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Abstract. This paper shows that the skin effect in systems of non-Hermitian sub-
wavelength resonators is robust with respect to random imperfections in the system. The

subwavelength resonators are highly contrasting material inclusions that resonate in a
low-frequency regime. The non-Hermiticity is due to the introduction of an imaginary
gauge potential, which leads to a skin effect that is manifested by the system’s eigenmodes

accumulating at one edge of the structure. We elucidate the topological protection of the
associated (real) eigenfrequencies and illustrate the competition between the two different
localisation effects present when the system is randomly perturbed: the non-Hermitian

skin effect and the disorder-induced Anderson localisation. We show that, as the strength
of the disorder increases, more and more eigenmodes become localised in the bulk. Our
results are based on an asymptotic matrix model for subwavelength physics and can be

generalised also to tight-binding models in condensed matter theory.
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1. Introduction

The skin effect is the phenomenon whereby a large proportion of the bulk eigenmodes of a
non-Hermitian system are localised at one edge of an open chain [8, 23]. In subwavelength
physics, it emerges in an array of subwavelength resonators when an imaginary gauge potential
is introduced inside the resonators, which are much smaller than the operating wavelength.
The resonance of these subwavelength structures (whose dimensions are substantially smaller
than the operating wavelength) is essential as without exciting the structure’s subwavelength
resonances the effect of the imaginary gauge potential would be negligible.

In systems of subwavelength resonators, the skin effect phenomenon is unique to non-
Hermitian systems with non-reciprocal coupling. While localisation of specific eigenmodes
can be achieved in other (e.g. Hermitian) systems, the skin effect is characterised by having
a large number of the modes (which scales with the size of the system) localised at one
edge of the system. This phenomenon has been realised experimentally in both photonic
and phononic systems [11, 12, 19, 21, 30, 35]. It significantly advances the field of active
metamaterials and opens new avenues to channel and manipulate energy at subwavelength
scales [9].

The non-Hermitian skin effect was first introduced in condensed matter physics as a
non-Hermitian extension of the Anderson model of localisation [15]. The imaginary gauge
potential leads to the simultaneous condensation of an extensive number of bulk eigenmodes,
all in the same direction [16, 22, 26, 31]. The tight binding models used in condensed matter
theory share many fundamental similarities with the one-dimensional subwavelength classical
wave system considered here.

In a recent work [1], the non-Hermitian skin effect in the subwavelength regime was studied
using first-principle mathematical analysis. One-dimensional systems of subwavelength
resonators were considered, with an imaginary gauge potential added to break Hermiticity.
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Explicit asymptotic expressions for the subwavelength eigenfrequencies and eigenmodes
were obtained using a gauge capacitance matrix formulation of the problem (which is a
reformulation of the standard capacitance matrices that are commonplace in Hermitian
subwavelength physics and electrostatics). Moreover, the exponential decay of eigenmodes
and their accumulation at one edge of the structure (the non-Hermitian skin effect) was
shown to be induced by the Fredholm index of an associated Toeplitz operator. A remaining
open question is whether the skin effect is stable with respect to disorder. This important
problem has been subject to recent debate in the physics and engineering communities [23].

In this paper, we prove the robustness of the non-Hermitian skin effect with respect to
random imperfections in the system. Based on delicate eigenvalue and eigenvector analysis
of perturbed “almost-Toeplitz” matrices, we quantify the stability of the non-Hermitian skin
effect. Moreover, we illustrate the competition between the non-Hermitian skin effect and
Anderson localisation. Anderson localisation here refers to strong localisation of eigenmodes
in the bulk (at subwavelength scales) that it is induced by disorder [7]. We observe that, as
the disorder strength increases, more and more eigenmodes are localised in the bulk. This
leads to a disorder-induced phase transition (in terms of the disorder strength) between
accumulation at one edge of the structure and localisation in the bulk. As far as we know,
these findings provide the first justification to the experimental results discussed in [18, 20,
27]. It also extends the Anderson localisation in systems of subwavelength resonators [4] to
the non-Hermitian case. On the other hand, we also elucidate the topological protection
of the (real) eigenfrequencies associated with the eigenmodes that accumulate at one edge
of the structure. All of these eigenfrequencies stay inside a region of the complex plane
with nontrivial winding number and can, consequently, be said to be topologically protected.
Conversely, the eigenfrequencies corresponding to eigenmodes that are localised in the bulk
fall outside of this region.

The paper is organised as follows. In Section 2, we present the mathematical setup
of the problem and recall its discrete formulation which provides approximations of the
eigenfrequencies and eigenmodes of a finite chain of subwavelength resonators in terms of the
eigenvalues and eigenvectors of the gauge capacitance matrix. Given this discrete formulation
and the effect of uncertainties in the positions of the resonators or their material parameters,
we can reduce the stability analysis to the analysis of a perturbed almost-Toeplitz matrices.
Section 3 is devoted to the stability analysis of the eigenvalues while in Section 4 we prove
the stability of the eigenvectors and show their exponential decay and condensation at one
edge of the structure. In Section 5, we numerically illustrate our main findings in this paper.
Moreover, we show how condensation of the eigenmodes at the edge and localisation in the
bulk are competing effects and present topologically-induced phase transition diagrams in
terms of the strength of the disorder. We show numerically that as the strength of the disorder
increases, the number of eigenmodes localised in the bulk increases. We also elucidate the
fact that the non-trivial winding of the symbol of the associated Toeplitz operator at the
eigenfrequencies protects an extensive number of associated eigenmodes from localisation.
The paper ends with some concluding remarks and interesting generalisations of the results.

