǫ(Ω)

.A ‖Dt∇p‖Hk−1(Ω) + Λk−ǫ.

Finally, we need to show that

‖Dt∇p‖Hk−1(Ω) .A (Ek)
1
2 + Λk−ǫ.

For this, we will use the div-curl decomposition for Dt∇p. The divergence and curl are given by




∇ ·Dt∇p = 3tr(∇2p · ∇v) + 2tr(∇v)3 in Ω,

∇×Dt∇p = ∇2p · ∇v − (∇v)∗ · ∇2p in Ω.

Hence, using the div-curl estimate and the partition Dt∇p = G1
j + G2

j from Corollary 7.6 in conjunction

with Corollary 5.4, we obtain

‖Dt∇p‖Hk−1(Ω) .A ‖p‖
H

k+1
2 (Ω)

‖v‖
C

1
2 (Ω)

+ ‖p‖C1,ǫ(Ω)‖v‖Hk−ǫ(Ω) + ‖tr(∇v)3‖Hk−2(Ω) + ‖∇⊤(Dt∇p) · nΓ‖
H

k− 5
2 (Γ)

+ ‖Γ‖Hk−ǫ sup
j>0

2−j(
1
2−ǫ)‖G1

j‖L∞(Ω) + sup
j>0

2j(k−
3
2−2ǫ)‖G2

j‖H
1
2
+ǫ(Ω)

+ Λk−ǫ.

Estimating G1
j and G2

j as before and then using (7.12) gives

‖Dt∇p‖Hk−1(Ω) .A (Ek)
1
2 + ‖∇⊤(Dt∇p) · nΓ‖

H
k− 5

2 (Γ)
+ ‖v‖Hk−ǫ(Ω) + ‖Γ‖Hk−ǫ + ‖tr(∇v)3‖Hk−2(Ω) +Λk−ǫ.

Using a trilinear frequency decomposition as in Lemma 7.5, we obtain easily

‖tr(∇v)3‖Hk−2(Ω) .A ‖v‖2
C

1
2
+ǫ(Ω)

‖v‖Hk−ǫ(Ω) .A Λk−ǫ.

It remains to estimate the boundary term. We compute

(7.14) ∇⊤(Dt∇p) · nΓ = −∇⊤Dta−Dt∇p · ∇
⊤nΓ.

By Proposition 5.9, Proposition 5.31 and using the decomposition Dt∇p = G1
j +G2

j , the terms in (7.14) are

controlled in a similar fashion to the above terms by

‖∇⊤(Dt∇p) · nΓ‖
H

k− 5
2 (Γ)

.A ‖Dta‖
H

k− 3
2 (Γ)

+ Λk−ǫ .A (Ek)
1
2 + Λk−ǫ,

where we used Lemma 7.7 in the last inequality. Combining everything together, we have

‖Dt∇p‖Hk−1(Ω) + ‖Γ‖Hk + ‖v‖Hk(Ω) + ‖p‖
H

k+1
2 (Ω)

.A (Ek)
1
2 + Λk−ǫ.

Using the definition of Λk−ǫ and interpolating gives

‖Dt∇p‖Hk−1(Ω) + ‖Γ‖Hk + ‖v‖Hk(Ω) + ‖p‖
H

k+1
2 (Ω)

.A (Ek)
1
2 + ‖v‖L2(Ω) + ‖p‖H1(Ω) + ‖Dt∇p‖L2(Ω).
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We can use the H1 estimate for the Laplace equation for p to estimate

‖p‖H1(Ω) .A ‖v‖H1(Ω).

Moreover, by writing Dt∇p = ∇Dtp−∇v ·∇p, writing Dtp in the form ∆−1∇·f as in the proof of Lemma 7.5

and using the H−1 → H1 estimate for ∆−1, we have

‖Dt∇p‖L2(Ω) .A ‖v‖H1(Ω).

Therefore, by interpolation we have

(7.15) ‖Dt∇p‖Hk−1(Ω) + ‖Γ‖Hk + ‖v‖Hk(Ω) + ‖p‖
H

k+1
2 (Ω)

.A (Ek)
1
2 .

This finally establishes the desired estimate

‖(v,Γ)‖Hk .A (Ek)
1
2 .

Next, we show the easier part of the coercivity bound; namely,

(Ek)
1
2 .A 1 + ‖(v,Γ)‖Hk .

Clearly, the only nontrivial part is to control the irrotational energy. More precisely, we have to show that

(7.16) ‖∇HN k−2Dta‖L2(Ω) + ‖a
1
2N k−1a‖L2(Γ) .A 1 + ‖(v,Γ)‖Hk .

To establish this, we will need the following L2 based estimates for p and Dtp.

Lemma 7.8. The following estimate holds:

‖p‖
H

k+1
2 (Ω)

+ ‖Dtp‖Hk(Ω) .A ‖(v,Γ)‖Hk .

Proof. First, from the balanced Dirichlet estimate in Proposition 5.19, as well as Corollary 5.4 and Lemma 7.5,

we have

‖p‖
H

k+1
2 (Ω)

.A ‖tr(∇v)2‖
H

k− 3
2 (Ω)

+ ‖Γ‖Hk‖p‖W 1,∞(Ω) .A ‖(v,Γ)‖Hk .

To estimate Dtp, recall that we can write Dtp in the form ∆−1∇ · f . Indeed, similarly to Lemma 7.5, we

can start by writing

(7.17) Dtp = ∆−1∂i(∂ivj∂jp) + 3∆−1∂i(∂jp∂jvi) + 2∆−1tr(∇v)3 =: F1 + F2 + F3.

We now will use Proposition 5.19 to estimate each term. We begin with F1. We use the partition F1 =

H1
j +H2

j where H1
j := ∆−1∂i(∂iΦ≤jvk∂kp) and Proposition 5.19 to obtain,

‖F1‖Hk(Ω) .A ‖∇p · ∇v‖Hk−1(Ω) + ‖Γ‖Hk sup
j>0

2−
j
2 ‖H1

j ‖W 1,∞(Ω) + sup
j>0

2j(k−1)‖H2
j ‖H1(Ω).

Using Corollary 5.4 and the Hk+ 1
2 estimate for p above, we obtain

‖∇p · ∇v‖Hk−1(Ω) .A ‖v‖
C

1
2
+ǫ(Ω)

‖p‖
H

k+1
2 (Ω)

+ ‖p‖C1,ǫ(Ω)‖v‖Hk(Ω) .A ‖(v,Γ)‖Hk .

We also have from Proposition 5.15 and the properties of Φ≤j,

sup
j>0

2−
j
2 ‖H1

j ‖W 1,∞(Ω) .A ‖p‖C1,ǫ(Ω)‖v‖
C

1
2
+ǫ(Ω)

.A 1,

and from the H−1 → H1 estimate for ∆−1 and Lemma 7.5, we have

sup
j>0

2j(k−1)‖H2
j ‖H1(Ω) .A sup

j>0
2j(k−1)‖∇p‖L∞(Ω)‖∇Φ>jv‖L2(Ω) .A ‖v‖Hk(Ω).
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Hence,

(7.18) ‖F1‖Hk(Ω) .A ‖(v,Γ)‖Hk .

By a very similar analysis, we obtain the same bound (7.18) for F2. To estimate F3, one uses the decompo-

sition of tr(∇v)3 from (7.8) and (7.9) and then partitions one of the factors ∇v≤l = ∇Φ<jv
≤l +∇Φ≥jv

≤l.

After that, an estimate similar to F1 yields the bound (7.18) for the term F3. Therefore,

‖Dtp‖Hk(Ω) .A ‖(v,Γ)‖Hk ,

as desired. �

Now, returning to the proof of (7.16), for the term ‖a
1
2N k−1a‖L2(Γ), we have from Lemma 5.24 and Propo-

sition 5.30,

‖a
1
2N k−1a‖L2(Γ) .A ‖a‖Hk−1(Γ) + ‖a‖L∞(Γ)‖Γ‖Hk .A ‖a‖Hk−1(Γ) + ‖Γ‖Hk .

Then from Proposition 5.9, Proposition 5.11 and Lemma 7.8, we have

‖a‖Hk−1(Γ) .A ‖p‖
H

k+1
2 (Ω)

+ ‖Γ‖Hk .A ‖(v,Γ)‖Hk .

To control the other part of the energy, we first note that by (5.20) we have

‖∇HN k−2Dta‖L2(Ω) .A ‖N k−2Dta‖
H

1
2 (Γ)

.

Then we apply Proposition 5.30, Proposition 5.11 and Proposition 5.9, in that order, to obtain

‖N k−2Dta‖
H

1
2 (Γ)

.A ‖Dt∇p‖Hk−1(Ω) + ‖Γ‖Hk sup
j>0

2−
j
2 ‖G1

j‖L∞(Ω) + sup
j>0

2j(k−
3
2−2ǫ)‖G2

j‖H
1
2
+ǫ(Ω)

.A ‖Dt∇p‖Hk−1(Ω) + ‖Γ‖Hk ,

where Dt∇p = G1
j +G2

j is the partition from Corollary 7.6. We then write Dt∇p = −∇v · ∇p+∇Dtp and

use Corollary 5.4 and Lemma 7.8 to obtain

‖Dt∇p‖Hk−1(Ω) .A ‖(v,Γ)‖Hk .

This completes the proof of (7.16) and thus the proof of part (i) of Theorem 7.1. Next, we turn to part (ii),

which is the energy propagation bound.

7.5. L∞ estimates for propagation. Now, we turn to the energy propagation bounds. As in the coercivity

estimate, we will need certain L∞ based estimates for p and Dtp, but in norms that have essentially 1
2 more

degrees of regularity compared to Lemma 7.5.

Lemma 7.9. Given the assumptions of Theorem 7.1, the following pointwise estimates for p and Dtp hold.

(i) (C1, 12 estimate for p).

‖p‖
C

1, 1
2 (Ω)

.A B.

(ii) (W 1,∞ estimate for Dtp). Let s ∈ R with s > d
2 + 1. Then

‖Dtp‖W 1,∞(Ω) .A log(1 + ‖(v,Γ)‖Hs)B.

Proof. We begin with the C1, 12 estimate. We have from Proposition 5.15, using the decomposition from (7.6)

and a similar analysis to the C1,ǫ estimate for p,

‖p‖
C

1,1
2 (Ω)

.A ‖Γ‖
C

1, 1
2
(‖p‖C1,ǫ(Ω) + ‖vli∂iv

≤l
j ‖Cǫ(Ω)) + ‖vli∂iv

≤l
j ‖

C
1
2 (Ω)

.A ‖Γ‖
C

1, 1
2
+ ‖v‖W 1,∞(Ω) .A B.



68 MIHAELA IFRIM, BEN PINEAU, DANIEL TATARU, AND MITCHELL A. TAYLOR

Now, we turn to the more difficult W 1,∞ estimate for Dtp. Again, we first recall from (7.7) that we have

(7.19) Dtp = 4∆−1(∂i∂jp∂ivj) + 2∆−1(∂jvk∂kvi∂ivj) + ∆−1(∂i∂ivj∂jp).

Using a very similar analysis to Lemma 7.5 (except without the partition of Dtp), we can estimate the second

term in (7.19) in W 1,∞ by

‖∆−1(∂jvk∂kvi∂ivj)‖W 1,∞(Ω) .A B.

For the first term in (7.19) we have the decomposition

(7.20) ∆−1(∂i∂jp∂ivj) = ∆−1(∂i∂jp
l∂iv

≤l
j ) + ∆−1(∂i∂jp

≤l∂iv
l
j).

The first term in (7.20) can be estimated similarly using Proposition 5.15 by

‖∆−1(∂i∂jp
l∂iv

≤l
j )‖W 1,∞(Ω) = ‖∆−1∂j(∂ip

l∂iv
≤l
j )‖W 1,∞(Ω) .A ‖p‖C1,ǫ(Ω)‖v‖W 1,∞(Ω) .A B.(7.21)

For the latter term in (7.20), we write

(7.22) ∆−1(∂i∂jp
≤l∂iv

l
j) = ∆−1∂i(∂i∂jp

≤lvlj)−∆−1∂j(∂i∂ip
≤lvlj)

and use the fact that the pressure term is at low frequency compared to v and a similar analysis to the above

to estimate

(7.23) ‖∆−1(∂i∂jp
≤l∂iv

l
j)‖W 1,∞(Ω) .A B.

We now focus on the last term in (7.19) which will be responsible for the logarithmic loss in the estimate.

We begin by writing

(7.24) ∂i∂ivj∂jp = ∂i∂iv
l
j∂jp

≤l + ∂i∂iv
≤l
j ∂jp

l.

For the second term on the right-hand side of (7.24), we write

∂i∂iv
≤l
j ∂jp

l = ∂j(∂i∂iv
≤l
j pl).

Again, similarly to the above, we have

(7.25) ‖∆−1∂j(∂i∂iv
≤l
j pl)‖W 1,∞(Ω) .A B.

Now, for the first term on the right of (7.24) we have,

∂i∂iv
l
j∂jp

≤l = ∆(vlj∂jp
≤l) + ∂j(v

l
j∂i∂ip

≤l)− 2∂i(v
l
j∂j∂ip

≤l).(7.26)

The latter two terms in (7.26) are estimated similarly to (7.25). We focus our attention on the first term,

which corresponds to estimating ∆−1∆(vlj∂jp
≤l) in W 1,∞. We begin by writing

(7.27) ∆−1∆(vlj∂jp
≤l) = vlj∂jp

≤l −H(vlj∂jp
≤l).

For the first term in (7.27) we note that

∇(vlj∂jp
≤l) = vlj∂j∇p

≤l +∇vlj∂jp
≤l.

From the C1,ǫ bound for p from Lemma 7.5, we clearly have ‖vlj∂j∇p
≤l‖L∞(Ω) .A B. On the other hand,

we have the same estimate for ∇vlj∂jp
≤l because

∇vlj∂jp
≤l = ∇vj∂jp−∇v≤lj ∂jp

l.
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This yields the estimate ‖vlj∂jp
≤l‖W 1,∞(Ω) .A B. It remains to estimate H(vlj∂jp

≤l), which is where we

incur the logarithmic loss. By the maximum principle, it suffices to estimate ‖∇H(vlj∂jp
≤l)‖L∞(Ω).We begin

by showing that for each m ≥ 0

(7.28) ‖Φm∇H(vlj∂jp
≤l)‖L∞(Ω) .A B,

with implicit constant independent of m. Indeed, we have

‖Φm∇H(vlj∂jp
≤l)‖L∞(Ω) . ‖Φm∇HΦ≤m(vlj∂jp

≤l)‖L∞(Ω) + ‖Φm∇HΦ>m(vlj∂jp
≤l)‖L∞(Ω).

For the first term, we have from the regularization properties of Φm and the C1,ǫ estimate from Proposi-

tion 5.15,

‖Φm∇HΦ≤m(vlj∂jp
≤l)‖L∞(Ω) . 2−ǫm‖HΦ≤m(vlj∂jp

≤l)‖C1,ǫ(Ω) .A 2−ǫm‖Φ≤m(vlj∂jp
≤l)‖C1,ǫ(Ω)

.A ‖vlj∂jp
≤l‖W 1,∞(Ω).

Therefore, similarly to the estimate for ∇(vlj∂jp
≤l), we have

‖Φm∇HΦ≤m(vlj∂jp
≤l)‖L∞(Ω) .A B.

For the other term, we have from the regularization properties of Φ≤m and Φ≥m and the maximum principle,

‖Φm∇HΦ>m(vlj∂jp
≤l)‖L∞(Ω) .A 2m‖HΦ>m(v

l
j∂jp

≤l)‖L∞(Ω) ≤ 2m‖Φ>m(v
l
j∂jp

≤l)‖L∞(Ω)

.A ‖vlj∂jp
≤l‖W 1,∞(Ω).

Combining everything gives (7.28). Now, to prove the full estimate, we fix an integer m0 > 0 to be chosen

later and estimate using (7.28),

(7.29) ‖∇H(vlj∂jp
≤l)‖L∞(Ω) .A m0B + ‖Φ≥m0∇H(vlj∂jp

≤l)‖L∞(Ω).

For the latter term, since s > d
2 +1, we obtain by Sobolev embedding, the regularization properties of Φ≥m0

and the elliptic estimate for H, the estimate

‖Φ≥m0∇H(vlj∂jp
≤l)‖L∞(Ω) .A 2−m0δ0‖H(vlj∂jp

≤l)‖Hs−ǫ(Ω) .A 2−m0δ0‖(v,Γ)‖r
Hs ,

where r ≥ 1 is some integer and δ0 > 0 is a constant depending on k. Taking m0 ≈ rδ−1
0 log(1 + ‖(v,Γ)‖Hs)

and combining everything above with (7.29) then yields

‖∇H(vlj∂jp
≤l)‖L∞(Ω) .A B log(1 + ‖(v,Γ)‖Hs).

This completes the proof of the lemma. �

Remark 7.10. It is perhaps worth remarking that by using Proposition 5.15 and the maximum principle

to estimate ‖∇H(vlj∂jp
≤l)‖L∞(Ω) in the above proof in Cǫ, we can also easily obtain the bound

‖Dtp‖W 1,∞(Ω) .A ‖v‖C1,ǫ(Ω).

Of course, we do not want this in our energy estimates as it would force us to forfeit the scale invariant

control parameter B.
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7.6. Proof of energy propagation. Now, we turn to the second part of Theorem 7.1. Using (7.2) and

the coercivity bound (7.1) it is straightforward to verify the following energy estimate for the rotational

component of the energy:
d

dt
Ekr (v(t),Γt) .A BE

k(v(t),Γt).

The main bulk of the work will be in establishing a propagation bound for the irrotational part of the energy.

Namely, we want to show that

d

dt
Eki (v(t),Γt) .A B log(1 + ‖(v,Γ)‖Hs)Ek(v(t),Γt).

To do this, we start by deriving a wave-type equation for a. The general procedure for deriving this equation

is similar to [17]. However, we need to more precisely identify the source terms in order to obtain estimates

with the required pointwise control parameters A and B.

We begin our derivation with the simple commutator identity

Dt∇p = −∇v · ∇p+∇Dtp.

Applying Dt and performing some elementary algebraic manipulations gives

D2
t∇p = −∇Dtv · ∇p+Dt∇Dtp+∇v · (∇v · ∇p)−∇v ·Dt∇p

=
1

2
∇|∇p|2 +∇D2

t p+ 2∇v · (∇v · ∇p)− 2∇v · ∇Dtp,

where in the last line, we used the Euler equations to write −∇Dtv · ∇p = 1
2∇|∇p|2. As ∆p = −tr(∇v)2 is

lower order, it is natural to further split ∇|∇p|2 as

1

2
∇|∇p|2 =

1

2
∇H|∇p|2 +

1

2
∇∆−1∆|∇p|2.

From this, we obtain the equation

(7.30) D2
t∇p−

1

2
∇H|∇p|2 =

1

2
∇∆−1∆|∇p|2 +∇D2

t p+ 2∇v · (∇v · ∇p)− 2∇v · ∇Dtp =: g.

It will be seen later that g can be thought of as a perturbative source term. In an effort to convert (7.30)

into an equation for Dta, we take the normal component of the trace on Γt to obtain

(7.31) D2
t∇p · nΓt

−
1

2
N (a2) = g · nΓt

,

where we used the dynamic boundary condition p|Γt
= 0 to write |∇p|Γt

|2 = a2. Since Dt is tangent to Γt,

we have

D2
t a = −D2

t∇p · nΓt
−Dt∇p ·DtnΓt

= −D2
t∇p · nΓt

+ a|DtnΓt
|2.(7.32)

Note that for the latter equality in (7.32), we wrote Dt∇p = −Dt(anΓt
) and used that DtnΓt

is tangent to

Γt. Combining (7.31) and (7.32), we obtain the equation

D2
t a+

1

2
N (a2) = −g · nΓt

+ a|DtnΓt
|2,

which can be further reduced using the Leibniz type formula for N from (5.36) to the equation

(7.33) D2
t a+ aNa = f,

where

f := −g · nΓt
+ a|DtnΓt

|2 + nΓt
· ∇∆−1(|∇Ha|2).
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To propagate (a,Dta) in H
k−1(Γt) ×Hk− 3

2 (Γt), one natural idea, in view of the ellipticity of N , would be

to use the spectral theorem to apply N k− 3
2 to the above equation, and then read off the associated energy

for the leading order wave-like equation. This is essentially the approach used in [17]. However, there is a

much better choice for our purposes, which comes from instead applying ∇HN k−2 to the above equation.

The benefit to this is twofold. The most important advantage is that we only have to work with integer

powers of N , which will allow us to make use of the balanced elliptic estimates from the previous sections.

Secondly, this choice allows us to reinterpret the desired estimate for (a,Dta) in Hk−1(Γt) ×Hk− 3
2 (Γt) as

an L2 type estimate for the linearized equation (2.8) with perturbative source terms. Indeed, by defining

the variables

w := ∇HN k−2Dta,

s := N k−1a,

q := H(aN k−1a),

we may interpret (w, s, q) to leading order as a solution to the linearized system (2.8). To verify this, note

that we clearly have ∇ ·w = 0. Moreover, we observe that q|Γt
= as and that w|Γt

·nΓt
= N k−1Dta. Hence,

Dts− w|Γt
· nΓt

= [Dt,N
k−1]a =: R.

We also note that in Ωt, by using the equation (7.33) for a and the Leibniz formula for N ,

Dtw +∇q = Q,

where

(7.34) Q := −∇v · w +∇[Dt,H](N k−2Dta) +∇H[Dt,N
k−2]Dta+∇HN k−2f −∇H[N k−2, a]Na.

To summarize the above in a compact form, we can write




Dtw +∇q = Q in Ωt,

∇ · w = 0 in Ωt,

Dts− w · nΓt
= R on Γt,

q = as on Γt.

The linearized energy estimate from Proposition 2.2 combined with Cauchy-Schwarz and Lemma 7.9 imme-

diately gives the preliminary bound

d

dt
Eki .A B log(1 + ‖(v,Γ)‖Hs)Ek + (‖R‖L2(Γt) + ‖Q‖L2(Ωt))(E

k)
1
2 .

It remains to control the source terms Q and R. This will be where the bulk of the work is situated. Our

goal is to show that

‖Q‖L2(Ωt) + ‖R‖L2(Γt) .A B log(1 + ‖(v,Γ)‖Hs)(Ek)
1
2 .

We begin with the estimate for Q. We proceed term by term. Clearly, we have

‖∇v · w‖L2(Ωt) . B(Ek)
1
2 .

