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BOUNDARY ELEMENT METHODS FOR THE LAPLACE HYPERSINGULAR
INTEGRAL EQUATION ON MULTISCREENS: A TWO-LEVEL

SUBSTRUCTURING PRECONDITIONER

MARTIN AVERSENG∗, XAVIER CLAEYS† , AND RALF HIPTMAIR‡

Abstract. We present a preconditioning method for the linear systems arising from the boundary element
discretization of the Laplace hypersingular equation on a 2-dimensional triangulated surface Γ in R3. We allow Γ to
belong to a large class of geometries that we call polygonal multiscreens, which can be non-manifold. After introducing
a new, simple conforming Galerkin discretization, we analyze a substructuring domain-decomposition preconditioner
based on ideas originally developed for the Finite Element Method. The surface Γ is subdivided into non-overlapping
regions, and the application of the preconditioner is obtained via the solution of the hypersingular equation on each
patch, plus a coarse subspace correction. We prove that the condition number of the preconditioned linear system
grows poly-logarithmically with H/h, the ratio of the coarse mesh and fine mesh size, and our numerical results
indicate that this bound is sharp. This domain-decomposition algorithm therefore guarantees significant speedups
for iterative solvers, even when a large number of subdomains is used.

1. Introduction. The problem that we study arises in the numerical computation, via the
Boundary Element Method (BEM), of the solution U to the exterior Neumann boundary value
problem

(1.1)





∆U = 0 in R
3 \ Γ ,

U = O(∥x∥−1
) uniformly for ∥x∥ → ∞ ,

∇U · n = g · n on Γ .

Here, n is a normal vector field on Γ, g is a continuous vector field in R
3, and Γ is a “polygonal

multi-screen”, that is a 2-dimensional surface in R
3 made of various flat panels allowed to intersect

at non-manifold junction points and lines (a more precise definition of the allowed geometries is
given below). An example of such a geometry is displayed in Figure 1.1 (left). The ideas that
we present can likely be adapted to other constant-coefficient elliptic partial differential equations
(PDEs). To keep the presentation focused, we restrict our analysis to the model problem (1.1) for
the time being.

Both for the continuous and the discrete analysis, the challenge in solving eq. (1.1) lies in
the singular nature of the geometry on which the boundary condition is imposed. Such singular
geometric models occur regularly in engineering applications, see, e.g., [1, 9, 15, 16, 24, 35, 40, 5].

The first difficulty for the BEM is that, for general polygonal multi-screens Γ, a reformulation
of eq. (1.1) as a boundary integral equation involving a coercive bilinear form acting on densities on
Γ has been analyzed only recently [12], and a conforming and converging Galerkin discretization of
this variational problem has remained elusive. So far, all proposed methods involved a non-definite
variational form on the finite-dimensional subspaces, and a “quotient-space” iterative resolution see
[11, 13, 14].

Secondly, for such irregular surfaces Γ, reformulations of the PDE (1.1) as a second-kind integral
equation – which are often preferred to first-kind alternatives due to their inherent good conditioning
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Figure 1.1. Example of a 3-dimensional multi-screen (left) and plane-wave scattering by this non-manifold
obstacle with incidence along the (−1,−1,−1) direction. This computation has been performed using the Galerkin
method described in this paper.

– do not seem to be known, and hence, preconditioning becomes a crucial issue. This has been the
main focus of the recent works [13, 14] of Cools and Urzúa-Torres for acoustic and electromagnetic
scattering1, using the idea of operator preconditioning [10, 21, 36].

The present contribution addresses both difficulties, with a focus on rigorous numerical analy-
sis. The first part of this work describes a reformulation of the PDE (1.1) into a coercive variational
problem, and proposes a conforming and converging Galerkin discretization, also covering key as-
pects of the implementation. The second part is concerned with preconditioning; here we opt for
a domain-decomposition strategy. More precisely, we introduce a preconditioner in the form of a
two-level additive Schwarz subspace decomposition via substructuring. Although these tools were
originally developed for Finite Element Methods (FEM) (this was started in [6] by Bramble Pasciak
and Schatz, see [37, Chap. 5] for a comprehensive presentation), their use in BEM has received
some attention in the past 30 years, see e.g. [17, 38, 18, 19, 20, 26, 25, 27] and references therein.

We generalize this type of methods to multiscreen geometries. Our approach is original con-
cerning the analysis of the splitting of the discretized space of jumps. Instead of relying on “almost
local” properties of the H1/2 norm, we harness stability results that are known for volume split-
tings in FEM, and transfer them to Γ by applying the jump operator [·]Γ. We show that stability
is preserved by this operation under a set of conditions related to the existence of stable extension
operators from the trace space back to the volume, see also [23, Thm 2.2]. By checking that these
conditions hold, we obtain an upper bound on the condition number of the preconditioned BEM
linear system which is polylogarithmic in the ratio of the coarse and fine mesh size, see Theorem 2.1.
This bound holds for all polygonal multi-screens, even those excluded from the analysis of [13] (such
as the one represented in Figure 1.1).

The outline is as follows. We state the main result and illustrate it with numerical experiments
in Section 2. In Section 3, we recast the PDE (1.1) into a coercive variational problem, and present
a conforming Galerkin discretization method in Section 4. Section 5 deals with the stability of

1It is worth mentioning that the analysis in those references accommodates for a indefinite framework, whereas
the present work relies heavily on the positive-definiteness of the bilinear form.
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induced splittings on quotient spaces. We formulate the splitting of the jump space required to
define our preconditioner in Section 6 and then prove the condition number estimate. We also
collect in the appendix proofs of some useful results previously stated in the multi-screen literature
(see Theorems 3.8 and B.2).

A full Matlab/C++ prototype of the algorithm described in this paper is freely available and
includes the scripts to reproduce the numerical results presented below.2

2. Main result and numerical experiments.

2.1. Main result. We compute the solution U to (1.1) as a suitable double-layer potential

on Γ (see Definition 3.3) where the unknown density φ ∈ H̃1/2([Γ]) is the unique solution of a
variational problem of the form

(2.1) a(φ, ψ) = lg(ψ) ∀ψ ∈ H̃1/2([Γ]) .

The Hilbert space H̃1/2([Γ]) models Dirichlet jumps across Γ. Its precise definition is recalled in
Section 3; we will show that the symmetric bilinear form a of (3.5) induces an equivalent norm on

this space, and that lg : H̃
1/2([Γ]) → R defined by (3.12) is a continuous linear form. Introducing a

family of nested, shape-regular and quasi-uniform triangulations (Th)h>0 of Γ, indexed by an upper
bound h > 0 on the maximal element diameter, we build an asymptotically dense sequence of
subspaces Ṽh([Γ]) ⊂ H̃1/2([Γ]), which correspond to jumps of continuous piecewise linear functions
on Γ, and define a converging sequence of approximations φh of φ via the Galerkin method

(2.2) a(φh, ψh) = lg(ψh) ∀ψh ∈ Ṽh([Γ]) .

Given two triangulations, Th, TH , with h < H, we define an additive Schwarz preconditioner based
on a subspace splitting [37, Chap. 2]

(2.3) Ṽh(Γ) =
( ∑

F element of TH

ṼF
)
+ ṼW + ṼH .

The definition of the “face spaces” {ṼF}F and the “wire-basket” space ṼW is based on a decom-
position of the vertex set of Th into the vertices lying in the interior of a triangular element F of
TH , and those lying on edges or vertices of TH , respectively. In addition, ṼH := ṼH([Γ]) ⊂ Ṽh([Γ])
defines a coarse space for the splitting. The precise definitions of the subspaces are given in Def-
inition 6.6 and a sketch in Figure 2.1 visualizes the elements of the subspaces. Additive Schwarz
preconditioning based on this splitting turns the discrete variational problem (2.2) into an equation

where the operator Pad : Ṽh([Γ]) → Ṽh([Γ]) to be evaluated is defined by

Pad(H;h) :=
∑

F face of Γ

PF + PW + PH ,

with PX the a(·, ·) orthogonal projection of Ṽh([Γ]) onto the subspace ṼX . The main result of this
paper is the following bound on the spectral condition number κ(Pad(H;h)) of this operator.

Theorem 2.1. There exists C > 0 such that for all 0 < h < H,

κ(Pad(H;h)) ≤ C
(
1 + log(H/h)2

)
.

2https://github.com/MartinAverseng/multi-screen-bem3D-ddm
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Numerical results in Subsection 2.2 show that this bound is sharp, and in particular that the loga-
rithmic term cannot be removed. The method presented here and the condition number estimate
in Theorem 2.1 are very similar to the ones obtained in [20, Theorem 1] [19, Theorem 1] for planar
surfaces in dimension 3.

Figure 2.1. For a simple multiscreen Γ composed of 3 coarse triangles and for piecewise-linear H̃1/2(Γ)-
conforming boundary element spaces, sketch of the boundary values of the basis functions belonging to each of the
three types of sets in the splitting (6.5). Left: a coarse basis function. Middle: a face basis function. Right: two
wire-basket basis functions. In this example, there are three face spaces, one associated to each coarse triangle. The
vertices corresponding to the right-most face space are highlighted as green triangles in the middle figure. Similarly,
the vertices corresponding to the wire-basket space are highlighted as orange squares in the third figure, and the
vertices associated to the coarse space, as red circles in the first figure.

Remark 2.2 (Bound on the number of Preconditioned Conjugate Gradient iterations). Let Ah :

Ṽh([Γ]) → Ṽh([Γ])
′ be the operator defined by

⟨Ahuh, vh⟩ := a(uh, vh) , ∀uh, vh ∈ Ṽh([Γ]) ,

Then one can check that the variational problem (2.2) is equivalent to

(2.4) Pad(H;h)φ =M(H;h)lg .

with M(H;h) : Ṽh([Γ])
′ → Ṽh([Γ]) defined by

Ṽh([Γ])
′ ∋ l 7→

∑

F face of Γ

ϕF + ϕW + ϕH

and where ϕX ∈ ṼX is the unique solution of the variational problem

Find ϕX ∈ ṼX s.t. a(ϕX , vX) = l(vX) ∀vX ∈ ṼX .

Note that Pad(H;h) =M(H;h)Ah and that M(H;h) – hence also Pad(H;h) – can be evaluated in
parallel. The quantity κ = κ(Pad(H;h)) controls the rate of convergence, in the a(·, ·)1/2 norm, of
the preconditioned conjugate gradient method for the resolution of (2.4) in the sense that the error

en = φn−φ after n iterations satisfies a(en, en)
1/2 ≤ 2ρna(e0, e0)

1/2, where ρ =
√
κ−1√
κ+1

, see e.g. [30,

p.163].

Remark 2.3 (Approximate solvers). It is possible to extend the theory to accommodate for
“approximate solvers” on the subspaces, which amounts to defining the operators PX in eq. (2.3)
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as ãX(·, ·)-orthogonal projections onto ṼX , for some suitable choice of the local bilinear form ãX(·, ·)

on the considered subspace ṼX . For instance, using the quasi-uniformity assumption of the mesh,
it is possible to prove that the condition number bound of Theorem 2.1 still holds when replacing
the exact bilinear form on the wire-basket by a cheaper, pointwise scalar product, much in the
spirit of [6, Remark 4.3]. Similarly, it is a natural idea to consider approximate solvers on the faces
using for instance Calderón preconditioning (this is essentially the central idea of [13]), or other
approximations of the Laplace layer potentials on screens [22, 3], but tracking the dependence with
respect to the coarse mesh parameter H seems more delicate in this case; we leave that question to
future work.

Remark 2.4 (Provenance of the logarithmic factor). The logarithmic factor comes from the
use of a decomposition of Γ into panels with no overlap, and, in the analysis, from discrete trace
inequalities for edges in R

3 [37, Lemma 4.16]. The work [13], in which a similar condition number
estimate is proved for a BEM preconditioner on multi-screens, can be thought of as using panels
with generous overlap, a situation which in principle (in view of the corresponding properties for
substructuring algorithms in FEM) should lead to the complete removal of the logarithmic factors.
However, in that reference, approximate solvers are used on the face spaces, given by the standard
Calderón preconditioners. This re-introduces the logarithmic factor, but from a somewhat different
source, namely the so-called “duality mismatch” between the spaces H±1/2(S) when S is a smooth
manifold with boundary.

Remark 2.5 (Case where Γ is a manifold). All the material discussed in this paper also applies
to the case where Γ is a regular manifold with or without boundary. The Galerkin method then
reduces to the standard boundary element method for the hypersingular equation on Γ. In this
regard, our presentation differs from other works on BEM for multiscreens [11, 13, 14]; the difference
comes from the fact that we remove the kernel from the hypersingular operator, cf. Definition 3.5.

2.2. Motivating numerical experiments.
Experiment 1. Failure of “naive” BEM with multiscreens. We consider a “plus-shaped” geom-

etry Γ = [−1, 1]× {0} ∪ {0} × [−1, 1] and let

U(x1, x2) = Re

(
−1

2iw

)
,

where z = x1 + ix2 and w is defined by the conformal mapping z = 1
2

(
w + 1

w

)
from the region

|z| > 1 to the region C \ [−1, 1] (see [28, Exercise 8.16]). Note that U is the potential generated
by a dipole distribution of density φ(x1, x2) =

√
1− x21 on Γ. One can check that U is harmonic

on R
2 \ Γ (it is even harmonic on R

2 \ ([−1, 1]× {0})) and satisfies an appropriate decay condition
at infinity. This explicit solution to the Laplace equation in the complement of Γ can thus be
used to test a boundary element method. Taking the cue from the hypersingular boundary integral
equation on screens, a naive approach is to discretize Γ using an edge mesh with 4 coarse elements
corresponding to the 4 arms of the cross, and subdividing each element into a finite number of
segments, giving a mesh MΓ,h. The surface is not orientable, but in principle, one can attempt to
pick an arbitrary choice of a normal vector field n on each element and solve for the surface density
φh,naive ∈ Vh(Γ) such that

(2.5)
−1

2π

∫∫

Γ×Γ

nx ×∇Γφh,naive(x) · ny ×∇Γψ(y) ln(∥x− y∥)dxdy =

∫

Γ

nx · ∇U(x)ψ(x)dx
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Figure 2.2. Left: multi-screen Γ with a non-uniform mesh, and choice of normal vector n for the computation
of D. Right: discrete ℓ2 error for the “naive method” (blue curves) for the uniform (solid line) and non-uniform
mesh (dashed line). Comparison with the “new method”, the Galerkin method presented in this paper (red curves)

for all ψ ∈ Vh(Γ). Here, Vh(Γ) is the set of continuous piecewise linear functions on the mesh
MΓ,h, with a Dirichlet condition on ∂Γ, and ∇Γ is the tangential gradient on Γ. The corresponding
potential Uh is given by the formula

Uh(x) :=
−1

2π

∫

Γ

ny · (y − x)

∥x− y∥2
φh,naive(y)dy .

