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Abstract

We present a novel multilevel Monte Carlo approach for estimating quantities of interest for
stochastic partial differential equations (SPDEs). Drawing inspiration from [17], we extend the anti-
thetic Milstein scheme for finite-dimensional stochastic differential equations to Hilbert space-valued
SPDEs. Our method has the advantages of both Euler and Milstein discretizations, as it is easy to
implement and does not involve intractable Lévy area terms. Moreover, the antithetic correction in
our method leads to the same variance decay in a MLMC algorithm as the standard Milstein method,
resulting in significantly lower computational complexity than a corresponding MLMC Euler scheme.
Our approach is applicable to a broader range of non-linear diffusion coefficients and does not require
any commutative properties. The key component of our MLMC algorithm is a truncated Milstein-type
time stepping scheme for SPDEs, which accelerates the rate of variance decay in the MLMC method
when combined with an antithetic coupling on the fine scales. We combine the truncated Milstein
scheme with appropriate spatial discretizations and noise approximations on all scales to obtain a
fully discrete scheme and show that the antithetic coupling does not introduce an additional bias.

Keywords: Stochastic Partial Differential Equations, Multilevel Monte Carlo, Milstein Scheme, Vari-
ance Reduction, Antithetic Variates.

Subject classifiction: 65C05, 65C30, 65M12.

1 Introduction

Stochastic partial differential equations (SPDEs) are encountered in a range of applications spanning
natural sciences, engineering, and finance. Examples include stochastic epidemic compartment models [27]
and the valuation of forward contracts in interest rate or energy markets [12, 10, 3]. However, a common
challenge in these applications is that SPDEs do not possess a closed-form solution and must therefore be
approximated numerically. Fortunately, numerous numerical schemes for approximating various types of
SPDEs have been established. A non-exhaustive list of references [21, 2, 22, 4, 14, 25, 23, 19, 1, 8] provide
strong approximation results, while others [13, 25, 24, 9] offer a weak error analysis.

Once the ’pathwise’ approximations are obtained, they are utilized in sampling-based approaches to
estimate specific quantities of interest within the SPDE model. Monte Carlo (MC) methods are a common
choice for this purpose. However, due to the low regularity of the model, standard MC approaches may
become prohibitively expensive even for comparatively simple SPDEs. In addition, higher-order schemes
for discretizing the stochastic space, such as stochastic Galerkin or Quasi-Monte Carlo methods, are not
feasible due to the limited regularity of the model. Thus, the multilevel Monte Carlo (MLMC) method
[15] seems to be the only viable option for accelerating the estimation of expectations for SPDEs. This
approach has been studied in the context of SPDEs in [6, 5, 16, 26].
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One common drawback of the schemes presented in [6, 5, 26] is that they rely on a simple Euler dis-
cretization in time, which leads to slow temporal convergence rates. In contrast, the authors of [16] propose
a MLMC-Milstein scheme that uses a finite difference approximation in space to accelerate temporal con-
vergence. However, their SPDE model is considerably simplified, as it is only driven by a one-dimensional
Brownian motion. Consequently, it is not necessary to simulate Lévy area terms. The simulation of
these terms is already a substantial issue for two-dimensional stochastic differential equations (SDEs)
without certain commutativity conditions on the diffusion term. Moreover, the problem is exacerbated
for infinite-dimensional driving noise, which is the natural setting for SPDEs.

1.1 Contributions

The objective of this research article is to address the previously mentioned issues by introducing an
antithetic multilevel Monte Carlo-Milstein scheme for parabolic SPDEs. Our work is based on the an-
tithetic MLMC scheme for SDEs presented in [17] and offers several advantages. Firstly, under natural
assumptions, our scheme achieves higher-order convergence rates, similar to those of the ’standard’ Mil-
stein scheme. Secondly, the antithetic approach eliminates the need to sample Lévy area terms, making
the scheme easy to implement. Our complexity analysis demonstrates that the proposed MLMC algo-
rithm can significantly reduce computational time by several orders of magnitude. Finally, we extend the
results for SDEs from [17] by allowing for unbounded, random initial conditions and not requiring a global
Lipschitz condition on the Milstein correction term.

1.2 Outline

The article is structured as follows: first, in Section 2, we provide the necessary notation and background
on functional analysis, infinite-dimensional Wiener processes, and parabolic SPDEs. In Section 3, we
propose discretization methods for the spatial, stochastic, and temporal domains of the SPDE. The
main contribution of our paper is presented in Section 4, where we introduce the antithetic Milstein
scheme and prove its expected variance decay in Theorem 4.1. We then analyze the complexity of the
associated antithetic MLMC Milstein scheme in Section 5 and present numerical experiments in Section 6
to complement our theoretical analysis. All proofs are provided in an appendix for clarity.

2 Preliminaries

2.1 Basic Notation

Let (Y, ‖·‖Y) and (Z, ‖·‖Z) be two Banach spaces. The Borel σ-algebra of Y is generated by the open sets
in Y and denoted by B(Y). We further denote by L(Y,Z) and L(Y) the set of linear bounded operators
O : Y → Z and O : Y → Y, respectively. For any (bounded or unbounded) operator O : Y → Z, we
denote its adjoint by O∗ : Z → Y. Let Y0 ⊆ Y be an open subset and let F : Y → Z be a twice Fréchet
differentiable mapping on Y0. The first two Fréchet derivatives of F are given by F ′ : Y0 → L(Y,Z) and
F ′′ : Y0 → L(Y,L(Y,Z)) ≃ L(Y × Y,Z). For the remainder of this article, C > 0 denotes a generic
positive constant which may change from one line to another. The dependency of C on certain parameters
is made explicit if necessary.

2.2 Hilbert-Schmidt Operators and RKHS

Throughout this article, we consider two separable Hilbert spaces (U, (·, ·)U ) and (H, (·, ·)H). The space
of Hilbert-Schmidt operators on U is given by

LHS(U,H) := {O ∈ L(U,H)| ‖O‖2LHS(U,H) :=
∑

k∈N

‖Ouk‖2H < +∞},
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where (uk, k ∈ N) is some orthonormal basis of U . Recall that (LHS(U,H), ‖·‖LHS(U,H)) is separable, while

this is in general not true for L(U,H). Further, LHS(U,H) is a Hilbert space equipped with the tensor
product

(O1, O2)LHS(U,H) :=
∑

k∈N

(O1uk, O2uk)H , O1, O2 ∈ LHS(U,H).

The tensor product of U and H is denoted by (U ⊗H, (·, ·)U⊗H). For φ ∈ U and ψ ∈ H we associate to
φ⊗ψ ∈ U ⊗H the rank one operator Oφ,ψ ∈ LHS(U,H), such that Oφ,ψu = (φ, u)Uψ for all u ∈ U . Thus,
we use the identification U ⊗H ≃ LHS(U,H), as U ⊗H and LHS(U,H) are isometrically isomorphic.

We denote by L1(U) the space of all trace class operators on U , and by L+
1 (U) the subset of all non-

negative, self-adjoint operators on U with finite trace. The trace of Q ∈ L+
1 (U) is denoted by Tr(Q) <∞.

For any Q ∈ L+
1 (U), the Hilbert-Schmidt theorem yields that the ordered eigenvalues η1 ≥ η2 ≥ · · · ≥ 0 are

non-negative with zero as only accumulation point, and the corresponding eigenfunctions (ek, k ∈ N) ⊂ U
form an orthonormal basis of U . The square-root of Q ∈ L+

1 (U) is defined via

Q
1/2φ :=

∑

k∈N

√
ηk(φ, ek)Uek, φ ∈ U.

Since Q1/2 is not necessarily injective, the pseudo-inverse of Q1/2 is given by

Q−1/2ϕ := φ, if Q
1/2φ = ϕ and ‖φ‖U = inf

{
‖ϕ‖U : ϕ ∈ U is such that Q

1/2ϕ = φ
}
.

We define reproducing kernel Hilbert space (RKHS) associated to Q as the set U := Q1/2(U) equipped
with the scalar-product

(ϕ1, ϕ2)U := (Q−1/2ϕ1, Q
−1/2ϕ2)U , ϕ1, ϕ2 ∈ U .

Note that (
√
ηkek, k ∈ N) forms an orthonormal system in U , hence

‖O‖2LHS(U,H) =
∑

k∈N

ηk‖Oek‖2H , O ∈ LHS(U , H).

2.3 Martingales on Hilbert Spaces

We consider a filtered probability space (Ω,F ,P, (Ft, t ≥ 0)) with normal filtration and a finite time
interval T = [0, T ]. The Lebesgue-Bochner space of all p-integrable, H-valued random variables is given
as

Lp(Ω;H) :=
{
Y : Ω → H is measurable with ‖Y ‖Lp(Ω;H) := E (‖Y ‖pH)

1/p
<∞

}
, p ∈ [1,∞).

Solutions to stochastic partial differential equations (SPDEs) are defined as predictable H-valued pro-
cesses. The predictable σ-algebra PT is the smallest σ-field on Ω × T containing all sets of the form
A× (s, t], where A ∈ Fs and s, t ∈ T with s < t. An H-valued stochastic process Y : Ω×T → H is called
predictable if it is a PT/B(H)-measurable mapping. The set of all square-integrable, H-valued predictable
processes is denoted by

XT :=

{
X : Ω× T → H

∣∣X is predictable and sup
t∈T

E(‖X(t)‖2H) <∞
}
. (1)

All appearing equalities and estimates involving stochastic terms are in the path-wise sense and are
assumed to hold almost surely, thus we omit the stochastic argument ω ∈ Ω for notational convenience.

Definition 2.1. Let (ek, k ∈ N) be an arbitrary orthonormal basis of U and denote M2(U) the set of all
square-integrable, U -valued martingales.
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1. For Y ∈ M2(U), denote by 〈Y, Y 〉 : Ω×T → R the unique predictable (quadratic variation) process,

such that T ∋ t 7→ ‖Y (t)‖2U −〈Y, Y 〉t is a real-valued martingale. The covariation of two martingales
Y, Z ∈ M2(U) is given by the polarization identity

〈Y, Z〉 := 1

2
(〈Y + Z, Y + Z〉 − 〈Y, Y 〉 − 〈Z,Z〉) .

2. The operator-valued angle bracket process 〈〈Y, Y 〉〉 : Ω× T → L+
1 (U) of Y ∈ M2(U) is defined as

〈〈Y, Y 〉〉 : Ω× T → LHS(U), t 7→
∑

k,l∈N

〈(Y (·), ek)U , (Y (·), el)U 〉t ek ⊗ el.

It holds that 〈〈Y, Y 〉〉 is the unique process such that T ∋ t 7→ Y (t)⊗Y (t)−〈〈Y, Y 〉〉t is an L1(U)-valued
martingale. Further, there exists a unique process QY : Ω×T → L+

1 (U), called the martingale covariance
of Y , such that

〈〈Y, Y 〉〉t =
∫ t

0

QY (s) d 〈Y, Y 〉s , t ∈ T, (2)

see e.g. [30, Theorem 8.2/Definition 8.3]. We consider H-valued stochastic integrals
∫ t
0
G(s)dY (s) with

predictable, operator-valued integrands G : Ω× T 7→ L(U , H) such that G ◦ Q1/2
Y : Ω× T 7→ LHS(U,H).

2.4 Wiener Process on a Hilbert Space

Definition 2.2. [31, Definition 2.1.9] Let Q ∈ L+
1 (U). A U -valued stochastic process W = (W (t), t ∈ T)

on (Ω,F ,P) is called a Q-Wiener process if

• W (0) = 0,

• W has P-almost surely continuous trajectories,

• W has independent increments, and

• for all 0 ≤ s ≤ t ≤ T there holds that W (t)−W (s) ∼ N (0, (t− s)Q).

For any Q-Wiener process there holds the identity

E((W (t)− E(W (t)), φ)U (W (t)− E(W (t)), ψ)U ) = t(Qφ,ψ)U , φ, ψ ∈ U, t ∈ T.

It follows that 〈W,W 〉t = tTr(Q) and 〈〈W,W 〉〉t = tQ (note that QY = QTr(Q)−1 in (2) is constant with
respect to t in this case). Further, recall that W admits the Karhunen-Loève expansion

W (t) =
∑

k∈N

(W (t), ek)Uek
d
=
∑

k∈N

√
ηkwk(t)ek, t ∈ T, (3)

where the relation
d
= signifies equality in distribution and (wk, k ∈ N) is a sequence of real-valued and

independent standard Brownian motions.

2.5 Stochastic Partial Differential Equations

We consider the stochastic partial differential equation (SPDE)

dX(t) = (AX(t) + F (X(t)))dt+G(X(t))dW (t), X(0) = X0, (4)

where A : D(A) ⊂ H → H is a densely defined and unbounded linear (differential) operator. The initial
value X0 is a H-valued random variable, W is a Q-Wiener process, and the coefficients F and G in
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Eq. (4) are (possibly) non-linear measurable mappings F : H → H and G : H → LHS(U , H), respectively.
Throughout this article we will assume that (−A) is self-adjoint, positive definite and boundedly invertible.
Consequently, the eigenvalues (λn, n ∈ N) of (−A) are positive, non-decreasing and only accumulate at
infinity, with the corresponding eigenfunctions (fn, n ∈ N) spanning an orthonormal basis of H.