To handle the second term in the definition of Q, we begin by recalling the simple commutator identity from

(5.42),

[Dt,H]ψ = ∆−1∇ · B(∇v,∇Hψ),
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where B is an Rd-valued bilinear form. We then estimate using the H−1 → H1 bound for ∆−1 to obtain

‖∇[Dt,H](N k−2Dta)‖L2(Ωt) .A B‖∇HN k−2Dta‖L2(Ωt) .A B(Ek)
1
2 .

For the third term in (7.34), we use the H
1
2 (Γt) → H1(Ωt) bound for H to obtain

‖∇H([Dt,N
k−2]Dta)‖L2(Ωt) .A ‖[Dt,N

k−2]Dta‖
H

1
2 (Γt)

.

Then, from the commutator estimate Proposition 5.33 we obtain

‖[Dt,N
k−2]Dta‖

H
1
2 (Γt)

.A ‖v‖Hk(Ωt)‖Dta‖L∞(Γt) + ‖v‖W 1,∞(Ωt)‖Dta‖
H

k− 3
2 (Γt)

+ ‖Dta‖L∞(Γt)‖Γ‖Hk

+ ‖v‖W 1,∞(Ωt)‖Γ‖Hk(Ωt) sup
j>0

2−
j
2 ‖G1

j · nΓt
‖L∞(Γt)

+ ‖v‖W 1,∞(Ωt) sup
j>0

2j(k−
3
2−2ǫ)‖G2

j · nΓt
‖Hǫ(Γt),

where G1
j and G2

j are as in Corollary 7.6. Using Lemma 7.9, the energy coercivity, Lemma 7.7 and (7.15),

we have

‖[Dt,N
k−2]Dta‖

H
1
2 (Γt)

.A B log(1 + ‖(v,Γ)‖Hs)(Ek)
1
2 .

Next, we turn to the estimate for ∇HN k−2f , which involves the most work. We recall that

f := −g · nΓt
+ a|DtnΓt

|2 +∇n∆
−1(|∇Ha|2),

where g is defined as in (7.30). Using the identities DtnΓt
= −((Dv)∗nΓt

)⊤ = −(Dv)∗nΓt
+ nΓt

(nΓt
·

(Dv)∗nΓt
) and |∇Ha|2 = 1

2∆|Ha|2, we may reorganize f into the expression

(7.35) f =
1

2
∇n∆

−1∆(Ha)2 −
1

2
∇n∆

−1∆|∇p|2 −∇nD
2
t p+M1 +M2,

where M1 is a multilinear expression in nΓt
, ∇p, ∇v with exactly two factors of ∇v (e.g., from (5.35), the

term a|DtnΓt
|2), and M2 is a multilinear expression in ∇p, ∇v, ∇Dtp and nΓt

with a single factor of each

of ∇Dtp and ∇v (e.g., the term nΓt
· ∇Dtp · ∇v). We will abuse notation slightly and refer to terms of the

first type as M1(∇v,∇v) and terms of the second type as M2(∇Dtp,∇v). Next, we estimate each term in

∇HN k−2f , with the expression (7.35) for f substituted in.

From Corollary 5.32, we have

‖∇HN k−2∇n∆
−1∆(Ha)2‖L2(Ωt) .A ‖N k−2∇n∆

−1∆(Ha)2‖
H

1
2 (Γt)

.A ‖Γt‖Hk‖∆−1∆(Ha)2‖
C

1
2 (Ωt)

+ ‖∆−1∆(Ha)2‖Hk(Ωt).

By writing ∆−1∆(Ha)2 = (Ha)2 − H(Ha)2 and using the C
1
2 estimate for H from Corollary 5.16 twice

together with the maximum principle, we have

‖∆−1∆(Ha)2‖
C

1
2 (Ωt)

.A ‖Ha‖L∞(Ωt)‖Ha‖C
1
2 (Ωt)

.A ‖a‖
C

1
2 (Γt)

.A B.

From Proposition 5.19, we obtain also

‖∆−1∆(Ha)2‖Hk(Ωt) .A B‖Γt‖Hk + ‖∆(Ha)2‖Hk−2(Ωt).

Then using that ∆(Ha)2 = 2|∇Ha|2, we obtain from Corollary 5.4,

‖∆(Ha)2‖Hk−2(Ωt) . ‖Ha‖
C

1
2 (Ωt)

‖Ha‖
H

k− 1
2 (Ωt)

.A B‖Ha‖
H

k− 1
2 (Ωt)

.
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Then from Proposition 5.21, Lemma 7.7 and the energy coercivity bound (7.15), we obtain

‖Ha‖
H

k− 1
2 (Ωt)

.A ‖a‖Hk−1(Γt) + ‖Γ‖Hk‖a‖L∞(Ωt) .A (Ek)
1
2 .

Therefore,

‖∆(Ha)2‖Hk−2(Ωt) .A B(Ek)
1
2 .

Next, we turn to the term ∇n∆
−1∆|∇p|2 in (7.35). The procedure here is similar. Like with the previous

estimate, we obtain

(7.36) ‖∇HN k−2∇n∆
−1∆|∇p|2‖L2(Ωt) .A ‖Γt‖Hk‖∆−1∆(|∇p|2)‖

C
1
2 (Ωt)

+ ‖∆(|∇p|2)‖Hk−2(Ωt)

and also

‖∆−1∆(|∇p|2)‖
C

1
2 (Ωt)

.A B.

Moreover, by expanding ∆|∇p|2 (and some simple manipulations), we have

‖∆(|∇p|2)‖Hk−2(Ωt) . ‖|∇2p|2‖Hk−2(Ωt) + ‖|∆p|2‖Hk−2(Ωt) + ‖∇p∆p‖Hk−1(Ωt).

Using Corollary 5.4 and Lemma 7.9, we have for the first two terms

‖|∇2p|2‖Hk−2(Ωt) + ‖|∆p|2‖Hk−2(Ωt) .A ‖∇p‖
C

1
2 (Ωt)

‖p‖
H

k+1
2 (Ωt)

.A B‖p‖
H

k+1
2 (Ωt)

.

To handle the other term, we use the Laplace equation for p to write

(7.37) ‖∇p∆p‖Hk−1(Ωt) = ‖∇p∂ivj∂jvi‖Hk−1(Ωt).

Then from (5.1), Corollary 5.4, Lemma 7.5 and Lemma 7.8, we have

‖∇p∂ivj∂jvi‖Hk−1(Ωt) .A ‖v‖W 1,∞(Ωt)‖∇p∂ivj‖Hk−1(Ωt) + ‖∇p∂ivj‖L∞(Ωt)‖v‖Hk(Ωt)

.A ‖v‖W 1,∞(Ωt)(‖v‖C
1
2 (Ωt)

‖p‖
H

k+1
2 (Ωt)

+ ‖p‖W 1,∞(Ωt)‖v‖Hk(Ωt))

.A B‖(v,Γ)‖Hk .

(7.38)

Combining the above with the energy coercivity (7.15), we obtain

‖∆(|∇p|2)‖Hk−2(Ωt) .A B(Ek)
1
2 .

Next, we turn to the estimate for M1. We first write M1 = M ′
1B where M ′

1 is an R-valued multilinear

expression in nΓt
and ∇p and B is an R-valued bilinear expression in ∇v. We use the bilinear frequency

decomposition B(∇v,∇v) = B(∇vl,∇v≤l) + B(∇v≤l,∇vl) and consider the partition B = B1
j + B2

j where

B1
j := B(∇Φ<jv

l,∇v≤l)+B(∇v≤l,∇Φ<jv
l). Then using this partition, the trace inequality, energy coercivity

and Proposition 5.30, we have

‖∇HN k−2M1‖L2(Ωt) .A ‖M1‖
H

k− 3
2 (Γt)

+ ‖Γt‖Hk sup
j>0

2−
j
2 ‖B1

j‖L∞(Ωt) + sup
j>0

2j(k−
3
2−2ǫ)‖B2

j‖H
1
2
+ǫ(Ωt)

.A ‖M1‖
H

k− 3
2 (Γt)

+ ‖v‖W 1,∞(Ωt)‖v‖C
1
2
+ǫ(Ωt)

‖Γt‖Hk + ‖v‖W 1,∞(Ωt)‖v‖Hk(Ωt)

.A ‖M1‖
H

k− 3
2 (Γt)

+B(Ek)
1
2 .

(7.39)

Using the same partition as above and Proposition 5.9, Proposition 5.11 and Lemma 7.5, we have

‖M1‖
H

k− 3
2 (Γt)

.A ‖∇v‖L∞(Ωt)‖v‖Hk(Ωt) + (‖Γt‖Hk + ‖M ′
1(∇p, nΓt

)‖Hk−1(Γt)) sup
j>0

2−
j
2 ‖B1

j‖L∞(Ωt)

+ sup
j>0

2j(k−
3
2−2ǫ)‖B2

j‖H
1
2
+ǫ(Ωt)

.
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Estimating as in (7.39), this simplifies to

‖M1‖
H

k− 3
2 (Γt)

.A B(Ek)
1
2 +B‖M ′

1(∇p, nΓt
)‖Hk−1(Γt).

By Proposition 5.9, Proposition 5.11, Lemma 7.8 and the energy coercivity, we have also

‖M ′
1(∇p, nΓt

)‖Hk−1(Γt) .A (Ek)
1
2 ,

from which we deduce

‖∇HN k−2M1‖L2(Ωt) .A B(Ek)
1
2 .

Next, we estimate M2. This estimate is similar to M1. One starts by writing M2 = M ′
2B where M ′

2 is

multilinear in ∇p and nΓt
while B is bilinear in ∇v and ∇Dtp. Using the partition B = B1

j + B2
j with

B1
j := B(∇Φ<jv

l,∇(Dtp)
≤l) + B(∇v≤l,∇Φ<j(Dtp)

l) and a similar analysis to M1, we have

‖∇HN k−2M2‖L2(Ωt) .A ‖v‖W 1,∞(Ωt)‖Dtp‖Hk(Ωt) + ‖Dtp‖W 1,∞(Ωt)(‖Γt‖Hk + ‖M ′
2(∇p, nΓt

)‖Hk−1(Γt))

+ ‖Dtp‖W 1,∞(Ωt)‖v‖Hk(Ωt).

Then using the W 1,∞ bound for Dtp from Lemma 7.9 and the Hk bound for Dtp from Lemma 7.8, we have

‖∇HN k−2M2‖L2(Ωt) .A B log(1 + ‖(v,Γ)‖Hs)(Ek)
1
2 .

Now we turn to the estimate for the term involving D2
t p. As usual, we first aim to write it in the form

∆−1∇ · f but in such a way that f involves favorable frequency interactions. This presents some mild

technical challenges as D2
t p will have terms which are up to quadrilinear in ∇v. To deal with this, we have

the following lemma.

Lemma 7.11. There exist bilinear, trilinear and quadrilinear expressions B, T and M taking values in Rd

such that

∆D2
t p = −2∆|∇p|2 +∇ · B(∇Dtp,∇v) +∇ · T (∇p,∇v,∇v) +∇ ·M(vm,∇v≤m,∇v≤m,∇v≤m).

Proof. First, using that v is divergence free, it is straightforward to verify

∆D2
t p = ∂i(∂jDtp∂jvi) + ∂i(∂ivj∂jDtp) +Dt∆Dtp = ∇ · B +Dt∆Dtp.

Next, we expand Dt∆Dtp. We start with the Laplace equation for Dtp from (7.17),

∆Dtp = 3∂j(∂ip∂ivj) + ∂i(∂ivj∂jp) + 2∂jvk∂kvi∂ivj .

Using that v is divergence free, we have the commutator identity [∂i, Dt]f = ∂j(∂ivjf). Combining this with

the Euler equations, we obtain

Dt(3∂j(∂ip∂ivj) + ∂i(∂ivj∂jp)) = ∇ · B +∇ · T − 4∂j(∂ip∂i∂jp)

= ∇ · B +∇ · T − 2∆|∇p|2.

It remains to expand 2Dt(∂jvk∂kvi∂ivj). From the Euler equation and symmetry, we have

2Dt(∂jvk∂kvi∂ivj) = 6Dt(∂jvk)∂kvi∂ivj = −6∂j∂kp∂kvi∂ivj − 6∂jvl∂lvk∂kvi∂ivj .

We rearrange the first term as

−6∂j∂kp∂kvi∂ivj = −6∂j(∂kp∂kvi∂ivj) + 6∂kp∂j∂kvi∂ivj = −6∂j(∂kp∂kvi∂ivj) + 3∂kp∂k(∂jvi∂ivj)

= −6∂j(∂kp∂kvi∂ivj) + 3∂k(∂kp∂jvi∂ivj)− 3∂k∂kp∂jvi∂ivj

= ∇ · T + 3|∆p|2,

(7.40)
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where in the last line we used the Laplace equation for p. On the other hand, for the second term, by

symmetry of the indices, we have the quadrilinear frequency decomposition,

−6∂jvl∂lvk∂kvi∂ivj = −24∂jv
m
l ∂lv

≤m
k ∂kv

≤m
i ∂iv

≤m
j

= ∇ ·M+ 24vml ∂l∂jv
≤m
k ∂kv

≤m
i ∂iv

≤m
j + 24vml ∂lv

≤m
k ∂j∂kv

≤m
i ∂iv

≤m
j .

By symmetry and the fact that v is divergence free, the second term on the right-hand side can be rearranged

as

24vml ∂l∂jv
≤m
k ∂kv

≤m
i ∂iv

≤m
j = 8vml ∂l(∂jv

≤m
k ∂kv

≤m
i ∂iv

≤m
j ) = ∇ ·M.

For the third term on the right-hand side, we have

24vml ∂lv
≤m
k ∂j∂kv

≤m
i ∂iv

≤m
j = 12vml ∂lv

≤m
k ∂k(∂jv

≤m
i ∂iv

≤m
j ) = ∇ ·M− 12∂kv

m
l ∂lv

≤m
k ∂jv

≤m
i ∂iv

≤m
j

= ∇ ·M− 3∂kvl∂lvk∂jvi∂ivj

= ∇ ·M− 3|∆p|2,

(7.41)

where we used the Laplace equation for p in the last line. Combining (7.40) and (7.41) to cancel the 3|∆p|2

terms then completes the proof of the lemma. �

Now, we return to the estimate for ∇HN k−2∇nD
2
t p. We use Lemma 7.11 and estimate each term separately.

The term −2∇HN k−2∇n∆
−1∆|∇p|2 can be estimated identically to (7.36). Let us then turn to the estimate

for ∇HN k−2∇n∆
−1(∇·B). We use a partition B = B1

j +B2
j where B

1
j is defined as follows: First, we perform

the frequency decomposition,

B = B(∇(Dtp)
l,∇v≤l) + B(∇(Dtp)

≤l,∇vl)

and then define

Bj1 := B(∇Φ≤j(Dtp)
l,∇v≤l) + B(∇(Dtp)

≤l,∇Φ≤jv
l).

Then Corollary 5.32 and Proposition 5.19 gives

‖∇HN k−2∇n∆
−1(∇ · B)‖L2(Ωt) .A ‖B‖Hk−1(Ωt) + ‖Γt‖Hk sup

j>0
2−

j
2 ‖∆−1(∇ · Bj1)‖W 1,∞(Ωt)

+ sup
j>0

2j(k−1−ǫ)‖∆−1(∇ · Bj2)‖H1(Ωt).

From Sobolev product estimates and the Hk and L∞ estimates for Dtp,

‖B‖Hk−1(Ωt) .A ‖v‖W 1,∞(Ωt)‖Dtp‖Hk(Ωt) + ‖Dtp‖W 1,∞(Ωt)‖v‖Hk(Ωt) .A B log(1 + ‖(v,Γ)‖Hs)(Ek)
1
2 .

Using Proposition 5.15, we also estimate

2−
j
2 ‖∆−1(∇ · Bj1)‖C1,ǫ(Ωt) .A ‖Dtp‖W 1,∞(Ωt)‖v‖C

1
2
+ǫ(Ωt)

.A B log(1 + ‖(v,Γ)‖Hs).

Finally, using the error bounds for Φ>j and the L∞ and Hk estimates for Dtp from Lemma 7.8 we see that

2j(k−1−ǫ)‖∆−1(∇·Bj2)‖H1(Ωt) .A ‖v‖W 1,∞(Ωt)‖Dtp‖Hk(Ωt)+‖Dtp‖W 1,∞(Ωt)‖v‖Hk(Ωt) .A B log(1+‖(v,Γ)‖Hs)(Ek)
1
2 .

Hence,

‖∇HN k−2∇n∆
−1(∇ · B)‖L2(Ωt) .A B log(1 + ‖(v,Γ)‖Hs)(Ek)

1
2 .

The estimates for∇HN k−2∇n∆
−1(∇·T ) and ∇HN k−2∇n∆

−1(∇·M) are very similar. The main difference

is that we use the partition T = T j
1 + T j

2 with

T j
1 = 2T (∇p,∇Φ≤jv

l,∇v≤l)
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and the partition M = Mj
1 +Mj

2 with

Mj
1 := M(vm,∇Φ≤jv

≤m,∇v≤m,∇v≤m).

Ultimately, we obtain

‖∇HN k−2∇nD
2
t p‖L2(Ωt) .A B log(1 + ‖(v,Γ)‖Hs)(Ek)

1
2

which when combined with the previous analysis gives

‖∇HN k−2f‖L2(Ωt) .A B log(1 + ‖(v,Γ)‖Hs)(Ek)
1
2

as desired. The last term in the estimate for Q that we need to control is ∇H[N k−2, a]Na. For this, we

have the following technical lemma.

Lemma 7.12. We have the following estimate:

‖∇H[N k−2, a]Na‖L2(Ωt) .A B log(1 + ‖(v,Γ)‖Hs)(Ek)
1
2 .

Proof. Thanks to the H
1
2 (Γt) → H1(Ωt) bound for H, it suffices to estimate ‖[N k−2, a]Na‖

H
1
2 (Γt)

. We

begin by using the Leibniz formula (5.36) to expand the commutator,

[N k−2, a]Na =
∑

n+m=k−3

Nn(NaNm+1a)− 2Nn∇n∆
−1(∇Ha · ∇HNm+1a).(7.42)

We focus on the latter term in (7.42) first as it is a bit more delicate to deal with. To simplify notation

slightly, we write

aj := HN ja, F := ∇a0 · ∇am+1, N<j := nΓt
· ∇Φ<jH, N≥j := nΓt

· ∇Φ≥jH.

Using Corollary 5.32 and then Proposition 5.19, we have

‖Nn(∇n∆
−1F )‖

H
1
2 (Γt)

.A ‖F‖Hn(Ωt) + ‖Γ‖Hk sup
j>0

2−j(m+ 3
2 )‖∆−1F 1

j ‖W 1,∞(Ωt)

+ sup
j>0

2j(n+1−ǫ)‖∆−1F 2
j ‖H1(Ωt),

where F = F 1
j + F 2

j is a suitable partition of F to be chosen. To find a suitable partition, we start with a

bilinear frequency decomposition similar to before. We define alj := Φlaj and a
≤l
j = Φ≤laj .

Remark 7.13. We note that the regularization operator Φ≤l does not preserve the harmonic property of

aj. However, using the definition of Φ≤l (see Section 6), the operator defined by C≤l := [∆,Φ≤l] is readily

seen to satisfy the bounds,

‖C≤l‖Cα→L∞ .A 2l(1−α) ‖C≤l‖Hα→L2 .A 2l(1−α), 0 ≤ α ≤ 1(7.43)

for α, l ≥ 0. That is, C≤l behaves like a differential operator of order 1 localized at dyadic scale . 2l.

Now, using the same convention as before in this section (where repeated indices are summed over) we have

F = ∇al0 · ∇a
≤l
m+1 +∇a≤l0 · ∇alm+1 =: F ′ + F ′′.

We can write F ′ and F ′′ to leading order as the divergence of some vector field. Using that a0 and am+1 are

harmonic, we have

F ′ = ∇ · (al0∇a
≤l
m+1)− al0C≤lam+1 =: G′ +H ′,

F ′′ = ∇ · (alm+1∇a
≤l
0 )− alm+1C≤la0 =: G′′ +H ′′.

(7.44)
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We will focus on F ′ first. To choose a partition of F ′, we need to choose a suitable partition of G′ and

H ′. We show the details for G′ and remark later on the minor changes needed to deal with H ′. We write

G′ = (G′)1j + (G′)2j with

(G′)1j = ∇ · (al0∇Φ≤lam+1,≤j), am+1,≤j := Φ≤j(HNm+1
<j a).

From Proposition 5.15, iterating the maximum principal and using the Cα bounds for H and the properties

of Φ<j , we have

2−j(m+ 3
2 )‖∆−1(G′)1j‖W 1,∞(Ωt) .A ‖a‖Cǫ(Γt)‖a‖C

1
2 (Γt)

.A B,

where we used Lemma 7.5 and Lemma 7.9 in the last inequality. For (G′)2j , we can write

(G′)2j = ∇ · (al0∇b
≤l
m+1,j) +

∑

0≤i≤m

∇ · (al0∇b
≤l
i,j)

where

b≤lm+1,j := Φ≤lΦ≥jam+1, b≤li,j := Φ≤lΦ<jHN i
<jN≥jN

m−ia.

Using Corollary 5.16, the properties of the kernel Φ and the H−1 → H1 bound for ∆−1, we obtain for each

0 ≤ i ≤ m,

2j(n+1−ǫ)‖∆−1∇ · (al0∇b
≤l
i,j)‖H1(Ωt) .A 2j(n+1−ǫ)‖al0‖L∞(Ωt)‖b

≤l
i,j‖H1(Ωt)

.A 2j(n+1−ǫ)‖a‖
C

1
2 (Γt)

‖HN i
<jN≥jN

m−ia‖
H

1
2
+ǫ(Ωt)

.
(7.45)

Repeatedly using the Hǫ → H
1
2+ǫ estimate (5.20), the properties of Φ, the bound ‖nΓt

‖Cǫ(Γt) .A 1 and the

trace inequality, we can estimate

2j(n+1−ǫ)‖HN i
<jN≥jN

m−ia‖
H

1
2
+ǫ(Ωt)

.A 2j(n+1+i−ǫ)‖∇Φ≥jHNm−ia‖
H

1
2
+ǫ(Ωt)

.A ‖HNm−ia‖
H

n+i+5
2 (Ωt)

.

Using Proposition 5.30, Lemma 7.5, Lemma 7.7 and (7.15), we have

‖HNm−ia‖
H

n+i+5
2 (Γt)

.A ‖a‖Hk−1(Γt) + ‖Γ‖Hk‖a‖Cǫ(Γt) .A (Ek)
1
2 .

