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Abstract—We study frequency domain electromagnetic scat-
tering at a bounded, penetrable, and inhomogeneous obstacle.
By defining constant reference coefficients, a new representation
formula for interior and exterior vector fields is proposed, based
on the general form of the Stratton-Chu integral representation.
The final integral equation system consists of surface integral
operators arising from a Poggio-Miller-Chang-Harrington-Wu-
Tsai (PMCHWT) formulation and compact volume integral
operators with weakly singular kernels. The problem is solved
with a Galerkin approach with usual Curl-conforming and Div-
conforming finite elements on the surface and in the volume.
Compression techniques and special quadrature rules for singular
integrands are required for an efficient and accurate solution. Nu-
merical experiments provide evidence that our new formulation
enjoys promising properties.

Index Terms—volume integral equations, boundary integral
operators, boundary elements, finite elements, electromagnetic
waves

I. INTRODUCTION

We study electromagnetic wave propagation in the fre-

quency domain. A bounded, penetrable, and inhomogeneous

obstacle is considered, with smoothly varying coefficients

inside, i.e. jumps in the material properties across its surface

are admitted. For the general case mentioned above, volume

integral equations lead to a formulation where the problem

reduces to finding electric and magnetic fields inside the

domain of interest [4]. The integral equations involve strongly

singular integral operators, which are not compact in the

general case. This is a problem even for simple settings,

such as dielectric materials. Alternatively, a popular option

for problems posed on (exterior) unbounded domains is to use

an expression for the Dirichlet-to-Neumann map. This is the

foundation for coupling finite element methods (FEM) with

boundary element methods (BEM) and it leads to stable dis-

cretizations for the transmission problem [7]. In the particular

case of piecewise constant material properties, it is possible

to completely reformulate the problem as a surface integral

equation system [6], [11]. That system can then be discretized

with BEM in various ways.

We propose a formulation that reduces to PMCHWT in the

particular case of constant coefficients, and is coupled with
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compact volume integral operators in the case of spatially

varying inhomogeneities. We have developed a rigorous anal-

ysis that proves well-posedness of the continuous and discrete

systems. The approach is closely related to the one for acoustic

scattering presented in [8].

II. ELECTROMAGNETIC SCATTERING

We are interested in solving the frequency domain elec-

tromagnetic wave scattering problem in a medium that is

homogeneous outside a bounded region Ω ⊂ R
3. We denote

the exterior domain Ω+ := R
3 \ Ω̄. Material properties are

given by functions ε ∈ L∞(R3) and µ ∈ L∞(R3) where

ε(x) ≡ ε0, µ(x) ≡ µ0 for x ∈ Ω+, (1)

and εmax > ε(x) > εmin > 0, µmax > µ(x) > µmin > 0
almost everywhere in R

3.

The frequency-domain Maxwell equations governing the

problem of finding the total electric field u := us + uinc and

total magnetic field v := vs + vinc in this inhomogeneous

medium are

curl(u)− iωµ(x)v = 0, for x ∈ R
3, (2)

curl(v) + iωε(x)u = 0, for x ∈ R
3, (3)

where uinc,vinc are the incident fields satisfying the Maxwell

equations in the whole space,

curl(uinc)− iωµ0v
inc = 0, for x ∈ R

3, (4)

curl(vinc) + iωε0u
inc = 0, for x ∈ R

3, (5)

and us,vs satisfy Silver-Müller radiation conditions

vs × x

r
− us = O

(

1
r2

)

, r = |x| → +∞. (6)

The problem can be formulated as the following transmission

problem: find u,v ∈ Hloc(curl,R
d) such that



curl(u0)− iωµ0v0 = 0, in Ω+, (7a)

curl(v0) + iωε0u0 = 0, in Ω+, (7b)

curl(u)− iωµ(x)v = 0, in Ω, (7c)

curl(v) + iωε(x)u = 0, in Ω, (7d)

γ+
τ u0 − γ−

τ u = −γτu
inc, on Γ, (7e)

γ+
τ v0 − γ−

τ v = −γτv
inc, on Γ, (7f)

v0 ×
x

r
− u0 = O

(

1
r2

)

, r := |x| → +∞, (7g)

where γ±
τ denotes the exterior/interior tangential trace opera-

tors: γτe = e|Γ × n.

III. PRELIMINARIES

We state the mathematical setting required for our formu-

lations. Let L2(Ω) be the Hilbert space of square-integrable

functions in Ω, equipped with the usual inner-product

(u, v) :=

∫

Ω

u(x)v(x)dx.

We define L2(Ω) as the space of square-integrable vector fields

in Ω. We denote as H(curl,Ω) the space of vector fields in

L2(Ω), whose curl is also in L2(Ω). Similarly, H(div,Ω)
denotes the space of vector fields with divergence in L2(Ω).