2. Non-Hermitian skin effect

We begin this section by introducing the setting and recalling results from [1] on the
non-Hermitian skin effect without disorder. In Section 2.2, we introduce the disordered
model which will be studied in subsequent sections.

2.1. Problem formulation

We consider a one-dimensional chain of N disjoint identical subwavelength resonators

Di := (xL

i , xR

i ), where (xL,R
i )1≤i≤N ⊂ R are the 2N extremities satisfying xL

i < xR

i < xL

i+1 for

any 1 ≤ i ≤ N . We fix the coordinates such that xL

1 = 0. We also denote by ℓi = xR

i − xL

i

the length of each of the resonators, and by si = xL

i+1 − xR

i the spacing between the i-th and
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(i + 1)-th resonators. The system is illustrated in Figure 2.1. We use

D :=
N⋃

i=1

(xL

i , xR

i )

to symbolise the set of subwavelength resonators. In this paper, we only consider systems of
equally spaced identical resonators, that is,

ℓi = ℓ ∈ R>0 for all 1 ≤ i ≤ N and si = s ∈ R>0 for all 1 ≤ i ≤ N − 1.

This will simplify the formulas in our subsequent analysis and is sufficient to understand the
fundamental mechanisms behind the skin and localisation effects we are interested in.

xL

1 xR

1

ℓ

xL

2 xR

2

ℓ

xL

3 xR

3

ℓ . . .
xL

4 xR

4

ℓ

xL

N−3 xR

N−3

ℓ

xL

N−2 xR

N−2

ℓ

xL

N−1 xR

N−1

ℓ

xL

N xR

N

ℓ
s s s s s s s

Figure 2.1. A chain of N one-dimensional subwavelength resonators, with
length ℓ and spacing s.

In this work, we consider the following one-dimensional damped wave equation where the
damping acts in the space dimension instead of the time dimension:

− ω2

κ(x)
u(x) − γ(x)

d

dx
u(x) − d

dx


1

ρ(x)

d

dx
u(x)


= 0, x ∈ R, (2.1)

for a piecewise constant damping coefficient

γ(x) =


γ, x ∈ D,

0, x ∈ R \D.
(2.2)

The parameter γ extends the usual scalar wave equation to a generalised Strum–Liouville
equation via the introduction of an imaginary gauge potential [32]. The material parameters
κ(x) and ρ(x) are piecewise constant

κ(x) =


κb x ∈ D,

κ x ∈ R \D,
and ρ(x) =


ρb x ∈ D,

ρ x ∈ R \D,

where the constants ρb, ρ, κ, κb ∈ R>0. The wave speeds inside the resonators D and inside
the background medium R \D, are denoted respectively by vb and v, the wave numbers
respectively by kb and k, the frequency by ω, and the contrast between the densities of the
resonators and the background medium by δ:

vb :=

√
κb

ρb

, v :=

√
κ

ρ
, kb :=

ω

vb

, k :=
ω

v
, δ :=

ρb

ρ
. (2.3)

We are interested in the resonances ω ∈ C such that (2.1) has a non-trivial solution in a
high-contrast, low-frequency (subwavelength) regime. This regime is typically characterised
by letting the contrast parameter δ → 0 and looking for solutions which are such that ω → 0
as δ → 0. One consequence of this asymptotic ansatz is that it lends itself to characterisation
using asymptotic analysis [5]. Note that this limit recovers subwavelength resonances, while
keeping the size of the resonators fixed.

In [1], an asymptotic analysis in the subwavelength limit was performed on the system
of non-Hermitian one-dimensional subwavelength resonators considered here. It was shown
that the resonances are given by the eigenstates of the gauge capacitance matrix Cγ . This is
a modified version of the conventional capacitance matrix that is often used to characterise
many-body low-frequency resonance problems; see, for instance, [5].

The following results are from [1].
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Theorem 2.1. Let the gauge capacitance matrix Cγ = (Cγ
i,j)N

i,j=1 be defined by

Cγ
i,j :=





γ

s

1

1 − e−γℓ
, i = j = 1,

γ

s
coth(γℓ/2), 1 < i = j < N,

±γ

s

1

1 − e±γ
, 1 ≤ i = j ± 1 ≤ N,

−γ

s

1

1 − eγℓ
, i = j = N.

(2.4)

Then,

(i) All the eigenvalues of Cγ are real. They are given by

λ1 = 0,

λk =
γ

s
coth(γℓ/2) +

2♣γ♣
s

e
γℓ
2

♣eγℓ − 1♣ cos
( π

N
k


, 2 ≤ k ≤ N. (2.5)

Furthermore, the associated eigenvectors ak satisfy the following inequality, for
2 ≤ k ≤ N

♣a(i)
k ♣ ≤ κke−γℓ i−1

2 for all 1 ≤ i ≤ N, (2.6)

for some κk ≤ (1 + e
γℓ
2 )2. Here, a

(i)
k denotes the i-th entry of the eigenvector ak;

(ii) The N subwavelength eigenfrequencies ωi of (2.1) satisfy, as δ → 0,

ωi = vb

√
δλi + O(δ),

where (λi)1≤i≤N are the eigenvalues of Cγ. Furthermore, let ui be a subwavelength
eigenmode corresponding to ωi and let ai be the corresponding eigenvector of Cγ.
Then

ui(x) =
∑

j

a
(j)
i Vj(x) + O(δ),

where Vj are defined by





− d2

dx2
Vi = 0, x ∈ R \

N⋃

i=1

(xL

i , xR

i ),

Vi(x) = δij , x ∈ (xL

j , xR

j ),

Vi(x) = O(1) as ♣x♣ → ∞.