If n ≥ 1, then doing a similar analysis for the term ∇ · (al0∇b
≤l
m+1,j) and combining this with (7.45) and the

bound ‖a‖
C

1
2 (Γt)

.A B, we obtain

2j(n+1−ǫ)‖∆−1(G′)2j‖H1(Ωt) .A B(Ek)
1
2 .

If n = 0, the term ∇ · (al0∇b
≤l
m+1,j) is instead treated slightly differently. For this, we estimate similarly to

before,

2j(1−ǫ)‖∆−1∇ · (al0∇b
≤l
m+1,j)‖H1(Ωt) .A ‖a‖

C
1
2 (Γt)

‖HNm+1a‖
H

3
2 (Ωt)

.

Then we use Proposition 5.18 to estimate the last term as

‖HNm+1a‖
H

3
2 (Ωt)

.A ‖Nm+1a‖H1(Γt),

and then estimate this term by (Ek)
1
2 similarly to the above. Next, one readily verifies analogous bounds

for H ′, G′′ and H ′′ by using the similar decompositions,

(H ′)1j = −al0C≤l(am+1,≤j), (G′′)1j = ∇ · (Φl(am+1,≤j)∇a
≤l
0 ), (H ′′)1j = −C≤la0Φl(am+1,≤j).(7.46)

From these bounds, ultimately, we obtain

‖Nn(∇n∆
−1F )‖

H
1
2 (Γt)

.A ‖F‖Hn(Ωt) +B(Ek)
1
2 .
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It remains to estimate F in Hn. We begin by looking at each summand in the bilinear frequency decompo-

sition for F ,

Fl := ∇Φla0 · ∇Φ≤lam+1 +∇Φ≤la0 · ∇Φlam+1.

For the latter term, we have

‖∇Φ<la0 · ∇Φlam+1‖Hn(Ωt) .A ‖a‖
C

1
2 (Γt)

‖am+1‖
H

n+3
2 (Ωt)

,

which when n ≥ 1, we know from the above can be controlled by B(Ek)
1
2 . For n = 0, we have the same

bound by simply using Proposition 5.18. For the other term, we can further decompose

(7.47) am+1 = a1m+1,l + a2m+1,l

where a1m+1,l = HNm+1
<l a. We then have from the properties of Φ≤l and the control of ‖Ha‖

H
n+m+5

2 (Ωt)
by

the energy (as above),

‖∇Φla0 · ∇Φ≤lam+1‖Hn(Ωt) .A ‖a‖
C

1
2 (Γt)

(Ek)
1
2 .

As ∇am+1 is not at top order, we can easily verify using the decomposition above that we also have the

following cruder bound for each l

(7.48) ‖Fl‖Hn(Ωt) .A 2−δl‖(v,Γ)‖r
Hs(Ek)

1
2 ,

for some integer r > 1 and small constant δ > 0. Arguing as in Lemma 7.9, we can combine the above two

bounds to estimate

‖F‖Hn(Ωt) .A B log(1 + ‖(v,Γ)‖Hs)(Ek)
1
2 .

This handles the latter term in (7.42). Now, we turn to the first term. We have to estimate ‖Nn(NaNm+1a)‖
H

1
2 (Γt)

where n,m ≥ 0 and n +m = k − 3. Here, we only sketch the details as the procedure for this estimate is

relatively similar to the previous term. We start by writing

NaNm+1a = (HnΓt
· ∇a0)(HnΓt

· ∇am) =: K|Γt
.

Then we apply Proposition 5.30 and Proposition 5.11 to estimate

‖NnK|Γt
‖
H

1
2 (Γt)

.A ‖K‖Hn+1(Ωt) + ‖Γ‖Hk sup
j>0

2−j(m+ 3
2 )‖K1

j ‖L∞(Ωt) + sup
j>0

2j(n+
1
2−2ǫ)‖K2

j ‖H
1
2
+ǫ(Ωt)

where K = K1
j +K2

j and

(7.49) K1
j := Φ<j((HnΓt

· ∇Φ<ja0)(HnΓt
· ∇Φ<jHNm

<ja)).

Similarly to the above, we can estimate

2−j(m+ 3
2 )‖K1

j ‖L∞(Ωt) .A B.

We also have an estimate of the form

2j(n+
1
2−2ǫ)‖K2

j ‖H
1
2
+ǫ(Ωt)

.A ‖K‖Hn+1(Ωt) +B(Ek)
1
2 + 2j(n+1−ǫ)‖B(∇Φ≥ja0,∇am)‖L2(Ωt)

.A ‖K‖Hn+1(Ωt) +B(Ek)
1
2 + sup

l>0
2l(n+1−ǫ)‖B(∇Φla0,∇am)‖L2(Ωt)

for some bilinear expression B. Using a decomposition of am similar to (7.47), we have

2l(n+1−ǫ)‖B(∇Φla0,∇am)‖L2(Ωt) .A B log(1 + ‖(v,Γ)‖Hs)(Ek)
1
2 .

Therefore, we have

‖NnK|Γt
‖
H

1
2 (Γt)

.A B log(1 + ‖(v,Γ)‖Hs)(Ek)
1
2 + ‖K‖Hn+1(Ωt).
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To estimate K in Hn+1(Ωt), the starting point is similar (but slightly more technical) than the estimate for F

in Hn from above. The idea is to do a quadrilinear frequency decomposition for K and study each summand

individually. The relevant terms correspond to terms essentially of the form (ΦlHnΓt
· ∇Φ≤la0)(Φ≤lHnΓt

·

∇Φ≤lam) and (Φ≤lHnΓt
· ∇Φla0)(Φ≤lHnΓt

· ∇Φ≤lam) and (Φ≤lHnΓt
· ∇Φ≤la0)(ΦlHnΓt

· ∇Φ≤lam) and

(Φ≤lHnΓt
· ∇Φ≤la0)(Φ≤lHnΓt

· ∇Φlam). The second and fourth terms can be handled almost identically to

the estimate for F in Hn (as by the maximum principle, one can dispense with the factors of HnΓt
). The

first and third terms are handled similarly by decomposing a0 and am into low and high frequency parts

as in (7.47) and using Proposition 5.21 when ΦlHnΓt
is at high frequency compared to the other factors.

One then obtains the desired estimate similarly to the estimate for F in Hn above. We omit the remaining

details. �

We now turn to the estimate for the final source term, R = [Dt,N k−1]a in L2(Γt). To control this term, we

first write

[Dt,N
k−1]a = [Dt,N ]N k−2a+N [Dt,N

k−2]a.

For the latter term, we have by Lemma 5.24,

‖N [Dt,N
k−2]a‖L2(Γt) .A ‖[Dt,N

k−2]a‖H1(Γt).

Then using Proposition 5.33 and the coercivity bound, we estimate

‖[Dt,N
k−2]a‖H1(Γt) .A ‖v‖W 1,∞(Ωt)‖a‖Hk−1(Γt) + ‖a‖

C
1
2 (Γt)

(‖Γ‖Hk + ‖v‖Hk(Ωt)) + ‖a‖L∞(Γt)‖v‖W 1,∞(Ωt)‖Γ‖Hk

.A B(Ek)
1
2 .

To conclude the proof of Theorem 7.1, it remains to estimate [Dt,N ]N k−2a in L2(Γ). This term is rather

delicate due to the lack of a trace estimate in L2(Γ). To deal with this term, we have the following proposition.

Proposition 7.14. Let s ∈ R with s > d
2 + 1. Then we have,

(7.50) ‖[N , Dt]f‖L2(Γ) .A B log(1 + ‖(v,Γ)‖Hs)‖f‖H1(Γ).

Our proof requires the following short lemma which is essentially a consequence of Proposition 5.18.

Lemma 7.15. For each l = 1, ..., d, we have

(7.51) ‖nΓ · (∇∆−1∂l − el)‖
H

1
2 (Ω)→L2(Γ)

.A 1.

Proof. This will follow by interpolation if we can prove

(7.52) ‖nΓ · (∇∆−1∂l − el)‖
L2(Ω)→H

− 1
2 (Γ)

+ ‖nΓ · (∇∆−1∂l − el)‖
H

1
2
+δ(Ω)→Hδ(Γ)

.A 1,

for some 0 < δ < ǫ. The H
1
2+δ → Hδ bound follows easily from the trace inequality, the bound

‖nΓt
‖Cǫ(Γt) .A 1 and Proposition 5.18. For the L2 → H− 1

2 bound we use duality. Indeed, let f ∈ L2(Ω).

Since (∇∆−1∂l − el)f is divergence free, we have

∫

Γ

gnΓ · (∇∆−1∂l − el)f dS =

∫

Ω

∇Hg · (∇∆−1∂l − el)f dx .A ‖g‖
H

1
2 (Γ)

‖f‖L2(Ω),

for every g ∈ H
1
2 (Γ). Therefore, we obtain (7.52) and thus also (7.51). �
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Proof of Proposition 7.14. Now, returning to the proposition, we expand using (5.40),

[Dt,N ]f = DtnΓ · ∇Hf − nΓ · ((∇v)∗(∇Hf)) + nΓ · ∇∆−1∆(v · ∇Hf).

The first two terms on the right can easily be estimated in L2 by the right-hand side of (7.50) by using (5.35)

and Lemma 5.24. Now, we turn to the latter term. We write for simplicity u := Hf . We then split u as

u =
∑

l≤l0

Φlu+Φ>l0u =:
∑

l≤l0

ul + u≥l0 ,

where l0 is a parameter to be chosen. Note that ul is not harmonic anymore, but it is to leading order. As

usual, we also write the corresponding divergence free regularizations for v as vl := Ψlv, v<l := Ψ<lv and so

forth.

The following lemma shows that we have a suitable estimate when u is replaced by a single dyadic regular-

ization ul.

Lemma 7.16. For each l ∈ N0, we have

‖∇n∆
−1∆(v · ∇ul)‖L2(Γ) .A B‖f‖H1(Γ),

where the implicit constant does not depend on l.

Proof. We write

(7.53) ∇n∆
−1∆(v · ∇ul) = ∇n∆

−1∆(v<l · ∇ul) +∇n∆
−1∆(v≥l · ∇ul).

For the second term, where v is at high frequency, we use the identity ∆−1∆ = I − H and the H1 → L2

bound for N to estimate

(7.54) ‖∇n∆
−1∆(v≥l · ∇ul)‖L2(Γ) .A ‖∇(v≥l · ∇ul)‖L2(Γ) + ‖v≥l · ∇ul‖H1(Γ).

For the first term in (7.54), we distribute the derivative to obtain

(7.55) ‖∇(v≥l · ∇ul)‖L2(Γ) . B‖∇ul‖L2(Γ) + ‖v≥l · ∇
2ul‖L2(Γ).

For the first term in (7.55), we use the variant of the trace theorem leading to (4.8) and the fact that ul is

frequency localized to obtain

‖∇ul‖L2(Γ) . ‖∇ul‖
1
2

H1(Ω)‖∇ul‖
1
2

L2(Ω) . ‖u‖
H

3
2 (Ω)

.A ‖f‖H1(Γ)

where in the last estimate we used Proposition 5.18. For the second term in (7.55), we again use the trace

theorem and the fact that v≥l is higher frequency to obtain

‖v≥l · ∇
2ul‖L2(Γ) . ‖v≥l · ∇

2ul‖
1
2

L2(Ω)‖v≥l · ∇
2ul‖

1
2

H1(Ω) . B‖u‖
H

3
2 (Ω)

. B‖f‖H1(Γ).

The term ‖v≥l · ∇ul‖H1(Γ) in (7.54) is similarly estimated. For this, we only need to estimate ‖∇⊤(v≥l ·

∇ul)‖L2(Γ), and this is handled by an almost identical strategy to the above.

Now, to estimate the term in (7.53) where v is at low frequency, we distribute the Laplacian and use that

v<l is divergence free to write ∇n∆
−1∆(v<l · ∇ul) as a sum of terms of the form

∇n∆
−1∂j(Dv<lDul) +∇n∆

−1∂j(v<lClu),
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where Clu := [∆,Φl]u. Using Lemma 7.15 we can then estimate

‖∇n∆
−1∆(v<l · ∇ul)‖L2(Γ) .A ‖Dv<lDul‖

L2(Γ)∩H
1
2 (Ω)

+ ‖v<lClu‖
L2(Γ)∩H

1
2 (Ω)

=: J1 + J2.

Using that v is at low frequency, we can estimate similarly to the above,

J1 .A B‖f‖H1(Γ).

For J2, we note that Cl is an operator of order 1 and still retains essentially the frequency localization scale

of 2l. Therefore, we can estimate J2 similarly. This completes the proof of the lemma. �

Returning to the proof of Proposition 7.14, we now estimate using Lemma 7.16,

‖∇n∆
−1∆(v · ∇u)‖L2(Γ) .A l0B‖f‖H1(Γ) + ‖∇n∆

−1∆(v · ∇u≥l0)‖L2(Γ).

Again, using that v is divergence free, we can (as above) expand ∇n∆
−1∆(v · ∇u≥l0) as a sum of terms of

the form

∇n∆
−1∂j(DvDu≥l0) +∇n∆

−1∂j(vC≤l0u),

where C≤l0u = [∆,Φ≤l0 ]u. For the latter term, we can simply estimate as above (since v is undifferentiated),

‖∇n∆
−1∂j(vC≤l0u)‖L2(Γ) ≤

∑

l≤l0

‖∇n∆
−1∂j(vClu)‖L2(Γ) .A l0B‖f‖H1(Γ).

For the other term, we use Lemma 7.15 to obtain

‖∇n∆
−1∂j(DvDu≥l0)‖L2(Γ) .A B‖Du≥l0‖L2(Γ) + ‖DvDu≥l0‖H

1
2 (Ω)

.

Since u is harmonic we have

B‖Du≥l0‖L2(Γ) .A B‖f‖H1(Γ) +B‖Du<l0‖L2(Γ).

Then expanding u<l0 =
∑

l<l0
ul and using the trace theorem leading to (4.8) for each term as above, we

get

B‖Du≥l0‖L2(Γ) .A Bl0‖f‖H1(Γ).

Finally, by product estimates and Sobolev embedding, it is easy to bound

‖DvDu≥l0‖H
1
2 (Ω)

.A B‖f‖H1(Γ) + ‖Dv≥l0‖H
d
2
+ǫ(Ω)

‖f‖H1(Γ) .A (B + 2−l0δ‖(v,Γ)‖Hs)‖f‖H1(Γ)

for some δ > 0. Then choosing l0 ≈δ log(1 + ‖(v,Γ)‖Hs), we conclude the proof of the proposition. �

Finally, we conclude the proof of Theorem 7.1 by observing first from the above proposition that we have

‖[Dt,N ]N k−2a‖L2(Γ) .A B log(1 + ‖(v,Γ)‖Hs)‖N k−2a‖H1(Γ).

Then, using Proposition 5.30, Lemma 7.5, Lemma 7.7 and (7.15), we have

‖N k−2a‖H1(Γ) .A (Ek)
1
2 .

This finally concludes the proof of Theorem 7.1.
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8. Construction of regular solutions

In this section, we give a new, direct method for constructing solutions to the free boundary Euler equations

in the high regularity regime. Solutions at low regularity will be obtained in the next section as unique limits

of these regular solutions.

Previous approaches to constructing solutions to free boundary fluid equations include using Lagrangian

coordinates, Nash Moser iteration or taking the zero surface tension limit in the capillary problem. A more

recent approach in the case of a laterally infinite ocean with flat bottom can be found in [47]. The article

[47] uses a paralinearization of the Dirichlet-to-Neumann operator and a complicated iteration scheme to

construct solutions. In contrast, we propose a new, geometric approach, implemented fully within the Euler-

ian coordinates.

Our novel approach is roughly inspired by nonlinear semigroup theory, where one constructs an approximate

solution by discretizing the problem in time. To execute this approach successfully, one needs to show that

the energy bounds are uniformly preserved throughout the time steps. In our setting, a classical semigroup

approach would require one to solve an elliptic free boundary problem with very precise estimates. However,

on the other end of the spectrum, one could try to view our equation as an ODE and use an Euler type

iteration. Of course, a näıve Euler method cannot work because it loses derivatives. A partial fix to this

would be to combine the Euler method with a transport part, which would reduce but not eliminate the loss

of derivatives.

Our goal is to retain the simplicity of the Euler plus transport method, while ameliorating the derivative

loss by an initial regularization of each iterate in our discretization. In short, we will split the time step into

two main pieces:

(i) Regularization.

(ii) Euler plus transport.

To ensure that the uniform energy bounds survive, the regularization step needs to be done carefully. For

this, we will take a modular approach and try to decouple this process into two steps, where we regularize

individually the domain and the velocity. We believe that this modular approach will serve as a recipe for a

new and relatively simple method for constructing solutions to various free boundary problems.

The overarching scheme we employ in this section was carried out in the case of a compressible gas in [27].

While we follow the same rough roadmap here, we stress that the main difficulties in the incompressible

liquid case are quite different than for the gas. One obvious reason for this is that the surface of a liquid

carries a non-trivial energy. Also, we introduce another new idea here, which is to begin the iteration with

a regularized version of the initial data, and then to partially propagate these regularized bounds through

the iteration.

8.1. Basic setup and simplifications. We begin by fixing a smooth reference hypersurface Γ∗ and a collar

neighborhood Λ∗ := Λ(Γ∗, ǫ0, δ). Here, as usual, ǫ0 and δ are some small but fixed positive constants. Given

k > d
2 + 1 sufficiently large and an initial state (v0,Γ0) ∈ Hk, our aim is to construct a local solution

(v(t),Γt) ∈ Hk whose lifespan depends only on the size of ‖(v0,Γ0)‖Hk , the lower bound in the Taylor sign
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condition and the collar neighborhood Λ∗. We recall from Theorem 7.1 that we have the coercivity

1 + ‖(v,Γ)‖2
Hk ≈A E

k(v,Γ)

for any state (v,Γ) ∈ Hk. For technical convenience, we will work with the slightly modified energy,

(8.1) Ek(v,Γ) := ‖∇HN k−2(a−1Dta)‖
2
L2(Ω) + ‖a−

1
2N k−1a‖2L2(Γ) + ‖ω‖2Hk−1(Ω) + ‖v‖2L2(Ω) + 1.

This new energy is readily seen to be equivalent to the old one in the sense that

(8.2) Ek(v,Γ) ≈A E
k(v,Γ).

The primary reason we modify the energy is that it will allow for cleaner cancellations in the energy when

we later regularize the velocity.

Now, fix M > 0. Given a small time step ǫ > 0 and a suitable pair of initial data (v0,Γ0) ∈ Hk with

‖(v0,Γ0)‖Hk ≤M , we aim to construct a sequence (vǫ(jǫ),Γǫ(jǫ)) ∈ Hk satisfying the following properties:

(i) (Norm bound). There is a uniform constant c0 > 0 depending only on Λ∗, M and the lower bound

in the Taylor sign condition such that if j is an integer with 0 ≤ j ≤ c0ǫ
−1, then

‖(vǫ(jǫ),Γǫ(jǫ))‖Hk ≤ C(M),

where C(M) > 0 is some constant depending on M .

(ii) (Approximate solution).





vǫ((j + 1)ǫ) = vǫ(jǫ)− ǫ(vǫ(jǫ) · ∇vǫ(jǫ) +∇pǫ(jǫ) + ged) +OC1(ǫ2) on Ωǫ((j + 1)ǫ) ∩ Ωǫ(jǫ),

∇ · vǫ((j + 1)ǫ) = 0 on Ωǫ((j + 1)ǫ),

Ωǫ((j + 1)ǫ) = (I + ǫvǫ(jǫ))(Ωǫ(jǫ)) +OC1(ǫ2).

We will not have to concern ourselves too much with the Taylor sign condition in this section as we are

working at high regularity and this is a pointwise property. In particular, we will suppress the lower bound

in the Taylor sign condition from our notation. A nice feature about the above iteration scheme is that it

suffices to only carry out a single step. For this, we have the following theorem.

Theorem 8.1. Let k be a sufficiently large even integer and M > 0. Consider an initial data (v0,Γ0) ∈ Hk

so that ‖(v0,Γ0)‖Hk ≤M and v0 and ω0 satisfy the initial regularization bounds

(8.3) ‖v0‖Hk+1(Ω0) ≤ K(M)ǫ−1, ‖ω0‖Hk+n(Ω0) ≤ K ′(M)ǫ−1−n,

for n = 0, 1, where K(M), K ′(M) > 0 are constants, possibly much larger than M , such that K ′(M) ≪

K(M). Then there exists a one step iterate (v0,Γ0) 7→ (v1,Γ1) with the following properties:

(i) (Energy monotonicity).

(8.4) Ek(v1,Γ1) ≤ (1 + C(M)ǫ)Ek(v0,Γ0).

(ii) (Good pointwise approximation).

(8.5)





v1 = v0 − ǫ(v0 · ∇v0 +∇p0 + ged) +OC1(ǫ2) on Ω1 ∩ Ω0,

∇ · v1 = 0 on Ω1,

Ω1 = (I + ǫv0)(Ω0) +OC1(ǫ2).
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(iii) (Persistence of the regularization bounds). v1 satisfies the regularization bounds

(8.6) ‖v1‖Hk+1(Ω1) ≤ K(M)ǫ−1, ‖ω1‖Hk+n(Ω1) ≤ (K ′(M) + C(M)ǫ)ǫ−1−n,

for n = 0, 1.

Remark 8.2. Property (8.6) ensures that v1 retains the Hk+1 regularization bound with the same con-

stant compared to the first iterate, and ω1 has a regularization bound which can only grow by an amount

comparable to ǫ times the initial regularization bound, which is acceptable over ≈M ǫ−1 iterations. The

energy monotonicity property, along with the energy coercivity bound from Theorem 7.1 will ensure that the

resulting sequence (vǫ(jǫ),Γǫ(jǫ)) of approximate solutions we construct remains uniformly bounded in Hk

for j ≪M ǫ−1. The second property in Theorem 8.1 will ensure that (vǫ(jǫ),Γǫ(jǫ)) converges in a weaker

topology to a solution of the equation.