The trace operator γτ acts on elements of H(curl,Ω) and

maps onto the space H−1/2(divΓ,Γ) of tangential vector fields

[5]. We define the duality product in H−1/2(divΓ,Γ) as an

extension of

〈α,β〉Γ :=

∫

Γ

α(x) · (n(x)× β(x))dsx.

We will also make use of the normal trace γn, which acts on

elements of H(div,Ω) and takes the normal component of the

restriction of a vector field to the boundary: γnu := n · u|Γ.
The fundamental solution for the Helmholtz equation with

wavenumber κ⋆ is denoted G⋆(x,y) and reads G⋆(x,y) =
exp(iκ⋆|x − y|)/(4π|x − y|). We define the (scalar) single-

layer potential S⋆ and Newton potential N⋆ as follows:

(S⋆ϕ)(x) :=

∫

Γ

G⋆(x,y)ϕ(y)dsy, (8)

(N⋆f)(x) :=

∫

Ω

G⋆(x,y)f(y)dy, (9)

for x ∈ R
3 \ Γ.

Finally, we state a general version of the Stratton-Chu

integral representation for general smooth vector fields: let

u,v ∈ C2(Ω) and κ⋆ = ω
√
µ⋆ε⋆. Then

u = curlN⋆(curl(u)− iωµ⋆v)

+ iωµ⋆N⋆(curl(v) + iωε⋆u)−∇N⋆(div(u))

+ curlS⋆(γτu) +∇S⋆(γnu) + iωµS⋆(γτv),

and

v = curlN⋆(curl(v) + iωε⋆u)

− iωε⋆N⋆(curl(u)− iωµ⋆v)−∇N⋆(div(v))

+ curlS⋆(γτv) +∇S⋆(γnv)− iωε⋆S⋆(γτu),

hold as integral representations. When u and v are solutions

of Maxwell’s equations with constant coefficients, the rep-

resentations simplify to mere surface integrals depending on

tangential traces of the fields.

IV. FORMULATION FOR HOMOGENEOUS MEDIUM

For the case of constant coefficients, integral representations

of the solutions of (7) for the exterior and interior domain are

u0 = −curlS0(γ
+
τ u0)−∇S0(γ

+
n
u0)− iωµ0S0(γ

+
τ v0),

v0 = −curlS0(γ
+
τ v0)−∇S0(γ

+
n
v0) + iωε0Sκ(γ

+
τ u0),

u = curlS1(γ
−

τ u) +∇S1(γ
−

n
u) + iωµ1S1(γ

−

τ v),

v = curlS1(γ
−

τ v) +∇S1(γ
−

n
v)− iωε1S1(γ

−

τ u).

Using the identities

γ+
n
u0 = − 1

iωε0
divΓ(γ

+
τ v0), γ+

n
v0 = 1

iωµ0

divΓ(γ
+
τ u0),

γ−

n
u = − 1

iωε1
divΓ(γ

−

τ v), γ−

n
v = 1

iωµ1

divΓ(γ
−

τ u),

and denoting

α+ := γ+
τ u0, β+ := iωµ0γ

+
τ v0 (11a)

α := γ−

τ u, β := iωµ1γ
−

τ v (11b)

the representation formula can be written as

u0 = −DL0(α
+)− SL0(β

+), (12a)

iωµ0v0 = −κ2
0SL0(α

+)− DL0(β
+), (12b)

u = DL1(α) + SL1(β), (12c)

iωµ1v = κ2
1SL1(α) + DL1(β), (12d)

where the Maxwell layer potentials are defined as

SL⋆ := 1
κ2
⋆

∇S⋆divΓ + S⋆, (13)

DL⋆ := curlS⋆. (14)

Surface integral equations are obtained by applying the tan-

gential trace to (12):

α+ = ( 12I−K0)α
+ −V0β

+, (15a)

β+ = −κ2
0V0α

+ + ( 12I−K0)β
+, (15b)

α = ( 12I+K1)α+V1β, (15c)

β = κ2
1V1α+ ( 12I+K1)β, (15d)

where

V⋆ := 1
κ2
⋆

curlΓ ◦ V⋆ ◦ divΓ − n× V⋆,

K⋆ := 1
2 (γ

+
τ + γ−

τ )curlS⋆,

are the usual surface integral operators for Maxwell’s equa-

tions [6].