(2.7)

From Theorem 2.1, we can see that Cγ is almost Toeplitz (in the sense that it has constant
diagonals other than deterministic perturbations in the corners) and its eigenvectors display
exponential decay both with respect to the site index i and the factor γ. This shows the
condensation of bulk eigenmodes at one of the edges of the system of subwavelength resonators.
The exponential decay of the eigenvectors is directly linked with a topological property. Let
T be a Toeplitz operator with continuous symbol fT and TN be the truncation of T to the
upper-left N ×N submatrix. Then, if fT is sufficiently smooth, standard Toeplitz theory says
that any eigenvalue λ ∈ C which is such that the winding w(fT , λ) of fT at λ is negative will
be such that the corresponding eigenvector decays exponentially. We show this topological
region in Figure 2.2a for our system. In Figure 2.2b we plot the eigenvectors superimposed
on one another to portray condensation on the left edge of the structure; λ1 = 0 corresponds
to a trivial (constant) eigenvector while all other eigenvectors are exponentially localised to
the left edge of the structure.
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(a) Shaded in grey is the region where the
symbol fT has negative winding, for T
the Toeplitz operator corresponding to
the capacitance matrix C

γ . The black
dots show the spectrum of C

γ .

0 10 20 30

Site index

−1.0

−0.5

0.0

0.5
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(b) Eigenvector condensation on the left edge
of the structure. The 30 modes are plot-
ted, superimposed. The constant eigen-
vector is the one associated to the eigen-
value 0.

Figure 2.2. Numerical simulations for an unperturbed system of N = 30
resonators with s = ℓ = 1 and γ = 1.

2.2. Randomly perturbed gauge capacitance matrix

To simplify the notation, we denote the tridiagonal Toeplitz matrix with deterministic
perturbations on diagonal corners by

T
(a,b)
N =




α + a β 0 0 . . . 0 0
η α β 0 . . . 0 0
0 η α β . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . α β
0 0 0 0 . . . η α + b




. (2.8)

Throughout the paper, we only consider T
(a,b)
N with α, η, β, a, b ∈ R and ηβ > 0. In particular,

observe from (2.4) that

Cγ = T
(η,β)
N

and η, α, β are such that

a = η, b = β, ηβ > 0 and, η + α + β = 0.

Note also that T
(0,0)
N is a tridiagonal Toeplitz matrix.

In order to study the stability of the non-Hermitian skin effect with respect to random
imperfections in the system design, we either add random errors to the positions of the
resonators (keeping the length of the resonators unchanged) or to the γ-term and then
repeatedly compute the subwavelength eigenfrequencies and eigenmodes. The perturbations
in the positions and in the values of the γ-parameter are drawn at random from uniform
distributions with zero-mean values. Since these random perturbations affect only the

tridiagonal entries of the gauge capacitance matrix Ĉγ
of the randomly perturbed system, we

can write in both cases that

Ĉγ
= T̂

(a,b)
N :=




α + a + εα,1 β + εβ,1 0 . . . 0 0
η + εη,2 α + εα,2 β + εβ,2 . . . 0 0

0 η + εη,3 α + εα,3 . . . 0 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . α + εα,N−1 β + εβ,N−1

0 0 0 . . . η + εη,N α + b + εα,N




(2.9)
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with a = η, b = β.

3. Stability of eigenvalues

In this section, we derive stability results for the eigenvalues of T
(a,b)
N . This relies on

a crucial observation that the tridiagonal matrix T
(a,b)
N always has same eigenvalues as a

Hermitian matrix. Thus we first recall the following well known Weyl theorem for the stability
of eigenvalues of Hermitian matrices; see [25, Theorem 1.1.7], [13, Theorem 8.1.6] and [24,
Theorem 10.3.1]. We also refer the reader to [17] for some more refined results.

Theorem 3.1. Let A and E be N × N Hermitian matrices. For k ∈ ¶1, . . . , N♢ denote
by λk(A + E), λk(A) the k-th eigenvalue of A + E and A, respectively. Assume these to be
arranged in a decreasing sequence. Then

♣λk(A + E) − λk(A)♣ ≤ ∥E∥2.

We next recall the following result [1, Lemma A.6] on the eigenvalues of T
(η,β)
N where its

proof comes from [34].

Lemma 3.2. Suppose that η + α + β = 0. Let λ be an eigenvalue of T
(η,β)
N . Then, either

λ = λ1 := 0 and the corresponding eigenvector is x1 = 1 or

λk := α + 2
√

ηβ cos
( π

N
(k − 1)


, 2 ≤ k ≤ N, (3.1)

and the corresponding eigenvector is xk, with entries

x
(j)
k =


η

β

 j−1

2


η sin


j(k − 1)π

N


− η

√
η

β
sin


(j − 1)(k − 1)π

N


, j = 1, · · · , N. (3.2)

Then we state our result on the stability of the eigenvalues of T
(a,b)
N with a, b ∈ R.