By the Hille-Yosida Theorem, A is the generator of an analytic semigroup S = (S(t), t ≥ 0) ⊂ L(H)
(see e.g. [25, Appendix B.2]). The fractional powers of (−A), given by

(−A)α v :=
∑

n∈N

λαn(v, fn)Hfn v ∈ H,

are well-defined for any α ∈ R. Moreover, (−A)α : D((−A)α) → H is a closed operator, with D((−A)α)
being dense in H (see e.g. [29, Chapter 2, Theorem 6.8]). We define the Hilbert space Ḣα := D((−A)α/2)
equipped with the inner product (·, ·)α := ((−A)α

2 ·, (−A)α
2 ·)H , which will in turn be used to quantify

smoothness of solutions to (4).

Example 2.3. Let H = L2(D) for on a bounded, convex domain D ⊂ R
d, and let A = △ be the

Laplace operator with zero Dirichlet boundary conditions on D. It then holds that Ḣ2 = D((−A)) =
H2(D)∩H1

0 (D). More generally, it holds for α ∈ [1, 2] that Ḣα = D((−A)α/2) = Hα(D)∩H1
0 (D), see [11,

Proposition 4.1].

We formulate suitable, but natural assumptions on the initial value and the coefficients of the SPDE (4)
in the following. We also repeat the above conditions on A for the reader’s convenience.

Assumption 2.4.

(i) The operator A : D(A) ⊂ H → H is self-adjoint, densely defined inH and the infinitesimal generator
of an analytic semigroup S = (S(t), t ≥ 0) ⊂ L(H). Moreover, (−A) : D(A) → H is boundedly
invertible, i.e. 0 ∈ ρ(A), where ρ(A) is the resolvent set of A.

(ii) X0 ∈ L8(Ω;H) is a F0-measurable random variable.

(iii) The mappings F : H → H and G : H → LHS(U , H) are twice Fréchet differentiable on H with
bounded derivatives, i.e. there is a C > 0 such that for all v ∈ H there holds

‖F ′(v)‖L(H) + ‖F ′′(v)‖L(H×H,H) ≤ C

‖G′(v)‖L(H,LHS(U,H)) + ‖G′′(v)‖L(H×H,LHS(U,H)) ≤ C.

(iv) There are constants C > 0 and α ≥ 1 such that for all v ∈ Ḣα there hold the linear growth bounds

‖F (v)‖Ḣα + ‖G(v)‖LHS(U,Ḣα) ≤ C(1 + ‖v‖Ḣα),

‖G′(v)‖L(Ḣα,LHS(U,Ḣα)) ≤ C.

Remark 2.5. We require X0 ∈ L8(Ω;H), rather than X0 ∈ L2(Ω;H), in Item (ii) for some technical
steps in the proofs (cf. Lemma C.2 in the Appendix), as we apply Hölder’s inequality to obtain suitable
mean-square error bounds.

Mild solutions to SPDEs are characterized by path-wise identities that hold almost surely as follows:

Definition 2.6. [30, Chapter 9] Let XT be as in (1). A process X ∈ XT is called a mild solution to Eq. (4)
if for all t ∈ T there holds P-a.s.

X(t) = S(t)X0 +

∫ t

0

S(t− s)F (X(s))ds+

∫ t

0

S(t− s)G(X(s))dW (s). (5)
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In Eq. (5), S : T → L(H) is the semigroup generated by (−A), thus S(t) = e−tA and Eq. (5) may be
interpreted as a variation-of-constants formula. Well-posedness of (4) in the mild sense, and regularity of
solutions has been investigated under suitable assumptions on F,G and X0, see e.g. [30, Theorems 9.15
and 9.29] or [25, Chapters 2.4-2.6]. We condense the main results in the following statement.

Theorem 2.7. Under Assumption 2.4, there exists a unique mild solution X ∈ XT to (4), such that for
all p ∈ (0, 8] and κ ∈ [0, α) it holds that

sup
t∈T

E(‖X(t)‖p
Ḣα

) <∞ and sup
t,s∈T

E(‖X(t)−X(s)‖p
Ḣκ

)1/p

|t− s|min(1/2,(α−κ)/2)
<∞.

3 Pathwise Approximations

3.1 Spatial Discretization

To derive a spatial approximation based define V := Ḣ1 = D((−A)1/2) and consider the bilinear form

B : V × V → R, (v, w) 7→ ((−A)1/2v, (−A)1/2w). (6)

In Example 2.3, where A is the Laplacian with zero Dirichlet boundary conditions on a convex domain
D ⊂ R

d, we have V = H1
0 (D), and B(v, w) = (∇v,∇w)H .

We replace V by a finite dimensional subspace VN with N := dim(VN ) ∈ N. This encompasses several
spatial approximations, for instance spectral Galerkin methods, where N is number of terms in expansion,
and finite element methods, where the mesh refinement parameter h > 0 is related to N via N = O(h−d).
We introduce the discrete operator AN : VN → VN by

(−ANvN , wN ) = B(vN , wN ), vN , wN ∈ VN . (7)

Then, (−AN ) generates an analytic semigroup (SN (t), t ≥ 0) of linear operators SN (t) : VN → VN via
SN (t) := exp(−tAN ). Let PN : H → VN be the H-orthogonal projection onto VN . The semi-discrete
(mild) problem is then to find XN : Ω× T → VN such that for all t ∈ T there holds P-a.s.

XN (t) = SN (t)PNX0 +

∫ t

0

SN (t− s)PNF (XN (s))ds+

∫ t

0

SN (t− s)PNG(XN (s))dW (s). (8)

3.2 Noise Approximation

Recall the Karhunen-Loève expansion of W from Equation (3), where the scalar products (W (·), ek)H
are real-valued, independent and scaled Brownian motions with variance ηk ≥ 0 (the k-th eigenvalue of
Q). In general, infinitely many of the eigenvalues ηk are strictly greater than zero, hence we truncate the
series in Eq. (3) after K ∈ N terms to obtain

WK(t) :=

K∑

k=1

(W (t), ek)Uek, t ∈ T.

It can be shown, see for example [7], that WK converges to W in mean-square uniformly on T with
truncation error given by

E
(
‖WK(t)−W (t)‖2U

)
= t

∑

k>K

ηk, t ∈ T.

Combining the semi-discrete mild formulation from (8) with the noise truncation then yields the problem
to find XN,K : Ω× T → VN such that for all t ∈ T there holds P-a.s.

XN,K(t) = SN (t)PNX0 +

∫ t

0

SN (t− s)PNF (XN,K(s))ds+

∫ t

0

SN (t− s)PNG(XN,K(s))dWK(s). (9)
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3.3 Time Stepping

The temporal discretization is based on rational approximations of SN . Recall that (−AN ) : VN → VN is a
linear, positive definite, self-adjoint operator and that N = dim(VN ) ∈ N. There exists an H-orthonormal

eigenbasis (f̃1, . . . , f̃N ) ⊂ VN of eigenfunctions of (−AN ), with corresponding non-decreasing eigenvalues

(λ̃1, . . . , λ̃N ) such that λ̃1 > 0. We denote the spectrum of (−AN ) by σ(−AN ) and consider a rational
function r defined on σ(−AN ).

Now fix M ∈ N and let 0 = t0 < t1 < · · · < tM = T be an equidistant grid of [0, T ] with time step
∆t := T/M. Further, let r(∆tAN ) be a rational approximation of SN (∆t) = exp(−∆tAN ), given by

r(∆tAN )v =
N∑

n=1

r(∆tλ̃n)(v, f̃n)H f̃n, v ∈ H. (10)

The drift part in (9) is then approximated in each time step by the forward difference

∫ tm+1

tm

SN (tm+1 − s)PNF (XN,K(s))ds ≈ r(∆tAN )PNF (XN,K(tm))∆t.

To introduce the approximation of the stochastic integral, recall that G′ : H → L(H,LHS(U , H))

denotes the Fréchet derivative of G. For any k ∈ N such that ηk > 0, we define wk := η
−1/2
k (W, ek)U ,

hence (wk, k ∈ N) is the sequence of independent Brownian motions in the Karhunen-Loève expansion of
W . Further, for m = 0, . . . ,M −1 and any stochastic process W : Ω×T → H with H ∈ {R, U,L1(U)}, we
denote by ∆mW := W(tm+1)−W(tm) the increment with timestep [tm, tm+1] (we will use in particular
W ∈ {W,WK , wk}). We employ a truncated Milstein scheme to approximate the stochastic integral in (9)
by a first order Taylor expansion of G via

∫ tm+1

tm

SN (tm+1 − s)PNG(XN,K(s))dWK(s)

≈
∫ tm+1

tm

SN (tm+1 − s)PNG(XN,K(tm))dWK(s)

+

∫ tm+1

tm

SN (tm+1 − s)PN

[
G′(XN,K(tm))

(∫ s

tm

SN (s− r)PNG(XN,K(r))dWK(r)

)]
dWK(s)

≈r(∆tAN )PNG(XN,K(tm))∆mWK

+ r(∆tAN )PN

∫ tm+1

tm

G′(XN,K(tm))

(
PNG(XN,K(tm))

∫ s

tm

dWK(r)

)
dWK(s)

≈r(∆tAN )PNG(XN,K(tm))∆mWK

+
r(∆tAN )PN

2

K∑

k,l=1

G′(XN,K(tm)) (PNG(XN,K(tm))el) ek (
√
ηkηl∆mwk∆mwl − δk,lηk∆t) ,

where δk,l is the Kronecker delta. This approximation corresponds to the truncated Milstein scheme in
[17] for finite-dimensional SDEs. Now define for any s ∈ [tm, T ] the L1(U)-valued process

Wm,K(s) := (WK(s)−WK(tm))⊗ (WK(s)−WK(tm))− (s− tm)

K∑

k=1

ηk ek ⊗ ek, (11)

and note that Wm,K is a continuous, square-integrable, L1(U)-valued martingale on [tm, T ]. Further, let
Q⊗Q ∈ L(L1(U)) be given by Q⊗Q(φ⊗ ϕ) = Qφ⊗Qϕ for all φ⊗ ϕ ∈ L+

1 (U). As WK(s)−WK(tm) is
Gaussian, there is a C > 0 such that for all s, t ∈ [tm, T ] with t ≥ s there holds

〈〈Wm,K ,Wm,K〉〉t − 〈〈Wm,K ,Wm,K〉〉s ≤ C(t− s)2Q⊗Q. (12)
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We use the operator-valued processes Wm,K to write the truncated correction term in a compact form.

Proposition 3.1. Let Assumption 2.4 hold and let Wm,K be defined as in (11) for m = 0, . . . ,M − 1
and M ∈ N, and let further ∆mwk := (W (tm+1) − W (tm), ek)U for k ∈ N. There exists a mapping
G : H 7→ LHS(LHS(U), H), such that for any X ∈ H and M ∈ N there holds

∫ tm+1

tm

G(X)dWm,K(s) =
1

2

K∑

k,l=1

G′(X) (PNG(X)el) ek (
√
ηkηl∆mwk∆mwl − δk,lηk∆t) . (13)

Moreover, G is Fréchet differentiable on H and satisfies the linear growth bounds

‖G(X)‖LHS(LHS(U),H) + ‖G′(X)‖L(H,LHS(LHS(U),H)) ≤ C(1 + ‖X‖H), X ∈ H, (14)

and
‖G(X)‖LHS(LHS(U),Ḣα) ≤ C(1 + ‖X‖Ḣα), X ∈ Ḣα. (15)

Proof. See Appendix B.

Based on Proposition 3.1, we obtain the fully discrete problem as to find Y N,K0 , Y N,K1 . . . , Y N,KM : Ω →
VN such that Y N,K0 = PNX0 and for all m = 0, . . . ,M − 1 there holds

Y N,Km+1 = r(∆tAN )PN
(
Y N,Km + F (Y N,Km )∆t+G(Y N,Km )∆mWK + G(Y N,Km )∆mWm,K

)
, (16)

where we have used (13) to define the last term in (16) as

G(Y N,Km )∆mWm,K :=

∫ tm+1

tm

G(Y N,Km )dWm,K(s), m = 0, . . . ,M − 1.

The first tree terms on the right hand side of (16) correspond to an Euler approximation of X, the
fourth term is the truncated Milstein correction. We emphasize that the scheme in (16) does not require
the simulation of any iterated stochastic integrals, and is therefore straightforward to implement. We
formulate the following assumption on strong and weak convergence of the fully discrete scheme.

Assumption 3.2.

(i) The rational approximation r of SN is of order q ∈ N and stable. That is, r(z) = e−z +O(zq+1) as
z → 0, |r(z)| < 1 for z > 0 and limz→∞ r(z) = 0.

(ii) Subspace approximation property: Fix α > 0 and let (VN , N ∈ N) be a sequence of subspaces
VN ⊂ V such that dim(VN ) = N . There are constants C, α̃ > 0, depending on α and d, such that
for any N ∈ N and any v ∈ Ḣα there holds

‖v − PNv‖H ≤ CN−α̃ ‖v‖Ḣα , and
∥∥∥Amin(α,2)/2

N PNv
∥∥∥
H

≤ C ‖v‖Ḣmin(α,2) .

(iii) Strong convergence: There are constants C, α̃, β > 0 such that for p ∈ (0, 8] and all discretization
parameters M,N,K ∈ N there holds the strong error estimate

max
m=0,...,M

‖X(m∆t)− Y N,Km ‖Lp(Ω;H) ≤ C
(
M−1/2 +N−α̃ +K−β

)
.

Remark 3.3. Item (iii) essentially states that the truncated Milstein term does neither increase, nor
spoil the strong rates of convergence, as compared to the standard Euler scheme. We justify this in
Theorem 3.5 below. However, the Milstein correction accelerates variance decay for an antithetic coupling
in the MLMC estimator. If the eigenvalues of Q exhibit the decay ηj ≤ Cj−β0 for some β0 > 1, we may
choose β = 1/2(β0 − 1− δ) > 0 for an arbitrary small δ ∈ (0, β0 − 1) in Item (iii).