This would be the standard boundary element methodology, albeit applied to a non-manifold mesh
MΓ,h. However, as is obvious in Figure 2.3, the solution Uh obtained in this way is incorrect. We

examine this problem further by computing the discrete ℓ2 norm of U
(i)
h −U on a Cartesian grid in

a square box surrounding Γ, for two families (U
(i)
h )h>0, i = 1, 2, of “naive approximations”, indexed

by the average mesh size h, where the mesh of Γ is uniform (i = 1) or quadratically refined near
the 4 vertices of ∂Γ (i = 2). The results are plotted as the solid and dashed blue curves in Figure
2.2, respectively. In both cases, they show a slow decrease of this error as h → 0. We compare
those convergence curves (“naive method”) to the ones obtained when the approximation of U is
computed via the conforming Galerkin method described in this paper (“new method”). In this
case, we observe convergence orders of O(h) for the uniform mesh and O(h2) for the quadratically
refined mesh (solid and dashed red curves, respectively).

In the example above, the true solution has a single-valued jump on the multi-screen, hence
one may expect that some better choice of normal vector might still allow the naive BEM to find
the right solution. In the next example, we change the Neumann condition in a way that makes the
solution truly 4-valued at the cross-point. In this case, the exact solution is not known analytically,
but it is clear that the naive BEM cannot converge to the right solution, since it can only have up
to 2 different limits at the cross-point. Figure 2.5 shows a comparison between the two methods in
such a case.

Experiment 2. Condition numbers for a 2D multi-screen. We now illustrate our main result
about the substructuring preconditioner, first for a 2D setting (our presentation is restricted to
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Figure 2.3. Left: solution Uh computed via the “naive” method involving the variational problem (2.5), with
a mesh size of with a uniform mesh, h = 0.025. Middle: exact solution. Right: error in base 10 logarithmic scale.
The “naive” method produces a qualitatively wrong solution, with the error concentrated at the cross-point.

Figure 2.4. Left: solution D computed via the new method described in this paper, with a uniform mesh of
size h = 0.05. Middle: exact solution. Right: error in base 10 logarithmic scale. The “new” method produces the
correct solution, up to a small error concentrated near the edge singularities of the exact solution U .

Figure 2.5. Approximate solutions of Problem (1.1) with a Neumann condition given by the constant vector
field g = (1, 2)T . Left: “naive” method, Right: “new” method. The solutions produced by the two methods are
conspicuously different at the center of the cross.
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dimension 3, but the analysis carries over in the easier case of dimension 2). The multi-screen used
in this example is a “threefold junction”, that is, a set of three line segments joining the center of
gravity of an equilateral triangle to its vertices. We compare in Figure 2.6 the spectral condition
number for the linear system when no preconditioner is used, to the condition number κ(Pad(H;h))
of the preconditioned linear system using our substructuring domain decomposition method. As
expected from results available for regular geometries, see [33, Section 4.5], we observe a condition
number of the linear system without preconditioner behaving like O(h−1). The growth of the
spectral condition number for the preconditioned linear system is in agreement with Theorem 2.1.

Figure 2.6. Condition number κ (in log-scale) of the preconditioned linear system, as a function of H and h,
and comparison with the condition number when no preconditioner is used. Top: 2D problem (threefold junction).
Bottom: 3D problem (“bow-tie” multiscreen depicted in Figure 2.7).
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Figure 2.7. Left: the polygonal multiscreen used in the experiments of Figure 2.6 (bottom panel). It is
composed of two equal-sized and perpendicularly arranged equilateral triangles, intersecting along a common median
(highlighted in red). Right: some isosurfaces of the numerical approximation of the field U solving the problem (1.1)
with a constant vector g = (1, 0.5, 0.25)T .

Experiment 3. Condition numbers for a 3D multi-screen. We include analogous experimental
results in a 3D setting in Figure 2.6, bottom panel, using the multi-screen geometry in Figure 2.7.
The results are qualitatively similar to those in 2D, and illustrate the sharpness of Theorem 2.1, in
particular with respect to the power of the logarithmic factor in the estimate.

We now continue with the definition and analysis of the additive Schwarz preconditioner, and
the proof of Theorem 2.1.

3. Laplace hypersingular Boundary Integral Equation on Multiscreens. In this sec-
tion, we formulate a precise boundary value problem for the Laplace equation in R

3 \ Γ with
Neumann conditions on the multiscreen. We give an equivalent reformulation of this problem a
boundary integral equation. Most of the material is recalled from [12]. For conciseness, and with
our boundary element application in mind, we restrict the presentation to polygonal multiscreens.

3.1. Polygonal multi-screens. We use the same notation as in [4]. An n-simplex S, for
n ∈ {0, 1, 2, 3}, is a set of n + 1 affinely independent points in R

3, called the vertices of S. The
closed convex hull of the vertices of S is denoted by |S|. The simplex S is a vertex, edge, triangle, and
tetrahedron when n = 0, 1, 2, and 3, respectively. For n ≥ 1, the facets of S are the (n−1)-simplices
S′ such that S′ ⊂ S; the set of all facets of S is denoted by F(S).

Definition 3.1 (Simplicial mesh). An n-dimensional mesh M is a finite set of n-simplices
satisfying the condition

∀(S, S′) ∈ M×M , |S ∩ S′| = |S| ∩ |S′| .

Given an n-dimensional mesh M, let

F(M) :=
⋃

S∈M
F(S) .
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For n ≥ 1, the boundary ∂M ⊂ F(M) is the (n− 1)-dimensional mesh defined as the set of faces
that occur in exactly one simplex of M, that is,

∂M := {F ∈ F(M) | ∃!S ∈ M s.t. F ∈ F(S)} .

The geometry of a mesh M is defined by

|M| :=
⋃

S∈M
|S| .

The n-dimensional mesh M is regular if its geometry is a manifold. If n ≥ 1, then ∂M is also a
regular mesh, and there holds |∂M| = ∂ |M|.

Definition 3.2 (Polygonal multi-screen). A set Γ is a polygonal multi-screen, if there exists
a regular tetrahedral mesh MΩ of a sufficiently large open cube Ω = [−l, l]3 ⊂ R

3, l > 0, and a
triangular mesh MΓ ⊂ F(MΩ) \ ∂MΩ such that

Γ = |MΓ| .

The mesh MΩ is further assumed to be partitioned into a collection of regular tetrahedral meshes
MΩ1

, . . . ,MΩJ
, in such a way that MΓ ⊂ ∂MΩ1

∪ . . . ∪ ∂MΩJ
and, for each j ∈ {1 , . . . , J}, the

intersection Γ∩∂Ωj is a Lipschitz screen (i.e. a Lipschitz manifold with Lipschitz boundary) where
Ωj = int(

∣∣MΩj

∣∣).
It follows from the definition that a multi-screen Γ is a compact set. Setting in addition Ω0 := R

3\Ω,
the sets Ω0, . . . ,ΩJ then define a Lipschitz partition of R3, in the sense of [12, Definition 2.2]. A
polygonal multi-screen is thus a particular case of a multi-screen in the sense of [12, Definition 2.3].
The mesh MΩ is merely used for theoretical analysis and is not needed in our algorithm.

In the remainder of this work, we fix a polygonal multi-screen Γ. For convenience, we further
assume that R

3 \ Γ is connected.3 We denote by γj : H1(Ωj) → L2(∂Ωj) the pointwise trace
operator [28, p. 100]. In Section 6, we require that all Ωj for j ̸= 0 be tetrahedra of diameter
bounded by some constant H > 0, thus providing a coarse mesh of MΩ. This can be achieved, if
necessary, by redefining the sets Ωj . For now, we impose no restrictions on the size of the domains
Ωj and the constants in the estimates proved in the next section are thus independent of H.

3.2. Quotient trace spaces. For an open set U ⊂ R
3, let C∞

c (U) be the set of real-valued
functions u that are infinitely differentiable and compactly supported on U . Let L2(U) be the set of
real-valued square-integrable functions on U . We denote by H1(U) the Sobolev space of functions
u ∈ L2(U) such that there exists a square-integrable vector field p ∈ (L2(U))3 satisfying

∫

U

u divφ dx = −

∫

U

p · φ dx ∀φ ∈ (C∞
c (U))3 .

Writing ∇u := p for the weak gradient of u on U , a Hilbert structure is defined on H1(U) by

∥u∥2H1(U) := ∥u∥2L2(U) + ∥∇u∥2L2(U) .
4

3This ensures uniqueness of the solution U of (1.1). If R3 \ Γ has several connected components, the solution
is unique up to adding constants in the bounded connected components. The material discussed here can easily be
adapted to handle this situation – in particular the case where Γ is a closed surface such as the boundary ∂P of a
polyhedron P – but we omit this for conciseness.

4We emphasize that our notation for H1(U) differs from the standard [28, Chap. 3], where this space is denoted
by W 1(U), and where H1(U) is instead defined via Fourier transforms (with the two definitions coinciding, e.g.,
when U is a Lipschitz domain, but this will not be the case for most instances of U below).
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Let H1
0,Γ(R

3) be the closure of C∞
c (R3 \Γ) in H1(R3). The multi-trace space H

1/2(Γ) is the Hilbert
space defined by the quotient [12, eq. (5.1)]

H
1/2(Γ) := H1(R3 \ Γ)/H1

0,Γ(R
3) .

The (Dirichlet) multi-trace operator is defined as the canonical surjection

(3.1) γ : H1(R3 \ Γ) → H
1/2(Γ)

associated to this quotient space. By definition of quotients of Hilbert spaces,

∥u∥
H1/2(Γ) = min

{
∥V ∥H1(R3\Γ)

∣∣∣ γV = u, V ∈ H1(R3 \ Γ)
}

= min
{
∥U + U0∥H1(R3\Γ)

∣∣∣ U0 ∈ H1
0,Γ(R

3)
}

∀U ∈ H1(R3 \ Γ) s.t. γU = u .

Let H1/2([Γ]) be the single-trace space, which is the closed subspace of H1/2(Γ) defined by

H1/2([Γ]) := γ(H1(R3)) .

In turn, the jump space H̃1/2(Γ) is the Hilbert space defined by the quotient [12, Proposition 6.8]

H̃1/2([Γ]) := H
1/2(Γ)/H1/2([Γ]) ,

and the jump operator [·]Γ is defined as the corresponding canonical surjection. We will also conve-
niently write [u]Γ as short for [γ(u)]Γ when u ∈ H1(R3 \ Γ).

With a similar construction, where the role of the gradient is played by the divergence, one
defines H(div,R3), H0,Γ(div,R

3) and the quotient space

H
−1/2(Γ) := H(div,R3 \ Γ)/H0,Γ(div,R

3) ,

and πn refers to the associated canonical surjection. Again, H−1/2([Γ]) is the single-trace space of
H

−1/2(Γ), defined by
H−1/2([Γ]) := πn

(
H(div,R3)

)
.

A well-defined bilinear form is obtained by [12, eq. (5.2)]

∀(u, v) ∈ H
1/2(Γ)×H

−1/2(Γ) , ⟨⟨u , v⟩⟩ :=
J∑

j=1

∫

Ωj

∇f(x) · p(x) + f(x) divp(x) dx ,

where f and p are arbitrary representatives of u and v, i.e., u = γ(f), v = πn(p). This realizes an
isometric duality pairing in the sense that [12, Prop. 5.1]

(3.2) ∥u∥
H1/2(Γ) = sup

φ∈H−1/2(Γ)

⟨⟨u , φ⟩⟩

∥φ∥
H−1/2(Γ)

, ∥v∥
H−1/2(Γ) = sup

ψ∈H1/2(Γ)

⟨⟨u , ψ⟩⟩

∥ψ∥
H1/2(Γ)

.

Moreover, the single-trace spaces H±1/2([Γ]) are each other’s polar under this bilinear form [12,
Proposition 6.3], i.e.,

(3.3) H1/2([Γ]) =
{
u ∈ H

1/2(Γ)
∣∣∣ ⟨⟨u , v⟩⟩ = 0 , ∀v ∈ H−1/2([Γ])

}
,
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(3.4) H−1/2([Γ]) =
{
v ∈ H

−1/2(Γ)
∣∣∣ ⟨⟨u , v⟩⟩ = 0 , ∀u ∈ H1/2([Γ])

}
.

We further introduce the Hilbert space

H1(∆, U) :=
{
u ∈ H1(U)

∣∣ ∇u ∈ H(div, U)
}
,

with the norm ∥u∥2H1(∆,U) := ∥u∥2H1(U)+∥∇u∥2H(div,U), and let H1
loc(∆, U) be the space of functions

u such that χu ∈ H1(∆, U) for any smooth compactly supported functions χ.

3.3. Exterior Neumann boundary value problem. We seek the solution U of the solution
of the Boundary Value Problem (BVP)

(3.5) ∆U = 0 in R
3 \ Γ

with a prescribed normal derivative on Γ, and the decay condition

(3.6) U(x) = O

(
1

∥x∥

)
,

uniformly as x→ ∞, where ∥x∥ is the Euclidean norm of x. To prescribe the boundary condition,
we supply a sufficiently regular vector field g on R

3 such that the normal component of ∇U agrees
with g on Γ. More formally, we impose that

(3.7) πn(∇U) = πn(g) in H
−1/2(Γ) ,

where g ∈ H(div,R3). In particular, this requires the normal derivative of U to be “continuous”
across Γ, i.e., to be an element of the single-trace space H−1/2([Γ]).

3.4. Variational hypersingular boundary integral equation. We seek the solution U of
the Neumann boundary value problem in the form of a double-layer potential.

Definition 3.3 (Double-Layer potential). For u ∈ H
1/2(Γ), the double-layer potential DLu

is defined by
∀x ∈ R

3 \ Γ , DLu(x) := x 7→ ⟨⟨u , πn(∇Gx)⟩⟩ ,

where

∀y ∈ R
3 , Gx(y) :=





0 if y = x,

χx(y)

4π ∥x− y∥
otherwise,

and χx is any smooth compactly supported function equal to 0 in a neighborhood of x, and 1 in a
neighborhood of Γ.