Theorem 3.3. The eigenvalues of T
(a,b)
N and T̂

(a,b)
N are all real numbers. Let ¶λk♢, ¶λ̂k♢ be

respectively the eigenvalues of T
(a,b)
N and T̂

(a,b)
N , arranged in decreasing sequences. Assuming

that

max
j=1,...,N

(♣εη,j ♣ , ♣εα,j ♣ , ♣εβ,j ♣) =: ε, (3.3)

then we have ∣∣∣λ̂k − λk

∣∣∣ < C1(η, β, ε)ε,

where

C1(η, β, ε) =
♣β♣ + ♣η♣ + ε√

βη
+ 1. (3.4)

Proof. Note that all the λk’s are real since T
(a,b)
N has the same eigenvalues as the Hermitian

matrix

A =




α + a
√

ηβ 0 0 . . . 0 0√
ηβ α

√
ηβ 0 . . . 0 0

0
√

ηβ α
√

ηβ . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . α

√
ηβ

0 0 0 0 . . .
√

ηβ α + b




(3.5)

which can by seen from
∣∣∣xI − T

(a,b)
N

∣∣∣ = ♣xI − A♣ by expanding the determinant along the

last row. Here, ♣·♣ denotes the determinant. In the same manner, all the λ̂k’s are real, as
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T̂
(a,b)
N has the same eigenvalues as the Hermitian matrix

T̃
(a,b)
N =




α + a + εα,1 x1,2 0 0 . . . 0 0
x2,1 α + εα,2 x2,3 0 . . . 0 0

0 x3,2 α + εα,3 x3,4 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . α + εα,N−1 xN−1,N

0 0 0 0 . . . xN,N−1 α + b + εα,n




,

where

xj,j+1 = xj+1,j =
√

(β + εβ,j)(η + εη,j+1), j = 1, · · · , N − 1.

Now, we can make use of Theorem 3.1 to analyse the stability of the eigenvalues of A. Let

ε̃j,j+1 = ε̃j+1,j =
√

(β + εβ,j)(η + εη,j+1) −
√

βη, j = 1, · · · , N − 1,

and

ε̃j,j = εα,j , j = 1, · · · , N.

It is not hard to see that

♣ε̃j,j+1♣ <

 ♣β♣ + ♣η♣ + ε

2
√

βη


ε, j = 1, · · · , N − 1,

as ε ≤ 1. We decompose T̃
(a,b)
N as

A + E,

where Ei,j = ε̃i,j , for i = j, i = j + 1, i = j − 1, and Ei,j = 0 for other i, j. In particular, the
following estimate holds:

♣♣E♣♣2 = max
♣♣v♣♣

2
=1

♣♣Ev♣♣2 <

 ♣β♣ + ♣η♣ + ε√
βη

+ 1


ε.

The above estimate can be derived from the fact that

Ev =




ε̃1,1v1 + ε̃1,2v2

ε̃2,1v1 + ε̃2,2v2 + ε̃2,3v3

...
ε̃N−1,N−2vN−2 + ε̃N−1,N−1vN−1 + ε̃N−1,N vN

ε̃N,N−1vN−1 + ε̃N,N vN




=




0
ε̃2,1v1

...
ε̃N−1,N−2vN−2

ε̃N,N−1vN−1




+




ε̃1,1v1

ε̃2,2v2

...
ε̃N−1,N−1vN−1

ε̃N,N vN




+




ε̃1,2v2

ε̃2,3v3

...
ε̃N−1,N vN

0




,

where v = (v1, . . . , vN )⊤ with the superscript ⊤ denoting the transpose.
Leveraging Theorem 3.1 then proves the statement. ■

Remark 3.4. Due to the fact that the matrix T
(a,b)
N is tridiagonal and the Hermitian matrix

A is stable, we do not require any constraint on the perturbation level in Theorem 3.3. When
it comes to banded Toeplitz matrices and complex perturbations, the findings and proofs are
more intricate. We refer the readers to [28, 29] for further information on this subject.

Applying Theorem 3.3 to the eigenvalues of T
(η,β)
N in Lemma 3.2 yields the following

stability estimate.

Theorem 3.5. For the eigenvalue λ̂k of the perturbed Toeplitz matrix T̂
(η,β)
N with

max
j=1,...,N

(♣εη,j ♣ , ♣εα,j ♣ , ♣εβ,j ♣) =: ε, (3.6)

7
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we have λ̂1 = ε1 and

λ̂k = λk + εk = α + 2
√

ηβ cos


(k − 1)π

N


+ εk, k = 2, · · · , N, (3.7)

with ♣εk♣ ≤ C1(η, β, ε)ε, 1 ≤ k ≤ N and C1(η, β, ε) being defined by (3.4). In particular, all

the λ̂k’s are real numbers.

Remark 3.6. The eigenvalues of the tridiagonal Toeplitz matrix T
(0,0)
N have been proved

[10, 14] to be

λk = α + 2
√

ηβ cos


kπ

N + 1


, k = 1, · · · , N.

Remark 3.7. One can apply Theorems 3.3 and 4.1 to derive similar stability results for

T
(0,0)
N . This corresponds to many examples in the non-Hermitian skin effect in condensed

matter theory and quantum mechanics and thus our stability results here can be immediately
applied to those examples. For the eigenvalues of the tridiagonal Toeplitz matrix with various
perturbations on the corners, we refer the reader to [33, 34].

4. Stability of eigenvectors

This section is devoted to estimating the stability of the eigenvectors of Cγ = T
(η,β)
N .

For λk defined in (3.1), let

pj(λk) =


η sin


(j + 1)(k − 1)π

N


− η

√
η

β
sin


j(k − 1)π

N


, j = 0, · · · , N − 1. (4.1)

Note that

♣pj(λk)♣ ≤ ♣η♣


1 +

√
η

β


, j = 0, · · · , N − 1. (4.2)

The following results hold.