The assumption (8.3) for v0 is for technical convenience. In the regularization step of the argument, it will

allow us to decouple the process of regularizing the domain and regularizing the velocity into separate argu-

ments (see Lemma 8.4 in the next section). The condition (8.6) ensures that (8.3) can be propagated from

one iterate to the next. Assuming that the initial iterate satisfies (8.3) is harmless in practice. Indeed, by the

regularization properties of Ψ≤ǫ−1, we can replace the first iterate in the resulting sequence (vǫ(jǫ),Γǫ(jǫ))

with a suitable ǫ−1 scale regularization so that the base case is satisfied. We note crucially that such a reg-

ularization is only done once - on the initial iterate - as we only know that this regularization is bounded on

Hk (it does not necessarily satisfy the more delicate energy monotonicity). In contrast, we require the much

stricter energy monotonicity bound (8.4) for all other iterations as in the above theorem. The condition on

the vorticity in (8.3) can also be harmlessly assumed for the initial iterate. When we later regularize the

velocity, we will not regularize the vorticity, but rather only the irrotational component. This is why, in

contrast to the Hk+1 bound for v1, the constant for ω1 in (8.6) gets slightly worse. Nonetheless, the careful

tracking of its bound in (8.6) ensures that it only grows by an acceptable amount in each iteration. The

heuristic reason why the regularization bound on ω1 is expected is because the vorticity should be essentially

transported by the flow, and therefore should not suffer the derivative loss of the full velocity in the iteration

step.

Outline of the argument. We now give a brief overview of the section. The first step is selecting a

suitable regularization scale. To motivate this, we recall that the evolution of the domain and the irrotational

component of the velocity is essentially governed by the following approximate equation for a:

(8.7) D2
t a ≈ −aNa.

Therefore, heuristically, Dt behaves roughly as a “spatial” derivative of order 1
2 . To control quadratic errors

in the energy monotonicity bound in the Euler plus transport iteration later, it is therefore natural to attempt

to regularize the domain and the irrotational part of the velocity on the ǫ−1 scale, as we do in Theorem 8.1.

As the vorticity is essentially transported by the flow, we are able to leave the rotational part of the velocity

alone, and instead track its growth as in (8.6).

With the above discussion in mind, we begin our analysis in earnest in Section 8.2 by regularizing the do-

main on the ǫ−1 scale. More specifically, given (v0,Γ0) ∈ Hk with v0 satisfying (8.3), we construct for each

0 < ǫ≪ 1 a domain Ωǫ ⊆ Ω0 whose boundary is within OC1(ǫ2) of Γ0 and which satisfies the regularization

bound ‖Γǫ‖Hk+α .M,α ǫ
−α for all α ≥ 0. This is achieved by performing a parabolic regularization of the
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graph parameterization η0 on Γ∗, together with a slight contraction of the domain. We then define our new

velocity ṽ0 = ṽ0(ǫ) by restricting the old velocity v0 to the new domain Ωǫ. As will be the case in every

step of the argument, the main difficulty is to carefully track the effect of the regularization on the energy

growth. The main point in this part of the argument is to show that the parabolic regularization of η0

induces a corresponding parabolic gain in the surface component of the energy ‖a−
1
2N k−1a‖2L2(Γ), allowing

us to control all of the resulting errors.

With the domain now regularized, we move on to regularizing the velocity in Section 8.3, which is step 2 of

the argument. In this step, we leave the domain and rotational part of the velocity alone, and regularize the

irrotational part of the velocity on the ǫ−1 scale. The way we execute this is by using the functional calculus

for the Dirichlet-to-Neumann operator. The main difficulty in this step of the argument is in tracking the

effect of this regularization on the ‖∇HN k−2(a−1Dta)‖2L2(Ω) portion of the energy, which at leading order

controls the irrotational component of the velocity. An additional objective in this step of the argument is

to improve the constant in (8.3) so that we can ultimately close the bootstrap in the upcoming Euler plus

transport phase of the argument.

The final step in our construction is to use an Euler plus transport iteration to flow the regularized variables

(vǫ,Γǫ) along a discrete version of the Euler evolution. It is in this step of the argument that we expect to

observe a 1
2 derivative loss (see the equation (8.7) forD2

t a, for instance), which is why the above regularization

procedure is imperative. The Euler plus transport argument we employ is carried out in Section 8.4. Control

of the resulting energy growth is shown by carefully relating the good variables a, Dta and ω for the new

iterate to the corresponding good variables for the regularized data. Then, with the energy uniformly

bounded and the variables appropriately iterated, in Section 8.5 we conclude that our scheme converges in

a weaker topology, completing the construction of solutions.

8.2. Step 1: Domain regularization. We begin with the domain regularization step. For this, we have

the following proposition.

Proposition 8.3. Given (v0,Γ0) ∈ Hk with v0 satisfying (8.3), there exists a domain Ωǫ contained in Ω0

with boundary Γǫ ∈ Λ∗ such that the pair (v0|Ωǫ
,Γǫ) satisfies

(i) (Energy monotonicity).

(8.8) Ek(v0|Ωǫ
,Γǫ) ≤ (1 + C(M)ǫ)Ek(v0,Γ0).

(ii) (Good pointwise approximation).

(8.9) ηǫ = η0 +OC1(ǫ2) on Γ∗.

(iii) (Domain regularization bound). For every α ≥ 0, there holds,

(8.10) ‖Γǫ‖Hk+α .M,α ǫ
−α.

Proof. In the sequel, we will use ṽ0 as a shorthand for v0|Ωǫ
. To regularize Γ0, we begin with the preliminary

parabolic regularization of η0 given by

η̃ǫ = eǫ
2∆Γ∗ η0,

where ∆Γ∗ is the Laplace-Beltrami operator for Γ∗. The rationale for using the operator eǫ
2∆Γ∗ instead of,

for instance, the operator e−ǫ|D| is to ensure that when k is large enough, we have ‖∂ǫη̃ǫ‖Hk−2(Γ∗) .M ǫ.

This ensures that the hypersurface parameterized by η̃ǫ in collar coordinates is at a distance on the order of
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no more than OM (ǫ2) from Γ0 in the Hk−2 topology (and thus the C1 topology if k is large enough). We

would also like to additionally guarantee that Ωǫ is contained in Ω0, so that we can use the restriction of

the velocity v0 to Ωǫ as the velocity on the new domain. Therefore, we slightly correct the above parabolic

regularization by defining our regularized hypersurface Γǫ through the collar parameterization

ηǫ = η̃ǫ − Cǫ2,

where C is some positive constant depending on M only, imposed to ensure that the domain Ωǫ associated

to Γǫ is contained in Ω0. Clearly, ηǫ satisfies (8.10) and the required pointwise approximation property in

(8.9). The main bulk of the work in this step of the argument will therefore be in understanding how the

above parabolic regularization of the surface (and also the restriction of the velocity to Ωǫ) affects the energy.

Given (ṽ0,Γǫ) as above, we define the associated quantities ω̃0 := ∇× ṽ0 and p̃0, Dtp̃0, ã0 and Dtã0 on Ωǫ

and Γǫ by using the relevant Poisson equations, as in Section 7.1. We will use the notation Nǫ to refer to the

Dirichlet-to-Neumann operator for Γǫ. Before proceeding to the proof of energy monotonicity, we note that

the above construction gives rise to a flow velocity Vǫ in the parameter ǫ for the family of hypersurfaces Γǫ

by composing ∂ǫηǫν with the inverse of the collar coordinate parameterization x 7→ x+ ηǫ(x)ν(x). We may

harmlessly assume that Vǫ is defined on Ωǫ by harmonically extending it to Ωǫ. We use Dǫ := ∂ǫ + Vǫ · ∇ to

denote the associated material derivative, which will be tangent to the family of hypersurfaces Γǫ.

We also importantly make note of the fact that for every s ∈ R, we have

(8.11) ‖ω̃0‖Hs(Ωǫ) ≤ ‖ω0‖Hs(Ω), ‖ṽ0‖Hs(Ωǫ) ≤ ‖v0‖Hs(Ω).

Therefore, the bounds in (8.3) are retained from the initial data and, moreover, the rotational component of

the energy does not increase.

Now we turn to the energy monotonicity bound (8.8). We will need the following two lemmas.

Lemma 8.4 (Material derivative bounds). The following bound holds uniformly in ǫ:

(8.12) ‖Dǫ∇ṽ0‖Hk−1(Ωǫ) .M 1.

Lemma 8.5 (Variation of the surface energy). Let k be a sufficiently large even integer. Then we have the

following estimate for the ã0 component of the energy:

d

dǫ
‖ã

− 1
2

0 N k−1
ǫ ã0‖

2
L2(Γǫ)

.M −ǫ‖Γǫ‖
2
Hk+1 +OM (1).

Lemma 8.4 will allow us to essentially ignore any contributions to the energy coming from the restriction ṽ0,

while Lemma 8.5 will help in controlling the variation in ǫ of the irrotational components of the energy.

Before proving the above lemmas, let us see how they imply the energy monotonicity bound (8.8). Thanks

to Lemma 8.5 and (8.11), we only need to study the Dta component of the energy. For this, we recall from

the Laplace equation (7.4) that we have

(8.13) ã−1
0 Dtã0 = ã−1

0 nΓǫ
· ∇ṽ0 · ∇p̃0 − ã−1

0 nΓǫ
· ∇∆−1

Ωǫ
(∆ṽ0 · ∇p̃0 + 4tr(∇2p̃0 · ∇ṽ0) + 2tr(∇ṽ0)

3) on Γǫ.
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We apply Dǫ∇HǫN k−2
ǫ to (8.13) and distribute derivatives. We first dispense with the commutator. Using

the standard H
1
2 (Γǫ) → H1(Ωǫ) bound for Hǫ, the H

k− 3
2 (Γǫ) to H

1
2 (Γǫ) bound for N k−2

ǫ from Proposi-

tion 5.30 and the H
1
2 (Γǫ) → H1(Ωǫ) bound for [Dǫ,Hǫ] from (5.39), we have

‖[Dǫ,∇HǫN
k−2
ǫ ](ã−1

0 Dtã0)‖L2(Ωǫ) .M ‖[Dǫ,N
k−2
ǫ ](ã−1

0 Dtã0)‖
H

1
2 (Γǫ)

+ ‖ã−1
0 Dtã0‖

H
k− 3

2 (Γǫ)
.

Then, using the formula (5.43) and the elliptic estimates in Section 5 as well as the bound ‖Vǫ‖Hk−1(Γǫ) .M 1,

it is straightforward to verify the commutator bound

‖[Dǫ,N
k−2
ǫ ]‖

H
k− 3

2 (Γǫ)→H
1
2 (Γǫ)

.M 1.

By elliptic regularity, ‖ã−1
0 Dtã0‖

H
k− 3

2 (Γǫ)
is OM (1). Hence, we obtain

‖[Dǫ,∇HǫN
k−2
ǫ ](ã−1

0 Dtã0)‖L2(Ωǫ) .M 1.

Using that

‖∇HǫN
k−2
ǫ Dǫ(ã

−1
0 Dtã0)‖L2(Ωǫ) .M ‖Dǫ(ã

−1
0 Dtã0)‖

H
k− 3

2 (Γǫ)
,

it remains now to estimate ‖Dǫ(ã
−1
0 Dtã0)‖

H
k− 3

2 (Γǫ)
. For this, we distribute the operator Dǫ onto the various

terms in (8.13). To expedite this process, we collect a few useful bounds. First, using Lemma 8.4, the trace

theorem ensures that we have the bound

‖Dǫ∇ṽ0‖
H

k− 3
2 (Γǫ)

+ ‖Dǫ∇ṽ0‖Hk−1(Ωǫ) .M 1.

Using the identities for [∆−1
Ωǫ
, Dǫ] and DǫnΓǫ

in Section 5.6, the Laplace equation for pǫ, and the fact that

Vǫ is harmonic, we also readily verify the bounds

(8.14) ‖Dǫp̃0‖
H

k+1
2 (Ωǫ)

+ ‖DǫnΓǫ
‖Hk−2(Γǫ) + ‖Dǫã0‖Hk−2(Γǫ) .M 1

and

‖[Dǫ,∇]‖Hk(Ωǫ)→Hk−1(Ωǫ) + ‖DǫnΓǫ
‖
H

k− 3
2 (Γǫ)

+ ‖Dǫã0‖
H

k− 3
2 (Γǫ)

.M 1 + ‖Vǫ‖
H

k− 1
2 (Γǫ)

.

From the above bounds and (8.13), we obtain the estimate

‖Dǫ(ã
−1
0 Dtã0)‖

H
k− 3

2 (Γǫ)
.M 1 + ‖Vǫ‖

H
k− 1

2 (Γǫ)
.

The term ‖Vǫ‖
H

k− 1
2 (Γǫ)

does not contribute an OM (1) error, as it “loses” half a derivative. However, from

the definition and regularization properties of Vǫ, we have

‖Vǫ‖
H

k− 1
2 (Γǫ)

.M 1 + ǫ
1
2 ‖ηǫ‖Hk+1(Γ∗).

Hence, using Proposition 2.3 and Cauchy-Schwarz, we obtain

d

dǫ
‖∇HǫN

k−2
ǫ (ã−1

0 Dtã0)‖
2
L2(Ωǫ)

.M 1 + δ0ǫ‖Γǫ‖
2
Hk+1 ,

where δ0 > 0 is some sufficiently small constant. Using the parabolic gain from Lemma 8.5, we notice that

the latter term on the right-hand side is harmless as long as δ0 = δ0(M) is small enough.

It remains now to establish the two lemmas. We begin with Lemma 8.4, which is quite simple.
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Proof. Since ∂ǫṽ0 = 0, we have

Dǫ∇ṽ0 = Vǫ · ∇∇ṽ0.

Then we use ‖Vǫ‖
H

k− 3
2 (Ωǫ)

.M ǫ and ‖Vǫ‖
H

k− 1
2 (Ωǫ)

.M 1 together with the inductive bound for v0 from

(8.3); namely, ‖v0‖Hk+1(Ω0) ≤ K(M)ǫ−1, to estimate

‖Dǫ∇ṽ0‖Hk−1(Ωǫ) .M ‖Vǫ‖
H

k− 3
2 (Ωǫ)

‖ṽ0‖Hk+1(Ωǫ) + ‖Vǫ‖Hk−1(Ωǫ)‖ṽ0‖Hk(Ωǫ) .M 1.

This completes the proof of Lemma 8.4. �

Finally, we come to establishing Lemma 8.5, which is where the bulk of the work will be. We begin by

establishing the following representation formula for the good variable N k−1
ǫ ã0:

(8.15) N k−1
ǫ ã0 = (−1)mã0∆

m
Γǫ
κǫ +Rǫ,

where κǫ is the mean curvature for Γǫ, 2m = k − 2 and Rǫ is a remainder term satisfying the bounds

(8.16) ‖Rǫ‖
H

1
2 (Γǫ)

+ ǫ
1
2 ‖Rǫ‖H1(Γǫ) + ‖DǫRǫ‖L2(Γǫ) .M 1.

The importance of (8.15) will be clear later. Roughly speaking, (8.15) states that to leading orderN k−1
ǫ ã0 has

a convenient local expression. Such an observation will facilitate the use of local formulas later on, consistent

with our choice of domain regularization. Observe also that in (8.16), we have DǫRǫ = OL2(Γǫ)(1). This

is stronger than the expected bound DǫRǫ = O
H

− 1
2 (Γǫ)

(1). The reason for this improvement is the bound

(8.12) for Dǫ∇ṽ0; this term would have had to have been treated more carefully if we had attempted to

regularize the velocity in this step of the argument.

Proof of (8.15). In the following analysis, Rǫ will generically denote a remainder term satisfying (8.16) which

is allowed to change from line to line. Likewise, R̃ǫ will denote an analogous remainder term but with

(8.17) R̃ǫ = O
H

k− 3
2 (Γǫ)

(1), ǫ
1
2 R̃ǫ = OHk−1(Γǫ)(1), DǫR̃ǫ = OHk−2(Γǫ)(1).

To establish (8.15), we begin by relating Nǫã0 to the mean curvature. Indeed, from ∆Γǫ
p̃0 = 0 and the

formula

∆p̃0|Γǫ
= ∆Γǫ

p̃0 − κǫnΓǫ
· ∇p̃0 +D2p̃0(nΓǫ

, nΓǫ
),

we have

ã0κǫ = −ninj∂i∂j p̃0 +∆p̃0

= −ninj∂i∂j p̃0 − tr(∇ṽ0)
2

= −ninj∂i∂j p̃0 + R̃ǫ,

where in the last line, we used Lemma 8.4 to check the remainder property for DǫR̃ǫ and the inductive

assumption (8.3) and interpolation to control ǫ
1
2 R̃ǫ in H

k−1(Γǫ). We now further expand using the Laplace

equation for p̃0,

−ninj∂i∂j p̃0 = njNǫ(nj ã0) + njnΓǫ
· ∇∆−1

Ωǫ
∂jtr(∇ṽ0)

2

= njNǫ(nj ã0) + R̃ǫ.

Next, we expand

njNǫ(nj ã0) = Nǫã0 + ã0njNǫnj − 2njnΓǫ
· ∇∆−1

Ωǫ
(∇Hǫnj · ∇Hǫã0)

= Nǫã0 + ã0njNǫnj + R̃ǫ

= Nǫã0 + R̃ǫ,
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where in the first equality, we used the Leibniz rule (5.36) for Nǫ. From the second to the third line, we used

the Leibniz rule again, and that Nǫ(njnj) = 0. In summary, what we have so far is the identity

(8.18) Nǫã0 = ã0κǫ + R̃ǫ.

The next step is to obtain the leading order identity,

(8.19) N k−1
ǫ ã0 = ã0N

k−2
ǫ (ã−1

0 Nǫã0) +Rǫ

by applying N k−2
ǫ to Nǫã0 and then commuting ã−1

0 with N k−2
ǫ . Here, Rǫ can be seen to satisfy the required

bounds through the use of the various commutator identities for Dǫ listed in Section 5.6 as well as the Leibniz

rule (5.36), the elliptic estimates in Section 5 for Nǫ and the estimates in (8.14).

Before proceeding further, we recall the formula

(8.20) −(∆Γǫ
+N 2

ǫ )f = κǫNǫf − 2nΓǫ
· ∇(−∆Ωǫ

)−1(∇HǫnΓǫ
· ∇2Hǫf)−NǫnΓǫ

· (NǫfnΓǫ
+∇⊤f)

from [41, Equation A.13]. Also, we recall from (4.23) of [41] the commutator estimate

(8.21) ‖[∆Γǫ
, Dǫ]‖Hs(Γǫ)→Hs−2(Γǫ) .M ‖Vǫ‖

H
k− 1

2 (Ωǫ)
.M 1, 1 ≤ s ≤ k − 1.

Then, given that k − 2 = 2m is even, applying (8.18), (8.19) and iterating (8.20) m times, we have

N k−1
ǫ ã0 = ã0N

k−2
ǫ (ã−1

0 Nǫã0) +Rǫ = (−1)mã0∆
m
Γǫ
(ã−1

0 Nǫã0) +Rǫ = (−1)mã0∆
m
Γǫ
κǫ +Rǫ,

where by straightforward (but slightly tedious) computation we verify that the remainder term Rǫ has the

needed bounds through the use of the various commutator identities for Dǫ listed in Section 5.6 as well as

the above estimates (8.18)-(8.21), the relevant elliptic estimates in Section 5 and (8.14). �

Now, we are ready to establish the differential inequality in Lemma 8.5. For the sake of clarity, let us

begin by assuming that the reference hypersurface is given by {xd = 0} and that Γǫ is literally given by

xd = ηǫ(x1, ..., xd−1). Then the mean curvature and Laplace-Beltrami operator take the form

κǫ = −
∆ηǫ

(1 + |∇ηǫ|2)
1
2

+
∂iηǫ∂jηǫ∂i∂jηǫ

(1 + |∇ηǫ|2)
3
2

,

and

(8.22) ∆Γǫ
f =

1√
1 + |∇ηǫ|2

∂i(g
ij
ǫ

√
1 + |∇ηǫ|2∂jf),

where (gijǫ ) = (δij+∂iηǫ∂jηǫ)
−1. Observe that gijǫ and∇ηǫ are one derivative more regular than κǫ. Therefore,

by making use of the identity ∂ǫηǫ = 2ǫ∆Γ∗ηǫ and the regularization bound (8.10), we can differentiate in ǫ

and commute 2ǫ∆Γ∗ with these coefficients to obtain,

(Dǫ(N
k−1
ǫ ã0))∗ = 2(−1)mǫ∆Γ∗(ã0∆

m
Γǫ
κǫ)∗ +OL2(Γ∗)(1),(8.23)

where we define f∗(x) := f(x+ ηǫ(x)ν(x)) for a function f defined on Γǫ. Moreover, by an exercise in local

coordinates, the reader may check that (8.23), as written, is valid for general reference hypersurfaces Γ∗.

Now, using (5.41), the bounds for Rǫ, and Cauchy-Schwarz, it follows that

d

dǫ
‖ã

− 1
2

0 N k−1
ǫ ã0‖

2
L2(Γǫ)

.M 1− ǫ‖|D|Γ∗(∆
m
Γǫ
κǫ)∗‖

2
L2(Γ∗)

,

where |D|Γ∗ = (−∆Γ∗)
1
2 . To conclude, we now only need to show the coercivity type bound

‖ηǫ‖Hk+1(Γ∗) .M 1 + ‖|D|Γ∗(∆
m
Γǫ
κǫ)∗‖L2(Γ∗).
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For this, we begin with Proposition 5.22 which yields

‖ηǫ‖Hk+1(Γ∗) .M 1 + ‖κǫ‖Hk−1(Γǫ).

Then, using (8.22) and the fact that 2m = k− 2 (this being relevant for ensuring domain dependent implicit

constants are at most OM (1) in size), one can easily verify the ellipticity bound

‖κǫ‖Hk−1(Γǫ) .M 1 + ‖∆m
Γǫ
κǫ‖H1(Γǫ) .M 1 + ‖|D|Γ∗(∆

m
Γǫ
κ)∗‖L2(Γ∗).

This concludes the proof. �

8.3. Step 2: Velocity regularization. Now, we aim to regularize the velocity ṽ0 on the ǫ−1 scale, which

will help us to improve the regularization constant in (8.3). This will be needed to compensate for the

losses in this constant in the upcoming transport step of the argument. Thanks to the previous step, we

are reduced to the situation of regularizing on a fixed domain which has boundary regularized at the ǫ−1

scale. To perform this step of the regularization, we decompose the velocity ṽ0 into a rotational component

which is tangent to the boundary and an irrotational component. Roughly speaking, we will then regularize

the irrotational component of ṽ0 and leave the rotational component alone. We will then reconstruct the

regularized velocity using the regularized irrotational part and the original (not regularized) rotational part

of ṽ0. The precise procedure for doing this will come with some slight technical subtleties due to the fact

that the normal to the surface is half a derivative less regular than the trace of the velocity on the boundary.

We will outline these nuances in more detail shortly. Heuristically, the reason it is unnecessary to regularize

the rotational part of ṽ0 in this construction is because the vorticity will not lose derivatives in the transport

step of our argument later. In other words, the vorticity bound in (8.3) is expected to only worsen by an

OM (1) error when measured in Hk and an OM (ǫ−1) error when measured in Hk+1, which is acceptable.