The value of DLu(x) is independent of the particular choice of cutoff function, and Lemma 3.11
gives a concrete integral representation of this operator which generalizes the commonly known
formula. Furthermore, DL maps H1/2(Γ) to H1

loc(∆,R
3 \ Γ) continuously, satisfies the property

(3.8) DLu = 0 ∀u ∈ H1/2([Γ]) ,

and the jump relation [12, Prop. 8.5]

(3.9) [DLu]Γ = [u]Γ ∀u ∈ H
1/2(Γ) .
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Finally, note that by the property (3.8), DL induces a linear continuous map on H̃1/2([Γ]), again

denoted by DL. For u ∈ H̃1/2(Γ) and U ⊂ R
3 \Γ an open set, (DLu)|U ∈ C∞(U) and ∆(DLu) = 0

on U . Moreover, DLu satisfies the decay condition (3.6).

Proposition 3.4 (Hypersingular operator [12, Section 8]). The hypersingular operator W :=
πn ◦ ∇ ◦DL is well-defined and continuous from H

1/2(Γ) → H−1/2([Γ]).

Let b : H1/2(Γ)×H
1/2(Γ) → R be the bilinear form defined by

(3.10) b(u, v) := ⟨⟨v ,Wu⟩⟩ , ∀u, v ∈ H
1/2(Γ) .

Then, by Lemma C.2, the bilinear form b is symmetric and positive, but it is only semi-definite;
due to the relation (3.8), it satisfies b(u, ·) = 0 for all u ∈ H1/2([Γ]). However, we may define a new

bilinear form a : H̃1/2([Γ])× H̃1/2([Γ]) → R by quotienting b with respect to H1/2(Γ), as follows.

Definition 3.5 (The hypersingular bilinear form). For any φ, ψ ∈ H̃1/2([Γ]), we define

(3.11) a(φ, ψ) := b(u, v) where u, v ∈ H
1/2(Γ) satisfy [u]Γ = φ , [v]Γ = ψ .

This definition is valid (i.e., it does not depend on the choice of u and v) since H1/2([Γ]), which
is the kernel of [·]Γ in H

1/2(Γ), is also in the kernel of b. From the mapping properties of W and
Theorem C.3, we immediately obtain the following result.

Theorem 3.6 (Coercivity of the hypersingular bilinear form). The hypersingular bilinear form
a is continuous, positive definite and bounded from below. It induces an equivalent inner product
on H̃1/2(Γ), i.e. there exist constants cW , CW > 0 such that

∀φ ∈ H̃1/2([Γ]) , cW ∥φ∥2H̃1/2([Γ]) ≤ a(φ,φ) ≤ CW ∥φ∥2H̃1/2([Γ]) .

We introduce the linear form

(3.12) lg : H̃
1/2(Γ) ∋ [u]Γ 7→ ⟨⟨γu , πn(g)⟩⟩ .

This is a well-defined continuous linear form by the polarity property (3.3).

Theorem 3.7 (Variational formulation of the the Laplace Neumann boundary value problem).
The variational problem

(3.13) Find φ ∈ H̃1/2([Γ]) such that a(φ, ψ) = lg(ψ) for all ψ ∈ H̃1/2([Γ]) .

has a unique solution φ∗, and U = DLφ∗ is the unique solution of the BVP

(3.14)





∆U = 0 in R
3 \ Γ ,

U = O
(

1
∥x∥

)
uniformly for x→ ∞ ,

πn(∇U) = πn(g) in H
−1/2(Γ) .

The proof is given in Appendix C.
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3.5. Weakly singular integral representations. We denote by uj := u|Ωj
the restriction

of u to Ωj . Let nj be the outward pointing unit normal vector of ∂Ωj and dσj the surface measure
on ∂Ωj . Recall that γj : H

1(Ωj) → L2(∂Ωj) is the point trace operator. Let ∇j be the tangential
gradient on ∂Ωj , and curlj := nj ×∇j the surface curl on ∂Ωj .

On the boundaries ∂Ωj of the Lipschitz domains Ωj , the spaces H1(∂Ωj) are defined with the
help of coordinate charts, see e.g. [28, p. 96]. The tangential gradient ∇j on ∂Ωj extends uniquely
to a continuous map H1(∂Ωj) → (L2(∂Ωj))

3. We denote by curlj : H1(∂Ωj) → (L2(∂Ωj))
3 the

operator defined by curlj u := nj ×∇ju.

Theorem 3.8 (Weakly singular representation of the hypersingular operator). Let u, v ∈
H1(R3 \ Γ) and suppose that γjuj, γjvj belong to H1(∂Ωj). Then there holds

a ([u]Γ, [v]Γ) =

J∑

j=1

J∑

k=1

∫∫

Γj×Γk

curlj γjuj(x) · curlk γkuk(x
′)

4π ∥x− x′∥
dσj(x)dσk(x

′) ,

with Γj := ∂Ωj ∩ Γ as in Definition 3.2.

The proof is given in Appendix C. In practice, it is useful to rewrite the above expression in terms
of weakly singular integrals over pairs of triangles. To this end, a key ingredient is the so-called
“virtually inflated mesh” introduced in [11, Section 4] and studied in more depth in [4].

Definition 3.9 (Inflated mesh). Assume that MΓ,h and MΩ,h are “compatible” mesh refine-
ments of MΓ and MΩ, in the sense that MΓ,h ⊂ F(MΩ,h) \ ∂MΩ,h. The inflated mesh M∗

Γ,h is
defined by

(3.15) M∗
Γ,h := {t = (T,K) ∈ MΓ,h ×MΩ,h | T ∈ F(K)} .

The elements t = (T,K) ∈ M∗
Γ,h model the triangles T of MΓ attached to a “side” of the surface

Γ (the side determined by the position of the tetrahedron K). The inflated mesh thus contains
twice as many elements as MΓ,h: each triangle T ∈ MΓ occurs exactly in two pairs (T,K+) and
(T,K−). The inflated mesh M∗

Γ,h can be equivalently represented as a set of oriented triangles, by
associating to t = (T,K) ∈ M∗

Γ the triangle T oriented by the normal vector pointing inside |K|
(recall that |S| is the convex hull of the simplex S). We denote this normal vector by nt. We also
write |t| as short for |T |. Let γt be the trace operator from the tetrahedron |K| to its face |T |, ∇t

the tangential gradient on |t|, curlt := nt ×∇t, and σt the surface measure on |t|.

Corollary 3.10. Under the same assumptions as in Theorem 3.8, there holds

a([u]Γ, [v]Γ) =
∑

t,t′∈M∗

Γ,h

∫∫

|t|×|t′|

curlt γtu(x) · curlt′ γt′v(x
′)

4π ∥x− x′∥
dσt(x) dσt′(x

′) .

From the proofs in Appendix C, we also record the following expression for the double-layer poten-
tial.

Lemma 3.11 (Representation of the double-layer potential). For all u ∈ H1(R3 \ Γ),

∀x ∈ R
3 \ Γ , DL γu (x) =

J∑

j=1

∫

Γj

nj(y) · (y − x)

4π ∥x− y∥3
γjuj(y) dσj(y)(3.16)

=
∑

t∈M∗

Γ,h

∫

|t|

nt · (y − x)

4π ∥x− y∥3
γtu(y)dσt(y) .
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4. Galerkin Boundary Element Method. Theorem 3.7 immediately suggests a method
for the numerical resolution of the BVP in (3.14). Namely, we find an approximation φ∗

h of the

solution φ∗ of the variational problem (3.13) in a subspace Ṽh(Γ) ⊂ H̃1/2([Γ]) by the Galerkin
method. We then compute Uh = DLφ∗

h, with Uh being the proposed approximation of U .

4.1. Convergent Galerkin approximation.

Definition 4.1 (Families of subspaces of H1(R3 \ Γ), H1/2(Γ) and H̃1/2([Γ])). Given a uni-
formly shape-regular family (MΩ,h)h>0 of refinements of the mesh MΩ introduced in Subsection 3.1,
such that, for each h > 0, the length of the longest edge in MΩ,h is bounded by h, and

∀h > 0 , MΓ,h ⊂ F(MΩ,h) \ ∂MΩ,h ,

let

(4.1) Vh(Ω \ Γ) :=
{
u ∈ H1(R3 \ Γ)

∣∣ u = 0 on Ω0 and u|K is linear ∀K ∈ MΩ,h

}
,

(4.2) Vh(Γ) := γ(Vh(Ω \ Γ)) , Ṽh([Γ]) := [Vh(Ω \ Γ)]Γ .

We call Vh(Γ) ⊂ H
1/2(Γ) the discrete multi-trace space and Ṽh([Γ]) ⊂ H̃1/2([Γ]) the discrete jump

space.

We define the approximation φ∗
h ∈ Ṽh([Γ]) of φ

∗ as the solution of the variational problem

(4.3) a(φ∗
h, ψh) = lg(ψh) ∀ψh ∈ Ṽh([Γ]) .

Since the bilinear form a is positive definite, by Céa’s lemma, φ∗
h is a quasi-optimal approximation

of φ∗, in the sense that there exists a constant C > 0 such that for all h > 0,

(4.4) ∥φ∗ − φ∗
h∥H̃1/2([Γ]) ≤ C inf

ψh∈Ṽh([Γ])
∥φ∗ − ψh∥H̃1/2([Γ]) .

Theorem 4.2 (Convergence of φ∗
h to φ∗). The Galerkin method is convergent, i.e., the ap-

proximations (φ∗
h)h>0 of φ∗ satisfy

lim
h→0

φ∗
h = φ∗ in H̃1/2([Γ]) .

The proof is given in Appendix D. In turn, let Uh := DLφ∗
h. From the convergence of φ∗

h and the
mapping properties of DL, we deduce immediately the convergence of Uh in an appropriate sense
given below.

Corollary 4.3. For every compact set K of R3, there holds

lim
h→0

∥Uh − U∥H1(K∩(R3\Γ)) = 0 .

In the rest of this section, we address the practical computation of Uh. We rely on the construction
of a basis {ϕ̃ν}1≤ν≤Ñh

of the space Ṽh(Γ), in such a way that the quantities

(4.5) a(ϕ̃ν , ϕ̃ν′) , lg(ϕ̃ν) , and DL ϕ̃ν
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can be evaluated algorithmically. Thus, we can build the linear system

WΦ = L ,

where W is the Ñh× Ñh square matrix with entries Wi,j = a(ϕ̃ν , ϕ̃ν′), and L is the column vector

with entries Lν = lg(ϕ̃ν). The approximation Uh is then given by

Uh = DL

(
Ñh∑

i=1

Φiϕ̃ν

)
.

The definition of the local shape functions {ϕ̃ν}1≤ν≤Ñh
is also required for discussing the domain-

decomposition preconditioner in Section 6.

4.2. Local shape functions. The overall idea is to define ϕ̃ν := [ψν ]Γ, where {ψν}1≤ν≤Ñh
is

a basis of a subspace Ψh(Ω \Γ) ⊂ Vh(Ω \Γ) chosen such that the jump operator induces a bijection

(4.6) [·]Γ : Ψh(Ω \ Γ) → Ṽh([Γ]) .

To proceed, let us denote by {x1 , . . . ,xN} the ordered set of vertices of MΩ,h, with the common
vertices of MΩ,h and MΓ,h given by x1, . . . ,xM , M < N . Let Vh(Ω) be the space of functions in
Vh(Ω \ Γ) which are continuous across Γ; notice that

Vh(Ω) = H1(R3) ∩ Vh(Ω \ Γ) .

Let {ϕi}1≤i≤N be the nodal basis of Vh(Ω), that is, the set of elements of Vh(Ω) defined by

ϕi(xi′) = δi,i′ , 1 ≤ i, i′ ≤ N .

For each i ∈ {1, . . . , N}, the star of xi, denoted by st(xi,MΩ,h), is the set of tetrahedra K ∈ MΩ,h

containing xi as a vertex. We define a graph G(xi) with
• Nodes: The elements of st(xi,MΩ,h)
• Edges: The pairs {K,K ′} ⊂ st(xi,MΩ) such that K ∩K ′ ∈ F(MΩ,h) \MΓ,h.

We denote by ∆i,1, . . . ,∆i,qi the connected components of G(xi). Each ∆i,j is thus a group of
tetrahedra that can be linked by face-connected paths avoiding the faces in MΓ. The connected
components of G(xi) model the different connected sectors locally near xi in R

3 \Γ. Define the sets

(4.7) H(Ω \ Γ) :=
{
(i, j) ∈ N

2
∣∣ 1 ≤ i ≤ N , 1 ≤ j ≤ qi

}
, and

(4.8) H(Γ) := {(i, j) ∈ H(Ω \ Γ) | i ≤M} ,

For all (i, j) ∈ H(Ω \ Γ), we define xi,j as the pair (xi,∆i,j), i.e. a vertex xi “labeled” by one of
the connected components of G(xi). We call {xi,j}1≤j≤qi the set of generalized vertices attached
to xi (see also [4, Definition 2.11]). For (i, j) ∈ H(Ω \ Γ), let

|∆i,j | :=
⋃

K∈∆i,j

K

and denote by ϕi,j the split basis function of Vh(Ω \ Γ) associated to the generalized vertex xi,j ,
which is defined by

ϕi,j(x) :=

{
ϕi(x) for x ∈ int(|∆i,j |) ,

0 otherwise.

Split basis functions span Vh(Ω \ Γ), as seen with the following result.
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Lemma 4.4 (See [2, Lemma 4.1]). The split basis functions {ϕi,j}(i,j)∈H(Ω\Γ) form a basis of
Vh(Ω \ Γ).

For uh ∈ Vh(Ω \ Γ), we denote by uh(xi,j) the coefficient of uh on the split basis function ϕi,j , so
that

(4.9) ∀uh ∈ Vh(Ω \ Γ) , ∃un(xi,j) ∈ R : uh =
∑

(i,j)∈H(Ω\Γ)
uh(xi,j)ϕi,j .

We introduce the following coefficient-wise scalar product

∀(uh, vh) ∈ Vh(Ω \ Γ)× Vh(Ω \ Γ) , [uh, vh]l2 :=
∑

(i,j)∈H(Ω\Γ)
uh(xi,j)vh(xi,j) ,

The space Ψh(Ω \ Γ) is then defined as the [·, ·]l2 orthogonal complement of Vh(Ω) in Vh(Ω \ Γ), so
that

(4.10) Vh(Ω \ Γ) = Vh(Ω)
⊥
⊕Ψh(Ω \ Γ) .