8



Example 3.4.

1. Assume the setting in Example 2.3, i.e., we consider the stochastic heat equation on a convex domain
D. Let VN be a space of linear finite elements with respect to a regular triangulation of D with
mesh width h = O(N−d) for N ∈ N. Assumption 3.2 then holds with α̃ = min(α,2)/d, where α is the
spatial Sobolev regularity of X as in Assumption 2.4, see e.g. [25, Chapters 3 and 5].

2. For the Dirichlet-Laplacian in Example 2.3, we have by Weyl’s law that λn = O(n2/d) as n → ∞.
For a spectral Galerkin approach with VN = span {f1, . . . , fN}, Assumption 3.2 thus holds with
α̃ = α/d and we obtain the stronger relation

∥∥∥Aα/2
N PNv

∥∥∥
H

≤ ‖v‖Ḣα ,

for α ≥ 2. However, this will not affect efficiency of our antithetic scheme in Section 4, therefore we
formulated Item (ii) in a unified way to encompass spectral Galerkin and finite element approaches.

We conclude this section by recording an error estimate on the truncated Milstein approximation.

Theorem 3.5. Let Assumptions 2.4 and 3.2 (i) hold, and denote by Y N,K· : {0, . . . ,M} × Ω → H the
truncated Milstein approximation in (16).

1. For any p ∈ [2, 8] there is a constant C > 0, independent of M,N and K, such that

max
m=0,...,M

E

(∥∥Y N,Km

∥∥p
H

)
≤ C(1 + E (‖X0‖pH)) <∞. (17)

2. Let the standard Euler discretization of (2.4) be given by Ŷ0 = PNX0 and

Ŷ N,Km+1 = r(∆tAN )Ŷ N,Km + r(∆tAN )PNF (Ŷ
N,K
m )∆t+ r(∆tAN )PNG(Ŷ

N,K
m )∆mWK ,

for m = 0, . . . ,M − 1. Then, for any p ∈ (0, 4] there exists a constant C > 0, independent of M,N
and K, such that

max
m=0,...,M

E

(
‖Y N,Km − Ŷ N,Km ‖pH

)1/p
≤ CM−1/2.

Proof. See Appendix B.

Remark 3.6. The second part of Theorem 3.5 justifies Assumption 3.2 (iii), since the truncated Milstein
correction does not affect the temporal convergence of order O(M−1/2) for the Euler scheme, neither does
it introduce an additional bias with respect to N or K.

4 Antithetic Multilevel Monte Carlo-Milstein Scheme

To construct an antithetic estimator, we consider coupled ”coarse” and ”fine” approximations of X given
by the truncated Milstein scheme in (16), with refinement parameters M,N and K adjusted accordingly.

First, let Y c· := Y N,K· be the coarse step discretization with a fixed time step ∆t = T/M and fixed N,K ∈ N

as in (16). That is, Y cm is given by Y c0 := PNY0 and

Y cm+1 = r(∆tAN )PN (Y cm + F (Y cm)∆t+G(Y cm)∆mWK + G(Y cm)∆mWm,K) , m = 0, . . . ,M − 1. (18)

For the corresponding fine approximation, let dt := ∆t/2 and set a cutoff index Kf ∈ N such that Kf ≥ K
for the noise approximation. We define the fine increments

dmWKf
:=WKf

(tm + dt)−WKf
(tm), dm+1/2WKf

:=WKf
(tm+1)−WKf

(tm + dt)

dmWm,Kf
:= Wm,Kf

(tm + dt), dm+1/2Wm,Kf
:= dm+1/2WKf

⊗ dm+1/2WKf
− dt

Kf∑

k=1

ηkek ⊗ ek.

9



Note that ∆mWm,Kf
6= dm+1/2Wm,Kf

+ dmWm,Kf
, but there holds

∆mWm,Kf
= dm+1/2Wm,Kf

+ dmWm,Kf
+ dm+1/2WKf

⊗ dmWKf
+ dmWKf

⊗ dm+1/2WKf
. (19)

We further consider a finite dimensional subspace VNf
⊂ V with dim(VNf

) = Nf such that Nf ≥ N =
dim(VN ). The corresponding discrete operator is denoted by ANf

: VNf
→ VNf

, its associated semigroup
by SNf

, and PNf
: H → VNf

is the H-orthogonal projection onto VNf
. Finally, we set a cutoff index

Kf ∈ N such that Kf ≥ K for the noise approximation on the fine scale.

The fine step discretization Y f· : Ω×{0, 1/2, 1, . . . ,M − 1/2,M} → VNf
is then given by Y f0 := PNf

X0,

Y fm+1/2 = r(dtANf
)PNf

(
Y fm + F (Y fm)dt+G(Y fm)dmWKf

+ G(Y fm)dmWm,Kf

)
, (20)

and

Y fm+1 = r(dtANf
)PNf

(
Y fm+1/2 + F (Y fm+1/2)dt+G(Y fm+1/2)dm+1/2WKf

+ G(Y fm+1/2)dm+1/2Wm,Kf

)
.

(21)

The antithetic counterpart Y a· : Ω× {0, 1/2, 1, . . . ,M − 1/2,M} → VNf
to Y f· is defined via Y a0 := PNf

X0,

Y am+1/2 = r(dtANf
)PNf

(
Y am + F (Y am)dt+G(Y am)dm+1/2WKf

+ G(Y am)dm+1/2Wm,Kf

)
, (22)

and

Y am+1 = r(dtANf
)PNf

(
Y am+1/2 + F (Y am+1/2)dt+G(Y am+1/2)dmWKf

+ G(Y am+1/2)dmWm,Kf

)
. (23)

The foundation of our MLMC Milstein approach is to show that the difference of the antithetic average

Y m :=
Y fm + Y am

2
, m = 0, . . . ,M, (24)

to the coarse scale Y cm approximations exhibits a rapid decay in mean-square. This property is established
in our main result:

Theorem 4.1. Let Assumptions 2.4 and 3.2 hold for some α ≥ 1, and let M,Nf , N,Kf ,K ∈ N be such
that Nf ≥ N and Kf ≥ K. Further, let Y c· be as in (18) and let Y · be the antithetic average of the fine
approximations as in (24). Then, there is a constant C > 0, independent of M,N, and K such that

max
m=0,...,M

E

(∥∥Y m − Y cm
∥∥2
H

)
≤ C

(
M−min(α,2) +N−2α̃ +K−2β

)
. (25)

Proof. See Appendix C.

Remark 4.2. For the truncated Milstein scheme without antithetic correction, we have

max
m=0,...,M

E

(∥∥Y fm − Y cm
∥∥2
H

)
≤ C

(
M−1 +N−2α̃ +K−2β

)
, (26)

and therefore a slower variance decay with respect to the time step ∆t = T/M .

5 Multilevel Monte Carlo Approximation

Let Z : Ω → R be a real-valued, integrable random variable, and let (Z(i), i ∈ N) be a sequence of
independent copies of Z. For any finite number of samples N ∈ N we define the singlelevel Monte Carlo
estimator of E (Z) by

EN(Z) :=
1

N

N∑

i=1

Z(i). (27)
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We aim to estimate E (Ψ(XT )) for a given functional Ψ : H → R by multilevel Monte Carlo (MLMC)
methods. To this end, let M0, L ∈ N and let Mℓ = M02

ℓ for ℓ = 1, . . . , L. Based on Theorem 4.1, we
balance the error contributions in (25) on all levels by setting the remaining approximation parameters as

Nℓ := ⌈Mmin(α,2)/2α̃
ℓ ⌉ and Kℓ := ⌈Mmin(α,2)/2β

ℓ ⌉, ℓ = 1, . . . , L. (28)

We denote for ℓ = 2, . . . , L by Y c,ℓ−1 the coarse step approximation in (18) with discretization param-
eters given by Mℓ−1, Nℓ−1,Kℓ−1. For ℓ = 1, . . . , L, we let denote by Y f,ℓ, Y a,ℓ the fine step discretization
and its antithetic counterpart, respectively, both with discretization parameters Mf = Mℓ = 2Mℓ−1 and

Nf = Nℓ,Kf = Kℓ. Furthermore, we define Y
ℓ
= 1/2(Y f,ℓ + Y a,ℓ),

Ψc0 := 0, ,Ψcℓ := Ψ(Y c,ℓMℓ
), and Ψℓ :=

Ψ(Y f,ℓMℓ
) + Ψ(Y a,ℓMℓ

)

2
, for ℓ = 1, . . . , L. (29)

We introduce the antithetic multilevel Monte Carlo estimator as

EML
L (Ψ) :=

L∑

ℓ=1

ENℓ
(Ψℓ −Ψcℓ−1), (30)

where N1, . . . ,NL ∈ N are level-dependent numbers of samples. Since Y f,ℓM
d
= Y a,ℓM , it holds that

E
(
EML
L (Ψ)

)
= E

(
Ψ(Y f,LML

)
)
.

To analyze the mean-squared error (MSE) and computational complexity of the estimator in (30), we
formulate the following assumptions on the sample complexity and the weak error.

Assumption 5.1. For fixed M0 ∈ N and any ℓ ∈ N, let Mℓ =M02
ℓ and Nℓ,Kℓ ∈ N be as in (28).

(i) Sample complexity: Denote by Cℓ the cost of generating one sample of Ψ
ℓ
on any a given refinement

level ℓ ∈ N. There are constants C > 0 and γ > 0 such that for any ℓ ∈ N there holds

Cℓ ≤ CM1+γ
ℓ .

(ii) Weak convergence: Let α̃ and β be as in Assumption 3.2 (iii), let Ψ : H → R be Fréchet differentiable
with bounded derivative, and let δ ∈ (0, 1) be arbitrary small. There is a constant C = C(Ψ, δ) > 0
such that for ℓ ∈ N there holds

∣∣∣E(Ψ(X(T )))− E(Ψ(Y f,ℓMℓ
))
∣∣∣ ≤ CM−1+δ

ℓ .

Remark 5.2. The parameter γ in Item (i) essentially depends on the cost of evaluating G. In case
there is some sparsity to exploit in G, the cost of one evaluation may be as low as O(max(Nℓ,Kℓ)), in
which case (28) yields that γ = 1/2 · min(α,2)/min(α̃,β), see for instance the numerical example in Section 6.
On the other hand, the cost of one evaluation may be as large as O(N2

ℓK
2
ℓ ), if evaluating G entails full

matrices and nested summations in the discretization scheme, which makes each sample significantly more
expensive.

Assumption 5.1 (ii) on the weak approximation error is natural, one often recovers (almost) twice the
strong rates for semi-linear, parabolic SPDEs, see e.g. [25, Theorem 5.12] or [24, Theorem 4.5]. In other

words, the weak error with respect to Nℓ and Kℓ is of order O(N−2α̃+δ
ℓ +K−2β+δ

ℓ ) for any arbitrary small
δ > 0, and the balancing in (28) yields with α ≥ 1 that

∣∣∣E(Ψ(X(T )))− E(Ψ(Y f,ℓMℓ
))
∣∣∣ = O(M−1+δ

ℓ +N−2α̃+δ
ℓ +K−2β+δ

ℓ ) = O(M−1+δ
ℓ ).
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Theorem 5.3. Let Assumptions 2.4, 3.2 and 5.1 hold. For any ε ∈ (0, e−1), there exists an antithetic
multilevel Monte Carlo-Milstein estimator EL(Ψ(YM )) of E(Ψ(X(T ))) such that there holds

E

(∣∣EML
L (Ψ)− E(Ψ(X(T )))

∣∣2
)
< ε2,

and the computational complexity CML of EL(Ψ(YM )) is bounded by

CML ≤





Cε−2, min(α, 2) > 1 + γ,

Cε−2| log(ε)|2, min(α, 2) = 1 + γ,

Cε−2− 1+γ−min(α,2)
1−δ , min(α, 2) < 1 + γ.

(31)

Proof. See Appendix D.

Example 5.4. To show that all three cases in (31) are conceivable, recall Example 3.4, where α̃ =
min(α,2)/d (FEM) or α̃ = α/d (spectral Galerkin method). Assuming for simplicity that α ∈ [1, 2], α̃ = α/d,
and that G may be evaluated with complexity O(max(Nℓ,Kℓ)). The error balancing (28) then yields

max(Nℓ,Kℓ) =M
αmax(d/2α,1/2β)
ℓ ,

and thus Item (i) holds with

γ = αmax(d/2α, 1/2β) < α− 1 ⇐⇒ max(d/2, α/2β) < α− 1.