Combining (15) with the transmission conditions, we arrive

at the PMCHWT formulation: find α,β ∈ H−1/2(divΓ,Γ)
such that

(M−1A0M+A1)

(

α

β

)

= −M−1

(

αinc

βinc

)

, (16)

where

A⋆ :=

(

K⋆ V⋆

κ2
⋆V⋆ K⋆

)

, M :=

(

1 0
0 µ0

µ1

)

. (17)



V. FEM-BEM COUPLING

For a setting with varying coefficients, we start by writing

the curl-curl problem for the electric field:

curl 1µcurl(u)− ω2εu = 0 in Ω. (18)

A variational formulation for this problem reads as follows:

find u ∈ H(curl,Ω) such that

( 1µcurl(u), curl(w))− ω2(εu,w) (19a)

+ 〈 1µγ
−

τ curl(u), γ−

τ w〉Γ = 0, (19b)

holds for all w ∈ H(curl,Ω). From the transmission condi-

tions we know

γ−

τ u− γτu
inc = γ+

τ u0, (20a)

1
µγ

−

τ curl(u)− 1
µ0

γτcurl(u
inc) = 1

µ0

γ+
τ curl(u0), (20b)

and from an integral representation in the exterior domain we

get

α+ := γ+
τ u0 = ( 12I−K0)α

+ −V0β
+. (21)

Replacing (20) and (21) into (19), we obtain

( 1µcurl(u), curl(w))− ω2(εu,w) (22a)

+ 〈 1
µ0

β+, γ−

τ w〉Γ = 〈 1
µ0

βinc, γ−

τ w〉Γ, (22b)

( 12I+K0)γ
−

τ u+V0β
+ = −( 12I+K0)α

inc. (22c)

VI. COMBINED SURFACE-VOLUME INTEGRAL EQUATIONS

We define constant reference coefficients in a way such that

the support of inhomogeneities can be reduced, such as

ε1 =
1

|Ω|

∫

Ω

ε(x)dx, µ1 =
1

|Ω|

∫

Ω

µ(x)dx, (23)

where ε1 and µ1 will be used for the constant coefficient part

of the formulation, i.e. the Green’s function in the interior

domain.

We write the transmission problem (7) as follows

curl(u0)− iωµ0v0 = 0, in Ω+, (24a)

curl(v0) + iωε0u0 = 0, in Ω+, (24b)

curl(u)− iωµ1v = f1, in Ω, (24c)

curl(v) + iωε1u = f2, in Ω, (24d)

γ+
τ u0 − γ−

τ u = −γτu
inc, on Γ, (24e)

γ+
τ v0 − γ−

τ v = −γτv
inc, on Γ, (24f)

v0 ×
x

r
− u0 = O

(

1

r2

)

, r = |x| → +∞, (24g)

where

f1(x) := −iωµ1pm(x)v(x), pm(x) := 1− µ(x)

µ1
,

f2(x) := iωε1pe(x)u(x), pe(x) := 1− ε(x)

ε1
,

and ε1, µ1 ∈ R+ are conveniently chosen parameters as in

(23). The representation formula in Ω now reads

u =− iωµ1curlN1(pmv)− κ2
1N1(peu)−∇N1(div(u))

+ curlS1(γ
−

τ u) +∇S1(γ
−

n
u) + iωµ1S1

(

γ−

τ v
)

,

and

v = iωε1curlN1(peu) + κ2
1N1(pmv)−∇N1(div(v))

+ curlS1(γ
−

τ v) +∇S1(γ
−

n
v)− iωε1S1

(

γ−

τ u
)

.

We will repeatedly make use of the product rule

curl (fF ) = ∇f × F + fcurl(F ),

for f ∈ C1(Ω),F ∈ [C1(Ω)]3, and an integration by parts

result on Newton potentials

curlNℓ(F ) = Nℓ(curlF ) + Sℓ(γτF ). (25)

Solutions of (24) also satisfy

div(εu) = ∇ε · u+ εdiv(u) = 0,

⇒ div(u) = −∇ε

ε
· u =: −τe · u,

div(µv) = ∇µ · v + µdiv(v) = 0,

⇒ div(v) = −∇µ

µ
· v =: −τm · v,

and

γnu = − 1

iωε1ε̃
divΓ(γτv), γnv =

1

iωµ1µ̃
divΓ(γτu),

where

ε̃(x) :=
ε(x)

ε1
, µ̃(x) :=

µ(x)

µ1

for all x ∈ Ω. We denote ṽ := iωµ1v and obtain a new

integral representation

u =Kmṽ +Aeu+ DL1(γ
−

τ u) + SL
ε̃,µ̃
1 (γ−

τ ṽ),

ṽ =Keu+Amṽ + DL1(γ
−

τ ṽ) + κ2
1SL

µ̃,ε̃
1 (γ−

τ u),

(26)

(27)

where we defined the volume integral operators

Keu := −κ2
1N1(curl(peu)), (28a)

Kmv := −N1(curl(pmv)), (28b)

Aeu := −κ2
1N1(peu) +∇N1(τe · u), (28c)

Amv := κ2
1N1(pmv) +∇N1(τm · v). (28d)

and the (scaled) layer potential

SL
a,b
1 (β) := 1

κ2

1

∇S1(
1
adivΓ(β)) + S1(bβ). (29)

Finally, we arrive at

• two integral equations on the interface Γ, of PMCHWT

type, obtained by taking tangential traces of (26) and (27),

and

• two equations in the volume, directly from (26) and (27).