Those definitions readily imply:

Corollary 4.5 (Parametrization of the jump space). The jump operator [·]Γ induces a bijec-
tion

[·]Γ : Ψh(Ω \ Γ) → Ṽh([Γ]) .

Let

(4.11) H̃([Γ]) := {(i, j) ∈ H(Ω \ Γ) | qi > 1 and j ≤ qi − 1} ,

and for (i, j) ∈ H̃([Γ]) define

(4.12) ψi,j := ϕi,j − ϕi,qi .

Using that {ϕi}1≤i≤N is a basis of Vh(Ω), together with the property

ϕi =

qi∑

j=1

ϕi,j ,

and Lemma 4.4, a simple algebraic reasoning shows that {ψi,j}(i,j)∈H̃([Γ]) is a basis of Ψh(Ω \ Γ).

Defining

(4.13) ∀(i, j) ∈ H̃([Γ]) , ϕ̃i,j := [ψi,j ]Γ

we deduce the following result.

Corollary 4.6 (Basis of the jump space). The set {ϕ̃i,j}(i,j)∈H̃([Γ]) is a basis of Ṽh([Γ]).
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4.3. Algorithm for the computation of the quantities in (4.5). We first remark that

computing a(ϕ̃i,j , ϕ̃i′,j′), for (i, j) and (i′, j′) in H̃([Γ]), only requires the evaluation of a linear
combination of the quantities a([ϕk,ℓ]Γ, [ϕk′,ℓ′ ]Γ), for (k, ℓ), (k′, ℓ′) ∈ H(Γ). Those quantities are
given by Theorem 3.8 in terms of the traces of ϕk,ℓ and ϕk′,ℓ′ on the boundaries ∂Ωj , but since
those functions are defined in terms of connected components of the vertex stars of MΩ,h, it is not
a priori obvious how to perform those computations without relying on the external, tetrahedral
mesh. To avoid this, the key idea is to introduce, for each (k, ℓ) ∈ H(Γ), the set

(4.14) αk,ℓ :=
{
t = (T,K) ∈ M∗

Γ,h

∣∣ K ∈ ∆k,ℓ

}

with M∗
Γ,h as in Definition 3.9. Upon viewing the pairs (T,K) as oriented triangles, the sets αk,ℓ

can be computed without the need for the external mesh, using the so-called intrinsic inflation
algorithm [4, Def. 4.1]. Once M∗

Γ,h is endowed with a “generalized mesh” structure, and if we
assume that Γ has no “point contacts”, those sets are immediately obtained from the generalized
vertices of M∗

Γ, computed via [4, Algorithms 1 and 2].5

One has, by Corollary 3.10:

(4.15) a([ϕk,ℓ]Γ, [ϕk′,ℓ′ ]Γ) =
∑

t,t′∈M∗

Γ,h

∫∫

|t|×|t′|

curlt φ
t

k,ℓ(x) · curlt′ φ
t
′

k′,ℓ′(x
′)

4π ∥x− x′∥
dσt(x)dσt′(x

′) ,

where {φt

k,ℓ}t∈M∗

Γ,h
is defined by

(4.16) ∀t ∈ M∗
Γ,h , ∀x ∈ |t| , φt

k,ℓ(x) :=

{
ϕk(x) if t ∈ αk,ℓ ,

0 otherwise ,

for all t ∈ M∗
Γ and (k, ℓ) ∈ H(Γ), where γt is defined in the paragraph below Definition 3.9. Using

(4.16), the right-hand side of (4.15) can be evaluated without resorting to the external mesh MΩ,h.
The computation of lg(φ̃i,j) is performed similarly, using that

lg([ϕk,ℓ]Γ) = ⟨⟨γ(ϕk,ℓ) , πn(g)⟩⟩ =
∑

t∈M∗

Γ,h

∫

|t|
g(x) · nt(x)φ

t

k,ℓ(x)dσt(x)

by definition of lg, of the duality product ⟨⟨· , ·⟩⟩ and integration by parts on each domain Ωj . The

same ideas apply straightforwardly to DL ϕ̃i,j .

5. Induced decompositions of quotient spaces. We now recall a standard condition num-
ber estimate from the theory of additive Schwarz preconditioners involving the concept of “stable
subspace decompositions”, and, based on ideas from [23], we identify two abstract conditions under
which an initially stable splitting remains stable after passing to the quotient.

5The (surface) generalized vertices of M∗
Γ,h should not be confused with the (volume) generalized vertices of

the “fractured mesh” M∗
Ω\Γ,h

, of which M∗
Γ,h is the boundary (see [4, Section 4]). The generalized vertices xi,j

defined here in Subsection 4.2, correspond to the (volume) generalized vertices of M∗
Ω\Γ,h

, while the αi,j correspond

to the (surface) generalized vertices of M∗
Γ,h. Only the latter can be computed from the mesh MΓ,h alone. For the

definition of point contacts, see [4, Section 5.2]. In the presence of point contacts, additional continuity conditions
must be enforced.



HYPERSINGULAR EQUATION ON MULTISCREENS 19

5.1. Abstract condition number estimate for subspace splitting. Let (V, ∥·∥
V
) be a

Hilbert space, and let Vh,1 , . . . , Vh,n ⊂ V be finite dimensional subspaces of V and

Vh := Vh,1 + . . .+ Vh,n .

Let Pi : Vh → Vh be the (·, ·)V-orthogonal projection onto Vh,i and Pad :=
∑n
i=1 Pi. Introduce the

norm

|||uh|||
2
V
:= inf

{
n∑

i=1

∥uh,i∥
2
V

∣∣∣∣∣

n∑

i=1

uh,i = uh , uh,i ∈ Vh,i

}
.

Theorem 5.1 (cf. [29, Thm. 16]). Suppose that there exists λh,Λh > 0 such that

∀uh ∈ Vh , λh ∥uh∥
2
V
≤ |||uh|||

2
V
≤ Λh ∥uh∥

2
V
.

Then the spectral condition number of Pad satisfies κ(Pad) ≤
Λh
λh

.

5.2. Stability of induced quotient splitting. Suppose that V0 ⊂ V is a closed subspace
and let X be the quotient space

X = V/V0 .

Let T : V → X be the canonical surjection associated to this quotient, and ∥·∥
X
the quotient norm

∥x∥
X
:= inf

v∈T−1(x)
∥v∥

V
.

Recall that this makes X a Hilbert space with the inner product

(x, x′)
X
:= ((Id− P )v, (Id− P )v′)

V
,

where P : V → V is the (·, ·)
V
-orthogonal projection onto V0 and v (resp. v′) is an arbitrary element

of T−1(x) (resp. T−1(x′)). With Xh := T (Vh), we write

Xh = Xh,1 + . . .+Xh,n , Xh,i := T (Vh,i) .

∀fh ∈ Xh , |||fh|||
2
X
:= inf

{
n∑

i=1

∥fh,i∥
2
X

∣∣∣∣∣

n∑

i=1

fh,i = fh , fh,i ∈ Xh,i

}
.

Introduce the following assumptions

(A) There exists an operator
Πh : V → V ,

which is a projection onto Vh (i.e., satisfying Πhuh = uh for uh ∈ Vh) and which preserves
V0 (in the sense that if v ∈ V0, then Πhv ∈ V0). Denote by ∥Πh∥L(V) its operator norm.

(B) There exist constants κ1, . . . , κn > 0 such that for all uh,i ∈ Vh,i,

min
{
∥uh,i − uh,i,0∥V

∣∣ ui,h,0 ∈ V0 ∩ Vh,i
}
≤ κimin

{
∥uh,i − uh,0∥V

∣∣ uh,0 ∈ V0 ∩ Vh
}
.
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Theorem 5.2 (Stability of the quotient splitting). Let αh, Ah > 0 be such that

∀uh ∈ Vh , αh ∥uh∥
2
V
≤ |||uh|||

2
V
≤ Ah ∥uh∥

2
V
,

and assume (A) and (B). Then,

(5.1) ∀fh ∈ Xh , βh ∥fh∥
2
X
≤ |||fh|||

2
X
≤ Bh ∥fh∥

2
X

with βh :=
αh

(max1≤i≤n κi)2 ∥Πh∥
2
L(V)

, Bh := ∥Πh∥
2
L(V)Ah .

We use a variant of the previous result in which the condition (B) is relaxed for one of the subspaces
(i.e., no estimate is required for one of the constants κi):

Lemma 5.3 (Weakening condition (B)). With the same assumptions as in Theorem 5.2, the
estimate (5.1) also holds with

βh =
αh

2max{∥Πh∥L(V) , κ2, . . . , κn}
2 ∥Πh∥

2
L(V)

.

The proofs are given in Appendix E.

6. Stable splitting of boundary element spaces on multiscreens. We now construct
the splitting used to define our additive Schwarz operator Pad(H;h) introduced in Section 2. We
start by defining spaces of so-called discrete-harmonics (see e.g. [37, Section 4.4]). We then define

a splitting of Vh(Ω \ Γ), and deduce a splitting of Ṽh([Γ]) by application of the jump operator, for
which we estimate the stability constants to prove Theorem 2.1.

6.1. Coarse mesh. From now on, we assume that the sets Ωj defined in Subsection 3.1 are
(coarse) tetrahedra, providing a quasi-uniform and shape-regular coarse triangulation of Ω (and in
turn, of Γ), with diameters bounded by a coarse mesh parameter H, such that 0 < h < H < C
where C > 0 is a constant depending only on Γ. In the following analysis, we also assume that
for each h > 0, the mesh MΩ,h is uniformly shape-regular and quasi-uniform, with elements of
diameter uniformly comparable to h.

6.2. Discrete harmonic functions in the volume. For each j, let us introduce the subspace
of discrete functions that are localised in the subdomain Ωj and vanishes beyond the boundary of
Ωj , which we denote

Vh,0(Ωj) := {u ∈ Vh(Ω \ Γ) | u = 0 on Ω \ Ωj} .

For j = 1, . . . , J , this forms a collection of subspaces of Vh(Ω \ Γ) that are pairwise orthogonal in
the H1(Ω \ Γ)-scalar product. Then we can define Vh(Ω \ Γ) as the orthogonal complement to
Vh,0(Ω1)⊕ · · · ⊕ Vh,0(ΩJ) with respect to this scalar product. As a consequence we have

(6.1) Vh(Ω \ Γ) = Vh(Ω \ Γ)⊕ Vh,0(Ω1)⊕ · · · ⊕ Vh,0(ΩJ)

and this sum is H1(Ω \ Γ)-orthogonal by construction. In words, Vh(Ω \ Γ) is the set of elements
of Vh(Ω \ Γ) which are discrete harmonics in each Ωj . The space Vh(Ω \ Γ) is not the H1(Ω \ Γ)-
orthogonal complement of Vh(Ω \ Γ) ∩ H1

0,Γ(Ω) in Vh(Ω \ Γ), i.e. it is not a set of global discrete
harmonics. The motivation for choosing piecewise harmonics instead of global harmonics is to make
it easier to define a decomposition satisfying an explicit strengthened Cauchy-Schwarz inequalities
in the additive Schwarz framework.
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Definition 6.1 (Basis of the discrete harmonic space). Let

(6.2) H(Σ) := {(i, j) ∈ H(Ω \ Γ) | xi ∈ Σ} ,

where H(Ω \ Γ) is defined in eq. (4.7) and Σ = ∂Ω0 ∩ . . . ∩ ∂ΩJ is the skeleton of the Lipschitz
partition. For (i, j) ∈ H(Σ) and k ∈ {1 . . . , J}, we define εki,j ∈ Vh,0(Ωk) by the variational problem

∫

Ωk

εki,j(x)vh(x) +∇εki,j(x) · ∇vh(x)dx =

∫

Ωk

ϕi,j(x)vh(x) +∇ϕi,j(x) · ∇vh(x)dx ,

for all vh ∈ Vh,0(Ωk). Let

(6.3) ωi,j := ϕi,j −
J∑

k=1

εki,j .

This definition readily implies that ωi,j ∈ Vh(Ω \ Γ) and satisfies γ(ωi,j) = γ(ϕi,j).

Lemma 6.2. The family {ωi,j}(i,j)∈H(Σ) is a basis of Vh(Ω \ Γ) and

∀uh ∈ Vh(Ω \ Γ) , uh =
∑

(i,j)∈H(Σ)

uh(xi,j)ωi,j .

Proof. Assume that there exist coefficients {λi,j}(i,j)∈H(Σ) such that

(6.4)
∑

(i,j)∈H(Σ)

λi,jωi,j = 0 .

Let (i0, j0) ∈ H(Σ) and, given K ∈ ∆i0,j0 , consider a sequence (yn)n∈N of points in int(|K|)
converging to xi0 . Note that since ϵki,j ∈ Vh,0(Ωk), ωi,j differs from ϕi,j only by a continuous
function which vanishes at every node of Σ. Therefore, one has

lim
n→∞

ωi,j(yn) = lim
n→∞

ϕi,j(yn) .

Furthermore, one can check (see e.g. the proof of [2, Lemma 4.1]) that

lim
n→∞

ϕi,j(yn) = δi,i0δj,j0 .

Combining this with eq. (6.4), it follows that λi0,j0 = 0. Hence {ωi,j}(i,j)∈H(Σ) is a free family.
On the other hand, let uh ∈ Vh(Ω\Γ) and set vh =

∑
(i,j)∈H(Σ) uh(xi,j)ωi,j . Each ωi,j belongs

to Vh(Ω \ Γ) so we conclude that uh − vh ∈ Vh(Ω \ Γ). Next, by definition of ωi,j , we have

uh − vh =
∑

(i,j)∈H(Σ)

uh(xi,j)

J∑

k=1

εki,j ∈ Vh,0(Ω1)⊕ · · · ⊕ Vh,0(ΩJ).

Since (Vh,0(Ω1)⊕· · ·⊕Vh,0(ΩJ))∩Vh(Ω\Γ) = {0} according to (6.1), we deduce that uh− vh = 0,
which concludes the proof.
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The main property of discrete harmonics is that their H1 norm can be estimated by a suitable
norm of their boundary values, (this is classical, see also see e.g. [37, Lemma 4.10]). For a Lipschitz
domain D, let γD : H1(D) → L2(∂D) be the pointwise trace operator, and let H1/2(∂D) ⊂ L2(∂D)
be the image of H1(D) by the trace operator γD.

Definition 6.3 (Quotient H1/2 semi-norm). We define the H1/2 semi-norm as

|u|H1/2(∂D) := min
γDU=u

∥∇u∥L2(D) .