6 Numerics

Let D = [0, 1]d for d ∈ {1, 2, 3}, let H := L2(D) and denote by A := △ the Laplace-operator with
homogeneous Dirichlet boundary conditions. We further assume that U = H and denote by (ek, k ∈ N)
and (λk, k ∈ N) the eigenfunctions and eigenvalues of −A, respectively. By Weyl’s law λk = O(k2/d) for
k ∈ N and for rectangular and circular domains the precise eigenfunctions and eigenvalues of △ are given
in closed form, see e.g. [18, Section 3]. We consider the stochastic heat equation given by

dX(t) = △X(t)dt+G(X(t))dW (t), t ∈ [0, 1], X(0) = X0, (32)

for X0 ∈ L8(Ω; Ḣ2). The driving noise is modeled by a Q-Wiener process W : Ω × [0, 1] → H with
covariance operator Q := ((−△)−s) for a smoothness parameter s > 0. Since λk = O(k2/d) for k ∈ N, Q
is trace-class for s > d/2, in which case W admits the Karhunen-Loève expansion

W (t) :=
∑

k∈N

η
1/2
k wk(t)ek, (33)

where ηk = λ−sk and w1, w2, . . . are independent one-dimensional Brownian motions. Hence, truncating

the expansion (33) after K terms yields an error of order O(K1−2s/d) with respect to ‖·‖2H , uniform in
[0, T ], and implies that Assumption 3.2 holds with β = (2s/d− 1) /2. Alternatively, we could define

the diffusion part of Equation (32) as Ĝ(Xt)dŴt, where Ŵ is Gaussian white noise (i.e. has covariance

operator Q̂ = I) and Ĝ(v)ek := η
1/2
k G(v)ek for all v ∈ H and k ∈ N. By [25, Theorem 2.27] it then follows

that Equation (32) admits a unique mild solution X such that X(t) ∈ L8(Ω; Ḣα) for α ∈ [1,min(1+ s, 2)]
and all t ∈ [0, 1]. We fix the diffusion coefficient G to be linear and given by

G(v)u :=

∞∑

k=1

(v, ek)Hek+1(u,
√
ηk+1ek+1)U + (g, ek)Hek(u,

√
ηkek)U
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for all v ∈ H,u ∈ U = Q1/2H and some fixed g ∈ H. We use a spectral Galerkin approach and expand
Y c, Y f and Y a in the same basis, for example

Y cm =

N∑

k=1

ycm,k ek

for {ycm,k}Nk=1 ∈ R
N and m = 1, . . . ,M . Recall from Example 3.4 that Assumption 3.2 then holds with

α̃ = α/d. The scheme in (18) simplifies to

ycm+1,1 = r(∆t λ1) (ym,1 + (g, e1)H∆mw1)

ycm+1,2 = r(∆t λ2)

(
ym,2 + ( ym,1 + (g, e2)H)∆mw2 +

1

2
(g, e1)H ∆mw2∆mw1

)
.

ycm+1,k = r(∆t λk) ( ym,k + χk≤K ( ym,k−1 + (g, ek)H)∆mwk)

+ χk≤K
r(∆tλk)

2
(ym,k−2 + (g, ek−1)H) ∆mwk∆mwk−1.

for K ≥ 2, k = 3, . . . , N , and for χ being the characteristic function. The schemes in (20) and (21) for

{yfm,k}
Nf

k=1 and (22) and (23) for {yam,k}
Nf

k=1 simplify similarly. The cost of evaluating the previous scheme is
O(N) for every time step since only O(min(N,K)) independent Brownian increments ∆mw1, . . . ,∆mwN
are needed. We set (g, ek)H = k−1/2−ε and (X0, ek)H = k−1/2−2/d−ε for k ∈ N and some ε > 0. Note
that with this choice G(v) ∈ LHS(U , H) for all v ∈ H and X0 ∈ L8(Ω; Ḣ2). In Figure 1, we fix M and

K to some sufficiently large values and plot estimates of the difference maxm ‖Y N,Km − Y
⌈
√
2N⌉,K

m ‖L2(Ω;H)

for several values of N . The plot verifies the convergence order with respect to N in Assumption 3.2 as
O(N−min(s+1,2)/d). Next, we choose N and K in terms of M as in (28). In this case the cost per sample
is O(M1+γ) where

γ = max(d/2, α/2β) = dmax(1/2,min(1+s,2)/(2s−d)).

We plot in Figure 2 estimates of the left-hand sides of (25) and (26) which verifies the claim of Theorem 4.1
and the improved convergence order of the variance for the antithetic estimator. In particular, the variance
convergence order is O(M−min (α,2)) = O(M−min(s+1,2)) for the antithetic estimator and O(M−1) for the
truncated Milstein scheme without antithetic correction. Both figures also clearly showcase the reduced
convergence rates in terms of N and M when d = 1 and as the smoothness parameter s decreases.

7 Conclusions

We have developed an antithetic MLMC-Milstein scheme for parabolic SPDEs, which offers a significant
improvement in computational efficiency for estimating quantities of interest in SPDE models. This
scheme circumvents the need to simulate intractable Lévy area terms, making it particularly advantageous
for SPDEs with multiplicative noise and non-commutative diffusion terms. In our study, we have derived
precise variance decay bounds for a fully discrete scheme that incorporates antithetic time stepping, spatial
approximations, and noise approximations. Furthermore, we have bounded the computational effort by
considering the cost associated with evaluating the noise term. These results provide valuable insights
into the efficiency and accuracy of our proposed scheme.

There are several possible extensions to the current work that could be explored. A further step to
enhance efficiency would be to develop a higher-order noise approximation that achieves a better rate
than O(K−γ) in relation to the truncation index K (cf. Theorem 4.1). Additionally, the methodology
employed in this study could be extended to incorporate discontinuous Lévy driving noise, provided that
it possesses a sufficient number of moments. While this extension may initially seem straightforward, it is
important to emphasize that our results heavily rely on the continuous version of the Burkholder-Davis-
Gundy inequality (Eq. 36), while only a weaker version (Eq. 35) is available for discontinuous martingales.
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Figure 1: Estimates of the L2(Ω;H) difference maxm ‖Y N,Km − Y
⌈
√
2N⌉,K

m ‖L2(Ω;H) for the numerical ex-
ample in Section 6 and when using the Galerkin method for different number of terms, N , in the spatial
approximation. The estimates were obtained using Monte Carlo sampling with at least 4000 samples.
The dashed reference lines are ∝ N−min(1+s,2)/d and verify the assumed convergence rates in Assumption
3.2.

14



101 102 103
10−7

10−6

10−5

10−4

10−3

10−2

M

d = 1, s = 3d/4

Standard
Antithetic

∝M−1

∝M−min(1+s,2)

101 102 103

10−2

10−1

M

d = 1

s = 3d/5

s = 3d/4
s = d

s = 3d/2

∝M−1/2

∝M−1

101 102

10−6

10−5

10−4

10−3

10−2

M

d = 2, s = 3d/4

Standard
Antithetic

∝M−1

∝M−min(1+s,2)

101 102 103

10−2

10−1

M

d = 2

s = 3d/5

s = 3d/4
s = d

s = 3d/2

∝M−1

101 102

10−5

10−4

10−3

10−2

M

d = 3, s = 3d/4

Standard
Antithetic

∝M−1

∝M−min(1+s,2)

101 102

10−1

M

d = 3

s = 3d/5

s = 3d/4
s = d

s = 3d/2

∝M−1

Figure 2: Results for numerical example in Section 6 and M,N and K as in (28). (left) Shows
the left-hand sides of (25), the variance for the antithetic estimator, and (26), the variance for the
“Standard” truncated Milstein estimator without the antithetic correction, for the smoothness pa-
rameter s = 3d/4. (right) Shows the relative variance decay between the two estimators, i.e.,

maxm E

(∥∥Y m − Y cm
∥∥2
H

)/
maxm E

(∥∥Y fm − Y cm
∥∥2
H

)
= O(M−min(s,1)), for different smoothness parame-

ters s. The variance estimates were obtained using Monte Carlo sampling with at least 4000 samples.
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Consequently, a completely different proof technique would be required, even for the relatively simple case
of Poisson driving noise.

Another intriguing avenue for exploration would be the consideration of first-order hyperbolic SPDEs,
which commonly arise in the modeling of energy forward contracts [10, 3]. In such cases, the weak
formulation of SPDEs becomes essential for pathwise discretizations, see [8], as the associated semigroups
lack the smoothing properties observed in the parabolic case. Furthermore, recent developments have seen
the application of a modified version of the antithetic Milstein scheme to finite-dimensional stochastic
differential equations with non-Lipschitz drift [28]. Extending this result to SPDEs in infinite dimensions
would be both intriguing and worthwhile.
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A Itô Isometry and Burkholder-Davis-Gundy Inequalities

We record the following Itô isometry and Burkholder-Davis-Gundy (BDG)-type inequalities for Hilbert
space-valued stochastic integrals in the setting of Section 2.

Lemma A.1. Let Y ∈ M2(U) and let G : Ω × T → L(U,H) be a PT/B(LHS(U , H))-measurable process
such that

E

(∫ T

0

∥∥∥G(s)Q1/2
Y (s)

∥∥∥
2

LHS(U,H)
d 〈Y, Y 〉s

)
<∞.

1. There holds the isometric formula

E

(∥∥∥∥
∫ t

0

G(s)dY (s)

∥∥∥∥
2

H

)
= E

(∫ T

0

∥∥∥G(s)Q1/2
Y (s)

∥∥∥
2

LHS(U,H)
d 〈Y, Y 〉s

)
, t ∈ T. (34)

2. If for some p > 2 there holds

E

(∫ T

0

∥∥∥G(s)Q1/2
Y (s)

∥∥∥
p

LHS(U,H)
d 〈Y, Y 〉s

)
<∞,

then there is a C = C(T, p) > 0 such that

E

(∥∥∥∥
∫ t

0

G(s)dY (s)

∥∥∥∥
p

H

)
≤ CE

(∫ T

0

∥∥∥G(s)Q1/2
Y (s)

∥∥∥
p

LHS(U,H)
d 〈Y, Y 〉s

)
, t ∈ T. (35)

Moreover, if Y has continuous trajectories, then

E

(∥∥∥∥
∫ t

0

G(s)dY (s)

∥∥∥∥
p

H

)
≤ CE



(∫ T

0

∥∥∥G(s)Q1/2
Y (s)

∥∥∥
2

LHS(U,H)
d 〈Y, Y 〉s

)p/2
 , t ∈ T. (36)

For a proof of (34) see e.g. [30, Theorem 8.7], the BDG inequality (36) for continuous martingales
may for instance be found [20, Eq. (1.5)] and the references therein. The previous result simplifies for
Wiener processes with constant martingale covariance QY = QTr(Q)−1 as in Section 2.4. In this case,
the Itô isometry and BDG inequality from Lemma A.1 admit the following form.
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Corollary A.2. [30, Corollary 8.17 and Lemma 8.27] Let W be a Q-Wiener process and let G : Ω×T →
LHS(U , H) be a PT/B(LHS(U , H))-measurable and square-integable mapping.

1. There holds the isometric formula

E

(∥∥∥∥
∫ t

0

G(s)dW (s)

∥∥∥∥
2

H

)
=

∫ t

0

E

(
‖G(s)‖2LHS(U,H)

)
ds =

∫ t

0

∑

k∈N

ηkE
(
‖G(s)ek‖2H

)
ds. (37)

2. If, in addition, for some p > 2 there holds

E

(∫ t

0

‖G(s)‖pLHS(U,H)ds

)
<∞,

then there is a C = C(p) > 0 such that for t ∈ T there holds

E

(∥∥∥∥
∫ t

0

G(s)dW (s)

∥∥∥∥
p

H

)
≤ CE

((∫ t

0

‖G(s)‖2LHS(U,H)ds

)p/2)
. (38)

B Proofs of Section 3

Proof of Proposition 3.1. For any fixed X ∈ H, define

G̃X : U × U 7→ H, (φ, ϕ) 7→ 1

2
G′(X)(PNG(X)φ)ϕ.

As G′(X) ∈ L(H,L(U , H)) and G(X) ∈ L(U , H), it readily follows that G̃X is bilinear. Thus, there exists
a unique GX ∈ L(U ⊗ U , H) ≃ L(LHS(U), H) such that

G̃X(φ, ϕ) = GX(φ⊗ ϕ), (φ, ϕ) ∈ U × U. (39)

We thus define G : H → L(LHS(U), H), X 7→ GX , and (13) follows by the linearity of GX together with

∆mWm,K = (WK(tm+1)−WK(tm))⊗ (WK(tm+1)−WK(tm))−∆t
K∑

k=1

ηk ek ⊗ ek

=

K∑

k,l=1

(∆mwk∆mwl − δk,lηk∆t) ek ⊗ el.

To show that G(X) ∈ LHS(LHS(U), H) for allX ∈ H, we use (39) and that
(√
ηkek ⊗√

ηlel, (k, l) ∈ N
2
)

is an orthonormal basis of LHS(U) to obtain

‖G(X)‖2LHS(LHS(U),H) =
∑

k,l∈N

‖G(X)(
√
ηkek ⊗

√
ηlel)‖2H

=
1

4

∑

k,l∈N

‖G′(X)(PNG(X)
√
ηkek)

√
ηlel‖2H

=
1

4

∑

k∈N

‖G′(X)(PNG(X)
√
ηkek)‖2LHS(U,H)

≤ 1

4
‖G′(X)‖2L(H,LHS(U,H))

∑

k∈N

‖G(X)
√
ηkek‖2H

=
1

4
‖G′(X)‖2L(H,LHS(U,H))‖G(X)‖2LHS(U,H).
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Using that G is twice differentiable with bounded derivatives from Assumption 2.4 (iii), we obtain

‖G(X)‖2LHS(LHS(U),H) ≤ C(1 + ‖X‖H)2.

The bound in (15) follows analogously, by using Assumption 2.4 (iv) instead.
The Fréchet derivative G′ ∈ L(H ×H,LHS(LHS(U), H)) of G is for all (X,Y ) ∈ H ×H given by

G′(X)(Y )(φ⊗ ϕ) =
1

2
(G′′(X)[PNG(X)φ, Y ]ϕ+G′(X)(PNG

′(X)(Y )φ)ϕ) , φ, ϕ ∈ U .