Theorem 4.1. For T̂
(η,β)
N defined by (2.9) and satisfying (3.6) and its eigenvalues λ̂k =

λk + εk, k = 2, · · · , N defined by (3.7), the corresponding eigenvectors are given by

x̂k =
(
p0(λk) + δ0(λk), s (p1(λk) + δ1(λk)) , s2 (p2(λk) + δ2(λk)) , · · · ,

sN−1 (pN−1(λk) + δN−1(λk))
)⊤

, k = 2, · · · , N,
(4.3)

where s =
√

η
β

and pj(λk) is defined in (4.1). Moreover, we have

∣∣(−s)jpj(λk)
∣∣ ≤


η

β

 j
2

♣η♣


1 +

√
η

β


, j = 0, 1, · · · , N − 1, (4.4)

and ∣∣sjδj(λk)
∣∣ ≤ ζk,jε, j = 0, 1, · · · , N − 1, (4.5)

where

ζk,j =

√
η

β

 ♣β♣ (♣η♣ + ε)

(♣β♣ − ε)♣η♣

j (
a+rj

k,+ + a−rj
k,− − ζ



with

rk,± =

∣∣∣∣cos


(k − 1)π

N

∣∣∣∣ +
C2(η, β)ε√

ηβ


±

√∣∣∣∣cos


(k − 1)π

N

∣∣∣∣ +
C2(η, β)ε√

ηβ

2

+ 1, (4.6)

C2(η, β, ε) = ♣β♣+♣η♣+ε

2
√

βη
+ 1, and a+, a−, ζ being bounded constants. In particular, for those

indices k such that ∣∣∣∣
√

η

β

 ♣β♣ (♣η♣ + ε)

(♣β♣ − ε)♣η♣


rk,+

∣∣∣∣ < 1, (4.7)

the corresponding eigenvector still has an exponential decay.
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As a result, there exists a constant c such that if
√

η/β <
√

2 − 1 and ε < c
N2 , then we

still have exponential decay for all the corresponding eigenvectors x̂k, 2 ≤ k ≤ N, of T̂
(a,b)
N .

Further, if we require
√

η/β to be even smaller, then this exponential decay will remain for
even larger values of ε.

Proof. The inequality (4.4) is a direct consequence of (3.2) and (4.2). The rest of the
argument consists in proving (4.5). For fixed λk, we see that

♣δj(λk)♣ ≤
 ♣β♣ (♣η♣ + ε)

(♣β♣ − ε)♣η♣

j

Mjε (4.8)

and will analyse the constants Mj . We consider the eigenvalue problem
(

T̂
(η,β)
N − λ̂kI


x̂k = 0, (4.9)

where x̂k is (4.3). For simplicity, we abbreviate pj(λk) as pj and δj(λk) as δj in the proof.
Based on the first row in (4.9), we have

(α + η + εα,1 − λk − εk)(p0 + δ0) + (β + εβ,1)s(p1 + δ1) = 0.

This gives

(εα,1 − εk)p0 + εβ,1sp1 + (α + η + εα,1 − λk − εk)δ0 + (β + εβ,1)sδ1 = 0,

where we have used (α + η − λk)p0 + βsp1 = 0. Let δ0 = ε. Then

M0 = 1

and

δ1 =
(εα,1 − εk)p0 + εβ,1sp1 + (α + η + εα,1 − λk − εk)ε

−(β + εβ,1)s
.

Denote C2(η, β, ε) = ♣β♣+♣η♣+ε

2
√

βη
+ 1. Then we have

♣δ1♣ ≤
∣∣∣∣
(εα,1 − εk)p0 + εβ,1sp1

−(β + εβ,1)s

∣∣∣∣ +

∣∣∣∣
(α + η + εα,1 − λk − εk)ε

−(β + εβ,1)s

∣∣∣∣

≤♣η♣(1 + s)(2C2(η, β) + s)ε

(♣β♣ − ε)s
+

♣η♣ + 2
√

ηβ
∣∣∣cos

(
(k−1)π

N

∣∣∣ + 2C2(η, β, ε)ε

(♣β♣ − ε)s
ε

≤
 ♣β♣ (♣η♣ + ε)

(♣β♣ − ε)♣η♣

 
s(1 + s)(2C2(η, β, ε) + s) + s + 2

∣∣∣∣cos


(k − 1)π

N

∣∣∣∣ +
2C2(η, β, ε)ε√

ηβ


ε,

where we have used (4.2) and Theorem 3.5 in the second inequality. Therefore,

M1 = s(1 + s)(2C2(η, β, ε) + s) + s + 2

∣∣∣∣cos


(k − 1)π

N

∣∣∣∣ +
2C2(η, β, ε)ε√

ηβ
.

We now analyse the relation between Mj−1, Mj and Mj+1. Based on the (j + 1)-th row
of (4.9), we have

(η+εη,j+1)sj−1(pj−1+δj−1)+(α+εα,j+1−λk−εk)sj(pj+δj)+(β+εβ,j+1)sj+1(pj+1+δj+1) = 0,

which yields

(η +εη,j+1)(pj−1 + δj−1)+(α +εα,j+1 −λk −εk)s(pj + δj)+(β +εβ,j+1)s2(pj+1 + δj+1) = 0.

Making use of the identity

ηpj−1 + (α − λk)spj + βs2pj+1 = 0,

we can eliminate some items to arrive at

εη,j+1pj−1 + (εα,j+1 − εk)spj + εβ,j+1s2pj+1

+ (η + εη,j+1)δj−1 + (α + εα,j+1 − λk − εk)sδj + (β + εβ,j+1)s2δj+1 = 0.