Other equivalent norms are often used for this space, see e.g. [28, Chap. 3], but this definition
is convenient here because of scale-invariance results from [32], which play a role in the proof of
Lemma 6.11 below.

6.3. Stable volume splitting. We now define a subspace splitting of Vh(Ω \ Γ) which relies
on a partition of the generalized vertices xi,j with (i, j) ∈ H(Σ), according to the coarse mesh
Ω1, . . . ,ΩJ . After removing the interior degrees of freedom (i.e. the spaces Vh,0(Ωj)), it remains
to decompose the space Vh(Ω \ Γ). The goal is to construct a decomposition of the type of [37,
Algorithm 5.5], but the difference is that here, we need to account for the jumps of the functions
in Vh(Ω \ Γ) across Γ, due to the different “sides” of the faces, edges and vertices located on Γ.

Definition 6.4 (Subspace generated by an index subset ofH(Σ)). Given a subset Hk ⊂ H(Σ),
the subspace Vh(Hk) ⊂ Vh(Ω \ Γ) generated by Hk is defined by

Vh(Hk) := Span({ωi,j}(i,j)∈Hk
) , ωi,j defined as in (6.3) .

We denote by Fk a face of the coarse triangulation (i.e., a triangular face of one of the tetrahedra
Ωk), and first assume that Fk /∈ MΓ. In this case, define Fk

h as the set of pairs (i, j) such that xi
belongs to the relative interior of Fk (note that, since Fk is not in Γ, Fk

h only contains pairs of the
form (i, 1)) and let VFk := Vh(F

k
h ).

On the other hand, if the face Fk shared by the coarse tetrahedra Ωℓ and Ωm belongs to MΓ,
then for each vertex xi ∈ int(Fk), there are two generalized vertices xi,1 and xi,2 associated to xi,
corresponding to either Ωℓ or Ωm. We then define two spaces VFk,ν = Vh(F

k
h,ν), ν = 1, 2, where

Fk
h,1 :=

{
(i, j) ∈ H(Ω \ Γ)

∣∣ xi ∈ int(Fk) , Ωℓ ∩ |∆i,j | ≠ ∅
}
,

Fk
h,2 :=

{
(i, j) ∈ H(Ω \ Γ)

∣∣ xi ∈ int(Fk) , Ωm ∩ |∆i,j | ≠ ∅
}
.

The set of remaining pairs (i, j), i.e. those such that xi belongs to the boundary of a coarse
face Fk, is denoted by Wh, and we define the wire-basket space VW := Vh(Wh). The proposed
splitting of Vh(Ω \ Γ) is then

(6.5) Vh(Ω \ Γ) =
J∑

j=1

Vh,0(Ωj) +
∑

Fk∩Γ=∅
VFk +

∑

Fk⊂Γ

2∑

ν=1

VFk,ν +VW + VH(Ω \ Γ) ,

where VH(Ω\Γ) is the “coarse space” of the decomposition, which is the set of elements of Vh(Ω\Γ)
whose restriction to each Ωj is affine. For notational convenience, we label the subsets of the splitting
as V0, . . . , VL with V0 = VH(Ω \ Γ), V1 = VW , and V2, . . . , VL equal to the remaining spaces, in
some arbitrary order. For uh ∈ Vh(Ω \ Γ), define

(6.6) |||uh|||
2
split := inf

{
L∑

i=0

∥uh,i∥
2
H1(R3\Γ)

∣∣∣∣∣

L∑

i=0

uh,i = uh , uh,i ∈ Vi

}
.
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Theorem 6.5. The splitting in eq. (6.5) is (αh, Ah)-stable with respect to the H1(R3 \Γ) norm,
in the sense that

(6.7) ∀uh ∈ Vh(Ω \ Γ) , αh ∥uh∥
2
H1(R3\Γ) ≤ |||uh|||

2
split ≤ Ah ∥uh∥

2
H1(R3\Γ) ,

where,
αh ≥ c(1 + logH/h)−2 , Ah ≤ C .

with c, C > 0 independent of h and H.

The proof is given in Appendix F.

6.4. Stable splitting of the jump space. We now define a splitting of Ṽh([Γ]) by applying
the operator [·]Γ on both sides of eq. (6.5). Note that [Vh,0(Ωj)] = {0} for all j = 1, . . . , J . Moreover,

[VH(Ω \ Γ)]Γ = ṼH([Γ]) ,

where ṼH([Γ]) is defined just as Ṽh([Γ]) but using the coarse mesh instead of the fine mesh.

Definition 6.6 (Proposed splitting of the jump space). We define the additive Schwarz op-
erator Pad(H;h) according to the splitting

(6.8) Ṽh([Γ]) =
∑

Fk⊂Γ

2∑

ν=1

ṼFk,ν + ṼW + ṼH([Γ]) ,

where ṼFk,ν := [VFk,ν ]Γ and ṼW := [VW ]Γ.

Remark 6.7. We point out that in (6.8), we have ṼFk,1 = ṼFk,2. Therefore, one of the two
copies can be removed from the decomposition, without worsening the final stability result. Indeed,
one can see that if Theorem 5.1 holds for the full decomposition, then it holds for the decomposition
with just one copy of each face jump spaces with the same λh, and with Λ′

h = 2Λh.

6.5. Proof of Theorem 2.1. We now complete the proof of Theorem 2.1. We bound the
condition number κ(Pad) using Theorem 5.1, where the stability constants λh,Λh are estimated
using the concept of induced splittings discussed in Section 5. The initial splitting is given by
eq. (6.5), with stability constants given by Theorem 6.5, and the operator T mapping this initial
splitting to the one given in eq. (6.5) is given by the jump operator [·]Γ. According to Theorem 6.5,
it remains to check that the stability conditions of Lemma 5.3 hold. In this context, they take the
following form

(A) There exists an h-uniformly bounded projection Πh : H1(R3 \ Γ) → H1(R3 \ Γ) onto
Vh(Ω \ Γ) preserving H1(R3).

(B) For all but one subspace Vn in the decomposition (6.5), there exists κn > 0 independent of
h such that

∀u ∈ Vn , min
v0,n∈Vn∩H1(R3)

∥u− v0,n∥H1(R3\Γ) ≤ κn min
v0∈Vh(Ω\Γ)∩H1(R3)

∥u− v0∥H1(R3\Γ) .

By Corollary 6.10 below, (A) holds with ∥Πh∥L(H1(R3\Γ) = O(1) (with respect to the parameters h

and H). On the other hand, by Lemma 6.11 below, (B) holds with κn = O(1) for each subspace Vn,
with the exception of the wire-basket (this space being the exception permitted by Lemma 5.3). □
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Proof of (A). We construct the operator Πh by combining two quasi-interpolants. The first
one is (up to minor modifications) given by the classical Scott-Zhang quasi-interpolant acting on
functions in the volume. The second one is the analog of that operator but acting on multi-traces
i.e. on the surface of the multi-screen rather than the volume. Note that the extra property that
the operator Πh of Corollary 6.10 has compared to the classical Scott-Zhang interpolant Ψh of
Proposition 6.8 is that it preserves a larger space (namely H1(R3), instead of just H1

0,Γ(R
3)).

Proposition 6.8 (Scott-Zhang quasi-interpolant on H1(R3 \ Γ)). There exists a constant
C > 0 such that, for each h > 0, there exists a projection Zh : H1(R3 \ Γ) → H1(R3 \ Γ) onto
Vh(Ω \ Γ) which preserves H1

0,Γ(R
3) and satisfies

∥Zhu∥H1(R3\Γ) ≤ C ∥u∥H1(R3\Γ) ∀u ∈ H1(R3 \ Γ) .

One can construct Zh as in [34]. The analysis extends with only minor adaptations to deal with
the more complex domain R

3 \Γ. Note that, by applying to Zh the same reasoning as to Πh in the
proof of Corollary 6.10 below, one can show that the combination of the projection property and
the stability of the space H1

0,Γ(R
3) implies that Zh preserves piecewise linear point traces, in other

words, γZhu = γu if γu ∈ Vh(Γ).

Proposition 6.9 (Jump aware quasi-interpolant on H
1/2(Γ)). There exists a constant C > 0

such that, for each h > 0, there exists a projection Φh : H1/2(Γ) → H
1/2(Γ) onto Vh(Γ) which

preserves H1/2([Γ]) and satisfies

∥Φhu∥H1/2(Γ) ≤ C ∥u∥
H1/2(Γ) ∀u ∈ H

1/2(Γ) .

The construction can be found in [2].

Corollary 6.10 (Condition (A)). There exists a constant C > 0 such that, for each h > 0,
there exists a projection Πh : H1(R3 \Γ) → H1(R3 \Γ) onto Vh(Ω \Γ) which preserves H1(R3) and
satisfies

∥Πhu∥H1(R3\Γ) ≤ C ∥u∥H1(R3\Γ) ∀u ∈ H1(R3 \ Γ) .

Proof of Corollary 6.10. Given u ∈ H1(R3 \ Γ), we define Πhu as follows. Let vh = Φh(γu),
and let V be the harmonic lifting of vh, i.e. the element of H1(R3 \ Γ) with minimal H1(R3 \ Γ)
norm such that γV = vh. Finally, let

Πhu := Zh(V ) .

It is clear that Πh satisfies the required stability, since all operations used to define it are continuous
uniformly in h. To prove that it is a projection, it is convenient to write

Πh = Zh ◦ L ◦ Φh ◦ γ

where L : H1/2(Γ) → H1(R3 \ Γ) is the harmonic lifting operator. We claim that

(6.9) γ ◦ Zh ◦ L ◦ Φh = Φh

If this holds, then one deduces easily that Πh is a projection writing

Π2
h = Zh ◦ L ◦ Φh ◦ (γ ◦ Zh ◦ L ◦ Φh) ◦ γ = Zh ◦ L ◦ Φh ◦ Φh ◦ γ = Πh ,
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since Φh is a projection. To prove eq. (6.9), we fix φ ∈ H
1/2(Γ) and let φh = Φh(φ). Then, by

Lemma E.1, one has
γ(ZhL(φh)) = φh .

Since this holds for all φ ∈ H
1/2(Γ), the claim in eq. (6.9) follows.

Finally, let us show that Πh preserves H1(R3). Assume that u ∈ H1(R3), let vh = Φh(γu)
and V = Lvh the harmonic lifting of vh as before. Note that vh ∈ H1/2([Γ]) since Φh preserves
this space and γu ∈ H1/2([Γ]). Let wh ∈ Vh(Ω \ Γ) be such that γwh = vh (the existence of wh is
guaranteed by the fact that vh ∈ Vh(Γ) = γ(Vh(Ω \ Γ)). Then we have

γ(V − wh) = vh − vh = 0 ,

i.e. V − wh ∈ H1
0,Γ(R

3). Therefore, since Zh preserves H1
0,Γ(R

3), we conclude

0 = γ(Zh(V − wh)) = γΠhu− γZhwh = γΠhu− γwh = γΠhu− vh ,

recalling that ZhV = ZhLΦhγu = Πhu by definition of Πh, and using that Zhwh = wh. In other
words, γΠhu = vh ∈ H1/2([Γ]), i.e. Πhu ∈ H1(R3). This concludes the proof.

Proof of (B). We show that the condition (B) holds in the following lemma.

Lemma 6.11 (Condition (B)). The condition (B) is satisfied by every space Vn except the
wire-basket space VW in the splitting (6.5), with a constant κn = O(1).

Proof. The condition is vacuous for the subspaces VFk with Fk ∩ Γ = ∅, because in this case,
VFk ⊂ H1(R3), hence the left-hand side of the inequality is 0. For the same reason, the condition
is satisfied for the spaces Vh,0(Ωj).

• For the space VH(Ω \ Γ), we have by Lemma E.2 and Corollary 6.10

min
vH,0∈VH(Ω\Γ)∩H1(Ω)

∥u− vH,0∥H1(R3\Γ) ≤ ∥ΠH∥L(H1(Ω\Γ)) ∥[u]Γ∥H̃1/2([Γ]) ∀u ∈ H
1/2(Γ) .

This implies condition (B) for this space by the quotient definition of the H̃1/2([Γ]) norm.
• If Fk ⊂ Γ, then we have VFk,ν ∩H

1(R3) = {0}, for ν = 1, 2, so it suffices to show

∥uh∥H1(R3\Γ) ≤ C ∥[uh]Γ∥H̃1/2([Γ]) , ∀uh ∈ VFk,ν .

Let uh ∈ VFk,ν and φh = γℓuh, where ℓ is the index such that suppuh ⊂ Ωℓ. Let
U ∈ H1(Ωℓ) be the unique element of H1(Ωℓ) with γℓU = φh and

∥∇U∥2L2(Ωℓ)
= |φh|

2
H1/2(∂Ωℓ)

,

in view of Definition 6.3. With Zℓ a Scott-Zhang interpolant onto Vh(Ωℓ), let Uh = ZℓU .
One has, on the one hand,

∥Uh∥
2
H1(Ωℓ)

≤ C ∥U∥2H1(Ωℓ)
,

by the mapping properties of Zℓ, and, on the other hand,

∥uh∥
2
H1(R3\Γ) = ∥uh∥

2
H1(Ωℓ)

≤ ∥Uh∥
2
H1(Ωℓ)

.

Here we used the minimizing property of discrete harmonics, and the fact that γℓ(Uh) = φh,
since Zℓ preserves piecewise linear boundary values. Since φh vanishes on the faces of Ωℓ
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distinct from Fk, we can find a face F of Ωℓ such that Uh vanishes on F , hence, by [31,
Lemma 2.57],

∥U∥2L2(Ωℓ)
≤ CH2 ∥∇U∥2L2(Ωℓ)

≤ C ∥∇U∥2L2(Ωℓ)
,

since H is bounded. Combining these estimates, we arrive at

∥uh∥
2
H1(R3\Γ) ≤ C |φh|

2
H1/2(Γ) .

By [32, Lemma 6.5], there holds

|φh|
2
H1/2(∂Ωℓ)

≤ cℓ(Wℓφh, φh)L2(∂Ωℓ)

where Wℓ is the classical hypersingular operator on ∂Ωℓ, and where the constant cℓ is
uniformly bounded, due the shape-regularity of the coarse mesh. Since uh vanishes on all
Ωm for m ̸= ℓ, by Theorem 3.8, we have

a([uh]Γ, [uh]Γ) =

∫∫

∂Ωℓ×∂Ωℓ

curlℓ φh(x) · curlℓ φh(y)

4π ∥x− y∥
= (Wℓφh, φh)L2(∂Ωℓ) .