The last estimate then follows since G′ and G′′ are globally bounded by Assumption 2.4 ((iii)), since

‖G′(X)(Y )(φ⊗ ϕ)‖LHS(LHS(U),H)

≤ 1

2

(
‖G′′(X)[PNG(X)φ, Y ]‖LHS(U,H) + ‖G′(X)(PNG

′(X)(Y )φ)‖LHS(U,H)

)
‖ϕ‖U

≤ 1

2

(
‖G′′(X)‖L(H×H,LHS(U,H))‖G(X)φ‖H‖Y ‖H + ‖G′(X)‖L(H,LHS(U,H))‖G′(X)(Y )φ‖H

)
‖ϕ‖U

≤ 1

2

(
‖G′′(X)‖L(H×H,LHS(U,H))‖G(X)‖LHS(U,H))‖Y ‖H

+ ‖G′(X)‖L(H,LHS(U,H))‖G′(X)‖L(H,LHS(U,H))‖Y ‖H
)
‖φ‖U‖ϕ‖U

≤ C(1 + ‖X‖H)‖Y ‖H‖φ⊗ ϕ‖L1(U).

We next record some stability and error estimates on the rational approximation r(∆tAN ) ≈ SN (∆t)
to prove Theorem 3.5.

Lemma B.1. Let Assumption 3.2 (i) and (ii) hold.

1. For any N ∈ N, ∆t > 0 and α ≥ 0 there holds

‖r(∆tAN )PN‖L(H) ≤ 1 and ‖r(∆tA)‖L(Ḣα) ≤ 1.

2. For any α ∈ [0, 2(q + 1)] there exists C > 0 such that for any ∆t > 0 there holds

‖r(∆tA)− I‖L(Ḣα,H) ≤ C∆t
α/2.

3. For any α ∈ [0, 2(q + 1)] there exists C such that for any N,∆t > 0, j ∈ N and v ∈ Ḣα it holds

‖(r(∆tAN )j − SN (j∆t))PNv‖H ≤ C∆t
min(α,2)/2‖v‖Ḣmin(α,2) .

For dt := ∆t
2 and j ∈ N there holds

‖(r(dtAN )2j − r(∆tAN ))jPNv‖H ≤ C∆t
min(α,2)/2‖v‖Ḣmin(α,2) .

Furthermore, there exists α̃ > 0 such that

‖(r(∆tAN )PN − I)v‖H ≤ C(∆t
min(α,2)/2 +N−α̃)‖v‖Ḣα .

Proof.
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1. These stability estimates are well-known and may be found for instance in the proof of [32, Theorem
7.1]. We give a short proof here for the reader’s convenience.

Let (f̃1, . . . , f̃n) denote the eigenbasis of (−AN ), and recall that the corresponding eigenvalues satisfy

λ̃n > 0 for all n = 1, . . . , N . Since r(z) < 1 for all z ≥ 0 by the first part of Assumption 3.2 (i), we
have for all v ∈ H that

‖r(∆tAN )PNv‖2H =

∥∥∥∥∥
N∑

n=1

r(∆tλ̃n)(PNv, f̃n)H f̃n

∥∥∥∥∥

2

H

≤ ‖PNv‖2H ≤ ‖v‖2H .

For the second part, let λn > 0 and fn ∈ H denote for n ∈ N the eigenvalues and eigenfunctions of
(−A). Similar as for the first part, we have

‖r(∆tA)v‖2
Ḣα =

∑

n∈N

λαn|r(∆tλn)|2|(v, fn)H |2 ≤
∑

n∈N

λαn|(v, fn)H |2 ≤ ‖v‖2
Ḣα .

2. The triangle inequality yields for any v ∈ Ḣα that

‖r(∆tA)− I‖L(Ḣα,H) ≤ ‖r(∆tA)− S(∆t)‖L(Ḣα,H) + ‖S(∆t)− I‖L(Ḣα,H) ≤ C∆t
α/2.

The first term on the right hand side is bounded by [32, Theorem 7.1], the second term by [29,
Theorem 6.13, part d)].

3. The first part is again given in [32, Theorem 7.1] together with Assumption 3.2 (ii) that yields
∥∥∥Amin(α,2)/2

N PNv
∥∥∥
H

≤ C ‖v‖Ḣmin(α,2)2 .

The second part then follows immediately by the triangle inequality, since SN (2jdt) = SN (j∆t).

The final estimate follows by

‖(r(∆tAN )PN − I)v‖H ≤ ‖(r(∆tAN )− I)PNv‖H + ‖(PN − I)v‖H
≤ C∆t

min(α,2)/2
∥∥∥Amin(α,2)/2

N PNv
∥∥∥
H
+ ‖(PN − I)v‖H

≤ C
(
∆t

min(α,2)/2 +N−α̃
)
‖v‖Ḣα ,

where the second estimate is derived in the same fashion as part 2.), and we have used Assump-
tion 3.2 (ii) in the last step.

Proof of Theorem 3.5. 1. For m = 0, . . . ,M − 1, we re-iterate the representation in (16) to obtain

Y N,Km+1 = r(∆tAN )mPNX0 +

m∑

j=0

r(∆tANf
)jPNF (Y

N,K
m−j )∆t+

m∑

j=0

r(∆tANf
)jPNG(Y

N,K
m−j )∆m−jWK

+
m∑

j=0

r(∆tAN )PNG(Y N,Km−j )∆m−jWm−j,K

=: r(∆tAN )mPNX0 + I + II + III.

(40)

The first term is bounded in Lp(Ω;H) by Jensen’s inequality and the first part of Lemma B.1

E (‖I‖pH) ≤ ∆tpmp−1
m∑

j=0

E

(∥∥∥r(∆tANf
)jPNF (Y

N,K
m−j )

∥∥∥
p

H

)
≤ C∆t

m∑

j=0

E

(
1 +

∥∥∥Y N,Km−j

∥∥∥
p

H

)
,
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where the last bound holds since F is of linear growth.
For the second term, we use the BDG inequality in (38) together with Jensen’s inequality and the

linear growth of G to obtain

E (‖II‖pH) ≤ CE







m∑

j=0

∆t
∥∥∥r(∆tANf

)jPNG(Y
N,K
m−j )

∥∥∥
2

LHS(U,H)



p/2



≤ C∆tp/2mp/2−1
m∑

j=0

E

(∥∥∥r(∆tANf
)jPNG(Y

N,K
m−j )

∥∥∥
p

LHS(U,H)

)

≤ C∆t

m∑

j=0

E

(
1 +

∥∥∥Y N,Km−j

∥∥∥
p

H

)
.

To bound the last term, recall the bound in (12), which shows with the BDG inequality from (36) that

E (‖III‖pH)

≤ CE







m∑

j=0

∫ tj+1

tj

∥∥∥r(∆tANf
)jPNG(Y N,Km−j )Q

1/2
Wm−j,K

(s)
∥∥∥
2

LHS(U⊗U,H)
d 〈Wm−j,K ,Wm−j,K〉s



p/2



≤ CE







m∑

j=0

∥∥∥G(Y N,Km−j )
∥∥∥
2

LHS(U⊗U,H)
∆t2



p/2



≤ C∆tpmp/2−1
m∑

j=0

E

(∥∥∥G(Y N,Km−j )
∥∥∥
p

LHS(L1(U),H)

)

≤ C∆tp/2+1
m∑

j=0

E

(
1 +

∥∥∥Y N,Km−j

∥∥∥
p

H

)
,

where the last bound holds due to the linear growth bound (14).
Substituting the estimate for I−III into (40) and taking expectations yields

E

(∥∥∥Y N,Km+1

∥∥∥
p

H

)
≤ C(1 + E (‖X0‖pH) + ∆t

m∑

j=0

E

(∥∥∥Y N,Km−j

∥∥∥
p

H

)
),

and the first part of Theorem 3.5 follows by the discrete Grönwall inequality.
2. Let em := Y N,Km − Ŷ N,Km for m = 0, . . . ,M to obtain the error representation

êm+1 =

m∑

j=0

r(∆tANf
)jPN

(
F (Y N,Km−j )− F (Ŷ N,Km−j )

)
∆t

+

m∑

j=0

r(∆tANf
)jPN

(
G(Y N,Km−j )−G(Ŷ N,Km−j )

)
∆m−jWM

+

m∑

j=0

r(∆tAN )PNG(Y N,Km−j )Wm−j,K

Using that F and G are Lipschitz and repeating arguments from the first part of the proof yields

E (‖em+1‖pH) ≤ C


∆t

m∑

j=0

E
(
‖ej‖pH

)
+∆tp/2+1

m∑

j=0

E
(
‖Yj‖pH

)

 .
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The claim then follows with Grönwall’s inequality, since we have shown that E
(
‖Yj‖pH

)
<∞ is uniformly

bounded with respect to ∆t in the first part.

C Proof of Theorem 4.1 – Antithetic Variance Decay

Our strategy to prove Theorem 4.1 closely follows the approach in [17]. We bound E(‖Y m − Y cm‖2H) by
deriving appropriate difference equations of the antithetic average in (24) and by bounding higher-order

remainder terms. We introduce the semi-discrete temporal fine discretizations Ỹ f : Ω×{0, 1/2, 1, . . . ,M −
1/2,M} → H via Ỹ f0 = X0,

Ỹ fm+1/2 = r(dtA)
(
Ỹ fm + F (Ỹ fm)dt+G(Ỹ fm)dmWKf

+ G(Ỹ fm)dmWm,Kf

)
, (41)

and

Ỹ fm+1 = r(dtA)
(
Ỹ fm+1/2 + F (Ỹ fm+1/2)dt+G(Ỹ fm+1/2)dm+1/2 + G(Ỹ fm+1/2)dm+1/2Wm,Kf

)
. (42)

Note that we have used A instead of ANf
as compared to Equations (41) and (42), hence Ỹ f· involves

temporal and noise discretization, but no spatial approximation. The corresponding antithetic fine semi-
discretizations Ỹ a· are defined analogously by replacing ANf

by A and PNf
by I in (22) and (23).

The next two auxiliary results establish a bound on Ỹ f· − Y f· ;

Lemma C.1. Let Assumptions 2.4 and 3.2 (i) hold. For any p ∈ (0, 8] there is a constant C = C(p) > 0
such that for all M,Nf ,Kf ∈ N and m = 0, 1/2, 1, . . . ,M − 1/2 there holds

E

(∥∥∥Y fm+1/2 − r(dtANf
)Y fm

∥∥∥
p

H

)
+ E

(∥∥∥Y am+1/2 − r(dtANf
)Y am

∥∥∥
p

H

)
≤ CM−p/2. (43)

Proof. We have by Equation (20), Lemma B.1 and Jensen’s inequality that

E

(∥∥∥Y fm+1/2 − r(dtANf
)Y fm

∥∥∥
p

H

)

≤ C
(
E

(∥∥r(dtANf
)PNf

F (Y fm)dt
∥∥p
H

)
+ E

(∥∥r(dtANf
)PNf

G(Y fm)dmWKf

∥∥p
H

))

+ CE

(∥∥∥∥
r(dtANf

)PN

2
G(Y fm)dmWm,Kf

∥∥∥∥
p

H

)

≤ C
(
E

(∥∥F (Y fm)
∥∥p
H

)
dtp + E

(∥∥G(Y fm)dmWKf

∥∥p
H

))
+ CE

(∥∥G(Y fm)dmWm,Kf

∥∥p
H

)
.

The second part of Corollary A.2 shows together with (12), Assumption 2.4 (iii) and Proposition 3.1
that

E

(∥∥∥Y fm+1/2 − r(dtANf
)Y fm

∥∥∥
p

H

)
= C

(
dtpE

(
1 +

∥∥Y fm
∥∥p
H

)
+ dtp/2E

(∥∥G(Y fm)
∥∥p
LHS(U,H)

))

+ CdtpE
(∥∥G(Y fm)

∥∥p
LHS(LHS(U),H)

)

≤ Cdtp/2E
(
1 +

∥∥Y fm
∥∥p
H

)

≤ Cdtp/2.

For the last step we have used that E
(∥∥Y fm

∥∥p
H

)
is uniformly bounded by Theorem 3.5. The bound for

E

(∥∥∥Y am+1/2 − r(dtANf
)Y am

∥∥∥
p

H

)
follows analogously.
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Lemma C.2. Let Assumptions 2.4 and 3.2 hold. Then, there is a constant C = C(p) > 0 such that for
all M,Nf ,Kf ∈ N and m = 0, 1/2, 1, . . . ,M − 1/2,M there holds

E

(∥∥∥Ỹ fm
∥∥∥
p

Ḣα
+
∥∥∥Ỹ am

∥∥∥
p

Ḣα

)
≤ C, for p ∈ (0, 8], and

E

(∥∥∥Y fm − Ỹ fm

∥∥∥
p

H
+
∥∥∥Y am − Ỹ am

∥∥∥
p

H

)
≤ C

(
M−p +N−pα̃

f +K−p2β
f

)
for p ∈ (0, 4].

Proof. We may represent Ỹ fm for any m = 0, 1/2, 1, . . . ,M − 1/2,M by the expansion

Ỹ fm = r(dtA)2mỸ f0 +
2m−1∑

j=0

r(dtA)2n−j
(
F (Ỹ fj/2)dt+G(Ỹ fj/2)dj/2WKf

+ G(Ỹ fj/2)dj/2W⌊j/2⌋,Kf

)
. (44)

This in turn shows with the first part of Lemma B.1, Jensen’s inequality, and the second part of Corol-
lary A.2 for p ∈ [2, 8] that

E

(∥∥∥Ỹ fm
∥∥∥
p

Ḣα

)
≤ C


E

(∥∥∥Ỹ f0
∥∥∥
p

Ḣα

)
+

2m−1∑

j=0

E

(∥∥∥F (Ỹ fj/2)
∥∥∥
p

Ḣα

)
(2m)p−1

dtp




+ C

2m−1∑

j=0

E

(∥∥∥G(Ỹ fj/2)
∥∥∥
p

LHS(U,Ḣα)

)
(2m)p/2−1

dtp/2

+ C

2m−1∑

j=0

E

(∥∥∥G(Ỹ fj/2)
∥∥∥
p

LHS(L1(U),Ḣα)

)
(2m)p/2−1

dtp

≤ C


E

(∥∥∥Ỹ f0
∥∥∥
p

Ḣα

)
+ dt

2m−1∑

j=0

E

(
1 +

∥∥∥Ỹ fj/2
∥∥∥
p

Ḣα

)



≤ C


E

(
‖X0‖pḢα

)
+ 1 + dt

2m−1∑

j=0

E

(∥∥∥Ỹ fj/2
∥∥∥
p

Ḣα

)

 .