9
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Therefore,

δj+1

=
εη,j+1pj−1 + (εα,j+1 − εk)spj + εβ,j+1s2pj+1 + (η + εη,j+1)δj−1 + (α + εα,j+1 − λk − εk)sδj

−(β + εβ,j+1)s2

=
εη,j+1pj−1 + (εα,j+1 − εk)spj + εβ,j+1s2pj+1

−(β + εβ,j+1)s2

+
(η + εη,j+1)δj−1

−(β + εβ,j+1)s2
+

(α + εα,j+1 − λk − εk)sδj

−(β + εβ,j+1)s2

:=I1 + I2 + I3.

For the term I1, by (4.2) we have
∣∣∣∣
εη,j+1pj−1 − (εα,j+1 − εk)spj + εβ,j+1s2pj+1

−(β + εβ,j+1)s2

∣∣∣∣ ≤ ε(1 + 2C2(η, β, ε)s + s2) ♣η♣ (1 + s)

(♣β♣ − ε)s2

≤ ♣β♣
♣β♣ − ε

(
1 + 2C2(η, β, ε)s + s2

)
(1 + s)ε =:

♣β♣
♣β♣ − ε

C3(η, β, ε)ε.

For the term I2, by (4.8) we obtain that
∣∣∣∣
(η + εη,j+1)δj−1

−(β + εβ,j+1)s2

∣∣∣∣ ≤ ♣η♣ + ε

(♣β♣ − ε)s2

 ♣β♣ (♣η♣ + ε)

(♣β♣ − ε) ♣η♣

j−1

Mj−1ε ≤
 ♣β♣ (♣η♣ + ε)

(♣β♣ − ε) ♣η♣

j+1

Mj−1ε.

For the term I3, by Theorem 3.5 and estimate (4.8), it follows that

∣∣∣∣
(α + εα,j+1 − λk − εk)sδj

−(β + εβ,j+1)s2

∣∣∣∣ ≤
2
√

ηβ
∣∣∣cos

(
(k−1)π

N

∣∣∣ + 2C2(η, β, ε)ε

(♣β♣ − ε)s
♣δj ♣

≤ ♣β♣
♣β♣ − ε


2

∣∣∣∣cos


(k − 1)π

N

∣∣∣∣ +
2C2(η, β, ε)ε√

ηβ

  ♣β♣ (♣η♣ + ε)

(♣β♣ − ε)♣η♣

j

Mjε.

Therefore, we have

♣δj+1♣ ≤
 ♣β♣ (♣η♣ + ε)

(♣β♣ − ε)♣η♣

j+1 
2

∣∣∣∣cos


(k − 1)π

N

∣∣∣∣ +
C2(η, β, ε)ε√

ηβ


Mj + Mj−1 + C3(η, β, ε)


ε.

By (4.8), the recurrence relation is

Mj+1 = 2

∣∣∣∣cos


(k − 1)π

N

∣∣∣∣ +
C2(η, β, ε)ε√

ηβ


Mj + Mj−1 + C3(η, β, ε). (4.10)

Define

M̃j = Mj + ζ (4.11)

with

ζ =
C3(η, β, ε)

2

∣∣∣cos
(

(k−1)π

N

∣∣∣ + C2(η,β,ε)ε√
ηβ

 .

Then (4.10) yields

M̃j+1 = 2

∣∣∣∣cos


(k − 1)π

N

∣∣∣∣ +
C2(η, β, ε)ε√

ηβ


M̃j + M̃j−1.

This is a linear recurrence relation. To solve it, we consider the roots of its characteristic
equation

r2
k = 2

∣∣∣∣cos


(k − 1)π

N

∣∣∣∣ +
C2(η, β, ε)ε√

ηβ


rk + 1,

which are given by (4.6). Thus we have

M̃j = a+rj
k,+ + a−rj

k,−

10
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with a+, a− being chosen to satisfy the initial conditions

M̃0 = M0 + ζ, M̃1 = M1 + ζ.

It is not hard to see that a+, a− are bounded. Now, by (4.11), Mj reads

Mj = a+rj
k,+ + a−rj

k,− − ζ,

and we thus have

♣δj ♣ ≤
 ♣β♣ (♣η♣ + ε)

(♣β♣ − ε)♣η♣

j (
a+rj

k,+ + a−rj
k,− − ζ


ε.

This proves (4.5). ■

Some remarks are now in order.

Remark 4.2. The stability results obtained in Sections 3 and 4 can be generalised to the
dimer case where one can utilise the characterization of the eigenvalues and eigenvectors
given in [3].

Remark 4.3. Note that the perturbation to the spacings ¶si♢ between subwavelength
resonators or the coefficient γ in (2.2) of order ε will result in an O(ε) perturbation in the

nonzero entries of the gauge capacitance matrix Cγ . Thus, Theorem 4.1 can be applied to Ĉγ

to obtain a stability estimate to the eigenvectors and the skin effect of Cγ .

We can illustrate numerically the results stated in Theorem 4.1. In particular, we consider
typical values in physical applications. We let η = 0.15, β = 3.15 (which correspond to
ℓ = s = 1 and γ = 3) and ε satisfying (4.7). The results are presented in Figure 4.1, where we
show the eigenvectors of a system of 50 subwavelength resonators on a logarithmic axis. If the
perturbations are sufficiently small that the condition (4.7) is satisfied, then the eigenvectors

still all have the (
√

β/η) decay rate. However, when the perturbations are large enough that
condition (4.7) does not hold for some indices, then the corresponding modes have a much
lower decay rate.

0 20 40

Site index j

10−31

10−24

10−17

10−10

10−3

(a) Exponential decay of the eigenvectors for
ε satisfying (4.7). The eigenvectors super-
imposed on one another on a semi-log plot.

The red dashed line represents (
√

β/η)j . We
observe the same decay rate as the unper-
turbed case.