Therefore,
∥uh∥

2
H1(R3\Γ) ≤ Ca([uh]Γ, [uh]Γ) ≤ CW ∥[uh]Γ∥

2
H̃1/2([Γ]) ,

which implies condition (B) for the face space VFk,ν .
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Appendix A. Proof of Theorem 3.7.

Proof. The existence and uniqueness of φ∗ follows from the Riesz representation theorem since
a(·, ·) defines a scalar product on H̃1/2(Γ). In turn, the properties of the double-layer potential
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stated below Definition 3.3 imply that U = DLφ∗ satisfies ∆U = 0 on R
3 \ Γ and U = O

(
1

∥x∥

)
.

Moreover, by definition of the bilinear form a(·, ·) and using the jump relation [DLφ∗] = [φ∗],

a([v]Γ, φ
∗) = ⟨⟨v , πn(∇U)⟩⟩ ∀v ∈ H

1/2(Γ) .

Notice that for all v ∈ H
1/2(Γ), one has a(φ∗, [v]Γ) = lg([v]Γ) = ⟨⟨v ,g⟩⟩ by definition of φ∗ and lg

and using that a(·, ·) is symmetric. Therefore,

⟨⟨v , πn(g)− πn(∇U)⟩⟩ = 0 ∀v ∈ H
1/2(Γ) ,

implying that πn(g) = πn(∇U) in H
−1/2(Γ) by eq. (3.2). It remains to prove the uniqueness of the

solution U . Let U be a solution of the PDE with g = 0. The boundary condition πn(∇U) can then
be rephrased as ∇U ∈ H0,Γ(div,R

3). Let ρ0 > 0 be sufficiently large so that Γ is contained in a
ball ⊂ Bρ0 :=

{
x ∈ R

3
∣∣ ∥x∥ < ρ0

}
. Observe that by the representation theorem, there holds

(A.1) U(x) =

∫

∂Bρ

nρ(y) · (x− y)

4π ∥x− y∥3
µ(y)dy −

∫

∂Bρ

1

4π ∥x− y∥
λ(y)dy ∀x ∈ (Bρ)

c

where µ(y) = U(y) ∈ H1/2(∂Bρ) and λ(y) = y
∥y∥ · ∇U(y) ∈ H−1/2(∂Bρ). In particular, one has

∇U = O
(

1
∥x∥2

)
uniformly as x → ∞. Given ρ ≥ ρ0, integrating by parts on Bρ ∩ (R3 \ Γ) and

using that ∆U = 0 on each R
3 \ Γ and ∇U ∈ H0,Γ(div,R

3), we obtain

(A.2)

∫

Bρ∩(R3\Γ)
|∇U|2 =

∫

∂Bρ

U

(
x

∥x∥
· ∇U

)
dx .

The decay conditions for U and ∇U imply that the right-hand in eq. (A.2) tends to 0 as ρ → ∞.
We conclude that ∇U = 0 on R

3 \ Γ hence U = 0 since R
3 \ Γ is connected.

Appendix B. A dense subspace of H1(R3 \ Γ).

Definition B.1 (Space X∞, see also [11]). Let X∞ be the space defined by

X∞ :=
{
u ∈ H1(R3 \ Γ) ∩ C∞(R3 \ Γ)

∣∣ uj ∈ C∞(Ωj) for all j = 0, . . . , J
}
,

where, for any open set U ⊂ R
3, the set C∞(U) is the set of restrictions to U of elements of

C∞(R3).

The goal of this section is to prove the following result, stated in [11]:

Theorem B.2 (Density of X∞). The set X∞ is dense in H1(Rd \ Γ).

In what follows, for j = 0, . . . , J , let

Σj := ∂Ωj \ Γj

where Γj = Γ∩ ∂Ωj . Recall that both Γj and Σj are simple Lipschitz screens with ∂Γj = ∂Σj . We
recall a result from [12] (the statement therein is weaker than the one below, but the proof given
in that reference actually proves the stronger statement).

Proposition B.3 ([12, Prop. 8.11]). The set of functions u ∈ H1(Rd \ Γ) which vanish in a
neighborhood of ∪Jj=0∂Γj is dense in H1(Rd \ Γ).
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Lemma B.4. Let K be a compact set of Rn and V ⊂ R
n such that d(K,V ) > 0. Then there

exists a function f ∈W 1,∞(Rd) such that f = 0 on K and f = 1 on V .

Proof. It suffices to put f(x) = d(x,K)
d(x,K)+d(x,V ) . First notice that

g(x) := d(x,K) + d(x, V ) ≥ d(K,V ) =: α > 0

since K is compact. Moreover,

|f(x)− f(y)| =

∣∣∣∣
d(y, V ) [d(x,K)− d(y,K)] + d(y,K) [d(y, V )− d(x, V )]

g(x)g(y)

∣∣∣∣

≤
d(y, V )

g(y)

d(x, y)

α
+
d(y,K)

g(y)

d(x, y)

α

=
d(x, y)

α
∀x, y ∈ R

n .

Corollary B.5. In the previous result, one can also choose f such that f = 1 in a neighbor-
hood of K and 0 in a neighborhood of V .

Proof. Take f as before. Note that K ⊂ f−1(0) and V ⊂ f−1(1). Therefore, for any neighbor-
hoods U0 and U1 of 0 and 1 respectively in R, f−1(U0) and f

−1(U1) are neighborhoods of K and
V respectively in R

n. Based on this idea, for some η ∈ ( 12 , 1), let fη be defined by

fη(x) =





η if f(x) ≥ η

f(x) if 1− η ≤ f ≤ η

1− η if f(x) ≤ 1− η

Set g =
fη−(1−η)

2η−1 . Then g is equal to 0 in the set f−1(]−∞, 1− η[) and g = 1 on f−1(]η,+∞[), so
g satisfies the required property.

Lemma B.6. Let u ∈ H1(Rd \ Γ) be such that u vanishes in the neighborhood of ∪j∂Γj. Then

u = u1 + u2

where u1 ∈ H1(Rd \Γ) vanishes in a neighborhood of Σj for all j and u2 is the restriction to R
d \Γ

of a function U2 ∈ H1(Rd).

Proof. Let U be an open neighborhood of ∪Jj=1∂Γj in which u vanishes. Define the compact set

K = Γ \ U , and let V = ∪jΣj . Note that V is closed and disjoint from K, so since K is compact,
it is at a positive distance of K. Thus we can apply Theorem B.5 to fix a function χ ∈ W 1,∞(Rd)
such that χ = 0 in a neighborhood of K and χ = 1 in a neighborhood of V . Then we define
u1 = (1 − χ)u and u2 = χu. By the chain rule, it is immediate that u1 and u2 are in H1(Rd \ Γ)
since χ ∈ W 1,∞(Rd \ Γ). Clearly, u1 satisfies the required property by definition of χ. It remains
to show that u2 can be extended to a H1 function on R

d. For this, we set U2(x) = 0 for x ∈ Γ and
U2(x) = u2(x) for x ∈ R

d \ Γ. Let UK be a neighborhood of K on which χ vanishes. Then UK ∪U
is a neighborhood of Γ where U2 vanishes. Thus U2 is in H1(Rd) since

∫

Rd

|U2(x)|
2 + |∇U2(x)|

2 =

∫

Rd\(UK∪U)

|U2(x)|
2 + |∇U2(x)|

2dx

=

∫

Rd\(Uk∪U)

|u(x)|2 + |∇u(x)|2dx ≤ ∥u∥2H1(Rd\Γ) .
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Lemma B.7. Let Ω be a Lipschitz domain and let Σ ⊂ ∂Ω be a Lipschitz screen. If u ∈ H1(Ω)
vanishes in a neighborhood of Σ, then for all ε > 0 there exists φε ∈ C∞(Ω) ∩ H1(Ω) such that
φ = 0 in a neighborhood of Σ and

∥u− φε∥H1(Ω) ≤ ε .

Proof. First let U be a neighborhood of Σ where u = 0. Introduce a smooth cutoff function χ
which is identically 1 outside U and vanishes in a smaller neighborhood V of Σ. This is possible
since Σ is closed [39, Cor 16.4]. Let M = ∥χ∥W 1,∞(Ω). Fix ε > 0. Since C∞(Ω)∩H1(Ω) is dense in

H1(Ω) (because Ω is a Lipschitz domain, see [28, Thm. 3.29]), we can find φ ∈ C∞(Ω) such that
∥u− φ∥H1(Ω) ≤

ε
M . Then χφ vanishes in a neighborhood of Σ and

∥χφ− u∥H1(Ω) = ∥χφ− χu∥ ≤M ∥φ− u∥ ≤ ε

concluding the proof.

Proof of Theorem B.2. By Proposition B.3, we can first assume that u vanishes in a neighbor-
hood of ∪Jj=1∂Γj and therefore represent it as u1 + u2 as in Lemma B.6. Fix ε > 0. By density

of C∞
c (Rd) in H1(Rd) ([28, Lemma 3.24]), there is φ2 ∈ C∞

c (Rd) such that ∥u2 − φ2∥H1(Rd) ≤ ε.

On the other hand, by Lemma B.7 for each j, there exists ψj ∈ C∞(Ωj) ∩ H
1(Ωj) such that ψj

vanishes in a neighborhood of Σj and
∥∥u1|Ωj

− ψj
∥∥
H1(Ωj)

≤ ε .

Let ψ be defined by

ψ(x) =

{
ψj(x) if x ∈ Ωj ,

0 if x ∪j Σj .

We claim that ψ ∈ X∞. Indeed, ψ is C∞ at any x ∈ Ωj , and if x ∈ Σj for some j, then ψ is
identically 0 in a neighborhood of x. We furthermore have

∥u1 − ψ∥H1(Rd\Γ) ≤ Jε .

In conclusion, letting φ = φ1 + φ2, we can write

∥u− φ∥H1(Rd\Γ) ≤ (J + 1)ε ,

concluding the proof.

Appendix C. Properties of the Hypersingular bilinear form.

Lemma C.1 (Poincaré-type inequality). Let Γ be a polygonal multiscreen such that R
3 \ Γ

is connected and let Ω0, . . . ,Ωj be as in Definition 3.2. There exists a positive constant C =
C(Γ,Ω0, . . . ,Ωj) > 0 such that

∥u∥2H1(R3\Γ) ≤ C
(
∥u∥2H1(Ω0)

+

J∑

j=1

∥∇u∥2L2(Ωj)

)
∀u ∈ H1(R3 \ Γ) .

Proof. It suffices to show that there exists C > 0 such that

J∑

j=1

∥u∥2L2(Ωj)
≤ C

(
∥u∥2H1(Ω0)

+
N∑

j=1

∥∇u∥2L2(Ωj)

)
.
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Assuming that it is not true, one may construct a sequence (un)n∈N of functions in H1(R3 \Γ) such
that

(C.1)

J∑

j=1

∥un∥
2
L2(Ωj)

= 1 ∀n ∈ N

(C.2) lim
n→0

(
∥un∥

2
H1(Ω0)

+

N∑

j=1

∥∇un∥
2
L2(Ωj)

)
= 0 .

Extracting a subsequence, we can assume that un converges weakly in H1(R3 \ Γ) to some u∞ ∈
H1(R3\Γ). By eq. (C.2), u∞ = 0 on Ω0. Moreover, the conditions in eqs. (C.1) and (C.2) imply that
the sequences (∥un∥H1(Ωj)

)n∈N are bounded bounded for j = 1, . . . , J . Using the compact embed-

ding H1(Ωj) ⊂⊂ L2(Ω) (since Ωj is bounded for j = 1, . . . , J) and extracting a new subsequence,
one can further assume that

(C.3) lim
n→∞

∥un − u∞∥L2(Ωj)
= 0 .

We now show that u∞ is locally constant by computing the quantity ℓ := limn→∞
∫
R3\Γ unu∞ +

∇un · ∇u∞ in two different ways. On the one hand, by weak convergence, ℓ = ∥u∞∥2H1(R3\Γ). On

the other hand, using eqs. (C.2) and (C.3), ℓ = ∥u∞∥2L2(R3\Γ). Thus,

∥∇u∞∥2L2(R3\Γ) = ∥u∥2H1(R3\Γ) − ∥u∥2L2(R3\Γ) = ℓ− ℓ = 0 ,

i.e., u∞ is locally constant. Since R
3 \ Γ is connected, it follows that u∞ = 0, which contradicts

eqs. (C.1) and (C.3).

Lemma C.2. For all u, v ∈ H
1/2([Γ]), one has the identity

(C.4) ⟨⟨u ,W v⟩⟩ =
J∑

j=0

∫

Ωj

∇DLu · ∇DL v dx .

Proof. We first notice that

⟨⟨γ(DLu) ,W v⟩⟩ = ⟨⟨u ,W v⟩⟩

due to the jump relation (3.9), the polarity of the single trace spaces H±1/2([Γ]), and the fact that
W v ∈ H−1/2([Γ]). Moreover, by definition

⟨⟨γ(DLu) ,W v⟩⟩ =
J∑

j=0

∫

Ωj

∇DLu(x) · ∇DL v(x) + DLu(x)∆(DL v)(x) dx .

The second term vanishes since DLu is harmonic in R
3 \ Γ, proving the result.

Theorem C.3. There exists a constant cW > 0 such that

(C.5) ∀u ∈ H
1/2(Γ) , ⟨⟨u ,Wu⟩⟩ ≥ cW ∥[u]Γ∥

2
H̃1/2([Γ])
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Proof. Let χ ∈ C∞
c (R3) be a compactly supported function such that χ ≡ 1 in a neighborhood

of Ω. Because the support of χ is bounded, we have Cχ = supx∈R3(|χ(x)|+ |∇χ(x)|)(1+∥x∥2) <∞.

By Lemma C.1, the jump relation (3.9), using the quotient definition of the H̃1/2([Γ]) norm and
using that γ(DLu) = γ(χDLu),

∥[u]Γ∥H̃1/2([Γ]) = ∥[DLu]Γ∥H̃1/2([Γ])

≤ CP

J∑

j=1

∫

Ωj

|∇DLu|2 + 2

∫

Ω0

(|χ|2 + |∇χ|2)(|DLu|2 + |∇DLu|2)

≤ C ′
p

J∑

j=0

∫

Ωj

|∇DLu|2 + C ′
P

∫

Ω0

|DLu|2 /(1 + ∥x∥2) dx

where we applied the Leibniz rule to the term ∇(χDLu), and introduced the constant C ′
p =

max(CP , Cχ). To conclude, we may apply the Poincaré inequality in the Beppo Levi space [33, Thm

2.10.10] which shows that
∫
Ω0

|DLu|2/(1 + ∥x∥2)dx ≤ C
∫
Ω0

|∇DLu|2 dx for some fixed constant
C > 0 that does not depend on u. This finishes the proof.