Proposition 8.6. Given the pair (ṽ0,Γǫ) from the previous step, there exists a regularization ṽ0 7→ vǫ defined

on Ωǫ which satisfies:

(i) (Energy monotonicity).

Ek(vǫ,Γǫ) ≤ (1 + C(M)ǫ)Ek(ṽ0,Γǫ).

(ii) (Good pointwise approximation).

(8.24)





vǫ = ṽ0 +OC1(ǫ2),

∇ · vǫ = 0.

(iii) (Regularization bounds). For each n = 1, 2 and K(M) large enough, there holds

(8.25) ‖vǫ‖Hk+n(Ωǫ) ≤
1

4
K(M)ǫ−n.

Remark 8.7. The bound in (8.25) with n = 1 ensures that the constant in (8.3) is improved at this stage.

The Hk+2 bound will be needed to close the bootstrap in the final Euler plus transport step of the iteration

in the next section because this step loses derivatives for the velocity.

Proof. We begin by recalling the rotational/irrotational decomposition of ṽ0 from Appendix A of [41]:

ṽ0 := ṽrot0 + ṽir0 ,

where for a divergence free function v, we have vir := ∇HǫN−1
ǫ (v · nΓǫ

). Näıvely, we would like to directly

regularize the irrotational part of ṽ0. However, this does not quite work because the normal nΓǫ
is half a

derivative less regular than the trace of ṽ0 on Γǫ. To get around this, we will regularize the irrotational
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part of a suitable high frequency component of ṽ0. More precisely, let us consider a subregularization v−

of ṽ0, defined by v− := Ψ
≤ǫ−

1
2
ṽ0, which lives on an ǫ

1
2 enlargement of Ωǫ. We then define w := ṽ0 − v−.

Loosely speaking, we think of w as the portion of ṽ0 with frequency greater than ǫ−
1
2 . In contrast to the full

irrotational part of ṽ0, it is safe to regularize the irrotational part of w. The heuristic reason for this is that

at leading order the term w · nΓǫ
can be interpreted as a high-low paraproduct. That is, the contribution of

the portion where nΓǫ
is at comparable or higher frequency compared to w is lower order as there is still a

nontrivial high frequency component of w to compensate for the 1
2 derivative discrepancy between the trace

of w and nΓǫ
.

For the irrotational part of w, the regularization we choose has to respect the energy monotonicity bound. We

will see below that the spectral multiplier P≤ǫ−1(Nǫ) := 1[−ǫ−1,ǫ−1](Nǫ) is very convenient for this purpose.

We therefore define the irrotational component of our regularization vǫ of ṽ0 by removing the high frequency

part of w · nΓǫ
as follows:

virǫ := ṽir0 −∇HǫN
−1
ǫ P>ǫ−1(w · nΓǫ

)

= vir− +∇HǫN
−1
ǫ P≤ǫ−1(w · nΓǫ

).

For simplicity, let us write

wirǫ := ∇HǫN
−1
ǫ P≤ǫ−1(w · nΓǫ

).

We define the full regularization vǫ of ṽ0 by

vǫ := ṽrot0 + virǫ .

If k is large enough, the combination of Sobolev embedding, ellipticity of N and spectral calculus allows us

to easily establish the pointwise approximation property (8.24). Next, we establish the regularization bound

(8.25) for vǫ. We begin by writing

vǫ = v− + wirǫ + wrot,

where wrot is the rotational part of w. We then estimate piece by piece. It is first of all clear that the

corresponding bound holds for v−. So, we turn to estimating wirǫ . For this, we note the following preliminary

bound for N−1
ǫ on the space Ḣs(Γǫ) := {f ∈ Hs(Γǫ) :

∫
Γǫ
f = 0} from Proposition A.5 in [41]:

(8.26) ‖N−1
ǫ f‖Ḣs(Γǫ)

.M ‖f‖Hs−1(Γǫ), 0 ≤ s ≤ 1.

From this and the functional calculus for Nǫ, we deduce in particular the low regularity bound

(8.27) ‖P≤ǫ−1N−1
ǫ (w · nΓǫ

)‖L2(Γǫ) .M ‖w · nΓǫ
‖H−1(Γǫ).

This will be useful for handling the low frequency errors in the estimate for wirǫ . Next we check that (8.26)

and (8.27), in conjunction with Proposition 5.9, Proposition 5.21, Proposition 5.26 and the regularization

bounds for nΓǫ
and w, yield

‖wirǫ ‖Hk+n(Ωǫ) .M,n ‖Γǫ‖
H

k+1
2
+n‖w · nΓǫ

‖Hk−2(Γǫ) + ‖P≤ǫ−1(w · nΓǫ
)‖
H

k− 1
2
+n(Γǫ)

.M ǫ−n,

where the implicit constant can be taken to be much smaller than K(M) since K(M) ≫ M . Note that in

the above estimate, we used the paraproduct structure of w · nΓǫ
. More specifically, in the case when k − 1

2

derivatives fall on nΓǫ
, we compensated the half derivative loss by an ǫ

1
2 gain from w.
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Finally, we move on to showing the regularization bound for wrot. Here, we use Proposition 5.27 to obtain

‖wrot‖Hk+n(Ωǫ) .M ‖wrot‖L2(Ωǫ) + ‖∇× w‖Hk+n−1(Ωǫ) + ‖Γǫ‖
H

k+n− 1
2
+ ‖∇⊤wrot · nΓǫ

‖
H

k+n− 3
2 (Γǫ)

.M,K′(M) ǫ
−n + ‖wrot‖L2(Ωǫ) + ‖∇⊤wrot · nΓǫ

‖
H

k+n− 3
2 (Γǫ)

,

where we used (8.3) for ω̃0. Again, the implicit constant can be taken to be much smaller than K(M) if

K ′(M) in (8.3) is small enough compared to K(M). To estimate ‖wrot‖L2(Ωǫ), we simply use (8.26), the

identity wrot = w − wir and the H
1
2 (Γǫ) → H1(Ωǫ) bound for Hǫ to crudely estimate

(8.28) ‖wrot‖L2(Ωǫ) .M ‖w‖H1(Ωǫ).

Then, using

∇⊤wrot · nΓǫ
= −wrot · ∇⊤nΓǫ

,

Proposition 5.9, Proposition 5.11 and the regularization bounds for Γǫ, we have (if k is large enough)

‖wrot‖Hk+n(Ωǫ) .M ǫ−n + ‖wrot‖Hk−1+n(Ωǫ) + ǫ−
1
2−n‖wrot‖Hk−2(Ωǫ),

which implies by interpolation and (8.28) that

‖wrot‖Hk+n(Ωǫ) .M,n ǫ
−n + ǫ−

1
2−n‖wrot‖Hk−2(Ωǫ).

From Proposition 5.27, the inequality (8.28) and the fact that w is localized to frequency ≥ ǫ−
1
2 , we easily

obtain

‖wrot‖Hk−2(Ωǫ) .M ‖w‖Hk−2(Ωǫ) .M ǫ.

Therefore, we have

‖wrot‖Hk+n(Ωǫ) .M,n ǫ
−n,

with implicit constant much smaller than K(M). This yields the desired regularization bounds for vǫ.

Next, we turn to the energy monotonicity. The domain is fixed in this step, so it is advantageous to compare

the difference between Ek(vǫ,Γǫ) and Ek(ṽ0,Γǫ) directly. It will also be convenient to write the first term in

Ek(v,Γ) as a surface integral:

‖∇HN k−2(a−1Dta)‖
2
L2(Ω) = ‖N k− 3

2 (a−1Dta)‖
2
L2(Γ),

using integration by parts and the functional calculus for N . Moreover, since the vorticity ωǫ is the same

as ω̃0, we may restrict our attention to the two surface components of the energy in this step of the argument.

We begin with a simple algebraic identity for the aǫ component of the surface energy:
∫

Γǫ

a−1
ǫ |N k−1

ǫ aǫ|
2 dS =

∫

Γǫ

ã−1
0 |N k−1

ǫ ã0|
2 dS + 2

∫

Γǫ

a−1
ǫ N k−1

ǫ aǫN
k−1
ǫ (aǫ − ã0) dS

− ‖a
− 1

2
ǫ N k−1

ǫ (aǫ − ã0)‖
2
L2(Γǫ)

+OM (ǫ).

To derive an analogous relation for the other portion of the surface energy, we note that from the integer

bounds for N in Section 5 and the identity ‖N k− 3
2 f‖L2(Γ) = ‖∇HN k−2f‖L2(Ω), we have the estimate

‖N
k− 3

2
ǫ ‖

H
k− 3

2 (Γǫ)→L2(Γǫ)
.M 1. On the other hand, we have the elliptic regularity estimate

‖ã0 − aǫ‖
H

k− 3
2 (Γǫ)

.M ‖p̃0 − pǫ‖Hk(Ωǫ) .M ‖ṽ0 − vǫ‖Hk−1(Ωǫ) .M ǫ.
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Together, these imply that
∫

Γǫ

|N
k− 3

2
ǫ (a−1

ǫ Dtaǫ)|
2 dS =

∫

Γǫ

|N
k− 3

2
ǫ (ã−1

0 Dtã0)|
2 dS + 2

∫

Γǫ

N
k− 3

2
ǫ (a−1

ǫ Dtaǫ)N
k− 3

2
ǫ (a−1

ǫ (Dtaǫ −Dtã0)) dS

− ‖N
k− 3

2
ǫ (a−1

ǫ (Dtaǫ −Dtã0))‖
2
L2(Γǫ)

+OM (ǫ).

Motivated by the identities above, let us define the “energy” corresponding to ṽ0 − vǫ by

Ek(ṽ0 − vǫ) := ‖N
k− 3

2
ǫ (a−1

ǫ (Dtã0 −Dtaǫ))‖
2
L2(Γǫ)

+ ‖a
− 1

2
ǫ N k−1

ǫ (ã0 − aǫ)‖
2
L2(Γǫ)

.

In light of the above identities, it suffices to show that

2

∫

Γǫ

N
k− 3

2
ǫ (a−1

ǫ Dtaǫ)N
k− 3

2
ǫ (a−1

ǫ (Dtaǫ −Dtã0)) dS + 2

∫

Γǫ

a−1
ǫ N k−1

ǫ aǫN
k−1
ǫ (aǫ − ã0) dS

≤ C(M)ǫ+ Ek(ṽ0 − vǫ).

Our starting point is to observe the leading order relation given in the following lemma.

Lemma 8.8. We have the following relation between Dtaǫ −Dtã0 and (vǫ − ṽ0) · nΓǫ
:

(8.29) a−1
ǫ (Dtaǫ −Dtã0) = −Nǫ((vǫ − ṽ0) · nΓǫ

) +O
H

k− 3
2 (Γǫ)

(ǫ).

Proof. We begin by noting the bound

(8.30) ‖ṽ0 − vǫ‖Hk−1(Ωǫ) .M ǫ

and the elliptic regularity estimate

‖p̃0 − pǫ‖Hk(Ωǫ) .M ‖ṽ0 − vǫ‖Hk−1(Ωǫ) .M ǫ.

Using the equation for Dtp from (7.4) we may therefore write

Dtaǫ −Dtã0 = nΓǫ
· ∇(vǫ − ṽ0) · ∇pǫ − nΓǫ

· ∇∆−1(∆(vǫ − ṽ0) · ∇pǫ) +O
H

k− 3
2 (Γǫ)

(ǫ).

Then, using the standard identity Nf|Γ = n · ∇f − n · ∇∆−1∆f and commuting nΓǫ
· ∇ in the first term

and ∆ in the second term above, we can verify, from (8.30),

Dtaǫ −Dtã0 = −Nǫ(aǫ(vǫ − ṽ0) · nΓǫ
) +O

H
k− 3

2 (Γǫ)
(ǫ).

The conclusion then follows by commuting Nǫ with aǫ using the Leibniz rule for Nǫ and (8.30). In the

case when everything falls on aǫ, we also compensate with the surface regularization bound (8.10) and the

associated improvement in the bound for ṽ0 − vǫ when measured in lower regularity Sobolev norms. �

We now turn to the aǫ component of the energy, which is straightforward. Indeed, by elliptic regularity,

2

∫

Γǫ

a−1
ǫ N k−1

ǫ aǫN
k−1
ǫ (aǫ − ã0) dS .M ‖aǫ − ã0‖Hk−1(Γǫ) .M ‖vǫ − ṽ0‖

H
k− 1

2 (Ωǫ)
.

To estimate vǫ − ṽ0, we observe the identity vǫ − ṽ0 = ∇HǫN−1
ǫ P>ǫ−1((vǫ − ṽ0) · nΓǫ

), which follows from

the idempotence P>ǫ−1 = P2
>ǫ−1 . Using this, Lemma 8.8 and ellipticity of Nǫ, we have

‖vǫ − ṽ0‖
H

k− 1
2 (Ωǫ)

.M ǫ
1
2 ‖(vǫ − ṽ0) · nΓǫ

‖
H

k− 1
2 (Γǫ)

.M ǫ
1
2 (Ek(ṽ0 − vǫ))

1
2 + C(M)ǫ,

which suffices by Cauchy-Schwarz.
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Next, we move to the more difficult portion of the energy which involves Dtaǫ. We start by combining

Lemma 8.8 with (vǫ − ṽ0) · nΓǫ
= −P>ǫ−1(w · nΓǫ

) to obtain the relation
∫

Γǫ

N
k− 3

2
ǫ (a−1

ǫ Dtaǫ)N
k− 3

2
ǫ (a−1

ǫ (Dtaǫ −Dtã0)) dS =

∫

Γǫ

N
k− 3

2
ǫ (a−1

ǫ Dtaǫ)N
k− 1

2
ǫ P>ǫ−1(w · nΓǫ

) dS +OM (ǫ).

Define p− and Dta− in the usual way using the relevant Laplace equations. We split the above integral into

the two components,

∫

Γǫ

N
k− 3

2
ǫ (a−1

ǫ Dtaǫ)N
k− 1

2
ǫ P>ǫ−1(w · nΓǫ

) dS =

∫

Γǫ

N
k− 3

2
ǫ (a−1

ǫ Dta−)N
k− 1

2
ǫ P>ǫ−1(w · nΓǫ

) dS

+

∫

Γǫ

N
k− 3

2
ǫ (a−1

ǫ (Dtaǫ −Dta−))N
k− 1

2
ǫ P>ǫ−1(w · nΓǫ

) dS.

(8.31)

We begin by studying the first term in (8.31). By self-adjointness of Nǫ, we have
∫

Γǫ

N
k− 3

2
ǫ (a−1

ǫ Dta−)N
k− 1

2
ǫ P>ǫ−1(w · nΓǫ

) dS =

∫

Γǫ

N
k− 1

2
ǫ (a−1

ǫ Dta−)N
k− 3

2
ǫ P>ǫ−1(w · nΓǫ

) dS

.M ǫ‖a−1
ǫ Dta−‖

H
k− 1

2 (Γǫ)
‖P>ǫ−1N

k− 1
2

ǫ (w · nΓǫ
)‖L2(Γǫ) +OM (ǫ),

where we used the multiplier P>ǫ−1 to recover a power of Nǫ in the high frequency term. Next, we show

that ‖a−1
ǫ Dta−‖

H
k− 1

2 (Γǫ)
.M ǫ−

1
2 . By Sobolev product estimates and the fact that ‖a−1

ǫ ‖
H

k− 1
2 (Γǫ)

.M ǫ−
1
2 ,

it suffices to show the same estimate for ‖Dta−‖
H

k− 1
2 (Γǫ)

. To see this, recall that, by definition,

Dta− = nΓǫ
· ∇v− · ∇p− − nΓǫ

· ∇Dtp−.

Note then that by Proposition 5.11 we have the estimate ‖∇v−‖
H

k− 1
2 (Γǫ)

.M ǫ−
1
2 , since v− is regular-

ized at the ǫ−
1
2 scale. Moreover, as nΓǫ

= OHk−1(1) and Γǫ is regularized at the ǫ−1 scale, we have

‖nΓǫ
‖
H

k− 1
2 (Γǫ)

.M ǫ−
1
2 . By Proposition 5.11 and Proposition 5.19, we also have ‖∇p−‖

H
k− 1

2 (Γǫ)
.M ǫ−

1
2 .

Therefore, by Proposition 5.9, we have ‖nΓǫ
· ∇v− · ∇p−‖

H
k− 1

2 (Γǫ)
.M ǫ−

1
2 .

Using Proposition 5.19 and the fact that the pressure terms in the Laplace equation for Dtp− always ap-

pear to one half derivative lower than top order, a similar analysis yields ‖nΓǫ
· ∇Dtp−‖

H
k− 1

2 (Γǫ)
.M ǫ−

1
2 .

Therefore, we obtain from Lemma 8.8 the bound,
∫

Γǫ

N
k− 3

2
ǫ (a−1

ǫ Dta−)N
k− 1

2
ǫ P>ǫ−1(w · nΓǫ

) dS .M ǫ
1
2 ‖P>ǫ−1N

k− 1
2

ǫ (w · nΓǫ
)‖L2(Γǫ) +OM (ǫ)

.M ǫ
1
2 (Ek(ṽ0 − vǫ))

1
2 +OM (ǫ),

as desired. It remains to deal with the other term in (8.31). For this, we need to expand Dtaǫ−Dta−. As a

first reduction, we note that we can replace every appearance of p− with pǫ in the definition of Dta− if we

allow for OM (ǫ
1
2 ) errors. This is because ‖pǫ − p−‖Hk(Ωǫ) .M ‖vǫ − v−‖Hk−1(Ωǫ) .M ǫ

1
2 . Hence, we have

Dta− = nΓǫ
· ∇v− · ∇pǫ − nΓǫ

· ∇∆−1
Ωǫ

(4tr(∇2pǫ · ∇v−) + 2tr(∇v−)
3 +∆v− · ∇pǫ) +O

H
k− 3

2 (Γǫ)
(ǫ

1
2 ).

We may also replace the lower order terms involving v− by vǫ. Arguing similarly to Lemma 8.8, we then

obtain the key identity

Dta− −Dtaǫ = aǫNǫ((vǫ − v−) · nΓǫ
) +O

H
k− 3

2 (Γǫ)
(ǫ

1
2 )

= aǫP≤ǫ−1Nǫ(w · nΓǫ
) +O

H
k− 3

2 (Γǫ)
(ǫ

1
2 ).
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Hence, we have
∫

Γǫ

N
k− 3

2
ǫ (a−1

ǫ (Dtaǫ −Dta−))N
k− 1

2
ǫ P>ǫ−1(w · nΓǫ

) dS .M −

∫

Γǫ

N
k− 1

2
ǫ P≤ǫ−1(w · nΓǫ

)N
k− 1

2
ǫ P>ǫ−1(w · nΓǫ

) dS

+ ǫ
1
2 ‖N

k− 1
2

ǫ P>ǫ−1(w · nΓǫ
)‖L2(Γǫ).

The first term on the right-hand side above vanishes by orthogonality (this term is the reason we reweighted

the energy in the first place) and the latter term is controlled by ǫ
1
2 (Ek(ṽ0 − vǫ))

1
2 . Therefore, we obtain the

desired bound for the Dtaǫ portion of the energy. This completes the proof of Proposition 8.6. �

8.4. Step 3: Euler plus transport iteration. In this subsection, we construct the iterate (v1,Γ1) from

the regularized data (vǫ,Γǫ). Intuitively, what remains to be done is to carry out something akin to the

Euler iteration

v1 := vǫ − ǫ(vǫ · ∇vǫ +∇pǫ + ged)

and then the domain transport

x1(x) := x+ ǫvǫ(x).

Unfortunately, performed individually, these steps lose a full derivative in each iteration. Therefore, it is

important that these two steps be carried out together. This will reduce the derivative loss and allow us

to exploit a discrete version of the energy cancellation seen in the energy estimates. We will then use the

regularization bounds from the previous subsections to control any remaining errors in the iteration. To

carry out this process, we have the following proposition.

Proposition 8.9. Given (vǫ,Γǫ) as in the previous step, there exists an iteration (vǫ,Γǫ) 7→ (v1,Γ1) such

that the following properties hold:

(i) (Approximate solution).




v1 = vǫ − ǫ(vǫ · ∇vǫ +∇pǫ + ged) +OC1(ǫ2) on Ω1 ∩ Ωǫ,

∇ · v1 = 0 on Ω1,

Ω1 = (I + ǫvǫ)Ωǫ.

(ii) (Energy monotonicity bound).

Ek(v1,Γ1) ≤ (1 + C(M)ǫ)Ek(vǫ,Γǫ).

Moreover, v1 and ω1 satisfy the inductive bounds (8.6).

We define the change of coordinates x1(x) := x+ ǫvǫ(x) and the iterated domain Ω1 by

Ω1 := (I + ǫvǫ)Ωǫ.

To define v1, we proceed in two steps. First, we define

(8.32) ṽ1(x1) := vǫ − ǫ(∇pǫ + ged).

We note that ṽ1 is not divergence free, so we define the full iterate v1 by correcting the divergence of ṽ1 by

a gradient potential:

v1 := ṽ1 −∇∆−1
Ω1

(∇ · ṽ1).

At this point, we can verify the inductive bound (8.6) for v1 and ω1. We start with v1. We recall that we

have to show that

‖v1‖Hk+1(Ω1) ≤ K(M)ǫ−1.
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As a first step, using the regularization bound (8.25) for vǫ from the previous section, we have from the

definition of ṽ1, the regularization bounds (8.10) for Γǫ and the balanced elliptic estimate Proposition 5.19,

(8.33) ‖ṽ1‖Hk+n(Ω1) ≤
1

3
K(M)ǫ−n,

for n = 0, 1, 2. Next, we aim to control the error between v1 and ṽ1 in Hk(Ω1) and Hk+1(Ω1) (but not

Hk+2(Ω1)). We have for n = 0, 1 from the balanced elliptic estimate Proposition 5.19,

‖v1 − ṽ1‖Hk+n(Ω1) .M ‖Γ1‖
H

k+1
2
+n‖∇ · ṽ1‖Hk−2(Ω1) + ‖∇ · ṽ1‖Hk−1+n(Ω1)

.M ǫ−
1
2−n‖∇ · ṽ1‖Hk−2(Ω1) + ‖∇ · ṽ1‖Hk−1+n(Ω1).