0 20 40

Site index j

10−31

10−24

10−17

10−10

10−3

(b) Decay of the eigenvectors for ε not satisfying
(4.7). The eigenvectors superimposed on one
another on a semi-log plot. The red dashed

line represents (
√

β/η)j . We observe several
eigenvectors with lower decay rate than the
one in Figure 4.1a.

Figure 4.1. Numerical illustration of the stability of the eigenvector decay
rate predicted by Theorem 4.1. The Toeplitz matrix has
coefficients η = 0.15, β = 3.15 and is of size 50 × 50.
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5. Numerical illustrations

In this section, we provide numerical evidence of the stability of the non-Hermitian skin
effect and show how it competes with Anderson-type localisation of the eigenmodes in the
bulk when the disorder is large. We will consider perturbations in both the geometry and
the local values of the imaginary gauge potential. For the sake of brevity, we fix the size ℓ of
the resonators and perturb independently either γ or the spacing s between the resonators.

5.1. Random perturbations of the geometry

We first consider systems of subwavelength resonators where the relative spacings are
perturbed as

si = 1 + εi, εi ∼ U[−ε,ε]. (5.1)

Here, U[−ε,ε] is a uniform distribution with support in [−ε, ε]. In Figure 5.1a, we study
how the eigenmodes of a system of 30 subwavelength resonators behave as the disorder
increases. These results are averages based on 500 independent realisations. We show the
relative proportion of eigenvalues that fall within the region of negative winding of the
associated Toeplitz operator from Figure 2.2a, as well as the proportion of eigenmodes
accumulating at the left edge (which for this and the following figures has been defined as
the number of eigenvectors that attain their maximal value, in absolute terms, in one of the
first two dimers). We consider values of the disorder strength that are small enough that
the resonators are guaranteed to not overlap. Both these quantities are constant for small
disorder strengths then decrease once the disorder strength passes a certain threshold (as
predicted by Theorem 4.1). The intersection of these two sets is also shown.

One notices very similar trends in the three lines in Figure 5.1a, with small differences
due to the imperfect formulation of the accumulation measure and the perturbations. On
the other hand, Figure 5.1b shows the localisation of the eigenvectors for different disorder
strengths. The localisation of the eigenvectors is measured using the quantity ∥vi∥∞/∥vi∥2

and the different lines correspond to different disorder strengths ε. We notice that the lines
are indistinguishable, indicating that the localisation of the eigenvectors is independent of
any random perturbation of the positions of the resonators.

Figure 5.1c shows similar stability properties as those in Figure 5.1a, but here the relative
number of eigenvalues falling within the region with negative winding is plotted for different
values of ε and γ. On the left side of the figure we see the topologically protected region:
for these values of γ any small perturbation size ε will not cause any eigenvalue to exit the
region and thus the corresponding eigenvector remains accumulated at the left edge of the
structure.

The results in Figure 5.1 show how the proportion of eigenvectors localised to the left edge
of the system decreases as the disorder increases. Studying in the eigenvectors themselves, as
shown in Figure 5.2 for three different values of the disorder strength, we see that increasing
disorder means an increasing number of eigenvectors are localised in the bulk rather than on
the left edge. This behaviour is typical of Anderson-type localisation in disordered systems
and demonstrates the internal competition between the skin effect and Anderson localisation.

5.2. Random perturbations of the imaginary gauge potential

In this subsection we consider systems of subwavelength resonators where now the spacing
between the resonators is fixed to si = 1, but the damping factor γ is allowed to be different
in each resonator. Specifically, we consider

γi = 1 + εi, εi ∼ U[−ε,ε], (5.2)

where γi is the value taken by γ in the i-th resonator.
Figure 5.3 is the analogue of Figure 5.1 in this case. In this case, the disorder strength ε

is allowed to vary over a larger range as we do not have the issue of resonators overlapping.
Note however that large disorder, such as ♣ε♣ > ♣γ♣ = 1, will possibly induce different signs in
the γi and thus striking changes in the coefficients of Cγ . Figure 5.3a shows some similar

12
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0.0 0.1 0.2 0.3 0.4

Disorder strength ε

0.80

0.85

0.90

0.95

1.00

(a) Eigenmode accumulation at one edge and
topological winding. The green dashed
line shows the average proportion of ei-
genvectors which are localised at the left
edge. The red dash-dot line shows the
the average proportion of eigenvalues that
lay in the topologically protected region.
The blue solid line shows the proportion
of eigenpairs that have both eigenvalues in
the topologically protected region and ei-
genvectors accumulated on the left edge.
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(b) Eigenmode localisation. Each line shows
the average eigenmode localisation for a
different value of the disorder strength
ε. For small ε the localisation is due to
the skin effect, while for big ε it is con-
sequence of the Anderderson localisation.
As the lines are indistinguishable we con-
clude that the eigenmode localisation is
independent of disorder strength; as ε in-
creases, modes might be localised in the
bulk but will not become delocalised.

0.2 0.4

Disorder strength ε

0.25

0.50

0.75

1.00

1.25

1.50

γ

0.8425

0.8596

0.8768

0.8940

0.9111

0.9283

0.9454

0.9626

0.9798

0.9969

(c) Phase change and topological protection.
The color scale shows the average pro-
portion of eigenvalues that lay in the to-
pologically protected region for different
values of γ. The left yellow zone is the
stability region.