To prove Theorem 3.8, we start by two elementary technical lemmas.

Lemma C.4 (Almost all points of the skeleton are on exactly two boundaries). Let j, k ∈
{0, . . . , J}, j ̸= k. Then, for σj-almost all x ∈ ∂Ωj ∩ ∂Ωk, there holds

(C.6) nj(x) = −nk(x) .

Moreover, if j, k, l are three distinct indices of {0, . . . , J}, then ∂Ωj ∩∂Ωk ∩∂Ωl is of σj-measure 0.

Proof. Let us first assume that j, k ̸= 0. We then decompose ∂Ωj ∩ ∂Ωk in triangles, using
the meshes ∂MΩj

and ∂MΩk
, which are both regular. A triangle T of ∂MΩj

is incident to two
tetrahedrons exactly, Kj ∈ MΩj and Kk ∈ MΩk

. For x in the relative interior of |T |, the relation
(C.6) is obvious. What remains, i.e. (the convex hulls of) the edges of ∂MΩj ∩ ∂MΩk

, is a set
of surface measure 0. The case where one of the indices j, k is 0 is treated similarly. The last
statement is also obtained by reasoning on the decomposition in triangles, edges and vertices.

Lemma C.5 (All points of the skeleton are on at least two boundaries). For each j ∈
{0 , . . . , J}, there holds

∂Ωj =
⋃

k∈{0 ,...J}\{j}
∂Ωj ∩ ∂Ωk .

Proof. Fix j ∈ {0 , . . . , J}, let x ∈ ∂Ωj and, seeking a contradiction, assume that x is not in
∂Ωk for any k ̸= j. We first deduce that x is not in the set

⋃

k∈{0,...,J}\{j}
Ωk .

Indeed, it is impossible for x to be in Ωk for any k ̸= j, because otherwise, there would be a ball
Bx centered at x such that Bx ⊂ Ωk. But since x ∈ ∂Ωj , the ball Bx contains at least a point of
Ωj , implying that Ωj ∩ Ωk ̸= ∅, contradicting the fact that Ω0 , . . . ,ΩJ is a Lipschitz partition of
R

3. We now construct a point y which is not in the union
⋃

k∈{0,... J}
Ωk .
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To do this, we remark that x is at a positive distance of Ωk for every k ̸= j, so there exists ε small
enough so that, for all k ̸= j, B(x, ε) ∩ Ωk = ∅. In this same ball, we claim that there must be a
point y /∈ Ωi: if there were not, we would then have B(x, ε) ⊂ Ωi, i.e. x ∈ int(Ω). But, since every
Lipschitz domain Ω satisfies the property int(Ω) = Ω, we would have x ∈ Ωi which is impossible
since x was chosen in ∂Ωi to begin with. The existence of y is proven, yet impossible since

J⋃

k=1

Ωk = R
3 ,

which is the desired contradiction.

Remark C.6. The previous proof does not require a polygonal multi-screens, but can be applied
to general, Lipschitz multi-screens.

We now prove that the weak representation identity holds when u and v are sufficiently smooth,
so that all integrations by parts make sense. We then obtain Theorem 3.8 using a density argument.

Lemma C.7 (Weakly singular representation of the bilinear form a on X∞ ×X∞). For u, v ∈
X∞, there holds

(C.7) a ([u]Γ, [v]Γ) =

J∑

j,k=1

∫∫

Γj×Γk

curlj uj(x) · curlk uk(x
′)

4π ∥x− x′∥
dσj(x)dσk(x

′) .

Proof. We adapt the approach of McLean [28, Chap. 9]. In view of Lemma C.4, it is not
difficult to see that (C.7) can be equivalently written as

(C.8) a(φ, ψ) =

J∑

j=0

J∑

k=0

∫

∂Ωj

∫

∂Ωk

curlj φj(x) · curlk ψk(y)

4π ∥x− y∥
dσj(x) dσk(y) ,

where φ = [u]Γ, ψ = [v]Γ. Hence in what follows we prove that eq. (C.8) holds. From now on,
we fix u and v satisfying the hypothesis of the theorem. Furthermore, let us fix x /∈ Σ, and let χx
be a smooth compactly supported function that equals 0 near x and 1 near Σ. Then the function
y 7→ Gx(y) (with this choice of χ) is infinitely differentiable on ∂Ωj for each j, so we may write

DL (γ u) (x) = ⟨⟨γ(u) , πn(∇Gx)⟩⟩ = −
J∑

j=0

∫

∂Ωj

nj ·∇Gx φj dσj =
J∑

j=0

∫

∂Ωj

nj ·∇Gx φj dσj .

Hence, for every x ∈ R
3 \ Σ, we have the formula

(C.9) DL (γ u) (x) =

J∑

j=0

Dj(x)

where

Dj(x) = DLj φj(x) := −

∫

∂Ωj

n(y) ·∇y

(
1

4π ∥x− y∥

)
φj(y)dσj(y)

is the classical double-layer potential associated to the domain Ωj with density φj . Since (Dj)|Ωj

is in H1
loc(Ωj) and (Dj)|Ωc

j
in H1

loc(Ω
c
j), we can define a locally integrable vector field F j by

F j(x) =

{
∇[(Dj)|Ωj

](x) for x ∈ Ωj ,

∇[(Dj)|Ωc
j
](x) for x ∈ (Ωj)

c .
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We introduce the single-layer potential SLj associated to the Lipschitz domain Ωj . For any smooth
vector field uj on ∂Ωj , it is defined by

∀x ∈ R
3 \ ∂Ωj , SLjuj(x) :=

∫

∂Ωj

uj(y)

4π ∥x− y∥
dσj(y) .

Let Aj = SLj (curlj φj). For each k ∈ {1 . . . J}, the trace of Aj on ∂Ωk is well-defined and given
by

(C.10) γkAj(x) =

∫

∂Ωj

curlj φj(y)

4π||x− y||
dσj(y) ,

since this integral is at most weakly singular for x ∈ ∂Ωk. Observe that, by the assumption that
u ∈ X∞, we can choose ũj ∈ C∞

c (R3) such that uj coincides with ũj in a neighborhood of ∂Ωj ,
and thus, curlj φj = nj ×γj∇ũj . The central argument is then the following identity, obtained via
integration by part:

curlAj = −F j on R
3 ,

see [28, Lem. 9.14] (the difference of sign with respect to [28] comes from opposite conventions in
the definition of DL). By definition, we have

⟨⟨W γ(u) , γ(v)⟩⟩ = ⟨⟨πn(∇ DL γ(u)) , γ(v)⟩⟩

=

J∑

j=0

∫

Ωj

∇DL(γ u) ·∇v + v {∆DL(γ u)} dx .

The second term vanishes, so that, using eq. (C.9),

⟨⟨W γ(u) , γ(v)⟩⟩ =
J∑

j,k=0

∫

Ωj

∇Dk ·∇v dx ,

=

J∑

j,k=0

∫

Ωj

F k ·∇v dx ,

=

J∑

j,k=0

∫

Ωj

− curl(Ak) ·∇v dx = −
J∑

j,k=0

∫

Ωj

div(Ak ×∇v) dx ,

in view of the identities div(A × B) = curl A · B − A · curl B and curl∇ = 0. Applying the
divergence theorem in each Ωj , we get

⟨⟨W γ(u) , γ(v)⟩⟩ = −
J∑

j,k=0

∫

∂Ωj

nj · (γjAk ×∇j ψj)dσj .

Permuting the triple product,

(C.11) ⟨⟨W γ(u) , γ(v)⟩⟩ =
J∑

j,k=0

∫

∂Ωj

γjAk · curlj ψj dσj .

We obtain (C.8) after replacing γkAj with eq. (C.10). This proves the Theorem, since a([u]Γ, [v]Γ) =
⟨⟨W (γ(u)) , γ(v)⟩⟩.
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Proof of Theorem 3.8. The proof involves material from [8, 7], which we recall here. Let

L2
t (∂Ωj) :=

{
u ∈ (L2(Γ))3

∣∣ u · nj = 0 a.e. on ∂Ωj
}
.

Let πτ,j : L
2(∂Ωj)

3 → L2
t (Γ) be the operator defined, for u = U |Γ, U ∈ D(R3), by

πτ,ju(x) = n× (U(x)× n) , ∀x ∈ ∂Ωj

and extended to (L2(Γ))3 by density. Let Vπ(∂Ωj) ⊂ L2
t (∂Ωj) be the Hilbert space defined by

Vπ(∂Ωj) :=
{
πτ,ju

∣∣∣ u ∈ (H1/2(∂Ωj))
3
}
,

with the graph norm, and let V ′
π(∂Ωj) be the dual of Vπ(∂Ωj). The space Vπ is dense in L2

t (∂Ωj),
hence one can identify L2

t (∂Ωj) with a dense subspace of V ′
π(∂Ωj), and the duality pairing V ′

π
⟨·, ·⟩Vπ

is the unique continuous extension of the L2
t pairing. Let divj : L2

t (∂Ωj) → H−1(∂Ωj) be the
adjoint of ∇j , where H

−s(∂Ωj) is the dual of Hs(∂Ωj) for 0 ≤ s ≤ 1. Finally, define

H−1/2(divj , ∂Ωj) :=
{
u ∈ V ′

π(∂Ωj)
∣∣∣ divj u ∈ H−1/2(∂Ωj)

}
,

equipped with the graph norm. Since uk ∈ H1(Ωk), we have ∇uj ∈ H(curl,Ωj) hence, by [8, Thm

4.1], nj × γj(∇uj) ∈ H−1/2(divj , ∂Ωj) with

∥nj × γj(∇uj)∥H−1/2(divj ,∂Ωj)
≤ C ∥uj∥H1(Ωj)

.

Furthermore, by [Prop. 2] and [Thm. 4] of [7] the map SLj defined for φj ∈ L2
t (Γ) by

SLjϕj :=

∫

∂Ωj

ϕj(y)dσj(y)

4π ∥x− y∥
dσj(y)

admits a unique linear continuous extension into a mapping SLj : H−1/2(divj , ∂Ωj) → H1
loc(R

3).
Namely, this extension reads V ′

π ∋ λ 7→ SLj(iπ(λ)), where iπ : V ′
π → (H−1/2(∂Ωj))

3 is defined in
eq. (10) of [7]. Therefore, the bilinear form M : H1(R3 \ Γ)×H1(R3 \ Γ) defined by

(C.12) M(u, v) :=

J∑

j,k=0

⟨πτ,k SLj(nj × γj∇uj),nk × γk∇uk⟩Vπ(∂Ωk)×V ′
π(∂Ωk)

is continuous. Moreover, when γju ∈ H1(∂Ωj), both terms in the duality pairing appearing in
eq. (C.12) are in L2

t (∂Ωj) so, using the commuting property γj∇ = ∇j , the expression becomes
(simplifying the integrals over ∂Ωj \ Γ as pointed out in the proof of Lemma C.7)

M(u, v) =

J∑

j,k=0

∫∫

Γj×Γk

curlj uj(x) · curlk uk(x
′)

∥x− x′∥
dσj(x)dσk(x

′) ∀u, v s.t. γju, γjv ∈ H1(∂Ωj) .

For u, v ∈ X∞, we deduce that that M(u, v) = a([u]Γ, [v]Γ) by Lemma C.7. Hence, the continuous
bilinear forms M(·, ·) and a(·, ·) agree on X∞ ×X∞ ⊂ H1(R3 \ Γ)×H1(R3 \ Γ), therefore, by the
density result of Theorem B.2, a([u], [v]) =M(u, v) for all u, v ∈ H1(R3 \Γ), concluding the proof.
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Appendix D. Convergence of the Galerkin solution. We first prove a technical result.
Let

X0 :=
{
u ∈ C0(R3 \ Γ)

∣∣∣ u|Ωj
∈ C0(Ωj) for all j = 0, . . . , J

}

where, for any open set U ⊂ R
3, C0(U) is the set of uniformly continuous functions on U .

Lemma D.1. For u ∈ X0, let Ihu be the element of L2(R3) defined by

(Ihu)|Ωj
= Ih,juj ,

where Ih,j : C
0(Ωj) → Vh(Ωj) is the standard Lagrange interpolant. Then Ihu ∈ Vh(Ω \ Γ).

Proof. Let u ∈ X0 and let xi be a vertex of MΩ,h. Let K and K ′ be two tetrahedra of ∆i,j

with a common face F (in particular, the relative interior of |F | is disjoint from Γ). The definition
of X0 implies that u is uniformly continuous on int(|K|) for each tetrahedron K of MΩ,h. Hence,
we can define the continuous extension uK of u|int(|K|) to the whole |K| (recall that this is the closed
convex hull of K). Let uK′ be defined similarly on K ′. We start by showing that uK(xi) = uK′(xi).
Indeed, assume that those values differ by a positive quantity δ := |uK(xi)− uK′(xi)| > 0, and let
ε = δ/4. Using that uK is uniformly continuous, one can find η > 0 such that for all x, x′ ∈ |K|,
|x− x′| < η implies that |u(x)− u(x′)| ≤ ε. Let η′ be defined similarly for K ′. Finally, choose a
point x in the common face F such that x is at a positive distance of Γ (it suffices to take x in the
relative interior of |F |) and |x− xi| ≤ min(η, η′). We then have

0 < δ = |uK(xi)− uK′(xi)|

≤ |uK(x)− uK(xi)|+ |uK′(x)− uK′(xi)|+ |uK(x)− uK′(x)|︸ ︷︷ ︸
=0

≤ 2ε =
δ

2
,

which is a contradiction (we used that uK(x) = uK′(x) = u(x), since u is continuous on R
3 \ Γ).

We deduce that as soon as K and K ′ both belong to ∆i,j , then uK(xi) = uK′(xi) by considering
a face-connected path in ∆i,j from K to K ′.