Above, we used the Hk+1 and Hk+2 (depending on if n is 0 or 1) regularization bounds for vǫ, Moser

estimates, the bounds for Γǫ and the relation Γ1 = (I + ǫvǫ)(Γǫ) to control ‖Γ1‖
H

k+1
2
+n .M ǫ−

1
2−n. By

using the definition of ṽ1 and the regularization bounds for vǫ, it is straightforward to see that the divergence,

∇·ṽ1, contributes an error of size OHk−1+n(Ω1)(ǫ
3
2−n) and alsoOHk−2(Ω1)(ǫ

2). Note that for this computation,

one must use the cancellation between the velocity and the pressure in (8.32) in order to see the desired

gain. Therefore, we have

‖∇∆−1
Ω1

(∇ · ṽ1)‖Hk+n(Ω1) = ‖v1 − ṽ1‖Hk+n(Ω1) .M ǫ
3
2−n.

From this and (8.33), we conclude the inductive bound

‖v1‖Hk+1(Ω1) ≤ K(M)ǫ−1,

and the leading order expansion for v1(x1) in H
k(Ωǫ),

v1(x1) = vǫ − ǫ(∇pǫ + ged) +OHk(Ωǫ)(ǫ
3
2 ).

If k is large enough, then the leading order expansion (8.4) with OC1(ǫ2) error can be seen by slightly

modifying the above argument. Now, we verify the inductive bound ‖ω1‖Hk+n(Ω1) ≤ ǫ−1−n(K ′(M)+ǫC(M))

for n = 0, 1. It suffices to establish this for ω̃1 since v1 and ṽ1 agree up to a gradient. Taking curl in the

definition of ṽ1 and using that ωǫ = ω̃0, we have

(8.34) ‖∇× (ṽ1(x1))‖Hk+n(Ωǫ) ≤ ‖ω̃0‖Hk+n(Ωǫ) ≤ K ′(M)ǫ−1−n.

By chain rule, using (8.33) and the regularization bounds for vǫ, we have

‖ω̃1(x1)‖Hk+n(Ωǫ) ≤ ‖∇× (ṽ1(x1))‖Hk+n(Ωǫ) + C(M)ǫ−n,

which by a change of variables and (8.34) yields

‖ω̃1‖Hk+n(Ω1) ≤ ǫ−1−n(K ′(M) + ǫC(M)),

as desired. Note that in the above two lines, we treated C(M) as an arbitrary constant, and relabelled it

from line to line. Importantly, we did not do this for K(M) and K ′(M).

Next, we work towards establishing the energy monotonicity bound for the transport part of the argument.

As a first step, we aim to relate the good variables associated to the iterate v1 to the good variables associated

to vǫ at the regularity level of the energy. We have the following lemma.

Lemma 8.10 (Relations between the good variables). The following relations hold:

(i) (Relation for ω1).

ω1(x1) = ωǫ +OHk−1(Ωǫ)(ǫ).
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(ii) (Relation for p1).

(8.35) p1(x1)− pǫ − ǫDtpǫ = O
H

k+1
2 (Ωǫ)

(ǫ).

(iii) (Relation for a1).

(8.36) a1(x1) = aǫ + ǫDtaǫ +OHk−1(Γǫ)(ǫ).

(iv) (Relation for Dta1).

Dta1(x1) = Dtaǫ − ǫaǫNǫaǫ +O
H

k− 3
2 (Γǫ)

(ǫ).

Proof. The relation for ω1 is immediate. Next, we move to the relations for p1 and a1. By the chain rule

and the Laplace equation (7.4) for Dtpǫ, we have

∆(p1(x1)) = (∆p1)(x1) + ǫ∆vǫ · (∇p1)(x1) + 2ǫ∇vǫ · (∇
2p1)(x1) +O

H
k− 3

2 (Ωǫ)
(ǫ)

= ∆pǫ + ǫ∆Dtpǫ + ǫ∆vǫ · ((∇p1)(x1)−∇pǫ) +O
H

k− 3
2 (Ωǫ)

(ǫ)

= ∆pǫ + ǫ∆Dtpǫ +O
H

k− 3
2 (Ωǫ)

(ǫ),

where in the last line, we controlled ǫ∆vǫ · ((∇p1)(x1) − ∇pǫ) = O
H

k− 3
2 (Ωǫ)

(ǫ) by using the regularization

bounds for vǫ as well as the error bound (∇p1)(x1) − ∇pǫ = OL∞(Ωǫ)(ǫ), which is gotten by performing

an Hk(Ωǫ) elliptic estimate in the second line, using the fact that p1(x1) − pǫ vanishes on Γǫ and that

each of the source terms can be estimated directly in Hk−2(Ωǫ) (but not in Hk− 3
2 (Ωǫ)). Therefore, since

p1(x1)− pǫ − ǫDtpǫ vanishes on Γǫ, we may now do a Hk+ 1
2 (Ωǫ) elliptic estimate to obtain the finer bound,

(8.37) p1(x1)− pǫ − ǫDtpǫ = O
H

k+1
2 (Ωǫ)

(ǫ),

which gives (8.35). We also deduce from this that

(∇p1)(x1) = ∇pǫ + ǫ∇Dtpǫ − ǫ∇vǫ · (∇p1)(x1) +O
H

k− 1
2 (Ωǫ)

(ǫ)

= ∇pǫ + ǫDt∇pǫ +O
H

k− 1
2 (Ωǫ)

(ǫ).

From this we see that

a1(x1) = aǫ + ǫDtaǫ − (nΓ1(x1)− nΓǫ
) · (∇p1)(x1) +OHk−1(Γǫ)(ǫ)

= aǫ + ǫDtaǫ +OHk−1(Γǫ)(ǫ),

where in the last line we used

(nΓ1(x1)−nΓǫ
) · (∇p1)(x1) = −a1(x1)(nΓ1(x1)−nΓǫ

) ·nΓ1(x1) = −a1(x1)
1

2
|nΓ1(x1)−nΓǫ

|2 = OHk−1(Γǫ)(ǫ).

This gives the relation (8.36).

Next, we prove the relation for Dta1. First, we see that

−(Dt∇p1)(x1) +Dt∇pǫ = ((∇v1 · ∇p1)(x1)−∇vǫ · ∇pǫ)− ((∇Dtp1)(x1)−∇Dtpǫ)

= ((∇v1)(x1)−∇vǫ) · ∇pǫ − ((∇Dtp1)(x1)−∇Dtpǫ) +OHk−1(Ωǫ)(ǫ).
(8.38)

To control the second term on the right-hand side above, we write out the Laplace equation for Dtp1(x1):

∆(Dtp1(x1)) = (∆Dtp1)(x1) +OHk−2(Ωǫ)(ǫ).

By a similar analysis to the proof of (8.36) and the relation

(∆v1)(x1) = ∆(v1(x1)) +OHk−2(Ωǫ)(ǫ) = ∆vǫ − ǫ∇∆pǫ +OHk−2(Ωǫ)(ǫ) = ∆vǫ +OHk−2(Ωǫ)(ǫ),
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we obtain

(∆Dtp1)(x1) = ∆Dtpǫ + (∆v1 · ∇p1)(x1)−∆vǫ · ∇pǫ + 4tr(∇v1 · ∇
2p1)(x1)− 4tr∇vǫ · ∇

2pǫ +OHk−2(Ωǫ)(ǫ)

= ∆Dtpǫ + 4tr
(
∇vǫ · ((∇

2p1)(x1)−∇2pǫ)
)
+OHk−2(Ωǫ)(ǫ)

= ∆Dtpǫ +OHk−2(Ωǫ)(ǫ),

where in the last line, we used (8.37) and that ǫDtpǫ = OHk(Ωǫ)(ǫ). Combining the above with (8.38), one

obtains by elliptic regularity,

−Dt∇p1(x1) +Dt∇pǫ = ((∇v1)(x1)−∇vǫ) · ∇pǫ +OHk−1(Ωǫ)(ǫ).

Then, noting from (8.36) that

(Dt∇p1)(x1) · (nΓ1(x1)− nΓǫ
) = (Dt∇p1)(x1) · (a

−1
ǫ ∇pǫ − (a−1

1 ∇p1)(x1)) = O
H

k− 3
2 (Γǫ)

(ǫ)

and using the fact that ∆pǫ is lower order, we obtain

Dta1(x1)−Dtaǫ = −aǫnΓǫ
· ∇(v1(x1)− vǫ) · nΓǫ

− (Dt∇p1)(x1) · (nΓ1(x1)− nΓǫ
) +O

H
k− 3

2 (Γǫ)
(ǫ)

= ǫaǫnΓǫ
· ∇∇pǫ · nΓǫ

+O
H

k− 3
2 (Γǫ)

(ǫ)

= ǫaǫNǫ∇pǫ · nΓǫ
+O

H
k− 3

2 (Γǫ)
(ǫ).

Finally, noting that NǫnΓǫ
· nΓǫ

is lower order, we have, thanks to the Leibniz rule for Nǫ,

ǫaǫNǫ∇pǫ · nΓǫ
= −ǫaǫNǫ(nΓǫ

aǫ) · nΓǫ
= −ǫaǫNǫaǫ +O

H
k− 3

2 (Γǫ)
(ǫ).

Therefore, we have the desired relation for Dta1. This completes the proof of the lemma. �

Energy monotonicity. To finish the proof of Proposition 8.9, it remains to establish energy monotonicity.

The following lemma will allow us to more easily work with the relations in Lemma 8.10.

Lemma 8.11. Define the “pulled-back” energy Ek∗ (v1,Γ1) by

Ek∗ (v1,Γ1) := 1 + ‖N
k− 3

2
ǫ (a−1

1 (x1)Dta1(x1))‖
2
L2(Γǫ)

+ ‖a
− 1

2
1 (x1)N

k−1
ǫ (a1(x1))‖

2
L2(Γǫ)

+ ‖ω1(x1)‖
2
Hk−1(Ωǫ)

+ ‖v1(x1)‖
2
L2(Ωǫ)

.

Then we have the relation

Ek(v1,Γ1) ≤ Ek∗ (v1,Γ1) +OM (ǫ).

Before proving the above lemma, we show how it easily implies the desired energy monotonicity bound. In

light of Lemma 8.11, it suffices to establish the bound

Ek∗ (v1,Γ1) ≤ (1 + C(M)ǫ)Ek(vǫ,Γǫ).

The monotonicity bound for the vorticity is immediate from Lemma 8.10. For the surface components of the

energy, we first use Lemma 8.10, the fact that ‖N
k− 3

2
ǫ ‖

H
k− 3

2 (Γǫ)→L2(Γǫ)
.M 1 and the regularization bounds

for Γǫ and vǫ to obtain
∫

Γǫ

|N
k− 3

2
ǫ (a−1

1 (x1)Dta1(x1))|
2 dS −

∫

Γǫ

|N
k− 3

2
ǫ (a−1

ǫ Dtaǫ)|
2 dS

= 2

∫

Γǫ

N
k− 3

2
ǫ (a−1

ǫ Dtaǫ)N
k− 3

2
ǫ (a−1

ǫ ((Dta1)(x1)−Dtaǫ)) dS +OM (ǫ)

= −2ǫ

∫

Γǫ

a−1
ǫ N k−1

ǫ DtaǫN
k−1
ǫ aǫ dS +OM (ǫ),

(8.39)
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where in the last line, we used the commutator estimate ‖[N k−1
ǫ , a−1

ǫ ]Dtaǫ‖L2(Γǫ) .M 1 to shift a factor of

N
1
2
ǫ onto N

k− 3
2

ǫ Dtaǫ. We similarly observe the leading order relation for the other component of the energy

by using (8.36) to obtain,
∫

Γǫ

a−1
1 (x1)|N

k−1
ǫ (a1(x1))|

2 dS −

∫

Γǫ

a−1
ǫ |N k−1

ǫ aǫ|
2 dS = 2ǫ

∫

Γǫ

a−1
ǫ N k−1

ǫ DtaǫN
k−1
ǫ aǫ dS +OM (ǫ).

The first term on the right-hand side of the above relation cancels the main term on the right-hand side of

(8.39). Combining everything together then gives

Ek(v1,Γ1) ≤ (1 + C(M)ǫ)Ek(vǫ,Γǫ),

as desired. It remains now to establish Lemma 8.11.

Proof of Lemma 8.11. By a simple change of variables, it is clear that the difference between ‖ω1(x1)‖2Hk−1(Ωǫ)

and ‖ω1‖2Hk−1(Ω1)
contributes only OM (ǫ) errors. This is likewise true for the L2 component of the velocity.

The main difficulty is in dealing with the surface components of the energy. For this, we need the following

proposition.

Proposition 8.12. Let − 1
2 ≤ s ≤ k − 2 and let f ∈ Hs+1(Γ1). Then we have the following bound on Γǫ:

‖(N1f)(x1)−Nǫ(f(x1))‖Hs(Γǫ) .M ǫ‖f‖Hs+1(Γ1).

Proof. First, we handle the case s = − 1
2 . If g ∈ C∞(Γǫ), we write h = g(x−1

1 )H1J where J is the Jacobian

corresponding to the change of variables y = x1(x). Then we have by the divergence theorem,
∫

Γǫ

g((N1f)(x1)−Nǫ(f(x1))) dS =

∫

Γ1

hN1f dS −

∫

Γǫ

gNǫ(f(x1)) dS

=

∫

Ω1

∇H1h · ∇H1f dx−

∫

Ωǫ

∇Hǫg · ∇Hǫ(f(x1)) dx.

Using again the change of variables x 7→ x1 for the first term in the second line above, together with the

estimates

‖H1h‖H1(Ω1) .M ‖g‖
H

1
2 (Γǫ)

and ‖(∇H1f)(x1)‖L2(Ωǫ) .M ‖f‖
H

1
2 (Γ1)

,

it is easy to verify

∫

Γǫ

g((N1f)(x1)−Nǫ(f(x1))) dS .M

∫

Ωǫ

∇((H1h)(x1)−Hǫg) · (∇H1f)(x1) dx

+

∫

Ωǫ

∇Hǫg · ∇((H1f)(x1)−Hǫ(f(x1))) dx + ǫ‖g‖
H

1
2 (Γǫ)

‖f‖
H

1
2 (Γ1)

.

(8.40)

We label the first and second terms on the right-hand side above by I1 and I2. For I1, we use the fact that

on Γǫ we have

(H1h)(x1)−Hǫg = (J(x1)− I)g

to obtain the following simple elliptic estimate

I1 .M ǫ‖f‖
H

1
2 (Γ1)

‖g‖
H

1
2 (Γǫ)

+ ‖f‖
H

1
2 (Γ1)

‖∆((H1h)(x1))‖H−1(Ωǫ) .M ǫ‖f‖
H

1
2 (Γ1)

‖g‖
H

1
2 (Γǫ)

,

where we used the chain rule and that H1h is harmonic to estimate ∆((H1h)(x1)). A similar elliptic estimate

yields the same bound for I2. This establishes the case s = − 1
2 . By interpolation, we only need to handle
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the remaining cases when 1
2 ≤ s ≤ k− 2. As a starting point, we have from some simple manipulations with

the chain rule and the trace inequality,

‖(N1f)(x1)−Nǫ(f(x1))‖Hs(Γǫ) . ǫ‖f‖Hs+1(Γ1) + ‖(nΓ1(x1)− nΓǫ
) · (∇H1f)(x1)‖Hs(Γǫ)

+ ‖(H1f)(x1)−Hǫ(f(x1))‖
H

s+3
2 (Ωǫ)

.

By writing nΓ1(x1) − nΓǫ
= a−1

ǫ ∇pǫ − a−1
1 (x1)(∇p1)(x1) and using the relations in Lemma 8.10 and that

s ≤ k − 2, the second term on the right is straightforward to control by ǫ‖f‖Hs+1(Γǫ). For the third term,

we do an elliptic estimate analogous to the s = − 1
2 case (using that (H1f)(x1) − Hǫ(f(x1)) = 0 on Γǫ) to

obtain

‖(H1f)(x1)−Hǫ(f(x1))‖
H

s+3
2 (Ωǫ)

.M ‖∆((H1f)(x1))‖
H

s− 1
2 (Ωǫ)

.M ǫ‖f‖Hs+1(Γ1).

This completes the proof. �

Now we return to the proof of Lemma 8.11. We note first that

‖(N k−1
1 a1)(x1)−N k−1

ǫ (a1(x1))‖L2(Γǫ) . ‖Nǫ(N
k−2
1 a1)(x1)−N k−1

ǫ (a1(x1))‖L2(Γǫ)

+ ‖Nǫ(N
k−2
1 a1)(x1)− (N k−1

1 a1)(x1)‖L2(Γǫ).

Applying Proposition 8.12 to the term in the second line and using the H1 → L2 bound for N , we have

‖(N k−1
1 a1)(x1)−N k−1

ǫ (a1(x1))‖L2(Γǫ) .M ‖(N k−2
1 a1)(x1)−N k−2

ǫ (a1(x1))‖H1(Γǫ) +OM (ǫ).

Iterating this procedure and applying Proposition 8.12 k − 2 times, we see that we have

‖(N k−1
1 a1)(x1)−N k−1

ǫ (a1(x1))‖L2(Γǫ) .M ǫ.

It follows from the above and a change of variables that we have

‖a
− 1

2
1 N k−1

1 a1‖
2
L2(Γ1)

≤ ‖a
− 1

2
1 (x1)N

k−1
ǫ (a1(x1))‖

2
L2(Γǫ)

+OM (ǫ).

To conclude the proof of Lemma 8.11, we need to show that

‖∇H1(N
k−2
1 (a−1

1 Dta1))‖
2
L2(Ω1)

≤ ‖∇HǫN
k−2
ǫ (a−1

1 (x1)Dta1(x1))‖
2
L2(Ωǫ)

+OM (ǫ).

From a change of variables, we see that

‖∇H1(N
k−2
1 (a−1

1 Dta1))‖
2
L2(Ω1)

− ‖∇HǫN
k−2
ǫ (a−1

1 (x1)Dta1(x1))‖
2
L2(Ωǫ)

.M J +OM (ǫ),

where

J := ‖(∇H1N
k−2
1 (a−1

1 Dta1))(x1)−∇HǫN
k−2
ǫ (a−1(x1)Dta1(x1))‖L2(Ωǫ).

By elliptic regularity, it is easy to verify the bound

J .M ‖(N k−2
1 (a−1

1 Dta1))(x1)−N k−2
ǫ (a−1

1 (x1)Dta1(x1))‖
H

1
2 (Γǫ)

+OM (ǫ).

From here, we use Proposition 8.12 similarly to the other surface term in the energy to estimate

‖(N k−2
1 (a−1

1 Dta1))(x1)−N k−2
ǫ (a−1

1 (x1)Dta1(x1))‖
H

1
2 (Γǫ)

.M ǫ.

This completes the proof. �
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8.5. Convergence of the iteration scheme. We have now arrived at the final step of the existence proof,

where we use our one step iteration result in Theorem 8.1 in order to prove the existence of regular solutions.

Precisely, we aim to establish the following theorem.

Theorem 8.13. Let k be a sufficiently large even integer and M > 0. Let (v0,Γ0) ∈ Hk be an initial

data set so that ‖(v0,Γ0)‖Hk ≤ M . Then there exists T = T (M) and a solution (v,Γ) to the free boundary

incompressible Euler equations on [0, T ] with this initial data and the following regularity properties:

(v,Γ) ∈ L∞([0, T ];Hk) ∩ C([0, T ];Hk−1)

with the uniform bound

‖(v,Γ)(t)‖Hk .M 1, t ∈ [0, T ].

We remark that the solution we construct is unique by the result in Theorem 4.6. One missing piece here is

the lack of continuity in Hk, which does not follow from the proof below. However, this will be rectified in

the next section. We now turn to the proof of the theorem.

Proof. Starting from the initial data (v0,Γ0) ∈ Hk with Γ0 ∈ Λ∗ := Λ(Γ∗, ǫ0, δ), for each small time scale

ǫ we construct a discrete approximate solution (vǫ,Γǫ) which is defined at discrete times t = 0, ǫ, 2ǫ, . . . , as

follows:

(i) We define (vǫ(0),Γǫ(0)) by directly regularizing (v0,Γ0) at scale ǫ. Such a regularization is provided

by Proposition 6.2 with ǫ = 2−j . In view of the higher regularity bound there, these regularized

data will satisfy the hypothesis of our one step Theorem 8.1, with M replaced by M̃ = C(A)M .

(ii) We inductively define the approximate solutions (vǫ(jǫ),Γǫ(jǫ)) by repeatedly applying the iteration

step in Theorem 8.1.

To control the growth of the Hk norms of (vǫ,Γǫ) we rely on the energy monotonicity relation, together with

the coercivity property in Theorem 7.1 (and also the relation (8.2)). We use the energy coercivity in both

ways. At time t = 0 we have

Ek(vǫ(0),Γǫ(0)) ≤ C1(A)M.

We let our iteration continue for as long as

(8.41)
Ek(vǫ(jǫ),Γǫ(jǫ)) ≤ 2C1(A)M,

Γǫ(jǫ) ∈ 2Λ∗ := Λ(Γ∗, ǫ0, 2δ).

As long as this happens, using the coercivity in the other direction we get

‖(vǫ(jǫ),Γǫ(jǫ))‖Hk ≤ C2(A)M.

Now by the energy monotonicity bound (8.4) we conclude that

Ek(vǫ(jǫ),Γǫ(jǫ)) ≤ (1 + C(C2(A)M)ǫ)jEk(vǫ(0),Γǫ(0)) ≤ eC(C2(A)M)ǫjEk(vǫ(0),Γǫ(0)).

Hence we can reach the cutoff given by the first inequality in (8.41) no earlier than at time

t = ǫj < T (M) := C(C2(A)M)−1,

which is a bound that does not depend on ǫ. Similarly, for the second requirement in (8.41), the relations

(8.5) ensure that at each step the boundary only moves by O(ǫ), so by step j it moves at most by O(jǫ).

This leads to a similar constraint as above on the number of steps. Analogous reasoning shows that the

vorticity growth in (8.6) is also harmless on this time scale.
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To summarize, we have proved that the discrete approximate solutions (vǫ,Γǫ) are all defined up to the

above time T (M), and satisfy the uniform bound

‖(vǫ,Γǫ)‖Hk .M 1 in [0, T ],

with Γǫ ∈ 2Λ∗. Since k is large enough, by Sobolev embeddings, this yields uniform bounds, say, in C3,

(8.42) ‖vǫ‖C3 + ‖ηǫ‖C3 .M 1 in [0, T ],

where ηǫ := ηΓǫ
is the defining function for Γǫ ∈ 2Λ∗.