We have used Assumption 2.4 (iv) and Proposition 3.1 to derive the second inequality. The discrete
Grönwall inequality now shows that

E

(∥∥∥Ỹ fm
∥∥∥
p

Ḣα

)
≤ C

(
1 + E

(
‖X0‖pḢα

))
<∞. (45)

Thus, E
(∥∥∥Ỹ fm

∥∥∥
p

Ḣα

)
<∞ for all p ∈ (0, 8], and E

(∥∥∥Ỹ am
∥∥∥
p

Ḣα

)
<∞ follows analogously.
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To show the second part, we use again (44) and repeat the above reasoning to find for p ∈ [2, 4] that

E

(∥∥∥Y fm − Ỹ fm

∥∥∥
p

H

)
≤ CE

(∥∥∥Y f0 − Ỹ f0

∥∥∥
p

H

)
+ Cdt

2m−1∑

j=0

E

(∥∥∥F (Y fj/2)− F (Ỹ fj/2)
∥∥∥
p

H

)

+ Cdt

2m−1∑

j=0

E

(∥∥∥G(Y fj/2)−G(Ỹ fj/2)
∥∥∥
p

LHS(U,H)

)

+ Cdt1+p/2
2m−1∑

j=0

E

(∥∥∥G(Y fj/2)− G(Ỹ fj/2)
∥∥∥
p

LHS(LHS(U),H)

)

≤ C


E

(∥∥(PNf
− I)X0

∥∥p
H

)
+ dt

2m−1∑

j=0

E

(∥∥∥Y fj/2 − Ỹ fj/2

∥∥∥
p

H

)



+ Cdt1+p/2
2m−1∑

j=0

E

(∥∥∥G(Y fj/2)− G(Ỹ fj/2)
∥∥∥
p

LHS(LHS(U),H)

)
.

(46)

The second estimate follows since F and G are Fréchet differentiable with globally bounded derivatives. To
bound the last term in (46), we recall that G′ satisifies the linear growth bound derived in Proposition 3.1
to obtain by Hölder’s inequality and (45)

E

(∥∥∥G(Y fj/2)− G(Ỹ fj/2)
∥∥∥
p

LHS(LHS(U),H)

)
≤ CE

(
max

(
1,
∥∥∥Y fj/2

∥∥∥
H
,
∥∥∥Ỹ fj/2

∥∥∥
H

)p ∥∥∥Y fj/2 − Ỹ fj/2

∥∥∥
p

H

)

≤ CE

(∥∥∥Y fj/2 − Ỹ fj/2

∥∥∥
2p

H

)1/2

.

Assumption 3.2 (iii) implies that the semi-discrete approximation satisfies for p ∈ [2, 4] that

E

(∥∥∥∥Y
(
jδt

2

)
− Ỹ fj/2

∥∥∥∥
2p

H

)1/2

≤ C
(
dtp/2 +K−pβ

f

)
.

Together with the first part of Theorem 3.5 and the strong error from Assumption 3.2 (iii) this shows

E

(∥∥∥G(Y fj/2)− G(Ỹ fj/2)
∥∥∥
p

LHS(LHS(U),H)

)

≤ C


E

(∥∥∥∥Y
f
j/2 − Y

(
jδt

2

)∥∥∥∥
2p

H

)1/2

+ E

(∥∥∥∥Y
(
jδt

2

)
− Ỹ fj/2

∥∥∥∥
2p

H

)1/2



≤ C
(
dtp/2 +N−pα̃

f +K−pβ
f

)
.

(47)

Substituting (47) back to (46) now yields with Assumption 3.2 (ii)

E

(∥∥∥Y fm − Ỹ fm

∥∥∥
p

H

)
≤ C


N−pα̃

f + dt
2m−1∑

j=0

E

(∥∥∥Y fj/2 − Ỹ fj/2

∥∥∥
p

H

)
+ dtp/2

(
dtp/2 +N−pα̃

f +K−pβ
f

)



≤ C


dtp +N−pα̃

f +K−p2β
f + dt

2m−1∑

j=0

E

(∥∥∥Y fj/2 − Ỹ fj/2

∥∥∥
p

H

)

 .

The claim for p ∈ [2, 4] follows by applying the discrete Grönwall inequality, and the estimate for p ∈ (0, 2)
is then obtained immediately by Hölder’s inequality.
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Lemma C.2 enables us to derive a difference equation on the fine approximation Y f· .

Proposition C.3. Let Assumptions 2.4 and 3.2 hold. Then, for any m = 0, . . . ,M − 1 there holds that

Y fm+1 =: r(dtANf
)2PNf

(
Y fm + F (Y fm)∆t+G(Y fm)∆mWKf

+ G(Y fm)∆mWn,Kf

)

− r(dtANf
)2PNf

G(Y fm)
(
dm+1/2WKf

⊗ dmWKf
− dmWKf

⊗ dm+1/2WKf

)
+ Ξfm +Ofm,

(48)

where Ξfm, O
f
m : Ω → H are random variables such that

E

(∥∥Ξfm
∥∥2
H

)
≤ Cdt2

(
M−min(α,2) +N−2α̃

f +K−4β
f

)
,

E
(
Ofm

∣∣Ftm
)
= 0 and E

(∥∥Ofm
∥∥2
H

)
≤ Cdt

(
M−min(α,2) +N−2α̃

f +K−4β
f

)
.

The constant C is independent of M,Nf and Kf .

Proof. Assume for simplicity that Assumptions 2.4 and 3.2 hold with α ∈ [1, 2]. Equations (21) and (20)
show that

Y fm+1 = r(dtANf
)2PNf

(
Y fm + F (Y fm)∆t+G(Y fm)dmWKf

+ G(Y fm)dmWm,Kf

)

+ r(dtANf
)PNf

(
F (Y fm+1/2)∆t+G(Y fm+1/2)dm+1/2WKf

+ G(Y fm+1/2)dm+1/2Wm,Kf

)
,

and by Equation (19) we have

dmWm,Kf
= ∆mWm,Kf

− dm+1/2Wm,Kf
− dm+1/2WKf

⊗ dmWKf
− dmWKf

⊗ dm+1/2WKf
.

Rearranging some terms yields

Y fm+1 = r(dtANf
)2PNf

(
Y fm + F (Y fm)∆t+G(Y fm)∆mWKf

+ G(Y fm)∆mWn,Kf

)

− r(dtANf
)2PNf

G(Y fm)
(
dm+1/2WKf

⊗ dmWKf
− dmWKf

⊗ dm+1/2WKf

)

+ r(dtANf
)PNf

[F (Y fm+1/2)− r(dtANf
)PNf

F (Y fm)]dt

+ r(dtANf
)PNf

[
G(Y fm+1/2)− r(dtANf

)PNf
G(Y fm)

]
dm+1/2WKf

− 2r(dtANf
)PNf

r(dtANf
)PNf

G(Y fm)dmWKf
⊗ dm+1/2WKf

+ r(dtANf
)PNf

[
G(Y fm+1/2)− r(dtANf

)PNf
G(Y fm)

]
dm+1/2Wm,Kf

.

The first two lines in the above equation correspond to the first two terms on the right hand side in (48),
and we label the remaining terms via

Ifm := [F (Y fm+1/2)− r(dtANf
)PNf

F (Y fm)]dt,

IIfm :=
[
G(Y fm+1/2)− r(dtANf

)PNf
G(Y fm)

]
dm+1/2WKf

− 2r(dtANf
)PNf

G(Y fm)dmWKf
⊗ dm+1/2WKf

IIIfm :=
[
G(Y fm+1/2)− r(dtANf

)PNf
G(Y fm)

]
dm+1/2Wm,Kf

,

to obtain

Y fm+1 = r(dtANf
)2PNf

(
Y fm + F (Y fm)∆t+G(Y fm)∆mWKf

+ G(Y fm)∆mWn,Kf

)

− r(dtANf
)2PNf

G(Y fm)
(
dmWKf

⊗ dm+1/2WKf
− dm+1/2WKf

⊗ dmWKf

)

+ r(dtANf
)PNf

[
Ifm + IIfm + IIIfm

]
.

(49)
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We split the first term Ifm further into

Ifm =
[
F (Y fm+1/2)− F (r(dtANf

)Y fm) + F (r(dtANf
)Y fm)− r(dtANf

)PNf
F (Y fm)

]
dt =:

(
If,1m + If,2m

)
dt.

A first order Taylor expansion of If,1m then yields for some ξ1m ∈ H

If,1m = F (Y fm+1/2)− F (r(dtANf
)Y fm)

= F ′(ξ1m)
(
Y fm+1/2 − r(dtANf

)Y fm

)

= F ′(ξ1m)r(dtANf
)
(
F (Y fm)∆t+G(Y fm)dmWKf

+ G(Y fm)dmWm,Kf

)
.

(50)

As F,G and G are of linear growth and E(‖Y fm‖2H) <∞ is uniformly bounded by Theorem 3.5, we have

If,1m = Ξf,1m +Of,1m ,

where Ξf,1m , Of,1m : Ω → H are random variables such that E(‖Ξf,1m ‖2H) ≤ Cdt2, E(Of,1m |Ftm) = 0 and
E(‖Of,1m ‖2H) ≤ Cdt holds for an independent constant C > 0. To bound If,2m , we use first order Taylor

expansions around Y fm and Ỹ fm to show that for some ξ2m, ξ̃
2
m ∈ H there holds

If,2m = F (r(dtANf
)Y fm)− r(dtANf

)PNf
F (Y fm)

= F (Y fm) + F ′(ξ2m)
[
r(dtANf

)Y fm − Y fm

]
− r(dtANf

)PNf
F (Y fm)

=
[
I − r(dtANf

)PNf

]
F (Y fm) + F ′(ξ2m)

[
r(dtANf

)− I
]
Y fm

=
[
I − r(dtANf

)PNf

] (
F (Ỹ fm) + F ′(ξ̃2m)(Y fm − Ỹ fm)

)
+ F ′(ξ2m)

[
r(dtANf

)− I
] (
Ỹ fm + Y fm − Ỹ fm

)
.

(51)

Lemmas B.1 and C.2 thus show together with Items (iii) and (iv) in Assumption 2.4 that

E(‖If,2m ‖2H) ≤ C
(
dtα + dt2 +N−2α̃

f +K−4β
f

)
≤ C

(
dtα +N−2α̃

f +K−4β
f

)
.

As ‖r(dtANf
)PNf

‖L(H) ≤ 1 by Lemma B.1 this in turn shows that

r(dtANf
)PNf

Ifm = r(dtANf
)PNf

(
If,1m + If,2m

)
dt = Ξf,Im +Of,Im , (52)

where Ξf,Im , Of,Im : Ω → H are random variables such that for an independent C > 0 there holds

E

(∥∥Ξf,Im
∥∥2
H

)
≤ Cdt2

(
dtα +N−2α̃

f +K−4β
f

)
, E

(
Of,Im

∣∣Ftm
)
= 0 and E

(∥∥Of,Im
∥∥2
H

)
≤ Cdt3.

We expand the second term IIfm in (49) via

IIfm =
[
G(Y fm+1/2)−G(r(dtANf

)Y fm)
]
dm+1/2WKf

− 2r(dtANf
)PNf

G(Y fm)dmWKf
⊗ dm+1/2WKf

+
[
G(r(dtANf

)Y fm)− r(dtANf
)PNf

G(Y fm)
]
dm+1/2WKf

=: IIf,1m + IIf,2m .

(53)

We observe that E(IIf,1m |Ftm) = 0 and obtain by a second order Taylor expansion of G around r(dtANf
)Y fm
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that for some ξIIm ∈ H it holds

IIf,1m = G′(r(dtANf
)Y fm)

(
Y fm+1/2 − r(dtANf

)Y fm

)
dm+1/2WKf

+
1

2
G′′(ξIIm)

(
Y fm+1/2 − r(dtANf

)Y fm, Y
f
m+1/2 − r(dtANf

)Y fm

)
dm+1/2WKf

− 2r(dtANf
)PNf

G(Y fm)dmWKf
⊗ dm+1/2WKf

= G′(r(dtANf
)Y fm)r(dtANf

)PNf

(
F (Y fm)dt+G(Y fm)dmWKf

+ G(Y fm)dmWm,Kf

)
dm+1/2WKf

+
1

2
G′′(ξIIm)

(
Y fm+1/2 − r(dtANf

)Y fm, Y
f
m+1/2 − r(dtANf

)Y fm

)
dm+1/2WKf

− r(dtANf
)PNf

G′(Y fm)(PNf
G(Y fm)dmWKf

)dm+1/2WKf

= G′(r(dtANf
)Y fm)r(dtANf

)PNf

(
F (Y fm)dt+ G(Y fm)dmWm,Kf

)
dm+1/2WKf

+
1

2
G′′(ξIIm)

(
Y fm+1/2 − r(dtANf

)Y fm, Y
f
m+1/2 − r(dtANf

)Y fm

)
dm+1/2WKf

+G′(r(dtANf
)Y fm)

(
r(dtANf

)PNf
G(Y fm)dmWKf

)
dm+1/2WKf

− r(dtANf
)PNf

G′(Y fm)(PNf
G(Y fm)dmWKf

)dm+1/2WKf

=: Ĩ
f,1

m + ĨI
f,1

m + ĨII
f,1

m .