For each (i, j) ∈ H(Ω), choose an element K ∈ MΩ,h and let ui,j := uK(xi). Let

uh =
∑

(i,j)∈H(Ω)

ui,jϕi,j ,

where {ϕi,j}(i,j)∈H(Ω) is the set of split basis functions. The function uh obviously belongs to
Vh(Ω \ Γ) and we now show that Ihu = uh. Let K be an arbitrary element of MΩ,h and let
xi be a vertex of K. Let (zn)n∈N be a sequence of points of int|K| converging to xi. Let j be
the element of {1, . . . , qi} be such that K ∈ ∆i,j . Recalling that, by definition of {ϕi,j}(i,j)∈H(Ω),
limn→∞ ϕi′,j′(zn) = δi,i′δj,j′ , we deduce

lim
n→∞

uh(zn) = ui,j .

Let ℓ be such that K ∈ MΩℓ,h and let uℓ denote the continuous extension of u|Ωℓ
to Ωℓ. Then by

definition
Ihu(zn) = Ih,ℓuℓ(zn) ;
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therefore, using the continuity of the piecewise linear function Ih,ℓuℓ and the definition of Ih,ℓ,

lim
n→∞

Ihu(zn) = (Ih,ℓuℓ)(xi) = uℓ(xi) .

Since int(|K|) ⊂ Ωℓ, uℓ coincides with uK on int(|K|), implying

lim
n→∞

Ihu(zn) = uK(xi) = ui,j

by what precedes, since K ∈ ∆i,j . In conclusion, the restrictions to int(|K|) of Ihu and uh are
linear functions whose limits at every vertex of K coincide, hence they are equal on this set. The
functions Ihu and uh thus agree almost everywhere on R

3, and the proof is concluded.

Proof of Theorem 4.2. By Theorem B.2, it is sufficient to prove that for any and u ∈ X∞ with
suppu ⊂ Ω, there exists a sequence (uh)h>0 of elements uh ∈ Vh(Ω \ Γ) such that

lim
h→0

∥u− uh∥H1(R3\Γ) = 0 .

For each h > 0, we define uh := Ihu where Ih is the Lagrange interpolant of Lemma D.1. Since
X∞ ⊂ X0, we indeed have Ihu ⊂ Vh(Ω \ Γ) by Lemma D.1, and

∥u− Ihu∥
2
H1(R3\Γ) =

J∑

j=0

∥uj − Ih,juj∥
2
H1(Ωj)

,

and we conclude using the well-known approximation properties of the Lagrange interpolants Ih,j .

Appendix E. Stability conditions for induced splittings. We break the proof of
Theorem 5.2 into several lemmas.

Lemma E.1 (Stability of the discrete harmonic lifting). Let Πh be as in (A), and let Φ : X → V

be the harmonic lifting (or minimal norm extension) characterized by

∀f ∈ X , T (Φf) = f , and ∥Φf∥
V
= ∥f∥

X
.

Write Eh := Πh ◦ Φ. Then
∀fh ∈ Xh , T (Ehfh) = fh ,

and one has the bound
∥Ehfh∥V ≤ ∥Πh∥L(V) ∥fh∥X .

Proof. Let fh ∈ Xh, and fix uh ∈ Vh such that T (uh) = fh. Observe that uh − Φfh ∈ V0.
Indeed,

T (uh − Φfh) = T (uh)− T (Φfh) = fh − fh = 0 .

Since Πh preserves V0, one has Πh(uh − Φfh) ∈ V0. Consequently,

0 = T (Πh(uh − Φfh)) = T (Πhuh)− T (Ehfh) = T (uh)− T (Ehfh) = fh − T (Ehfh) ,

where in the third equality, we used hat Πhuh = uh by (A). This proves the first claim. The second
claim is obvious since Eh = Πh ◦ Φ and, by definition of Φ, ∥Φ∥L(X,V) = 1.

Lemma E.2. Assume that (A) holds. Then

∀uh ∈ Vh , min
{
∥uh − uh,0∥V

∣∣ uh,0 ∈ Vh ∩ V0

}
≤ ∥Πh∥L(V) ∥T (uh)∥X .



38 M. AVERSENG, X. CLAEYS AND R. HIPTMAIR

Proof. Let uh ∈ Vh, and put

vh,0 := uh − Eh(T (uh)) .

By the Lemma E.1 above, T (vh,0) = 0, hence vh,0 ∈ Vh ∩ V0. Therefore,

min
{
∥uh − uh,0∥V

∣∣ uh,0 ∈ Vh ∩ V0

}
≤ ∥uh − vh,0∥V
= ∥Eh(T (uh))∥V ≤ ∥Πh∥L(V) ∥T (uh)∥X ,

where in the last inequality, we used the bound on the norm of Eh from Lemma E.1.

Corollary E.3. Consider the statement:

(A’) There exists a linear operator Eh : Xh → Vh such that

∀fh ∈ Xh , T (Ehfh) = fh .

Then (A) implies (A’), with ∥Eh∥L(X,V) ≤ ∥Πh∥L(V).

Lemma E.4. Consider the statement

(B’) There is a linear operator Eh,i : Xh,i → Vh,i satisfying

T (Eh,ifh,i) = fh,i , fh,i ∈ Xh,i .

Assume that (A) holds. Then, if (B) holds with constants κi, (B’) holds, with the estimates

∥Eh,i∥L(X,V) ≤ κi ∥Πh∥L(V) .

Proof. Let Eh,i be the linear operator which maps fh,i = T (uh,i) to the minimizer of

min
{
∥uh,i − ui,h,0∥V

∣∣ uh,i,0 ∈ V0 ∩ Vh,i
}
.

Notice that this quantity is the one in the left-hand side of condition (B). Also note that Eh,i does
not depend on the choice of representative uh,i of fh,i and is indeed a linear operator. We thus
have, by combining (B) with Lemma E.2:

∥Eh,ifh,i∥V ≤ κi ∥Πh∥L(V) ∥T (uh,i)∥X = κi ∥Πh∥L(V) ∥fh,i∥X .

Proof of Theorem 5.2. The theorem is a consequence of [23, Thm 2.1], since, by Corollary E.3
and Lemma E.4 the combination of assumptions (A) and (B) implies (A’) and (B’).

Proof of Lemma 5.3. Going inside the proof of [23, Thm 2.2], one replaces the operator E0 :
X0 → V0 by the global extension operator E : X0 → V . In the line of the proof below eq.(2.14) of
that reference, we then write

L∑

i=0

∥ξi∥
2
D ≥

1

C2
2

L∑

i=1

∥Eiξi∥
2
A +

1

C2
1

∥Eξ0∥
2
A ≥ min

(
1

C2
1

,
1

C2
2

)


∥∥∥∥∥

L∑

i=1

Eiξi

∥∥∥∥∥

2

A

+ ∥Eξ0∥
2
A





≥
1

2max(C1, C2)2

∥∥∥∥∥

L∑

i=1

Eiξi + Eξ0

∥∥∥∥∥

2

A

.

Te rest of the proof carries over without difficulty.
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Appendix F. Substructuring estimate in the volume.

Proof of Theorem 6.5. We adapt the approach of [37, Chap. 5]. Remarking that the spaces
Vh,0(Ωj) are pairwise orthogonal and orthogonal to Vh(Ω \ Γ), it suffices to study the stability of
the splitting

(F.1) Vh(Ω \ Γ) =
∑

Fk∩Γ=∅
VFk +

∑

Fk⊂Γ

2∑

ν=1

VFk,ν +VW + VH(Ω \ Γ) .

Note that one has indeed VH(Ω \ Γ) ⊂ Vh(Ω \ Γ) since elements of VH(Ω \ Γ) are linear, and thus
harmonic, in each Ωj . Using Poincaré’s inequality on H1

0 (Ω), it suffices to show the stability of the
splitting with respect to the norm induced by the bilinear form

A(u, v) :=

J∑

j=1

∫

Ωj

∇u · ∇v dx ,

i.e., replacing the H1(R3 \ Γ) norms in eq. (6.7) by A(·, ·)1/2 norms. Hence, in what follows, we
study the stability of the splitting in eq. (F.1) through the following modified norm:

(F.2) |||uh|||
2
A := inf

{
N∑

i=0

A(uh,i, uh,i)

∣∣∣∣∣

N∑

i=0

uh,i = uh , uh,i ∈ Vi

}
,

where V0 = VH(Ω \Γ), V1 = VW and Vi, i = 2, . . . , N are the discrete harmonic face spaces VFk

and VFk,ν , in some order. To this aim, we seek estimates for constants θh and Θh such that

(F.3) θh ∥uh∥
2
H1(R3\Γ) ≤ |||uh|||

2
A ≤ Θh ∥uh∥

2
H1(R3\Γ) ∀uh ∈ Vh(Ω \ Γ) .

For i = 0, . . . , N , define Pi : Vh(Ω \ Γ) → Vh(Ω \ Γ) by Piu ∈ Vi and

(F.4) A(Piu, vi) = A(u, vi) , ∀vi ∈ Vi .

Let Pad =
∑N
i=0 Pi. The best possible constants θh and Θh in eq. (F.3) are given by θh = λmin(Pad)

and Θh = λmax(Pad), where λmin(Pad) and λmax(Pad) are the smallest and largest eigenvalues of
Pad, (see e.g. [29, Thm. 16]). To bound the eigenvalues of Pad, we follow the general theory of
additive Schwarz preconditioning as presented in [37, Section 2.3].

The bound on λmax(Pad) is obtained by a classical coloring argument. More precisely, we show
the analogs, in our context, of Assumptions 2.3 and 2.4 in this [37, Section 2.3]. Suppose that
2 ≤ i, j ≤ N are such that Vi corresponds to the face Fk and Vj to the face Fℓ. Define

(F.5) ϵi,j :=

{
1 if Fk and Fℓ have a common edge

0 otherwise .

One then has the strengthened Cauchy-Schwarz inequality

A(ui, vj) ≤ ϵi,jA(ui, ui)
1/2A(vj , vj)

1/2 , ∀ui ∈ Vi , vj ∈ Vj , 2 ≤ i, j ≤ N .

Indeed, the inequality is the usual Cauchy-Schwarz inequality when ϵi,j = 1. Conversely, if ϵi,j = 0,
then Fk and Fℓ have no edge in common, which implies that no tetrahedral element Ωj is incident
to both Fk and Fℓ. It follows that ui and vj have disjoint support, hence A(ui, vj) = 0.
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Let E = {ϵi,j}2≤i,j≤N and let ρ(E) be the spectral radius of E . Then, bounding the spectral
radius by the ℓ∞-norm of the rows, we have immediately

ρ(E) ≤ 2N♯

where N♯ is defined as the maximal number of faces Fk incident to a common edge.
Noting that [37, Assumption 2.4] holds with constant ω = 1 here, because the same bilinear

form A is used on both sides of the equality in the definition of Pi in eq. (F.4), we conclude by [37,
Lemma 2.6] (adapting the proof to handle two coarse subspaces instead of one), that

λmax(Pad) ≤ ω(ρ(E) + 1) ≤ 2(N♯ + 1) .

This gives a uniform bound on λmax(Pad) with respect to H and h due to the shape-regularity
assumption for the coarse triangulation.

It remains to prove a lower bound for λmin(Pad) ≥ c
(
(1+ logH/h)−2

)
for some c > 0. For this,

by [37, Lemma 2.5], it suffices to show that, given any uh ∈ Vh(Ω\Γ), there exists a decomposition

(F.6) uh =

N∑

i=0

uh,i , uh,i ∈ Vi,

such that

N∑

i=0

A(uh,i, uh,i) ≤ C(1 + logH/h)2A(uh, uh) .

where here and in the following, the letter C is used to denote a generic constant whose value is
independent of the parameters H and h. We start with the space V0 = VH(Ω \ Γ) and define

uh,0 := ĨHuh ∈ VH(Ω \ Γ)

where ĨH may be chosen as any Clément-type quasi-interpolant on the coarse triangulation, with
the properties

(F.7) |ĨHu|H1(Ωj) ≤ C |u|H1(Ωj)
,
∥∥∥u− ĨHu

∥∥∥
L2(Ωj)

≤ CH |u|H1(Ωj)
,

for each j = 1, . . . , J . Next, let i ≥ 2 and suppose that Vi is associated to the face Fk, shared
by the domains Ωℓ and Ωm. For the time being, suppose that Fk does not belong to Γ. Let
wh = uh − uh,0, and let uh,i = H(θFkwh). Here, as in [37], the function H(θFkw) is the piecewise
discrete harmonic extension of the boundary values of wh on Fk

h , i.e. the element of Vh(Ω\Γ) with
nodal values equal to 0 outside Fk

h , and to uh(x) for x ∈ Fk
h . Then we have by [37, Lemma 4.24]

and the properties of ĨH above

A(uh,i, uh,i) ≤ C(1 + logH/h)2(|wh|
2
H1(Ωk)

+
∥wh∥

2
L2(Ωk)

H2
+ |wh|

2
H1(Ωℓ)

+
∥wh∥

2
L2(Ωℓ)

H2
)

≤ C(1 + logH/h)2 |uh|
2
H1(Ωk∪Ωℓ)

.
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The case where Fj ⊂ Γ is similar, the only difference being that the discrete harmonic extension
is only non-zero in one of the two domains Ωk and Ωℓ incident to Fj . Summing those inequalities
for 2 ≤ i ≤ N and using that each tetrahedron Ωj has only 4 faces,

N∑

i=2

A(uh,i, uh,i) ≤ C(1 + logH/h)2A(uh, uh) .

It remains to handle the contribution from the wire-basket, which, in order to respect the
constraint of eq. (F.6), must be defined by

uh,1 := uh − uh,0 −
N∑

i=2

uh,i .

Since the functions uh,i, i = 2, . . . , N , vanish at the wire-basket, one has in fact uh,1 = H(θWwh),
where, as before, H(θWwh) is the discrete piecewise-harmonic function with boundary values match-
ing those of wh on the wire-basket generalized vertices, and 0 on the face generalized vertices. We
write

A(uh,1, uh,1) =
J∑

j=1

∣∣Hj(θWj
wh)

∣∣2
H1(Ωj)

,

where Hj(θWjw) is the discrete harmonic extension in Vh(Ωj) of the boundary values of wh on the
wire-basket Wj of Ωj . By [37], [Lemma 4.19] and [Lemma 4.16] (arguments in this order)

∣∣Hj(θWjwh)
∣∣2
H1(Ωj)

≤ C ∥wh∥
2
L2(Wi)

≤ C(1 + logH/h)2 ∥wh∥
2
H1(Ωi)

.

We obtain the lower bound on λmin(Pad) using again the properties in eq. (F.7). This concludes
the proof of the Theorem.
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