The other piece of information we have about vǫ comes from (8.5). However, this only tells us what happens

over a single time step of size ǫ, so we need to iterate it over multiple steps. We begin with the first relation

for the velocity in (8.5), which implies that

|vǫ(t, x) − vǫ(s, y)|+ |∇vǫ(t, x)−∇vǫ(s, y)| .M |t− s|+ |x− y|, t− s = ǫ.

Iterating this we arrive at

(8.43) |vǫ(t, x)− vǫ(s, y)|+ |∇vǫ(t, x)−∇vǫ(s, y)| .M |t− s|+ |x− y|, t, s ∈ ǫN ∩ [0, T ].

A similar reasoning based on the last part of (8.5) yields

(8.44) ‖ηǫ(t)− ηǫ(s)‖C1 .M |t− s|, t, s ∈ ǫN ∩ [0, T ].

Similarly, from (8.35) in Lemma 8.10 and the elliptic estimate ‖Dtpǫ‖Hk .M 1 for each time, we also get a

difference bound for the pressure; namely,

(8.45) |∇pǫ(t, x)−∇pǫ(s, y)| .M |t− s|+ |x− y|, t, s ∈ ǫN ∩ [0, T ].

Equipped with the last three Lipschitz bounds in time, we are now able to return to (8.5) and reiterate

in order to obtain second order information. As above, we begin with the first relation in (8.5). Here we

reiterate directly, using the bounds (8.43) and (8.45) in order to compare the expressions on the right at

different times in the uniform norm. This yields

(8.46) vǫ(t) = vǫ(s)− (t− s)(vǫ(s) · ∇vǫ(s) +∇pǫ(s) + ged) +O((t− s)2), t, s ∈ ǫN ∩ [0, T ].

The same procedure applied to the last component of (8.5) yields

(8.47) Ωǫ(t) = (I + (t− s)vǫ(s))Ωǫ(s) +O((t− s)2), t, s ∈ ǫN ∩ [0, T ].

We now have enough information about our approximate solutions (vǫ,Γǫ), and we seek to obtain the desired

solution (v,Γ) by taking the limit of (vǫ,Γǫ) on a subsequence as ǫ → 0. For this it is convenient to take

ǫ of the form ǫ = 2−m, where we let m → ∞. Then the time domains of the corresponding approximate

solutions vm are nested.

Starting from the Lipschitz bounds (8.43), (8.44) and (8.45), a careful application of the Arzela-Ascoli

theorem yields uniformly convergent subsequences

(8.48) ηm → η, vm → v, ∇vm → ∇v, ∇pm → ∇p,

whose limits still satisfies the bounds (8.43), (8.44) and (8.45). It remains to show that (v,Γ) is the desired

solution to the free boundary incompressible Euler equations, with Γ defined by η and p, where p is the
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associated pressure.

We begin by upgrading the spatial regularity of v and η. For this we observe that for t ∈ 2−jN ∩ [0, T ] we

can pass to the limit as m→ ∞ in (8.42) to obtain the uniform bound

‖v‖C3 + ‖η‖C3 .M 1.

Since both v and η are Lipschitz continuous in t, this extends easily to all t ∈ [0, T ]. A similar argument

applies to the Hk norm of (v,Γ).

Next we show that (v,Γ) solves the free boundary incompressible Euler equations, which we do in several

steps:

i) The initial data. The fact that at the initial time we have (v(0),Γ(0)) = (v0,Γ0) follows directly from the

construction of (vǫ(0),Γǫ(0)); namely, by Proposition 6.2.

ii) The pressure equation. To verify that p is the pressure associated to v and Γ we simply use the uniform

convergence of ∇vm, ηm and ∇pm in order to pass to the limit in the pressure equation (1.5).

iii) The incompressible Euler equations. Here we directly use the uniform convergence (8.48) in order to

pass to the limit in (8.46). This implies that v is differentiable in time, and that the incompressible Euler

equations are verified.

iv) The kinematic boundary condition. Arguing as above, this time we directly use the uniform convergence

(8.48) in order to pass to the limit in (8.47).

Finally, the C(Hk−1) regularity of (v,Γ) follows directly from the incompressible Euler equations and the

kinematic boundary condition. �

9. Rough solutions

In this section, we aim to construct solutions in the state space Hs as limits of regular solutions for s > d
2 +1.

The general procedure for executing this construction will be as follows.

(i) We regularize the initial data.

(ii) We prove uniform bounds for the corresponding regularized solutions.

(iii) We show convergence of the regularized solutions in a weaker topology.

(iv) We combine the difference estimates and the uniformHs bounds from step (ii) to obtain convergence

in the Hs topology.

As will be seen below, this procedure carries with it various subtleties since it involves comparing functions

defined on different domains. In addition, we must carefully address the fact that our control parameters in

the difference and energy estimates are not entirely consistent.

9.1. Initial data regularization. Let (v0,Γ0) ∈ Hs be an initial data. The first step is to place Γ0 within

a suitable collar Λ∗ = Λ(Γ∗, ǫ, δ) with δ ≪ 1. Since Γ0 ∈ Hs ⊆ C1,ǫ+, Γ∗ is easily obtained by regularizing

Γ0 on a small enough spatial scale. We remark that the price to pay for a small enough regularization scale

is that the higher Sobolev norms Hk of Γ∗ will be large; but this is acceptable, as explained in Remark 3.4.
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Let M := ‖(v0,Γ0)‖Hs denote the data size measured relative to the collar Λ∗, and write c0 for the lower

bound on the Taylor term. We begin by constructing regularized data at each dyadic scale 2j . For this,

we define Γ0,j (along with Ω0,j) by regularizing the collar parameterization η0. More specifically, we define

η0,j := P≤jη0, where the meaning of P≤j is as in Section 6. Then, we define the regularized velocity

v0,j := Ψ≤jv0. Here, we recall that, as long as j is much larger than M , v0,j is defined on some 2−j

enlargement of both Ω0,j and Ω0. Indeed, by Sobolev embeddings, we have the distance bound

|η0,j − η0| .M 2−
3
2 j .

Moreover, for such j, we stay in the collar and have a uniform lower bound on the Taylor term.

9.2. Uniform bounds and lifespan of regular solutions. By Theorem 8.13, the regularized data

(v0,j ,Γ0,j) from the previous step generate corresponding smooth solutions (vj ,Γj). Our goal now is to

establish uniform bounds for these regular solutions and, in particular, show that they have a lifespan which

depends only on the size of the initial data (v0,Γ0) in Hs, Taylor sign and the collar. To do this, we carry

out a bootstrap argument with the Hs norm of (vj ,Γj).

In the argument below, we will be working with the enlarged control parameter B̃j(t) := ‖vj‖W 1,∞(Ωj) +

‖Γj‖
C

1, 1
2
+ ‖Dtpj‖W 1,∞(Ωj) for the corresponding solution (vj ,Γj). Note that the reason we work for now

with B̃j instead of just Bj(t) := ‖vj‖W 1,∞(Ωj) + ‖Γj‖
C

1, 1
2

is because we will make use of the difference

estimates which require control of Dtpj. By elliptic regularity and Sobolev embeddings, it is easy to see that

B̃j is controlled by some polynomial in ‖(vj ,Γj)‖Hs .

Fix some large parameters A0 and B0 depending only on the numerical constants for the data (M , c0 and

so forth) such that A0 ≪ B0. As alluded to above, we make the bootstrap assumption

‖(vj ,Γj)(t)‖Hs ≤ 2B0, Aj(t) ≤ 2A0, aj(t) ≥
c0
2
, Γj(t) ∈ 2Λ∗, t ∈ [0, T ], j(M) =: j0 ≤ j ≤ j1,

with j(M) sufficiently large depending on M , in a time interval [0, T ] where all the (vj ,Γj) are defined as

smooth solutions with boundaries in the collar. Above, j1 is some finite but arbitrarily large parameter,

introduced for technical convenience to ensure that we run the bootstrap on only finitely many solutions at

a time. Our aim will be to show that we can improve this bootstrap assumption as long as T ≤ T0 for some

time T0 > 0 which is independent of j1.

For any large integer k > s > d
2 + 1 as in Theorem 8.13, we may consider the solutions (vj ,Γj) as solutions

in Hk. In light of Theorems 7.1 and 8.13, for each j ≥ j0, the solution (vj ,Γj) can be continued past time

T in Hk (and therefore Hs) as long as the bootstrap is satisfied. Morally speaking, our choice for T0 will be

T0 ≪
1

P (B0)
,

for some fixed polynomial P , though this is not entirely accurate, as T0 will also depend on the collar and

c0. Thanks to the energy bound in Theorem 7.1, if the bootstrap could be extended to such a T0, it would

guarantee uniform Hk bounds for (vj ,Γj) for any integer k > d
2 + 1 in terms of its initial data in Hk. The

main difficulty we face is that, a priori, the Hs bounds for (vj ,Γj) do not necessarily propagate for noninteger

s. The goal, therefore, is to establish Hs bounds for noninteger s. We will do this by working solely with

the energy estimates for integer indices and the difference estimates.
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We begin by letting cj be the Hs admissible frequency envelope for the initial data (v0,Γ0) given by (6.3).

We let α ≥ 1 be such that k = s+ α is an integer. From Proposition 6.6 we know that the regularized data

(v0,j ,Γ0,j) satisfy the bounds

(9.1) ‖(v0,j ,Γ0,j)‖Hs+α .A0 2αjcj‖(v0,Γ0)‖Hs .

From the energy bounds in Theorem 7.1 and the bootstrap hypothesis, we deduce from (9.1) and the

definition of cj that

(9.2) ‖(vj ,Γj)(t)‖Hs+α .A0 2αjcj(1 + ‖(v0,Γ0)‖Hs), t ∈ [0, T ],

as long as T ≤ T0 ≪ 1
P (B0)

. One may think of this as a high frequency bound, which roughly speaking

allows us to control frequencies & 2j in (vj ,Γj). Note that in (9.2) we suppressed the implicit dependence

on the Taylor term and the collar. We will do this throughout the subsection except when these terms are

of primary importance, as it will be clear that our argument can handle these minor technicalities.

To estimate low frequencies we use the difference estimates. Precisely, at the initial time we claim that we

have the difference bound

(9.3) D((v0,j ,Γ0,j), (v0,j+1,Γ0,j+1)) .A0 2−2jsc2j‖(v0,Γ0)‖
2
Hs .

This bound is clear by Proposition 6.6 for the first term in (4.2). To see this for the surface integral, we use

that on Γ̃0,j := ∂(Ω0,j ∩Ω0,j+1), the pressure difference p0,j − p0,j+1 is proportional (with implicit constant

depending on A0) to the distance between Γ0,j and Γ0,j+1, measured using the displacement function (4.1).

Combining this with a change of variables, we have
∫

Γ̃0,j

|p0,j − p0,j+1|
2 dS ≈A0 ‖η0,j+1 − η0,j‖

2
L2(Γ∗)

.A0 2−2jsc2j‖(v0,Γ0)‖
2
Hs ,

from which (9.3) follows. By Theorem 4.2, we can propagate the difference bound (9.3) to obtain

(9.4) D((vj ,Γj)(t), (vj+1 ,Γj+1)(t)) .A0 2−2jsc2j‖(v0,Γ0)‖
2
Hs , t ∈ [0, T ],

as long as T ≤ T0 ≪ 1
P (B0)

. In particular, this gives by a similar argument to the above,

(9.5) ‖vj+1 − vj‖L2(Ωj∩Ωj+1), ‖ηj+1 − ηj‖L2(Γ∗) .A0 2−jscj‖(v0,Γ0)‖Hs .

Now, the goal is to combine the high frequency bound (9.2) and the L2 difference bound (9.5) in order to

obtain a uniform Hs bound of the form

‖(vj ,Γj)‖Hs .A0 1 + ‖(v0,Γ0)‖Hs ,

for T ≤ T0. To establish such a bound for Γj , we consider the telescoping series on Γ∗ given by

(9.6) ηj = ηj0 +
∑

j0≤l≤j−1

(ηl+1 − ηl).

From the higher energy bound (9.2), we have for each j0 ≤ l ≤ j − 1,

(9.7) ‖ηl+1 − ηl‖Hs+α(Γ∗) .A0 2lαcl(1 + ‖(v0,Γ0)‖Hs).

Using the telescoping sum and interpolation, it is straightforward to verify from (9.5), (9.7) and an argument

similar to Proposition 6.6 (see also [28]) that for each k ≥ 0,

(9.8) ‖Pkηj‖Hs(Γ∗) .A0 ck(1 + ‖(v0,Γ0)‖Hs).
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As a consequence, by almost orthogonality, we obtain the uniform bound

(9.9) ‖Γj‖Hs .A0 1 + ‖(v0,Γ0)‖Hs .

Next, we turn to the bound for vj . We first note that the analogous decomposition to (9.6) for vj does not

work because for each l ≤ j − 1, vl and vl+1 are defined on different domains. However, we can compare vl

and vl+1 by first regularizing each function vl 7→ Ψ≤lvl which is defined on a 2−l enlargement of Ωl. For this

comparison to work, we need to know that Γj and Γj+1 are sufficiently close. By interpolating using (9.5)

and (9.9) we have

(9.10) ‖ηj+1 − ηj‖L∞(Γ∗) .A0 2−
3
2 j , ‖ηj+1 − ηj‖

C
1, 1

2 (Γ∗)
.A0 2−δj ,

for some δ > 0. Now, we return to the uniform bound for vj . Thanks to (9.10), we can safely consider the

decomposition on Ωj ,

(9.11) vj = Ψ≤j0vj0 +
∑

j0≤l≤j−1

Ψ≤l+1vl+1 −Ψ≤lvl + (I −Ψ≤j)vj .

The first term in the telescoping decomposition is trivial to bound. We therefore focus our attention on the

remaining terms. First, define for l ≥ j0

Ω̃l =

j⋂

k=l

Ωk.

Thanks again to (9.10), for j0 large enough (independent of j and only depending on the data parameters),

we can arrange for the regularization operator Ψ≤l to be bounded from Hs(Ω̃l) to H
s(Ω̃′

l) where Ω̃′
l is some

2−l enlargement of the union of all of the Ωk for k ≥ l. We will use this fact to establish the following lemma

which will help us to estimate the intermediate terms in (9.11).

Lemma 9.1. Let j0 ≤ l ≤ j − 1, where j0 is some universal parameter depending only on the numerical

constants for the data. Then given the above decomposition for vj , we have

(9.12) ‖Ψ≤l+1vl+1 −Ψ≤lvl‖L2(Ωj) .A0 2−lscl(1 + ‖(v0,Γ0)‖Hs),

(9.13) ‖Ψ≤l+1vl+1 −Ψ≤lvl‖Hs+α(Ωj) .A0 2lαcl(1 + ‖(v0,Γ0)‖Hs).

By Sobolev embedding, a corollary of this lemma is the following pointwise bound at the C1 regularity.

Corollary 9.2. We have the estimate

‖Ψ≤l+1vl+1 −Ψ≤lvl‖C1(Ωj) .A0 2−lδ(1 + ‖(v0,Γ0)‖Hs), δ > 0.

Proof. The latter bound (9.13) is clear from the Hs+α boundedness of Ψ≤l and (9.2). For the first bound,

we split

Ψ≤l+1vl+1 −Ψ≤lvl = (Ψ≤l+1 −Ψ≤l)vl+1 +Ψ≤l(vl+1 − vl).

Using Proposition 6.2 and (9.2), we have

‖(Ψ≤l+1 −Ψ≤l)vl+1‖L2(Ωj) .A0 2−lscl(1 + ‖(v0,Γ0)‖Hs).

For the remaining term, we use the difference bound and the L2 boundedness of Ψ≤l to obtain

‖Ψ≤l(vl+1 − vl)‖L2(Ωj) .A0 D((vl,Γl), (vl+1,Γl+1))
1
2 .A0 2−lscl‖(v0,Γ0)‖Hs .

�
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We also observe that the same bounds in Lemma 9.1 hold for the third term in (9.11) but with the param-

eter l replaced by j in the corresponding estimates. This is immediate for (9.13) and follows by telescopic

summation from Proposition 6.6 in the case of (9.12).

We can use the above lemma (and the corresponding bounds for (I −Ψ≤j)vj) to estimate similarly to (9.8)

that for each k ≥ 0,

‖Pkvj‖Hs(Rd) .A0 ck(1 + ‖(v0,Γ0)‖Hs),

where we carefully note here that for each k ≥ 0, Pk should be interpreted as PkEΩj
where EΩj

is the

extension operator on Ωj from Proposition 5.12. From this observation and almost orthogonality, we obtain

the desired uniform bound,

‖(vj ,Γj)(t)‖Hs .A0 1 + ‖(v0,Γ0)‖Hs ,

for t ∈ [0, T0]. In particular, if the constant B0 is chosen to be sufficiently large relative to A0 and the

data size, this improves the bootstrap assumption for ‖(vj ,Γj)‖Hs . It remains to improve the bootstrap

assumption for Aj and at the same time the Taylor term and the collar neighborhood size. For this we

rely on a computation similar to [17, 41] for the Lagrangian flow map uj(t, ·) : Ω0,j → Ωj(t), defined as the

solution to the ODE

∂tuj(t, y) = vj(t, uj(t, y)), y ∈ Ω0,j, uj(0) = I.

Since s > d
2 + 1, if T0 is small enough, then for any 0 ≤ t ≤ T ≤ T0 we have the bound

‖uj(t, ·)− I‖Hs(Ω0,j) .

∫ t

0

‖vj(t
′, ·)‖Hs(Ωj(t′))‖uj(t

′, ·)‖sHs(Ω0,j)
dt′

.A0 t‖(v0,Γ0)‖Hs .

If A0 is large enough relative to the data size, this easily implies simultaneously

Γj(t) ∈
3

2
Λ∗, ‖Γj(t)‖C1,ǫ ≪ A0,

as long as T0 is small enough. Doing a similar computation with ut in place of u and using the equation

∂2t uj(t, y) = ∂t(vj(t, uj(t, y))) = −(∇pj + ged)(t, uj(t, y))

together with the elliptic estimates for the pressure, we obtain also

‖vj(t)‖
C

1
2
+ǫ(Ωj)

≪ A0.

This improves the bootstrap assumption for Aj . Finally, a similar argument but instead with the pressure

gradient and the Hs bound for Dtp allows one to close the bootstrap for aj as long as T0 is sufficiently small

depending on M and c0.

9.3. The limiting solution. Here we show that for T ≤ T0,

(v,Γ) = lim
j→∞

(vj ,Γj) in C([0, T ];Hs).

First, we show domain convergence in Hs, which is more straightforward. Indeed, from (9.10) we see that

the limiting domain Ω exists and has Lipschitz boundary Γ. Next, we let j ≥ j0 and consider the telescoping

sum

η − ηj =

∞∑

l=j

ηl+1 − ηl.
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An analysis similar to the previous subsection, using the difference bounds and the higher energy bounds,

yields

(9.14) ‖η − ηj‖L∞(Γ∗) .A0 2−
3
2 j

and

‖η − ηj‖C([0,T ];Hs(Γ∗)) .A0 ‖c≥j‖l2(1 + |(v0,Γ0)‖Hs),

which in particular shows convergence of Γj → Γ in C([0, T ];Hs(Γ∗)). Next, we turn to showing the

convergence vj → v in C([0, T ];Hs). We, formally, define v through the telescoping sum

v = Ψ≤j0vj0 +
∑

l≥j0

Ψ≤l+1vl+1 −Ψ≤lvl,

where, as usual, j0 ensures that all the terms in the sum are defined on Ω. Thanks to (9.14), this is possible.

We begin by showing that Ψ≤jvj → v in Hs(Ωt) uniformly in t (which is again unambiguous thanks to

(9.14)). We have

v −Ψ≤jvj =
∑

l≥j

Ψ≤l+1vl+1 −Ψ≤lvl.

From this we see that

‖v −Ψ≤jvj‖Hs(Ωt) .A0 ‖c≥j‖l2(1 + ‖(v0,Γ0)‖Hs),

which establishes the desired uniform convergence in Hs(Ωt). To show convergence of vj in the sense of

Definition 3.5, we consider the regularization ṽ = Ψ≤mvm. We then have as above,

‖v −Ψ≤mvm‖Hs(Ω) .A0 ‖c≥m‖l2(1 + ‖(v0,Γ0)‖Hs),

which goes to 0 as m→ ∞. On the other hand, for j > m, we have

‖vj −Ψ≤mvm‖Hs(Ωj) .A0‖(1−Ψ≤j)vj‖Hs(Ωj) + ‖Ψ≤j(vj − v)‖Hs(Ωj) + ‖Ψ≤m(vm − v)‖Hs(Ωj)

+ ‖Ψ≤jv −Ψ≤mv‖Hs(Ωj).

Using (9.2) for the first term and the difference bounds for D((vj ,Γj), (v,Γ)), D((vm,Γm), (v,Γ)) for the

second and third terms, respectively, we obtain

‖vj −Ψ≤mvm‖Hs(Ωj) .A0 ‖c≥m‖l2(1 + ‖(v0,Γ0)‖Hs) + ‖Ψ≤jv −Ψ≤mv‖Hs(Ωj).

To estimate the last term above, we have

‖Ψ≤jv −Ψ≤mv‖Hs(Ωj) .A0 ‖(Ψ≤j −Ψ≤m)(v −Ψ≤mvm)‖Hs(Ωj) + ‖(Ψ≤j −Ψ≤m)Ψ≤mvm‖Hs(Ωj)

.A0 ‖v −Ψ≤mvm‖Hs(Ω) + 2−mα‖vm‖Hs+α(Ωm)

.A0 ‖c≥m‖l2(1 + ‖(v0,Γ0)‖Hs),

where we used (9.2) to estimate the second term in the last inequality. The combination of the above

estimates establishes strong convergence in Hs. A similar argument shows continuity of v with values in Hs.

Finally, one may also check that the limiting solution solves the free boundary Euler equations.
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9.4. Continuous dependence. Given a sequence of initial data (vn0 ,Γ
n
0 ) ∈ Hs such that (vn0 ,Γ

n
0 ) →

(v0,Γ0), we aim to show that we have the corresponding convergence of the solutions (vn,Γn) → (v,Γ) in

C([0, T ];Hs). First, we note that thanks to the data convergence, the corresponding solutions have a uniform

in n lifespan in Hs, and so, on some compact time interval [0, T ], we have ‖(vn,Γn)‖Hs + ‖(v,Γ)‖Hs .M 1.

Let us denote by cnj and cj the admissible frequency envelopes for the data (vn0 ,Γ
n
0 ) and (v0,Γ0), respectively.

Now, let ǫ > 0 and let δ = δ(ǫ) > 0 be a small positive constant to be chosen. Moreover, let n0 = n0(ǫ) be

some large integer to be chosen.