The second identity follows by Proposition 3.1 since

G(Y fm)dmWKf
⊗ dm+1/2WKf

= G′(Y fm)(PNf
G(Y fm)dmWKf

)dm+1/2WKf
.

As F and G are of linear growth (see Proposition 3.1) and G′ is bounded, it follows by the independence
of Ym, dmWm,Kf

and dm+1/2WKf
, Lemma A.1 and Theorem 3.5 that

E

(∥∥∥̃I
f,1

m

∥∥∥
2

H

)
≤ C

(
1 + E

(∥∥Y fm
∥∥2
H

))
dt3 ≤ Cdt3.

Similarly, Lemma C.1 yields with the boundedness of G′′ that

E

(∥∥∥ĨI
f,1

m

∥∥∥
2

H

)
≤ CE

(∥∥∥Y fm+1/2 − r(dtANf
)Y fm

∥∥∥
4

H

)
dt ≤ Cdt3.

We use Taylor expansion to split the integrand in ĨII
f,1

m for some ξ̃IIIm ∈ H into

G′(r(dtANf
)Y fm)

(
r(dtANf

)PNf
G(Y fm)dmWKf

)
− r(dtANf

)PNf
G′(Y fm)(PNf

G(Y fm)dmWKf
)

=
[
G′(r(dtANf

)Y fm)−G′(Y fm)
] (
r(dtANf

)PNf
G(Y fm)dmWKf

)

+G′(Y fm)
(
r(dtANf

)PNf
G(Y fm)dmWKf

)
−G′(Y fm)(PNf

G(Y fm)dmWKf
)

+G′(Y fm)(PNf
G(Y fm)dmWKf

)− r(dtANf
)PNf

G′(Y fm)(PNf
G(Y fm)dmWKf

)

= G′′(ξ̃IIIm )
[
(r(dtANf

)− I)Y fm, r(dtANf
)PNf

G(Y fm)dmWKf

]

+G′(Y fm)
[
(r(dtANf

)− I)PNf
G(Y fm)dmWKf

]

+ (I − r(dtANf
)PNf

)G′(Y fm)(PNf
G(Y fm)dmWKf

).
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We then use Assumption 2.4 (iii) together with Corollary A.2 and Theorem 3.5 to estimate

E

(∥∥∥ĨII
f,1

m

∥∥∥
2

H

)
≤3E

(∥∥∥G′′(ξ̃IIIm )
[
(r(dtANf

)− I)Y fm, r(dtANf
)PNf

G(Y fm)dmWKf

]∥∥∥
2

LHS(U,H)

)
dt

+ 3E
(∥∥G′(Y fm)

[
(r(dtANf

)− I)PNf
G(Y fm)dmWKf

]∥∥2
LHS(U,H)

)
dt

+ 3E
(∥∥(I − r(dtANf

)PNf
)G′(Y fm)(PNf

G(Y fm)dmWKf
)
∥∥2
LHS(U,H)

)
dt

≤CE
(
‖(r(dtANf

)− I)Y fm‖2H
∥∥(r(dtANf

)PNf
G(Y fm)dmWKf

)∥∥2
H

)
dt

+ CE
(∥∥(r(dtANf

)− I)PNf
G(Y fm)

∥∥2
H

)
dt2

+ CE
(∥∥(r(dtANf

)PNf
− I)G′(Y fm)

∥∥2
L(H,LHS(U,H))

∥∥G(Y fm)dmWKf

∥∥2
H

)
dt

≤CE
(∥∥(r(dtANf

)− I)Y fm
∥∥4
H

)1/2

E

(∥∥r(dtANf
)PNf

G(Y fm)dmWKf

∥∥4
H

)1/2

dt

+ CE
(∥∥(r(dtANf

)PNf
− I)G(Y fm)

∥∥2
LHS(U,H)

)
dt2

+ CE
(∥∥(r(dtANf

)PNf
− I)G′(Y fm)

∥∥4
L(H,LHS(U,H))

)1/2

E

(∥∥G(Y fm)dmWKf

∥∥4
H

)1/2

dt

≤CE
(∥∥∥(r(dtANf

)− I)(Ỹ fm + Y fm − Ỹ fm)
∥∥∥
4

H

)1/2

dt2

+ CE

(∥∥∥(r(dtANf
)PNf

− I)(G(Ỹ fm) +G(Y fm)−G(Ỹ fm))
∥∥∥
2

LHS(U,H)

)
dt2

+ CE

(∥∥∥(r(dtANf
)PNf

− I)(G′(Ỹ fm) +G′(Y fm)−G′(Ỹ fm))
∥∥∥
4

L(H,LHS(U,H))

)1/2

dt2.

In the last step we have used that G is of linear growth together with Theorem 3.5.
Assumption 2.4 (iv) together with Lemmas B.1 and C.2 then yields

E

(∥∥∥ĨII
f,1

m

∥∥∥
2

H

)

≤ Cdt2

(
E

(∥∥∥(r(dtANf
)− I)Ỹ fm

∥∥∥
4

H

)1/2

+ E

(∥∥∥Y fm − Ỹ fm

∥∥∥
4

H

)1/2
)

+ Cdt2
(
E

(∥∥∥(r(dtANf
)− I)G(Ỹ fm)

∥∥∥
2

LHS(U,H)

)
+ E

(∥∥∥G(Y fm)−G(Ỹ fm)
∥∥∥
2

LHS(U,H)

))

+ Cdt2

(
E

(∥∥∥(r(dtANf
)− I)G′(Ỹ fm)

∥∥∥
4

L(H,LHS(U,H))

)1/2

+ E

(∥∥∥G′(Y fm)−G′(Ỹ fm)
∥∥∥
4

L(H,LHS(U,H))

)1/2
)

≤ Cdt2
(
dtα +N−2α̃

f

)
E

(∥∥∥Ỹ fm
∥∥∥
4

Ḣα
+
∥∥∥G(Ỹ fm)

∥∥∥
4

LHS(U,Ḣα)
+
∥∥∥G′(Ỹ fm)

∥∥∥
4

L(Ḣα,LHS(U,Ḣα))
+
∥∥∥Y fm − Ỹ fm

∥∥∥
4

H

)1/2

≤ Cdt2
(
dtα +N−2α̃

f +K−4β
f

)
.

Thus, we obtain for IIf,1m : Ω → H that E(IIf,1m |Ftm) = 0 and E(‖IIf,1m ‖2H) ≤ Cdt2
(
dtα +N−2α̃

f +K−4β
f

)
.

For the remaining term IIf,2m in (53), we have that E(IIf,2m |Ftm) = 0. Morever, with the Itô isometry
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and analogous calculations as in (50) and (51) we obtain the bound

E(‖IIf,2m ‖H) = E

(∥∥[G(r(dtANf
)Y fm)− r(dtANf

)PNf
G(Y fm)

]
dm+1/2WKf

∥∥2
H

)

≤ Cdt
(
dtα +N−2α̃

f +K−4β
f

)
.

To bound the last term IIIfm in (49), we first observe again that E(IIIfm|Fn) = 0. We further use the
BDG inequality in Lemma A.1 to obtain for some ξ1,IIIm , ξ2,IIIm ∈ H that

E

(∥∥∥IIIfm
∥∥∥
2

H

)
=E

(∥∥∥
[
G(Y fm+1/2)− r(dtANf

)PNf
G(Y fm)

]
dm+1/2Wm,Kf

∥∥∥
2

H

)

≤CE
(∥∥∥G(Y fm+1/2)− r(dtANf

)PNf
G(Y fm)

∥∥∥
2

LHS(L1(U),H)

)
dt2

≤CE
(∥∥∥G(Y fm+1/2)− G(r(dtANf

)PNf
Y fm)

∥∥∥
2

LHS(L1(U),H)

)
dt2

+ CE
(∥∥G(r(dtANf

)PNf
Y fm)− G(Y fm)

∥∥2
LHS(L1(U),H)

)
dt2

+ CE
(∥∥G(Y fm)− r(dtANf

)PNf
G(Y fm)

∥∥2
LHS(L1(U),H)

)
dt2

≤CE
(∥∥∥G′(ξ1,IIIm )(Y fm+1/2 − r(dtANf

)Y fm)
∥∥∥
2

LHS(L1(U),H)

)
dt2

+ CE
(∥∥G′(ξ2,IIIm )(I − r(dtANf

))Y fm
∥∥2
LHS(L1(U),H)

)
dt2

+ CE
(∥∥(I − r(dtANf

))G(Y fm)
∥∥2
LHS(L1(U),H)

)
dt2.

Hölder’s inequality, Proposition 3.1 and now show with similar calculations as for ĨII
f,1

m that

E

(∥∥∥IIIfm
∥∥∥
2

H

)
≤CE

(
1 +

∥∥ξ1,IIIm

∥∥4
H

)1/2

E

(∥∥∥Y fm+1/2 − r(dtANf
)Y fm

∥∥∥
4

H

)1/2

dt2

+ CE
(
1 +

∥∥ξ2,IIIm

∥∥4
H

)1/2

E

(∥∥∥(I − r(dtANf
))(Ỹ fm + Y fm − Ỹ fm)

∥∥∥
4

H

)1/2

dt2

+ CE

(∥∥∥(I − r(dtANf
))
(
G(Ỹ fm) + G(Y fm)− G(Ỹ fm)

)∥∥∥
2

LHS(L1(U),H)

)
dt2

≤Cdt2
(
dtα +N−2α̃

f +K−4β
f

)
.

A similar result to Proposition C.3 also holds for the antithetic fine approximation Y a· .

Corollary C.4. Let Assumptions 2.4 and 3.2 hold. Then, for any m = 0, . . . ,M − 1 there holds that

Y am+1 =: r(dtANf
)2PNf

(
Y am + F (Y am)∆t+G(Y am)∆mWKf

+ G(Y am)∆mWm,Kf

)

+ r(dtANf
)2PNf

G(Y am)
(
dm+1/2WKf

⊗ dmWKf
− dmWKf

⊗ dm+1/2WKf

)

+ Ξam +Oam,

(54)

where Ξam, O
a
m : Ω → H are random variables such that

E

(
‖Ξam‖2H

)
≤ Cdt2

(
M−min(α,2) +N−2α̃

f +K−4β
f

)
,

E
(
Oam

∣∣Ftm
)
= 0 and E

(
‖Oam‖2H

)
≤ Cdt

(
M−min(α,2) +N−2α̃

f +K−4β
f

)
.

The constant C is independent of δt = T/2M, Nf and Kf .
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Proof. Equations (22) and (23) show that

Y am+1 =: r(dtANf
)2PNf

(
Y am + F (Y am)∆t+G(Y am)∆mWKf

+ G(Y am)∆mWn,Kf

)

+ r(dtANf
)2PNf

G(Y am)
(
dm+1/2WKf

⊗ dmWKf
− dmWKf

⊗ dm+1/2WKf

)

+ r(dtANf
)PNf

[Iam + IIam + IIIam] ,

where sign change in the third line is due to the swapping of the increments dm+1/2WKf
and δnWKf

in
the antithetic estimator. The remainder terms are given by

Iam := [F (Y am+1/2)− r(dtANf
)PNf

F (Y am)]dt,

IIam :=
[
G(Y am+1/2)− r(dtANf

)PNf
G(Y am)

]
dmWKf

− 2r(dtANf
)PNf

G(Y am)dm+1/2WKf
⊗ dmWKf

,

IIIam :=
[
G(Y fm+1/2)− r(dtANf

)PNf
G(Y am)

]
dmWm,Kf

.

The claim follows analogously to Proposition C.3.

Proposition C.3 and Corollary C.4 are now combined to derive a similar difference equation for the
(antithetic) average Y m := 1/2(Y fm + Y am) for m = 0, . . . ,M .

Proposition C.5. Let Assumptions 2.4 and 3.2. Then, for any m = 0, . . . ,M − 1 there holds that

Y m+1 = r(dtANf
)2PNf

(
Y m + F (Y m)∆t+G(Y m)∆mWKf

+ G(Y m)∆mWm,Kf

)
+ Ξm +Om,

where Ξm, Om : Ω → H are random variables such that

E

(∥∥Ξm
∥∥2
H

)
≤ C∆t2

(
M−min(α,2) +N−2α̃

f +K−4β
f

)
,

E
(
Om

∣∣Ftm
)
= 0 and E

(∥∥Om
∥∥2
H

)
≤ C∆t

(
M−min(α,2) +N−2α̃

f +K−4β
f

)
.

The constant C is independent of ∆t = T/M, Nf and Kf .