The resulting linear integral operator equation system reads as

follows: find u,v ∈ H(curl,Ω) and α,β ∈ H−1/2(divΓ,Γ)
such that

(

A B

C D

)(

U
Λ

)

=

(

0
Λinc

)

, (30)

holds, where

U := (u, ṽ), ṽ := iωµ1v,

Λ := (α,β), Λinc := (αinc,βinc),

A := M−1A0M+A
ε̃,µ̃
1 ,

B :=
(

Te Tm

)

,

C :=

(

−DL1 −SL
ε̃,µ̃
1

−κ2
1SL

µ̃,ε̃
1 −DL1

)

,

D :=

(

I−Ae −Km

−Ke I−Am

)

.

where we defined

A
ε̃,µ̃
1 :=

(

K1 V
ε̃,µ̃
1

κ2
1V

µ̃,ε̃
1 K1

)

, Te =

(

γ−
τ Ae

γ−
τ Ke

)

, Tm =

(

γ−
τ Km

γ−
τ Am

)

.

VII. GALERKIN DISCRETIZATION

Let {Th}h>0 be a globally quasi-uniform and shape-regular

family of triangular meshes of Ω. Let {Σh}h>0 be the induced

family of meshes on Γ. We choose finite element spaces:

• Nh := Nh(Th) ⊂ H(curl,Ω) of Nédélec edge elements

(in the volume).

• Wh := Wh(Σh) ⊂ H−1/2(divΓ,Γ) of Rao-Wilton-

Glisson face elements (on the boundary).

We will also use Nh as a conforming subspace of the dual

space of H(curl,Ω). This leads to a stable discretization of

the duality product in H(curl,Ω).

The implementation relies on standard techniques for nu-

merical integration of weakly singular kernels [12, Chapter 5],

extended to the case of interactions between tetrahedron-

triangle and tetrahedron-tetrahedron [3], [10]. Moreover, as the

linear system involves large dense blocks arising from volume

integral operators, matrix compression such as H−matrix

with ACA [2] becomes crucial. We use Castor [1], a C++

linear algebra library that provides easy to integrate H−matrix

routines.

VIII. NUMERICAL EXPERIMENTS

We study the transmission problem (7) with an incident field

given by a plane-wave

uinc(x) := ĵ exp(iκ0x · k̂).

The domain corresponds to a cube of unit length Ω := [0, 1]3.
We set ε0 = µ0 ≡ 1 and ε1 = 2, µ1 = 1. The variable

coefficients ε and µ are set to

ε(x) := ε1 + x1(1− x1)x2(1− x2)x3(1− x3),

µ(x) := µ1,

for x ∈ Ω. We find Galerkin solutions for both (22) and (30),

then measure the errors in the electric field, given as

errorL2(Ω) :=
‖u⋆

h − uh‖L2(Ω)

‖u⋆
h‖L2(Ω)

,

errorH(curl,Ω) :=
‖u⋆

h − uh‖H(curl,Ω)

‖u⋆
h‖H(curl,Ω)

,

where u⋆
h is a solution obtained from a highly refined mesh.

Information about the meshes used in our experiments can be

found in Table I.

Convergence results can be found in Fig.1, and a snapshot of

the solution in Fig.2. We observe convergence of the Galerkin

solutions for both the coupled surface-volume formulation

(denoted as STF-VIE for single-trace volume integral equa-

tions) and for the FEM-BEM coupling, which validates our

formulation.

TABLE I
MESHES USED IN NUMERICAL EXPERIMENTS

Meshes

Elements Nodes Edges Mesh size

24 14 49 1/2

192 63 302 1/4

1536 365 2092 1/8

12288 2457 15512 1/16

98304 17969 119344 1/32

0.0625 0.125 0.25 0.5

0.01

0.03

0.06

0.125

0.25

0.5

Fig. 1. Convergence of the electric field, measured with respect to a solution
obtained from a highly refined mesh.

IX. CONCLUSION

In this work, we presented a new formulation for the

Maxwell transmission problem, consisting of a coupling be-

tween surface and volume integral equations, based on modi-

fied integral representations. Our numerical experiments show

convergence of solutions, validated by well-established varia-

tional formulations. Future work considers exploring the high-

frequency behaviour of solutions to these integral equations,

and compare it to the well-known pollution effect that affects

solutions of standard finite element discretizations.



Fig. 2. Snapshot of the tangential component of the electric field.
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