Figure 5.1. Competition between the non-Hermitian skin effect and An-
derson localisation when perturbing the geometry. The non-
Hermitian skin effect shows stability with respect to random
perturbations. Outside of the stability region, there is com-
petition with Anderson localisation. Averages are computed
over 500 runs for a system of 50 resonators with ℓ = s = 1.

behaviour to Figure 5.1a, in the sense that both quantities decrease as the disorder increases.
However, for larger values of ε there is an obvious decoupling of the quantities. This is due

to the fact that, for very large random perturbations, Ĉγ is very far from being Toeplitz and
thus the symbol of the associated Toepliz operator loses its meaning.
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0 10 20 30

Site index

−1.0

−0.5

0.0

0.5

1.0

(a) Single realisation with dis-
order strength ε = 0.1.
All eigenmodes are accumu-
lated on the left edge.

0 10 20 30

Site index

−1.0

−0.5

0.0

0.5

1.0

(b) Single realisation with dis-
order strength ε = 0.2. One
eigenmode localised in the
bulk is highlighted in red.

0 10 20 30

Site index

−0.5

0.0

0.5

(c) Single realisation with dis-
order strength ε = 0.4. One
eigenmode localised in the
bulk is highlighted in red.

Figure 5.2. Stability of the non-Hermitian skin effect under perturbations
of the geometry. Eigenmode condensation on the left edge
of the structure with some eigenmodes localised in the bulk.
Single realisations with N = 30, s = ℓ = 1, and ε = 0.1, 0.2, 0.4
for Figure 5.2a, 5.2b, and 5.2c respectively. This should be
compared with Figure 2.2b, where there is no disorder.

On the other hand, Figure 5.3b shows the localisation measure of the eigenvectors for
different disorder strengths. Eventhough the disorder is allowed to take much larger values
here than in Figure 5.1b, we once again observe that the localisation of a given eigenvector
is almost constant as the disorder changes.

Finally, Figure 5.3c shows the analogous results to Figure 5.1c. Once again, we see that
there is a region of topological protection. This time, it is in the top-left of the diagram (for
large space s and small disorder ε).

Figures 5.1 to 5.3 as a whole show an internal competition between the skin effect and
the Anderson localisation: as disorder is introduced, modes transition from being condensed
on the edge to being localised within the bulk.

5.3. Simultaneous perturbations of the geometry and the imaginary gauge po-

tential

For the sake of completeness, in Figure 5.4 we present the result of perturbing γ and s
simultaneously by

si = 1 + εi, εi ∼ U[−εs,εs]

γi = 1 + εi, εi ∼ U[−εγ ,εγ ].

The results show that the skin effect is very stable under any type of perturbations: the
spacing between the resonators may be perturbed up to roughly 10% and simultaneously the
γ factor up to 50% independently in every resonator and the accumulation of eigenmodes on
one edge of the structure remains unaltered.

6. Concluding remarks

Based on a stability analysis of the eigenvalues and eigenvectors of the gauge capacitance
matrix, we have proved robustness of the non-Hermitian skin effect with respect to random
changes of the strength γ of the imaginary gauge potential and the spacing s between the
resonators. We have also elucidated the topological origins of such robustness in our setting.
Under random perturbations, the eigenmodes which remain localised at the edge of the
structure are precisely those whose associated eigenvalues (which remain real valued) remain
within the region of the complex plane corresponding to negative winding of the symbol of
the corresponding Toeplitz operator. As the strength of the disorder increases, an increasing
number of eigenmodes become localised in the bulk as their corresponding eigenfrequencies
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(a) Eigenmode accumulation at one edge and
topological winding. The green dashed
line shows the average proportion of ei-
genvectors which are localised at the left
edge. The red dash-dot line shows the
the average proportion of eigenvalues that
lay in the topologically protected region.
The blue solid line shows the proportion
of eigenpairs that have both eigenvalues in
the topologically protected region and ei-
genvectors accumulated on the left edge.

0 20 40

Eigenvector index i

0.2

0.4

0.6

0.8

1.0

‖
v
i
‖
∞

‖
v
i
‖
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

D
is
o
rd
er

st
re
n
g
th

ε

(b) Eigenmode localisation. Each line shows
the average eigenmode localisation for a
different value of the disorder strength
ε. For small ε the localisation is due
to the skin effect, while for big ε it is
consequence of the Anderderson localisa-
tion. Thus, the localisation is much less
sensitive to the perturbations than the
accumulation (as the position of localisa-
tion may be away from the edge for large
disorder).
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(c) Phase change and topological protection.
The color scale shows the average pro-
portion of eigenvalues that lay in the to-
pologically protected region for different
values of s. The top-left yellow zone is
the stability region.

Figure 5.3. Competition between the non-Hermitian skin effect and Ander-
son localisation when perturbing the complex gauge potential.
The non-Hermitian skin effect is stable with respect to ran-
dom perturbations. Outside of the stability region, there is a
competition between the Non-Hermitian skin effect and the
disorder-induced Anderson localisation. Averages 500 runs for
a system of 50 resonators with ℓ = s = 1.

leave the region of negative winding. This leads to a competition between the non-Hermitian
skin effect and Anderson localisation in the bulk.

The results in this paper could be generalised to systems with periodically repeated cells
of K ≥ 2 resonators [6] and to higher dimensional systems, in which it is well known that
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Figure 5.4. Phase transition for varying disorder strengths in γ and s. The
color scale shows the average proportion of eigenvalues that
lay in the topologically protected region for different values
of εγ and εs. The bottom-left yellow zone is the stability
region. The values are averages over 100 runs in a system of
50 resonators with ℓ = 1.

the skin effect can be realised [2, 35]. Since our results are based on an asymptotic matrix
model for subwavelength physics, they can also be generalised to analogous tight-binding
models in condensed matter theory.
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