By definition of convergence in Hs, there is a divergence free function vδ0 ∈ Hs(Ωδ0) defined on some enlarged

domain Ωδ0 such that

‖v0 − vδ0‖Hs(Ω0) + lim sup
n→∞

‖vn0 − vδ0‖Hs(Ωn
0 ) < δ.

Moreover, for n large enough, depending only on δ, vδ0 is defined on a neighborhood of Ω0 and Ωn0 . Moreover,

we may also assume that vδ0 belongs to Hs(Rd). Indeed, for some δ′ ≪ δ, vδ0 is defined on the domain Ω′
0

defined by taking η′0 = η0 + δ′. Then we can extend vδ0 to Rd using Proposition 5.12. We note that vδ0 is

not necessarily divergence free on Rd but is on an enlargement of Ω0 and Ωn0 for n large enough. Now, let

cδj denote the admissible frequency envelope for (vδ0 ,Γ0) (note that we are using the same domain Ω0 as v0

for the frequency envelope here; if δ is small enough, Taylor sign holds for this state) and denote by (vδ,Γδ)

the corresponding Hs solution (which we note has lifespan comparable to v and vn for n large enough). We

begin by choosing j = j(ǫ) large enough so that

(9.15) ‖c≥j‖l2 < ǫ.

We next observe that we can choose δ(ǫ) and then n0(δ) so that

(9.16) ‖cn≥j‖l2 .M ǫ+ ‖c≥j‖l2 .M ǫ,

for n ≥ n0. One can establish this by estimating the error when comparing terms in cδj and cnj and then the

error when comparing terms in cδj and cj by using (6.3) and square summing. The main error in the first

comparison is essentially comprised of two terms. The first term to control involves the error between ηn0
and η0. If δ is small enough and n is large enough, we have

‖ηn0 − η0‖Hs(Γ∗) < δ < ǫ.

The second source of error comes from the extensions of the velocity functions,

‖EΩn
0
vn0 − EΩ0v

δ
0‖Hs(Rd) ≤ ‖EΩn

0
vδ0 − EΩ0v

δ
0‖Hs(Rd) + ‖EΩn

0
(vn0 − vδ0)‖Hs(Rd).

If δ ≪M ǫ, then the latter term is O(ǫ) by (uniform in n) boundedness of EΩn
0
and the definition of vδ0 .

The first term is O(ǫ) if n is large enough (relative to δ) thanks to the continuity property of the family

EΩn
0
in Proposition 5.12. Then one establishes (9.16) by comparing cj and c

δ
j which just involves controlling

essentially the error term ‖EΩ0(v
δ
0 − v0)‖Hs(Rd).

Now that we have uniform smallness of the initial data frequency envelopes, the next step is to compare the

corresponding solutions. First, thanks to the difference estimates, we observe that for large enough n, Γn

and Γδ are within distance ≪ 2−j as long as δ is chosen small enough relative to j (recall that j was chosen

to ensure (9.15)). Indeed, by interpolating and using the uniform Hs bound, we have

‖ηn − ηδ‖L∞(Γ∗) .M D((vn,Γn), (vδ,Γδ))
3
4s .M δ

3
2s .
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This ensures that we may compare Ψ≤jv
δ to vn. Denoting by (vnj ,Γ

n
j ) the regular solution corresponding to

the regularized data (vn0,j ,Γ
n
0,j) (from the previous section), we have

‖Ψ≤jv
δ − vn‖Hs(Ωn) . ‖Ψ≤j(v

δ − vn)‖Hs(Ωn) + ‖Ψ≤j(v
n − vnj )‖Hs(Ωn) + ‖vn −Ψ≤jv

n
j ‖Hs(Ωn)

.M ‖cn≥j‖l2 + 2jsD((vn,Γn), (vnj ,Γ
n
j ))

1
2 + 2jsD((vn,Γn), (vδ,Γδ))

1
2

.M ‖cn≥j‖l2 + 2jsD((vn,Γn), (vδ,Γδ))
1
2 ,

which if δ is small enough gives

‖Ψ≤jv
δ − vn‖Hs(Ωn) .M ǫ.

Similarly, we may obtain

‖ηn − η‖Hs(Γ∗) .M ǫ

and

‖Ψ≤jv
δ − v‖Hs(Ω) .M ǫ.

This establishes continuous dependence.

9.5. Lifespan of rough solutions. Here, we finally establish the continuation criterion from Theorem 1.7

for Hs solutions. We consider initial data (v0,Γ0) ∈ Hs and the corresponding solution (v,Γ) in a time

interval [0, T ) which has the property that

C := sup
0≤t<T

A(t) +

∫ T

0

B(t) dt <∞, a(t) ≥ c0 > 0, t ∈ [0, T ),

and whose domains Ωt maintain a uniform thickness. Unlike with the construction of rough solutions, we

now work with the weaker control parameter

B(t) = ‖v‖W 1,∞(Ωt) + ‖Γt‖
C

1, 1
2
.

One starting difficulty we face in this proof is that we do not a priori have a fixed reference collar neighbor-

hood. However, the uniform bound on A(t) guarantees that the free boundaries Γt are uniformly of class

C1,ǫ, and the uniform bound on v guarantees that they move at most with velocity O(1). This implies that

the limiting boundary ΓT = limt→T Γt exists in the uniform topology, and also belongs to C1,ǫ, with the

corresponding domain ΩT having positive thickness. Furthermore, by interpolation, it follows that

lim
t→T

Γt = ΓT in C1,ǫ1 , 0 < ǫ1 < ǫ.

This allows us define the reference boundary Γ∗ as a regularization of ΓT , so that ΓT ∈ Λ(Γ∗, ǫ/2, δ/4) for

an acceptable choice of δ ensuring that Λ(Γ∗, ǫ/2, δ/2) is also a well-defined collar (cf. Remark 3.4). Then

the above convergence implies that Γt ∈ Λ∗ := Λ(Γ∗, ǫ/2, δ/2) for t close to T .

Reinitializing the starting time close to T , we arrive at the case where we have the initial data (v0,Γ0) ∈ Hs

and the corresponding solution (v,Γ) in a time interval [0, T ) with the property that

Γt ∈ Λ∗, t ∈ [0, T ).

From the local well-posedness theorem, it suffices to show that

(9.17) ‖(v,Γ)‖L∞([0,T );Hs) <∞.

Similarly to the previous subsections, the strategy we would like to employ will involve showing that the

control parameters for a suitable family of regularized solutions (vj ,Γj) can be controlled to leading order

by the control parameters for (v,Γ). The main difficulty is that vj and v are defined on different domains.
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As in the previous sections, as long as we can ensure that Γj and Γ are within distance 2−j(1+δ) of each

other, we can compare v with Ψ≤jvj . However, there is one added difficulty now. The difference bound,

which ensured the closeness of domains in the previous sections, has a stronger control parameter involving

the term ‖Dtp‖W 1,∞(Ωt) in addition to B(t), which from Lemma 7.9 has size controlled by B(t) and an

additional logarithmic factor.

To overcome this, we will divide [0, T ) into two disjoint intervals [0, T̃ ] and [T̃ , T ) where 0 < T̃ < T and T̃

has the property that ∫ T

T̃

B(t) dt < δ0,

where δ0 is some parameter to be chosen depending only on C, c0, the collar and the Hs norm of (v0,Γ0).

Given such a T̃ , we consider the regularized data (vT̃ ,j,ΓT̃ ,j) of (v(T̃ ),ΓT̃ ) and the corresponding solutions

(vj ,Γj). We remark that T̃ and δ0 need to be chosen carefully to not depend on j, but we postpone this

choice for now. Their purpose is to guarantee that the stronger control parameter Dtp in the difference

bounds as well as the logarithmic factor in the energy bounds does not cause the distance between Γj and

Γ to grow larger than 2−j(1+δ) for times t < T where (vj ,Γj) is defined.

From the continuous dependence result, the above regularized solutions converge to (v,Γ) in [T̃ , T ) and their

lifespans Tj satisfy

lim inf
j→∞

Tj ≥ T − T̃ .

However, a priori, we do not have a uniform L1
T bound on their corresponding control parameters Bj , nor

a uniform L∞
T bound on Aj , nor a uniform lower bound on the corresponding Taylor terms aj . Arguing

similarly to the previous subsections, if such bounds could be established, one could hope to use them to

establish a uniform Hs bound on the regularized solutions (vj ,Γj) and hence extend their time of existence

by an amount uniform in j. To establish such uniform control on these pointwise parameters, we will run a

relatively simple bootstrap argument. From here on, we writeM := ‖(v0,Γ0)‖Hs andMT̃ := ‖(v(T̃ ),ΓT̃ )‖Hs .

To set up the bootstrap, we begin by noting that at time T̃ , we have by Sobolev embedding and interpolation,

the bound

(9.18) ‖ηj(T̃ )− η(T̃ )‖C1,ǫ(Γ∗) . 2−
j
2MT̃ .

Moreover, by the properties of Ψ≤j, we have ‖vj(T̃ )‖
C

1
2
+ǫ .C 1. Hence, initially we have

(9.19) Aj(T̃ ) ≤ P (C) + 2−
j
2MT̃

where P > 1 is some sufficiently large positive polynomial. As long as the choice of T̃ we make later on

depends only on C and c0 (but not on j), we can arrange by taking j large enough, the initial bound

(9.20) Aj(T̃ ) ≤ 2P (C).

Finally, if j is large enough, and T̃ is as above, we also initially have (for instance),

aj(T̃ ) ≥
2

3
c0.

Now, we make the bootstrap assumption that on a time interval [T̃ , T0] with T̃ < T0 < T we have the bounds

(9.21)

∫ T0

T̃

Bj(t) dt < 4C1(A)δ0, Aj(t) ≤ 4P (C), aj(t) ≥
1

2
c0, Γj(t) ∈ 2Λ∗
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for j ≥ j0(M,T0) and some large universal constant C1 ≫ 1 depending only on A := supt∈[0,T )A(t). Our goal

will be to show that the constant 4C1δ0 can be improved to 2C1δ0 and the constant 4P (C) can be improved

to 2P (C), with similar improvements on the Taylor term and the collar. After we close this boostrap, we will

give a separate argument which uses the uniform bounds on the control parameters to establish a uniform

bound for (vj ,Γj) in Hs, and hence permit us to continue the solution. To close the above bootstrap, we

aim to establish the bounds

(9.22) Bj ≤ C1(A)B + C22
−δj , Aj ≤ P (C) + C22

−δj , aj ≥
2

3
c0, Γj(t) ∈

3

2
Λ∗,

where δ > 0 is some small positive constant and C2 depends on the size of MT̃ as well as the constant C

above. The bootstrap can then be closed by choosing j0 large enough to absorb the contribution of C2.

As mentioned above, the main difficulty in comparing Bj with B and Aj with A is, as usual, the fact that

the corresponding domains Ωj and Ω are different. Our starting point is to select the parameter δ0 and the

time T̃ (δ0) to ensure that Ωj and Ω are close enough. As mentioned above, in order for our argument not

to be circular, we need to ensure that the choice of δ0 depends only on c0 and C. Our first aim is to obtain

some preliminary bounds for ηj−ηj+1 in L∞ and C1, 12 . We let k be the smallest integer larger than s. First,

by the double exponential bound in Theorem 7.1 and the bootstrap hypothesis, we have for each j,

‖(vj ,Γj)‖
2
Hk .A exp

(
exp(Kδ0) log(K(1 + 22j(k−s)‖(v(T̃ ),ΓT̃ )‖

2
Hs)

)
.

Above, K is some (possibly large) constant depending on C and c0 which we will let change from line to line.

In the above estimate, if we take Kδ0 ≪ 1 (in particular, δ0 does not depend on j), then we can arrange for

(9.23) ‖(vj ,Γj)‖
2
Hk . K22j(k−s)M2

T̃
(MT̃ 2

j)δ

for some small constant δ > 0, where we assumed without loss of generality thatMT̃ ≥ 1 to simplify notation.

Note here that there is a slight loss compared to (9.2) coming from the double exponential bound in the

energy estimate. On the other hand, the difference estimates, Lemma 7.9 and the energy coercivity ensures

that by Grönwall and the bootstrap assumption, we have

D((vj ,Γj), (vj+1,Γj+1)) . 2−2jsKM2
T̃
exp (Kδ0Ij) ,

where Ij = supT̃<t≤T0
(log(K + KEk(vj ,Γj)) + log(K + KEk(vj+1,Γj+1))) and k is, again, the smallest

integer larger than s. By the higher energy bound and the bootstrap assumption, we have

Ij . K log(1 + 22jk‖(v(T̃ ),ΓT̃ )‖
2
L2) .k Kj,

where we used the higher energy bound for the regularized solution to propagate log(1 + Ek(vj ,Γj)) and

control log(1+Ek(vj ,Γj)) by log(1+22kj‖(v(T̃ ),ΓT̃ )‖
2
L2) as well as the fact that the volume of Ωt is conserved

and Hölder’s inequality to estimate ‖(v(T̃ ),ΓT̃ )‖L2 .A 1. Again, we choose δ0 small enough (and therefore

T̃ ) depending only on C and c0 so that

exp(Kδ0Ij) ≤ 2jδ,

for some sufficiently small δ > 0 (depending only on s). Next, we pick j0 depending on MT̃ , C and c0 so that

if j ≥ j0 (after possibly relabelling δ), we have

D((vj ,Γj), (vj+1,Γj+1)) . 2−2j(s−δ), ‖(vj ,Γj)‖
2
Hk . 22j(k−s)2jδ

with universal implicit constant. The key point to observe here is that there is now a slight loss in the

difference estimates and energy estimates compared to the previous subsections because of the stronger

control parameter in the difference bounds and the logarithmic factor in the energy estimates. However, by
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using these estimates, we still obtain by Sobolev embedding and interpolating, the bounds (after possibly

relabelling δ)

(9.24) ‖ηj − ηj+1‖
C

1, 1
2 (Γ∗)

. 2−δj, ‖ηj − ηj+1‖C1,ǫ(Γ∗) . 2−
1
2 j , ‖ηj − ηj+1‖L∞(Γ∗) . 2−

3
2 j ,

all with universal implicit constant if j0 is large enough. The first bound will give us control of ‖Γj‖
C

1, 1
2
in

the first estimate in (9.22). The second bound above gives us control over ‖Γj‖C1,ǫ for the second estimate in

(9.22) and also shows that Γj ∈
3
2Λ∗. The third bound ensures that Γj and Γj+1 are sufficiently close. With

this closeness established, we now work towards closing the bootstrap (9.22) for the ‖vj‖W 1,∞(Ωj) component

of Bj and the ‖vj‖
C

1
2
+ǫ(Ωj)

component of Aj . We show the details for ‖vj‖W 1,∞(Ωj) as the other component

is very similar. We estimate in three steps. First, we observe that from the bounds for Ψ≤j, we have

(9.25) ‖Ψ≤jv‖W 1,∞ .A B.

We can ensure that the implicit constant in this estimate is less than C1(A) if C1(A) is initially chosen large

enough. Then we compare Ψ≤jv and Ψ≤jvj which is justified thanks to (9.24). We have

Ψ≤jv −Ψ≤jvj =
∑

l≥j

Ψ≤jvl+1 −Ψ≤jvl.

By Sobolev embedding and a similar argument to the C1, 12 bound for ηj+1 − ηj , we see that

‖Ψ≤jvl+1 −Ψ≤jvl‖W 1,∞ ≤ C22
−lδ,

which gives by summation

(9.26) ‖Ψ≤jv −Ψ≤jvj‖W 1,∞ ≤ C22
−jδ.

Using the error bound for I −Ψ≤j , Sobolev embedding and the higher energy bounds, we also have

(9.27) ‖Ψ≤jvj − vj‖W 1,∞ ≤ C22
−jδ.

Combining (9.25), (9.26) and (9.27) shows that

‖vj‖W 1,∞(Ωj) ≤ C1(A)B + C22
−jδ.

Doing a similar estimate for ‖vj‖
C

1
2
+ǫ(Ωj)

and taking j large enough allows us to close the bootstrap for Aj .

It remains now to improve the bootstrap assumption for the Taylor term aj . To do this, we need a suitable

way of comparing the C1 norms of the pressures pj and p. We begin by defining the shrunken domain Ω′

via η′ := η − 2−j0 . As Ωj is within distance O(2−
3
2 j) of Ω for j ≥ j0, it follows that

Ω′ ⊂ Ω ∩
⋂

j≥j0

Ωj .

We next note the following bound which holds on Ω′ for any 0 < δ < ǫ
2 ,

(9.28) ‖vj − v‖
C

1
2
+δ(Ω′)

≤ C22
−j0δ.

This follows by similar reasoning to the above. Now, we establish the following C1 estimate for p− pj:

(9.29) ‖p− pj‖C1(Ω′) ≤ C22
−j0δ.

We begin by splitting p− pj into an inhomogeneous part plus a harmonic part on Ω′,

p− pj = ∆−1∆(p− pj) +H(p− pj).
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Using Proposition 5.15, the dynamic boundary condition and the fact that the boundary of Ω′ is within

distance 2−j0 of the boundaries of Ω and Ωj , we have

‖H(p− pj)‖C1,δ(Ω′) .C 2−j0δ(‖p‖C1,ǫ(Ω) + ‖pj‖C1,ǫ(Ωj)).

By Lemma 7.5 and the bootstrap assumption on Aj , this gives

‖H(p− pj)‖C1,δ(Ω′) .C 2−j0δ.

To estimate the inhomogeneous part, we can argue similarly to the proof of Lemma 7.5 using a bilinear

frequency decomposition for ∆(pj − p), to obtain

‖∆−1∆(p− pj)‖C1(Ω′) .C ‖v − vj‖
C

1
2
+δ(Ω′)

≤ C22
−j0δ,

where in the second inequality we used (9.28). Finally, to close the bootstrap on the Taylor term aj , we can

work in collar coordinates on Γ∗ to estimate

inf
x∈Γj

|∇pj(x)| ≥ inf
x∈Γ

|∇p(x)| − ‖pj − p‖C1(Ω′) − 2−j0δ(‖pj‖C1,ǫ(Ωj) + ‖p‖C1,ǫ(Ω)).

In the above, we first estimate the error between ∇pj(x + ηj(x)ν(x)) and ∇pj(x + η′(x)ν(x)) (and also

∇p(x + η′(x)ν(x)) and ∇p(x + η(x)ν(x))) using the C1,ǫ Hölder regularity of pj and p. Then, we estimate

the difference between ∇pj(x+ η′(x)ν(x)) and ∇p(x+ η′(x)ν(x)) on the common domain using our bounds

for ‖pj − p‖C1(Ω′).

Taking j0 large enough and using (9.29) and Lemma 7.5, this gives

aj ≥
2

3
c0,

which closes the bootstrap for aj .

From the above argument, we see that for j ≥ j0, the regular solutions (vj ,Γj) are defined on the interval

[T̃ , T ] and satisfy the assumptions (9.21). What we do not yet know is whether we have a uniform in j

bound for the Hs norm of (vj ,Γj). Once we have this, (9.17) will follow from our continuous dependence

result. From here on, we assume without loss of generality thatMT̃ ≫ C(A). We let cj denote the frequency

envelope for the data at time T̃ . Similarly to the above, on a time interval [T̃ , T0], we make the bootstrap

assumption that for finitely many j ≥ j0,

(9.30) ‖(vj ,Γj)‖Hs ≤M2
T̃
.

As in the previous subsection, we let α ≥ 1 be such that s+α is an integer. Then the higher energy bounds,

(9.30) and (9.21) yield

‖(vj ,Γj)‖Hs+α . 2jαcj exp(Kδ0 log(M
2
T̃
))MT̃

where K is some constant depending on C. As long as δ0 is such that Kδ0 ≪ 1, we obtain

(9.31) ‖(vj ,Γj)‖Hs+α . 2jαcjM
1+δ

T̃

for some positive constant δ ≪ 1. A similar argument with the difference bounds yields

D((vj ,Γj), (vj+1,Γj+1))
1
2 . 2−jscjM

1+δ

T̃
.

Arguing as in the local well-posedness result, we can use the above two bounds to estimate

‖(vj ,Γj)‖Hs .M1+δ

T̃
,
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which improves the bootstrap. We are then able to finally conclude the bound (9.17) and thus the proof of

Theorem 1.7.
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[17] Thibault de Poyferré. A priori estimates for water waves with emerging bottom. Arch. Ration. Mech. Anal., 232(2):763–812,

2019.

[18] Marcelo M. Disconzi, Mihaela Ifrim, and Daniel Tataru. The relativistic Euler equations with a physical vacuum boundary:

Hadamard local well-posedness, rough solutions, and continuation criterion. Arch. Ration. Mech. Anal., 245(1):127–182,

2022.

[19] Marcelo M. Disconzi, Igor Kukavica, and Amjad Tuffaha. A Lagrangian interior regularity result for the incompressible

free boundary Euler equation with surface tension. SIAM J. Math. Anal., 51(5):3982–4022, 2019.

[20] G. Dziuk and C. M. Elliott. Finite elements on evolving surfaces. IMA J. Numer. Anal., 27(2):262–292, 2007.

[21] David G. Ebin. The equations of motion of a perfect fluid with free boundary are not well posed. Comm. Partial Differential

Equations, 12(10):1175–1201, 1987.

[22] Tarek M. Elgindi and Nader Masmoudi. L∞ ill-posedness for a class of equations arising in hydrodynamics. Arch. Ration.

Mech. Anal., 235(3):1979–2025, 2020.

[23] E. B. Fabes, M. Jodeit, Jr., and N. M. Rivière. Potential techniques for boundary value problems on C1-domains. Acta

Math., 141(3-4):165–186, 1978.

[24] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics.

Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[25] Daniel Ginsberg. On the breakdown of solutions to the incompressible Euler equations with free surface boundary. SIAM

J. Math. Anal., 53(3):3366–3384, 2021.



116 MIHAELA IFRIM, BEN PINEAU, DANIEL TATARU, AND MITCHELL A. TAYLOR

[26] John K. Hunter, Mihaela Ifrim, and Daniel Tataru. Two dimensional water waves in holomorphic coordinates. Comm.

Math. Phys., 346(2):483–552, 2016.

[27] Mihaela Ifrim and Daniel Tataru. The compressible Euler equations in a physical vacuum: a comprehensive Eulerian

approach. arXiv preprint arXiv:2007.05668, 2020.

[28] Mihaela Ifrim and Daniel Tataru. Local well-posedness for quasi-linear problems: a primer. Bull. Amer. Math. Soc. (N.S.),

60(2):167–194, 2023.

[29] David Jerison and Carlos E. Kenig. The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal., 130(1):161–

219, 1995.
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