Proof. Lemma C.3 and Corollary C.4 show that

Y m+1 = r(dtANf
)2PNf

(
Y m + F (Y m)∆t+G(Y m)∆mWKf

+ G(Y m)∆mWm,Kf

)

+ r(dtANf
)2PNf

(
F (Y fm) + F (Y am)

2
− F (Y m)

)
∆t

+ r(dtANf
)2PNf

(
G(Y fm) +G(Y am)

2
−G(Y m)

)
∆mWKf

+ r(dtANf
)2PNf

(G(Y fm) + G(Y am)

2
− G(Y m)

)
∆mWm,Kf

+
r(dtANf

)2PNf

2

(
G(Y am)− G(Y fm)

) (
dm+1/2WKf

⊗ dmWKf
− dmWKf

⊗ dm+1/2WKf

)

+
1

2

(
Ξfm + Ξam +Ofm +Oam

)

=: r(dtANf
)2PNf

(
Y m + F (Y m)∆t+G(Y m)∆mWKf

+ G(Y m)∆mWm,Kf

)

+ Im + IIm + IIIm + IVm +
1

2

(
Ξfm + Ξam +Ofm +Oam

)

To bound the first term Im, we use a second order Taylor expansion of F around Y m together with
Y m = 1

2 (Y
f
m + Y am) to obtain for some ξfm, ξ

a
m ∈ H

F (Y fm) + F (Y am)

2
− F (Y m) =

F ′′(ξfm)− F ′′(ξam)

4
(Y fm − Y m, Y

f
m − Y m)

=
F ′′(ξfm)− F ′′(ξam)

16
(Y fm − Y am, Y

f
m − Y am).
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Assumption 3.2 (iii) and the triangle inequality further show that

E

(∥∥Y fm − Y am
∥∥4
H

)
≤ CE

(∥∥Y fm −X(tm)
∥∥4
H

)
≤ C

(
dt2 +N−4α̃

f +K−4β
f

)
.

We then use the global bound on F ′′ and Jensen’s inequality together with Assumption 3.2 (iii) to derive

E

(∥∥Im
∥∥2
H

)
≤ E

(∥∥∥∥
F (Y fm) + F (Y am)

2
− F (Y m)

∥∥∥∥
2

H

)
∆t2

≤ CE
(∥∥Y fm −X(m∆t) +X(m∆t)− Y am

∥∥4
H

)
∆t2

≤ C∆t2
(
∆t2 +N−4α̃

f +K−4β
f

)
.

We observe that E(IIm | Ftm) = 0 holds for the second term, and arrive with Itô’s isometry and similar
calculations as for Im at

E

(∥∥IIm
∥∥2
H

)
≤ C∆t

(
∆t2 +N−4α̃

f +K−4β
f

)
.

For the next, we first note that E(IIIm| Ftm) = 0. To bound IIIm in mean-square, we use Proposi-

tion 3.1 and first order expansion of G to obtain for some ξ̃fm, ξ̃
a
m ∈ H

G(Y fm) + G(Y am)

2
− G(Y m) =

G′(ξ̃fm)− G′(ξ̃am)

2
(Y fm − Y m) =

G′(ξ̃fm)− G′(ξ̃am)

4
(Y fm − Y am).

Since the intermediate points ξ̃fm, ξ̃
a
m ∈ H are convex combinations of Y fm and Y am there holds by

Lemma A.1, Proposition 3.1 and Theorem 3.5

E

(∥∥IIIm
∥∥2
H

)
≤ CE

(∥∥∥(G′(ξ̃fm)− G′(ξ̃am))(Y fm − Y am)
∥∥∥
2

LHS(U,H)

)
∆t2

≤ CE
((

1 +
∥∥Y fm

∥∥2
H
+ ‖Y am‖2H

)∥∥Y fm − Y am
∥∥2
H

)
∆t2

≤ CE
(∥∥Y fm − Y am

∥∥4
H

)1/2

∆t2

≤ C∆t2
(
∆t+N−2α̃

f +K−2β
f

)

≤ C∆t
(
∆t2 +∆tN−2α̃

f +∆tK−2β
f

)

≤ C∆t
(
∆t2 +N−4α̃

f +K−4β
f

)
,

where we have used Young’s inequality for the final estimate.
As G is of linear growth by Proposition 3.1, we obtain analogously that E(IVm| Ftm) = 0 and

E

(∥∥IVm
∥∥2
H

)
≤ C∆t

(
∆t2 +N−4α̃

f +K−4β
f

)
.

The dominating remainder terms in the expansion of Y m+1 are thus Ξfm,Ξ
a
m, O

f
m, O

a
m, and the claim

follows from Proposition C.3 and Corollary C.4.

We are now ready to proof our main result.
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Proof of Theorem 4.1. Define em+1 := Y m+1−Y cm+1 for any m = 0, . . . ,M −1 and assume again without
loss of generality that α ∈ [1, 2]. By Proposition C.5 it holds that

em+1 = r(dtANf
)2Y m − r(∆tAN )Y cm

+
(
r(dtANf

)2PNf
F (Y m)− r(∆tAN )PNF (Y

c
m)
)
∆t

+
(
r(dtANf

)2PNf
G(Y m)− r(∆tAN )PNG(Y

c
m)
)
∆mWKf

+
(
r(dtANf

)2PNf
G(Y m)− r(∆tAN )PNG(Y cm)

)
∆mWm,Kf

+ r(∆tAN )PNG(Y
c
m)(∆mWKf

−∆mWM )

+ r(∆tAN )PNG(Y cm)(∆mWm,Kf
−∆mWm,K)

+ Ξm +Om.

(55)

We now re-iterate the representation of Y m and Y cm to obtain

em+1 = r(dtANf
)2mY 0 − r(∆tAN )mY c0

+

m∑

j=0

(
(dtANf

)2(m−j+1)PNf
F (Y j)− r(∆tAN )m−j+1PNF (Y

c
j )
)
∆t

+

m∑

j=0

(
r(dtANf

)2(m−j+1)PNf
G(Y j)− r(∆tAN )m−j+1PNG(Y

c
j )
)
∆jWKf

+
m∑

j=0

(
r(dtANf

)2(m−j+1)PNf
G(Y j)− r(∆tAN )m−j+1PNG(Y cj )

)
∆jWm,Kf

+

m∑

j=0

r(∆tAN )m−j+1PNG(Y
c
j )(∆jWKf

−∆jWM )

+

m∑

j=0

r(dtAN )m−j+1PNG(Y cj )(∆jWm,Kf
−∆jWm,K)

+

m∑

j=0

r(dtANf
)2(n−j)(Ξj +Oj)

=: I +

m∑

j=0

IIj + IIIj + IVj +Vj +VIj + r(dtANf
)2(j−1)(Ξj +Oj).

(56)

The first term I is bounded Lemma B.1 and Assumption 3.2 (ii) since X0 ∈ L8(Ω, Ḣα) by

E

(
‖I‖2H

)
≤ 3E

(∥∥(r(dtANf
)2m − r(∆tANf

)m)Y 0

∥∥2
H

)
+ 3E

(∥∥r(∆tANf
)m − r(∆tAN )m)Y 0

∥∥2
H

)

+ 3E
(∥∥r(∆tAN )m(Y 0 − Y c0 )

∥∥2
H

)

≤ CE
(∥∥(r(dtANf

)2m − r(∆tANf
)m)PNf

X0

∥∥2
H

)

+ CE
(∥∥(r(∆tANf

)m − r(∆tAN )m)PNf
X0

∥∥2
H

)

+ C
(
E

(∥∥PNf
X0 −X0

∥∥2
H

)
+ E

(
‖X0 − PNX0‖2H

))

≤ C
(
M−α +N−2α̃

)
.

To bound the terms IIj , we define the semi-discrete averages Ỹj :=
1
2

(
Ỹ fj + Ỹ aj

)
for j = 0, . . . ,m. We
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then obtain for any j = 0, . . . , n by a first order Taylor expansion for some ξ̃j , ξ
c
j ∈ H that

IIj =
(
r(dtANf

)2(m−j+1)PNf
− r(∆tANf

)m−j+1PNf

)(
F (Y j)− F (Ỹj) + F (Ỹj)

)
∆t

+
(
r(∆tANf

)m−j+1PNf
− r(∆tAN )m−j+1PN

) (
F (Y j)− F (Ỹj) + F (Ỹj)

)
∆t

+ r(∆tAN )m−j+1PN
(
F (Y m)− F (Y cm)

)
∆t

=
(
r(dtANf

)2(m−j+1)PNf
− r(∆tANf

)m−j+1PNf

)(
F ′(ξ̃j)(Y j − Ỹj) + F (Ỹj)

)
∆t

+
(
r(∆tANf

)m−j+1PNf
− r(∆tAN )m−j+1PN

) (
F ′(ξ̃j)(Y j − Ỹj) + F (Ỹj)

)
∆t

+ r(∆tAN )m−j+1PN
(
F ′(ξcj )(Y j − Y cj )

)
∆t.

Lemmas B.1 and C.2 then show together with Assumption 3.2 (iv) that

E

(
‖IIj‖2H

)
≤ C∆t2E

(∥∥∥Y j − Ỹj

∥∥∥
2

H

)

+ C∆t2E

(∥∥∥
(
r(dtANf

)2(m−j+1)PNf
− r(∆tANf

)m−j+1PNf

)
F (Ỹj)

∥∥∥
2

H

)

+ C∆t2E

(∥∥∥
(
r(∆tANf

)m−j+1PNf
− SNf

((m− j + 1)∆t)
)
F (Ỹj)

∥∥∥
2

H

)

+ C∆t2E

(∥∥∥
(
SNf

((m− j + 1)∆t)− r(∆tAN )m−j+1PN
)
F (Ỹj)

∥∥∥
2

H
+ ‖ej‖2H

)

≤ C∆t2E
(
∆t2 +N−2α̃

f +K−4β
f + (∆tα +N−2α̃

f )‖F (Ỹj))‖Ḣα + ‖ej‖2H
)

≤ C∆t2
(
M−α +N−2α̃

f +K−4β
f + E

(
‖ej‖2H

))
.

By Lemma A.1 and with similar calculations as for IIem we further obtain

E

(
‖IIIj‖2H

)
+ E

(
‖IVj‖2H

)
≤ C∆t

(
M−α +N−2α̃

f +K−4β
f + E

(
‖ej‖2H

))
.

The fifth term Vj is bounded by Corollary A.2 and Theorem 3.5 via

E

(
‖Vj‖2H

)
= ∆tE

(∥∥G(Y cj )
∥∥2
LHS(U,H)

) Kf∑

j=K+1

ηj ≤ C∆tE
(
1 +

∥∥Y cj
∥∥2
H

) Kf∑

j=K+1

ηj ≤ C∆tK−2β ,

where we have used that ηj = O(j−(1+ε)−2β) for arbitrary small ε > 0 in the last step, cf. Remark 3.3.
Similarly, Lemma A.1, Proposition 3.1 and Theorem 3.5 show that

E

(
‖VIj‖2H

)
≤ C∆t2E

(∥∥G(Y cj )
∥∥2
LHS(L1(U),H)

) Kf∑

j=K+1

η2j ≤ C∆t2K−4β .

Now we finally observe that E (Z |Fj) = 0 for Z ∈ {IIIj , . . . ,VIj} and every j = 0, . . . , n, and thus
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obtain with the estimates on I, IIj , . . . ,VIj that

E

(
‖em+1‖2H

)
≤ CE

(
‖I‖2H

)
+ Cm




m∑

j=1

E

(
‖IIj‖2H

)
+ E

(∥∥Ξj
∥∥2
H

)



+ C

m∑

j=1

(
E

(
‖IIIj‖2H

)
+ E

(
‖IVj‖2H

)
+ E

(
‖Vj‖2H

)
+ E

(
‖VIj‖2H

)
+ E

(∥∥Oj
∥∥2
H

))

≤ C


M−α +N−2α̃ +∆t




m∑

j=1

M−α +N−2α̃
f +K−2β + E

(
‖ej‖2H

)



 .

The claim now follows by the discrete Grönwall inequality.

D Proof of Theorem 5.3 – Multilevel Monte Carlo Complexity

Proof of Theorem 5.3. Fix ℓ = 1, . . . , L. By Theorem 4.1 and (28) there holds that

max
m=0,...,M

E

(∥∥∥Y ℓm − Y c,ℓ−1
m

∥∥∥
2

H

)
≤ C

(
M

min(α,2)
ℓ−1 +N−2α̃

ℓ−1 +K−2β
ℓ−1

)
= CM

min(α,2)
ℓ−1 .

Now let Y f,L and Y a,L denote the fine approximation and its antithetic counterpart, respectively, on the
finest level L. The bias of the MLMC estimator is then bounded due to Assumption 5.1 (ii) by

∣∣E
(
Ψ(XT )−ΨL

)∣∣ ≤ CM−1+δ
L .

Using a first order Taylor expansion of Ψ ∈ C2
b (H,R) around Y

ℓ

M and Theorem 4.1 shows that for some
ξf,ℓ, ξa,ℓ ∈ H the variance decay on each level may be bounded by

Var(Ψℓ −Ψcℓ−1) ≤
1

4
E

((
Ψ(Y f,ℓMℓ

) + Ψ(Y a,ℓMℓ
)− 2Ψ(Y c,ℓ−1

Mℓ−1
)
)2)

≤ E

((
Ψ(Y

ℓ

Mℓ
)−Ψ(Y c,ℓ−1

Mℓ−1
) +

Ψ′(ξf,ℓ)

2

(
Y f,ℓMℓ

− Y
ℓ

Mℓ

)
+

Ψ′(ξa,ℓ)

2

(
Y a,ℓMℓ

− Y
ℓ

Mℓ

))2
)

≤ CE

(∥∥∥Y ℓMℓ
− Y c,ℓ−1

Mℓ−1

∥∥∥
2

H

)

≤ CM
−min(α,2)
ℓ .

Finally, Assumption 5.1 (i) yields a cost per sample of Ψ
ℓ
given by Cℓ ≤ CM1+γ

ℓ . As Mℓ = M02
ℓ, [15,

Theorem 2.1] yields the claim.
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